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Relations between the notions of fundamental and minimal lengths, and duality, in
a system with minimal length uncertainty relations are examined. Self-adjoint ver-
sions of operators relevant to the problem, and their spectra, are analyzed in
detail. © 2007 American Institute of Physics. �DOI: 10.1063/1.2423220�

INTRODUCTION

While the ideas of fundamental length and discretization of space �minimal length� are
vaguely related, they are logically and technically quite different. One of the aims of this paper is
to discuss the interplay of these two ideas in a particular system, the other being preparation for
investigation in Ref. 1 of the spectrum of hydrogen atom in this system. On the way we discuss
carefully questions of domain and self-adjoint extension of various operators.

Skipping prehistory, during the last 50 years, the idea of an existence of fundamental length
appeared repeatedly in analyses of gedanken experiments involving gravity and in string theory3,4

�Ref. 2 has a review of this subject up to 1995�. The analysis results often in a position uncertainty
relations of the form

�x �
�

2
� 1

�p
+ ��p� , �1�

which yields

�xmin = ��� , �2�

for minimal value of �x, a quantity identified with fundamental length.
On the other hand, starting with Snyder,5 discreteness of space, or space-time, brought in

mainly with the hope of curing UV divergencies, was introduced through modification of kine-
matics of quantum mechanics, i.e., by modification of canonical commutation relations �CCR�,
and while the uncertainty relation �1� is “dynamical in its origin”, in the work of Kempf, Man-
gano, and Mann6 �KMM� it has also been implemented by a modification of CCR �cf. with an
earlier work by Mead7�.

Namely, Kempf et al.6 introduced a two-parameter family,

�Xi,Pj� = i���ij + �P2�ij + ��PiPj� , �Pi,Pj� = 0, �3�

of deformations of CCR and of the Schrödinger �momentum� representation: the operators are
acting in a Hilbert space of functions of p�RD, Pj is the �momentum� operator of multiplication
by pj, and the �noncommuting� position operators are
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Xj = i���1 + �p2�� j + ��Pj��
k

Pk�k��, � j =
�

�pj
, j = 1, . . . ,D . �4�

A system defined by Eqs. �3� and �4� will be called a KMM system in the following.
A differential expression, such as Eq. �4�, defines an operator only after its domain is speci-

fied. Different domains define different operators, all of which will be called, somewhat vaguely
but conveniently, versions of the �ur-� operator Xj. Similarly, we will talk about versions of the R2

operator Eq. �5�.
As has been noted and extensively discussed in Ref. 6 �see also Ref. 8 and 9�, the uncertainty

relation �Eq. �1�� implies that the position operators, defined on the domain on which Eq. �1�
holds, fail to be essentially self-adjoint in a very strong way �Xj’s are examples of simple sym-
metric operators in the sense of Sec. 103 of Ref. 10; a closely related notion, that of “indeterminate
operators,” appears in a similar context in Ref. 7�, and different self-adjoint versions of these
operators may, and do here, have different spectra. Since spectra of self-adjoint operators and their
functional calculus are essential in many problems of quantum mechanics—in the present context,
spectra have been used in comparison of KMM system with standard quantum
mechanics1,6,11–14—one has to face here the problem of the choice of the self-adjoint version.6

Whereas the introduction of fundamental length often eliminates ultraviolet �UV� divergen-
cies, in many field theory models it leads also to a modification of infrared �IR� behavior �“UV/IR
mixing”�, and to duality—a strong form of UV/IR mixing.15 Inequality �1�, being invariant under
the substitution �p� ���p�−1, suggests such a duality. We show that �a slight generalization of�
KMM system has indeed a duality property: there exists a transformation relating the original
model to another one, of the same form, but with high and low momenta interchanged: in Sec. II D
we establish inversion invariance of the model and then trace the duality back to this invariance.

It is the problems of relation between fundamental and minimal lengths, domain problem,
discreteness of spectrum, and then duality in a system defined by Eqs. �3� and �4� that are
considered in the present paper.

For one degree of freedom, one has the position operator X= i��1+�p2�d/dp, �=�+��,
which is initially defined on functions with suitable decay at infinity. This operator is analyzed in
Refs. 6 and 8. Change of the variables p�q=arctan��p�, −� /2�q�� /2, maps X onto the
operator i����q, self-adjoint versions of which are well known �see Sec. III A�: they are naturally
labeled by points ei	 of the unit circle, with eigenfunctions satisfying twisted-periodic boundary
conditions and 	����	 /�+2n� :n�Z
 as �the purely discrete and nondegenerate� spectrum, so
that by picking up a self-adjoint version of the position operator one breaks translation invariance
of the theory. This is akin to breaking gauge invariance by gauge fixing, invariance that is restored
if one considers all the gauges. Moreover, the spacing of the spectrum, 2���, is a gauge-
independent quantity.

This attractive picture does not hold, however, in higher dimensions. For as shown in Sec. III
in the simplest case of ��=0, no natural extension of �Xj� has pure point spectrum.

This should be contrasted with properties of the length operator R—the square root of

R2 = �
j=1

D

Xj
2 = − �2�

j=1

D

��1 + �p2�� j + ��Pj��
k

Pk�k��2
�5�

�¬R��,���
2 �, the spectrum of any version of which is pure point. �The situation is reminiscent of that

in loop quantum gravity,16 where the spectra of area and volume operators are pure point, with no,
however, topological interpretation of the spectrum in the present context, at least at this point�.
Moreover, since R2 is a positive operator, it has a distinguished self-adjoint extension—Friedrichs’
extension of its minimal version, which in the present context has many appealing properties. At
the end of Sec. II C, it is argued that Friedrichs’ extension is the “right one,” both for R2 and for
some other operators, and notion of “physical states” introduced in Ref. 6 is discussed.

We note that for the KMM systems there seem to be no relation between the choice of
self-adjoint extensions of the position operators and the “right” self-adjoint extension of R2 �or of
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harmonic oscillator�: as can be easily seen in the case of one dimension for no self-adjoint
extension of X is its square equal to Friedriechs’ extension of R2. The same holds in higher
dimensions. Thus the problem of choosing the self-adjoint version of position operators, i.e., of the
generating algebra of the system, is irrelevant to questions about its dynamics.

We also note that for the KMM systems there seem to be no relation between the choice of
self-adjoint extensions of the position operators and the right self-adjoint version of R2, and then
of the Hamiltonian. For example, in the case of one dimension, it can easily be seen that there is
no self-adjoint extension of X such that its square is equal to Friedriechs’ extension of R2. The
situation is similar in higher dimensions. Thus the problem of choosing the self-adjoint version of
position operators, i.e., of the generating algebra of the system, is irrelevant to questions about the
dynamics of the system.

Our discussion of duality �Sec. II D� requires a slight generalization of Eqs. �3� and �4� in
which p2�� is a function of p of the form �3+�4p2. It is convenient, however, to start with a still
more general system, in which

�Xj,Pk� = i�f�P�� jk + g�P�PjPk� , �Pi,Pj� = 0, �6�

where f and g are “arbitrary” functions of p, in representation

Xj = i� f�P�
�

�pj
+ g�P�Pj�

k

Pk
�

�pk
�, j = 1, . . . ,D , �7�

i.e., with the most general rotation invariant vector-valued first order differential operator X
= �Xj� j=1,. . .,D �see the end of Sec. II D�.

In general, the dual system is not isomorphic to the original one. Still, there is a two-parameter
family of self-dual models—one parameter family, if the operators are brought to a dimensionless
form. As one would expect, these are not small deformations of the operators of ordinary Quantum
Mechanics.

We note that our results regarding position and length operators are in agreement with gedan-
ken experiments involving gravity, which lead to fundamental length, not to minimal spacing for
position operator. The later is usually obtained from the former by performing a “projection on
coordinate axes,” a questionable notion in a theory in which the position operators do not com-
mute.

The paper is organized as follows. The stage is set in Sec. I, where we also show that the
seemingly more general system introduced in Ref. 8 can be reduced to KMM system through a
gauge transformation. The operator R2—spectra of its self-adjoint versions, Friedrichs’ extension,
and duality—is analyzed in detail in Sec. II: after performing standard reduction with respect to
rotations for each value of angular momentum one obtains a second order �real� ordinary differ-
ential operator, with deficiency indices 0, 1, or 2, depending on the values of the parameters. For
each �� ,���, the reduced operators are essentially self-adjoint for large enough angular momenta.
However, the number of angular momenta for which the reduced operator is not essentially
self-adjoint tends to infinity as the parameter 
=� /� tends to zero, even when both � and �� are
small, indicating that R��,���

2 is a rather singular deformation of R�0,0�
2 .

To compare R2 with the Laplace operator �=R�0,0�
2 �, we note that they have essentially the same

�small p� behavior, as one would expect on inspection of Eq. �4�. However, their UV behavior is
quite different, leading to limit-circle behavior of R2 at infinity. This again should be expected on
the basis of Eq. �4�: quasiclassically, considering iXj to be generators of motion in RD, the
polynomial character of the coefficients of � j leads to motion which reaches infinity in finite time,
and therefore one needs additional information to specify the operators. Thus we see again that it
is the requirement that the deformation produces UV cutoff that leads to nonuniquencess of
self-adjoint versions. Also, in contrast to the case of Laplace operator, some of the versions of R2

are not rotation or conjugation invariant and in contrast to the case of harmonic oscillator, the
deformation changes the energy spectrum in an essential way.

052108-3 Position and length operators J. Math. Phys. 48, 052108 �2007�
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Section III contains a pretty detailed discussion of a natural family of self-adjoint versions of
the position operators. While in dimension larger than 1, none of these versions has a pure point
spectrum, the point spectrum of the one-dimensional case gets deformed into a kind of a band
structure for higher dimensions.

There are three appendices: Appendix C, which has been already mentioned, Appendix A
about reduction to the hypergeometric equation, and Appendix B in which we apply formulas of
Appendix A to recalculate the spectrum of harmonic osciallator, computed earlier in Ref. 11, with
added discussions of self-adjoint versions.

The mathematics of the present paper is kept �exaggeratedly� simple, a combination of explicit
computations exploiting the hypergeometric equation and of a few well known theorems. That so
much can be computed here is due to the fact that the coefficients of first order differential
operators Xj are even quadratic functions of p: this yields for the radial operators second order
ordinary differential operators in the �complex� p2 plane with three regular singular points �zero,
infinity, and p2=−1/��, and eigenvalue equation which is therefore reducible to the hypergeomet-
ric equation. The explicit formulas are used in our paper Ref. 1 on bound states of hydrogenlike
atoms �see also Ref. 16�. However, many of the results are valid for models that are not explicitly
soluble.

I. PRELIMINARIES

We start with operators,9

Xj = Xj
��� = i���1 + �P2�� j + ��Pj��

k

Pk�k� + �Pj�, j = 1, . . . ,D , �8�

acting on functions of p�RD; here � and �� are non-negative constants, � is an arbitrary real
number, �k=� /�pk, and Pjf�p�= pjf�p�. The operators �Eq. �8�� are symmetric when acting in the
Hilbert space L2�RD ,w��p�dDp� defined by the scalar product11 �� is denoted by 
 in Ref. 11�,

�f ,g� �� dDpw��p�f*�p�g�p� ,

where

w��p� =
1

�1 + �p2�1+���� ,

� = � + ��, ���� =
��

2�
�D − 1� −

�

�
,

Ref. 11. Since, as is shown below, the case of nonzero � is related to that of �=0 by a gauge
transformation, from now on we set � equal to zero and consider the operators acting in the
Hilbert space L2�RD ,w0�p�dDp� of measurable functions of p with scalar product,

�f �g� =� dDpw0�p�f*�p�g�p�, w0�p� =
1

�1 + �p2�1+� , � =
1

2
�1 − 
�D̄ . �9�

Here and below

� = � + ��, 
 =
�

�
, and D̄ = D − 1.

In most of the present paper we assume that D�2.
Passing to the dimensionless variable p̄=��p, one obtains
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Xj = i���
�1 + 
p� 2��p̄j
+ �1 − 
�p̄j��

k

p̄k�p̄k�� = ���X̄j , �10�

and R=����� jX̄j
2=���R̄, which defines the dimensionless operators X̄j and R̄; ��� is closely

related to the fundamental length of the theory �see Sec. II B�. Furthermore, introducing �� ,
�
instead of �� ,��� of Eq. �4� as the parameters, one notes that the X̄ and R̄ depend on 
 but not on
�, and that dropping from the scalar product �Eq. �9��, an overall factor of �−D/2, one ends up with
Hilbert space with scalar product �f ,g���dDp̄�1+ p̄2�−1−�f*�p̄�g�p̄�, which again depends on 

but not on �.

These formulas explain the form of the � dependence of the eigenvalues �Eq. �46�� of R, of
the change of variables �Eq. �17�� below, and of the fact that the Hilbert space depends on the
parameters only through 
. However, we work with the variable p in most of the paper.

A. Gauge transformation

A gauge transformation simplifies somewhat calculations by removing the � term from Eq.
�8�. Let u be a function of one variable, let Gu be the gauge transformation ��Gu�,

�Gu���p� = eu�p2���p� ,

and let L2�RD ,w0�p��e−u�p2��2dDp� be the Hilbert space of functions � for which

� dDpw0�p��e−u�p2���p��2 � � , �11�

in which Eq. �11� is the square of the norm; Gu defines a unitary operator from
L2�RD ,w0�p��e−u�p2��2dDp� to L2�RD ,w0�p�dDp�. Then

GuX�0�Gu
−1��p� = eu�p2�X�0��e−u�p2���p�� = X�0���p� − 2i��1 + �p2�pu��p2�� ,

which is equal to X���� if

− 2i��1 + �p2�pu��p2� = − i��p, i.e., e−u�p2� = �1 + �p2��/2�. �12�

This shows that for u of Eq. �12�, Gu is a unitary map of L2�RD ,w��p�dDp� onto
L2�RD ,w0�p�dDp�, and that G−1X�0�G=X���. It is clear that one can replace here �p with “any”
function of the form ��p�p.

This gauge invariance explains why the spectrum of harmonic oscillator of Ref. 11 does not
depend on � and shows also that the eigenfunctions of the corresponding operators are related by
G.

We note that if the number � is purely imaginary, these calculations and formulas show that
exp�−u�p2�� is of modulus one and that therefore Eq. �11� is the same as Eq. �9� with Gu being a
unitary map of L2�RD ,w0�p�dDp� into itself.

II. ANALYSIS OF R2

We consider here in detail the second order differential operator �Eq. �5��, its self-adjoint
versions, and their spectra. Since it commutes with rotations, in a standard way, it is tentatively
reduced in Sec. II A to �second order� ordinary differential operators RL

2 in the radial variable p.
We then change the variable to obtain second order differential equation with three regular sin-
gular points. In Sec. II B we rewrite this equation as the hypergeometric equation, analyze it in
terms of Jacobi polynomials, and then discuss self-adjoint versions of the reduced radial operator.
Finally, in Sec. II C, we use all this to analyze self-adjoint versions of R2, of which there are in
general many, and argue that the version given by Friedrich’s extension is the “right one”.
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A. Separation and change of variables

We start with the standard reduction process with respect to the group of rotations �p. 160 of
Ref. 17, and Ref. 11, and references therein�. First, the Hilbert space L2�RD ,w0�p�dDp� is factor-
ized into radial and angular �spherical� parts

L2�RD,w0�p�dDp� = R � S , �13�

where

R = L2�R+,w0�p�pD−1dp�, S = L2�SD−1� ,

and SD−1 is the unit sphere in RD, then S is decomposed into subspaces on which the action of
rotations is irreducible, S= �LSL, and finally L2�RD ,w0�p�dDp� and R2 are decomposed,

L2�RD,w0�p�dDp� = �
L

�R � SL�, �R2�R�SL
= RL

2
� 1L, R2 = �

L
�RL

2
� 1L� , �14�

where L=����+D−2�, �=0,1 , . . . ,RL
2 is R2 reduced at angular momentum L, and 1L is the

identity operator in SL. At the end of this section we discuss ambiguities of this formulation in
case the operators involved are not essentially self-adjoint.

In our case,

RL
2 = − �2
��1 + �p2�

d

dp
�2

+ D̄�1

p
+ �p���1 + �p2�

d

dp
� − �1

p
+ �p�2

L2� , �15�

as can be checked by direct computation �see Sec. II D for a more general formula�. Equation �15�
agrees with the expression of Ref. 11 for reduced Hamiltonian of harmonic oscillator, and in fact
can be easily derived from it.

Considered as an equation in complex domain, the eigenvalue equation corresponding to Eq.
�15�,

− �2
��1 + �p2�
d

dp
�2

+ D̄�1

p
+ �p���1 + �p2�

d

dp
� − �1

p
+ �p�2

L2���p� = r2��p� , �16�

where r2 is an eigenvalue of R2, has four �regular� singular points: p=0, ± i /�� ,�. A change of the
variable to p2 reduces the number of singular points to three. After that, a standard process, which
is essentially unique, transforms Eq. �16� into the hypergeometric equation �HE� the relevant
solutions of which are expressible in terms of Jacobi polynomials.18

We perform the reduction to HE by first bringing the three singularities to the standard
position �−1,1 ,�� through the transformation to the variable z,

p =
1

��
�1 + z

1 − z
, − 1 � z � 1, z =

�p2 − 1

�p2 + 1
, �17�

and then using the �standard� formulas of Appendix A reduce it the resulting equation to the
hypergometric one. Erlier, Ref. 11 arrived at the transformation p�z through a series of changes
of variable. While some of these are not applicable in the present context, the transformation itself
is very useful and, in a sense, canonical: it is determined by the singular points of Eq. �52� in the
complex p2 plane.

Namely, setting

� =
r2

4��2 �r = 2������, D1 =
1

2
D̄ −

1

2
, D2 =

1

2

D̄ +

1

2
, �18�

in the z variable, Eq. �15� is
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RL
2 = − 4��2
�1 − z2�

d2

dz2 + �D1 + D2 − �D1 − D2 + 2�z�
d

dz
−

L2

4

��1 + 
� − �1 − 
�z�2

1 − z2 � ,

�19�

while Eq. �16� can be written as

− �1 − z2��� − �D1 + D2 − �D1 − D2 + 2�z��� +
L2

4

��1 + 
� − �1 − 
�z�2

1 − z2 � = �� . �20�

Transformation to the z variable appeared earlier in �Eq. 59 of Ref 11� on harmonic oscillator,
where it is obtained through a series of substitutions. While one of the intermediate substitutions
does not make sense in the present context, the transformation p�z does.

The differential operator of Eq. �19� is diagonalized in the Hilbert space obtained from
L2�R+ , pD−1w0�p�dp� by transformation �17�. Now,

pD−1

�1 + �p2�1+�dp =
1

21+��D/2 �1 + z�D1�1 − z�−D2dz .

Therefore for any real � and � we set

w��,���z� = �1 − z���1 + z��, H��,�� = L2��− 1,1�,w��,���z�dz� , �21�

i.e., the scalar product in H��,�� is

�f �g���,�� =� dzw��,���z�f*�z�g�z� , �22�

and we let operator �20� act in H=H�−D2 ,D1�. We note that the Hilbert space H and the operator
of Eq. �20� depend on 
, but not on �.

Equation �20� can be put in a form which displays it as an eigenvalue equation for manifestly
symmetric operator in H,

−
1

w�z�
d

dz

p�z�

d��z�
dz

� +
L2

4

��1 + 
� − �1 − 
�z�2

1 − z2 � = �� , �23�

where w=w�−D2,D1� and p�z�= �1+z�D1+1�1−z�−D2+1.
Until this point our discussion has a tentative character since the operator R2 decomposed in

Eq. �14� has not yet been defined. Moreover, it appears that not all self-adjoint versions of R2 are
rotation invariant. Still all these versions can be described in terms of the reduced operators RL

2,
which is done in Sec. II C. We will now make more precise the setup for our analysis of RL

2.
To analyze RL

2 in the Hilbert space setup, one considers self-adjoint operators generated by the
differential expressions �5� and �15�, or, alternatively, �23�. In a conservative approach to the later
problem, one starts with a differential operator which has a rather small domain, so that the
operator is transparently symmetric, and the differentiation has the usual elementary sense. This
initial domain can be chosen in many ways, natural from one or another point of view, resulting in
different initial versions of R2. In case of Eq. �15� �Eq. �19��, one usually takes for this initial
domain the family C0

���0, +��� of all infinitely differentiable functions of p, each function van-
ishing in a neighborhood of zero and infinity �C0

���−1, +1���, since the differential expressions are
singular here at the boundary. This is the domain of a fundamental version RL,min

2 of RL
2 �p. 248 of

Ref. 19�. Then one can consider the problem of finding self-adjoint extensions of the fundamental
operator—self-adjoint versions of RL

2 and their spectra discuss uniqueness of such an extension,
and in case of nonuniqueness, as in the case at hand, to choose one extension or to discuss life
with nonuniquely defined extension.

An alternative, but almost equivalent way, which is in a sense dual to the one described, is to
start with the maximal (differential) operator �p. 248 of Ref. 19�, corresponding to Eq. �5� or �23�,
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which is defined on the maximal natural domain on which these differential expressions make
sense, yielding elements of the Hilbert space. The maximal version of the operator is equal to the
adjoint of its fundamental version, it is almost unique, and is, in general, not symmetric. Self-
adjoint versions of the operators are then obtained by restricting these maximal versions to suitable
domains.

B. The reduced operators

Self-adjoint operators generated by holomorphic differential equations of form �23� are con-
sidered in Chap. 8 of Ref. 20 and other places; in fact Ref. 20 analyzes a system very close to ours,
though not in the whole range of parameters needed here. Our discussion has the �dis�advantage of
being very concrete, given a few basic facts about such systems, and in relating the problem to
well known properties of Jacobi polynomials.

We start with a discussion of the simplest three-dimensional case,

D = 3, L = 0, and �� = 0�
 = 1� , �24�

which, however, displays characteristic features of the problem. Equation �20� is now

− �1 − z2��� − �2 − z��� = �� . �25�

Equation �25� is a particular case of equation

�1 − z2�u� + ��b − a� − �c + 1�z�u� + ��� + c�u = 0, c = a + b + 1, �26�

or, equivalently, of the equation

− �1 − z2�u��z� + ��a − b� + �c + 1�z�u��z� + �c2/4�u�z� = �u�z�, � = �� + c/2�2. �27�

For �=n, n=0,1 , . . ., these equations are satisfied by Jacobi polynomials Pn
�a,b� �Formula 8.962.1

of Ref. 21�. The characteristic exponents of Eq. �27� are �0,a� at z= +1 and �0,b� at z=−1. Jacobi
polynomials are square integrable with respect to the weight w�a,b� if and only if a ,b�−1 and, in
the later case, they form a complete orthogonal family in H�a,b�. Since a+b=−1 in case of Eq.
�25�, both a and b cannot be larger than −1 �in fact, here a=−3/2 and b=1/2�, and therefore
Jacobi polynomials are not square integrable.

Square-integrable solutions of Eq. �25�, which are expressible in terms of Jacobi polynomials
are found in two steps: in step 1, substitution transforming it into an equation with non-negative a
and b is performed and in step 2, square integrable solutions of the transformed equation �Eq.
�29�� are found. The general case �arbitrary L ,
� is analyzed in the same two steps.

Step 1. The substitution �gauge transformation� is here

��z� = �1 − z�3/2��z� . �28�

It transforms Eq. �25� into

− �1 − z2����z� + �1 + 4z����z� + �9/4���z� = ���z� , �29�

which is Eq. �27� with

a = 3/2, b = 1/2, c = 3, and � = � . �30�

Step 2. Since a and b of Eq. �29� are �−1, Eq. �29� has Jacobi polynomials Pn
�3/2,1/2� as a

complete orthogonal family �in H�3/2,1/2�� of solutions, with eigenvalues �n= �n+3/2�2, n�0.
Moreover, since in our case b�1, there is another family of solutions of Eq. �25� expressible

in terms of Jacobi polynomials: the gauge transformation ���̃,

��z� = �1 + z�−1/2�̃�z� , �31�

transforms Eq. �29� into
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− �1 − z2��̃��z� + �2 + 3z��̃��z� + ��z� = ��̃�z�, � = � , �32�

�a=3/2, b=−1/2, and c=2�, which again has Jacobi polynomials, Pn
�3/2,−1/2� this time, as a com-

plete orthogonal family of solutions �in H�3/2,−1/2��. Performing now transformation inverse to Eq.
�31�, one obtains two complete orthogonal �in H�3/2,1/2�� families,

�n
�1��z� = Pn

�3/2,1/2��z� eigenvalues �n + 3/2�2, �33�

�n
�2��z� = �1 + z�−1/2Pn

�3/2,−1/2��z� eigenvalues �n + 1�2, �34�

and, finally, transformation �28� yields two complete orthogonal �in H=H�−3/2,1/2�� families of
eigenfunctions of R2,

�n
�1��z� = �1 − z�3/2Pn

�3/2,1/2��z� eigenvalues �n + 3/2�2,

�n
�2��z� = �1 − z�3/2�1 + z�−1/2Pn

�3/2,−1/2��z� eigenvalues �n + 1�2, n = 0,1,2, . . . .

These two families of eigenfunctions diagonalize two different self-adjoint extensions of the
fundamental operator R0,min

2 —extensions, which have different spectra. They are two members of
a one-parameter family of all self-adjoint extensions of R0,min

2 for 
=1, extensions which can be
characterized by their �different� asymptotics at z=−1—the point at which the nonzero exponent b
is smaller than 1 �see below�.

We will pass now to determination of spectra of RL
2 at all angular momenta L and for all values

of 
.
Step 1. Let

a�
,L� = �D2
2 + 
2L2, b�
,L� = �D1

2 + L2, c = a + b + 1, �35�

�1 = −
1

2
D1 +

1

2
b�
,L�, �2 =

1

2
D2 +

1

2
a�
,L� �36�

�Di=Di�
�, i=1,2, are as in Eq. �18��; the notation does not make explicit the dependence of a, b,
c, and � on D. Let

� =
1

4
��2 + �1 − 
�2L2� + �, i.e., � = � −

1

4
��2 + �1 − 
�2L2� �37�

�
 as in Eq. �9��; it can be checked by direct calculation that the substitution

��z� = �1 + z��1�1 − z��2��z� �38�

transforms Eq. �20� into Eq. �27� with a=a�
 ,L�, b=b�
 ,L�, and � as in Eqs. �35� and �37� �see
Appendix A�.

In terms of Hilbert spaces and operators, the substitution �38� defines an isomorphism
U :��� of H�a,b� onto H, which sends the minimal version Jmin of the operator defined by left
hand side of Eq. �27� to RL,min

2 ,

U−1JminU = RL,min
2 , Jmin = Jmin

�a,b�, D�Jmin� = C0
��� − 1,1�� � H�a,b�. �39�

Thus, the problems of finding self-adjoint extensions of RL,min
2 and of Jmin are equivalent. We will

therefore discuss the problem for Jmin; the corresponding properties of RL,min
2 are summarized in

the theorem of the end of this section.
Step 2. We start by considering four special families 	F�
�=��+,�−�, �+=±, �−=±, of solutions of

Eq. �27� with a ,b�0, families that can be expressed in terms of Jacobi polynomials. The case of

052108-9 Position and length operators J. Math. Phys. 48, 052108 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 22 Jan 2014 14:58:06



a�0 and b=0, which appears only in two dimensions, stands apart and is considered separately
below. Substitution �38� yields then solutions of Eq. �20�.

F�+,+� is just the family 	Pn
�a,b�
n=0,1,. . .= 	Pn

�a,b�
n�0 of Jacobi polynomials. More generally, for
any �, let

F� = 	�n
�
n�0, where �n

��z� = �1 − z��a�−a�/2�1 + z��b�−b�/2Pn
�a�,b���z� , �40�

and a�=�+a and b�=�−b. We will say that the family F� is square integrable if its elements are in
H�a,b�. The number n�a ,b� of square-integrable families is equal to deficiency indices of Jmin.
While we do not write down solutions of the equations �Jmin�*�= ± i�, i.e., the elements of
deficiency subspaces K±—these can be expressed in terms of the hypergeometric function, we
note that the solutions of the indicial equations �Eqs. �A13� and �A14�� do not depend on the
eigenvalue � of Eq. �20�, and therefore boundary behavior of these equations, which determines
their sqare integrability, is the same as of the elements of the corresponding families F�.

Since the substitution ����, ��z�= �1−z��a�−a�/2�1+z��b�−b�/2���z� transforms Eq. �27� into

− �1 − z2�������z� + ��a� − b�� + �c� + 1�z�������z� + �c�/2�2���z� = ����z� , �41�

where c�=a�+b�+1, of which Pn
�a�,b�� are solutions, �n

� is a solution of Eq. �27� with

� = �n
� = �n + c�/2�2. �42�

In case of b=0 �which appears for D=2 only�, i.e., in case of equal characteristic exponents
at z=−1, in addition to F�+,+�, also the family F�+,0�

ª 	�n
�+,0� :n�0
 is square integrable; here

�n
�+,0��z� is the u2��1+z� /2� of Sections 9.153-3 of Ref. 20, with �=−n, �=n+c, and m=0. The

values of �’s and �’s are here the same as for the F�+,+�. For 0�a�1, the same holds for F�−,0�.

Since for real a and b, 	Pn
�a�,b�� :n�0
 is a complete orthogonal family in H�a�,b�� if and only

if a�, b��−1, one obtains that 	�n
�
n�0 is a complete orthogonal family in H�a,b� under the same

conditions on a, b, and that it then defines a self-adjoint extension J� of Jmin: since the functions
�n

� are smooth on �−1,1�, they are in domain of the adjoint operator Jmin
* and then the closure of

the restriction of Jmin
* to linear span of 	�n

�
n�0 is an obviously self-adjoint operator, which is an
extension of Jmin. We call these extensions of Jmin, and then of RL,min

2 , pure extensions: their
behavior at the boundary points of the interval �−1, +1� is given by the exponents ��1

� ,�2
��,

whereas other extensions are described by more complicated �“mixed”� boundary conditions �see
below�.

It follows from Chap. 8 of Ref. 19, and Ref. 17, that for any �a ,b� deficiency indices of Jmin

are equal and that they can assume the values 0, 1, or 2; we will say that Jmin �and RL,min
2 � is of type

I, II, or III if deficiency indices of Jmin �and RL,min
2 � are �0,0�, �1,1�, or �2,2�, respectively. By

general theory �Chap. 8 of Ref. 19, and Ref. 17, if Jmin �and RL,min
2 � is of type I then it is essentially

self-adjoint and out of the four families F�, only the family F�+,+� is square integrable; if Jmin �and
RL,min

2 � is of type II then two of the four families F� are square integrable and one has a one-
parameter family of self-adjoint extensions, parametrized naturally by U�1� �a circle� and if Jmin

�and RL,min
2 � is of type III, all four families F� are square integrable and one has a four-parameter

family of self-adjoint extensions, parametrized naturally by U�2�—the family of 2�2 unitary
matrices.

We will discuss now how the type of Jmin �and of RL,min
2 � depends on the parameters a and b.

Type II is split into II+, II−, and II−
0 subtypes according to at which end of the interval �−1, +1� one

has to impose boundary conditions, i.e., at which end of the interval one has limit-circle �lc� case:
at +1 for type II+ and at −1 for type II−. Subtypes II−

0 and III0 corresponding to b=0, a case that
occurs only in two dimensions, have eigenvectors which are not expressible in terms of Jacobi
polynomials, and have other special properties. Subtypes that do not appear in analysis of RL,min

2

are omitted. �In fact, only types I and II+ appear in the decomposition of Rmin
2 .�

I: a ,b�1; F�+,+� is the only square-integrable family. II+ :1�a�0, b�1; F�+,+� and F�−,+� are
square integrable �lc at +1�. II− :a�1, 1�b�0; F�+,+� and F�+,−� are square integrable �lc at −1�.
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II−
0 :a�1, b=0; F�+,+� and F�+,0� are square integrable �lc at −1�. III: 1�a ,b�0; F�+,+�, F�+,−�,

F�−,+�, and F�−,−� are square integrable �lc at ±1�. III0 :1�a�0, b=0; F�+,+� and F�+,0� are square
integrable �lc at ±1�, deficiency indices �1, 1�, one has one-parameter family of self-adjoint
extensions of Jmin. The case a=0 and b=0, which can be analyzed in a similar way, does not
appear in the analysis of RL,min

2 , and is therefore omitted.
To get a feeling for self-adjoint extensions of Jmin different from the pure ones, we describe

now, somewhat loosely, description of these extensions for Eq. �29� in terms of boundary condi-
tions; we follow here closely Chap. 8 of Ref. 19.

Since in this case, a=3/2 and b=1/2, we are dealing with type II−. The families F�+,+� and
F�+,−� are displayed in Eqs. �33� and �34�, respectively. Let J= �Jmin�*—the maximal operator
defined by the differential equation �Chap. 8 of Ref. 18�; let p�z�= �1−z�a+1�1+z�b+1, and for any
two u ,v�D�J� let

Bu�v� = lim
z↘−1

p�z��u�z�*v��z� − u��z�*v�z��

�the limit exists and is denoted by �u ,v�−1 on p. 249 of Ref. 19�. Then for any real solution u of
Eq. �29� the self-adjoint extension Ju of Jmin is the restriction of J to
Duª 	v�D�J� :Bu�v�=0
—the set of functions satisfying Bu-boundary conditions. As is clear
from the definition, the form Bu depends only on asymptotics of u at z=−1. Here one has two
“pure asymptotics:” one defined by any function of F�+,+� and the other by functions of F�+,−�.

Thus, let u1 �u2� be any element of F�+,+� �F�+,−��, u1�z�=2−a−1P0
�3/2,1/2��z�=2−a−1 and u2�z�

=2−a−1�1+z�−1/2P0
�3/2,−1/2��z�=2−a−1�1+z�−1/2, for example. Setting u�	�= �cos 2�	�u1+ �sin 2�	�u2

for any 	�R /Z, one obtains the one-parameter family of Bu�	�-boundary conditions and the
corresponding one-parameter family of the self-adjoint extensions Ju�	� of Jmin. The equation
Bu�v�=0 gives then that the eigenvalues � satisfy

�3/2 + ��sin ��

�2 + ���1 + ��
cos 2�	 − 2 cos �� sin 2�	 = 0. �43�

For 	=0 �u1-boundary condition� this yields again the spectrum �33� whereas for 	=1/4
�u2-boundary condition� one obtains the spectrum �34�. For other values of 	, the spectrum is
given by Eq. �43� and is not computable in closed form. However, we note certain stability
property of the u1-boundary condition: for any 	�1/4 the values of �n�	� approach fast �n�0� as
n→�. The situation here is typical for the case of �1,1� deficiency indices. In the case of �2, 2�
deficiency indices, the description of spectrum is more complicated since one has to deal with
mixed boundary conditions.

Clearly, Jacobi polynomials satisfy the B�1� boundary condition and do not satisfy B�2� bound-
ary condition. Therefore the extension J�+,+� of Jmin is identical with Ju1

, in agreement with our
discussion of the spectrum.

The extension J�+,+� of Jmin is characterized by the fact that it has in its domain a function
equal to 1 in a neighborhood of −1 and 0 in a neighborhood of 1. It is also clear that our second
family of eigenfunctions diagonalizes the B2-extension.

We pass now to a description of self-adjoint extensions of RL,min
2 at different angular momenta

L and for different values of the parameter 
. It follows from Eq. �35� that the type of RL,min
2

depends on �
 ,L� but not on �, and that for 
 fixed the values of both a and b form a discrete set.
As is clear from Eq. �35�, a�
 ,L�2 is a quadratic form in 
 ,L �and also in D�, which is a

strictly increasing function of each of these �non-negative� parameters. Let 
cr�L� be the

�D̄-dependent� positive solution of the equation a�
 ,L�=1,


cr�L� ª
3

D̄ + 2�D̄2 + 3L2
. �44�

Proposition: If L=0 and 
�
cr�0� �=1/ D̄, ��� �D̄−1��� then RL,min
2 is of type III for D=3 and
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of type III0 for D=2; if, on the other hand, L=0 and 
�
cr�0� then RL,min
2 is of type II− for D

=3 and of type II−
0 for D=2.

If L�0, for any dimension D, RL,min
2 is type II+ for 
�
cr�L� and of type I otherwise. If D

�4 then the statement is true also for L=0.
The proof of Proposition, which we skip, consists of calculation of ranges of a and b of Eq.

�35� as functions of �
 ,L� and application of the above classification into types.
Proposition yields self-adjoint extensions of RL,min

2 at each angular momentum L for different
values of 
. To pass from it to a description of self-adjoint extensions of Rmin

2 itself, we first fix 

and discuss RL,min

2 for different values of L. One then obtains the following.

Assume that 
�1/ D̄ and let Lcr=Lcr�
� be the �D̄-dependent� positive solution of the equa-
tion a�
 ,L�=1,

Lcr�
� =
�1 − D̄
��3 + D̄
�

4
2 . �45�

Note that Lcr�
� increases from 0 to +� as 
 decreases from 1/ D̄ to 0, and that the conditions
a�1, 
�
cr�L�, and L�Lcr�
� are equivalent.

Theorem: For D=3, if 
�1/2 �=D̄−1�, i.e., ����, then RL,min
2 is of type III for L=0, of type

II+ for 0�L�Lcr�
�, and of type I otherwise; if 
�1/2 then RL,min
2 is of type II− for L=0 and of

type I otherwise.

For D=2, if 
�1 �=D̄−1� then RL,min
2 is of type III0 for L=0, of type II+ for 0�L�Lcr�
�, and

of type II− otherwise; if 
�1 then RL,min
2 is of type II− for L=0 and of type I otherwise.

For D�4, if 
�1/ D̄ then RL,min
2 is of type II+ for 0�L�Lcr�
� and of type I otherwise; if


�1/ D̄ then RL,min
2 is of type I for any L.

C. Self-adjoint versions of R2

We will now use results of the preceding section about the reduced operators to describe
self-adjoint versions of R2.

Let Rmin
2 be the minimal version of R2, with domain C0

��RD�, and let Rmin,0
2 be its restriction to

C0
��RD \ 	0
� �Schwartz versions of these domains can also be used, with the same final results�.

Rmin,0
2 is directly related to the reduced operators since its restriction to R � SL of Eq. �14� is equal

to RL,min
2

� 1L.
We note first that, since Rmin,0

2 is an extension of the algebraic sum �L�RL,min
2

� 1L�, �Rmin,0
2 �* is

a restriction of ��L�RL,min
2

� 1L��* �=�L�RL,min
2 �* � 1L�. It follows that, for any choice of a self-

adjoint extensions RL
2 �all L�, the closure of �LRL

2
� 1L defines a self-adjoint extension of Rmin,0

2 . All
rotation invariant self-adjoint extensions are of this form. Among these extensions are the pure
ones: writing F��
 ,L� for F� when a=a�
 ,L� and b=b�
 ,L�, fixing 
 and then choosing for each
L a square-integrable family F��L��
 ,L�, one obtains a unique self-adjoint extension of Rmin,0

2

domain of which contains elements functions of the form � � �, ��F��L��
 ,L� and ��SL.
Similarly, for deficiency subspaces K± �Sec. X.1 of Ref. 17, and Ref. 19�, one obtains

K±�Rmin,0
2 � = �

L
K±�RL,min

2 � � SL, K±�Rmin
2 � = �

L
K±�Rmin

2 �R�SL� .

This, in conjunction with the Theorem, shows that deficiency indices n�Rmin,0
2 � of Rmin,0

2 are equal
to
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n�Rmin,0
2 � = �1 + �

0�L�Lcr�
�
dim�SL� for D = 2,3

�
0�L�Lcr�
�

dim�SL� for D � 4. �
The term �0�L�Lcr�
� dim�SL� comes from the fact that one has lc behavior of RL,min

2 at p=� �z
=1�, while the 1 in 1+�0�L�Lcr�
� dim�SL� is the result of lc behavior of R0,min

2 at p=0 �z=−1�.
The later disappears when one passes to Rmin

2 and one obtains that

n�Rmin
2 � = �

0�L�Lcr�
�
dim�SL�

for any 
. For when 
=1 ���=0� �more generally, for 
�1/ D̄�, the deficiency indices of R0,min
2

are equal to 1 for D=2,3 and to 0 for D�4. For D=2,3 the nonuniqueness of self-adjoint
extension of R0,min

2 is due to the fact that at zero angular momentum, when the term �1
+�p2�L2 / p2 is absent from Eq. �16�, operator �19� is regular at 0. As in the case of Laplace
operator, to which R2 is reduced for �=0, this nonuniqueness disappears when one passes to Rmin

2 .
This can be seen from the fact that, as integration by part shows, �0,n�z� with �−=− is not in the
domain of �Rmin

2 �*. �In fact, enlarging the initial domain of Rmin,0
2 by just one C0

��RD�-function,
which is nonzero at 0, one obtains an essentially self-adjoint operator.�

According to von Neumann’s theory of self-adjoint extensions,16 this yields a large family of
self-adjoint extensions of Rmin

2 , a family that is naturally parametrized by U�n�Rmin
2 ��. However,

many of these extensions lack one or more of natural properties one would want R2 to have. Here
are the following two such properties, rotation �i� and conjugation �ii� invariances

�i� Let A be a symmetric operator which commutes with a group G of unitary operators. Then,
as is easy to see, its adjoint also commutes with operators of G, and therefore each of the
deficiency subspaces K± of A is invariant under G �in notation and terminology, we are following
here, Sec. X.1 of Ref. 17�. Let K be a unitary operator from K+ to K− and let AK be corresponding
self-adjoint extension of A �Theorem X.2 of Ref. 17� Then, as is easy to see, UAKU−1=AUKU−1 for
any U�G. Thus, AK commutes with G if and only if K does. The situation where the adjoint A* of
A is G-invariant but some of self-adjoint extensions of A are not, may seem at first paradoxical.
The point is that whereas A* is G-invariant, the self-adjoint extensions of A are obtained by
restriction of A* to suitable domains, and it is the domains that are in general not G-invariant. �All
this is obvious and hardly new, but we have no reference for a discussion of covariance properties
of self-adjoint extensions.�

It follows that for rotation-invariant extension RK
2 of Rmin

2 , K maps K+�Rmin
2 �� �R � SL� onto

K−�Rmin
2 �� �R � SL� for each L. Thus the rotation invariant versions of R2 are naturally param-

etrized by �0�L�Lcr�
�U�1�, an #	L :0�L�Lcr�
�
-parameter family.
�ii� The self-adjoint version of R2 should be invariant under suitable conjugation on the

Hilbert space, pointwise complex conjugation of functions of p, for example. All rotation-invariant
extensions of Rmin

2 , but not of Rmin,0
2 , fullfill this condition.

One self-adjoint extension, Friedrichs’ extension, Fr �R2� �Ref. 22, Theorem X.23 of Ref. 17,
and Ref. 19�, natural in the present context, has both of these invariance properties. And while this
is not the only self-adjoint version of R2 which is both rotation and conjugation invariant, there are
many of these, it has a number of other good properties:

�f1� It is canonically defined for any symmetric operator which is semibounded, for the
non-negative Rmin

2 in particular, and, as is not hard to see, for any semibounded symmetric operator
invariant under a group of unitary transformations its Friedrichs’ extension is also invariant under
the group. The same holds for conjugation-invariance. Friedrichs’ version of R2 is equal to �iXi

*Xi,
where Xi are the closed versions of the position operators �p. 180 of Ref. 17�—a natural definition
of R2. �Note, however, that already in one dimension, X*X is not equal to the square of a self-
adjoint extension of coordinate operator!�
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�f2� In general, i.e., for any 
, Friedrichs’ extension of Jmin, and then of Rmin
2 , is the extension

defined by the family F�+,+�; this is proved in Appendix C. Friedrichs’ extension shares with the
other pure extensions the property of nondegeneracy of spectrum.

Eigenfunctions and eigenvalues of the Friedrichs’ version of RL
2 of �19� are

�L,n�z� = �1 + z��1�1 − z��2Pn
�a,b��z�, rL,n

2 = 4��2�L,n, �46�

where

�L,n = �n +
c

2
�2

−
1

4
��2 + �1 − 
�2L2� = �n +

c

2
�2

−
1

16
� ��

� + ��
�2

��D − 1�2 + 4L2� , �47�

n=0,1 , . . . , z is as in Eq. �17�, a, b, and c as in Eq. �35�, �1,2 as in Eq. �36�. �To obtain the
eigenvalues and eigenfunctions for extensions defined by the families F� one has to replace here
everywhere, including �±, a by a�, b by b�, and c by c�.�

For fixed n, �L,n is an increasing function of L, as can be seen both from the explicit formula
�Eq. �46�� and directly from Eq. �16�. Hence, Rmin

2 and its Friedrichs’ extension are bounded below

by the lowest eigenvalue r0,0
2 =4��2�0,0=�2��1+ D̄��1+
D̄��0. On the other hand, other pure

extensions may have zero as an eigenvalue or may have negative spectrum. For example, �0,0
�−,+�

=0—so for �R2��−,+� there is no minimal length, while �0,0
�−,−�= 1

4 �D̄−1��D̄
−1�, which is negative if


�1/ D̄.
�f3� Friedrichs’ extension has a number of stability properties, not shared by other extensions.

For example, any other extension not defined by pure boundary conditions yields spectrum with
the same asymptotic behavior for large n as that of Fr �R2�.

�f4� Eigenfunctions of Fr �R2� have the weakest singularities at the boundary points. For
example, p�n

�+,+�, any n, is square integrable while p�n
�−,+� is not. The case of p2� is more

complicated: if a�1 then p2�n
�+,+� are square integrable if and only if one has limit-point case at

infinity �and p−2�n
�+,+� are square integrable if and only if one has limit-point case at zero�. This is

true for both R2 and harmonic oscillator �see Appendix B�. This indicates, in particular, that to
analyze the Hamiltonian in the whole range of the parameter 
, one has to use quadratic form
technique both in case of hydrogenlike atom and harmonic oscillator. We will return to this point
in Ref. 1.

We note that Sec. III of Ref. 6 proposed to solve this problem of domain of operators by
restricting it to physical states. At the beginning of Sec. III of Ref. 6 one reads that “… physical
states always lie in the common domain Dx,x2,p,p2 of the symmetric operators x ,x2 ,p ,p2.” Accord-
ing to this definition, for suitable values of the parameters, the eigenfunctions of the harmonic
oscillator Hamiltonian do not define physical states, which, presumably, runs against the author’s
intention.

This suggests to adopt the Friedrichs’ version as the right one. It is Friedrichs’ version of R2

that was used in Refs. 1 and 6, and it is Friedrichs’ version of harmonic oscillator Hamiltonian that
was analyzed in Refs. 6 and 11 �see Appendix B here�.

D. A generalization and duality

In vector form, the position of the system defined by Eqs. �6� and �7� are

X = i�f�p + gp�p · �p�� , �48�

where the rotation invariant functions f and g satisfy the condition

h�p� ª f�p� + p2g�p� � 0, �49�

a condition that can be somewhat relaxed, allowing h to be negative or to have zeros. A term
��p�P can be added to Eq. �7� and then removed from it by a gauge transformation, as in Sec. I A.
For completeness, we write down the commutators �Xj ,Xk�,
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�Xj,Xk� = �h�p�f��p� − pf�p�g�p���p̂k� j − p̂j�k� + h�p�p2g��p��p̂k − p̂j�p̂jp̂k�p̂ · �� , �50�

since they differ in form from those of KMM system, and at the end of the section we sketch a
proof of the fact that f�p+gp�p ·�p� is indeed the most general rotation invariant vector field.

Direct computation shows that the operators �Eq. �48�� defined on the common domain
C0

��RD� are symmetric in L2�RD ,w�p�dDp�, if and only if the weight function w satisfies the
differential equation

h�p�w��p� + �D̄pg�p� + h��p��w�p� = 0 �D̄ = D − 1� ,

which, assuming that h has no zeros, has

w�p� =
C

h�p�
exp�− D̄� dp

pg�p�
h�p�

�, C � R , �51�

as its general solution. For C=sign�h�, one obtains the unique, up to a multiplicative positive
factor, weight function, making Xj into symmetric operators. Specializing to f�p�=��1+�p2�,
g�p�=��� �h�p�=��1+�p2��—the case of KMM system, one obtains the weight function of Eq.
�9�.

Furthermore, for X of Eq. �48�, again direct computation shows that X2 reduced at angular
momentum L is equal to

RL
2 = − 
�h

d

dp
�2

+
fD̄

p
�h

d

dp
� −

f2L2

p2 � . �52�

We consider now the transformation, p�q=−�1/ p2�p. We call it duality transformations
since it relates IR and UV regions. Since the transformation commutes with rotations, and Eq. �48�
is the most general rotation invariant vector field, the transform of X must be again of form �48�.
Explicit computation of the transform is given below. We note that more general transfromation of
the form q=u�p�p could also be used.

Direct computation shows that Eqs. �6� and �7� imply that

�Xj,Qk� = i� f̃�q�� jk + q−2g̃�q�QjQk�, X = i f̃�q��q + ig̃�q�q�q · �q� , �53�

where Q is the operator of multiplication by q, �q= ��p /�q��p=2p �p ·�p�− p2�p �and therefore
q ·�q=−p ·�p�,

f̃�q� = − q2f�1/q�, q2g̃�q� = 2q2h�1/q� − g�1/q� ,

so that h̃�q�ª f̃�q�+q2g̃�q�=q2h�1/q�.
Also, it can be checked by direct computation that

1

h�p�
exp�− D̄� dp

pg�p�
h�p�

�dDp =
1

h̃�q�
exp�− D̄� dq

qg̃�q�

h̃�q�
�dDq �54�

�up to a multiplicative constant�, in agreement with the fact that the weight is determined by the
requirement that the operators Xj are symmetric. In other words, with a suitable choice of inte-
gration constants of Eq. �54�, the change of the variable map ��D�, D��q�=��p�, p=
−�1/q2�q defines an isomorphism of the Hilbert spaces L2�RD ,w�p�dDp� and L2�RD , w̃�q�dDq�
�w̃�q�= h̃�q�−1 exp�−D̄�dqqg̃�q� / h̃�q���, under which X is mapped onto X̃=DXD−1, where

X̃ = i f̃�q��q + ig̃�q�q�q · �q�, �q = �/�q .

The map D is involutive, in a suitable sense and, obviously, commutes with rotations, so that it
defines an isomorphism of L2�R+ ,w0�p�pD−1dp� and L2�R+ , w̃0�q�qD−1dq�, which is denoted again
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by D; defining R̃L
2 as DRL

2
D−1, one has that R̃L

2 is equal to is X̃2 reduced at angular momentum L,
and that

R̃L
2 = �h̃

d

dq
�2

+
f̃ D̄

q
�h̃

d

dq
� −

f̃2L2

q2 .

Thus RL
2 and R̃L

2 have the same spectra and their corresponding eigenfunctions are related D.
Our main interest is in the general quadratic case of

f�p� = �1 + �2p2, p2g�p� = �3 + �4p2, �55�

so that h�p�=�1+�2p2, where �1=�1+�3 and �2=�2+�4; we set

� =
�2

�1
, � =

�2

�1
, 
 =


2


1
=

�

�
=

�2�1

�1�2
, 
1 =

�1

�1
, 
2 =

�2

�2
. �56�

Equation �51� yields now

w�p� = �1 + �p2�D̄�
2−
1�/2−1p�
1−1�D̄, �57�

which for Kempf system �
1=1, 
2=
� reduces to Eq. �9�. �The inversion map p� �1/ p2�p
would lead from positive to negative �1 ,�2.�

In the quadratic case of Eq. �55�, transformation �17� to the variable z yields

RL
2 = − 4�1�2
�1 − z2�

d2

dz2 + �D+ + �D− − 2�z�
d

dz
−

�
+ + 
−z�2

4�1 − z2�
L2� ,

where

D± = D2 ± D1, D1 =
1

2

1D̄ −

1

2
, D2 =

1

2

2D̄ +

1

2
, 
± = 
2 ± 
1. �58�

Hence the eigenvalue problem RL
2�=r2� takes again the form of Eq. �A12� of Appendix A,

with L replaced by 
1L, D̄ replaced by 
1D̄, and

� =
r2

4�1�2
, a = �D2

2 + 
2
2L2, b = �D1

2 + 
1
2L2,

Eq. �36� yields again an expression of �1,2 in terms of a ,b ,D1,2, while Eq. �A20� is now

� = � −
1

4
L2�
1 − 
2�2 −

1

4
�2.

Eigenfunctions and eigenvalues of Friedrichs’ version of RL
2 are see �see Eq. �46��:

�L,n
�a,b��z� = �1 + z��1�1 − z��2Pn

�a,b��z�, rL,n
2 = 4�1�2�L,n, �59�

where

�L,n = �n +
c

2
�2

−
1

4
��2 + 
−

2L2� = �n +
c

2
�2

−
1

16
�D̄2 + 4L2�
−

2 , �60�

n=0,1 , . . . , z is as in Eq. �17�, a, b, c as in Eq. �35�, and �1,2 as in Eq. �36�.
In the general quadratic case,

f̃�q� = − �2 − �1q2, q2g̃�q� = �2�2 − �4� + �2�1 − �3�q2, h̃�q� = �2 + �1q2.

Writing f̃�q�= �̃1+ �̃2q2, q2g̃�p�= �̃3+ �̃4q2, h̃�q�= �̃1+ �̃2q2, one has
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�̃1 = − �2, �̃2 = − �1, �̃ = �−1, �̃1 = �2, �̃2 = �1, �̃ = �−1,


̃1 = − 
2, 
̃2 = − 
1, 
̃ = 
−1. �61�

Hence in the general quadratic case the dual is again quadratic, with both f̃ and h̃ obtained by
permutation 1↔2, and by a change of sign, in case of f .

The duality transformation is particularly simple in terms of the z variable: performing the
substitution q= �̃−1/2��1+z� / �1−z��1/2 one obtains

− 4�̃1�̃2
�1 − z2�
d2

dz2 + �D̃+ + �D̃− − 2�z�
d

dz
−

�
̃+ + 
̃−z�2

4�1 − z2�
L2� ,

which in view of Eqs. �61� and �58� is

R̃L
2 = − 4�1�2
�1 − z2�

d2

dz2 + �− D+ + �D− − 2�z�
d

dz
−

�
+ + 
−z�2

4�1 − z2�
L2� .

This shows that in terms of the z variable the duality transformation is z�−z. �Since the spectrum

of RL
2 is nondegenerate, this implies that �L,n

�ã,b̃��z� is proportional to �L ,n�a ,b��−z�. Indeed, since

D̃1=−D2, D̃2=−D1, �̃1,2=�2,1, ã=b, b̃=a, and c̃=c, the identity Pn
�a,b��−x�= �−1�nPn

�b,a��x� shows

that �L,n
�ã,b̃��−z�= �−1�n�L,n

�a,b��z�.�
One can reduce the number of parameters and give the duality transformation dimensionally

“right form” by passing to dimensionless variables and operators �cf. Eq. �10��: let p̄=��p, let P̄
be the operator of multiplication by p̄ and X̄= ��1�2�−1/2X. Then

X̄ = i��
1 + 
2p̄2��p̄ + ��1 − 
1� + �1 − 
2�p̄2�p̂�p̂ · �p��� .

�X̄j, P̄k� = i� f̄� jk + ḡP̄jP̄k�, f̄�p̄� = �
1 + 
2p̄2�, p̄2ḡ�p̄� = �1 − 
1� + �1 − 
2�p̄2. �62�

This reduces the four-parameter system �Eq. �55�� to a two-parameter one.
The duality transformation yields now

f̃�p̃� = − 
2 − 
1p̃2, p̃2g̃�p̃� = �1 + 
2� + �1 + 
1�p̃2,

i.e., writing f̃�p̃�= 
̃1+ 
̃2ep2 and p̃2g̃�p̃�= �1− 
̃1�+ �1− 
̃2�p̃2, one has


̃1 = − 
2, 
̃2 = − 
1. �63�

Thus both f̃ and g̃ are obtained by permutation 1↔2 followed by a change of sign.

We note that for general values of parameters, the system �X̄ , P̄� is not equivalent to its dual

�X̃ , P̃�, since the commutation relations of these two systems are different, i.e., the system �X̄ , P̄�
is not self-dual, in general. Taking Eq. �61� into account, one obtains that �X̄ , P̄� �and �X ,P�� is

self-dual if and only if 
̃1=
1=−
2 , 
̃2=
2=−
1, i.e., when X̄ is of the form X̄= i���1− p̄2��p�

+ ��1+ p2�−��1− p̄2��p̂�p̂ ·�p̄��, where �=
1. Thus one obtains an �essentially� one-parameter fam-
ily of quadratic self-dual models.

We now sketch a proof of the fact that Eq. �48� is the most general first order vector valued
rotation invariant differential operator. Let X=A�p��p, i.e., Xi=� jAij�p�� j be such an operator .
Then the problem is reduced to description of matrix-valued functions p�A�p�, such that, for any
orthogonal matrx R,

A�Rp� = R−1A�p�R for all R � G = O�n� . �64�

Since R is orthogonal, Eq. �64� implies that also tA�Rp�=R−1�tA�p��R for all R�G.

052108-17 Position and length operators J. Math. Phys. 48, 052108 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 22 Jan 2014 14:58:06



Proposition: Equation �64� implies that

A�p� = f�p�1 + g�p�p � p = f�p�1 + p2g�p�p̂ � p̂ .

� Fix w, one can, and we will, take it normalized and apply this identity to R in the isotropy
subgroup Gw of w, which is isomorphic to O�n−1�. It follows that A commutes with Gw, which
implies that A is a linear combination of identity operator and of the operator of projection on w,
which can be shown as follows.

Let c= �w �A�w�w�, B=A�w�−cw � w. Then B and tB commute with Gw. Since �w �Bw�=c
−c=0 and �w � tBw�= �Bw �w�=0, both Bw and tBw are perpendicular to w. Since both Bw and
tBw are Gw-invariant, both of these vectors are zero and it follows that the orthogonal complement
�w�� of �w� is B invariant and the action of Gw in �w�� is irreducible, the restriction of B to �w��

is a multiple of identity.�

III. POSITION OPERATORS

For simplicity, only the case of ��=0 �
=1� is being considered here. In this case Eq. �3� is

�Xi,Pj� = i��1 + �P2��ij, X = i��1 + �P2��p, i, j = 1, . . . ,D . �65�

Change of variables p� �q ,q�—note that q, q are different here from those of Sect. II B:

q�p� =
1

�1 + ��
i=2

D

pi
2

arctan
��p1

�1 + ��
i=2

D

pi
2

,

q = �q1, . . . ,qD−1� = ���p2, . . . ,��pD� , �66�

maps RD onto

� = 	�q,q� � RD:�q� � Q�q�
, where Q�q� =
�

2�1 + q2
�67�

and transforms X1 into the operator ���A, where

A = i�, � =
�

�q
, �68�

acting in Hilbert space H with the scalar product

��,�� � �
�

dqdD−1q�*�q,q���q,q� . �69�

More precisely, A stands for the minimal version of the differential operator �Eq. �68��, with
C0

���� as its domain. Thus A is the familiar differentiation operator, with the caveat that the range
of the variable q is q-dependent, yielding a “kinematic coupling” of various degrees of freedom.

To clarify the effect of this kinematic coupling on the spectrum of A, let us perform direct
integral decomposition of H with respect to q,

�
RD−1

�

H�q�dD−1q, where H�q� = L2�− Q�q�,Q�q�� . �70�

Then A acts in each H�q�, i.e., A is �in a loose sense� a direct integral of A�q�, q�RD−1. Each A�q�
is still of form �68� but the spectrum of �self-adjoint extension of� A�q� is now, in general,
different for different values of Q�q�, so that eigenvectors of �self-adjoint extension of� A�q� can
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be combined into an eigenvector of �self-adjoint extension of� A only under special circumstances.
While this description is basically right, the situation is a little bit more complicated since A

is not essentially self-adjoint.
To proceed with our analysis we start with the familiar case of “one degree of freedom.”
Let a be a positive number, let �a be the minimal version of the operator of derivative defined

in L2�−a ,a�, and let i�a,� be the self-adjoint extension of i�a defined by the boundary conditions
��a�=���−a�, where � is a complex number of modulus �B 141 of Ref. 16�. The spectrum of i�a,�

is determined by the equation e−2i�a=�, i.e., it is pure point, consisting of eigenvalues

�n
a,� = �0

a,� + ��/a�n, �0
a,� = − �arg ��/�2a�, 0 � arg � � 2�, n � Z , �71�

with �non-normalized� eigenfunctions �n
a,��q�=exp�−i�n

a,�q�. The eigenfunction expansion yields
direct sum decomposition of H=L2�−a ,a�

H = �
n�Z

Hn, Hn = 	�n
a,��:� � C
 ,

with D�i�a,��= 	�n�n
a,��n�H :�n��n

a,��n
a,��n�2��
 and

i�a,���
n

�n
a,��n� = �n

a,��n
a,��n.

Setting a=� /2, one recovers here a result of Ref. 6.
An alternative �von Neumann’s� approach to the problem of obtaining self-adjoint extensions

of a symmetric operator A �p. 141 of Ref. 21�, is in considering first the deficiency subspaces K±

of A, which consist of solutions of the equations A*�= ± i�, then labeling self-adjoint extensions
of A by unitary operators from K+ to K−. Let K be such a unitary operator and let AK be the

corresponding self-adjoint extension of A. Then D�AK�= 	�+�++K�+ :��D�Ā� ,�+�K+
 and
AK is the restriction of A* to D�AK�,

AK�� + �+ + K�+� = Ā� + i��+ − K�+� , �72�

where Ā is the closure of A.
Since for A of Eq. �68�, D�A*� is the family of ��H which are absolutely continuous and of

square integrable derivative, with A*�= i���q�, one has here

K± = ��
± � H:��

±�q� = e±q�, � � C , �73�

K is given by a complex number of modulus one, say 
,

K��
+ = 
��

− ,

and therefore Eq. �72� becomes

AK�� + eq� + 
e−q�� = i�� + i�eq� − 
e−q�� ,

where � is an absolutely continuous function vanishing at ±a, with square integrable derivative.
Setting

� = � + eq� + 
e−q� , �74�

one obtains that ��a�= �ea+
e−a��, ��−a�= �e−a+
ea��, so that

��a� = ���− a�, where � =
ea + 
e−a

e−a + 
ea , �i.e., 
 = −
�e−a − ea

�ea − e−a� . �75�

And conversely, if ��D�A*� and ��a�=���−a� then � defined by

052108-19 Position and length operators J. Math. Phys. 48, 052108 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 22 Jan 2014 14:58:06



��q� = ��q� + eq� + 
e−q�, where � =
�ea − e−a

e2a − e−2a��− a� , �76�

satisfies ��a�=0=��−a� and therefore belongs to D�AK� �p. 141 of Ref. 21� This shows that
AK= i�a,� if � and 
 are related by Eq. �75�.

With little change, formulas �73� and �74� define the general self-adjoint extension of A for
any number D of degrees of freedom. Namely, the deficiency subspaces K± of A consist of
solutions of the equations

i�q��q,q� = ± i��q,q� ,

i.e.,

K± = 	��
± � H:��

±�q,q� = e±q��q� for some measurable �
 . �77�

Since

�
�

�e±q��q��2dqdD−1q = ��
RD−1

���q��2 sinh 2Q�q�dD−1q� , �78�

denoting by K the Hilbert space of functions of q�RD−1 with square of the norm given by Eq.
�78�, one obtains that ����

+ �����
−� is an isometry of K onto K+ �K−�. Thus the deficiency

indices of A are infinite and self-adjoint extensions can be parametrized by unitary operators from
K+ to K− or, equivalently, by unitary operators on K: if K is a unitary operator from K+ to K−, then
for the corresponding unitary operator on K, which will be again denoted by K, we have

K��
+ = �K�

− .

The self-adjoint extension AK of A corresponding to K �Theorem X.2 of Ref. 14� is defined by

AK�� + ��
+ + �K�

− � = Ā� + i���
+ − �K�

− � ,

where � is in the domain of the closure Ā of A, i.e.,

D�AK� = 	� � D�A*�:��q,q� = ��q,q� + eq��q� + e−q�K���q�,� � D�Ā�
 .

We return now to the “general decomposable case,” i.e., to the case of

�K���q� = 
�q���q�, �
�q�� = 1, �79�

where 
 is a measurable function. Writing A�
� for AK, one has

D�A�
�� = 	� � D�A*�:��q,q� = ��q,q� + eq��q� + 
�q�e−q��q�,� � D�Ā�
 .

A�
� will now be identified with self-adjoint extension of A defined by suitable boundary condi-
tions.

Let the �measurable� function � be defined by

��q� =
eQ�q� + 
�q�e−Q�q�

e−Q�q� + 
�q�eQ�q� , �80�

so that 
�q�=−���q�e−Q�q�−eQ�q�� / ���q�eQ�q�−e−Q�q�� and ���q��=1; the Hilbert space H of Eq.
�69� admits direct sum decomposition,
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H = �
n�Z

Hn, Hn = 	� � H:��q,q� = e−iq�n
Q�q�,��q�

��q�, � � L2�RD−1�
 . �81�

Furthermore, let A� be the self-adjoint that acts on Hn as an operator of multiplication by �n
Q�q�,��q�,

i.e.,

D�A�� = ��
n�Z

�n:�n � Hn, �
n�Z

� ��n
Q�q�,��q��n�q,q��2dqdD−1q � �� �82�

and

A���
n�Z

�n� = �
n�Z

�n
Q,��n. �83�

Formulas �81�–�83� organize the spectrum of A� into series and bands: when q is fixed, the
�generalized� eigenvalues ��n

Q�q�,��q��n�Z form a �q� series, while for fixed n the �generalized, in
general� eigenvalues ��n

Q�q�,��q��q�RD−1 form an n band. Different bands may, and often will, over-
lap; spacing of eigenvalues within a series is equal � /Q�q�, and the corresponding spacing of
eigenvalues of X1 is ���� /Q�q�—a reminder of the minimal length of the case of one degree of
freedom, where the spectrum is discrete with spacing ���.

Repeating the argument that led above to identification of AK with i�a,�, one obtains that
A�
�=A�: for, for ��D�A�
�� one can see that ��Q�q� ,q�=��q���−Q�q� ,q�, that for � satisfying
the later condition, one has

��q,q� = ��q,q� + eq��q� + e−q
�q���q�,

where ��q� = 	���q�eQ�q� − e−Q�q��/�e2Q�q� − e−2Q�q��
��− Q�q�,q� ,

and ��D�A*�. Hence it follows that Hn�D�A�
��, and then that D�A���D�A�
��, and that there-
fore A�
�=A� since both A�
� and A� are self-adjoint operators.

The spectral representation �Eq. �83�� yields the following:
Proposition: In case of continuous � �or 
�, the spectrum of A� consists of the range of

�·
Q�·�,��·�,

��A�� = 	�n
Q�q�,��q�:q � RD−1,n � Z
 ,

and for general measurable � of the essential range of �·
Q�·�,��·� �P. 229 of Ref. 23�. Furthermore,

A� has no singular spectrum and � is an eigenvalue of A� if and only if there exists n�Z and a
non-negligible subset of RD−1, such that, �n

Q�q�,��q�=� for q in the subset or, equivalently, the set of
q�RD−1, for which

e−2i�Q�q� = ��q�

has nonzero (Lebesgue) measure.
As is not hard to see, that the above implies that for each continuous �, the continuous

spectrum of A� contains intervals extending to +� and −�—in fact, this is true for any measurable
�, and that therefore, unlike in the one-dimensional case, the spectrum of A� is never pure point.

We will now discuss the spectrum of A� in a number of special cases.

A. Globally periodic and antiperiodic boundary conditions

These are the only cases in which � and 
 are the same, namely, equal to ±1, respectively, for
all q. However, the spectra in these two cases are different, as will be shown now.

In the case of 
=1, i.e., K=id, �=1, arg �=0,

��AK� = − �,− 2 � 	0
 � �2, + �� , �84�

with �=0 being the only eigenvalue, albeit of infinite multiplicity.
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For, Eq. �71� yields

�n
Q�q�,1 = �n/Q�q� ,

which is a continuous function of q. Hence, the 0 band consists of one point, 0, while the n band
is �2n , +�� for n�0 and �−� ,−2n� for n�0. This implies that H0 is the eigenspace correspond-
ing to eigenvalue �=0 �see Eqs. �81�–�83��. On the other hand, for ��0 and n fixed, solutions q
of the equation �n /Q�q�=�, ��2n, form a sphere of radius ��2 / �2n�2−1 �see Eq. �66��—a set
of measure zero. Putting this together, one obtains Eq. �84�, the fact that zero is an eigenvalue of
finite multiplicity for D=2 and of infinite multiplicity for D�3, since for 2n�� any measure
supported by the sphere of radius ��2 / �2n�2−1 yields a generalized eigenvector of AK with
generalized eigenvalue �.

For antiperiodic boundary conditions ��=−1, arg �=�, 
=−1, K=−id� the situation is differ-
ent. Now

�n
Q�q�,� = �2n − 1��/�2Q�q��, n � Z ,

n-band is

�2n − 1, + �� for n � 0 and � − �,2n − 1� for n � 0,

and the spectrum,

��A−id� = − �,− 1 � �1, + �� ,

is purely continuous.
Similar analysis works in the generic scalar case, when K is the operator of multiplication by

a number 
 of modulus one, different from ±1.

B. General decomposable case

By Proposition, a number � is an eigenvalue of A� if and only if there exists an integer, say
m, and a non-negligible M �RD−1, such that

� = �m
Q�q�,��q�, ��q� = e−2i�Q�q� for all q � M . �85�

Moreover, multiplicity of the eigenvalue � is always infinite since there is one-to-one correspon-
dence between eigensubspace of A� corresponding to eigenvalue � and the set of elements of K
which are zero on the complement of M.

Furthermore, as is easy to see, any eigenvector of A� with eigenvalue different from � are a.e.
zero on M.

It follows that for general �, A� has the following structure: There is a pairwise disjoint family
�� � �I of non-negligible subsets of RD−1, such that, for each  � I there is a unique integer n and
real � with the following properties.

• 	� :  � I
 is the set of all the eigenvalues of A�; each of the eigenvalues is of infinite multi-
plicity.

• ��q�=exp�−2i� Q�q�� for q�� and the function q�2Q�q�� +arg ��q� is integer valued
and constant on each � . Let n be its value on � .

• The number �n−arg ��q�� / �2Q�q�� is in continuous spectrum for any n�n for a.a. q�� 

and for any integer n for a.a. q�RD−1 \ ��� �.

The simplest case of this construction is obtained as follows: pick a real number �, define ��q�
for any q�RD−1 by the second identity of Eq. �85�, and then m�Z by the first one. The spectrum
of A� consists of the series
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�n = � + n�/Q�q�, n � Z ,

with the m-band reduced to the eigenvalue �, the rest of the spectrum being continuous.
A slight modification of this construction yields an infinite number of eigenvalues: choose an

infinite family of real numbers, say, �� j� j=1
� , a nonzero subset of RD−1, say, �, together with its

decomposition into nonzero subsets, �=� j=1
� � j, then define a �, such that, ��q�=e−2i�jQ�q� on � j.

Note that for so defined �, the eigenspace corresponding to � j is a subspace of Hnj
of infinite

dimension, where nj = �2�Q�q�+arg ��q�� / �2��, and that one can obtain in this way many self-
adjoint extensions of A with an infinite number of eigenvalues and, in addition, continuous spec-
trum. In fact, it is not hard to see that continuous spectrum is present in each of the decomposable
extensions of A.
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APPENDIX A: REDUCTION OF THE HYPERGEOMETRIC EQUATION

For convenience of the reader, and the author, we collect here some formulas, mostly from,
Ref. 18 �p. 28–30�� on gauge transformations of second order differential equations, used in Sec.
II. Since it is simpler and more enlightening to consider general Sturm-Liouville operators of
Fuchsian type, with three regular singular point, it is this framework that is adopted in most of this
appendix.

Equation �20� is Fuchsian with regular singular points at −1, +1, and �. Such an equation can
be written as

d2u

dz2 + q1�z�
du

dz
+ q2�z�u�z� = 0, �A1�

with

q1�z� =
A1

z + 1
+

A2

z − 1
, q2�z� =

B1

�z + 1�2 +
B2

�z − 1�2 +
B�

�z + 1��z − 1�
.

The �indicial� equations for the (characteristic) exponents ��i ,!i� of Eq. �A1� are

r2 + �A1 − 1�r + B1 = 0 for ��1,!1� at − 1, �A2�

r2 + �A2 − 1�r + B2 = 0 for ��2,!2� at + 1, �A3�

r2 + �− A1 − A2 + 1�r + B1 + B2 + B� = 0 for ���,!�� at � . �A4�

The exponents ��i ,!i� will be indexed so that �i�!i, i=−, + ,�.
The �gauge� transformation

u�z� = �1 + z��1�1 − z��2v�z� �A5�

changes the exponents to

�0,!1 − �1�, �0,!2 − �2�, and ��� + �1 + �2,!� + �1 + �2� �A6�

at −1, +1, and �, respectively. The corresponding differential equation for v—the hypergeometric
equation with singular points −1, +1 instead of the standard 0, 1 can be written as
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�1 − z2�v��z� + ��b − a� − �c + 1�z�v��z� + ��� + c�v�z� = 0, c = a + b + 1, �A7�

or

− �1 − z2�v��z� + ��a − b� + �c + 1�z�v��z� + �c2/4�v�z� = �v�z�, � = �� + c/2�2, �A8�

where

b = �1 − !1 a = �2 − !2, �A9�

� −
1

4
c2 + ��� + �1 + �2��!� + �1 + �2� = 0. �A10�

Under our assumption of �i�!i, one has a ,b�0—this inequality motivates the choice of gauge
transformation �A5�, and therefore Eq. �A7� has a family of solutions, Jacobi polynomials,

Pn
�a,b��z�, �n = n, n = 0,1, . . . , �A11�

which form a complete orthogonal family in the Hilbert space H�a,b� of Sec. II A �Formula 8.962.1
of Ref. 21�.

In our case, Eq. �A1� is obtained from Eq. �20�. Considering Eq. �20� for general real values
of D±, L, 
, on has

q1�z� =
1

1 − z2 �D1 + D2 − �D1 − D2 + 2�z� =
D1 + 1

1 + z
+

D2 − 1

1 − z
,

q2�z� =
1

1 − z2�� −
1

4

�1 + 
 − �1 − 
�z�2

1 − z2 L2� =
1

2

2� − L2


�1 − z��1 + z�
−

1

4


2L2

�1 − z�2 −
1

4

L2

�1 + z�2 ,

�A12�

and

A1 = 1 + D1, A2 = 1 − D2, B1 = −
1

4
L2, B2 = −

1

4

2L2, B� =

1

2
L2
 − � .

We proceed now with calculation of the product ���+�1+�2��!�+�1+�2�, which is needed for
Eq. �A10�.

The indicial equations are

r2 − D1r −
1

4
L2 = 0 for ��1,!1� at − 1, �A13�

r2 + D2r −
1

4

2L2 = 0 for ��2,!2� at + 1, �A14�

r2 + �D2 − D1 − 1�r −
1

4
L2�1 − 
�2 − � = 0 for ���,!�� at � . �A15�

First two of these equations yield

��1,!1� = −
1

2
D1 ±

1

2
�D1

2 + L2, ��2,!2� =
1

2
D2 ±

1

2
�D2

2 + 
2L2,

and then—see �A9�, a and b are
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a = �D2
2 + 
2L2, b = �D1

2 + L2, �A16�

so that

�1 = −
1

2
D1 +

1

2
b, �2 =

1

2
D2 +

1

2
a . �A17�

Setting

� = 1 − �D2 − D1� , �A18�

�= �1−
�D̄ /2 in case of Eq. �4�, from the third of the inidicial equations, �Eq. �A16��, one obtains

�� + !� = � and ��!� = −
1

4
L2�1 − 
�2 − � ,

�� + !� = D1 − D2 + 1 = � − 2 and ��!� = −
1

4
L2�1 − 
�2 − � ,

while

�1 + �2 =
1

2
�D2 − D1� +

1

2
�D1

2 + L2 +
1

2
�D2

2 + 
2L2 =
1

2
�c − �� . �A19�

Hence

��� + �1 + �2��!� + �1 + �2� = ��!� + ��1 + �2���� + !�� + ��1 + �2�2

= −
1

4
L2�1 − 
�2 − � +

1

2
�c − ��� +

1

4
�c − ��2

And, finally, from Eq. �A10�,

� −
1

4
c2 −

1

4
L2�1 − 
�2 − � +

1

2
�c − ��� +

1

4
�c − ��2 = 0,

i.e.,

� = � −
1

4
L2�1 − 
�2 −

1

4
�2. �A20�

We now summarize results of calculations of this appendix. The gauge transformation �A5� of
Eq. �A12�, with u=� and �± given by Eq. �A17�, yields Eqs. �A7� and �A8�, with the above a, b,
and c. These equations have a family �Eq. �A7�� of solutions with �=�n given by Eq. �A20�, where
�=�n= �n+c /2�2.

APPENDIX B: HARMONIC OSCILLATOR

Performing reduction of the Hamiltonian,

H =
1

2M
P2 +

1

2
M"2X2,

with respect to rotations and then substitution �Eq. �17��, one obtains the reduced Hamiltonian
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HL =
1

2M�

1 + z

1 − z
− 2��2M"2
�1 − z2�

d2

dz2 + �D2 + D1 + �D2 − D1 − 2�z�
d

dz

−
��1 + 
� − �1 − 
�z�2

4�1 − z2�
L2� ,

so that the eigenvalue equation HL�=E�—our Eq. �A1� can be written as

�� +
1

1 − z2 �D2 + D1 + �D2 − D1 − 2�z��� +
1

1 − z2�# −
�1 + 
 − �1 − 
�z�2

4�1 − z2�
L2 − �

1 + z

1 − z
�� = 0,

where

# =
E

�$2 , � =
1

�2$2 , $ = �", � = 2�M ,

and D± are as in Eq. �18�. Comparing this with Eq. �A12�, one can see that of among the
coefficients Ai ,Bi, only B2 is changed, to −
2L2 /4−�, so that one has now

A2 = 1 − D2, A1 = D1 + 1, B2 = −
1

4

2L2 − �, B1 = −

1

4
L2, B� =

1

2
L2
 − # ,

The first two of the indicial equations �Eqs. �A2� and �A3�� yield now

��2,!2� =
1

2
D2 ±

1

2
�D2

2 + 
2L2 + 4�, ��1,!1� = −
1

2
D1 ±

1

2
�D1

2 + L2, �B1�

and then, by Eq. �A9�,

a = a�
,�� = �D2
2 + 
2L2 + 4�, b = b�
,�� = �D1

2 + L2;

and since relations �A17� and �A18� are unchanged, the third indicial equation �Eq. �A9��, can be
written as

r2 − �r −
1

4
L2�1 − 
�2 − # − � = 0.

Continuing the calculations as in Appendix A, one obtains the following modification of �A20�:

� − # −
1

4
L2�1 − 
�2 − � −

1

4
�2 = 0. �B2�

Hence Friedrichs’ extension has eigenvectors

�L,n�z� = �1 + z��1�1 − z��2Pn
�a,b��z�, �,n = 0,1, . . . ,

with eigenvalues

EL,n = �$2
�n +
c

2
�2

− � ��

4�
�2

�4L2 + D̄2�� −
1

�
. �B3�

In view of the discussion of Sec. II C, the curve a�
 ,��=1 in the �
 ,�� space separates the
values of parameters for which one has lc case at p=��z=1� from those for which one case lp
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case. Similary for the equation b�
 ,��=1 for lc and lp cases at p=0�z=−1�. One can also take
over the classification of Sec. II C into types.

APPENDIX C: FRIEDRICHS’ EXTENSION OF THE HYPERGEOMETRIC OPERATOR

It is proved here that, as claimed in Sec. II C, for any a ,b�0, J�+,+� is the Friedrichs’
extension of J0. Most likely, this can be deduced from the material of the exercises of Ref. 20 but
since we do not have a reference and the proof that follows is simple enough, we include it here
for completeness.

One needs to show that the domain of Friedrichs’ extension of J0 contains the family F�+,+�

defining J�+,+�. Since elements of F�+,+� are polynomial functions on �−1, +1�, it is enough to
show that any bounded smooth function f is in the domain of Friedrichs’ extension.

The minimal operator J0 defined by left hand side of Eq. �27� on C0
���−1,1�� can also be

written as

J0u = −
1

w
�pu��� +

c2

4
u, u � C0

��� − 1,1�� ,

where, see Eq. �23�,

w�z� = �1 − z�a�1 + z�b, p�z� = �1 − z�a+1�1 + z�b+1.

Let � be C�-function on R, which is equal zero in a neighborhood of 0, say, for x�1, equal
to 1 at infinity, say, for x�2, and such that 0���z��1 for all z�R; such a function is constructed
in a standard way and, obviously, ����z���h for all z, for some positive h. Furthermore, for #
�0, let

�#�z� = ���1 + z�/#����1 − z�/#�;

�# is zero in a neighborhood of −1 and +1 and �#�z�=1 for −1+2#�z�1−2#. Obviously,

��#��z�� � h/# for all z .

Since lim#→0��#f − f��a,b�, where � · ��a,b� is the norm defined by the scalar product �Eq. �22��, it is
enough to show that

�g#�−
1

w
�pg#�����a,b�

→ 0 as # → 0, where g# = �#f − f = ��# − 1�f .

It is sufficient to consider here real g#, which we do to simplify the notation. Then

�g#�−
1

w
�pg#�����a,b�

= − �
−1

+1

��p�z�g#��z����g#�z�dz = �
−1

+1

g#��z�p�z�g#��z�dz ,

and since g#��z�= ��#��f + ��#−1�f�, it follows that g#��z�=0 for −1+2#�z�1−2#. Therefore

�
−1

+1

g#��z�p�z�g#��z�dz = �
−1

−1+2#

g#��z�p�z�g#��z�dz + �
1−2#

+1

g#��z�p�z�g#��z�dz .

Since ��#−1�f�→0 in L2��−1,1��, it is enough to consider the integral of ��#��fp��#��f . Now, for
b�0,
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��
−1

−1+2#

��#��f�z�p�z���#��f�z�dz� �
hM

#2 ��
−1

−1+2#

�1 + z�a+1�1 − z�b+1dz�
� 2b+1hM

#2 ��
−1

−1+2#

�1 + z�a+1dz� = 2b+a+3hM
#a

2 + a
,

:

1

a + 2
lim

z→−1+
��1 + z�a+2 + 4 � 2a#a+2� =

2a+2

a + 2
#a+2,

where M is an upper bound of �f�z�� for �z��1, which tends to zero with #. The integral �1−2#
+1 is

dealt with in the same way.
Obviously, the argument works under much more general circumstances since it depends only

on behavior of p at the end points of the interval �−1,1�, namely, on the fact that �−1
−1+#�g�z��dz and

�1−#
1 �g�z��dz are o�#2� as #↘0.
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