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Abstract

Background: Hantavirus pulmonary syndrome (HPS) is a life threatening disease transmitted by the rodent Oligoryzomys
longicaudatus in Chile. Hantavirus outbreaks are typically small and geographically confined. Several studies have estimated
risk based on spatial and temporal distribution of cases in relation to climate and environmental variables, but few have
considered climatological modeling of HPS incidence for monitoring and forecasting purposes.

Methodology: Monthly counts of confirmed HPS cases were obtained from the Chilean Ministry of Health for 2001–2012.
There were an estimated 667 confirmed HPS cases. The data suggested a seasonal trend, which appeared to correlate with
changes in climatological variables such as temperature, precipitation, and humidity. We considered several Auto Regressive
Integrated Moving Average (ARIMA) time-series models and regression models with ARIMA errors with one or a
combination of these climate variables as covariates. We adopted an information-theoretic approach to model ranking and
selection. Data from 2001–2009 were used in fitting and data from January 2010 to December 2012 were used for one-step-
ahead predictions.

Results: We focused on six models. In a baseline model, future HPS cases were forecasted from previous incidence; the
other models included climate variables as covariates. The baseline model had a Corrected Akaike Information Criterion
(AICc) of 444.98, and the top ranked model, which included precipitation, had an AICc of 437.62. Although the AICc of the
top ranked model only provided a 1.65% improvement to the baseline AICc, the empirical support was 39 times stronger
relative to the baseline model.

Conclusions: Instead of choosing a single model, we present a set of candidate models that can be used in modeling and
forecasting confirmed HPS cases in Chile. The models can be improved by using data at the regional level and easily
extended to other countries with seasonal incidence of HPS.
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Introduction

Reports indicate that illness from hantaviruses existed as early as

the 1950s [1], although the virus was only officially recognized in

the Americas in 1993 [1–3]. An outbreak of hantavirus in the Four

Corners region of the United States led to investigation and

isolation of the Sin Nombre virus (SNV). Thereafter, several other

hantaviruses with the ability to cause severe human disease were

discovered in rodents in the Americas [2], with SNV and Andes

virus (ANDV) predominating in North and South America

respectively [4]. Rodents are a natural reservoir for hantaviruses.

Typically, different rodents carry different hantavirus strains and

rodent species vary by geography. The deer mouse (Peromyscus

maniculatus) is the primary reservoir for SNV [2,5–7], while

Oligoryzomys longicaudatus commonly known as the long-tailed

pygmy rice rat is the primary reservoir for the ANDV [3,4,8–

10]. The long-tailed pygmy rice rat is common in rural Argentina

and Chile [9,11].

Transmission of hantaviruses to humans occurs through contact

with infected rodent saliva, excreta or inhalation of contaminated

aerosol, and, rarely, through the bite of an infected rodent [12–14].

Outbreaks are typically small and geographically confined partly

due to the lack of human-to-human transmission. Infections can

progress to severe disease defined by geographical regions:

hemorrhagic fever with renal syndrome (HFRS) in the Old World

(Asia and Europe) and hantavirus pulmonary syndrome (or

hantavirus cardiopulmonary syndrome) (HPS) in the New World

(Americas) [4]. Symptoms of HPS include myositis, fever, breathing

difficulties, and in some cases, vomiting, diarrhea, headaches,

dizziness and kidney problems [13–15]. There are an estimated 300
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cases of HPS per year in the Americas [15] and mortality rates for

HPS have been as high as 60% for some outbreaks [13,16].

However, case fatality ratio differs by virus strain.

ANDV, which was first identified in Chile’s Cochamo, Los

Lagos Region in 1995 is the main cause of HPS in the country and

throughout South America [17]. Clinical infections are usually

identified in rural regions in the central and southern regions of

Chile. Several social and physical factors influence hantavirus

transmission. Factors such as temperate forestation, farm settle-

ments, degraded housing, breakdown of sewage systems and

inadequate sanitation and waste disposal facilities can contribute

to rodent infestation [18]. Increased rodent reservoir populations

have been associated with increased human risk of hantavirus

infections [16,19] Variations in rodent populations correlate with

seasonality and climate variables (such as precipitation and

temperature) as well as landscape alteration (such as that due to

farming) [20,21]. Despite several theories, the exact relationship

between climate and rodent abundance remains unknown.

To better understand the population dynamics of relevant

rodent colonies, researchers have investigated population spatial

distribution and dynamics of transmission agents [20,22], spatial

and temporal distribution of cases in relation to other variables

[23], hantavirus risk estimation [24,25], and climatic aspects of

transmission [26]. Models have also illustrated that alternation of

seasons could lead to outbreaks of hantavirus [2] and disappear-

ance and reappearance of hantavirus has been observed with

changes in environmental conditions [27]. Based on these

observations and the paucity of studies from South America that

predicts HPS, we explore the influence of climatological variables

in models for forecasting HPS cases in Chile. The inclusion of

climatological variables slightly improves the model fit and

prediction accuracy in some cases. Specifically, the addition of a

combination of precipitation and temperature into the time series

models appear to improve prediction of the case trend, which

reinforces the hypothesis that changes in climatic conditions

especially precipitation could have an influence on incidence.

Materials and Methods

Data Sources
Official case count time series. Publicly available data on

confirmed HPS cases were obtained from the Chilean Ministry of

Health (http://epi.minsal.cl). We extracted the data from reports

presented on the Ministry of Health (MOH) website. The data

spanned January 2001 to December 2012 and was available at a

monthly resolution (see Figure 1). At the time of this writing, the

HPS map on the Chile’s MOH site showed a cumulative

distribution of cases from 2007 to the week of May 26th, 2012.

The case distribution from 2007–2012 by region was as follows:

Los Rı́os (105), Biobı́o (92), Maule (59), Los Lagos (47), Del

Libertador B. O’Higgins (44), Araucanı́a (41) and Valparaı́so (6)

[28]. The number of reported HPS cases for this period were also

compared and found to be equatable to the number of reported

HPS cases extracted from HealthMap [29] - an automated online

system for real-time disease outbreak monitoring and surveillance

based on informal sources such as news reports.

Climate data. Climate data were obtained from the Global

Historical Climatology Network (GHCN) of the US National

Oceanic and Atmospheric Administration (NOAA) [30]. GHCN

data was available for nine weather stations located across nine of

the fifteen regions in Chile. We further restricted the data to

stations located in regions with incidence of HPS. The GHCN

data contained temperature and cumulative precipitation. Tem-

perature was recorded in degree Celsius, and the average mean,

maximum and minimum monthly values were presented. Precip-

itation was measured as total precipitation per month and

presented at tenths of millimeter precision. Data on daily relative

humidity and dew point were downloaded from NOAA’s National

Climatic Data Center at a daily resolution. We chose 23 stations

(see Figure 2) located in Los Lagos, Maule, Valparaı́so, Biobı́o,

Araucanı́a, Los Lagos and Aisen. We also downloaded the data

from January 2001 to December 2012 to correspond with the time

range of the reported HPS cases. In addition, monthly averages

were estimated from the reported daily relative humidity and dew

point. These climatological variables were chosen based on

available data and previous studies on spatial spread of hantavi-

ruses using similar explanatory variables [22,26].

Model Fitting
As stated, the aim of this study was to build models that estimate

and forecast HPS activity in Chile, in addition to exploring the

influence of climatological variables in the models. We selected six

time series models after considering several Auto Regressive

Integrated Moving Average (ARIMA) and regression with

ARIMA error models. ARIMA models are useful for modeling

lagged relationships typically present in periodically collected data

[31]. Also, a lagged relationship between climate variables and

cases has biologic plausibility as these variables may have lagged

effect on rodent population and behavior and through that

pathway a lagged effect on cases. ARIMA models have been used

in modeling and forecasting infectious diseases such as influenza

[32] and dengue [33]. We briefly describe these modeling

approaches.
ARIMA models. ARIMA models belong to the Box-Jenkins

approach to time-series modeling [34] and are represented as

ARIMA(p,d,q), where p indicates the autoregressive (AR) order, d

the differencing order and q the moving average (MA) order.

ARIMA models assume a stationary time series, implying that the

data vary around a constant mean and variance over time.

Nonstationary time series variables can be made stationary by

transformation or differencing. An ARIMA(p,d,q) model can be

written as:

y’t~czw1y’t{1z � � �zwpy’t{p{h1zt{1{ � � �{hpzt{pzzt ð1Þ

where c is a constant, y’t~yt{yt{1 represents the differenced

Author Summary

Hantavirus pulmonary syndrome (HPS) is a severe disease
present in Chile, Argentina and other countries in the
Americas. Mortality rates for HPS can be as high as 60% for
some outbreaks. Although hantavirus outbreaks tend to
be small, the high death rate, unavailability of a vaccine,
and occurrence of infections in rural regions where
individuals are least likely to have appropriate healthcare
make HPS forecasting an important public health issue in
Chile and other countries. We present an approach for
modeling and forecasting confirmed HPS cases in Chile.
Seasonal time series models that predict future cases
based on previous cases appear reasonable. However,
adding climate variables such as precipitation, which is
thought to indirectly influence outbreaks of hantavirus
slightly improves the model fit. To further improve the
current models to make them more useful for public
health preparedness/interventions, data at the regional
level with reliable predictions several months into the
future are needed.
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series, y’t{pare lagged values and zt is a white noise process.

Model (1) can be written using the backshift operator L, which

represents lagging of the data by a single time period (e.g. one

month). Similarly L2 implies the data is lagged by two time periods

or yt{2. The first difference using the shift operator can be

presented as 1{Lð Þyt and dth-order difference can be written as

1{Lð Þdyt. Using this notation, equation (1) can be written as:

1{w1L{ � � �{wpLp
� �

1{Lð Þdyt~

cz 1zh1Lz � � �zhpLq
� �

zt

ð2Þ

where d represents the number of differences, q are the number of

MA terms, p is the number of AR terms and w and h are

coefficients.

We also fit seasonal ARIMA models, defined as ARI-

MA(p,d,q)(P,D,Q)s where P is the number of seasonal auto-

regressive terms, D represents the number of seasonal differ-

ence, Q is the number of seasonal moving average terms and s is

the number of periods in the season which was 12 in this study

since HPS cases were reported at a monthly resolution. For

example an ARIMA(1,1,1)(1,1,1)4 without a constant can be

written as:

1{w1Lð Þ 1{W1L4
� �

1{Lð Þ 1{L4
� �

yt~

1zh1Lð Þ 1zH1L4
� �

zt

ð3Þ

where (12w1L) is the non-seasonal AR(1) term, (12W1L4) is the

seasonal AR(1) term, (12L) is the non-seasonal difference,

(12L4) is the seasonal difference term, (1+h1L) is the non-

seasonal MA(1) term and (1+H1L4) is the seasonal MA(1) term.

More information on ARIMA models can be found in several

textbooks (for examples see [34] and [35]).

Regression models with ARIMA errors. Regression with

ARIMA errors basically combines regression and ARIMA models.

In general the model can be written as:

yt~b1x1,tz � � �zbkxk,tznt ð4Þ

where nt is assumed to follow an ARIMA model. For instance, if yt

and xt are differenced, then a regression model with ARIMA(1,1,1)

errors can be written as:

y’t~b1x’1,tz � � �zbkx’k,tzn’t

1{w1Lð Þn’t~ 1zh1Lð Þet

ð5Þ

where y’t~yt{yt{1,x’t,i~xt,i{xt{1,i,n’t~nt{nt{1 and et is a

white noise series.

Analysis. Initially, we fitted a simple time series regression

model to evaluate the potential impact of the climate variables on

HPS cases. The residuals of each fitted model were evaluated and

if the observed residuals did not correspond to white noise, we

employed a three step modeling approach which involved

selecting a candidate model; estimating the model and performing

diagnostic tests and lastly, forecasting future observations.

Autocorrelation function (ACF) and partial autocorrelation

function (PACF) plots were used to determine possible values for

the AR and MA orders. AR and MA coefficients were estimated

using conditional-sum-of-squares and maximum likelihood. Addi-

tionally, we also used the cross-correlation function (CCF) to

identify lags of the climatological variables to include in the

models. We only used lags up to 4 months due to the length of the

Figure 1. Confirmed HPS cases in Chile for 2001–2012. Different colors indicate different years and each bar represents a month starting from
January of 2001.
doi:10.1371/journal.pntd.0002779.g001
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time series. CCF was calculated between pre-whitened time series

for each of the climate variables and the confirmed HPS cases.

The variables were pre-whitened by first fitting an ARIMA model

to the time-series of each of the climate variables. Next, the HPS

case data were filtered using the estimated coefficients for each of

the fitted models. Lastly, we assessed correlations between the

residuals from each of the models fitted to the climate variables

and the filtered confirmed HPS cases using the CCF. Pre-

whitening is necessary when CCF values are affected by the time

series structure of the covariates and existing common trends

between the covariates and the response series over time [35].

Dew point was excluded from the modeling process because it did

not have a significant CCF with the HPS cases. Models consisting

of one or more of the remaining climate variables in addition to

lagged climate variables were considered.

We adopted an information-theoretic approach for model and

ranking. Model selection was based on a minimization of the

Corrected Akaike Information Criterion (AICc) [36–38] and

diagnostic checks. Diagnostic checks involved examining the

residuals for each fitted model for autocorrelations and random-

ness. The difference (DAICci) between the AICci of each selected

model and the minimum AICc was also calculated. Furthermore,

we estimated model likelihoods and Akaike weights wi as a

measure of the strength of evidence in support of each of the

candidate models given the data and the selected models. The

weight was calculated as follows:

wi~exp {
DAICci

2

� ��XR

i~1
exp {

DAICci

2

� �
[37]. Here, R

represents the number of candidate models. Lastly, we estimated

the evidence ratio between the model with minimum AICc and

the model without climate variables by taking the ratio of the

Akaike weights.

The monthly HPS case data were divided into two sets: one for

the fitting process and the other for validation. Data from 2001–

2009 were used in fitting. Data from January 2010 to December

2012 were used in validation; 106 data points were used in fitting

and 36 for evaluation. The selected models were also used in one-

step-ahead predictions of the evaluation points and prediction

accuracy was assessed based on the coefficient of variation R2 and

the Root Mean Squared Error (RMSE). The modeling process

was implemented using the TSA and forecast packages in R [39].

A sample code is given in the Supplementary Information S1.

Results

From 2001–2012, there were an estimated 667 cases of HPS

with an average of 56 cases per year. HPS cases were relatively

consistent among years with seasonal peaks between January and

April as shown in Figure 1. The epidemic peaks appeared to be

preceded by peaks in mean temperature. In addition, increases in

precipitation and relative humidity appeared to correlate with

troughs in confirmed HPS cases (see Figure 3). Cross-correlations

between pre-whitened time series of climate variables and the

confirmed HPS case data were significant at different lags, mostly

between lags 1 and 4. The cross-correlations of variables used in

the modeling process are shown in Table 1.

Five models were selected in addition to the model based solely

on previous HPS cases (baseline model). The models are presented

based on AICc rankings in Table 2. The model with precipitation

with lags at one and four months was the most parsimonious with

Figure 2. Locations of weather stations that fall in regions with
confirmed HPS cases from 2007–2012.
doi:10.1371/journal.pntd.0002779.g002
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Figure 3. Confirmed HPS cases in Chile and climate variables from 2001–2012. Abbreviations: Temp = Temperature, Rhx = Relative
Humidity and Prcp = Precipitation. The data is at a monthly time scale.
doi:10.1371/journal.pntd.0002779.g003
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a weight of 0.63. The second and third ranked models should also

be considered relevant, owing to DAICci,4 [38]. All three ‘best’

models included precipitation at one and four month lags

suggesting that this variable is an important predictor variable to

model and forecast HPS cases.

Based on the coefficient of variation (R-squared), lagged

precipitation in the top ranked model produced a 1.86%

improvement in model fit over the baseline model (baseline model

R2 = 0.484, top ranked model R2 = 0.493). We present the fit and

forecast of the top ranked model and the baseline model in

Figure 4. The predicted number of cases based on both models

captured the timing of the peaks observed from 2010–2012

(baseline model R2 = 0.555, top ranked model R2 = 0.559). Each

of the predicted values were captured within the 95% CIs except

for the major peak observed in 2012.

Discussion

In this study, we present several time series models for HPS

activity with the inclusion and exclusion of climatological

covariates. Univariate models with a seasonal component appear

to capture the trend observed in the data and also have a low

prediction error suggesting that HPS cases could be predicted one-

month ahead. The inclusion of climatological variables slightly

improves the model fit and prediction accuracy in some cases.

Since HPS cases are typically low, slight deviations in fit and

prediction could be significant. The model based on previous

observations of HPS cases and precipitation is ranked highest

based on the AICc. Increased rainfall may increase the availability

of food resources for rodents, which may lead to higher

reproduction. Growth in rodent populations may lead to

competition for food resources, which may also lead to greater

dispersal thereby increasing the likelihood of contact between

rodents and humans [21]. As this process takes place overtime, it

may partially explain some of the significant correlations observed

between lags of the pre-whiten precipitation variable and the

confirmed HPS case time series data.

Though some studies have evaluated climate in relation to

rodent population dynamics, to our knowledge, there are no

published studies on forecasting HPS activity using climate

variables for Chile. A study on forecasting HFRS incidence in

China used a similar time series modeling approach [31].

However, the authors did not consider the inclusion of climate

variables in their model. The availability of climate data in near

real-time makes a reasonable addition to the modeling and

forecasting of HPS cases.

Climate most likely influences rodent populations based on a

combination of weather variables [7,20,21,40]. However, there is

a lack of in-depth understanding on how climate change would

influence rodent host populations and disease outbreaks. Recent

changes in rodent populations and hantavirus infections have

been connected with climate change in Europe, though the effects

appear to differ from one location to another [3]. However, the

natural history and hosts dynamics of hantaviruses suggest that

climate change could result in increased incidence in humans,

which might also be attributable to changes in human behavior

[3,8,40]. In addition to the possible elimination of reservoir hosts,

increases in the frequency and intensity of extreme climatic

events such as droughts and floods, could lead to alteration of

hantavirus species composition [8,41]. A more in-depth under-

standing of both reservoir rodent population dynamics and

disease outbreaks in relation to climate is therefore important for

better understanding and modeling of ANDV infections in

rodents.
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The temporal and spatial resolutions of the available data are

limitations of this study. Data at the daily or weekly resolution

would be useful. In addition, averaging climate variables across

different regions with different levels of HPS cases results in loss of

information. Regional modeling and forecasts would be beneficial

since weather varies across regions. This loss of information could

have affected the contribution of the climate variables to the

various models. The models also fail to account for several other

factors that could possibly influence rodent populations and

human and subsequently hantavirus infections. Other climate

variables apart from humidity, precipitation, and temperature

might also interact to influence observed cases. In addition,

climate data is also available only for some of the regions with high

HPS incidence and the locations of weather stations might not be

the same as locations with confirmed cases. Furthermore, HPS

cases typically occur in rural areas suggesting that not all cases

might be reported and mild HPS cases might be undiagnosed.

Riquelme et al. [9] suggests using epidemiological questionnaires

to improve monitoring and diagnosis of HPS. There is also a likely

delay in diagnosis since the average incubation period for

hantavirus infections is between 13–17 days [1,13] possibly

meaning some cases could be misclassified by a month. Lastly,

the confidence intervals for the presented models include negative

values suggesting that a Poisson time series model might be better

suited for this data. However, note, that the predicted cases do not

fall below zero, indicating that the models presented could be

useful for case count predictions.

Although the proposed models have limitations, they provide a

framework for monitoring and forecasting HPS cases. HPS is a

serious disease with a high fatality ratio. Modeling and forecasting

of expected HPS cases could be extremely useful for public health

education and control of incidence. The possibility of person-to-

person transmission [10,42] and potential vulnerability of urban

communities makes such a modeling approach relevant. In

addition, although several environmental management practices

and educational campaigns have been launched to limit activities

that contribute to the transmission of hantaviruses, HPS continues

to be endemic in Chile [12]. Vaccines are currently unavailable,

therefore prevention of hantavirus infection involves elimination of

possible habitats for rodents, proper garbage disposal practices,

and using protective devices (such as gloves, goggles and

respirators) when cleaning poorly ventilated structures such as

cabins and ensuring proper maintenance in and around household

structures. Most hantavirus infections are thought to result from

exposure to aerosolized hantavirus. Modeling and forecasting

future HPS cases could be useful for the development and

implementation of preventive public health measures. Although

the models in this study are developed for Chile, methods and

analysis can be extended to other countries with HPS.

These models must be updated with the most recent data

regularly since changes in various parameters can affect predicted

outcomes. Despite the noted limitations and requirements, these

models suggest that reliable forecast of HPS cases in Chile is

feasible. Solely using past cases to predict future case is possible

due to the seasonal nature of the peaks. However, the inclusion of

climate variables at an appropriate resolution can significantly

improve the prediction of incidence. Although hantavirus

outbreaks tend to be small and geographically confined, the high

fatality rate, unavailability of a vaccine and occurrence of

infections in rural regions where individuals are least likely to

have appropriate healthcare makes HPS forecasting an important

public health challenge in Chile and several other countries.
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