SPIN PROJECTION OF SEMI-EMPIRICAL AND <u>AB INITIO</u> UNRESTRICTED HARTREE-FOCK WAVEFUNCTIONS

by

Dana Alice Brewer

Dissertation submitted to the Graduate Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Chemistry

APPROVED:

John C. Schug, Chairman

Jack D. Graybea'l

Philip L. Hall

Larry T. Taylor

Jimmy W. Viers

July, 1977 Blacksburg, Virginia

II. ACKNOWLEDGMENTS

The author expresses her appreciation to Dr. John C. Schug for his support, patience and guidance during the completion of the research reported here. Gratitude is also expressed to Dr. Michael A. Ogliaruso for the collaboration on the research on homoconjugation and to Mr. Byron H. Lengsfield, III for helpful discussions and collaboration on the spin projection programs and applications. Finally, thanks is expressed to Mr. Lyle Evans for his outstanding aid as a consultant for the problems encountered in computer programming.

III. TABLE OF CONTENTS

CHAPTER		PAGE			
I.	TITLE	i			
II.	ACKNOWLEDGMENTS	ii			
III.	TABLE OF CONTENTS	iii			
IV.	LIST OF TABLES AND FIGURES	v			
v.	INTRODUCTION	1			
VI.	HARTREE-FOCK THEORY	7			
VII.	SPIN PROJECTION OPERATORS AND THE UNRESTRICTED				
	HARTREE-FOCK WAVEFUNCTION	14			
VIII.	EXCITED ELECTRONIC STATES OF ALTERNANT PI-ELECTRON				
	SYSTEMS	21			
IX.	ALL VALENCE ELECTRON CALCULATIONS	38			
	Homoconjugation in the Monohomocyclooctatetraene				
	Anion Radical	42			
	Extension of INDO Calculations in Include				
	d-Orbitals	53			
х.	<u>AB INITIO</u> UNRESTRICTED HARTREE-FOCK CALCULATIONS	57			
	Comparison of Spin Projection and MCSCF/CI				
	Calculations on $H_2^0(+)$	68			
	The Dissociation of CF ₂ 0	74			
XI.	LITERATURE CITED	95			
XII.	APPENDIX A	100			

 CHAPTER
 PAGE

 XIII.
 VITA
 209

IV. LIST OF TABLES AND FIGURES

•

TABLE		PAGE
I.	Wavelengths $(\stackrel{0}{A})$ for the Ground to Excited State	
	Transitions in Naphthalene	27
II.	Wavelengths(A) for the Ground to Excited State	
	Transitions in Anthracene	28
III.	Wavelengths (A) for the Ground to Excited State	
	Transitions in Naphthacene	29
IV.	Wavelengths($\overset{0}{A}$) for the Ground to Excited State	
	Transitions in Pentacene	30
v.	Projected Electronic Energies and Weighting Factors	
	for the Open Shell Ground State in Pentacene	34
VI.	Wavelengths $(\overset{0}{A})$ for Open Shell Ground to Excited State	
	Transitions in Pentacene	35
VII.	Proton Hyperfine Coupling Constants, a _H , for the	
	Monohomocyclooctatetraene Anion Radical Obtained from	
	Unprojected Wavefunctions	47
VIII.	Proton Hyperfine Coupling Constants, $a_{H}^{}$, for the	
	Monohomocyclooctatetraene Anion Radical Obtained from	
	Spin Projected Wavefunctions	48
IX.	Unprojected and Projected Binding Energies(a.u.) and	
	Weighting Factors for the Monohomocyclooctatetraene	
	Anion Radical	50

v

х.	Invariant Bond Orders for Calculated Geometries of	
	Monohomocyclooctatetraene Anion Radical	52
XI.	Atomic Energies(a.u.) for Third Row Atoms Calculated	
	Using INDO Approximations	56
XII.	Contracted Gaussian Basis Set for a (9s5p2d/4s1p)	
	H ₂ 0 Primitive Basis Set	70
XIII.	Unprojected and Projected Energies for the x^2B_1	
	State of $H_2^{0}(+)$	71
XIV.	Unprojected and Projected Energies for the $\tilde{B}^2 B_2$	
	State of $H_2^0(+)$	72
XV.	Comparison of MCSCF/CI and Spin Projection Energies	
	for the Equilibrium Geometries of the $X^{2}B_{1}$ and $\tilde{B}^{2}B_{2}$	
	States of $H_2^{0}(+)$	73
XVI.	Symmetry Orbitals for [4s3p] Basis Set of CF ₂ O Near	
	the Equilibrium Geometry	80
XVII.	Symmetry Orbitals for the [4s3p] Basis Set of $CF_2 + 0$	82
XVIII.	Total Energies(a.u.) for the A_1 State of CF_2^0 as a	
	Function of the Carbon-Oxygen Bond Distance	84
XIX.	Total Energies(a.u.) for the A ₂ State of CF ₂ O as a	
	Function of the Carbon-Oxygen Bond Distance	85
XX.	Total Energies(a.u.) for the B_1 State of CF_2^0 as a	
	Function of the Carbon-Oxygen Bond Distance	86
XXI.	Total Energies(a.u.) for the B_2 State of CF_20 as a	
	Function of the Carbon-Oxygen Bond Distance	87

.

TABLE

XXII.	Total Energies(a.u.) as Functions of Molecular		
	Symmetry for the Dissociated $CF_2 + 0$	•	89
XXIII.	Comparison of Experimental and Calculated Vertical		
	Ionization Potentials for CF ₂ 0	•	92
TOTE		,	
LCOKE		J	AGE
1.	Geometry of Monohomocyclooctatetraene Anion Radical .	•	44
2.	Geometry of CF ₂ 0 Molecule	•	78
3.	Total Energy(a.u.) as a Function of Carbon-Oxygen		
	Bond Distance(bohrs) in CF ₂ 0	•	88

PAGE

.

V. INTRODUCTION

The accurate description of molecular orbitals and molecular interactions has been a problem confronting chemists and physicists for many years. The problem would be straightforward if the electronic Schröedinger equation could be solved exactly. However, an exact solution of this equation is possible only for the hydrogen atom. Consequently, various approximation methods have been invoked. One of the most widely used methods is the variational theorem.

The variational theorem provides approximate solutions to the electronic Schröedinger equation,

$$\boldsymbol{\mathcal{H}}_{e} \boldsymbol{\Psi}_{e} = \boldsymbol{E}_{e} \boldsymbol{\Psi}_{e} \tag{1}$$

where \mathcal{X}_{e} is the electronic Hamiltonian operator, Ψ_{e} is an antisymmetrized product of molecular spin-orbitals, and E_{e} is the electronic energy. The spatial part of the spin orbitals, or molecular orbitals, are constructed as normalized linear combinations of atomic orbitals, ϕ_{μ} ,

$$\Phi_{\mu i} = \sum_{\mu} c_{\mu i} \phi_{\mu} \qquad (2)$$

where the coefficients, $c_{\mu i}$, are allowed to vary in order to minimize the electronic energy of the molecule. However, because the variational theorem is an approximate technique, the expectation values of the energies derived from this method will always be

higher than the true energies of the ground state molecules.

A closed shell molecule is a system in which there is an equal number of spin up (α) and spin down (β) electrons and all orbitals are either empty or doubly occupied. The molecular orbitals for the α -electrons are the same as those for the β -electrons. Since the α - and β -wavefunctions are equal, the Hartree-Fock operator for the α -electrons is equal to the Hartree-Fock operator for the β -electrons. This is called a restricted calculation; i.e., the α - and β -wavefunctions are forced to be equal. This condition guarantees that the electronic wavefunction, Ψ , is an eigenfunction of the total spin operator, S^2 ,

$$S^2 \Psi = s(s+1) \Psi$$
. (3)

An open shell molecule is a system in which either there is an unequal number of α - and β -electrons or there is an equal number of α - and β -electrons but some occupied orbitals are not doubly occupied. The treatment of such a system by a restricted calculation does not result in good approximations to the molecular energies; much closer values to the true energy are obtained when the α - and β -electrons are treated separately in an unrestricted calculation. In general, the orbitals for the α -electrons are not equal to the orbitals for the β -electrons. Unrestricted Hartree-Fock (UHF) theory or the method of different orbitals for different spins (DODS) provides much better approximations to the true energies than a restricted calculation.

Because UHF theory produces two different sets of molecular

orbitals, one set for the α - and one set for the β -electrons, the resultant single determinant wavefunction,

$$\Psi = \left| \begin{array}{c} \phi_{1}^{\alpha} & \phi_{1}^{\beta} & \phi_{2}^{\alpha} & \phi_{2}^{\beta} & \cdots & \phi_{i}^{\alpha} & \phi_{i}^{\beta} & \cdots \\ 1 & 1 & 2 & 2 & 0 & 1 & 1 \end{array} \right|$$
(4)

is not guaranteed to be a state of pure spin multiplicity; that is,

$$S^2 \Psi \neq s(s+1) \Psi$$
. (5)

Since $[\mathcal{H}, S^2] = 0$, the correct electronic states will also be eigenfunctions of S^2 . This requirement can be satisfied by projecting from the single determinant various pure spin eigenfunctions.

One method of obtaining such wavefunctions is through the application of spin projection operators. Löwdin¹ has shown that it is a relatively simple procedure to construct spin projection operators which will project pure spin wavefunctions from wavefunctions with mixed multiplicity. Two methods of applying the spin projection operators have been explored, the Harriman-type UHF and the spin-projected extended Hartree-Fock (EHF) methods. Since the following chapters deal exclusively with the former method, the latter method will be briefly outlined, and the results obtained using the two methods will be briefly compared.

In the spin projected EHF method developed by Mayer,² single determinant wavefunctions are constructed using the DODS formalism and spin projected. Such a wavefunction is used as a trial function in the variational procedure. The one-electron orbitals are then optimized to obtain a minimum energy for the resulting projected wavefunction.

The spin projected UHF calculation differs from the EHF

method in that the energy minimization procedure is performed on the unprojected DODS wavefunction. Spin projection of the unprojected wavefunction follows the minimization procedure.

First inspection of the spin-projected EHF and UHF plus spin projection methods leads one to assume that the EHF method is superior to the UHF method since the projected pure spin state is dealt with in the former method. However, Mayer and Kertesz³ have examined the results of both methods using the Pariser-Pople-Parr (PPP) π -electron approximations for polyenes with two to 38 carbon atoms with surprising results. The EHF method is superior to the UHF method for the smallest systems up to approximately 15 carbon atoms; however, as the number of atoms increases further, the energy differences between the two methods decrease rapidly. Mayer concludes that, for larger systems, it is sufficient to perform UEF calculations with subsequent spin projection. From the standpoint of computational time involved, the UHF method is far superior.

The work described below is concerned exclusively with the UHF plus spin projection method. The electronic spectra of naphthalene, anthracene, naphthacene and pentacene were calculated using the PPP approximations and both UHF and configurational interaction (CI) techniques. The results of both techniques were compared to experimentally determined spectra when data were available. There was reasonable agreement between the CI and projected UHF results. While the CI calculations generally produced lower energies for the triplet states than the UHF calculations, the spectra from the UHF

calculations were in somewhat better agreement with experiment. Anomalies encountered with degeneracies and the presence of open shell ground states are also discussed.

Monohomocyclooctatetraene anion radical (MHCOT) was studied using a DODS wavefunction with spin projection and the all-valence electron INDO approximations. The theoretical molecular geometry was varied until the experimental hyperfine coupling constants matched hyperfine constants obtained from using both projected and unprojected UHF wavefunctions. The two types of calculations resulted in slightly different energies and geometries with the projected calculations giving a higher energy for the doublet state; essentially no differences were noted in the bond orders obtained from the two types of calculations. The geometry from the projected calculations was a somewhat more strained conformation than the geometry from the unprojected calculation.

<u>Ab initio</u> UHF calculations with spin projection were performed on $H_2O(+)$ using the POLYATOM (Version 2)⁴ system of programs. The purpose of the study was to compare the energies of pure spin states from <u>ab initio</u> multi-configurational self-consistent field with CL (MCSCF/CL)⁵ with those from spin projection. The MCSCF/CL calculations are superior to the UHF plus spin projection calculations. This result will always be observed when the UHF wavefunction is very close to a pure spin state before spin projection.

The dissociation of CF₂O was studied using <u>ab initio</u> wavefunctions. The molecule is of possible importance in the atmos-

pheric reaction scheme since it is a possible product from the dissociation of dichlorodifluoromethane,

$$CF_2Cl_2 + h\nu \longrightarrow CF_2Cl + Cl$$
(6)

$$^{\circ}CF_2C1 + h\nu \longrightarrow : CF_2 + : C1$$
 (7)

$$: CF_2 + 0 \longrightarrow CF_2 0 .$$
 (8)

The energies of the unprojected wavefunctions of CF_2^0 were examined along with those for the dissociated CF_2 and 0 fragments.

VI. HARTREE-FOCK THEORY

Since the work described below deals with spin projected Hartree-Fock wavefunctions and various approximations for terms in the Hartree-Fock equations, it is advantageous to review Hartree-Fock theory at this point.⁶

The nonrelativistic Hamiltonian, in atomic units, is

$$\mathcal{X} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i>j} \frac{1}{r_{ij}} - \sum_{\mu,i} \frac{Z_{\mu}}{r_{\mu i}} - \frac{1}{2} \sum_{\mu} \frac{\nabla_{\mu}^{2}}{m_{\mu}} + \sum_{\mu>\nu} \frac{Z_{\mu}^{2}\nu}{r_{\mu\nu}}$$
(9)

where i and j denote electrons and μ and ν denote nuclei. When the Born-Oppenheimer approximation⁷ is applied, the fourth term describing the translational motion of the nuclei is ignored, and the fifth term, the nuclear repulsion energy operator, V_n , becomes a constant value. In other words, electronic states are examined in the "frozen-nuclei" approximation. The electronic Hamiltonian operator then reduces to

$$\mathcal{A} = -\frac{1}{2} \sum_{i} v_{i}^{2} + \sum_{i>j} \frac{1}{r_{ij}} - \sum_{\mu,i} \frac{Z_{\mu}}{r_{\mu i}} + v_{n}. \quad (10)$$

The electronic energy for an unrestricted wavefunction can be expressed as

$$E_{e} = \sum_{r=1}^{B_{occ}} (T_{r} + V_{r}) + \frac{1}{2} \left(\sum_{r,s=1}^{B_{occ}} J_{rs} - \sum_{r,s=1}^{B_{occ}^{\alpha}} K_{rs}^{\alpha} - \sum_{r,s=1}^{B_{occ}^{\beta}} K_{rs}^{\beta} \right)$$
(11)

where B_{occ} is the total number of occupied orbitals, B_{occ}^{α} is the number of occupied α -molecular orbitals and B_{occ}^{β} is the number of occupied β -molecular orbitals. Letting r and s denote molecular orbitals, the first summation of one-electron terms is comprised of the kinetic and potential energy integrals, T_r and V_r , respectively,

$$T_{r} = \langle r(i) | -\frac{1}{2} \nabla_{i}^{2} | r(i) \rangle$$
 (12)

$$V_{r} = \langle r(i) | - \sum_{\mu} \frac{Z_{\mu}}{r_{\mu i}} | r(i) \rangle$$
 (13)

The two-electron integrals are described in the second term by the coulomb, J_{rs} , and the exchange integrals, K_{rs} ,

$$J_{rs} = \langle r(i) \ s(j) \ | \ \frac{1}{r_{ij}} \ | \ r(i) \ s(j) \rangle$$
 (14)

$$K_{rs} = \langle r(i) \ s(j) \ \left| \ \frac{1}{r_{ij}} \ \right| \ s(i) \ r(j) \rangle$$
 (15)

The molecular orbitals are described in terms of linear combinations of atomic orbitals (LCAO) with subscripts m, n, p, and q,

$$| \mathbf{r}^{\alpha}(\mathbf{i}) \rangle = \sum_{m} c_{mr}^{\alpha} | \mathbf{m}(\mathbf{i}) \rangle$$
 (16)

$$| \mathbf{r}^{\beta}(\mathbf{i}) \rangle = \sum_{\mathbf{m}} c_{\mathbf{mr}}^{\beta} | \mathbf{m}(\mathbf{i}) \rangle . \qquad (17)$$

The distribution of the α - and β -electrons in the molecule is described by the α - and β -charge density and bond order matrices, P^{α} and P^{β} , with elements,

$$P_{mn}^{\alpha} = \sum_{r}^{B_{occ}^{\alpha}} c_{mr}^{\alpha} c_{nr}^{\alpha}$$

$$P_{mn}^{\beta} = \sum_{r}^{B_{occ}^{\beta}} c_{mr}^{\beta} c_{nr}^{\beta} .$$
(18)
(19)

The total density matrix, P, is the sum of the $\alpha-$ and $\beta-$ density matrices,

$$P_{mn} = P_{mn}^{\alpha} + P_{mn}^{\beta}$$
(20)

The net unpaired electron density in the molecule is described by the spin density matrix, P^{Z} ,

$$P_{mn}^{z} = P_{mn}^{\alpha} - P_{mn}^{\beta} . \qquad (21)$$

The electronic energy can now be written in terms of the density matrices and integrals over atomic orbitals,

$$E = \sum_{mn} P_{mn} (T_{mn} + V_{mn}) + \frac{1}{2} \sum_{mnpq} (P_{mn} P_{pq} - P_{mp}^{\alpha} P_{nq}^{\alpha} - P_{mp}^{\beta} P_{nq}^{\beta}) < m(i) p(j) | \frac{1}{r_{ij}} | n(i) q(j) > .$$
(22)

The variational principle is applied by using Lagrange's method of undetermined multipliers to insure that the orbitals are orthonormal. An extremum is sought in

$$\delta [E - \sum_{r,s=1}^{B} \lambda_{rs} (S_{rs} - S_{sr})] = 0,$$
 (23)

where S_{rs} are the overlap integrals,

$$S_{rs} = \langle r(i) | s(i) \rangle , \qquad (24)$$

and λ_{rs} are the undetermined multipliers. Equation 23 contains N(N + 1)/2 constraints; introduction of variations in the orbitals | r(i)> leads directly to the set of Hartree-Fock equations,

$$\mathbf{F}^{\alpha} \mid \mathbf{r}(\mathbf{i}) > = \sum_{s=1}^{B^{\alpha}} \lambda_{rs} \mid s(\mathbf{i}) >$$
(25)

$$\mathbf{F}^{\beta} \mid \mathbf{r}(\mathbf{i}) > = \sum_{s=1}^{B_{occ}^{\beta}} \lambda_{rs} \mid s(\mathbf{i}) >$$
(26)

where F^{α} is the one-electron Fock operator for the α -electrons and F^{β} is the one-electron Fock operator for the β -electrons. The Fock operator may be expanded as

$$F^{\alpha} = T + V + \sum_{s=1}^{B_{occ}^{\alpha}} (J_{s} - K_{s}^{\alpha}) + \sum_{s=1}^{B_{occ}^{\beta}} J_{s}^{\beta}$$
(27)

$$F^{\beta} = T + V + \sum_{s=1}^{B_{occ}^{\beta}} (J_{s} - K_{s}^{\beta}) + \sum_{s=1}^{B_{occ}^{\alpha}} J_{s}^{\alpha}$$
 (28)

and

$$T | r(i) > = -\frac{1}{2} \nabla_i^2 | r(i) >$$
 (29)

$$V | r(i) > = - \sum_{\mu} \frac{Z_{\mu}}{r_{\mu}i} | r(i) >$$
 (30)

$$J_{s} | r(i) > = \langle s(j) | \frac{1}{r_{ij}} | s(j) r(i) \rangle$$
 (31)

$$K_{s} | r(i) \rangle = \langle s(j) | \frac{1}{r_{ij}} | r(j) s(i) \rangle$$
 (32)

A unitary transformation of the Hartree-Fock equations can be carried out to bring the matrix of Lagrangian multipliers into diagonal form without affecting the operators F^{α} or F^{β}

$$\mathbf{F}^{\alpha} \mid \mathbf{r}(\mathbf{i}) \rangle = \lambda_{\mathbf{r}}^{\alpha} \mid \mathbf{r}(\mathbf{i}) \rangle$$
(33)

$$\mathbf{F}^{\beta} \mid \mathbf{r}(\mathbf{i}) > = \lambda_{\mathbf{r}}^{\beta} \mid \mathbf{r}(\mathbf{i}) > .$$
 (34)

The molecular orbitals are eigenfunctions of the Fock operator, and the eigenvalues are

$$\lambda_{\mathbf{r}}^{\alpha} = \mathbf{T}_{\mathbf{r}}^{\alpha} + \mathbf{v}_{\mathbf{r}}^{\alpha} + \sum_{s=1}^{B_{occ}^{\alpha}} (\mathbf{J}_{rs} - \mathbf{K}_{rs}^{\alpha}) + \sum_{s=1}^{B_{occ}^{\beta}} \mathbf{J}_{rs}^{\beta}$$
(35)

$$\lambda_{r}^{\beta} = T_{r}^{\beta} + v_{r}^{\beta} + \sum_{s=1}^{B_{occ}^{\beta}} (J_{rs} - K_{rs}^{\beta}) + \sum_{s=1}^{B_{occ}^{\alpha}} J_{rs}^{\alpha}$$
. (36)

The electronic energy is then expressed as

$$E = \sum_{r=1}^{B_{occ}^{\alpha}} \lambda_{rr}^{\alpha} + \sum_{r=1}^{B_{occ}^{\beta}} \lambda_{rr}^{\beta} - \sum_{r,s=1}^{B_{occ}^{\alpha}} (J_{rs} - K_{rs}^{\alpha}) - \sum_{r,s=1}^{B_{occ}^{\beta}} (J_{rs} - K_{rs}^{\alpha}) + \sum_{s=1}^{B_{occ}^{\alpha}} J_{s}^{\alpha} + \sum_{s=1}^{B_{occ}^{\beta}} J_{s}^{\beta}. \quad (37)$$

When the LCAO molecular orbitals are used, two sets of coupled linear equations result,

$$\sum_{n=1}^{B_{occ}^{\alpha}} (F_{mn}^{\alpha} - \lambda_{r}^{\alpha} S_{mn}) c_{nk}^{\alpha} = 0 \qquad (38)$$

$$\sum_{n=1}^{B_{occ}^{\beta}} (F_{mn}^{\beta} - \lambda_{r}^{\beta} S_{mn}) c_{nk}^{\beta} = 0 . \qquad (39)$$

Equations 38 and 39 are solved iteratively to obtain the SCF molecular orbital coefficients. The two Fock Hamiltonian matrices have elements given by

$$F_{mn}^{\alpha} = T_{mn} + V_{mn} + \sum_{p,q} [P_{pq} < m(i) p(j) | \frac{1}{r_{ij}} | n(i) q(j) > - P_{pq}^{\alpha} < m(i) p(j) | \frac{1}{r_{ij}} | q(i) n(j) >]. \quad (40)$$

$$\mathbf{F}_{mn}^{\beta} = \mathbf{T}_{mn} + \mathbf{V}_{mn} + \sum_{p,q} \left[\mathbf{P}_{pq} < m(i) \ p(j) \ \left| \frac{1}{\mathbf{r}_{ij}} \right| \ n(i) \ q(j) > \right] \right]$$

$$- P_{pq}^{\beta} < m(i) p(j) | \frac{1}{r_{ij}} | q(i) n(j) >].$$
 (41)

The molecular orbital expansion coefficients are obtained by using a self-consistent field (SCF) procedure in the framework of the Hartree-Fock theory. An initial set of basis functions is assumed and the required integrals are calculated. The two Fock matrices are then constructed, one for α -electrons and one for β -electrons, and diagonalized yielding a new set of expansion coefficients. The electronic energy is then calculated using a new set of coefficients; if it differs from the energy using the previous set of coefficients by an amount greater than an accuracy threshold, the new coefficients are used to form a new Fock matrix in an iterative process. The procedure is repeated until the accuracy threshold is satisfied; i.e., self-consistency has been achieved.

VII. SPIN PROJECTION OPERATORS AND THE UNRESTRICTED MARTREE-FOCK WAVEFUNCTION

Unrestricted Hartree-Fock (UHF) theory⁸ is the simplest available method that allows the orbital rearrangement that is necessary to calculate excitation and ionization energies.⁹ However, the open-shell wavefunctions that result from application of the UHF theory are not pure spin states. It is therefore necessary to obtain pure spin states by using Löwdin's¹ spin projection operators. Harriman and coworkers¹⁰ have provided the basic equations for calculating the reduced one- and two-particle density matrices. Corrections to those expressions were later noted by Phillips and Schug.¹¹ The equations will be briefly reviewed, retaining the notation of the latter workers.

The nonrelativistic spin-free Hamiltonian can always be separated into one- and two-electron terms,

$$\chi = \sum_{i}^{N} [T_{i} + V_{i}] + \sum_{i>j}^{N} \frac{1}{r_{ij}}$$
 (42)

where N is the number of electrons in the molecule. The electronic energy can therefore be calculated from a knowledge of the firstand second-order charge density matrices. If r_i refers to spatial coordinates of the ith electron, ζ_i the spin coordinates, and x_i the combined space and spin coordinates, then the second-order charge density matrix can be expressed as

$$\Gamma(\mathbf{r}_{1},\mathbf{r}_{2};\mathbf{r}_{1}',\mathbf{r}_{2}') = \frac{N!}{2! (N-2)!} \int \Phi(\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{N}) \mathbf{x}$$

$$\Phi^{*}(\mathbf{x}_{1}',\mathbf{x}_{2}',\ldots,\mathbf{x}_{N}) d\zeta_{1} d\zeta_{2} d\mathbf{x}_{3} \ldots d\mathbf{x}_{N}$$
(43)

where $\Phi(x_1, x_2 \dots x_N)$ is any molecular wavefunction. If an additional integration is performed over the spatial coordinates of the second electron, the first-order charge density matrix results,

$$\gamma(\mathbf{r}_{1};\mathbf{r}_{1}') = \int \frac{2}{N-1} \Gamma(\mathbf{r}_{1},\mathbf{r}_{2};\mathbf{r}_{1}',\mathbf{r}_{2}) d\mathbf{r}_{2} .$$
 (44)

The expressions for spin projection are simplified if the charge density matrices are expressed in terms of the natural orbitals, $\{\phi\}$, which result when the density matrices are diagonalized. Letting B denote the number of basis functions, the first-order matrix is

$$\gamma(r_{1};r_{1}') = \sum_{r=1}^{B} \gamma_{r} \phi_{r}(r_{1}) \phi_{r}^{*}(r_{1}')$$
 (45)

while the second-order matrix is

$$\Gamma(r_{1}, r_{2}; r_{1}', r_{2}') = \sum_{r,s,t,v=1}^{B} \Gamma_{rstv} \Phi_{r}(r_{1}) \Phi_{s}(r_{2}) x$$

$$\Phi_{t}^{*}(r_{1}') \Phi_{v}^{*}(r_{2}') . \qquad (46)$$

The energy, in terms of the natural orbitals, is then expressed as

$$E = \sum_{r=1}^{B} \gamma_{r} \langle \phi_{r} | T_{i} + V_{i} | \phi_{r} \rangle + \sum_{r,s,t,v=1}^{B} \Gamma_{rstv} \langle \phi_{r} | \phi_{s} | \frac{1}{r_{ij}} | \phi_{t} | \phi_{v} \rangle.$$
(47)

The coefficients that describe the charge density matrices in terms of the natural orbitals are γ_r and Γ_{rstv} . More specificity of the coefficients is gained by using the superscripts u and p to denote the unprojected and projected states, respectively.

The energy expression is most conveniently written in terms of natural orbitals, because only the numerical values of the coefficients multiplying the integrals, γ_r and Γ_{rstv} , change between the projected and unprojected states. The integrals over the natural orbitals remain constant.

A set of orbitals that facilitates the calculation of the numerical values of the coefficients multiplying the one- and twoelectron natural orbitals is the set of corresponding orbitals, first introduced by Amos and Hall.¹² The alpha corresponding orbitals, {a}, are the eigenvectors of the product of the alpha and beta first-order charge density matrices, $P^{\alpha}p^{\beta}p^{\alpha}$, while the beta corresponding orbitals, {b}, are the eigenvectors of $P^{\beta}p^{\alpha}p^{\beta}$. The nonzero eigenvalues of the product matrices are identical and equal to the squares of the overlap integrals of the corresponding orbitals, d_r^2 . The overlap matrix, d, between the alpha and beta corresponding orbitals, is also in diagonal form,

$$\langle a_r | b_s \rangle = \langle a_s | b_r \rangle = d_r \delta_{rs}$$
 (48)

$$\langle a_r | a_s \rangle = \langle b_r | b_s \rangle = \delta_{rs}$$
 (49)

where δ_{rs} is the Kronecker delta.

The coefficients describing the first- and second-order charge density matrices are defined based on the classification of

the natural orbitals of charge. For a system with N^{α} alpha and N^{β} beta electrons, where N^{α} is greater than or equal to N^{β} , and where ordering occurs such that $\gamma_{r}^{u} > \gamma_{r+1}^{u}$, there are D doubly occupied orbitals. In this case, the unprojected and projected coefficients are equal,

$$\gamma_p^u = 2 = 1 + d_p \quad (p = 1, 2, ... D)$$
 (50)

$$\gamma_p^p = 2 = 1 + d_p \quad (p = 1, 2, ... D)$$
 (51)

This type of orbital always occurs when the number of basis functions, B, is less than the number of electrons, N, and may also occur other times.

The second type of natural orbitals, the i and i' set, has paired members, the sum of whose occupation numbers equals two in the unprojected space,

$$\gamma_{i}^{u} + \gamma_{i'}^{u} = 2.$$
 (52)

The values of the γ_{i} and $\gamma_{i},$ coefficients are

$$\gamma_{i}^{u} = 1 + d_{i}$$
 (i = D+1, D+2, ...) (53)

$$\gamma_{i}^{p} = 1 + d_{i} \omega_{i}$$
 (54)

$$\gamma_{i}^{u} = \gamma_{N-i+1}^{u} = 1 - d_{i}$$
 (55)

$$\gamma_{i}^{p} = \gamma_{N-i+1}^{p} = 1 - d_{i} \omega_{i};$$
 (56)

evaluation of the ω_i has been made by Harriman.¹⁰

Another type of natural orbital occurring in the space of singly occupied orbitals has no pairing properties. The coefficients in both the projected and unprojected states are equal,

$$\gamma_{\nu+j}^{u} = \gamma_{\nu+j}^{p} = 1$$
 (j = 1, 2, ... 2m) (57)

where 2m is equal to the difference between the number of alpha and beta electrons, $N^{\alpha} - N^{\beta}$.

The remaining orbitals, also having pairing properties, are empty; their occupation numbers are zero,

$$\gamma_{N+r}^{u} = \gamma_{N+r}^{p} = 0$$
 (r = 1, 2, ... B). (58)

Relationships between the natural orbitals of charge and the corresponding orbitals are necessary in order to test the consistency of the phases of both sets of orbitals and calculate the weighting factors for the projected spin states. The two sets of orbitals are related by

$$\phi_p = a_p = b_p$$
 (p = 1, 2, ... D) (59)

$$\phi_{i} = [2 (1 + d_{i})]^{-1/2} (a_{i} + b_{i})$$

$$(i = D + 1 D + 2 \dots N^{\beta})$$
(60)

$$\phi_{i} = \phi_{N-i+1} = [2 (1 - d_{i})]^{-1/2} (a_{i} - b_{i})$$
 (61)

$$\phi_{\nu+j} = a_{\nu+j}$$
 (j = 1, 2, ... 2m). (62)

The N+r orbitals (r = 1, 2, ... B-N) are undefined because no corresponding orbitals are defined in the empty space.

The inversion of equations 60 and 61 produce

$$a_{i} = t_{i} \phi_{i} + u_{i} \phi_{i}$$
, $(i = D+1, D+2, ... N^{\beta})$ (63)

$$\mathbf{b}_{\mathbf{i}} = \mathbf{t}_{\mathbf{i}} \phi_{\mathbf{i}} - \mathbf{u}_{\mathbf{i}} \phi_{\mathbf{i}}$$
(64)

where

$$t_{i} = [(1 + d_{i})/2]^{1/2}$$
(65)

$$u_i = [(1 - d_i)/2]^{1/2}$$
 (66)

The coefficients Γ_{rstv} that multiply the two-electron integrals occur in twenty distinct combinations of r, s, t, and v. Further combinations are obtained through the use of the permutation relationship

$$\Gamma_{rstv} = \Gamma_{tyrs} = \Gamma_{sryt} = \Gamma_{vtsr}$$
(67)

Since the expressions are quite complicated, the reader is referred to the paper by Phillips and Schug¹¹ for a listing of the equations. It should be noted that two Γ_{rstv} terms were in error, the Γ_{tutu} and Γ_{tuut} terms. The correct values for the coefficients are

$$\Gamma_{\rm tutu} = 1/2 \tag{68}$$

$$\Gamma_{\rm tuut} = -1/2$$
 (69)

It is important to note that the expressions were formulated by assuming that t_i and u_i are always greater than or equal to zero.

The spin density matrix, described by the difference between the α - and β -charge density matrices,

$$P^{z} = P^{\alpha} - P^{\beta}, \qquad (70)$$

can also be used to obtain relationships between the projected and unprojected spin states. The natural orbitals of spin, $\{\phi^Z\}$, diagonalize this matrix,

$$P^{z}(r_{1};r_{1}') = \sum_{r=D+1}^{N} \lambda_{r} \phi_{r}^{z}(r_{1}) \phi_{r}^{z*}(r_{1}') . \qquad (71)$$

The eigenvalues of the natural orbitals of spin, λ_k , are related

to the one-electron coefficients, $\boldsymbol{\gamma}_k,$ by

$$\lambda_{i} = (1 - d_{i}^{2})^{1/2} = (\gamma_{i} \gamma_{i'})^{1/2}$$

$$(i = D+1, D+2, \dots N^{\beta})$$
(72)

$$\lambda_{i!} = -(1 - d_{i}^{2})^{1/2} = -(\gamma_{i} \gamma_{i!})^{1/2}$$
(73)

$$\lambda_{j+\nu} = 1$$
 (j = 1, 2, ... 2m) (74)

and the eigenfunctions are related to the natural orbitals of charge by

$$\phi_{i}^{z} = (\phi_{i} + \phi_{i})/\sqrt{2} \quad (i = D+1, D+2, ..., N^{\beta})$$
 (75)

$$\phi_{1}^{z} = (\phi_{1} - \phi_{1})/\sqrt{2}$$
(76)

$$\phi_{\nu+j}^{z} = \phi_{\nu+j}$$
 (j = 1, 2, ... 2m). (77)

The UHF wavefunction is not an eigenfunction of pure spin multiplicity. However, with the use of the spin projection operators presented above, the single determinant wavefunction of mixed multiplicity can be separated into a linear combination of wavefunctions with pure spin multiplicity,

$$\Psi^{\mathbf{u}} = \sum_{\mathbf{s}=(\mathbf{N}^{\alpha}-\mathbf{N}^{\beta})/2}^{(\mathbf{N}^{\alpha}+\mathbf{N}^{\beta})/2} \omega_{\mathbf{s}} \Psi_{\mathbf{s}}^{\mathbf{p}} .$$
(78)

The work presented below is a series of applications of the spin projection techniques at various levels of approximate wavefunctions.

VIII. EXCITED ELECTRONIC STATES OF ALTERNANT PI-ELECTRON SYSTEMS

The Pariser-Pople-Parr (PPP) pi-electron approximations,¹³ applicable only to planar molecules, have been used previously with singly excited configurational interaction (CI) to calculate electronic spectra. The basic assumption in the PPP approximations is that the σ , or those orbitals in the molecular plane, and π orbitals, those orbitals perpendicular to the molecular plane, have no Hamiltonian matrix elements in common. The validity of this assumption is shown using group theory. The σ orbitals are symmetric with respect to reflections in the molecular plane while the π orbitals are antisymmetric. Since the Hamiltonian is a symmetric operator, no matrix elements (or combinations) between σ and π orbitals exist.

A CI calculation is quite different from a spin projection calculation.¹⁴ The calculation begins with the determination of the ground state wavefunction,

$$\psi_{k} = A \mid \phi_{1}(1)\phi_{1}(2) \dots \phi_{r}(N) \mid .$$
(79)

A trial function for configuration interaction is then written as a linear combination of wavefunctions of the above for various configurations

$$\Psi = C_1 \psi_1 + C_2 \psi_2 + \dots + C_m \psi_m$$
 (80)

where m is the number of configurations. The coefficients of the

atomic orbitals are held constant. The energy of Ψ is minimized with respect to all $C_{\rm L}$ by solving the secular equation

$$|\mathcal{H}_{mn} - \delta_{mn} E| = 0 \tag{81}$$

where each \mathcal{A}_{mn} is a Hamiltonian matrix element between configurations. The resultant multi-determinant wavefunction has pure spin multiplicity and spatial symmetry; the eigenvalues of the wavefunction correspond to excitation energies from the ground to the excited state.

The CI method was used by Pariser¹⁵ to calculate the electronic spectra of polyacenes and alternant hydrocarbons using the PPP pi-electron approximations. It was also desirable to apply spin projection techniques to pi-electron systems to compare the results from spin projection with both experimental and CI data. The molecules chosen for study were naphthalene, anthracene, naphthacene and pentacene since the symmetries of the transitions had been previously assigned to portions of the experimental spectra.

The PPP approximations include several empirical parameters that are used as substitutes for the rigorous expressions in the Hartree-Fock equations. They are worthy of review at this time.¹⁴

The greatest simplification of the Hartree-Fock equations occurs when the total zero differential overlap (TZDO) approximation, ¹⁶

$$\phi_{\mathbf{r}} \phi_{\mathbf{s}} = |\phi_{\mathbf{r}}|^2 \delta_{\mathbf{rs}}, \qquad (82)$$

is employed. This approximation leads to

$$\langle r(i) s(j) | \frac{1}{r_{ij}} | t(i) u(j) \rangle = \gamma_{rs} \delta_{rt} \delta_{su}$$
 (83)

A further simplification is obtained by setting

$$< r(i) | T + V | s(i) > = 0$$
 (84)

if r and s are neither on the same atom nor near-neighbor atoms. Using this approximation, the remaining core Hamiltonian matrix elements are

$$(T + y)_{rr} = -Z_{r}I_{r} + \sum_{s \neq r} \langle r(i) | v_{si}^{Zs^{+}} | r(i) \rangle$$
 (85)

$$(T + Y)_{rs} = \beta_{rs}$$
(86)

where the kinetic energy is approximated by a product of the core charge, Z, and the ionization potential, I. The potential energy is approximated as an integral whose operator is $V_{si}^{Zs^+}$, the potential of an atom which has lost its pi-electrons. Using the approximation of Goeppert-Mayer and Sklar,¹⁷ the one-electron potential energy operator is

$$V_{sj}^{+} = V_{sj} - Z \langle s(i) | \frac{1}{r_{ij}} | s(i) \rangle$$
 (87)

where V_{sj} is the potential at atom j from a neutral atom s and is neglected; the integral represents the Coulomb potential due to a pi-electron on the atom s. The off-diagonal core Hamiltonian matrix elements are set equal to an empirical parameter, β_{rs} . The diagonal elements further reduce to

$$(T + y)_{rr} = -Z_{r}I_{r} - \sum_{s \neq r} Z_{s}\gamma_{rs}$$
 (88)

Using the above approximations including TZDO, the Hartree-Fock matrix elements are

$$F_{rr}^{\alpha} = -Z_{r} I_{r} - P_{rr}^{\alpha} \gamma_{rr} - \sum_{s \neq r} Z_{s} \gamma_{rs} + \sum_{s} P_{ss}^{\alpha} \gamma_{rs} + \sum_{s} P_{ss}^{\beta} \gamma_{rs} + \sum_{s} P_{ss}^{\beta} \gamma_{rs} + \sum_{s \neq r} Z_{s} \gamma_{rs} + F_{rr}^{\beta} = -Z_{r} I_{r} - P_{rr}^{\beta} \gamma_{rr} - \sum_{s \neq r} Z_{s} \gamma_{rs} + \sum_{s \neq r} Z_{s} \gamma_{r$$

$$\sum_{s} P_{ss}^{\beta} \gamma_{rs} + \sum_{s} P_{ss}^{\alpha} \gamma_{rs}$$
(90)

$$\mathbf{F}_{\mathbf{rs}}^{\alpha} = \beta_{\mathbf{rs}} - P_{\mathbf{rs}}^{\alpha} \gamma_{\mathbf{rs}}$$
(91)

$$\mathbf{F}_{\mathbf{rs}}^{\beta} = \beta_{\mathbf{rs}} - \mathbf{P}_{\mathbf{rs}}^{\beta} \gamma_{\mathbf{rs}}$$
(92)

The pi-electronic energy then is

$$E_{\pi} = -\sum_{\mathbf{r}} P_{\mathbf{r}\mathbf{r}} (\mathbf{I}_{\mathbf{r}} + \sum_{s \neq \mathbf{r}} \mathbf{Z}_{s} \gamma_{\mathbf{r}s}) + \sum_{\mathbf{r}} \sum_{s \neq \mathbf{r}} P_{\mathbf{r}s} \beta_{\mathbf{r}s}$$
$$+ \sum_{\mathbf{r}} P_{\mathbf{r}\mathbf{r}}^{\alpha} P_{\mathbf{r}\mathbf{r}}^{\beta} \gamma_{\mathbf{r}\mathbf{r}} + \frac{1}{2} \sum_{s \neq \mathbf{r}} (P_{\mathbf{r}\mathbf{r}} P_{ss} - P_{\mathbf{r}s}^{\alpha} P_{\mathbf{r}s}^{\beta} P_{\mathbf{r}s}^{\beta}) \gamma_{\mathbf{r}s})$$
(93)

where P_{rs} is a charge density matrix element. The two-center twoelectron repulsion integrals, γ_{rs} , can be calculated using a variety of approximations, the Mataga-Nishimoto,¹⁸, the Pariser-Parr,¹⁹ the Nishimoto,²⁰ and the modified Mataga²¹ approximations. All are dependent on the distances between atoms, r_{re} .

A wavefunction of a specific spatial symmetry can be obtained through a nonaufbau excitation. That is, the molecular orbitals are occupied so that the ground state electronic energy is not obtained, and the symmetries of the occupied alpha molecular orbitals are not equal to the symmetries of the occupied beta molecular orbitals. The occupation is reflected in the formation of the alpha and beta density matrices,

$$P_{rs}^{\alpha} = \sum_{k=1}^{B} c_{rk}^{\alpha} c_{sk}^{\alpha} f_{k}^{\alpha}$$
(94)

$$P_{rs}^{\beta} = \sum_{k=1}^{B} c_{rk}^{\beta} c_{sk}^{\beta} f_{k}^{\beta}$$
(95)

u

where the f_k's are arrays of occupation numbers for the orbitals. Using the equations of Brickstock and Pople, equations 89 through 92, the molecular orbitals are iterated in an SCF procedure until the energy convergence criterion is attained. Spin projection is then performed on the UHF wavefunction using the equations outlined in the previous chapter. A computer program incorporating the semi-empirical PPP pi-electron approximations with spin projection was developed and submitted to the Quantum Chemistry Program Exchange.²²

The calculation of the electronic spectra of naphthalene, anthracene, naphthacene and pentacene employed the theory outlined

above. All fused benzene rings were taken to be regular hexagons with sides of length 1.4 Angstroms. The off-diagonal core Hamiltonian matrix elements, β_{rs} , were empirically set equal to -2.395 electron volts.²³ The one-center electron repulsion integrals, γ_{rr} , were taken to be 11.13 electron volts and the two-center repulsion integrals were evaluated by the Mataga-Nishimoto approximation,¹⁸

$$\gamma_{rs} = \frac{14.397}{\frac{28.794}{\gamma_{rr} + \gamma_{ss}} + r_{rs}}.$$
 (96)

The group theoretical notation is that suggested by IUPAC,²⁴ so that the molecules lie in the yz plane, the short molecular axis being in the z direction and the long axis, y. Since all molecules studied were members of the D_{2h} point group, no symmetry degenerate states existed. Both the spin projection and CI calculations employed the PPP approximations. The CI calculations that were done for comparison with the projected UHF calculations included all singly excited configurations.

The wavelengths for the ground to excited state transitions for naphthalene, anthracene, naphthacene and pentacene are listed in Tables I, II, III and IV, respectively. They are tabulated with the assumption that the ground state wavefunction is a closed shell. Both m=Q and m=1 calculations were performed for the purposes of comparison of the internal consistency of the spin projection technique; the m=O state refers to an open shell system with an equal number of alpha and beta electrons while the m=1 system has two more alpha than beta electrons.

TABLE I

WAVELENGTHS (Å) FOR THE GROUND TO EXCITED STATE TRANSITIONS IN NAPHTHALENE

	Calculated				
System	Excited 	Projected UHF	CI	Experimental	
m=0	1 _{B2u}	3137	2991	3106 ^a	
	1 _B lu	2724	2765	2757 ^b	
	1 _B 3g	2099	2115		
	³ B2u	3319	3604	3353 ^b	
	3 _B lu	5006	7264	4963 ^b	
	з _в зд	2708	4264		
m=1	³ B2u	3148		3353 ^b	
	3 _B 1u	6720		4963 ^b	
	з _в зв	2924			

^aJ. R. Platt, J. Chem. Phys. <u>18</u>, 1168 (1950).

^bR. G. Parr, "Quantum Theory of Molecular Electronic Structure", W. A. Benjamin Book Co., New York, 1964.

TABLE II

WAVELENGTHS (Å) FOR THE GROUND TO EXCITED STATE TRANSITIONS IN ANTHRACENE

		Calculated		
System	Excited State	Projected UHF	CI	Experimental
m=0	1 _B 2u	3713	3342	3745 ^a
	¹ B _{1u}	3493	3568	3649 ^b
	1 _B 3g	2887	2630	
	³ B ₂ u	3711	3876	
	³ B _{1u}	7921	11488	7298 ^b
	³ в Зд	3286	5468	
m=1	³ B2u	3473		
	³ B _{1u}	13393		7298 ^b
	з _в зд	3673		

^aJ. R. Platt, J. Chem. Phys. <u>18</u>, 1168 (1950).

^bR. G. Parr, "Quantum Theory of Molecular Electronic Structure", W. A. Benjamin Book Co., New York, 1964.

TABLE III

WAVELENGTHS (Å) FOR THE GROUND TO EXCITED STATE TRANSITIONS IN NAPHTHACENE

		Calculated		
System	Excited State	Projected UHF	CI	Experimental
m=0	1 _B 2u	4163	3568	3922 ^a
	¹ B _{1u}	4239	4343	4278 ^b
	1 _B 3g	3402	3182	
	³ B2u	3969	3899	
	³ B _{1u}	11802	18859	10340 ^b
	З _В Зд	4121	7434	
m=1	³ B2u	3582		
	³ B _{1u}	28788		10340 ^b
	3 _B 3g	4901		

^aJ. R. Platt, J. Chem. Phys. <u>18</u>, 1168 (1950).

^bR. G. Parr, "Quantum Theory of Molecular Electronic Structure", W. A. Benjamín Book Co., New York, 1964.
TABLE IV

WAVELENGTHS (Å) FOR THE GROUND TO EXCITED STATE TRANSITIONS IN PENTACENE

······································	Calculated		
Excited State	Projected UHF	CI	Experimental
1 _{B2u}	4471	3711	4167 ^a
¹ B ₁ u	4915	4969	5755 ^b
1 _B 3g	4086	3696	
³ B2u	4130	3899	
³ B 1u	16934	29078	
3 _B 3g	5002	8622	
³ B2u	5191		
³ Blu	с		
з _в Зв	6303		
	Excited State $1_{B_{2u}}$ $1_{B_{1u}}$ $1_{B_{3g}}$ $3_{B_{2u}}$ $3_{B_{1u}}$ $3_{B_{3g}}$ $3_{B_{2u}}$ $3_{B_{2u}}$ $3_{B_{1u}}$ $3_{B_{3g}}$ $3_{B_{1u}}$ $3_{B_{3g}}$	$\begin{tabular}{ c c c c c } \hline Calculated \\ \hline Cal$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^aJ. R. Platt, J. Chem. Phys. <u>18</u>, 1168 (1950). ^bE. Clar, "The Aromatic Sextet," Wiley Book Co., London, 1972.

 ${}^{\mathbf{C}}_{\mathbf{T}}$ riplet energy was lower than ground state RHF energy.

In all cases, the unprojected states were composed of almost 50 percent singlet and 50 percent triplet character. The weights of the states with multiplicity five were about 0.3 percent for B_{1u} symmetry, about one percent for B_{3g} symmetry and about five percent for B_{2u} symmetry. Much smaller, though nonvanishing contributions were also obtained for states of multiplicity seven for the larger molecules.

In most cases, there was reasonable agreement between the CI and the projected UHF results. The CI calculation generally produced appreciably lower energies for the triplet states than did the UHF treatment. However, for those cases where experimental data were available, the UHF results were in somewhat better agreement than the CI results.

A comparison of the wavelengths for the excitation from the ground states to the triplets between the m=0 and m=1 calculations is rather interesting. For the B_{2u} triplets, the m=0 calculations provided lower energy states than the m=1 calculations with the exception of pentacene, the largest molecule. For the B_{3g} and B_{1u} triplets, lower energies were obtained in all cases from the m=1 calculations. The difference between the m=0 and m=1 energies increased with the size of the molecule and was much greater for B_{1u} symmetry than for B_{3g} . The result of this was that the excitation energies for the ground state to the ${}^{3}B_{1u}$ states obtained from the m=1 calculation were much too small in comparison with available experimental data. The case of pentacene is extreme in

that the ${}^{3}B_{1u}$ (m=1) state was lower in energy than the closed shell ground state. This result implies that the ground state wavefunction may be an open rather than a closed shell.

Hartree-Fock instabilities are defined as cases where the ground state wavefunction determined using the UHF equations is an open shell that gives a lower energy than the closed shell. Koutecký³⁰ showed that Hartree-Fock instabilities occurred for molecules as small as benzene and were a consequence of the parameterization used in the PPP calculation. He cites examples of the occurrence of open shell ground states in naphthalene, anthracene and pentacene when the Mataga parameterization is employed. Koutecký's parameterization was slightly different from that employed in this work with $\beta = -2.318$ electron volts and $\gamma_{ii} = 10.84$ electron volts.

In an attempt to generate open shell ground states for the molecules under study, the SCF portion of the molecular orbital calculation was rewritten so that the alpha and beta molecular orbitals were calculated sequentially instead of concurrently. That is, in a usual SCF calculation, the alpha- and beta-electron Fock matrices are formed using the same set of starting orbitals and diagonalized to produce a new set of orbitals. Since the alphaand beta-electron Fock matrices remain the same, the alpha and beta molecular orbitals stay the same. In the modified SCF calculation, the starting orbitals were used to form the alpha-electron Fock matrix, and the matrix was diagonalized to produce a new set

of alpha molecular orbitals; the new alpha orbitals were then used to form the beta-electron Fock matrix. By iterating back and forth to allow the alpha- and beta-electron Fock matrices to be different, it was hoped that sufficient differences would be introduced to produce open shell ground state molecular orbitals.

This procedure led to an open shell ground state for pentacene but closed shell solutions for naphthalene, anthracene and naphthacene. The projected energies and weighting factors for the open shell ground state of pentacene are listed in Table V while the electronic spectrum recalculated using the open shell ground state is presented in Table VI. The contributions to the open shell unprojected ground state energy by multiplicities greater than one are quite appreciable; also, the projected ground state energy is below the troublesome triplet energy obtained from the m=1 calculation.

The lack of open shell ground states in naphthalene, anthracene and naphthacene does not imply that such a solution does not exist but rather that the initial perturbation was not sufficient to produce an open shell solution.

The disparities between the m=0 and m=1 results can only be a consequence of the differences in the effective flexibility of the basis sets.²⁵ Since the m=0 results compared favorably with available experimental data on the whole, it must be concluded that the m=0 UHF basis set contained flexibility comparable to that of the closed shell calculation. The effective flexibility of the basis for the m=1 UHF calculations increased with molecular size

TABLE V

PROJECTED ELECTRONIC ENERGIES AND WEIGHTING FACTORS FOR THE OPEN SHELL GROUND STATE IN PENTACENE

Multiplicity	Energy(eV)	Weight
1	-932.54926	2.99489×10^{-1}
3	-931.48598	4.50627×10^{-1}
5	-929.41985	2.00174×10^{-1}
7	-926.66096	4.37340×10^{-2}
9	-923.41642	5.51858×10^{-3}
11	-919.78281	4.34172×10^{-4}
13	-915.79493	2.20764×10^{-5}
15	-911.45288	7.32055×10^{-7}
17	-906.73785	1.55937×10^{-8}
19	-901.62669	2.03853×10^{-10}
21	-896.11148	1.47624×10^{-12}

.

•

.

.

TABLE VI

WAVELENGTHS (Å) FOR OPEN SHELL GROUND TO EXCITED STATE TRANSITIONS IN PENTACENE

	Calculated		-
Excited State	Projected UHF	CI	Experimental
1 _{B2u}	2162	3711	4167 ^a
1 _B lu	2261	4969	5755 ^b
1 _B 3g	2068	3696	
³ B2u	2079	3899	
³ B _{1u}	3356	29078	
³ в Зд	2279	8622	
³ B _{2u}	1963		
³ Blu	5145		
з _в Зg	2515		
	$ Excited State I_B 2u I_B 1u I_B 3g 3_B 2u 3_B 1u 3_B 3g 3_$	$\begin{tabular}{ c c c c } \hline Calculated \\ \hline Excited & Projected \\ \hline State & UHF \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{tabular}{ c c c c c } \hline Calculated \\ \hline Excited State Projected UHF CI \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

^aJ. R. Platt, J. Chem. Phys. <u>18</u>, 1168 (1950).

^bE. Clar, "The Aromatic Sextet", Wiley Book Co., London, 1972.

and was different for different spatial symmetries, increasing in the order $B_{3g} < B_{2u} < B_{1u}$. This order can be rationalized by comparing the available virtual orbitals for naphthalene in the three calculations. However, all observed variations cannot be rationalized without a considerable amount of additional study.

Several unexpected problems arose in the spin projection calculations. Although the resolution of these difficulties was relatively easily accomplished, the sources of the problems are worthy of some explanation and elaboration.

The first problem arose in trying to obtain wavefunctions with symmetries other than the ground state symmetry, A_g . In general, one nonaufbau excitation on the first SCF iteration is sufficient to retain the desired spatial symmetry of the wavefunction. However, since the orbital symmetries reordered and multiple excitations in the density matrices were required to retain the desired symmetry of the total wavefunction, an orbital symmetry search pattern was established for subsequent iterations. The search pattern determined the symmetries of every alpha and beta orbital. The orbitals were occupied based on a preselected list of the number of orbitals of each symmetry type in the total wavefunction. The total density matrix was then calculated using equations 94 and 95. The search pattern was repeated until selfconsistency was achieved.

Multiple problems with degeneracies occurred during the calculations and are described elsewhere.²⁶

Based on the results presented above, the projected UHF

method is a viable alternative to CI for the calculation of excited electronic states provided that the UHF and closed shell restricted Hartree-Fock (RHF) treatments employ basis sets of comparable flexibility. It is indicated that the m=0 UHF calculation satisfies this requirement in most cases.

IX. ALL-VALENCE ELECTRON CALCULATIONS

The semi-empirical all-valence electron calculations as set forth by Pople and Beveridge⁶ employ either the complete neglect of differential overlap (CNDO) or the intermediate neglect of differential overlap (INDO) approximations. The difference between the CNDO and INDO methods lies in the manner in which the one-center two-electron repulsion integrals are treated. The CNDO approximations were originally parameterized for the first, second and third row atoms on the periodic table, hydrogen through chlorine, while the INDO segment included hydrogen through fluorine.

Both the INDO and CNDO parameterizations have been quite useful in the past⁶ in determining molecular structure, particularly equilibrium geometries of organic molecules, and properties such as dipole moments.

The work described below consists of three distinct segments: the application of the INDO approximations to determine the equilibrium geometry of monohomocyclooctatetraene anion radical (MHCOT); the inclusion of the spin projection in the INDO computer program; and, the extension of the INDO parameterizations to include the third row atoms, sodium through chlorine.

It is advantageous to review the INDO approximations at this time.

The diagonal core Hamiltonian matrix elements,

$$(T + V)_{rr} = \langle r(i) | -\frac{1}{2} \nabla_{i}^{2} - V_{\mu} | r(i) \rangle - \sum_{\nu \neq \mu} \langle r(i) | V_{\nu} | r(i) \rangle, \qquad (97)$$

are separated into contributions due to the interaction of the orbital $\langle r(i) |$ with the nucleus μ on which it resides and interactions with the other nuclei, ν , in the molecule. The first integral, which is essentially an atomic term, is approximated semiempirically by U_{rr} , an average of the ionization potential, I_r , and the electron affinity, A_r , and a term describing the number of valence electrons on the nucleus μ ,

$$\langle r(i) | -\frac{1}{2} \nabla_{i}^{2} - \nabla_{\mu} | r(i) \rangle = U_{rr}$$
 (98)

$$U_{rr} = -\frac{1}{2} (I_{r} + A_{r}) - (Z_{\mu} - \frac{1}{2}) \gamma_{\mu\mu}$$
(99)

where $\gamma_{\rm uu}$ is a one-center two-electron coulomb integral of the form

The second integral is approximated by

$$\mathbf{v}_{\mu\nu} = \langle \mathbf{r}(\mathbf{i}) | \mathbf{v}_{\nu} | \mathbf{r}(\mathbf{i}) \rangle = \mathbf{Z}_{\nu} \gamma_{\mu\nu} .$$
 (101)

These integrals are assumed to be the same for all orbitals $|r(i)\rangle$ on the atom μ .

The off-diagonal core Hamiltonian matrix elements are approximated by

$$(T + V)_{rs} = \beta_{\mu\nu}^{0} S_{rs}$$
(102)

where S_{rs} is the overlap integral of equation 24 and $\beta^{O}_{\mu\nu}$ is composed

of empirical atomic bonding parameters of the form

$$\beta^{0}_{\mu\nu} = \frac{1}{2} (\beta^{0}_{\mu} + \beta^{0}_{\nu}) . \qquad (103)$$

Orbitals r and s are required to be on different atoms, μ and $\nu.$

The two-electron integrals are approximated using the zero differential overlap (ZDO) approximation,

$$\langle \mathbf{r}(\mathbf{i}) \mathbf{s}(\mathbf{j}) | \frac{1}{\mathbf{r}_{\mathbf{i}\mathbf{j}}} | \mathbf{t}(\mathbf{i}) \mathbf{v}(\mathbf{j}) \rangle = \gamma_{\mathbf{rs}} \delta_{\mathbf{rt}} \delta_{\mathbf{sv}},$$
 (104)

when r and s are on different atoms. When orbitals r and s are on the same atom, integrals of the form

$$(i) r(j) | \frac{1}{r_{ij}} | s(i) s(j)$$
 (106)

$$(r(i) s(j) | \frac{1}{r_{ij}} | r(i) s(j))$$
 (107)

have nonvanishing values and are evaluated semi-empirically using Slater-Condon parameters.³¹ Other one-center two-electron integrals vanish by symmetry; one-center integrals involving more than two orbitals are neglected.

The basis set used for the INDO calculation contains pure s and p atomic orbitals (no hybrids). They are Slater type orbitals of the form

$$\chi_{i} = A \exp\left(-\zeta_{i} r_{i}\right) Y_{lm}(\theta, \phi)$$
(108)

where ζ_i is the orbital exponent, r_i the distance from the nucleus on which the orbital resides, and $Y_{\varrho_m}(\theta,\phi)$ a spherical harmonic.

Using the above approximations, the open shell Fock matrix

elements are

$$F_{rr}^{\alpha} = U_{rr} + \sum_{s \text{ on } \mu} [P_{ss} < r(i) \ s(j) \mid \frac{1}{r_{ij}} \mid r(i) \ s(j) > - P_{ss}^{\alpha} < r(i) \ r(j) \mid \frac{1}{r_{ij}} \mid s(i) \ s(j) >]$$

+
$$\sum_{\nu \neq \mu}$$
 (P_{vv} - Z_v) Y_{µv} (109)

$$F_{rr}^{\beta} = U_{rr} + \sum_{s \text{ on } \mu} [P_{ss} < r(i) \ s(j) \ | \ \frac{1}{r_{ij}} \ | \ r(i) \ s(j) > - P_{ss}^{\beta} < r(i) \ r(j) \ | \ \frac{1}{r_{ij}} \ | \ s(i) \ s(j) >]$$

+
$$\sum_{\nu \neq \mu} (P_{\nu\nu} - Z_{\nu}) \gamma_{\mu\nu}$$
 (110)

$$F_{rs}^{\alpha} = (2 P_{rs} - P_{rs}^{\alpha}) \langle r(i) r(j) | \frac{1}{r_{ij}} | s(i) s(j) \rangle$$

- $P_{rs}^{\alpha} \langle r(i) s(j) | \frac{1}{r_{ij}} | r(i) s(j) \rangle$ (111)
$$F_{rs}^{\beta} = (2 P_{rs} - P_{rs}^{\beta}) \langle r(i) r(j) | \frac{1}{r_{ij}} | s(i) s(j) \rangle$$

- $P_{rs}^{\beta} \langle r(i) s(j) | \frac{1}{r_{ij}} | r(i) s(j) \rangle$ (112)

where the orbital $|r(i)\rangle$ is on atom μ .

The molecular orbital calculation is performed in an SCF procedure similar to that described in the preceding chapter.

Homoconjugation in the Monohomocyclooctatetraene Anion Radical

The concept of homoconjugation was introduced by Winstein³² to describe the high stability of certain molecules and ions in which conjugation is interrupted in one or more places by aliphatic groups. Winstein, et. al.³³ view this phenomenon as due to delocalization across the interruption through the carbon p-orbitals which are twisted relative to the π -orbitals of the remaining system because of the inserted aliphatic group. For the specific case of methylene insertion, Hehre³⁴ has described how this picture could be rationalized by using the known valence orbitals of the cyclopropane ring.

Various homoaromatic compounds have been studied theoretically using specially-parameterized Hückel and minimum basis set <u>ab initio</u> calculations. The molecules studied were primarily compounds with an even number of pi-electrons including the unsubstituted and substituted cations and anions of bicyclo[3.1.0]hexene^{35,36} and homotropylium.^{36,37} The compounds were studied both for their formation and rearrangement processes. The Hückel (4n + 2) rule for aromaticity can be applied to these compounds. The rule predicts aromaticity for those compounds that have an even number of pi-electrons equal to (4n + 2) where n is an integer; those compounds that contain an even number of electrons not equal to (4n + 2) are predicted to be antiaromatic. No prediction is made for compounds containing an odd number of pi-electrons; apparently homodelocalization through single bonds occurs in such cases. Monohomocyclooctatetraene anion radical (MHCOT) is a system containing an odd number of pi-electrons and has not been examined theoretically by other workers. However, the formation reaction was studied and the electron spin resonance (ESR) hyperfine coupling constants for MHCOT were measured.^{38,39} No molecular geometry was available, a requirement for a bonding study. It was, therefore, necessary to determine the structure of MHCOT by systematically varying the geometry. The structure was determined by comparing the experimental hyperfine constants with those calculated by using a hypothetical geometry in an INDO calculation.

MHCOT is an eight-membered ring with a methylene group attached to two adjacent carbon atoms in the ring. Two hydrogen atoms, H1 and H8, are bonded to the carbon atoms that join the methylene group to the eight-membered ring (for example, see Figure The ESR data^{38,39} indicate that the anion radical has only a 1). single plane of symmetry which contains the entire methylene group. A number of possible geometries for the eight-membered ring were investigated including a cis-fused chair, a cis-fused boat and a planar ring with the methylene group in the perpendicular plane of symmetry. The boat and chair conformations contained alternant single and double bonds of lengths 1.54 and 1.35 Angstroms $(\overset{0}{A})$. respectively. In all possible geometries, the angles between the methylene group and the adjacent plane of the eight-membered ring, and between H1 and H8 and the adjacent plane of the ring were varied. Specific details of the INDO calculations are presented elsewhere. 40

Figure 1. - Geometry of Monohomocyclooctatetraene Anion Radical

.

.

The exponents for the Slater orbitals used in both the INDO and spin projection calculations were derived form Burn's rules.⁴¹ That is, the s-orbital exponent for hydrogen was 1.2, the s-orbital exponent for carbon was 1.55, and the p-orbital exponent for carbon was 1.325.

The hyperfine coupling constants, $a_{\rm H}$, were obtained directly from the calculated hydrogen 1s orbital spin densities, and did not involve the use of McCennell's relation⁴³ or any variation thereof.

The geometry from the INDO calculations that provided the best comparison between the calculated and experimental coupling constants was a uniform octagonal ring illustrated in Figure 1. The in-plane carbon-carbon bonds had lengths of 1.40 Å while the out-ofplane C_1-C_9 and C_8-C_9 bonds were set at 1.54 Å; all carbon-hydrogen bonds were assumed to be 1.084 Å. The carbon-hydrogen bonds at carbons two through seven were assumed to lie in the plane of the eight-membered ring, bisecting the external carbon-carbon The hydrogens at carbons one and eight were similarly angles. located, but then the carbon-hydrogen bonds were allowed to tilt below the plane by an angle α . The best comparison with experimental coupling constants was obtained when α was equal to 0° and θ , the angle between the octagonal plane and the cyclopropyl ring, was 83.5°. This angle, θ , is close to those determined by Hehre^{34,35} by ab initio calculations on the bicyclo[3.1.0]-hex-3-en-2-y1 cation and the homotropylium cation. It should be noted that, in comparison to other possible geometries, this geometry did not produce the lowest binding energy, E_B, the difference between the

energy of the molecule and the energies of the atoms separated at an infinite distance.

In order to measure the amount of spin contamination in the calculated geometry of MHCOT, it was necessary to obtain a wave-function of pure spin multiplicity. To this end, a computer program was developed to perform spin projection calculations on CNDO and INDO wavefunctions. The program has been submitted to the Quantum Chemistry Program Exchange.⁴²

Spin projection calculations were performed on the planar uniform octagonal structure of the eight-membered ring of MHCOT. Only the angle that the cyclopropyl group made with the plane of the ring, θ , and the angle that H1 and H8 tilted below the plane of the ring, α , were varied.

The best fit between the projected hyperfine coupling constants and experiment occurred when $\theta = 76.7^{\circ}$ and $\alpha = 0^{\circ}$. This geometry, too, did not produce the lowest binding energy compared to other possible geometries that were tested.

The comparisons between the unprojected hyperfine constants and experiment are presented in Table VII while the comparison between the projected hyperfine constants for the two geometries are shown in Table VIII. The unprojected hyperfine coupling constants showed better agreement with experiment than the projected hyperfine constants. In most geometries tested, the calculated hyperfine constants for H1 and H8 were greater than the hyperfine constant for H9. Since the experimental data showed the reverse situation to be true, a major requirement for the calculated

TABLE VII

PROTON HYPERFINE COUPLING CONSTANTS, a_H, FOR THE MONOHOMOCYCLOOCTATETRAENE ANION RADICAL OBTAINED FROM UNPROJECTED WAVEFUNCTIONS

	Calculated	Calculated a _H (Gauss)		
Protons	$\theta = 83.5^{\circ}$ $\alpha = 0^{\circ}$	$\theta = 76.7^{\circ}$ $\alpha = 0^{\circ}$	Experimental a _H (Gauss) ^a	
^H 1, ^H 8	4.21	1.92	±5.72	
H ₂ , H ₇	-1.57	1.48	±0.87	
н ₃ , н ₆	2.62	2.37	±5.12	
H ₄ , H ₅	-2.03	-1.86	±1.99	
H ₉	-7.55	-9.17	±12.18	
H _g	-3.71	-3.86	±4.54	

^aS. Winstein, G. Moshuk, R. Rieke and M. A. Ogliaruso, J. Amer. Chem. Soc. <u>95</u>, 2624 (1973).

TABLE VIII

PROTON HYPERFINE COUPLING CONSTANTS, a_H, FOR THE MONOHOMOCYCLOOCTATETRAENE ANION RADICAL OBTAINED FROM SPIN PROJECTED WAVEFUNCTIONS

	Calculated		
Protons	$\theta = 83.5^{\circ}$ $\alpha = 0^{\circ}$	$\theta = 76.7^{\circ}$ $\alpha = 0^{\circ}$	Experimental a _H (Gauss) ^a
^H 1, ^H 8	2.72	1.15	±5.72
н ₂ , н ₇	0.78	2.84	±0.87
^н з, ^н 6	1.34	1.17	±5.12
H ₄ , H ₅	-0.59	-0.51	±1.99
H ₉	-2.49	-3.02	±12.18
Hgt	-1.21	-1.26	±4.54

^aS. Winstein, G. Moshuk, R. Rieke and M. A. Ogliaruso, J. Amer. Chem. Soc. <u>95</u>, 2624 (1973).

hyperfine constants was that the magnitude of H9 be greater than H1. This requirement was satisfied only within a relatively small range of change for the angle θ . It is interesting to note that a further decrease in the angle θ in the optimized projected geometry from 76.7° to 76.65° produced an increase in the hyperfine constants for H9, H9' and H1 to 184.51, 35.12 and 21.22. This sharp increase is apparently the result of H9 interfering with the conjugated pi-electron cloud of the eight-membered ring.

The unprojected energies, projected energies and weighting factors for the geometries producing the best match with experiment are presented in Table IX. As is evident from Table IX, the unprojected doublet ground state had about 1.5 percent spin contamination from the quartet and sextet states. With both geometries, an energy lowering for the doublet of 0.05 atomic units was obtained upon projection.

The calculations were performed using the common convention of a uniform right-handed coordinate system. In the planar eightmembered ring, there occurs one p-orbital on each carbon atom which is oriented perpendicular to the plane of the ring. In the absence of the methylene group, these orbitals would be designated as piorbitals and the associated bond orders as $P(\pi r, \pi s)$.

In order to get a more complete picture of the overall bonding, it is necessary to obtain Mulliken bond orders for the in-plane components of the carbon-carbon bonds. This was done by transforming⁴⁴ the orbitals for each carbon-carbon pair into a local coordinate system in which the p_{σ} -orbital of each carbon

TABLE IX

UNPROJECTED AND PROJECTED BINDING ENERGIES (A.U.) AND WEIGHTING FACTORS FOR THE MONOHOMOCYCLO-OCTATETRAENE ANION RADICAL

Geometry	Unprojected Energy	Multiplicity	Weight	Binding Energy
$\theta = 83.5^{\circ},$	-9.710	2	9.86 $\times 10^{-1}$	-9.7 15
$\alpha = 0$		4	1.35×10^{-2}	- 9.346
		6	4.27×10^{-5}	-8.036
$\theta = 76.7^{\circ},$	-9.707	2	9.85 $\times 10^{-1}$	-9.712
$\alpha = 0$	4	1.44×10^{-2}	-9.353	
		6	4.75×10^{-5}	-9.032

50

••

points toward the other carbon, the p_{π} -orbitals are perpendicular to the ring as described above, and the p_{π} -orbitals are in the plane of the ring perpendicular to the bond. For each pair, $C_r C_s$, this produces a set of bond orders, $P(\pi i;\pi j)$, P(si;sj), $P(\sigma i;\sigma j)$ [$P(\sigma i;sj$ + $P(si;\sigma j)$], $P(\pi'i;\pi'j)$, which are invariant to the coordinate system used in the calculation and hereafter referred to as invariant bond orders. The invariant bond orders for the best geometries of MHCOT are presented in Table X. It should be noted that the projected density matrices are very close to the unprojected density matrices within the accuracies of the calculations.

As is evident from Table X, only a negligible difference in bond orders occurs between the two geometries and leads to the conclusion that the invariant bond orders are insensitive to relatively small changes in geometry.

An examination of the magnitude of the $P(\pi i;\pi j)$ bond orders shows close to aromatic pi-bond orders around the entire ring between carbons two and seven. The 1,2 and 7,8 pi-bond orders are understandably reduced because of the attached methylene group. The values of 0.416 and 0.422 associated with the C_1-C_8 bond are surprisingly large and imply that homoconjugation as envisioned by Winstein^{32,33} does occur.

The $C_1-C_8 \sigma$ -bond order is reduced by ten to twenty percent relative to the other σ -bond orders in the ring; a similar reduction in strength occurs for the P(si;sj), P(σ i; σ j) and [P(σ i;sj + P(si; σ j)] bond orders. The conclusion that must be drawn from the reduction of about twenty percent in the total C_1-C_8 bond strength is that the

TABLE X

INVARIANT BOND ORDERS FOR CALCULATED GEOMETRIES OF MONOHOMOCYCLOOCTATETRAENE ANION RADICAL

	Geometry		
	$\theta = 83.5^{\circ}$	$\theta = 76.7^{\circ}$	
Bond Order	$\alpha = 0^{\circ}$	$\alpha = 0^{\circ}$	
P(π1;π8)	0.416	0.422	
Ρ(π1;π2)	0.384	0.388	
P(π2;π3)	0.669	0.661	
Ρ(π3;π4)	0.609	0.615	
Ρ(π4;π5)	0.602	0.598	
P(s1;s8)	0.270	0.270	
P(s1;s2)	0.318	0.313	
P(s2;s3)	0.340	0.340	
P(s3;s4)	0.344	0.344	
P(s4;s5)	0.344	0.344	
P(01;08)	0.477	0.477	
Ρ(σ1;σ2)	0.511	0.104	
Ρ(σ2;σ3)	0.511	0.511	
Ρ(σ3;σ4)	0.510	0.510	
Ρ(σ4;σ5)	0.510	0.509	
$P(\sigma_{1};s_{8}) + P(s_{1};\sigma_{8})$	0.896	0.894	
$P(\sigma_{1};s_{2}) + P(s_{1};\sigma_{2})$	1.036	1.028	
$P(\sigma_{2};s_{3}) + P(s_{2};\sigma_{3})$	1.068	1.067	
$P(\sigma_{3};s_{4}) + P(s_{3};\sigma_{4})$	1.070	1.070	
$P(\sigma_{4};s_{5}) + P(s_{4};\sigma_{5})$	1.070	1.070	
Ρ(π'1;π'8)	0.246	0.249	
Ρ(π'1;π'2)	0.266	0.264	
P(π'2;π'3)	0.275	0.273	
Ρ(π'3;π'4)	0.275	0.275	
Ρ(π'4;π'5)	0.275	0.275	

.

bond has not been opened upon formation of the anion radical from cis-bicyclo[6.1.0]-nona-2,4,6-triene.

The conclusion is in good agreement with the rationalization of the cyclopropyl ring-opening process on the basis of the Woodward-Hoffman rules for the conservation of orbital symmetry.⁴⁵ When the reaction to form the nine pi-electron MHCOT is considered, both the disrotatory and conrotatory ring openings are disallowed processes since the symmetries of the starting material and product are different. However, similar considerations lead to the conclusion that the <u>cis</u>-bicyclo[6.1.0]-nona-2,4,6-triene dianion may undergo a symmetry allowed disrotatory cyclopropyl ring-opening process. Once obtained, the ring-opened dianion is then capable of establishing an equilibrium between the radical anion and the dianion.

Extension of INDO Calculations to Include d-Orbitals

The INDO formalism was used previously to describe the bonding in molecules comprised of the atoms hydrogen through fluorine. Kaufman and Predney⁴⁶ developed the equations necessary to extend the INDO calculations to include d-orbitals on the atoms sodium through chlorine, but a computer program to perform the INDO calculations with d-orbitals was not previously available. The program would be particularly useful in studying sulfur heterocycles and compounds containing the $-N=SF_6$ group.⁴⁷ For this reason, work was begun to extend the INDO calculation to include d-orbitals.

The Fock matrix elements that included d-orbitals were

available from the work of Kaufman and Predney⁴⁶ along with a complete set of Slater-Condon parameters, F's and G's, that were calculated from Slater-type orbitals. However, two errors in the Fock matrix elements were noted. Abbreviating the d_z^2 , d_{xz} , d_{yz} , d_x^2 -y² and d_{xy} orbitals by σ , π , π ', δ and δ ', the correct expressions are

$$F_{\delta\delta}^{\alpha} (INDO) = F_{\delta\delta}^{\alpha} (CNDO) - (9 P_{\sigma\sigma}^{\alpha} + 24 P_{\pi\pi}^{\alpha} + 24 P_{\pi^{+}\pi^{+}}^{\alpha})$$

$$- 69 P_{\delta^{+}\delta^{+}}^{\alpha} - 6 P_{\sigma\alpha}^{\beta} + 4 P_{\pi\pi}^{\beta} + 4 P_{\pi^{+}\pi^{+}}^{\beta} - 36 P_{\delta\delta}^{\beta} + 34 P_{\delta^{+}\delta^{+}}) F^{4} (dd) / 441 - (P_{xx}^{\alpha} + P_{yy}^{\alpha}) G^{1} (pd) / 5$$

$$- (8 P_{xx}^{\alpha} + 8 P_{yy}^{\alpha} + 5 P_{zz}^{\alpha}) 3 G^{3} (pd) / 245 - P_{ss}^{\alpha} G^{2} (sd) / 5$$

$$- (2 P_{zz}^{\alpha} - P_{xx}^{\alpha} - P_{yy}^{\alpha} + 2 P_{zz}^{\beta} - P_{xx}^{\beta} - P_{yy}^{\beta}) 2 F^{2} (pd) / 35$$
(113)

$$F_{x\pi'} (INDO) = F_{x\pi'} (CNDO) + 4 P_{x\pi'}^{\alpha} F^{2}(pd)/35$$

+ $(P_{x\pi'} + 2 P_{x\pi'}) 3 G^{3}(pd)/49$. (114)

It was also necessary to recognize the equivalence of several twoelectron integrals,

$$\langle \pi \pi' \mid \frac{1}{r_{ij}} \mid \pi \pi' \rangle = \langle \pi' \delta \mid \frac{1}{r_{ij}} \mid \pi' \delta \rangle =$$

$$\langle \pi' \delta' \mid \frac{1}{r_{ij}} \mid \pi' \delta' \rangle = \langle \pi \delta \mid \frac{1}{r_{ij}} \mid \pi \delta \rangle =$$

$$\langle \pi \delta' \mid \frac{1}{r_{ij}} \mid \pi \delta' \rangle$$

$$(115)$$

The binding energy, $E_B^{}$, is the difference between the total

energy of a molecule and the energies of the atoms separated at an infinite distance. The ground state energies of third row atoms in the INDO approximation can be calculated using

$$E(m,n) = -\frac{m}{2} (I + A)_{s} - \frac{n}{2} (I + A)_{p} + (m + n) (m + n - 1) F^{0} - \frac{1}{6} m n G^{1}(sp) - \frac{1}{25} n (n - 1) F^{2}(pp)$$
(116)

where m is the number of s-orbital electrons and n is the number of p-orbital electrons in the ground state configuration $(3s)^m(3p)^n$. The atomic energies are listed in Table XI.

The computer program was transferred to Mr. John M. Fildes; results from the use of this program will be forthcoming.

TABLE XI

ATOMIC ENERGIES (A.U.) FOR THIRD ROW ATOMS CALCULATED USING INDO APPROXIMATIONS

.

Atom	<u>Total Energy(a.u.)</u>	
Na	-0.1461713	
Mg	-0.6501658	
Al	-1.5838907	
Si	-3.1385524	
Р	-5.5635470	
S	-9.0512034	
C1	-13.501409	

•

X. <u>AB</u> <u>INITIO</u> UNRESTRICTED HARTREE-FOCK CALCULATIONS

<u>Ab initio</u> molecular orbital calculations are based on first principles and, as such, contain no empirical parameters. All one- and two-electron integrals are calculated explicitly. However, the fact that the calculations can be done with the current high speed computers does not guarantee that the predicted molecular properties will be reliable, i.e., in agreement with experiment.⁴⁹ The primary consideration in the reliability of the electronic structure calculation is the choice of a basis set.

The basis functions used in molecular calculations are usually atom-centered and either exponential or Gaussian functions. Slater⁵⁰ first suggested the use of exponential functions of the type

$$\chi_{i} = A r^{n-1} \exp(-\zeta_{i} r_{i}) \Upsilon_{\ell m}(\theta, \phi)$$
(117)

where A is a normalization factor, n is the principle quantum number and ζ_i is the orbital exponent or screening factor. The angular dependence of the orbital is introduced with a spherical harmonic, $Y_{lm}(\theta,\phi)$, while r is the distance from the atom on which the Slater function is centered.

Boys⁵¹ first proposed the use of Gaussian functions which, in comparison with the Slater functions, may be written as

$$\chi_{i} = B r^{n} \exp(-\alpha_{i} r_{i}^{2}) \Upsilon_{\ell m}(\theta, \phi) . \qquad (118)$$

More frequently, however, the angular dependence of Gaussian functions is introduced by

$$\chi_{i} = C x^{\ell} y^{m} z^{n} \exp(-\alpha_{i} r_{i}^{2})$$
(119)

where ℓ , m and n are integers. Such functions are called cartesian Gaussians. A linear combination of Gaussian-type orbitals (GTO's) can be found to match a Slater-type orbital (STO) with $\zeta_i = 1$. Then a scale factor, κ , can be introduced to relate the STO to the linear combination of GTO's. The scaled STO with $\zeta_i' = \kappa$ is represented by the same linear combination of GTO's with exponents equal to $\kappa^2 \zeta_i$.

The size of a basis set is an important factor in the reliability of molecular calculations. The work described in the previous chapter dealt with a valence orbital minimum basis set. <u>Ab initio</u> calculations, by their very nature, deal with both core and valence electrons. SCF energies obtained using minimum basis sets are far above the Hartree-Fock energies; for this reason, larger basis sets are usually used. A Slater basis set that receives wide use is the double zeta set, comprised of twice as many functions as the minimum basis set. For the carbon atom, the notation used to describe such a basis set is (4s2p); that is, the atom is described by two 1s and two 2s Slater functions, all with different orbital exponents. In addition, there are two sets (p_x , p_y and p_z) of 2p functions.

Extended basis sets, those larger than double zeta, are used when it is necessary to obtain SCF energies very close to the Hartree-Fock limit. Further, when molecular dissociations and properties are studied, it is frequently necessary to employ polarization functions, 53 functions which have angular quantum numbers, l, greater than the highest l value generally found occupied in the ground state wavefunction. For example, the polarization functions for the carbon atom would include 3d orbitals.

As the size of the basis set increases, the amount of computational time increases accordingly. It is advantageous, then, to weigh the amount of increased accuracy obtained by increasing the size of the basis set against the increased time requirements to reach a balance between the two factors. Two portions of an <u>ab initio</u> molecular orbital calculation consume great quantities of time, the multi-centered two-electron integral evaluation and the diagonalization of the Hartree-Fock matrices to give the molecular orbitals.

The primary advantage of Gaussian over Slater orbitals is the speed with which integral evaluation can be accomplished. Multicentered two-electron integrals over Gaussian functions can be evaluated in closed form while those over Slater functions cannot; thus, it has been shown⁵⁴ that integral evaluation can proceed at a rate of ten times more rapidly when Gaussian functions are used instead of Slater functions. One disadvantage of the use of Gaussian functions is that many more Gaussian than Slater functions are necessary to obtain comparable SCF energies. In a comparison of sizes of basis sets versus SCF energies obtained for oxygen and fluorine, Schaefer⁴⁹ has shown that a (10s6p) Gaussian basis set is necessary to match double zeta Slater results.

The second time consuming portion of the molecular orbital calculation, the solution of the SCF equations, requires an amount of time proportional to the fourth power of the number of basis functions. Further, large basis sets may slow convergence necessitating more iterations.⁴⁹ Therefore, the use of primitive Gaussians (equation 119) is uneconomical because of the computational time requirements.

The use of contracted Gaussian functions, linear combinations of Gaussians with fixed coefficients, 55,56 partially alleviates the problem of large basis sets. When contracted functions are used, only the coefficients of each contracted function in an SCF orbital are determined. Whitten⁵⁶ first made effective use of contracted Gaussians by optimizing a (10s5p) basis set to a contracted [3s1p] set, where brackets denote a contracted basis set. Dunning 57,58 continued the work in contraction schemes by optimizing various atomic basis sets and polarization functions for hydrogen through krypton. Generally, when forming a contracted basis set, the greatest number of primitives per contracted function are found in orbitals used to describe the core region of the atom. Relatively few primitives per contracted function are located in the more diffuse region of the atom; this freeing of orbitals allows a better description of the bonding region when an atom is present in a molecule than when a large number of primitives comprise a contracted function in the bonding region.

The contraction scheme thus far described does not allow the

primitive functions to have nonzero contributions in more than one contracted orbital; this type of contraction is referred to as a segmented contraction scheme. The disadvantage of this scheme is that, since atomic schemes are used in molecular calculations, they fail to adequately describe the internuclear region.

Raffenetti⁵⁹ proposed the use of a general contraction scheme to remedy this failure. In his scheme, each contracted function can have nonzero contribution from each primitive Gaussian. In addition, the most diffuse primitive Gaussian is allowed to float as a separate contracted function. Calculations on H_2^0 showed that 96 to 98 percent of the available energy relative to the completely uncontracted basis set was obtained.

The time required for diagonalization of the SCF matrices is dependent on the method of matrix diagonalization and roughly proportional to the fourth power of the size of the matrix. A reduction in computational time requirements can be realized when the secular determinant is symmetry-restricted. Like orbitals in other SCF calculations, each orbital must transform according to one of the irreducible representations of the molecular point group.⁶⁰ The molecular orbitals can then be grouped by symmetry; matrix elements between orbitals of different symmetry groups are zero. Using this information, the matrix diagonalization problem reduces from the diagonalization of one matrix of size B by B to the diagonalization of several smaller matrices, realizing a considerable sayings in computational time.

The SCF procedure is performed using the Hartree-Fock

equations outlined in Chapter VI. One complication that is usually ignored in semi-empirical calculations and is therefore unique to <u>ab initio</u> calculations is the nonorthogonality of the atomic basis set.

The direct consequence of the nonorthogonality of the atomic orbitals is that one- and two-electron integrals, equations 29 through 32, are evaluated and the SCF matrices are formed in the nonorthogonal representation. The orthogonal molecular orbitals can be expressed in two forms, as a linear combination of nonorthogonal atomic functions,

$$\phi_{\mathbf{r}} = \sum_{\rho} \eta_{\rho} \mathbf{Y}_{\rho \mathbf{r}}$$
(120)

or as a set of orthogonal symmetry functions,

$$\sigma_{\mathbf{r}} = \sum_{\rho} \eta_{\rho} R_{\rho \mathbf{r}} . \qquad (121)$$

The former expression is preferable in relating bonding parameters to specific portions of a molecule but results in nonorthogonal density matrices.

Matrices in a nonorthogonal representation can be put into an orthogonal basis through a transformation using the symmetry blocking transformation matrix. The transformation results from the fact that the overlap matrix, \underline{S} , is in diagonal form,

$$\langle \phi_{\mathbf{r}} | \phi_{\mathbf{s}} \rangle = \delta_{\mathbf{rs}} = \sum_{\rho,\tau} Y_{\rho \mathbf{r}}^{*} \langle \eta_{\rho} | \eta_{\tau} \rangle Y_{\tau \mathbf{s}}$$
 (122)

$$\langle \phi_{\mathbf{r}} | \phi_{\mathbf{s}} \rangle = \sum_{\rho,\tau} \tilde{\mathbf{Y}}_{\mathbf{r}\rho} S_{\rho\tau} \mathbf{Y}_{\tau\mathbf{s}}$$
 (123)

leading directly to

$$\tilde{\underline{Y}} \underline{S} \underline{Y} = \underline{1} .$$
 (124)

Solving for $\underline{\tilde{Y}}^{-1}$ leads to

$$\underline{\tilde{Y}}^{-1} = \underline{S} \underline{Y}$$
(125)

Equation 124 applies for any orthogonal basis, whether the basis is the molecular orbitals from a previous iteration or other orbitals such as natural orbitals.

The Hartree-Fock problem is solved using Roothaan's equation 61 which is

$$\underline{F} \underline{Y} = \underline{S} \underline{Y} \underline{E}$$
(126)

where the Fock matrix, \underline{F} , the matrix of eigenvectors, \underline{Y} , and the overlap matrix, \underline{S} , are in the nonorthogonal representation and \underline{E} is a diagonal matrix of orbital eigenvalues. The Fock, overlap and eigenvector matrices are transformed into the orthogonal basis by

$$\underline{\mathbf{F}}' = \underline{\mathbf{R}} \underline{\mathbf{F}} \underline{\mathbf{R}}$$
(127)

$$\underline{S'} = \underline{\tilde{R}} \underline{S} \underline{R}$$
(128)

$$\underline{W} = \underline{R}^{-1} \underline{Y}$$
(129)

giving a Fock equation of

$$\tilde{\underline{R}} \underline{\underline{F}} \underline{\underline{R}} \underline{\underline{R}}^{-1} \underline{\underline{Y}} = \tilde{\underline{R}} \underline{\underline{S}} \underline{\underline{R}} \underline{\underline{R}}^{-1} \underline{\underline{Y}} \underline{\underline{E}}$$
(130)

which, when equation 124 is used, takes the appearance of a standard eigenvalue problem,

or

$$\underline{\mathbf{F}'} \underline{\mathbf{W}} = \underline{\mathbf{W}} \underline{\mathbf{E}} . \tag{131}$$

The solution of the standard Hartree-Fock equations yields molecular orbitals in the orthogonal basis; the transformation to the nonorthogonal basis is accomplished with

$$\underline{Y} = \underline{R} \underline{W} . \tag{132}$$

The POLYATOM (Version 2)⁴ system of programs is a series of programs designed to calculate <u>ab initio</u> molecular orbital wavefunctions using Gaussian basis functions. In order to provide maximum flexibility, the system contains a number of independent main programs. Computer memory requirements are minimized by utilizing off-line tape storage to the fullest possible extent. The main programs include PA2OA and PA2OB which list one- and two-electron integrals respectively, and PA3OA and PA3OB which evaluate those integrals. The open shell SCF calculation is performed using PA43. Several supplemental programs which perform a variety of SCF calculations and compute molecular properties are also available.

The initial set of molecular orbitals in POLYATOM can be obtained from two sources, from a set of molecular orbitals from a previous calculation or from the diagonalization of the core Hamiltonian.

Spin projection of <u>ab initio</u> wavefunctions requires the formation of the corresponding orbitals and the natural orbitals of charge and spin. As was stated earlier, the density matrices are expressed in a nonorthogonal basis but may be transformed to the orthogonal representation using equation 125 by

$$\underline{\mathbf{P}}' = \underline{\mathbf{Y}}^{-1} \underline{\mathbf{P}} \, \underline{\mathbf{Y}}^{-1} \, . \tag{133}$$

The diagonalization of P' by

$$\underline{\mathbf{P}' \ \underline{\mathbf{C}}} = \underline{\mathbf{N} \ \underline{\mathbf{C}}}$$
(134)

gives the natural orbitals, $\{m_r\}$,

$$m_{\mathbf{r}} = \sum_{\mathbf{s},\rho} \eta_{\rho} \mathbf{Y}_{\rho \mathbf{r}} \tilde{\mathbf{C}}_{\mathbf{s}\mathbf{r}} = \sum_{\rho} \eta_{\rho} \left(\underline{\tilde{\mathbf{Y}}} \underline{\mathbf{C}} \right)_{\rho \mathbf{s}} .$$
(135)

The natural orbitals are expressed in the atomic orbital basis by the transformation

$$\underline{\chi} = \underline{Y} \underline{C} . \tag{136}$$

The alpha corresponding orbitals are formed in a manner similar to that for the natural orbitals with one noteworthy exception. The product matrix $\underline{P}^{\alpha}\underline{P}^{\beta}\underline{P}^{\alpha}$ cannot be transformed to the orthogonal representation as a single matrix, but rather \underline{P}^{α} and \underline{P}^{β} must be separately transformed before the product matrix is formed. The reason for the necessity of separate transformations lies in the lack of orthonormality of the orbitals. This can best be seen by examining the effect of \underline{P}^{α} operating on an arbitrary vector, A.

The alpha density matrix is

$$\underline{\mathbf{P}}^{\alpha} = \sum_{\mathbf{r}}^{\mathbf{B}^{\alpha}_{\text{occ}}} |\mathbf{r}^{\alpha}\rangle \langle \mathbf{r}^{\alpha}|$$
(137)

where $| r \rangle$ is a molecular orbital. Each molecular orbital is a linear combination of atomic orbitals, $| m \rangle$,
$$| r > = \sum_{m} c_{rm} | m > .$$
 (138)

The alpha density matrix, then, in terms of atomic orbitals, is

$$\underline{P}^{\alpha} = \sum_{\mathbf{r}} \sum_{\mathbf{m},\mathbf{n}} c^{\alpha}_{\mathbf{rm}} | \mathbf{m} < \mathbf{n} | c^{\alpha *}_{\mathbf{nr}}$$
$$= \sum_{\mathbf{m},\mathbf{n}} P^{\alpha}_{\mathbf{mn}} | \mathbf{m} < \mathbf{n} |$$
(139)

where P_{mn}^{α} is a density matrix coefficient. When the density matrix is used as an operator operating on an arbitrary vector, <u>A</u>,

$$\underline{A} = \sum_{p} | p > c_{p}, \qquad (140)$$

the resultant equation is

$$\underline{P}^{\alpha} \underline{A} = \sum_{m,n,p} P_{mn}^{\alpha} | m > \langle n | p > c_{p}$$
(141)

where $\langle n \mid p \rangle$ are overlap integrals. When orthonormal orbitals are used, the overlap matrix is diagonal with elements $S_{nn} = 1$. However, the overlap matrix in the nonorthogonal representation is not diagonal but can be used to bring nonorthogonal orbitals into the orthogonal representation,

$$\underline{P}^{\alpha} \underline{A} = \sum_{m,n,p} P_{mn}^{\alpha} | m > S_{np} c_{p} . \qquad (142)$$

The overlap matrix can also be expressed, using equation 124, as

$$\underline{\mathbf{S}} = \underline{\tilde{\mathbf{Y}}}^{-1} \underline{\mathbf{Y}} . \tag{143}$$

Using these arguments, then, the matrix equation for the determination of the alpha corresponding orbitals becomes

$$\underline{Y}^{-1} \underline{P}^{\alpha} \underline{\tilde{Y}}^{-1} \underline{Y}^{-1} \underline{P}^{\beta} \underline{\tilde{Y}}^{-1} \underline{Y}^{-1} \underline{P}^{\alpha} \underline{\tilde{Y}}^{-1} \underline{A} = \underline{A} \underline{A}$$
(144)

or

$$\underline{Y}^{-1} \underline{P}^{\alpha} \underline{S} \underline{P}^{\beta} \underline{S} \underline{P}^{\alpha} \underline{\tilde{Y}}^{-1} \underline{A} = \underline{A} \underline{A}$$
(145)

where $\Delta_{i} = d_{i}^{2}$, an eigenvalue of the alpha corresponding orbital.

The spin projection calculation for <u>ab initio</u> wavefunctions derived from the POLYATOM (Version 2)⁴ system of programs was written to conform as closely as possible to the original system of programs and is listed in Appendix A. Documentation for the manner in which the data is input is provided in the program comments. The program utilizes an integral tape that was generated by the POLYATOM integral evaluation programs; in addition, an open shell molecular orbital wavefunction obtained from the POLYATOM UHF SCF package must be provided in either card or tape format. The desire to minimize the computer region requirements was accomplished by utilizing scratch disk to as great an extent as possible.

The program calculates the alpha corresponding orbitals and natural orbitals of charge in the manner just described. Appropriate replacements of the singly-occupied natural orbitals of charge by natural orbitals of spin are made as was described in equations 75 and 76. All orbitals are then transformed to the nonorthogonal basis in order to conform to the integral tape which is in the nonorthogonal basis; further, the orbitals are completely

reordered, breaking the symmetry blocking, so that the lowest orbital has the highest occupation number. The purpose of the reordering is to properly classify the orbitals based on occupation numbers during the spin projection calculation.

Comparison of Spin Projection and MCSCF/CI Calculations on $H_0O(+)$

The water cation was studied by several groups of workers using a variety of theoretical techniques. Dunning, Pitzer and Aung^{62} obtained near Hartree-Fock vertical ionization potentials of ground state H₂O, and Meyer,⁶³ using CI calculations, obtained vertical and adiabatic ionization potentials along with SCF equilibrium geometries for selected ion states. LeClerc, Horsley and Lorquet⁶⁴ studied the asymmetric dissociation and potential energy surfaces for the ground and excited states of H₂O(+) while Smith, Jørgensen and Öhrn⁶⁵ and Fortune, Rosenberg and Wahl⁵ carried out a vibrational analysis of selected low-lying states.

The purpose of the study described below was to compare the degree of energy lowering obtained with spin projection and MCSCF/CI calculations. Spin projection has been described as a viable alternative to the time-consuming MCSCF/CI calculations. An adequate assessment of spin projection can be made only when as many parameters as possible, such as the basis set and geometry, are held constant. An evaluation of the spin projection technique was most easily made by comparing spin projection data with MCSCF/CI calculations⁵ on the $\chi^2 B_1$ and $\tilde{B}^2 B_2$ states of $H_2O(+)$.

The basis set chosen for study was one where the polarization functions were specially optimized for H₂O by Dunning.⁵⁷ It consisted of a set of (9s5p2d) orbitals contracted to [4s3p1d] for oxygen and a (4s1p) set contracted to [2s1p] for hydrogen. It is listed in Table XII.

The geometries chosen for study were equilibrium geometries obtained from the potential energy surface of Fortune, et. al.⁵ The H₂O(+) molecule lies in the xz plane with oxygen at the origin (0.0, 0.0, 0.0). The equilibrium geometry of the $X^{2}B_{1}$ state located the hydrogens at (±1.54499, 0.0, 1.11224) bohrs giving an oxygenhydrogen bond length of 1.90 bohrs and an angle, <HOH, of 47.88°; the hydrogens were located at (±0.99428, 0.0, 1.91128) bohrs (an oxygen-hydrogen length of 2.15 bohrs and angle, <HOH, of 54.97°) for the equilibrium $\tilde{B}^{2}B_{2}$ state. The convergence criterion for the total energy for both calculations was 1.0 x 10⁻⁶ atomic units.

The unprojected and projected energies for the $X^{2}B_{1}$ and $\tilde{B}^{2}B_{2}$ states are presented in Tables XIII and XIV, respectively; a comparison of this work with MCSCF/CI and RHF calculations is available in Table XV.

An energy lowering of 0.0046 and 0.0008 atomic units for the $X^{2}B_{1}$ and $\tilde{B}^{2}B_{2}$ states, respectively, is obtained when an UHF rather than a RHF wavefunction is used. Very little additional energy lowering was obtained upon spin projection of the UHF wavefunction, 0.002 atomic units for the $\tilde{B}^{2}B_{2}$ and 0.003 atomic units for the $X^{2}B_{1}$ state. This lack of considerable energy lowering is attributed to the fact that the UHF wavefunction is so close to being a pure

TABLE XII

CONTRACTED GAUSSIAN BASIS SET FOR A (9s5p2d/4s1p) H_2^0 PRIMITIVE BASIS SET^a

Atom	Orbital Type	Contracted Orbital No.	Exponent	Coefficient
0	S	1	7816.5400	0.002031
0	S	1	1175.8200	0.015436
0	S	1	273.1880	0.073771
0	S	1	81.1696	0.247606
0	S	1	27.1836	0.611832
0	S	1	3.4136	0.241205
0	S	2	9.5322	1.000000
0	S	3	0.9398	1.000000
0	S	4	0.2846	1.000000
0	р	5	3 5.1832	0.040023
0	p	5	7.9040	0.253849
0	p	5	2.3051	0.806842
0	p	6	0.7171	1.000000
0	p	7	0.2137	1.000000
0	d	8	1.3220	0.357851
0	d	8	0.3916	0.759561
H	S	9	21.7208	0.032828
H	S	9	3.2729	0.231208
H	. S	9	0.7377	0.817238
H	S	10	0.2004	1.000000
H	р	11	1.1592	1.000000

^aT. H. Dunning, J. Chem. Phys. <u>53</u>, 2823 (1970); T. H. Dunning, J. Chem. Phys. <u>55</u>, 3958 (1971).

TABLE XIII

UNPROJECTED AND PROJECTED ENERGIES FOR THE x^2B_1 STATE OF $H_2O(+)$

Unprojected Energies(a.u.)

Kinetic Energy, T	75.749684
One-Electron Potential Energy, V(1)	-192.949513
Two-Electron Potential Energy, V(1,2)	33.021498
Electronic Energy, E(E)	-84.378330
Nuclear Repulsion Energy, V(N)	8.728339
Total Energy, E	-75.649992

Projected Energies(a.u.)

Multiplicity	Weight, w _i	Total Energy, E
2	9.9737×10^{-1}	-75.65323
4	2.6255×10^{-3}	-74.42535
6	1.6888×10^{-6}	-73.49101
8	2.882×10^{-10}	-72.58397

TABLE XIV

UNPROJECTED AND PROJECTED ENERGIES FOR THE \tilde{B}^2B_2 STATE OF $H_2O(+)$

Unprojected Energies(a.u.)

Kinetic Energy, T	75.40146
One-Electron Potential Energy, V(1)	-191.25650
Two-Electron Potential Energy, V(1,2)	32.44855
Electronic Energy, E(E)	-83.40648
Nuclear Repulsion Energy, V(N)	7.92953
Total Energy, E	-75.47695

Projected Energies(a.u.)

Multiplicity	Weight, w _i	Total Energy, E _i
2	9.9868 x 10^{-1}	-75.47908
4	1.3204×10^{-3}	-73.86906
6	2.6566×10^{-7}	-72.84159
8	1.3743×10^{-11}	-71.85666

TABLE XV

COMPARISON OF MCSCF/CI^a AND SPIN PROJECTION ENERGIES FOR THE EQUILIBRIUM GEOMETRIES OF THE $x^{2}B_{1}$ AND $\tilde{B}^{2}B_{2}$ STATES OF $H_{2}O(+)$

	Total Ener	gies(a.u.)
Type of Wavefunction	$\frac{x^2B_1}{x}$	<u><u></u>B²B₂</u>
RHF SCF	-75.64565 ^a	-75.47629 ^b
RHF Plus MCSCF/CI	-75.72328 ^a	-75.55451 ^b
UHF SCF	-75.64999	-75.47695
UHF Plus Spin Projection	-75.65323	-75.47908

^aP. J. Fortune, B. J. Rosenberg and A. C. Wahl, J. Chem. Phys. <u>65</u>, 2201 (1976).

^bData from cubic fit of Fortune, et. al.

doublet state.

In contrast to the spin projection results, the MCSCF/CI calculations which used 20 configurations produced a much greater energy lowering of 0.078 atomic units relative to the RHF energy for both the \tilde{B}^2B_2 and χ^2B_1 states. The conclusion that must be reached from this study is that the MCSCF/CI calculation is superior to spin projection when the weighting factor for the spin projected state of lowest multiplicity is very close to unity. However, studies using semi-empirical techniques^{25,26} indicated that useful results from spin projection can be obtained when the weight for the state of lowest multiplicity is much different from one. Since spin projection calculations using small basis sets are more economical in terms of computational time than MCSCF/CL calculations, further investigation into cases where weighting factors are different from unity is certainly warranted. In any case, weighting factors obtained from spin projection calculations should be examined before the more costly MCSCF/CI calculation is attempted.

The Dissociation of CF_20

The study of the dissociation of carbonyl fluoride, CF_2^{0} , was initiated from the desire to better understand the possible reaction pathways that could occur in the stratosphere, particularly the reactions involving chlorofluoromethanes.

Any decrease in the amount of stratospheric ozone is likely to have extreme environmental consequences.⁶⁶ The most important mode of ozone destruction at the present time is the nitrogen oxide

catalyzed cycle,⁶⁷

 $NO_2 + hv \longrightarrow NO + 0$ (146)

 $NO_2 + 0 \longrightarrow NO + O_2$ (147)

$$NO + O_3 \longrightarrow NO_2 + O_2 . \tag{148}$$

However, Rowland and Molina⁶⁸ indicate that if the use of chlorofluoromethanes, CF_2Cl_2 and $CFCl_3$, continues at the present rate, the chlorine oxide catalyzed cycle will overtake the nitrogen oxide cycle in importance within several years. The chlorofluoromethanes are a starting point in the chlorine oxide cycle when they are photolytically dissociated by ultraviolet solar radiation,

$$CF_2Cl_2 + h\nu \longrightarrow CF_2Cl + Cl$$
 (149)

$$CFCl_3 + h\nu \longrightarrow CFCl_2 + Cl$$
. (150)

The chlorine atoms then deplete the odd oxygen content by

$$c1 + o_3 \longrightarrow c10 + o_2$$
(151)

$$C10 + 0 \longrightarrow C1 + 0_{2}, \qquad (152)$$

giving the same net effect as reactions 147 and 148.

Rowland and Molina⁶⁸ point out many other reactions related to 151 and 152 that require study or are currently under study. Rowland is studying some photolytic reactions;⁶⁹ Watson is investigating the reactions of C10 with a range of atmospheric species;⁷⁰ Kaufmann's research group is studying a variety of reactions involving C1 and C10;⁷¹ and Heicklen⁷² is researching the photodissociation of the chlorofluoromethanes.

The reactions of the chlorofluoromethyl radicals produced

in reactions 149 and 150 have been largely ignored. Rowland and $Molina^{68}$ indicate that, and some experimental data^{69,72} supports, the primary reaction of the chlorofluoromethyl radicals with oxygen is

$$^{\circ}\mathrm{CF}_{2}\mathrm{C1} + \mathrm{O}_{2} \longrightarrow \mathrm{CF}_{2}\mathrm{O} + \mathrm{C1O}$$
 (153)

$$CFC1_2 + 0_2 \longrightarrow CFC10 + C10$$
. (154)

The possibility also exists that substituted methyl radicals can absorb another photon and dissociate to produce carbenes,

$$CF_2C1 + hv \longrightarrow : CF_2 + : C1$$
 (155)

$$^{\circ}CFC1_2 + h\nu \longrightarrow :CFC1 + ^{\circ}C1$$
. (156)

Either reaction 155 or 156 produces chlorine atoms which can initiate the chlorine oxide catalyzed destruction of ozone.

The possibility of direct production of carbenes from the photolysis of chlorofluoromethanes was noted at the August 1975 meeting of the American Chemical Society by Ausloos and Rebbert⁷³ who found evidence to support the reactions

$$CFC1_2 + hv \longrightarrow :CFC1 + 2C1^{\bullet}$$
(157)

$$CF_2C1_2 + h\nu \longrightarrow : CF_2 + 2C1^{\circ}$$
. (158)

The focus of this work is on the reaction of difluorocarbene with oxygen to produce carbonyl fluoride,

$$: CF_2 + 0 \longrightarrow CF_2 0 .$$
 (159)

Available thermochemical data⁷⁴ show that CF_2^0 is a fairly stable molecule with a standard heat of formation at 298 O K of -152.0 kcal/mole. Three possible modes of dissociation for CF_2^0 can be envisioned,

$$CF_2 0 \longrightarrow FC0 + F$$
 (160)

$$CF_2 0 \longrightarrow CF_2 + 0$$
 (161)

$$CF_2 0 \longrightarrow F_2 + C0$$
 (162)

with standard heats of reaction, ΔH_{298}^{0} , of 130.6, 168.8 and 126.3 kcal/mole, respectively. The dissociation of CF_2^{0} by reaction 161 was chosen for study.

The study of the dissociation of carbonyl fluoride was begun using two geometries, the equilibrium geometry for $\rm CF_2O$ determined by Laurie, Pence and Jackson⁷⁵ and illustrated in Figure 2 and the equilibrium geometry for CF_2 determined by Powell, Lide and Mathews.⁷⁶ Both molecules are members of the C_{2v} point group and were chosen to lie in the yz plane. The carbon atom was located at the origin (0.0, 0.0, 0.0) in both geometries. In the equilibrium geometry for CF_20 , the oxygen atom was located at (0.0, 0.0, -2.21858) bohrs and the fluorines at (0.0, ±1.92806, 1.40082) bohrs giving a carbon-fluorine bond distance of 2.38 bohrs and an angle, <FCF, of 108°. The carbon-oxygen bond length was varied in increments of 0.20000 bohrs in the z direction from 1.81858 to 2.61858 bohrs in order to obtain data on the behavior of CF_{2}^{0} near the equilibrium geometry. The geometry for CF₂ located the fluorines at (0.0, ±1.94876, 1.52802) bohrs giving a carbon-fluorine bond distance of 2.48 bohrs and an angle, <FCF, of 103.8°; an oxygen atom was placed at (0.0, 0.0, -18.90359) bohrs in order to approximate the dissociated CF₂O molecule.

Figure 2.- Geometry of CF_2^0 molecule.

The POLYATOM (Version 2) system of programs⁴ discussed earlier in this chapter was used to obtain wavefunctions for all geometries of CF_2^{0} . All two-electron integrals whose values were less than 1.0 x 10^{-9} atomic units were taken to be exactly zero. The criterion for energy convergence was 1.0 x 10^{-6} atomic units.

The basis set used in all calculations was Dunning's (9s5p) set contracted to $[4s3p]^{58}$ for each atom in CF₂O or a total of 52 contracted orbitals. Symmetry orbitals were formed to the fullest possible extent, giving 502,627 two-electron integrals, 261,910 of which were unique.

Symmetry factoring of the secular determinant in the SCF portion of the molecular orbital calculation was performed differently for the geometry where the carbon-oxygen bond distance was 18.90359 bohrs than for the remainder of the geometries. The factoring of the latter will be discussed first.

The 52 atomic orbitals of CF_2^0 near the equilibrium geometry can be combined into 52 symmetry orbitals, 24 a_1 , 3 a_2 , 9 b_1 and 16 b_2 which are presented in Table XVI. The atomic orbitals p_x , p_y and p_z are abbreviated x, y and z. Since all symmetry types in the point group contain orbitals, all molecular symmetry states, A_1 , A_2 , B_1 and B_2 , in the point group are accessible. A preliminary examination of the symmetry orbitals showed the m=0 ground state orbital occupation in the A_1 molecular symmetry state was 8 a_1 , 1 a_2 , 2 b_1 and 5 b_2 for both the alpha and beta orbitals. A RHF calculation was performed on the A_1 state of the equilibrium geometry in order to determine the lowest energy excitations and

TABLE XVI

SYMMETRY ORBITALS FOR [4s3p] BASIS SET OF CF20 NEAR THE EQUILIBRIUM GEOMETRY

Orbital	Symmetry	Number of
Symmetry	<u>Orbital</u>	Orbitals
^a 1	^s o	4
^a 1	^s c	4
^a 1	s _{F1} + s _{F2}	4
a ₁	$y_{F1} - y_{F2}$	3
a ₁	^z 0	3
^a 1	^z C	3
^a 1	$z_{F1} + z_{F2}$	3
^a 2	$x_{F1} - x_{F2}$	3
^b 1	× ₀	3
^b 1	×c	3
^b 1	$x_{F1} + x_{F2}$	3
^b 2	s _{F1} - s _{F2}	4
^b 2	У _О	3
^b 2	УC	3
^b 2	$y_{F1} + y_{F2}$	3
^b 2	$z_{F1} - z_{F2}$	3

.

thus the occupation of symmetry orbitals necessary to form the A_2 , B_1 and B_2 states. The lowest energy excitations were obtained when the following alpha-electron symmetry orbitals were occupied: 8 a_1^{α} , 1 a_2^{α} , 3 b_1^{α} , and 4 b_2^{α} for the A_2 state; 9 a_1^{α} , 1 a_2^{α} , 1 b_1^{α} and 5 b_2^{α} for the B_1 state; and 9 a_1^{α} , 1 a_2^{α} , 2 b_1^{α} and 4 b_2^{α} for the B_2 state. In all cases, the occupation of the beta symmetry orbitals was equal to that for the A_1 state.

An attempt was made to treat all geometries in the same manner with respect to symmetry factoring. However, the geometry where the carbon-oxygen distance equalled 18.90359 bohrs produced wide oscillations in the total energy when an SCF calculation was attempted. In addition, the orbitals attributed to the oxygen atom showed very little interaction with those orbitals associated with the CF_2 fragment. In order to obtain SCF convergence, it was necessary to separate by symmetry factoring the oxygen orbitals from the difluorocarbene orbitals. The symmetry factoring for this geometry is shown in Table XVII. By using such symmetry factoring, this geometry approached CF_2O dissociated into CF_2 and 0 at an infinite separation.

Eight molecular symmetry states were considered for the dissociated $CF_2 + 0$, four symmetries in the C_{2v} point group for CF_2 , A_1 , A_2 , B_1 and B_2 and two atomic states for oxygen, ${}^{3}P$ and ${}^{1}D$. The occupation of symmetry orbitals for CF_2 was determined using $CF_2(A_1) + 0({}^{3}P)$ in a manner similar to that described previously for the CF_20 geometries near equilibrium. The occupation of the beta-electron symmetry orbitals for all states was set equal

TABLE XVII

SYMMETRY ORBITALS FOR THE [4s3p] BASIS SET OF CF₂ + 0

Orbital Symmetry	Symmetry Orbital	Number of Orbitals
^a 1	^s c	4
^a 1	s _{F1} + s _{F2}	4
^a 1	$y_{F1} - y_{F2}$	3
^a 1	^z c	3
^a 1	$z_{F1} + z_{F2}$	3
^a 2	$x_{F1} - x_{F2}$	3
^b 1	×c	3
^b 1	$x_{F1} + x_{F2}$	3
^b 2	У _С	3
^b 2	$y_{F1} + y_{F2}$	3
^b 2	$z_{F1} - z_{F2}$	3
^b 2	s _{F1} - s _{F2}	4
^a 1'	^s o	4
a_1'	^z 0	3
^b 1'	×o	3
b2'	У _О	3

.

to that for the A_1 alpha-electron orbitals in all molecular symmetries considered; the alpha orbital occupations for CF_2 were: 6 a_1^{α} , 1 a_2^{α} , 1 b_1^{α} and 4 b_2^{α} for the A_1 state; 6 a_1^{α} , 1 a_2^{α} , 2 b_1^{α} and 3 b_2^{α} for the A_2 state; 5 a_1^{α} , 1 a_2^{α} , 2 b_1^{α} and 4 b_2^{α} for the B_1 state; and 5 a_1^{α} , 1 a_2^{α} , 1 b_1^{α} and 5 b_2^{α} for the B_2 state. The ³P state of oxygen was generated by occupying 3 a_1^{α} ', 1 b_1^{α} ', and 1 b_2^{α} ' while the occupation for the $O(^1D)$ was 3 a_1 ' and 1 b_2 '.

The existence of an open shell ground state in pentacene was discussed previously. In order to allow for the possibility of open shell ground states in CF_2O , the B_1 states were obtained, and the open shell orbitals from the B_1 state were used as starting orbitals for the generation of the A_1 states; the A_1 orbitals were used as starting points for the A_2 states and orbitals from the A_2 state used as starting points for the B_2 states. This procedure not only allowed for the possibility of open shell ground states but had the added advantage of saving the computational time that would have been required had the starting point for each state been the core Hamiltonian.

The total energies with respect to carbon-oxygen bond distances for the A_1 , A_2 , B_1 and B_2 states are listed in Tables XVIII, XIX, XX and XXI, respectively, and presented graphically in Figure 3. First inspection leads to the conclusion that the A_2 , B_1 and B_2 states are dissociative; that is, no possibility of bonding occurs in any of those states. However, upon viewing these data together with those for the dissociated $CF_2 + 0$ presented in Table XXII, only one state is truly dissociative, the B_1 state.

TABLE XVIII

TOTAL ENERGIES (A.U.) FOR THE A₁ STATE OF CF₂O AS A FUNCTION OF THE CARBON-OXYGEN BOND DISTANCE

Carbon-Oxygen	
Bond Distance	
(bohrs)	<u>Total Energy(a.u.)</u>
1.81858	-311.422091
2.01858	-311.533835
2.21858	-311.560185
2.41858	-311.543846
2.61858	-311.508605

TABLE XIX

TOTAL ENERGIES (A.U.) FOR THE A₂ STATE OF CF₂O AS A FUNCTION OF THE CARBON-OXYGEN BOND DISTANCE

Carbon-Oxygen Bond Distance	
(bohrs)	Total Energy(a.u.)
1.81858	-311.076288
2.01858	-311.270210
2.21858	-311.366903
2.41858	-311.409140
2.61858	-311.421066

TABLE XX

TOTAL ENERGIES (A.U.) FOR THE B₁ STATE OF CF₂O AS A FUNCTION OF THE CARBON-OXYGEN BOND DISTANCE

Carbon-Oxygen Bond Distance	
(bohrs)	Total Energy(a.u.)
1.81858	-310.882854
2.01858	-311.043688
2.21858	-311.123940
2.41858	-311.166386
2.61858	-311.202223

TABLE XXI

TOTAL ENERGIES (A.U.) FOR THE B₂ STATE OF CF₂O AS A FUNCTION OF THE CARBON-OXYGEN BOND DISTANCE

Carbon-Oxygen Bond Distance	
(bohrs)	Total Energy(a.u.)
1.81858	-310.941836
2.01858	-311.091515
2.21858	-311.160894
2.41858	-311.195404
2.61858	-311.226302

Figure 3.- Total Energy(a.u.) as a Function of Carbon-Oxygen Bond Distance(bohrs) in CF₂O

TABLE XXII

TOTAL ENERGIES (A.U.) AS FUNCTIONS OF MOLECULAR SYMMETRY FOR THE DISSOCIATED CF₂ + 0

Molecular Symmetry State of CF ₂	Atomic Symmetry Of O	Total Energy (a.u.)
A	3 _P	-311.443844
A	1 _D	-311.319693
A ₂	3 _P	-311.160710
A ₂	1 _D	-311.036568
в ₁	3 _P	-311.332431
- ^B 1	1 _D	-311.208280
^B 2	3 _P	-311.039037
^B 2	1 _D	-310.914880

The energy minima for the A_2 and B_2 states were not reached with the geometries considered; it is necessary to calculate wavefunctions at additional carbon-oxygen bond distances, but the lack of computer time prevented these additional calculations. Also additional curves should be calculated to correspond to every state for the dissociated CF₂ + 0 geometry.

The attempts to generate the A_1 open shell ground states for the near equilibrium geometries produced surprising results. Closed shell wavefunctions resulted for all geometries with the exception of the case where the carbon-oxygen bond distance equalled 2.21858 bohrs, the equilibrium geometry. Exactly the reverse situation was anticipated since, as the carbon-oxygen bond was stretched or contracted from its equilibrium position, the electrons forming the bond should begin to take on some atomic nature, producing open shell wavefunctions. The fact that an open shell wavefunction was produced at equilibrium leads to the conclusions that open shell ground states for the ${\rm A}_1$ symmetry should certainly exist and that an alternate procedure must be used to produce such wavefunctions. Such a procedure might be to begin a calculation using the orbitals from CF_2 + 0 as a starting point.

Koopman's theorem⁷⁸ can be used to compare the observed ionization potentials of Thomas and Thompson³² and those calculated for the closed shell A_1 state of the equilibrium geometry. Koopman's theorem states that orbital energies or eigenvalues can be associated with the vertical ionization potentials of a molecule for which the SCF wavefunction has been obtained. The association

is made by using the highest occupied eigenvalue of the positive ion, or, alternately, multiplying the highest doubly occupied orbital eigenvalue of a given symmetry by 0.92^{79} to account for the correlation energy⁸⁰ obtained on forming the positive ion. Correlation energy is the energy difference between the RHF energy and the exact nonrelativistic energy of a particular system. In the Hartree-Fock approximation scheme, the motion of each electron is solved in the presence of the average rather than the instantaneous motion of the remaining electrons. The factor of 0.92 is an attempt to empirically compensate for the lack of correlation energy in the Hartree-Fock orbitals.

Table XXIII provides a comparison between the experimental and calculated vertical ionization potentials together with the symmetries of the orbitals used to approximate the positive ion; experimental and calculated data show good agreement both numerically and in the assignments of orbital symmetries to the ionizations. However, some disagreement exists in the assignments of specific orbitals to the ionizations. The discrepancies arise because molecular orbital calculations, by their very nature, produce eigenvectors that are linear combinations of several atomic orbitals; the calculations do not restrict an eigenvector to a specific atom.

Thomas and Thompson⁷⁷ assigned the lowest experimental ionization at 13.62 electron volts (eV) to an oxygen lone pair orbital; the calculations showed this orbital was a combination of a p_v orbital on oxygen and p_z orbitals on the fluorines, $z_1 - z_2$.

TABLE XXIII

COMPARISON OF EXPERIMENTAL AND CALCULATED VERTICAL IONIZATION POTENTIALS FOR CF₂O

Experimental Ionization Potential ^a (eV)	Orbital Eigenvalue (eV)	Calculated Ionization Potential (eV)	Symmetry of <u>Orbital</u>
13.62	-15.40	14.17	ь ₂
14.62	-15.67	14.42	^b 1
16.6	-19.10	17.57	a ₁
17.0	-20.21	18.59	^a 2

^aR. K. Thomas and H. Thompson, Proc. Royal Soc. (London) <u>A327</u>, 13 (1972). The ionization at 14.62 electron volts, attributed to a carbonoxygen π bonding orbital, was shown to be a combination of carbon and oxygen p_x orbitals, $x_c + x_0$, and p_x orbitals on the fluorines, $x_1 + x_2$. The assignment of an ionization from an a_1 orbital to a nonbonding orbital on fluorine also disagreed; the calculations point to combinations of p_z orbitals on carbon and oxygen, $z_c - z_0$, and p_z orbitals on fluorine, $z_1 + z_2$. The ionization at 17.0 electron volts and attributed to a $b_1 \pi$ orbital on fluorine agrees with the calculated combination of p_x orbitals on fluorine, $x_1 - x_2$.

Relatively few calculations have been carried out on difluorocarbene. The starting point for our calculations of the dissociated CF_20 , $CF_2 + 0$, was the core Hamiltonian. The first state generated was $CF_2(A_1) + 0({}^{3}P)$. Since all occupied orbitals comprising the A_1 state of CF_2 contained two electrons, no opportunity existed for the solution of an open shell ground state. An attempt was made to begin the $CF_2(A_1)$ calculation with the B_1 orbitals from the CF_20 calculation at 2.21858 bohrs; however, this attempt failed for the lack of proper symmetry blocking of the dissociated CF_20 molecule that was discussed earlier.

The initial purpose of this work was to study the dissociation of CF_2^0 using spin projection of the <u>ab initio</u> wavefunctions. When the use of the computer program for spin projection was attempted, however, it was estimated that the spin projection calculation would take ten hours for each wavefunction on the IBM 370/158 JES2/VM machine. In comparison, the spin projection calculations for the H₂0(+) wavefunctions required 5.5 minutes. Clearly the

large time requirements were unacceptable.

The computer program was then modified to provide more efficient calculation of the two-electron integrals over natural orbitals; those modifications are included in the computer program listed in Appendix A. Lack of sufficient computer time made it impossible to complete the examination of the dissociation of CF_2^0 at this time.

The completed study of the dissociation of CF_2^0 will provide electronic spectra for CF_2 and CF_2^0 , the dissociation energy for carbonyl fluoride and, hopefully, a reasonable picture of the potential energy surface for CF_2^0 . Additional curves corresponding to all states of $CF_2 + 0$ are expected. The potential energy surface will further provide a good test of the utility of the spin projection technique.

XI. LITERATURE CITED

- 1. P. O. Löwdin, "Quantum Theory of Atoms, Molecules and the Solid State", Academic Press, New York, 1966, p. 601.
- I. Mayer, Int. J. Quantum Chem. <u>8</u>, 363 (1974); I. Mayer and J. Kondasz, Int. J. Quantum Chem. <u>9</u>, 527 (1975).
- 3. I. Mayer and M. Kertesz, Int. J. Quantum Chem. 10, 961 (1976).
- D. B. Neumann, H. Basch, R. L. Kornegay, L. C. Snyder, J. W. Moskowitz, C. Hornback and S. Liebmann, POLYATOM (Version 2), QCPE Program No. 238 (Quantum Chemistry Program Exchange, Bloomington, Indiana).
- 5. P. J. Fortune, B. J. Rosenberg and A. C. Wahl, J. Chem. Phys. 65, 2201 (1976).
- 6. J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory", McGraw-Hill Book Co., New York, 1970.
- 7. M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).
- J. A. Pople and R. K. Nesbet, J. Chem. Phys. <u>22</u>, 571 (1954);
 A. Brickstock and J. A. Pople, Trans. Faraday Soc. <u>50</u>, 901 (1954).
- J. R. Hoyland and L. Goodman, J. Chem. Phys. <u>36</u>, 12 (1962);
 S. Y. Chu and L. Goodman, J. Amer. Chem. Soc. <u>97</u>, 7 (1975).
- 10. J. E. Harriman, J. Chem. Phys. <u>40</u>, 2827 (1964); A. Hardisson and J. E. Harriman, J. Chem. Phys. <u>46</u>, 2639 (1967).
- 11. D. H. Phillips and J. C. Schug, J. Chem. Phys. 61, 1031 (1974).
- 12. A. T. Amos and G. Hall, Proc. Royal Soc. (London) <u>A263</u>, 483 (1961).
- R. Pariser and R. G. Parr, J. Chem. Phys. <u>21</u>, 466 (1953);
 R. Pariser and R. G. Parr, J. Chem. Phys. <u>21</u>, 767 (1953);
 F. G. Fumi and R. G. Parr, J. Chem. Phys. <u>21</u>, 1864 (1953);
 R. G. Parr and R. Pariser, J. Chem. Phys. <u>23</u>, 711 (1955).
- 14. C. R. Gatz, "Introduction to Quantum Chemistry", C. E. Merrill Publishing Co., Columbus, 1971; F. L. Pilar, "Elementary Quantum

Chemistry", McGraw-Hill, New York, 1968.

- 15. R. Pariser, J. Chem. Phys. 24, 250 (1956).
- R. McWeeny, Proc. Royal Soc. (London) <u>A227</u>, 288 (1955); K. Ohno, Theor. Chim. Acta <u>2</u>, 219 (1964).
- M. Goeppert-Mayer and A. L. Sklar, J. Chem. Phys. <u>6</u>, 645 (1938).
- 18. N. Mataga and K. Nishimoto, Z. Phys. Chem. 12, 335 (1957).
- 19. D. A. Lowitz, "Technical Report for Lord Manufacturing Co.", Erie, Pa., August, 1966.
- 20. K. Nishimoto, Theor. Chem. Acta 5, 74 (1966).
- P. Knowlton and W. R. Carper, Mol. Phys. <u>11</u>, 213 (1966);
 B. R. Russell, R. M. Hedges and W. R. Carper, Mol. Phys. <u>12</u>, 283 (1967).
- 22. J. C. Schug, D. H. Phillips and D. A. Brewer, SPUHF, QCPE Program No. 278 (Quantum Chemistry Program Exchange, Bloomington, Indiana).
- D. H. Phillips and J. C. Schug, Int. J. Quantum Chem. <u>4</u>, 221 (1971).
- 24. R. S. Mulliken, J. Chem. Phys. 23, 1997 (1955).
- 25. J. C. Schug, B. H. Lengsfield and D. A. Brewer, Int. J. Quantum Chem. <u>11</u>, 591 (1977).
- 26. J. C. Schug and D. A. Brewer, J. Phys. Chem. 81, 167 (1977).
- 27. J. R. Platt, J. Chem. Phys. 18, 1168 (1950).
- R. G. Parr, "Quantum Theory of Molecular Electronic Structure", W. A. Benjamin Book Co., New York, 1964.
- 29. E. Clar, "The Aromatic Sextet", Wiley Book Co., London, 1972.
- 30. J. Koutecký, J. Chem. Phys. 46, 2444 (1967).
- 31. J. C. Slater, "Quantum Theory of Atomic Structure", McGraw-Hill Book Co., New York, 1960, pp. 339-342.
- M. Simonetta and S. Winstein, J. Amer. Chem. Soc. <u>76</u>, 18 (1956).
- 33. S. Winstein, Chem. Soc. Spec. Publ. No. 21, 5 (1967);

S. Winstein, "Nonclassical Ions and Homoaromaticity", British Chemical Soc. 1967 Centenary Lecture, Quart. Rev. Chem. Soc. 23, 141 (1969).

- 34. W. J. Hehre, J. Amer. Chem. Soc. 95, 5807 (1973).
- 35. R. F. Childs, M. Sakai, B. D. Parrington and S. Winstein, J. Amer. Chem. Soc. <u>96</u>, 6403 (1974); R. F. Childs and S. Winstein, J. Amer. Chem. Soc. <u>96</u>, 6409 (1974); R. F. Childs, M. Sakai and S. Winstein, J. Amer. Chem. Soc. <u>90</u>, 7144 (1968); R. F. Childs and S. Winstein, J. Amer. Chem. Soc. <u>90</u>, 7146 (1968).
- 36. W. J. Hehre, J. Amer. Chem. Soc. <u>94</u>, 8908 (1974); W. J. Hehre, J. Amer. Chem. Soc. <u>96</u>, 5207 (1974).
- 37. J. A. Berson and J. A. Jenkins, J. Amer. Chem. Soc. <u>94</u>, 8907 (1972); R. C. Haddon, Tetrahedron Lett. <u>1975</u>, 863;
 P. Warner, C. H. Bradley and S. Winstein, Tetrahedron Lett. <u>1970</u>, 4013.
- 38. R. Rieke, M. Ogliaruso, R. McClung and S. Winstein, J. Amer. Chem. Soc. <u>88</u>, 4729 (1966); T. J. Katz and C. Talcott, J. Amer. Chem. Soc. <u>88</u>, 4733 (1966); F. J. Smentowski, R. M. Owens and B. D. Faubian, J. Amer. Chem. Soc. <u>90</u>, 1537 (1968); G. Moshuk, G. Petrowski and S. Winstein, J. Amer. Chem. Soc. <u>90</u>, 2179 (1968).
- S. Winstein, G. Moshuk, R. Rieke and M. Ogliaruso, J. Amer. Chem. Soc. <u>95</u>, 2624 (1973).
- 40. D. A. Brewer, J. C. Schug and M. A. Ogliaruso, Tetrahedron 31, 69 (1975).
- 41. G. Burns, J. Chem. Phys. <u>41</u>, 1521 (1964).
- 42. J. C. Schug, D. A. Brewer and B. H. Lengsfield, CINPRO, QCPE Program No. 323 (Quantum Chemistry Program Exchange, Bloomington, Indiana).
- 43. H. M. McConnell, J. Chem. Phys. <u>24</u>, 632 (1956); H. M. McConnell, J. Chem. Phys. <u>24</u>, 764 (1956).
- 44. I. Cohen, J. Chem. Phys. 57, 5076 (1972).
- 45. R. Hoffmann and R. B. Woodward, Acct. Chem. Res. 1, 17 (1968).
- 46. J. Kaufman and R. Predney, Int. J. Quantum Chem. <u>65</u>, 231 (1972).
- 47. A. Shanzer, Ph.D. Thesis, Virginia Polytechnic Institute and

State University, Blacksburg, Virginia, 1976.

- 48. J. M. Fildes, Private Communication.
- 49. H. J. Schaefer, III, "The Electronic Structure of Atoms and Molecules", Addison-Wesley Publishing Co., Reading, Ma., 1972.
- 50. J. C. Slater, Phys. Rev. <u>36</u>, 57 (1930).
- 51. S. F. Boys, Proc. Royal Soc. (London) A200, 542 (1950).
- 52. S. Huzinaga, J. Chem. Phys. <u>42</u>, 1293 (1965).
- 53. R. K. Nesbet, Rev. Mod. Phys. 32, 272 (1960).
- 54. R. F. Hosteny, R. R. Gilman, T. H. Dunning, A. Pipano and I. Shavitt, Chem. Phys. Lett. 7, 325 (1970).
- 55. E. Clementi and D. R. Davis, J. Comput. Phys. 2, 223 (1967).
- 56. J. L. Whitten, J. Chem. Phys. 44, 359 (1966).
- 57. T. H. Dunning, J. Chem. Phys. <u>55</u>, 3958 (1971); T. H. Dunning, J. Chem. Phys. <u>66</u>, 1382 (1977).
- 58. T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).
- 59. R. C. Raffenetti, J. Chem. Phys. 58, 4452 (1973).
- 60. F. A. Cotton, "Chemical Applications of Group Theory", Wiley-Interscience, New York, 1971.
- 61. C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
- T. H. Dunning, R. M. Pitzer and S. Aung, J. Chem. Phys. <u>57</u>, 5044 (1972).
- 63. W. Meyer, Int. J. Quantum Chem. 5<u>5</u>, 341 (1971).
- 64. J. C. LeClerc, J. A. Horsley and J. C. Lorquet, Chem. Phys. <u>4</u>, 337 (1974).
- J. A. Smith, P. Jørgensen and Y. Ohrn, J. Chem. Phys. <u>62</u>, 1285 (1975).
- 66. K. C. Smith, "Biological Impacts of Increased Intensities of Solar Ultraviolet Radiation", Rept. to the Environmental Studies Branch, Nat. Acad. of Science, Washington, D.C. (1973); F. Urbach, D. Berger and R. E. Davies, Proceedings of the Third Conference on Climatic Impact Assessment Program, DOT-TSC-OST-74-15, pp. 523-535, U.S. Dept. of Transp.,

Washington, D.C. (1974); R. E. Dickinson, Can. J. Chem. <u>52</u>, 1616 (1974).

- P. J. Crutzen, J. Geophys. Res. <u>76</u>, 7311 (1971); H. S. Johnston, Science <u>173</u>, 517 (1971).
- F. S. Rowland and M. J. Molina, Rev. Geophys. Space Phys. <u>13</u>, 1 (1975).
- 69. R. M. Milstein and F. S. Rowland, J. Phys. Chem. 79, 669 (1975).
- 70. R. T. Watson, "Chemical Kinetics Data Survey VIII. Rate Constants of Atmospheric Interest", NSIR 74-516 (June, 1974).
- 71. Chemical and Engineering News (April 21, 1975), p. 21.
- D. Marsh and J. Heicklen, J. Phys. Chem. <u>69</u>, 4410 (1965);
 J. Heicklen, J. Phys. Chem. <u>70</u>, 112 (1966); J. Heicklen,
 Adv. Photochemistry <u>7</u>, 57 (1969).
- P. J. Ausloos and R. E. Rebbert, Amer. Chem. Soc. Annual Meeting Chicago, 1975); Chemical and Engineering News (September 1, 1975), p. 15.
- 74. Dow Chemical Co., "JANAF Thermochemical Tables", Thermal Research Laboratory, Midland, Mi., 1961.
- 75. V. W. Laurie, D. T. Pence and R. H. Jackson, J. Chem. Phys. <u>37</u>, 2995 (1962).
- 76. F. X. Powell and D. R. Lide, J. Chem. Phys. <u>45</u>, 1067 (1966);
 C. W. Mathews, J. Chem. Phys. <u>45</u>, 1068 (1966).
- 77. R. K. Thomas and H. Thompson, Proc. Royal Soc. (London) <u>A327</u>, 13 (1972).
- 78. T. Koopmans, Physica 1, 104 (1933).
- 79. J. H. D. Eland, "Photoelectron Spectroscopy", Butterworths, London, 1974, p. 91; C. R. Brundle, M. B. Robin, H. Basch, M. Pinsky and A. Bond, J. Amer. Chem. Soc. <u>92</u>, 3863 (1970).
- 80. E. Clementi, J. Chem. Phys. 38, 2248 (1963).

XII. APPENDIX A

.

C		DAN00010	
C	PA90 - SPIN PROJECTION OF UNRESTRICTED AB INITIO WAVEFUNCTIONS	DAN00020	
C	WRITTEN FOR AN IBM 370/158 JES2/VM (VIRTUAL MACHINE)	DAN00030	
C	COMPUTER BY DANA A. BREWER, JOHN C. SCHUG AND BYRON H.	DAN00040	
C	LENGSFIELD AT VIRGINIA POLYTECHNIC INSTITUTE AND STATE	DAN00050	
C	UNIVERSITY.	DAN00060	
С		DAN00070	
С	THIS PROGRAM CONTAINS EFFICIENCY MODIFICATIONS THAT HAVE	DANDOOSO	
C	BEEN TESTED FOR A MOLECULE WITH C2V SYMMETRY.	DAN00090	
C		DAN00100	
C	THIS SPIN PROJECTION PACKAGE IS DESIGNED TO BE COMPATIBLE	DAN 00110	
С	WITH THE POLYATOM SYSTEM OF PROGRAMS. IT REQUIRES THAT AN	DAN00120	
C	INTEGRAL TAPE BE PROVIDED IN THE FORMAT GENERATED BY THE	DAN00130	
С	POLYATOM INTEGRAL EVALUATION PROGRAMS.	DAN00140	
С		DAN00150	
C	THE OPEN SHELL MOLECULAR ORBITALS GENERATED FROM PA43 ARE ALSO	DAN 33160	
C	REQUIRED. THESE MUST BE AVAILABLE IN ONE OF THREE FORMS:	DANO0170	
C	1) AS CARD INPUT; 2) ON FILE 5 OF THE INTEGRAL TAPE (THE	DANOU130	
С	INTEGRAL TAPE IS NOT FILE PROTECTED IN PA43); 3) ON A SEPARATE	DANOO190	
C	FILE (THE INTEGRAL FILE WAS FILE PROTECTED IN PA43).	DAN00200	
С		DAN00210	
С	THE FINAL OUTPUT OF THE PROGRAM CONSISTS OF THE WEIGHTING	DAN00220	
С	FACTORS FOR THE PROJECTED STATES, THE ALPHA CORRESPONDING	DAN00230	
С	ORBITALS, THE NATURAL ORBITALS OF CHARGE AND SPIN, THE	DANOJ240	
С	PROJECTED ATOMIC SPIN DENSITIES, THE DIAGONAL COMPONENTS OF	DAN 00250	
C	THE SECOND ORDER PROJECTED CHARGE DENSITY MATRIX, AND THE	DAN00260	
С	PROJECTED STATE ENERGIES.	DAN 00270	
С		DAN00280	
С	THE PROGRAM MAKES USE OF A MINIMUM OF TWO TAPES. IF THE	DAN00290	
С	INTEGRAL TAPE IS FILE PROTECTED, ONE ADDITIONAL FILE (TAPE OR	DAN00300	
С	DISK) IS NEEDED.	DAN00310	
С		DAN00320	
C		THE SUBROUTINES USED ARE -	DAN00330
---	-----	--	----------
С		PURELY FOR THE SPIN PROJECTION	DAN00340
С		PA90, WATE, F, CK, SWITCH, NOINTS	DAN00350
C		MATRIX MANIPULATION	DAN00360
С		MTBSYM, MBTSYM, MMBAT2, MULT2, MMOVE, MMATB1, MCLEAR, MCLRT,	DAN00370
С		MABAT	DAN00380
С		MATRIX OUTPUT	DAN00390
С		MWRITT, MWRITE, MWRITB, MPRY1, MPRY2	DAN00400
С		FILE HANDLING	DAN00410
С		LAB, SEC, FILE, FOLLOW, EFSKIP, ABT, TEST2, ADDT	DAN00420
С		ADDITIONAL MATRIX MANIPULATION	DAN00430
С		HDIAG, FMFUHF, FMJUHF, FMEXTB, REORD, FMDMB, FMDTB, MODBLK,	DAN00440
С		ORDREI	DAN00450
С			DAN00460
С			DAN00470
С	THE	CARD INPUT IS AS FOLLOWS:	DAN00480
C			DAN00490
С	(1)	ONE CARD (12A6) WITH THE LABEL OF THE PROBLEM	DAN00500
С			DAN00510
С	(2)	ONE CARD (2413) WITH THE INPUT/OUTPUT OPTIONS, ICON(1-24).	DAN00520
C		ICON(3) .LT. O READ MOLECULAR ORBITALS FROM CARDS	DAN00530
C		•EQ. O READ MOLECULAR ORBITALS FROM INTEGRAL TAPE	DAN00540
С		.GT. O READ MOLECULAR ORBITALS FROM FILE 12 (INTEGRAL	DAN00550
С		TAPE IS FILE PROTECTED)	DAN00560
С		ICON(4) .EQ. O CALCULATES A GROUND STATE WAVEFUNCTION	DAN00570
С		ICON(9) .NE. O PRINT CHECKSUMS FROM READING TWO-ELECTRON	DAN00580
C		INTEGRALS	DAN00590
С		ICON(10) .NE. O PRINTS FILE HANDLING INFORMATION	DAN00600
С			DAN00610
С	(3)	ONE CARD (AG) WITH THE NAME OF THE INTEGRAL TAPE	DAN00620
С			DAN00630
С	(4)	ONE CARD (D15.7) WITH CUT. TWO ELECTRON INTEGRALS WHOSE	DAN00640

	ABSOLUTE VALUE IS LESS THAN CUT ARE IGNORED IN FORMING THE	DAN00650
	FOCK AND NATURAL ORBITAL INTEGRAL MATRICES.	DAN 00660
		DAN00670
IF	ICON(3) .LT. 0 GO TO 8	DAN00680
		DAN00690
(5) ONE OR MORE CARDS (2513) WITH ISYM, (NS(I), I=1,ISYM). ISYM	DAN00700
	IS THE NUMBER OF SYMMETRY BLOCKS IN THE MOLECULAR ORBITAL	DAN00710
	MATRIX. NS IS THE NUMBER OF MOLECULAR ORBITALS IN EACH	DAN00720
	SYMMETRY BLOCK.	DAN00730
		DAN00740
(6) AS MANY CARDS AS NEEDED (8F10.5) TO GIVE THE OCCUPATION	DAN00750
	NUMBERS OF THE ALPHA MOLECULAR ORBITALS. FULL OCCUPANCY OF A	NDAN00760
	ORBITAL IS 0.5. FRACTIONAL OCCUPANCY OTHER THAN 0.5 AND 0.0	DAN00770
	IS ALLOWED.	DAN00780
		DAN00790
(7	') AS MANY CARDS AS NEEDED (8F10.5) TO GIVE THE OCCUPATION	DAN90890
	NUMBERS OF THE BETA MOLECULAR ORBITALS. FULL OCCUPANCY	DANG0810
	OF AN ORBITAL IS 0.5. FRACTIONAL OCCUPANCY OTHER THAN 0.5 AN	DDAN00820
	0.0 IS ALLOWED.	DAN00830
		DAN00840
GC	1 TO STEP 13.	DAN00850
		DAN00860
(8) ONE CARD (213) WITH THE TOTAL NUMBER OF SYMMETRY ORBITALS, NR-	DAN00870
	AND THE NUMBER OF BASIS FUNCTIONS, NC.	DAN 00880
	· · ·	DAN00890
CA	ARDS (9) AND (10) ARE REPEATED FOR EACH ITH ALPHA MOLECULAR	DAN00900
ÜR	BITAL.	DAN 00910
		DAN00920
(9) ONE CARD (4X, I4, 12X, D15.8, F15.8) WITH IS, EA, FR. IS IS THE	DAN00930
	NUMBER OF THE ORBITAL IN THE SYMMETRY BLOCK. EA IS THE EIGEN-	-DAN00940
	VALUE OF THE ORBITAL AND FR IS THE OCCUPATION NUMBER OF THE	DAN00950
	ORBITAL. FRACTIONAL OCCUPANCY DTHER THAN 0.5 AND 0.0 IS	DAN00960

ALLOWED.	DAN00970
D) AS MANY ACRDS AS NEEDED (4D15.8) TO SPECIFY THE COEFFICIENTS I OF THE ITH MOLECULAR ORBITAL. (THESE ARE COEFFICIENTS OF A NORMALIZED BASIS FUNCTION). THE EIGENVECTORS ARE READ IN AS ROWS.	DAN00980 DAN00990 DAN01000 DAN01010 DAN01020
RDS (11) AND (12) ARE REPEATED FOR EACH JTH BETA MOLECULAR BITAL.	DAN01050 DAN01040 DAN01050
.) ONE CARD (20X,D15.8,F15.8) WITH EB AND FR. EB IS THE EIGEN- VALUE OF THE JTH BETA ORBITAL. FR IS THE OCCUPANCY OF THAT ORBITAL. FULL OCCUPANCY IS 0.5. FRACTIONAL OCCUPANCY OTHER THAN 0.5 AND 0.0 IS ALLOWED.	DANO1070 DANO1080 DANO1090 DANO1090
AS MANY CARDS AS NEEDED (4015.8) TO SPECIFY THE COEFFICIENTS OF THE JTH BETA MOLECULAR ORBITAL. (THESE ARE COEFFICIENTS OF A NORMALIZED BASIS FUNCTION.) THE MOLECULAR ORBITAL COEFFICIENTS ARE READ IN AS ROWS.	DANO1110 DANO1120 DANO1130 DANO1130 DANO1140 DANO1150
ONE CARD (315) WITH KIKMAX, THE MAXIMUM NUMBER OF PROJECTED STATES THAT WILL BE CALCULATED.	DAN01160 DAN01170 DAN01180 DAN01190
ONE CARD (213) WITH THE ORBITAL NUMBERS FOR THE SINGLY OCCUPIED ORBITALS, ASSUMING THAT THE FIRST ORBITAL OCCUPIED IS NUMBERED ONE.	DAN01200 DAN01210 DAN01220 DAN01230
DIMENSION STATEMENTS	DAN01240 DAN01250
PLICIT REAL*8(A-H,O-Z)	DAN01260
AL*8 ILBL, ILAB, INTNAM, INAME(6), ILABL(12)	DAN01270 DAN01280

С

104

С	LABELLED COMMON	DAN01290
С		DAN01300
	COMMON/ZEIT/LAPSE,LAPST	DAN01310
	COMMON/LABELS/ILBL(12),ILAB(12)	DAN01320
	COMMON/IOIND/ICON(24)	DAN01330
C		DAN01340
С	DIMENSION STATEMENTS	DAN01350
С		DAN 01360
	DIMENSION R(60,60),S(60,60),T(60,60),TT(60,60)	DAN01370
	DIMENSION PKD(636),VAL(636)	DAN01380
	DIMENSION FR(60)	DAN01390
	DIMENSION RR(60,60), SS(60,60)	DANO1400
	DIMENSION TEND(3000)	DAN01410
	DIMENSION NS(60), IS(60)	DAN01420
	DIMENSION EA(60), EB(60)	DAN01430
	INTEGER D2TAPE	DANO1440
	DATA NTAPE, D2TAPE, ITAPE/10,11,12/	DAN01450
	DATA INAME/6HETA+VL,6HG-INTS,6HT-INTS,6HV-INTS,6HVYMATX,6HM-INTS/	DAN01460
C		DAN01470
С	SET MISCELLANEOUS PARAMETERS	DAN01480
C		DAN 01 490
	CALL ERRSET(208,500,-1,1)	DAN01500
	NRX=60	DAN01510
	NIN=636	DAN01520
	NTOP=3000	DAN01530
	AD=1.DO/DSQRT(2.DO)	DAN01540
	ITR=1	DAN01550
	XNA=0.00	DAN01560
	XN3=0.D0	DAN01570
С		DAN01580
С	READ LABEL OF PROBLEM AND INPUT/OUTPUT OPTIONS	DAN01590
С		DAN 01600

	CALL LAB	DAN01610
	READ(5,189)INTNAM	DAN 01620
	CALL TEST2(NTAPE, INTNAM)	DAN01630
	IF(ICON(3).EQ.0)ITAPE=NTAPE	DAN01640
	READ(5,49)CUT	DAN01650
	WRITE(6,59)CUT	DAN01660
	IPTI=ICON(9)	DAN01670
С		DAN01680
С	DA=R DB=S DT=T NC=NBFNS	DAN01690
С		DAN01700
С		DAN01710
С	READ MOLECULAR ORBITALS	DAN01720
С		DAN01730
	IF(ICON(3))5,15,25	DAN01740
	25 REWIND ITAPE	DAN01750
	GO TO 35	DAN01760
	15 CALL FILE(INAME(5),NTAPE,ILABL)	DAN01770
	35 READ(ITAPE)	DAN01780
	READ(ITAPE)	DAN01790
	READ(ITAPE)NR,(EA(I),I=1,NR)	DAN01800
	READ(ITAPE)NRR, NC, ((S(I, J), J=1, NC), I=1, NRR)	DAN 01810
	READ(ITAPE)NRR,(EB(I),I=1,NRR)	DAN01820
	READ(ITAPE)NRR,NCC,((TT(I,J),J=1,NCC),I=1,NRR)	DAN01830
	READ(5,199)ISYM,(NS(I),I=1,ISYM)	DAN 01840
	READ(5,179)(FR(I),I=1,NR)	DAN01850
	DO 70 I=1,NR	DAN01860
	70 XNA=XNA+2.DO*FR(I)	DAN01870
	NA=XNA+0.01	DAN01880
	GO TO 45	DAN01890
	5 READ(5,199)NR,NC	DAN01900
	DO 10 I=2,NRX	DAN01910
	10 NS(I) = 0	DAN 01920

		DO 60 I=1,NR	DAN01930
		READ(5,249)IS(I),EA(I),FR(I)	DAN01940
	60	READ(5,219)(S(I,J), J=1, NC)	DAN01950
		WRITE(D2TAPE)($(S(I, J), J=1, NC), I=1, NR$)	DAN 01960
		ISYM=1	DAN01970
		NS(1) = 1	DAN01930
		DO 40 I=1,NR	DAN01990
	40	XNA=XNA+2.DO*FR(I)	DAN02000
		NA=XNA+0.01	DAN02010
		DO 50 I=2,NR	DAN02020
		IM = I - 1	DAN02030
		IF(IS(I).LE.IS(IM))GO TO 55	DAN02040
		NS(ISYM)=NS(ISYM)+1	DAN02050
		GO TO 50	DAN02060
	55	ISYM=ISYM+1	DAN02070
		NS(ISYM)=NS(ISYM)+1	DAN02080
	50	CONTINUE	DAN02090
	45	CALL MPRY1(S,EA,FR,6HALPHA,6HORBITA,6HLS,1,NC,NR,NRX)	DAN02100
С			DAN02110
С		FORM ALPHA DENSITY MATRIX, DA	DAN02120
С			DAN02130
		CALL FMDMB(S,R,FR,2.0,NR,NC,NRX)	DAN02140
		CALL MCLEAR(T,NC,NC,NRX)	DAN02150
С			DAN02160
С		FORM SYMMETRY BLOCKING TRANSFORMATION MATRIX	DAN02170
С			DAN02180
		CALL ADDT(INAME(2),NTAPE,ILABL,T,NRX,PKD,VAL,NIN)	DAN02190
		CALL MTBSYM(T,NC,NRX)	DAN02200
		CALL MMBAT2(T,S,NC,NC,NR,EA,NRX)	DAN02210
		WRITE(D2TAPE)NR,NC,((S(I,J),J=1,NC),I=1,NR)	DAN02220
С			DAN02230
C		READ BETA MOLECULAR ORBITALS	DAN02240

С

C				DAN02250
		IF(ICON(3))85,95,95		DAN02260
	85	DO 90 I=1,NR		DAN02270
		READ(5,209)EA(I),FR(I)		DAN02280
	90	READ(5,219)(T(I,J),J=1,NC)		DAN 02290
		GO TO 105		DAN02300
	95	DO 100 I=1, NR		DAN02310
		EA(I)=EB(I)		DAN 02320
		DO 100 J=1,NC		DAN02330
	100	T(I,J)=TT(I,J)		DAN02340
		READ(5,179)(FR(1),I=1,NR)		DAN02350
	105	DO 75 I=1,NR		DAN02360
	75	XNB=XNB+2.D0*FR(I)		DAN02370
		NB=XNB+0.01		DAN02380
С				DAN02390
С		FORM BETA DENSITY MATRIX, DB		DAN 02400
С				DAN02410
		CALL MPRYLIT, EA, FR, 6HBETA , 6HORBITA, 6HLS	,1,NC,NR,NRX)	DAN 0242 0
		CALL FMDMB(T,S,FR,2.0,NR,NC,NRX)		DAN02430
		CALL FMDTB(R,S,T,1.0,NC,NRX)		DAN02440
		WRITE(D2TAPE)NC,((R(I,J),J=1,I),I=1,NC)		DAN 02450
		WRITE(D2TAPE)NC,((S(I,J),J=1,I),I=1,NC)		DAN02460
		WRITE(D2TAPE)NC,((T(I,J),J=1,I),I=1,NC)		DAN02470
		DO 30 I=1,NRX		DAN02480
	30	FR(I)=1.D0		DAN02490
		CALL MBTSYM(R,NC,NRX)		DAN02500
		CALL MBTSYM(S,NC,NRX)		DAN02510
		CALL MBTSYM(T,NC,NRX)		DAN02520
		CALL MWRITB(R, GHALPHA, GHDENSIT, GHY MATX, O, N	C,NRX)	DAN02530
		CALL MWRITB(S,6HBETA D,6HENSITY,6H MATRX,0,N	C,NRX)	DAN02540
		CALL MWRITB(T,6HTOTAL ,6HDENSIT,6HY MATX,0,N	C,NRX)	DAN02550
		CALL SEC(6HREAD D,6HENSITY,6H MATRX)		DAN02560

С		DAN 02570
С	FORM KINETIC ENERGY MATRIX IN TT	DAN02580
С		DAN02590
	CALL MCLRT(TT,NC,NRX)	DAN 02600
	CALL ADDT(INAME(3),NTAPE,ILABL,TT,NRX,PKD,VAL,NIN)	DAN02610
С		DAN02620
C	CALCULATE EXPECTATION VALUE OF T WITH DT;	DAN 02630
С	EXPECTATION VALUE STORED IN XK	DAN02640
С		DAN02650
	CALL FMEXTB(TT,T,NC,NRX,1.0,XK)	DAN 02660
C		DAN02670
С	ADD POTENTIAL ENERGY TO KINETIC ENERGY	DAN02680
С		DAN02690
	CALL ADDT(INAME(4),NTAPE,ILABL,TT,NRX,PKD,VAL,NIN)	DAN02700
C		DAN 3271 0
С	CALCULATE EXPECTATION VALUE OF T+V WITH DT	DAN02720
C	STORE THIS VALUE IN XH	DAN02730
С		DAN02740
	CALL FMEXTB(TT,T,NC,NRX,1.0,XH)	DAN02750
	CALL SEC(6HREAD 1,6H-ELEC ,6HINTS)	DAN 32760
	XKE=XH-XK	DAN02770
С		DAN02780
C	READ (FROM INTEGRAL TAPE) THE NUCLEAR REPULSION ENERGY	DAN 02790
С	STORED IN EN	DAN02800
С		DAN 02810
	CALL FILE(INAME(1), NTAPE, ILABL)	DAN02320
	READ(NTAPE)	DAN02830
	READ(NIAPE)	DAN02840
	READ(NTAPE)	DAN02850
~	READ(NIAPE)EN	DANO2860
L C	CODA MATOLY ST IN TT DV SCOMING MODADOLID IT TO MARCED	DAN92870
L L	FURM MATRIX FI IN II BY FURMING AND ADDING JI IU H ALREADY	IN DANU2880

C	TT. ALSO FORM KA IN RR AND KB IN SS.	DAN02890
С	FT=H+JT	DAN 02900
С	JT(I,J)=SUM(OVER K,L) DT(K,L) * (IJ,KL)	DAN02910
С	$KA(I,J)=SUM (OVER K,L) DA(K,L) \neq (IK,JL)$	DAN 02920
С	KB(I,J)=SUM (OVER K,L) DB(K,L) * (IK,JL)	DAN02930
С	FIRST RETAIN THE CORE HAMILTONIAN	DAN02940
С		DAN02950
	WRITE(D2TAPE)NC,((TT(I,J),I=1,J),J=1,NC)	DAN02960
	CALL MCLRT(RR, NC, NRX)	DAN02970
	CALL MCLRT(SS,NC,NRX)	DAN02980
	CALL FMJUHF(TT,RR,SS,T,R,S,NC,NRX,INAME(6),NTAPE,ILABL,PKD,VAL,	NINDAN02990
	1, IPTI, CUT, IX)	DAN03000
	CALL SEC(6HREAD 2,6H-ELEC ,6HINTS)	DAN03010
	CALL MWRITT(TT,6H JT+H,6H FT MA,6HTRIX ,ITR,NC,NRX)	DAN03020
	CALL MWRITT(RR,6HKALPHA,6H KA MA,6HTRIX ,ITR,NC,NRX)	DAN03030
	CALL MWRITT(SS,6H KBETA,6H KB MA,6HTRIX ,ITR,NC,NRX)	DAN03040
С		DAN03050
С	FORM ALPHA AND BETA UHF HAMILTONIAN MATRICES, FA AND FB,	DAN 03 0 5 0
0	IN RR AND SS RESPECTIVELY	DAN 03070
С	FA = FT - KA = H + JT - KA	DAN03030
C	FB = FT - KB = H + JT - KB	DAN03090
С		DAN03100
	CALL FMFUHF(RR,SS,TT,NC,NRX)	DAN03110
С		DAN03120
С	COMPUTE EXPECTATION VALUES OF FA WITH DA AND FB WITH DB	DAN03130
С		DAN03140
	CALL FMEXTB(RR,R,NC,NRX,1.0,XFA)	DAN03150
	CALL FMEXTB(SS,S,NC,NRX,1.0,XFB)	DAN03160
	XF=XFA+XFB	DAN03170
	WRITE(6,9)XK	DAN03180
	WRITE(6,29)XKE	DAN03190
	WRITE(6,19)XH	DAN03200

С C C С

C

110

		EPI2=0.5DO*(XF-XH)	DAN03210
		WVE33=XKE+EPI2	DAN 03220
		WE33=XH+EPI2	DAN03230
		WV33=XKE+EPI2+EN	DAN03240
		W33=WE33+EN	DAN03250
		WRITE(6,69)EPI2	DAN03260
		WRITE(6,79)WVE33	DAN 03270
		WRITE(6,89)WE33	DAN03280
		WRITE(6,39)EN	DAN 03290
		WRITE(6,129)WV33	DAN03300
		WRITE(6,149)W33	DAN03310
С			DAN 03320
С		OBTAIN SYMMETRY BLOCKING TRANSFORMATION MATRIX.	DAN03330
С		STORE IN RR	DAN03340
С			DAN03350
		REWIND D2TAPE	DAN03360
		IF(ICON(3))165,175,175	DAN03370
	165	READ(D2TAPE)	DAN03380
	175	READ(D2TAPE)NRR,NCC,((RR(I,J),J=1,NCC),I=1,NRR)	DAN03390
		READ($D2TAPE$)NCC,((R(J,I),J=1,I),I=1,NCC)	DAN 03400
С			DAN03410
С		SYMMETRY BLOCK DA AND DB	DAN03420
С			DAN 03430
		READ(D2TAPE)NCC, ((S(J,I), J=1, I), I=1, NCC)	DAN03440
		CALL MABAT(RR,R,NR,NC,TT,NRX)	DAN03450
		CALL MABAT(RR,S,NR,NC,TT,NRX)	DAN 03460
		CALL MTBSYM(R, NR, NRX)	DAN03470
		CALL MTBSYM(S,NR,NRX)	DAN 03480
С			DAN03490
С		FORM DA*DB*DA IN ORTHOGONAL BASIS REPRESENTATION.	DAN03500
С			DAN03510
		CALL MULT2(S,R,TT,NR,NRX)	DAN03520

		CALL MULT2(R,TT,SS,NR,NRX)	DAN03530
С			DAN 03540
С		FORM SPIN DENSITY MATRIX IN ORTHOGONAL BASIS	DAN03550
С			DAN03560
		DO 80 I=1,NR	DAN03570
		DO 80 J=1,NR	DAN03580
	80	T(I,J)=R(I,J)-S(I,J)	DAN 03590
		IF(ICON(3))115,125,135	DAN03600
	135	REWIND ITAPE	DAN03610
		GO TO 145	DAN 03620
	125	CALL FILE(INAME(5),NTAPE,ILABL)	DAN03630
	145	READ(ITAPE)	DAN03640
		READ(ITAPE)	DAN03650
		READ(ITAPE)	DAN03660
		READ(ITAPE)NRR,NCC,((S(I,J),J=1,NCC),I=1,NRR)	DAN03670
		GO TO 155	DAN03680
	115	REWIND D2TAPE	DAN03690
		READ(D2TAPE)((S(I,J),J=1,NC),I=1,NR)	DAN03700
		READ(D2TAPE)	DAN03710
		READ(D2TAPE)	DAN03720
		READ(D2TAPE)	DAN03730
	155	CONTINUE	DAN03740
С			DAN03750
C		FORM ALPHA CORRESPONDING ORBITALS	DAN03760
С			DAN03770
		CALL MODBLK(RR,SS,TT,NS,EA,EB,S,NR,NC,NRX,6HA.C.D.,0,0)	DAN 03780
		CALL REORDISS, TT, EB, EA, NR, NC, NRX)	DAN 03790
		CALL MMOVE(SS,TT,NR,NC,NRX)	DAN03800
		CALL MPRYL(TT, EB, FR, 6HALPHA, 6HCORR., 6HORBS., 0, NC, NR, MRX)	DAN03810
		CALL SEC(6HCALC A,6HLFA CO,6HRR ORB)	DAN03820
С			DAN03830
С		FORM NATURAL ORBITALS OF SPIN AND STORE IN TEND	DAN03840

С		DAN03850
	CALL MODBLK(RR,T,R,NS,FR,EA,S,NR,NC,NRX,6HN.D.S.,0,0)	DAN 03860
	CALL REORD(T,R,EA,FR,NR,NC,NRX)	DAN03870
	CALL MPRY1(T,EA,FR,6HNATL 0,6HRBS OF,6H SPIN ,0,NC,NR,NRX)	DAN03880
	CALL SEC(6HCALC N,6HATL OR,6HB SPIN)	DAN03890
	AD=1.00/DSQRT(2.00)	DAN03900
	DO 20 $I=1, NC$	DAN03910
	TEND(I)=AD*(T(NC,I)+T(1,I))	DAN 03920
	20 $TENO(NC+I) = AD*(T(NC, I) - T(1, I))$	DAN03930
С		DAN 03940
С	FORM NATURAL ORBITALS OF CHARGE	DAN03950
С		DAN03960
	READ(D2TAPE)NCC,((T(J,I),J=1,I),I=1,NCC)	DAN 03970
	CALL MABAT(RR,T,NR,NC,SS,NRX)	DAN03980
	CALL MODBLK(RR,T,R,NS,FR,EA,S,NR,NC,NRX,6HN.U.C.,0,0)	DAN 03990
	CALL REORD(T,R,EA,FR,NR,NC,NRX)	DAN04000
	CALL MMOVE(T,R,NR,NC,NRX)	DAN04010
	CALL MPRY1(R,EA,FR,GHNATL 0,6HRBS OF,6H CHG ,0,NC,NR,NRX)	DAN04020
	CALL SEC(6HCALC N,6HATL OR,6HBS CHG)	DAN04030
С		DAN04040
С	SWITCH ROWS AND COLUMNS.	DAN04050
С	THE SPIN PROJECTION IS PERFORMED WITH THE ORBITALS AS	DAN04060
С	COLUMNS.	DAN04070
С		DAN04030
	CALL SWITCH(TT,T,NR,NC,NRX)	DAN04090
	CALL SWITCH(R,T,NR,NC,NRX)	DAN04100
	CALL MCLEAR(S, NRX, NRX, NRX)	DAN04110
	CALL MCLEAR(T, NRX, NRX, NRX)	DAN04120
	CALL MCLEAR(SS,NRX,NRX,NRX)	DAN04130
	READ($D2TAPE$)NCC,((RR(I,J),J=1,I),I=1,NCC)	DAN04140
	CALL MWRITB(RR,6HCORE H,6HAMILTO,6HNIAN ,1,NC,NRX)	DAN04150
	CALL MBTSYM(PR,NC,NRX)	DAN04160

REWIND D2TAPE DAN04170 С DAN04180 С DAN04190 READY TO PERFORM SPIN PROJECTION С MATRIX OCCUPATION (IN ATOMIC BASIS): DAN 04 200 С $TT = A \cdot C \cdot D \cdot EIGENVECTORS$ DAN04210 C $EB = A \cdot C \cdot D \cdot EIGENVALUES$ DAN04220 С $R = N \cdot O \cdot C \cdot EIGENVECTORS$ DAN04230 С $EA = N \cdot O \cdot C \cdot EIGENVALUES$ DAN04240 С DAN04250 T = EMPTYС X = EMPTYDAN04260 С S = EMPTYDAN04270 С RR = CORE HAMILTONIANDAN04280 С SS = EMPTYDAN04290 С X1 = EMPTYDAN04300 С DAN04310 CALL WATE (S.SS.R.TT.RR.TEND.EB.T(1.1).T(1.2).T(1.3).T(1.4).EA.T(1.DAN04320 15),T(1,6),T(1,7),T(1,8),T(1,9),T(1,10),PKD,VAL,CUT,EN,INAME,NTAPE,DAN04330 1NRX, NTOP, NIN, NC, NA, NB, NR) DAN 04340 CALL FOLLOW DAN04350 9 FORMAT(' ', ' KINETIC ENERGY, T = (,30X,1PD20,10)DAN04360 19 FORMAT(' ', ' ONE ELECTRON ENERGY, H = T+V(1) = ',16X,1PD20.10) DAN04370 29 FORMAT(* ', ' ONE ELECTRON POTENTIAL ENERGY, V(1) = (.12X, 1PD20, 10) DANO4380 39 FORMAT(* \cdot , NUCLEAR REPULSION ENERGY, V(N) = \cdot , 17X, 1PD20, 10) DAN04390 49 FORMAT(D15.7) DAN04400 59 FORMAT('0', 'TWO-ELECTRON INTEGRAL CUTOFF = ', 1PD12.4) DAN04410 69 FORMAT(', 'TWO ELECTRON POTENTIAL ENERGY, V(1,2) = ',10X, DAN04420 11PD20.10) DAN04430 79 FORMAT(', ELECTRONIC PCTENTIAL ENERGY, V(E) = V(1)+V(1,2) = ', DAN04440 11PD20.10) DAN04450 89 FORMAT(' ', ' ELECTRONIC ENERGY, E(E) = H+V(1,2) = ',13X,1PD20.10) DAN04460 129 FORMAT(' ',' POTENTIAL ENERGY, V = V(E)+V(N) = ',16X,1PD20,10) DAN04470

149 FORMAT(' ',' TOTAL ENERGY, E = E(E) + V(N) = ', 20X, 1PD20.10 DAN04480

169 FORMAT('0', 'READ ERROR ON D2TAPE')	DAN 04490
179 FORMAT(8F10.5)	DAN04500
189 FORMAT(A6)	DAN04510
199 FORMAT(2613)	DAN 04520
209 FORMAT(20X,D15.8,F15.8)	DAN04530
219 FORMAT(4015.8)	DAN04540
229 FORMAT('0', 'NUMBER OF ROWS IN BETA MOLECULAR ORBITALS .NE. NUMBE	ER DAN04550
10F ROWS IN ALPHA MOLECULAR ORBITALS')	DAN04560
239 FORMAT('0', 'NUMBER OF COLUMNS IN BETA MOLECULAR ORBITALS .NE. NO	DDAN04570
1F COLUMNS IN ALPHA MOLECULAR ORBITALS')	DAN04580
249 FORMAT(4X,14,12X,D15.8,F15.8)	DAN04590
STOP	DAN04600
END	DAN04610
BLOCK DATA	DAN 3462 J
REAL*8 ILAB,ILBL	DAN04630
COMMON/LABELS/ILBL(12), ILAB(12)	DAN04640
DATA ILAB/6H PA90 ,6H UNRE,6HSTRICT,6HED HAR,6HTREE-F,6HOCK SP	6HDAN04650
1IN PRO,6HJECTIU,6HN METH,6HOD L.C,6H.A.O. ,6HTEST /	DAN04650
END	DANC4670
CNOINTS SUBROUTINE NOINTS	DAN 04680
SUBROUTINE NOINTS(EA, PKLABL, VALUEM, C, T, CUTLO, INAME, NB, MNM, MO, M, M	VINDAN04690
1TS,NINMAX,NRX,NTOP,NTAPE)	DAN04700
IMPLICIT REAL #8(A-H,O-Z)	DAN04710
DIMENSION PKLABL(NINMAX),VALUEM(NINMAX),C(NRX,NRX),T(NTOP)	DAN04720
DIMENSION EA(NRX)	DAN 04730
DIMENSION IPRT(36)	DAN04740
REAL *8 INTNAM, INAME, ILAB, ILABL(12)	DAN04750
COMMON/IOIND/ICON(24)	DAN04760
COMMON/LABELS/ILBL(12),ILAB(12)	DAN04770
DIMENSION INAME(6)	DAN04780
NRECNT=0	DAN04790
8184 T 618111 (1	DANGAROO

	180=1	DAN04810
		DAN04820
c	17/1-1CUN(9/	
с c		
	PRINT HEADER IF CHECK SUM FLAG 15 UN	DANU4850
C		DAN04850
	IF(IPII.EQ.0)GU 10 70	DAN04870
	WRITE(6,19)	DAN04880
	70 CONTINUE	DAN04890
	READ(5,59)NSING1,NSING2	DAN 04900
	59 FORMAT(213)	DAN04910
	DO 40 I=1,NTOP	DAN 04920
	40 T(I)=0.D0	DAN04930
C		DAN04940
С	POSITION TAPE TO READ TWO-ELECTRON INTEGRALS	DAN04950
С		DAN04960
	CALL FILE(INAME(6), NTAPE, ILABL)	DAN04970
	20 IF(IFLAG)21,21,76	DAN04980
	21 READ(NTAPE)NINTS,LSTRCD,PKLABL,VALUEM	DAN 04990
	IF(LSTRCD.NE.O) IFLAG=1	DAN05000
	NRECNT=NRECNT+1	DAN05010
	NMINNW=NMINNW+NINTS	DAN05020
	IF(IPTI.EQ.0)GO TO 75	DAN05030
	IF(IRC.EQ.1)IPRT(1)=NRECNT	DAN05040
	CALL UNPACK (PKLABL (1), IA, JA, KA, LA, IZ, ITA)	DAN 95050
	CALL UNPACK (PKLABL(NINTS) · IB · JB · KB · LB · IZ · ITB)	DAN05060
	IPRT (IRC+1)=JA	DAN05070
	$i PRT(IRC+2) = I \Delta$	DAN05080
	IPRT(IRC+3)=NINTS	DAN05090
	IPRT(IRC+4) = IB	DAN05100
	IPRT(IRC+5)=IB	DAN05110
	IRC = IRC + 5	DAN05120

		IF(IRC.LT.36)GO TO 75	DAN05130
		WRITE(6,29)(IPRT(MN),MN=1,IRC)	DAN05140
		IRC=1	DAN 05150
	75	IF(NINTS.GT.NINMAX.OR.NINTS.LE.O)GO TO 30	DAN05160
		MN1=1	DAN05170
	55	XI=VALUEM(MN1)	DAN05180
		JCTR=1	DAN05190
		CALL UNPACK(PKLABL(MN1), I1, J1, K1, L1, MU, IZ)	DAN05200
	52	IF(MN1.EQ.NINTS)GO TO 50	DAN05210
	53	IF(MN1.GE.NINTS)GO TO 50	DAN05220
		CALL UNPACK(PKLABL(MN1+1), I2, J2, K2, L2, MU2, IZ2)	DAN 0523 3
		IF(IZ2)51,50,51	DAN05240
	51	JCTR=JCTR+1	DAN05250
		MN1 = MN1 + 1	DAN 05260
		GO TO 53	DAN05270
	50	IF(DABS(XI).LT.CUTLG)GO TO 10	DAN05280
		XI=XI*JCTR	DAN05290
С			DAN05300
С		SKIP THE INTEGRAL IF ITS VALUE IS SMALL	DAN 05310
С			DAN05320
		X2=2.00*XI	DAN05330
		X4=4.D0*XI	DAN 05340
		X8=8.D0*XI	DAN05350
	-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DAN 05 36 0
	1	LMU	DAN05370
	100		DAN05380
		UU 140 K=1,NB	DAN 05390
		$\mathbf{K}\mathbf{P} = \mathbf{M} - \mathbf{K} + \mathbf{I}$	DAN05400
			DAN05410
			UAN 05420
			DANU5430
		A4=C(L1,K)	UANU544()

118 IF(DABS(A1).LE.1.D-08.OR.DABS(A2).LE.1.D-08.AND.K.NE.NSING1)	DAN 05450
1GO TO 116	DAN05460
IF(DABS(A1).LE.1.D-08.OR.DABS(A2).LE.1.D-08.AND.K.NE.NSING2)	DAN05470
1GO TO 116	DAN05480
IF(DABS(A3).LE.1.D-03.OR.DABS(A4).LE.1.D-08.AND.K.NE.NSING2)	DAN05490
1GO TO 115	DAN05500
IF(DABS(A3).LE.1.D-08.OR.DABS(A4).LE.1.D-08.AND.K.NE.NSING1)	DAN05510
1GO TO 115	DAN05520
GO TO 117	DAN05530
116 J=J+1	DAN05540
P1=0.D0	DAN05550
P2=A3*A4	DAN 05560
IF(K.LT.MNM)GO TO 110	DAN05570
IF(EA(K).GT.1.999999)GO TO 110	DAN05580
J=J+3	DAN05590
A5=C(I1,KP)	DAN 05600
A6=C(J1,KP)	DAN05610
A7=C(K1,KP)	DAN05620
A8=C(L1,KP)	DAN05630
P3=0.D0	DAN05640
P4=A7*A8	DAN 05650
P31=0.D0	DAN 05660
P32=0.D0	DAN05670
P33=A3*A8	DAN 05680
P34=A4*A7	DAN05690
GO TO 110	DAN05700
115 J=J+1	DAN05710
P1=A1*A2	DAN05720
P2=0.00	DAN 05730
IF(K.LT.MNM)GO TO 110	DAN05740
IF(EA(K).GT.1.999999)GO TO 110	DAN05750
5+L=L	DAN 05760

	A5=C(I1,KP)
	A6=C(J1,KP)
	A7=C(K1,KP)
	A8=C(L1,KP)
	P3=A5*A6
	P4=0,00
	P31=A1*A6
	P32=A2*A5
	P33=0.00
	P34=0.D0
	GO TO 110
117	P1=A1*A2
	P2=A3*A4
	J=J+1
	T(J)=T(J)+X8*P1*P2
	IF(K.LT.MNM)GO TO 110
	IF(E4(K).GT.1.9999999)G0 TO 110
	A5=C(I1,KP)
	A6=C(J1,KP)
	A7=C(K1,KP)
	A8=C(L1,KP)
	P3=A5*A6
	P4=A7*A8
	P31=A1*A6
	P32=A2*A5
	P33=A3*A8
	P34=A4*A7
	Q=(P31+P32)*(P33+P34)
	J=J+1
	T(J)=X8*P3*P4+T(J)
	J=J+1
	T{J}=T{J}+X4*Q

DAN05770 DAN05780 DAN05790 DAN05800 DAN 05810 DAN05820 DAN05830 DAN05840 DAN05850 DAN05860 DAN05870 DAN05880 DAN 05890 DAN05900 DAN05910 DAN 05920 DAN05930 DAN 05940 DAN05950 DAN05960 DAN 05970 DAN05980 DAN 05990 DAN06000 DAN06010 DAN06020 DAN06030 DAN06040 DAN06050 DAN06060 DAN06070 DAN 06080

	J=J+1	DAN06090
	T(J)=T(J)+X8*(P1*P4+P2*P3)	DAN 06100
110	KAND=K+1	DAN06110
	IF(K.EQ.NB)G0 TO 130	DAN06120
	DO 120 LN=KAND, NB	DAN 06130
	LP=M-LN+1	DAN06140
	A9=C(I1,LN)	DAN06150
	A10=C(J1,LN)	DAN 06160
	A11=C(K1,LN)	DAN06170
	A12=C(L1,LN)	DAN06180
	P7=A11*A12	DAN 06190
	P8=A9*A10	DAN06200
	P13=A1*A10	DAN06210
	P14=A2*A9	DAN05220
	P15=A11*A4	DAN06230
	P16=A12*A3	DAN 06240
	1+1=L	DAN06250
	T(J)=T(J)+X8*(P1*P7+P2*P8)	DAN 06260
	J=J+1	DAN06270
	T(J)=T(J)+X4*(P13+P14)*(P15+P16)	DAN06280
	IF(LN.LT.MNM)GU TO 120	DAN 06290
	IF(EA(LN).GT.1.999999)GO TO 120	DAN06300
	A13=C(I1,LP)	DAN06310
	A14=C(J1,LP)	DAN 06320
	A15=C(K1,LP)	DAN06330
	A16=C(L1,LP)	DAN06340
	P5=A15*A16	DAN 06350
	P6=A13*A14	DAN06360
	P9=A1*A14	DAN06370
	P10=A13*A2	DAN06380
	P11=A15*A4	DAN06390
	P12=A16*A3	DAN 06400

	P17=A7*A16	DAN06410
	P18=A8*A15	DAN06420
	P19=A13*A6	DAN05430
	P20=A5*A14	DAN06440
	J=J+1	DAN 06450
	T(J)=T(J)+X8*(P1*P5+P2*P6)	DAN06460
	J=J+1	DAN06470
	T(J)=T(J)+X4*(P9+P10)*(P11+P12)	DAN 06480
	IF(K.LT.MNM)GO TO 120	DAN06490
	IF(EA(K).GT.1.999999)GO TO 120	DAN 36533
	P35=A9*A6	DAN06510
	P36=A5*A10	DAN06520
	P37=A7*A12	DAN06530
	P38=A8*A11	DAN05540
	1+L=L	DAN06550
	T(J)=T(J)+X8*(P8*P4+P7*P3)	DAN06560
	1+L=L	DAN06570
	T(J)=T(J)+X4*(P35+P36)*(P37+P38)	DAN06580
	J=J+1	DAN06590
	T(J)=T(J)+X8*(P3*P5+P4*P6)	DAN06600
	J=J+1	DAN 0661 0
	T(J)=T(J)+X4*(P19+P20)*(P17+P18)	DAN06620
	J=J+ <u>1</u>	DAN06630
	T(J)=T(J)+X4*((P9+P10)*(P37+P38)+(P12+P11)*(P35+P36))	DAN 06640
	J=J+1	DAN06650
	T(J)=T(J)+X4*((P13+P14)*(P17+P18)+(P15+P16)*(P19+P20))	DAN06660
120	CONTINUE	DAN06670
130	IF(MO.LE.0)G0 TO 140	DAN06680
	DC 135 LQ=1, MO	DAN 06690
	LN=LQ+NB	DAN06700
	A9=C(I1,LN)	DAN06710
	Ald=C(Jl,LN)	DAN06720

•

	A11=C(K1,LN)	DAN06730
	A12=C(L1,LN)	DAN06740
	P21=A11*A12	DAN 06750
	P22=A9*A10	DAN06760
	P23=A1*A10	DAN06770
	P24=A9*A2	DAN 06780
	P27=A11*A4	DAN06790
	P28=A12*A3	DAN 06800
	J=J+1	DAN06810
	T(J)=T(J)+X8*(P1*P21+P2*P22)	DAN 06820
	1+L=L	DAN06830
	T(J)=T(J)+X4*(P23+P24)*(P27+P28)	DAN 06840
	IF(K.LT.MNM)GO TO 135	DAN 06850
	IF(EA(K).GT.1.999999)GO TO 135	DAN06860
	P25=A11*A8	DAN06870
	P26=A7*A12	DAN 06880
	P29=A5*A10	DAN06890
	P30=A6*A9	DAN06900
	J=J+1	DAN06910
	T(J)=T(J)+X8*(P3*P21+P4*P22)	DAN06920
	1=J+1	DAN 06930
	T(J)=T(J)+X4*(P29+P30)*(P25+P26)	DAN06940
	[+ L = L	DAN06950
	T(J)=T(J)+X4*((P23+P24)*(P25+P26)+(P27+P28)*(P29+P30))	DAN06950
135	CONT INUE	DAN06970
140	CONTINUE	DAN06980
	IF(MO.LE.1)GO TO 160	DAN 06990
	DO 150 KQ=1,MO	DAN07000
	K=KQ+NB	DAN07010
	IF(KQ.EQ.MO)GO TO 150	DAN07020
	KQ1=KQ+1	DAN07030
	DO 145 LQ=KQ1,MO	DAN07040

•

I N=1 Q+NB	DAN07050
$\Delta 1 = C(T) \cdot K $	DAN07060
$\Delta 2 = C (11 \cdot K)$	DAN07070
$\Delta 3 = C(K1 \cdot K)$	DAN07080
$\Delta 4 = C (11 \cdot K)$	DAN07090
$\Delta 9 = C (11.1N)$	DAN07100
A = C(A + A)	DAN07110
A10 = C(K1 - LN)	DAN07120
A12=C(1,1,1,N)	DAN07120
	DAN07140
J-J-I T(1)-T(1)+Y2*(A 1*A 2*A 1)*A 2+A 3*A A *A Q*A 10)	DAN07150
1 (J) = 1 (J) = XO*(A I*AZ*AII*AIZ = AJ*A4*A	DAN07150
リーリーエー 1 4 5 - エイ 11 - エイ 11 エメムなイルコ☆ 41 /)エムロ☆ 4つ 1☆ 4 3 1 ☆ 6 4 4 1 つ☆ 4 3 1	DAN07170
149 (10)-110)-244*(AI*AI07A)*A2/*(AII*A+7AI2*A)/	DAN07180
	DAN07100
	DAN07200
	DANOT200
	DANOIZIO
	0AN07220
	DANOTZJO
$AZ = U(JI_{1}N)$ DIR TETRARS(AI) FE I D. OR OD DADS(AD) FE I D. OR AND K ME NSINCI	DAN07240
210 IF (UADS(AI) • LE•1•U=US•UR•DADS(AZ)•LE•1•U=US•ANU•N•NE•NSINGI)	DAN07250
	DANUIZOU
IF (DABS(AI) • LE•I•D=08•UR•DABS(AZ)•LE•I•D=08•AND•K•NE•NSINGZ)	DANUTZTU
	DANUTZBU
	DAN07290
216 J=J+1	DAN07300
P1=0.00	DAN07310
IF(K.LT.MNM)GO TO 210	DAN07320
IF(EA(K).GT.1.999999)GO TO 210	DAN 07330
J=J+3	DAN07340
A5=C(I1,KP)	DAN07350
A6=C(J1,KP)	DAN07360

	P3=0.D0	DAN07370
	P31=0.D0	DAN07380
	P32=0.D0	DAN07390
	GO TO 210	DAN07400
217	P1 = A1 * A2	DAN 07410
	[+L=L	DAN07420
	T(J) = T(J) + X4 + P1 + P1	DAN07430
	IF(K.LT.MNM)GO TO 210	DAN07440
	IF(EA(K).GT.1.999999)GD TO 210	DAN07450
	A5=C(I1,KP)	DAN07460
	A6=C(J1,KP)	DAN07470
	P3=A5*A6	DAN07480
	P31=A1*A6	DAN07490
	P32=A2*A5	DAN07500
	Q=(P31+P32)**2	DAN07510
	J=J+1	DAN07520
	T(J)=T(J)+X4*P3*P3	DAN07530
	J=J+1	DAN07540
	T(J)=T(J)+X2*Q	DAN07550
	J=J+1	DAN07560
	T(J)=T(J)+X8*P1*P3	DAN07570
210	KAND=K+1	DAN07580
	IF(K.EQ.NB)GO TO 230	DAN07590
	DO 220 LN=KAND,NB	DAN07600
	LP = N - LN + 1	DAN07610
	A9=C(I1,LN)	DAN07620
	A10=C(J1,LN)	DAN 07630
	P7=A9*A10	DAN07640
	P13=A1*A10	DAN07650
	P14=A2*A9	DAN07660
	J=J+1	DAN07670
	T(J)=T(J)+X8*P1*P7	DAN07680

	J=J+1	DAN07690
	T(j)=T(j)+X2*(P13+P14)**2	DAN07700
	IF(LN.LT.MNM)GD TO 220	DAN07710
	IF(EA(LN).GT.1.999999)GD TO 220	DAN07720
	A13=C(I1,LP)	DAN07730
	A14=C(J1,LP)	DAN07740
	P5=A13*A14	DAN07750
	P9=A1*A14	DAN07760
	P10=A13*A2	DAN07770
	P17=A5*A14	DAN07780
	P18=A6*A13	DAN07790
	J=J+1	DAN07800
	T(J)=T(J)+X8*P1*P5	DAN07813
	J=j+1	DAN07820
	T(J)=T(J)+X2*(P9+P10)**2	DAN07830
	IF(K.LT.MNM)GO TO 220	DAN07840
	IF(EA(K).GT.1.999999)G0 TO 220	DAN07850
	P35=A9*A6	DAN07860
	P36=A5*A10	DAN07870
	J= J + 1	DAN07880
	T(J)=T(J)+X8*P3*P7	DAN07890
	J=J+1	DAN07900
	T(J)=T(J)+X2*(P35+P36)**2	DAN07910
	J=J+1	DAN07920
	T(J)=T(J)+X8*P3*P5	DAN07930
	J=J+1	DAN0 7 940
	T(J)=T(J)+X2*(P17+P18)**2	DAN07950
	J=J+1	DAN07960
	T(J)=T(J)+X4*(P9+P10)*(P35+P36)	DAN 07970
	J=J+1	DAN07980
	T(J)=T(J)+X4*(P13+P14)*(P17+P18)	DAN 07990
220	CONTINUE	DAN08000

230	IF(M0.LE.0)G0 TO 240	DAN08010
	DO 235 LQ=1,MO	DAN08020
	LN=LQ+NB	DAN 0803 0
	A9=C(11,LN)	DANOSO40
	A10=C(J1,LN)	DAN08050
	P21=A10*A9	DAN 08060
	P23=A1*A10	DAN08070
	P24=A9*A2	DAN08080
	J=J+1	DAN08090
	T(J)=T(J)+X8*P1*P21	DAN08100
	J=J+1	DAN08110
	T(J)=T(J)+X2*(P23+P24)**2	DAN08120
	IF(K.LT.MNM)GO TO 235	DAN08130
	IF(EA(K).GT.1.999999)GD TD 235	DAN08140
	P25=A9*A6	DAN08150
	P26=A5*A10	DAN 03160
	J=J+1	DAN08170
	T(J)=T(J)+X8*P3*P21	DAN08180
	1+1=	DAN08190
	T(J)=T(J)+X2*(P25+P26)**2	DAN08200
	J=J+1	DAN08210
	T(J)=T(J)+X4*(P23+P24)*(P25+P26)	DAN 08220
235	CONTINUE	DAN08230
240	CONTINUE	DAN 0824J
	IF(MO.LE.1)GO TO 260	DAN08250
	DU 250 KQ=1,MU	DAN08260
	K=KQ+NB	DAN 38270
	IF(KQ.EQ.MD)GD TO 250	DAN08280
	KQ1=KQ+1	DAN 08290
	DO 245 LQ=KQ1,MO	DAN08300
	LN=LQ+NB	DAN08310
	A1=C(II,K)	DAN08320

	A2=C(J1,K)	DAN08330
	A9=C(I1,LN)	DAN 03340
	A10=C(J1,LN)	DAN08350
	J=J+1	DAN08360
	T(J)=T(J)+X8*A1*A2*A9*A10	DAN 08370
	J=J+1	DAN08380
245	T(J)=T(J)+X2*(A1*A10+A2*A9)**2	DAN 08390
250	CONTINUE	DAN 08400
260	GO TO 6000	DAN08410
1100	J =0	DAN08420
	DO 1140 K=1,NB	DAN 08430
	KP = M + K + 1	DAN08440
	A1=C(I1,K)	DAN 0845 0
1118	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING1)GO TO 1116	DAN 08460
	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING2)GD TO 1116	DAN08470
	GO TO 1117	DAN 03430
1116	J=J+1	DAN08490
	P1=0.D0	DAN08500
	IF(K.LT.MNM)GO TO 1110	DAN 08510
	IF(EA(K).GT.1.999999)GO TO 1110	DAN08520
	J=J+3	DAN 08530
	A5=0.D0	DAN08540
	P3=0.00	DAN08550
	P31=0.D0	DAN 08560
	GO TO 1110	DAN08570
1117	$P1 = A1 \neq A1$	DAN08530
	1+L=L	DAN 08590
	T(J)=T(J)+XI*P1*P1	DAN08600
	IF(K.LT.MNM)GO TO 1110	DAN03610
	IF(EA(K).GT.1.999999)GO TO 1110	DAN 08620
	A5=C(I1,KP)	DAN08630
	P3=A5*A5	DAN08640

	P31=A1*A5	DAN 08650
	J=J+1	DAN08660
	T(J)=T(J)+XI*P3*P3	DAN08670
	J=J+1	DAN08680
	T(J)=T(J)+X2*P31*P31	DAN08690
	J=J+1	DAN 08700
	T(J)=T(J)+X2*P1*P3	DAN08710
1110	KAND=K+1	DAN08720
	IF(K.EQ.NB)G0 TO 1130	DAN08730
	DO 1120 LN=KAND, NB	DAN08740
	LP=M-LN+1	DAN 08750
	A9=C(I1,LN)	DAN08760
	P7= A9* A9	DAN08770
	P13=A1*A9	DAN 08780
	1+L=L	DAN08790
	T(J)=T(J)+X2*P1*P7	D08800AD
	J=J+1	DAN08810
	T(J)=T(J)+X2*P13**2	DAN08820
	IF(LN.LT.MNM)GO TO 1120	DAN 08830
	IF(EA(LN).GT.1.999999)GO TO 1120	DAN08840
	A13=C(I1,LP)	DAN 08850
	P5=A13*A13	DAN 0886 0
	P9=A1*A13	DAN08870
	P17=A5*A13	DAN 08830
	J=J+1	DAN08890
	T(J)=T(J)+X2*P1*P5	DAN08900
	J=J+1	DAN08910
	T(J)=T(J)+X2*P9**2	DAN08920
	IF(K.LT.MNM)GO TO 1120	DAN08930
	IF(EA(K).GT.1.999999)GO TO 1120	DAN08940
	P35=A9*A5	DAN08950
	1+L=L	DAN08960

	T(J)=T(J)+X2*P3*P7	DAN089
	J=J+1	DAN 089
	T(J)=T(J)+X2*P35**2	DAN 089
	J=J+1	DAN090
	T(J)=T(J)+X2*P3*P5	DAN090
	J=J+1	DAN 090.
	T(J)=T(J)+X2*P17**2	DAN090
	J=J+1	DANO90
	T(J) = T(J) + X4 * P9 * P35	DANO90
	J=J+1	DANO90
	T(J) = T(J) + X4 * P13 * P17	DANO90
1120	CONTINUE	DANO90
1130	IF(MO.LE.0)GO TO 1140	DAN 090
	DO 1135 LQ=1,MO	DAN091
	LN=LQ+NB	DANO91
	A9=C(I1,LN)	DAN 091
	P21=A9*A9	DAN091
	P23=A1*A9	DAN091
	J=J+1	DAN 091
	T(J)=T(J)+X2*P1*P21	DAN091
	J=J+1	DAN091
	T(J)=T(J)+X2*P23**2	DAN091
	IF(K.LT.MNM)GO TO 1135	DANO91
	IF(EA(K).GT.1.999999)GO TO 1135	DAN 092
	P25=A9*A5	DAN092
	J=J+1	DAN092
	$T(J) = T(J) + X2 \neq P3 \neq P21$	DAN 392
	J=J+1	DAN092
	T(J)=T(J)+X2*P25**2	DAN092
	J=J+1	DAN092
	T(J)=T(J)+X4*P23*P25	DAN 092
1135	CONTINUE	DAN 092

1140	CONTINUE	DAN09290
	IF(MO.LE.1)GO TO 1160	DAN09300
	DO 1150 KQ=1,MO	DAN09310
	K=KQ+NB	DAN09320
	IF(KQ.EQ.MD)GO TO 1150	DAN09330
	KQ1=KQ+1	DAN09340
	DO 1145 LQ=KQ1,MO	DAN09350
	LN=LQ+NB	DAN 09360
	A1=C(I1,K)	DAN09370
	A9=C(I1,LN)	DAN09380
	1+L = L	DAN 09390
	T(J)=T(J)+X2*(A1**2)*(A9**2)	DAN09400
	J=J+1	DAN09410
1145	T(J)=T(J)+X2*(A1**2)*(A9**2)	DAN 09420
1150	CONTINUE	DAN09430
1160	GO TO 6000	DAN 09440
300	J= 0	DAN09450
	DO 340 K=1,NB	DAN09460
	KP = M - K + 1	DAN09470
	A1=C(I1,K)	DANO 9480
	A3=C(K1,K)	DAN 09490
318	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING1)GD TO 316	DAN09500
	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING2)G0 TO 316	DAN09510
	IF(DABS(A3).LE.1.D-08.AND.K.NE.NSING1)G0 TO 315	DAN 09520
	IF(DABS(A3).LE.1.D-U8.AND.K.NE.NSING2)G0 TO 315	DAN09530
	GO TO 317	DAN09540
316	1+L=L	DAN09550
	P1=0.00	DAN09560
	P2=A3*A3	DAN 09570
	IF(K.LT.MNM)GO TO 310	DAN09580
	IF(EA(K).GT.1.999999)GO TO 310	DAN09590
	J=J+3	DAN 09600

A5=0.D0	DAN09610
A7=C(K1,KP)	DAN 0962 0
P3=0.00	DAN09630
P4=A7*A7	DAN 09640
P31=0.00	DAN 09650
P33=A3*A7	DAN09660
GO TO 310	DAN 09670
315 J=J+1	DAN09680
$P1=A1 \neq A1$	DAN 09690
P2=0.D0	DAN 09700
IF(K.LT.MNM)GO TO 310	DAN09710
IF(EA(K).GT.1.999999)GD TO 310	DAN09720
5+L=L	DAN09730
A5=C(II,KP)	DAN09740
A7=0.D0	DAN 09750
P3=A5*A5	DAN09 7 60
P4=0.D0	DAN09770
P31=A1*A5	DAN 09780
P33=0.00	DAN09790
GO TO 310	DAN09800
317 P1=A1*A1	DAN09810
P2=A3*A3	DAN09820
1+L=L	DAN 09830
T(J) = T(J) + X2 * P1 * P2	DAN09840
IF(K.LT.MNM)GO TO 310	DAN09850
IF(EA(K).GT.1.999999)G0 TO 310	DAN 09860
A5=C(I1,KP)	DAN09870
A7=C(K1,KP)	DAN09880
P3=A5*A5	DAN09890
P4=A7*A7	DAN09900
P31=A1*A5	DAN 0991 0
P33=A3*A7	DAN09920

	1+1=1	DAN 09930
	T(J)=X2*P3*P4+T(J)	DAN 09940
	1+1=J+1	DAN09950
	T(J)=T(J)+X4*P31*P33	DAN09960
	J=J+1	DAN 09970
	T(J)=T(J)+X2*(P1*P4+P2*P3)	089990AD
310	KAND=K+1	DAN09990
	IF(K.EQ.NB)GO TO 330	DAN10000
	DO 320 LN=KAND, NB	DAN10010
	LP=M-LN+1	DAN10020
	A9=C(I1,LN)	DAN10030
	A11=C(K1,LN)	DAN10040
	P7=A11*A11	DAN10050
	P8=A9*A9	DAN10060
	P13=A1*A9	DAN10070
	P15=A11*A3	DAN10080
	J=J+1	DAN10090
	T(J)=T(J)+X2*(P1*P7+P2*P8)	DAN10100
	J=J+1	DAN10110
	T(J) = T(J) + X + *P13 *P15	DAN10120
	IF(LN.LT.MNM)GO TO 320	DAN10130
	IF(EA(LN).GT.1.999999)GO TO 320	DAN10140
	A13=C(I1,LP)	DAN10150
	A15=C(K1,LP)	DAN10160
	P5=A15*A15	DAN10170
	P6=A13*A13	DAN10180
	P9=A1*A13	DAN10190
	P11=A15*A3	DAN10200
	P17=A7*A15	DAN10210
	P19=A13*A5	DAN10220
	J=J+1	DAN10230
	T(J)=T(J)+X2*(P1*P5+P2*P6)	DAN10240

J=J+1	DAN10250
T(J) = T(J) + X4 * P9 * P11	DAN10260
IF(K.LT.MNM)GD TO 320	DAN10270
IF(EA(K).GT.1.999999)GD TO 320	DAN10280
P35=A9*A5	DAN10290
P37=A7*A11	DAN10300
J=J+1	DAN10310
T(J) = T(J) + X2 * (P8 * P4 + P7 * P3)	DAN10320
J=J+1	DAN10330
T(J) = T(J) + X4 * P35 * P37	DAN10340
J=J+1	DAN10350
T(J) = T(J) + X2*(P3*P5+P4*P6)	DAN10360
J=J+1	DAN10370
T(J) = T(J) + X4 * P19 * P17	DAN10380
J+L=L	DAN10390
T(J)=T(J)+X4*(P9*P37+P11*P35)	DAN10400
J=J+1	DAN10410
T(J)=T(J)+X4*(P13*P17+P15*P19)	DAN10420
CONTINUE	DAN10430
IF(MO.LE.0)GO TO 340	DAN10440
DO 335 LQ=1,MO	DAN10450
LN=LQ+NB	DAN10460
A9=C(I1,LN)	DAN10470
A11=C(K1,LN)	DAN10480
P21=A11*A11	DAN10490
P22=A9*A9	DAN10500
P23=A1*A9	DAN10510
P27=A11*A3	DAN10520
J=J+1	DAN10530
T(J)=T(J)+X2*(P1*P21+P2*P22)	DAN10540
J=J+1	DAN10550
T(J)=T(J)+X4*P23*P27	DAN10560
	J=J+1 T(J)=T(J)+X4*P9*P11 IF(K.LT.MNM)GG TO 320 IF(EA(K).GT.1.999999)GO TO 320 P35=A9*A5 P37=A7*A11 J=J+1 T(J)=T(J)+X2*(P8*P4+P7*P3) J=J+1 T(J)=T(J)+X2*(P3*P5+P4*P6) J=J+1 T(J)=T(J)+X2*(P3*P5+P4*P6) J=J+1 T(J)=T(J)+X4*(P9*P37+P11*P35) J=J+1 T(J)=T(J)+X4*(P9*P37+P11*P35) J=J+1 T(J)=T(J)+X4*(P13*P17+P15*P19) CONTINUE IF(M0.LE.0)GO TO 340 DO 335 LQ=1,MO LN=LQ+NB A9=C(I1,LN) A11=C(K1,LN) P21=A11*A11 P22=A9*A9 P23=A1*A9 P23=A1*A9 P27=A11*A3 J=J+1 T(J)=T(J)+X2*(P1*P21+P2*P22) J=J+1 T(J)=T(J)+X4*P23*P27

	IF(K.LT.MNM)GO TO 335	DAN10570
	IF(EA(K).GT.1.999999)GO TO 335	DAN10580
	P25=A11*A7	DAN10590
	P29=A5*A9	DAN10600
	J=J+1	DAN10610
	T(J)=T(J)+X2*(P3*P21+P4*P22)	DAN10620
	J=J+1	DAN10630
	T(J)=T(J)+X4*P25*P29	DAN10640
	J=J+1	DAN1 0650
	T(J)=T(J)+X4*(P23*P25+P27*P29)	DAN10660
335	CONTINUE	DAN10670
340	CONTINUE	DAN 10680
	IF(MO.LE.1)GO TO 360	DAN10690
	DO 350 KQ=1,MO	DAN10700
	K=KQ+NB	DAN10710
	IF(KQ.EQ.MO)GO TO 350	DAN10720
	KQ1=KQ+1	DAN10730
	DO 345 LQ=KQ1,MO	DAN10740
	LN=LQ+NB	DAN10750
	A1=C(I1,K)	DAN10760
	A3=C(K1,K)	DAN10770
	A9=C(I1,LN)	DAN10780
	A11=C(K1,LN)	DAN10790
	J=J+1	DAN10800
	T(J)=T(J)+X2*(Al*Al*All*All+A3*A3*A9*A9)	DAN10810
	J=J+1	DAN13820
345	T(J)=T(J)+X4*A1*A9*A3*A11	DAN10830
350	CONTINUE	DAN10840
360	GU TO 6000	DAN 10850
400	J =0	DAN10860
	DO 440 K=1,NB	DAN10870
	KP = M - K + 1	DAN10880

	A1=C(I1,K)	DAN10890
	A4=C(L1,K)	DAN10900
418	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING1)G0 TO 416	DAN10910
	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING2)GO TO 416	DAN10920
	IF(DABS(A4).LE.1.D-08.AND.K.NE.NSING1)GO TO 415	DAN10930
	IF(DABS(A4).LE.1.D-08.AND.K.NE.NSING2)G0 TO 415	DAN10940
	GO TO 417	DAN10950
416	J=J+1	DAN10960
	P1=0.00	DAN10970
	P2=0.00	DAN10980
	IF(K.LT.MNM)GO TO 410	DAN10990
	IF(EA(K).GT.1.999999)GD TO 410	DAN11000
	J=J+3	DAN11010
	A5=0.D0	DAN11020
	A3=C(L1,KP)	DAN1L030
	P3=0.00	DAN11040
	P4=0.D0	DAN11050
	P31=0.00	DAN11060
	P33=0.D0	DAN11070
	P34=0.00	DAN11030
	GO TO 410	DAN11090
415	1+L=L	DAN11100
	P1=A1*A1	DAN11110
	P2=0.00	DAN11120
	IF(K.LT.MNM)GO TO 410	DAN11130
	IF(EA(K).GT.1.999999)GO TO 410	DAN11140
	5+L=L	DAN11150
	A5=C(I1,KP)	DAN11160
	A8=0.D0	DAN11170
	P3=A5*A5	DAN11180
	P4=0.D0	DAN11190
	P31=A1*A5	DAN11200

	P33=0.D0	DAN11210
	P34=0.D0	DAN11220
	GO TO 410	DAN11230
417	P1=A1*A1	DAN11240
	P2=A1*A4	DAN11250
	1+L=L	DAN11260
	T(J) = T(J) + X4 + P1 + P2	DAN11270
	IF(K.LT.MNM)GO TO 410	DAN11280
	IF(EA(K).GT.1.999999)GO TO 410	DAN11290
	A5=C(I1,KP)	DAN11300
	A8=C(L1,KP)	DAN11310
	P3=A5*A5	DAN11320
	P4=A5*A8	DAN11330
	P31=A1*A5	DAN11340
	P33=A1*A8	DAN11350
	P34=A4*A5	DAN11360
	Q=2.D0*P31*(P33+P34)	DAN11370
	1+L=L	DAN11380
	T(J)=X4*93*P4+T(J)	DAN11390
	i +L=L	DAN11400
	T(J)=T(J)+X2*Q	DAN11410
	1+L=C	DAN11420
	T(J)=T(J)+X4*(P1*P4+P2*P3)	DAN11430
410	KAND=K+1	DAN11440
	IF(K.EQ.NB)GC TO 430	DAN11450
	DO 420 LN=KAND,NB	DAN11460
	LP=M-LN+1	DAN11470
	A9=C(I1,LN)	DAN11430
	A12=C(L1,LN)	DAN11490
	P7=A9*A12	DAN11500
	P8=A9*A9	DAN11510
	P13=A1*A9	DAN11520

P15=A9*A4	DAN11530	
P16=A12*A1	DAN11540	
1+L=L	DAN11550	
T(J)=T(J)+X4*(P1*P7+P2*P8)	DAN11560	
J=J+1	DAN11570	
T(J)=T(J)+X4*P13*(P15+P16)	DAN11580	
IF(LN.LT.MNM)GO TO 420	DAN11590	
IF(EA(LN).GT.1.999999)G0 TO 420	DAN11600	
A13=C(I1,LP)	DAN11610	
A16=C(L1,LP)	DAN11620	
P5=A13*A16	DAN11630	
P6=A13*A13	DAN11640	
P9=A1*A13	DAN11650	
P11=A13*A4	DAN11660	
P12=A16*A1	DAN11670	
P17=A5*A16	DAN11630	
P18=A8*A13	DAN11590	
P19=A13*A5	DAN11700	
<u>[+[</u>	DAN11710	
T(J)=T(J)+X4*(P1*P5+P2*P6)	DAN11720	
J=J+1	DAN11730	
T(J)=T(J)+X4*P9*(P11+P12)	DAN11740	
IF(K.LT.MNM)GO TO 420	DAN11750	
IF(EA(K).GT.1.999999)GD TO 420	DAN11760	
P35=A9*A5	DAN11770	
P38=A8*A9	DAN11780	
P3 7= A5*A12	DAN11790	
<u>i+t</u>	DAN11800	
T(J)=T(J)+X4*(P3*P4+P7*P3)	DAN11810	
J=J+1	DAN11820	
T(J)=T(J)+X4*P35*(P37+P38)	DAN11830	
[+[DAN11840	
	T(J)=T(J)+X4*(P3*P5+P4*P6)	DAN11850
-----	--	----------
	J=J+1	DAN11860
	T(J)=T(J)+X4*P19*(P17+P18)	DAN11870
	1=1+1	DAN11880
	T(J)=T(J)+X4*(P9*(P37+P38)+P35*(P11+P12))	DAN11890
	J=J+1	DAN11900
	T(J)=T(J)+X4*(P13*(P17+P18)+P19*(P15+P16))	DAN11910
420	CONTINUE	DAN11920
430	IF(M0.LE.0)GO TO 440	DAN11930
	DO 435 LQ=1,MO	DAN11940
	LN=LQ+NB	DAN11950
	A9=C(I1,LN)	DAN11960
	A12=C(L1,LN)	DAN11970
	P21=A9*A12	DAN11980
	P22=A9*A9	DAN11990
	P23=A1*A9	DAN12000
	P27=A9*A4	DAN12010
	P28=A12*A1	DAN12020
	J=J+1	DAN12030
	T(j)=T(J)+X4*(P1*P21+P2*P22)	DAN12040
	J=J+1	DAN12050
	T(J)=T(J)+X4*P23*(P27+P28)	DAN12060
	IF(K.LT.MNM)GO TO 435	DAN12070
	IF(EA(K).GT.1.999999)GO TO 435	DAN12080
	P25=A9*A8	DAN12090
	P26=A5*A12	DAN12100
	P29=A5*A9	DAN12110
	J=J+1	DAN12120
	T(J)=T(J)+X4*(P3*P21+P4*P22)	DAN12130
	J=J+1	DAN12140
	T(J)=T(J)+X4*P29*(P25+P26)	DAN12150
	1+t=L	DAN12160

	T(J)=T(J)+X4*(P23*(P25+P26)+P29*(P27+P28))	DAN12170
435	CONTINUE	DAN12180
440	CONTINUE	DAN12190
	IF(MD.LE.1)GO TO 460	DAN12200
	DO 450 KQ=1,MO	DAN12210
	K=KQ+NB	DAN12220
	IF(KQ.EQ.MO)GO TO 450	DAN12230
•	KQ1=KQ+1	DAN12240
	DO 445 LQ=KQ1,MU	DAN12250
	LN=LQ+NB	DAN12260
	A1=C(I1,K)	DAN12270
	A4=C(L1,K)	DAN12280
	A9=C(I1,LN)	DAN12290
	A12=C(L1,LN)	DAN12300
	1+L=L	DAN12310
	T(J)=T(J)+X4*A1*A9*(A1*A12+A4*A9)	DAN12320
	1+L=L	DAN12330
445	T(J)=T(J)+X4*A1*A9*(A4*A9+A1*A12)	DAN12340
450	CONTINUE	DAN12350
460	GU TU 6000	DAN12360
500	J =0	DAN12370
	DO 540 K=1,NB	DAN12380
	KP = M - K + 1	DAN12390
	A1=C(I1,K)	DAN12400
	A3=C(K1,K)	DAN12410
	A4=C(L1,K)	DAN12420
518	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING1)G0 TO 516	DAN12430
	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING2)G0 TO 516	DAN12440
	IF(DABS(A3).LE.1.D-08.OR.DABS(A4).LE.1.D-08.AND.K.NE.NSING1)	DAN12450
i	LGO TO 515	DAN12460
	IF(DABS(A3).LE.1.D-08.OR.DABS(A4).LE.1.D-08.AND.K.NE.NSING2)	DAN12470
	1GO TO 515	DAN12480

•

	GO TO 517	DAN12490
516	J=J+1	DAN12500
	P1=0.00	DAN12510
	P2=A3*A4	DAN12520
	IF(K.LT.MNM)GO TO 510	DAN12530
	IF(EA(K).GT.1.999999)G0 TO 510	DAN12540
	5+L=L	DAN12550
	A5=0.D0	DAN12560
	A7=C(K1,KP)	DAN12570
	A8=C(L1,KP)	DAN12580
	P3=0.D0	DAN12590
	P4=A7*A8	DAN12600
	P31=0.00	DAN12610
	P33=A3*A8	DAN12620
	P34=A4*A7	DAN12630
	GO TO 510	DAN12640
515	1+L=L	DAN12650
	P1=A1+A1	DAN12660
	P2=0.00	DAN12670
	IF(K.LT.MNM) GO TO 510	DAN12680
	IF(EA(K).GT.1.999999)GD TO 510	DAN12690
	6+L=L	DAN12700
	A5=C(I1,KP)	DAN12710
	A7=C(K1,KP)	DAN12720
	A3=C(L1,KP)	DAN12730
	P3=A5*A5	DAN12740
	P4=0.00	DAN12750
	P31=A1*A5	DAN12760
	P33=0.D0	DAN12770
	P34=0.D0	DAN12780
	GO TO 510	DAN12790
517	P l = A l * A l	DAN12800

	P2=A3*A4	DAN12810
	J=J+1	DAN12820
	T(J)=T(J)+X4*P1*P2	DAN12830
	IF(K.LT.MNM)GO TO 51)	DAN12840
	IF(EA(K).GT.1.999999)GD TO 510	DAN12850
	A5=C(I1,KP)	DAN12860
	A7=C(K1,KP)	DAN12870
	A8=C(L1,KP)	DAN12830
	P3=A5*A5	DAN12890
	P4=A7*A8	DAN12900
	P31=A1*A5	DAN12910
	P33=A3*A8	DAN12920
	P34=A4*A7	DAN12930
	Q=2.D0*(P33+P34)*P31	DAN12940
	J=J+1	DAN12950
	T(J)=X4*P3*P4+T(J)	DAN12960
	J=J+1	DAN1297J
	T(J)=T(J)+X2*Q	DAN12980
	J=J+1	DAN12990
	T(J) = T(J) + X4 * (P1 * P4 + P2 * P3)	DAN13000
510	KAND=K+1	DAN13010
	IF(K.EQ.NB)GO TO 530	DAN13020
	DO 520 LN=KAND,NB	DAN13030
	LP=M-LN+1	DAN13040
	A9=C(I1,LN)	DAN13050
	All=C(Kl,LN)	DAN13060
	A12=C(L1,LN)	DAN13070
	P7=A11*A12	DAN13080
	P8=A9*A9	DAN13090
	P13=A1*A9	DAN13100
	P15=A11*A4	DAN13110
	P16=A12*A3	DAN13120

J=J+1	DAN13130
T(j)=T(J)+X4*(P1*P7+P2*P8)	DAN13140
J=J+1	DAN13150
T(J)=T(J)+X4*P13*(P15+P16)	DAN13160
IF(LN.LT.MNM)GD TO 520	DAN13170
IF(EA(LN).GT.1.999999)GD TO 520	DAN13180
A13=C(I1,LP)	DAN13190
A15=C(K1,LP)	DAN13200
A16=C(L1,LP)	DAN13210
P5=A15*A16	DAN13220
P6=A13*A13	DAN13230
P9=A1*A13	DAN 13240
P11=A15*A4	DAN13250
P12=A16*A3	DAN13260
P17=A7*A16	DAN13270
P18=A8*A15	DAN13280
P19=A13*A5	DAN13290
J=J+1	DAN13300
T(J)=T(J)+X4*(P1*P5+P2*P6)	DAN13310
1=J+1	DAN13320
T(J) = T(J) + X4 * P9 * (P11 + P12)	DAN13330
IF(K.LT.MNM)GO TO 520	DAN13340
IF(EA(K).GT.1.999999)GU TO 520	DAN13350
P35=A9*A5	DAN13360
P37=A7*A12	DAN13370
P38=A8*A11	DAN13380
J=J+1	DAN13390
T(J)=T(J)+X4*(P8*P4+P7*P3)	DAN13400
J=J+1	DAN13410
T(J)=T(J)+X4*P35*(P37+P38)	DAN 13420
J=J+1	DAN13430
T(J)=T(J)+X4*(P3*P5+P4*P6)	DAN13440

J=J+1	DAN13450
T(J)=T(J)+X4*P19*(P17+P18)	DAN13460
J=J+1	DAN13470
T(J)=T(J)+X4*(P9*(P37+P38)+P35*(P11+P12))	DAN13480
J=J+1	DAN13490
T(J)=T(J)+X4*(P13*(P17+P18)+P19*(P15+P16))	DAN13500
520 CONTINUE	DAN13510
530 IF(MO.LE.O)GO TO 540	DAN13520
DO 535 LQ=1,MO	DAN13530
LN=LQ+NB	DAN13540
A9=C(I1,LN)	DAN13550
A11=C(K1,LN)	DAN13560
A12=C(L1,LN)	DAN13570
P21=A11*A12	DAN13580
P22=A9*A9	DAN13590
P23=A1*A9	DAN13600
P27=A11*A4	DAN13510
P28=A12*A3	DAN13620
1+L=L	DAN13630
T(J)=T(J)+X4*(P1*P21+P2*P22)	DAN13640
J=J+1	DAN13650
T(J)=T(J)+X4*P23*(P27+P28)	DAN13660
IF(K.LT.MNM)GD TO 535	DAN13670
IF(EA(K).GT.1.999999)GO TO 535	DAN13680
P25=A11*A8	DAN13690
P26=A7*A12	DAN13700
P29=A5*A9	DAN13710
1+L=L	DAN13720
T(J)=T(J)+X4*(P3*P21+P4*P22)	DAN13730
J=J+1	DAN13740
T(J)=T(J)+X4*P29*(P25+P26)	DAN13750
J=J+1	DAN13760

	T(J)=T(J)+X4*(P23*(P25+P26)+P29*(P27+P28))	DAN13770
53 5	CONTINUE	DAN13780
540	CONTINUE	DAN13790
	IF(MO.LE.1)GO TO 560	DAN13800
	DO 550 KQ=1,MO	DAN13810
	K=KQ+NB	DAN13820
	IF(KQ.EQ.MO)GO TO 550	DAN13830
	KQ1=KQ+1	DAN13840
	DO 545 LQ=KQ1,MO	DAN13850
	LN=LQ+NB	DAN13860
	A1=C(I1,K)	DAN13870
	A3=C(K1,K)	DAN13880
	A4=C(L1,K)	DAN13890
	A9=C(I1,LN)	DAN13900
	A11=C(K1,LN)	DAN13910
	A12=C(L1,LN)	DAN13920
	[+L=L	DAN13930
	T(J)=T(J)+X4*(A1*A1*A11*A12+A3*A4*A9*A9)	DAN13940
	1+1=L	DAN13950
545	T(J)=T(J)+X4*A1*A9*(A4*A11+A3*A12)	DAN13960
550	CONTINUE	DAN13970
560	GO TO 6000	DAN13980
700	J =0	DAN13990
	DO 740 K=1,NB	DAN14000
	KP=M-K+1	DAN14010
	A1=C(I1,K)	DAN14020
	A2=C(J1,K)	DAN14030
718	IF(DABS(A2).LE.1.D-08.AND.K.NE.NSING1)G0 TO 715	DAN14040
	IF(DABS(A2).LE.1.D-08.AND.K.NE.NSING2)G0 TO 715	DAN14050
	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING1)GO TO 716	DAN14060
	IF(DABS(A1).LE.1.D-08.AND.K.NE.NSING2)G0 TO 716	DAN14070
	GO TO 717	DAN14080

144

,

71/	01-0.00	DAN14000
110		DAN14090
	$PZ=AZ \times AZ$	DANI4100
	J=J+1	DAN14110
	IF(K.LT.MNM)GO TO 710	DAN14120
	IF(EA(K).GT.1.999999)GD TO 710	DAN14130
	J=J+3	DAN14140
	A5=0.00	DAN14150
	A6=C(J1,KP)	DAN14160
	P3=0.D0	DAN14170
	P 4=A 5*A 6	DAN14180
	P31=0.D0	DAN14190
	P32=0.00	DAN14200
	P33=A2*A6	DAN14210
	GO TO 710	DAN14220
715	J=J+1	DAN14230
	$P_{1}=0.00$	DAN14240
	P2=0.D0	DAN14250
	IF(K-LT-MNM)G0 T0 710	DAN14260
	IF(EA(K).GT.1.9999999)60 TO 710	DAN14270
	J=J+3	DAN14280
	$\Delta 5 = C(11 \cdot KP)$	DAN14290
	A6=0.D0	DAN14300
	P3=0-D0	DAN14310
	$P_{4=0,00}$	DAN14320
	P31=0-D0	DAN14230
	P32=0.00	DAN14340
	P33=0.00	DAN14350
		DAN14360
717	91-A1*A2	0AN16270
111	F 1~~ N 1 THC D 0 ~ N 0 + N 0	DANIA200
	r 2- H 2 * H 2	DAN14380
		UAN14390
	1 (J) = 1 (J) + X 4 7 Y L 7 Y Z	UAN14400

	IF(K.LT.MNM)GO TO 710	DAN14410
	IF(EA(K).GT.1.999999)GD TO 710	DAN14420
	A5=C(I1,KP)	DAN14430
	A6=C(J1,KP)	DAN14440
	P3=A5*A6	DAN14450
	P4=A6*A6	DAN14460
	P31=A1*A6	DAN14470
	P32=A2*A5	DAN14480
	P33=A2*A6	DAN14490
	Q=2.D0*P33*(P31+P32)	DAN14500
	j=j+1	DAN14510
	T(J) = X4 + P3 + P4 + T(J)	DAN14520
	J=J+1	DAN14530
	T(J)=T(J)+X2*Q	DAN14540
	J=J+1	DAN14550
	T(J)=T(J)+X4*(P1*P4+P2*P3)	DAN14560
710	KAND=K+1	DAN14570
	IF(K.EQ.NB)GO TO 730	DAN14580
	DO 720 LN=KAND,NB	DAN14590
	LP=M-LN+1	DAN14600
	A9=C(I1,LN)	DAN14610
	A10=C(J1,LN)	DAN14620
	P7=A10*A10	DAN14630
	P8=A9*A10	DAN14640
	P13=A1*A10	DAN14650
	P14=A2*A9	DAN14650
	P15=A10*A2	DAN14670
	J=J+1	DAN14680
	T(J)=T(J)+X4*(P1*P7+P2*P8)	DAN14690
	J=J+1	DAN14700
	T(J)=T(J)+X4*P15*(P13+P14)	DAN14710
	IF(LN.LT.MNM)GO TO 720	DAN14720

IF(EA(LN).GT.1.999999)GO TO 720	DAN14730
A13=C(I1,LP)	DAN14740
A14=C(J1+LP)	DAN14750
P5=A14*A14	DAN14760
P6=A13*A14	DAN14770
P9=A1 + A14	DAN14780
P10=A13*A2	DAN14790
P11=A14*A2	DAN14800
$P_1 7 = \Delta 6 \star \Delta 14$	DAN14810
$P19=A13 \pm A6$	DAN14820
P20=45*414	DAN14830
J=J+1	DAN14840
T(J)=T(J)+X4*(P1*P5+P2*P6)	DAN14850
J=J+1	DAN14860
T(J) = T(J) + X4 + P11 + (P9 + P10)	DAN14870
IF(K.LT.MNM)G0 TO 720	DAN14880
IF(EA(K).GT.1.999999)GO TO 720	DAN14890
P35=A9*A6	DAN14900
P36=A5*A10	DAN14910
P37=A6*A10	DAN14920
J=J+1	DAN14930
T(J)=T(J)+X4*(P8*P4+P7*P3)	DAN14940
1=1+1	DAN14950
T(J)=T(J)+X4*P37*(P35+P36)	DAN14960
J=J+1	DAN14970
T(J)=T(J)+X4*(P3*P5+P4*P6)	DAN14980
J=J+1	DAN14990
T(J)=T(J)+X4*P17*(P19+P20)	DAN15000
1+1	DAN15010
T(J)=T(J)+X4*(P37*(P9+P10)+P11*(P35+P36))	DAN15020
J=J+1	DAN15030
T(J)=T(J)+X4*(P17*(P13+P14)+P15*(P19+P20))	DAN15040

720	CONTINUE	DAN15050
730	IF(MO.LE.0)GO TO 740	DAN15060
	DO 735 LQ=1,MU	DAN15070
	LN=LQ+NB	DAN15030
	A9=C(I1,LN)	DAN15090
	A10=C(J1,LN)	DAN15100
	P21=A10*A10	DAN15110
	P22=A9*A10	DAN15120
	P23=A1*A10	DAN15130
	P24=A9*A2	DAN15140
	P27=A10*A2	DAN15150
	J=J+1	DAN15160
	T(J) = T(J) + X4*(P1*P21+P2*P22)	DAN15170
	1+1=6	DAN15180
	T(J) = T(J) + X4 + P27 + (P23 + P24)	DAN15190
	IF(K.LT.MNM)GO TO 735	DAN15200
	IF(EA(K).GT.1.999999)GO TO 735	DAN15210
	P25=A10*A6	DAN15220
	P29=A5*A10	DAN15230
	P30=A6*A9	DAN15240
	J=J+1	DAN15250
	T(J) = T(J) + X4 + (P3 + P21 + P4 + P22)	DAN15260
	1+L=L	DAN15270
	T(J)=T(J)+X4*P25*(P29+P30)	DAN15230
	<u>i</u> +t	DAN15290
	T(J) = T(J) + X4*(P25*(P23+P24)+P27*(P29+P30))	DAN15300
735	CONT INUE	DAN15310
740	CONTINUE	DAN 15320
	IF(MO.LE.1)GO TO 760	DAN15330
	DO 750 KQ=1.MO	DAN15340
	K=KQ+NB	DAN15350
	IF(KQ.EQ.MO)GO TO 750	DAN15360

KQ1=KQ+1	DAN15370
DO 745 LQ=KQ1,MO	DAN15380
LN=LQ+NB	DAN15390
A1=C(I1,K)	DAN15400
A2=C(J1,K)	DAN15410
A9=C(II,LN)	DAN15420
A10=C(J1,LN)	DAN15430
J=J+1	DAN15440
$T(J) = T(J) + X4 \times A2 \times A10 \times (A1 \times A10 + A2 \times A9)$	DAN15450
J=J+1	DAN15460
745 $T(J)=T(J)+X4*A2*A10*(A1*A10+A2*A9)$	DAN15470
750 CONTINUE	DAN15480
760 GD TO 6000	DAN15490
600 J=0	DAN15500
DO 640 K=1,NB	DAN15510
KP=M-K+1	DAN15520
A1=C(I1,K)	DAN15530
A2=C(J1,K)	DAN15540
A3=C(K1,K)	DAN15550
618 IF(DABS(A1).LE.1.D-08.OR.DABS(A2).LE.1.D-08.AND.K.NE.NSING1)	DAN 15560
1GO TO 616	DAN15570
IF(DABS(A1).LE.1.D-08.OR.DABS(A2).LE.1.D-08.AND.K.NE.NSING2)	DAN15580
1GD TO 616	DAN15590
IF(DABS(A3).LE.1.D-08.AND.K.NE.NSING1)G0 TO 615	DAN15600
IF(DABS(A3).LE.1.D-08.AND.K.NE.NSING2)GO TO 615	DAN15610
GO TO 617	DAN15620
616 J=J+1	DAN15630
P1=0.00	DAN15640
P2=A3*A3	DAN15650
IF(K.LT.MNM)GO TO 610	DAN15660
IF(EA(K).GT.1.999999)GO TO 610	DAN15670
J=J+3	DAN15630

	A5=C(11,KP)	DAN15690
	A6=C(J1, KP)	DAN1 5700
	A7=C(K1,KP)	DAN15710
	P3=0.00	DAN15720
	P4=A7*A7	DAN15730
	P31=0.00	DAN15740
	P32=0.D0	DAN15750
	P33=A3*A7	DAN15760
	GO TO 610	DAN15770
615	J+1 = j	DAN15780
	P1=A1*A2	DAN15790
	P2=0.00	DAN15800
	IF(K.LT.MNM)GO TO 610	DAN15810
	IF(EA(K).GT.1.999999)GO TO 510	DAN15820
	5+L=L	DAN15830
	A5=C(I1,KP)	DAN15840
	A6=C(J1,KP)	DAN15850
	A7=0.D0	DAN15860
	P3=A5*A6	DAN15870
	P4=0.D0	DAN15880
	P31=A6*A1	DAN15890
	P32=A2*A5	DAN15900
	P33=0.D0	DAN15910
	GO TO 610	DAN15920
617	P1=A1*A2	DAN15930
	P2=A3*A3	DAN15940
	1+L=L	DAN15950
	T(J) = T(J) + X4 + P1 + P2	DAN15960
	IF(K.LT.MNM)GO TO 610	DAN15970
	IF(E4(K).GT.1.999999)GO TO 610	DAN15980
	A5=C(I1,KP)	DAN15990
	A6=C(J1,KP)	DAN16000

	A7=C(K1,KP)	DAN16010
	P3=A5*A6	DAN16020
	P4=A7*A7	DAN16030
	P31=A1*A6	DAN16040
	P32=A2*A5	DAN16050
	P33=A3*A7	DAN16060
	Q=2.D0*P33*(P31+P32)	DAN16070
	1+1=1+1	DAN16080
	T(J)=X4*P3*P4+T(J)	DAN16090
	J=J+1	DAN16100
	T(J)=T(J)+X2 *Q	DAN16110
	J=J+1	DAN16120
	T(J)=T(J)+X4*(P1*P4+P2*P3)	DAN16130
610	KAND=K+1	DAN16140
	IF(K.EQ.NB)GO TO 630	DAN16150
	DO 620 LN=KAND,NB	DAN16160
	LP=M-LN+1	DAN16170
	A9=C(I1,LN)	DAN16180
	A10=C(J1,LN)	DAN16190
	A11=C(K1,LN)	DAN16200
	97=A11*A11	DAN16210
	P8=A9*A10	DAN16220
	P13=A1*A10	DAN16230
	P14=A2*A9	DAN16240
	P15=A11*A3	DAN16250
	J=J+1	DAN16260
	T(J)=T(J)+X4*(P1*P7+P2*P8)	DAN16270
	J=J+1	DAN16280
	T(J)=T(J)+X4*P15*(P13+P14)	DAN16290
	IF(LN.LT.MNM)GO TO 620	DAN16300
	IF(EA(LN).GT.1.999999)GO TO 62	0 DAN16310
	A13=C(I1,LP)	DAN16320

	A14=C(J1,LP)	DAN16330
	A15=C(K1,LP)	DAN16340
	P5=A15*A15	DAN16350
	P6=A13*A14	DAN16360
	P9=A1*A14	DAN16370
	P10=A13*A2	DAN16380
	P11=A15*A3	DAN16390
	P17=A7*A15	DAN16400
	P19=A13*A6	DAN16410
	P20=A5*A14	DAN16420
	J=J+1	DAN16430
	T(J)=T(J)+X4*(P1*P5+P2*P6)	DAN16440
	J=J+1	DAN16450
	T(J)=T(J)+X4*P11*(P9+P10)	DAN16460
	IF(K.LT.MNM)GO TO 620	DAN16470
	IF(EA(K).GT.1.999999)GO TO 620	DAN16480
	P35=A9*A6	DAN16490
	P36=A5*A10	DAN 16500
	P37=A7*A11	DAN16510
	J=J+1	DAN16520
	T(J)=T(J)+X4*(P8*P4+P7*P3)	DAN16530
	J=J+1	DAN16540
	T(J)=T(J)+X4*P37*(P35+P36)	DAN16550
	J=J+1	DAN16560
	T(J)=T(J)+X4*(P3*P5+P4*P6)	DAN16570
	J=J+1	DAN16580
	T(J)=T(J)+X4*P17*(P19+P20)	DAN16590
	J=J+1	DAN16600
	T(J)=T(J)+X4*(P37*(P9+P10)+P11*(P35+P36))	DAN 1661 0
	J=J+1	DAN16620
	T(J)=T(J)+X4*(P17*(P13+P14)+P15*(P19+P20))	DAN 16630
620	CONTINUE	DAN16640

•

. •

630	IF(M0.LE.0)GO TO 640	DAN16650
	DO 635 LQ=1,MO	DAN16660
	LN=LQ+NB	DAN16670
	A9=C(I1,LN)	DAN16680
	A10=C(J1,LN)	DAN16690
	A11=C(K1,LN)	DAN16700
	P21=A11*A11	DAN16710
	P22=A9*A10	DAN16720
	P23=A1*A10	DAN16730
	P24=A9*A2	DAN16740
	P27=A11*A3	DAN16750
	J=J+1	DAN16760
	T(J)=T(J)+X4*(P1*P21+P2*P22)	DAN16770
	J=J+1	DAN16730
	T(J)=T(J)+X4*P27*(P23+P24)	DAN16790
	IF(K.LT.MNM)GD TO 635	DAN16800
	IF(EA(K).GT.1.999999)G0 TO 635	DAN16810
	P25=A11*A7	DAN16820
	P29=A5*A10	DAN16830
	P30=A6*A9	DAN16840
	<u>i+t</u> =t	DAN16850
	T(J)=T(J)+X4*(P3*P21+P4*P22)	DAN16860
	J=J+1	DAN16870
	T(J)=T(J)+X4*P25*(P29+P30)	DAN16580
	J=J+1	DAN16890
	T(J)=T(J)+X4*(P25*(P23+P24)+P27*(P29+P30))	DAN16900
635	CONTINUE	DAN16910
640	CONTINUE	DAN16920
	IF(MD.LE.1)GO TO 660	DAN16930
	DO 650 KQ=1,MO	DAN16940
	K=KQ+NB	DAN16950
	IF(KQ.EQ.MO)GO TO 650	DAN16960

	KQ1=KQ+1	DAN16970
	DO 645 LQ=KQ1,MO	DAN16980
	LN=LQ+NB	DAN16990
	A1=C(I1,K)	DAN17000
	A2=C(J1,K)	DAN17010
	A3=C(K1,K)	DAN17020
	A9=C(II,LN)	DAN17030
	A10=C(J1,LN)	DAN17040
	A11=C(K1,LN)	DAN17050
	1+1 1+1	DAN17060
	T(J)=T(J)+X4*(A1*A2*A11*A11+A3*A3*A9*A10)	DAN17070
	J=J+1	DAN17030
645	T(J)=T(J)+X4*A3*A11*(A1*A10+A2*A9)	DAN17090
650	CONTINUE	DAN17100
660	G0 T0 6000	DAN17110
6000	CONTINUE	DAN17120
10	IF(NINTS-MN1)30,20,54	DAN17130
54	MN1=MN1+1	DAN17140
	GU TO 55	DAN17150
С		DAN17160
С	IF THIS WAS NOT THE LAST RECORD, GO BACK INTO THE LOOP AND	DAN17170
C	READ ANOTHER RECORD OF INTEGRALS.	DAN17180
С	IF CHECKSUM PRINT FLAG IS ON, AND THERE ARE NO MORE CHECKSU	MSDAN17190
С	PRINT THEM	DAN17200
С		DAN17210
76	IF(IPTI.EQ.O.AND.IRC.EQ.1)GO TO 78	DAN17220
С		DAN17230
С	PRINT THE CHECKSUMS OBTAINED ON THIS RUN THROUGH THE LOOP	DAN17240
С		DAN17250
	WRITE(6,39)NMINNW	DAN17260
78	CONTINUE	DAN17270
19	FORMAT(1H1////37X,	DAN17230

	161HINTERNAL CHECK SUMS, ETC. FROM READING TWO ELECTRON INTEGRALS/	/DAN17290
	16H REC ,7(1X,17H FIRST NOS LAST)/	DAN17300
	16H NOS ,7(1X,17H LABEL OF LABEL)/	DAN17310
	16X,7(1X,17H J L INTS J L))	DAN17320
	29 FORMAT (1X,14,1X,7(13,13,1X,14,13,13,1X))	DAN17330
	39 FORMAT(12X,	DAN17340
	118H THIS NOS. OF INTS, I12)	DAN17350
	RETURN	DAN17360
С		DAN17370
C	ERROR EXIT FOR INCORRECT VALUE OF NINTS (POSSIBLE TAPE READ	DAN17330
С	ERROR)	DAN17390
С		DAN17400
	30 WRITE(6,9)	DAN17410
	9 FORMAT('0', 'ERROR IN NOINTS')	DAN17420
	CALL ABT	DAN17430
	STOP	DAN17440
	END	DAN17450
CW	ATE SUBROUTINE WATE	DAN17460
	SUBROUTINE WATE (FA, H, CA, CB, BETA, TENO, EB, SOMEGA, B, AX, A, EA, BX, DE	LDAN17470
	1W, BE, SPIN, ED, AZIJ, PKD, VAL, CUT, EN, INAME, NTAPE, NRX, NTOP, NIN, NBFNS,	DAN17480
	INA, NB, NR)	DAN17490
С		DAN17500
C	REFERENCES: (1) PHILLIPS AND SCHUG, J.CHEM.PHYS. 61, 1031	DAN17510
С	(1974); (2) HARRIMAN, IBID. 40, 2827(1964); (3) HARDISSON AND	DAN17520
С	HARRIMAN, IBID. 46, 3639(1967); (4) SANDU AND HARRIMAN, IBID.	DAN17530
С	47,180(1967); (5) SASAKI AND DHND, J. MATH. PHYS. 7, 1140	DAN17540
С	(1963).	DAN17550
С	ERRATUM FOR REFERENCE (1): EQN. (24) SHOULD READ	DAN17560
С	E(I) = (1 - D(I) * 2) * 0.5 = 2 * T(I) * U(I)	DAN17570
С	THIS IS A TYPOGRAPHICAL ERROR. THE CORRECT FORM WAS USED IN	DAN17580
С	THE CALCULATIONS.	DAN17590
С		DAN17600

IMPLICIT REAL*8(A-H,O-Z)	DAN17610
REAL*8 ILBL, ILAB, ILABL, INTNAM, INAME	DAN17620
COMMON/ZEIT/LAPSE,LAPST	DAN17630
COMMON/LABELS/ILBL(12), ILAB(12)	DAN17640
COMMON/IOIND/ICON(24)	DAN17650
DIMENSION FA(NRX,NRX), H(NRX, NRX), CA(NRX, NRX), CB(NRX, NRX), BE	TA(NRX, DAN17660
1NRX)	DAN17670
DIMENSION INAME(6)	DAN17680
DIMENSION TEND(NTOP)	DAN17690
DIMENSION EB(NRX), SOMEGA(NRX), B(NRX), AX(NRX), A(NRX), EA(NRX)	,BX(NRXDAN17700
1), DELW(NRX), BE(NRX), SPIN(NRX), ED(NRX), A2IJ(NRX)	DAN 17710
DIMENSION PKD(NIN), VAL(NIN)	DAN17720
REAL*8 ILBL,ILAB	DAN17730
EXTERNAL F,CK	DAN17740
	DAN17750
SET CONSTANTS	DAN17760
	DAN17770
NT I = 5	DAN17780
NTD=6	DAN17790
READ(NTI,169)KIKMAX	DAN17800
XNA=DFLOAT(NA)	DAN17810
XNB=DFLOAT(NB)	DAN17820
XM=0.5D0*(XNA-XNB)	DAN17830
XN=0.5D0*(XNA+XNB)	DAN17840
S2=XM	DAN17850
NBP=NB+1	DAN17860
M=NA+NB	DAN17870
NC=NBFNS	DAN17380
N=NR	DAN17890
NTT = (N*(N+1))/2	DAN17900
NP=N+1	DAN17910
NM=N-1	DAN17920

C C C

156

	NAP=NA+1	DAN17930
	NAM=NA-1	DAN17940
	NBM=NB-1	DAN17950
	N2=N/2	DAN17960
	N2P=N2+1	DAN17970
	MP=M+1	DAN17980
	MU=NA-NB+1	DAN17990
	MO=NA-NB	DAN18000
	WRITE(NTO,209)	DAN18010
	WRITE(NTO,299)NA,NB	DAN18020
С		DAN18030
С	INITIALIZE ARRAYS AND INVERT ORDER OF BETA EIGENVALUES(EB'S)	DAN18040
С		DAN18050
	DO 10 I=1,N	DAN18050
	SOMEGA(I) = EB(N-I+1)	DAN18070
	10 A(I) = 0.00	DAN18080
	DC 20 I=1,N	DAN18090
	IF(SOMEGA(I).LT.O.)SOMEGA(I)=0.DO	DAN13100
	IF(SOMEGA(I).GT.1.)SOMEGA(I)=1.DO	DAN18110
	20 EB(I)=SOMEGA(I)	DAN19120
С		DAN18130
С	THE EB(I) ARE THE D(I)**2 OF REF. (1).	DAN18140
С	THE EA(I) ARE EQUAL TO E(I)**2 OF REF. (1).	DAN18150
С		DAN18160
	DO 30 I=1,NB	DAN18170
	3(1)=0.00	DAN18180
	30 AX(I)=1.DO-EB(I)	DAN18190
	I=1	DAN18200
	B(I) = 1.00	DAN18210
	A(I) = 1.00	DAN18220
	B(NBP)=1.DO	DAN18230
	A(NBP)=1.00	DAN18240

		WRITE(NTO,9)	DAN18250
		WRITE(NTO,19)(EB(I), I=1, N)	DAN13260
С			DAN18270
С		CALCULATE SUMS OF CONTINUING PRODUCTS	DAN18280
С			DAN18290
		FA(1,1)=EB(1)	DAN18300
		FA(2,1)=0.00	DAN18310
		IF(NB.LE.1)GO TO 221	DAN18320
		00 50 J=2,NB	DAN18330
		JM=J-1	DAN18340
		FA(1,J)=FA(1,JM)+EB(J)	DAN18350
		DO 40 K=2,J	DAN18360
	40	FA(K,J)=FA(K,JM)+EB(J)*FA(K-1,JM)	DAN18370
		FA(J+1,J)=0.00	DAN18380
	50	CONTINUE	DAN18390
	221	DO 60 I=1,NB	DAN18400
	60	A(I+1)=FA(I,NB)	DAN18410
С			DAN18420
С		THESE ARE HARRIMAN'S ASUBK. SEE EQN. (21) OF REF. (2)	DAN18430
С			DAN13440
		WRITE(NTO,29)	DAN18450
		WRITE(NTO, 19)(A(I), $I=1$, NBP)	DAN18460
		FA(1,1)=AX(1)	DAN18470
		FA(2,1)=0.D0	DAN18480
		IF(NB.LE.1)GO TO 222	DAN18490
		DO 80 J=2,NB	DAN18500
		JM=J−1	DAN18510
		FA(1,J)=FA(1,JM)+AX(J)	DAN18520
		DO 70 K=2,J	DAN18530
	70	FA(K,J)=FA(K,JM)+AX(J)*FA(K-1,JM)	DAN18540
		FA(J+1, J) = 0.00	DAN18550
	80	CONTINUE	DAN18560

	222	00 90 I=1,NB	DAN18570
	90	B(I+1)=FA(I,NB)	DAN13580
С			DAN18590
С		THESE ARE BSUBK OF REFS. (1), (2), AND (3).	DAN18600
С			DAN18610
		WRITE(NTO,119)	DAN18620
		WRITE(NTO,19)(B(I),I=1,NBP)	DAN18630
С			DAN18640
С		CALCULATION OF WEIGHTS FROM EQN. (26) OF REF. (1).	DAN18650
С			DAN18660
		DO 110 I=1,NBP	DAN18670
		SI=XM+I-1.00	DAN18680
		XZ = XN - SI	DAN18690
		MM=XZ+1.01	DAN18700
		IS=2.*SI+0.01	DAN18710
		MS=SI+XM+0.01	DAN18720
		NS = SI - XM + 0.01	DAN18730
		XS=DFLOAT(IS)	DAN18740
		SDMEGA(I)=0.DO	DAN18750
		DO 100 J=1,MM	DAN18760
		JM=J-1	DAN18770
	100	SOMEGA(I)=SOMEGA(I)+(-1.DO)**JM*(F(NS+JM,1)**2*B(NS+J))/(F(IS+J,1	DAN18780
	1	L*F(JM,1))	DAN13790
		SOMEGA(I)=(XS+1.DO)*F(MS,1)*SOMEGA(I)/F(NS,1)	DAN18800
		I M = I - I	DAN18810
	110	WRITE(NTO, 39)SI, SOMEGA(I)	DAN18820
С			DAN18830
С		INVERT THE ORDER OF THE NATURAL ORBITAL OF CHARGE EIGENVALUES	DAN18840
С		SO THAT THE LOWEST ORBITAL HAS THE HIGHEST OCCUPATION	DAN18850
С			DAN18860
		DO 120 I=1,N	DAN18870
		AX(I) = EA(N - I + 1)	DAN18880

	DO 120 J=1,NC	DAN18890	
120	H(J,I)=CA(J,N-I+1)	DAN18900	
	DO 130 J=1,NR	DAN18910	
	EA(J) = AX(J)	DAN18920	
	DO 130 I=1,NC	DAN18930	
130	CA(I,J)=H(I,J)	DAN18940	
	DO 1200 I=1,N	DAN13950	
	DO 1200 J=1,NC	DAN13960	
1200	H(J,I) = CB(J,N-I+1)	DAN18970	
	DO 1210 I=1,NC	DAN18980	
	00 1210 J=1,N	DAN13990	
1210	CB(I,J)=H(I,J)	DAN19000	
	IF(NA.NE.NB.OR.ICON(4).EQ.0)GO TO 5	DAN19010	
	DO 140 I=1,NC	DAN19020	
	CA(I,NA)=TENO(I)	DAN19030	
140	CA(I,NBP)=TENO(N+I)	DAN19040	
	CALL MPRY2(CA, EA, B, 6 HMODIFI, 6 HED N. 0, 6 HRBS CG, 0, NR, NC, NRX)	DAN19050	
5	CONTINUE	DAN19060	
С		DAN19070	Ę
С	CALCULATION OF A(K+1)'S FROM RECURSION RELATION	DAN 19080	č
С		DAN19090	
	DO 150 I=1,N	DAN19100	
	H(1,I)=1.00	DAN19110	
150	FA(1,1)=1.00	DAN19120	
	IF(NB.LE.1)GO TO 223	DAN19130	
	DO 170 I=2,NB	DAN19140	
	IM=I-1	DAN19150	
-	DO 160 J=1,NB	DAN19160	
C		DAN19170	
C	EQN. (31) OF REF. (2)	DAN19180	
C		DAN19190	
160	FA(1,J)=A(1)-EB(J)*FA(1M,J)	DAN19200	

	170	CONTINUE	DAN19210
С			DAN19220
С		FA(K,L) IS ASUBK(L) OF REF. (2)	DAN19230
С			DAN19240
	223	WRITE(NTO,129)	DAN19250
		CALL MWRITE (FA, 6HFA(K, L, 6H) = AS , 6HUBK(L), 1, NB, NB, NRX)	DAN19260
С			DAN19270
С		CORRECT PHASES OF NATURAL ORBITALS TO INSURE THAT TSUBI AND	DAN19280
С		USUBI ARE POSITIVE. SEE EQNS. (14), AND (15) OF REF. (1).	DAN19290
С			DAN19300
		NBMM=NB-1	DAN19310
		IF(NA.NE.NB.DR.ICON(4).EQ.O)NBMM=NB	DAN19320
		DO 210 I=1,NBMM	DAN19330
		JI = M - I + 1	DAN19340
		IF(JI.GT.N)GU TO 210	DAN19350
		XV=1.D-05	DAN19350
		KK=1	DAN19370
1	875	IF(DABS(CA{KK,I)).GE.XV.AND.DABS(CA(KK,JI)).GE.XV.AND.	DAN19380
	1	1 DABS(CB(KK,I)).GE.XV) GO TO 1900	DAN19390
		KK=KK+1	DAN19400
		GO TO 1875	DAN19410
1	900	LL=KK+1	DAN19420
3	905	IF(DABS(CA(LL,I)).GE.XV.AND.DABS(CA(LL,JI)).GE.XV.AND.	DAN19430
	1	1 DABS(CB(LL,I)).GE.XV) GD TO 1910	DAN19440
]	1906	LL=LL+1	DAN19450
		GO TO 1905	DAN19460
1	910	XXV=CA(LL,JI)*CA(KK,I)-CA(LL,I)*CA(KK,JI)	DAN19470
		IF(DABS(XXV).LT.1.0-06)G0 TO 1906	DAN19480
		XV=CA(LL,JI)/CA(KK,JI)	DAN19490
		AX(I)=(CB(LL,I)-CB(KK,I)*XV)/(CA(LL,I)-CA(KK,I)*XV)	DAN19500
		XV=CA(LL,I)/CA(KK,I)	DAN19510
		BX(I)=(CB(LL,I)-CB(KK,I)*XV)/(CA(KK,JI)*XV-CA(LL,JI))	DAN19520

		IF(AX(I).GT.0.)GD TO 15	DAN19530
		DO 190 J=1,NC	DAN19540
	190	CA(J,I) = -1.DO*CA(J,I)	DAN19550
	15	IF(6X(1).LE.0.)GO TO 210	DAN19560
		DO 200 J=1,NC	DAN19570
	200	CA(J,JI) = -1.00 * CA(J,JI)	DAN19580
	210	CONTINUE	DAN19590
		CALL MPRY2(CA, EA, B, 6HNATL D, 6HRBS OF, 6H CHG , 0, NR, NC, NRX)	DAN19600
С			DAN19610
С		NATURAL ORBITALS OF SPIN CALCULATION	DAN19620
С			DAN19630
		DO 213 I=1,M	DAN19640
		BX(I)=0.00	DAN19650
	213	AX(I)=0.00	DAN19660
		DO 240 I=1,N	DAN19670
		DELW(I) = DSQRT(1.DO-EB(I))	DAN19680
	240	BE(I)=DSQRT(EB(I))	DAN19690
		E1UP=0.D0	DAN19700
		E2UP=0.D0	DAN19710
		XA1=0.D0	DAN19720
		MNM=M-N+1	DAN19730
С			DAN19740
С		ATOMIC SPIN DENSITIES CALCULATION	DAN19750
С		SEE TABLE II IN REF. (2)	DAN19760
С			DAN19770
С			DAN19780
С		CALCULATE INTEGRALS OVER NATURAL ORBITALS	DAN19790
С			DAN19800
		CALL NOINTS(EA, PKD, VAL, CA, TENO, CUT, INAME, NB, MNM, MO, M, NINTS, NI	N,NRXDAN19810
	1	L,NTOP,NTAPE)	DAN19320
		DO 470 KIK=1,KIKMAX	DAN19830
		IF(SOMEGA(KIK).LE.1.D-16)G0 TD 470	DAN19840

.

	XKIK=KIK-1.DO	DAN19850
	S2=XM+XKIK	DAN19860
	WRITE(NTO,59)S2	DAN19870
	IF(MU.EQ.1)GO TO 65	DAN19880
	CALL MCLEAR(H,NRX,NRX,NRX)	DAN19890
	$AD=1 \cdot DO/DSQRT(2 \cdot DO)$	DAN19900
	DG 220 I=1,NB	DAN19910
	N1 = M - I + 1	DAN19920
	DO 220 J=1,NC	DAN19930
	IF(N1.GT.N)GO TO 25	DAN19940
	$H(J,N1) = AD \times (CA(J,I) - CA(J,N1))$	DAN19950
	H(J,I)=AD*(CA(J,I)+CA(J,N1))	DAN19960
	GO TO 220	DAN19970
2	5 H(J,I)=CA(J,I)	DAN19980
22	O CONTINUE	DAN19990
	IF(NA.EQ.NB)GO TO 35	DAN20000
	DO 230 I=NBP,NA	DAN20010
	DO 230 J=1,NC	DAN20020
23	0 H(J,I)=CA(J,I)	DAN20030
35	CONTINUE	DAN20040
	P=0.D0	DAN20050
	DD 250 K=1,NB	DAN20060
	KM=K-1	DAN20070
25	O P=P+(−L.DO)**K*CK(KM,l,NA,NB,KIK)*A(K+1)*K	DAN 20080
	B(1)=0.D0	DAN20090
	IF(NB.LE.1)GO TO 45	DAN20100
	DO 260 I=1,NB	DAN20110
	B(I) = 0.00	DAN20120
	DO 260 K=1, NBM	DAN20130
	KM=K-1	DAN20140
	KP=K+1	DAN20150
26	0 B(I)=B(I)+(-1.DO)**K*CK(KM,2,NA,NB,KIK)*FA(KP,I)*K	DAN 20160

45	CONTINUE	DAN 20170
	DO 270 I=1,NB	DAN20180
	BX(I) = 0.00	DAN20190
	DO 270 K=1,NB	DAN20200
	KM=K-1	DAN20210
270	BX(I)=BX(I)+(-1.DO)**KM*CK(KM,1,NA,NB,KIK)*FA(K,I)	DAN20220
	DD 290 I=1,NA	DAN20230
	JI = M - I + I	DAN20240
	IF(JI.GT.N)GO TO 61	DAN20250
	SS=XM/(S2*(S2+1.D0))	DAN20260
	IF(I.GT.NB)GC TO 55	DAN20270
	AA=SS+SS*(XN*SOMEGA(KIK)+P-XN*BX(I)-B(I))/SOMEGA(KIK)	DAN20280
	BB=SS*XM*BX(I)*DELW(I)/SOMEGA(KIK)	DAN20290
	EA(I)=AA+BB	DAN20300
	EA(JI)=AA-BB	DAN20310
	GO TO 290	DAN20320
55	EA(I)=SS*(XM+1.)	DAN20330
	DO 280 J=1,NB	DAN20340
280	EA(I)=EA(I)+SS*(1.DO-BX(J)/SOMEGA(KIK))	DAN 20350
	GO TO 290	DAN20360
61	EA(I)=0.DO	DAN20370
290	CONTINUE	DAN20380
	DO 300 I=1,NC	DAN20390
	SPIN(I)=0.D0	DAN20400
	DD 300 K=1,M	DAN20410
	IF(K.GT.N.OR.K.LT.MNM)GO TO 300	DAN20420
	SPIN(I)=SPIN(I)+EA(K)*H(I,K)**2	DAN20430
300	CONTINUE	DAN20440
	WRITE(NTO,69)S2	DAN20450
	WRITE(NTO,19)(SPIN(I), $I=1$, NC)	DAN 20460
65	CONTINUE	DAN20470
	CALL MCLEAR(H,NRX,NRX,NRX)	DAN20480

С			DAN20490
С		CALCULATION OF D PARAMETERS	DAN20500
С		UPPER HALF OF H MATRIX=D2(I,J)	DAN20510
С		LOWER HALF OF H MATRIX=DO(I,J)	DAN20520
С		UPPER HALF OF BETA = CORE HAMILTONIAN	DAN 2053 0
С		LOWER HALF OF BETA MATRIX=DL(I,J)	DAN20540
С		ED(I)=D1(I); AX(I)=DO(I)	DAN20550
С		SEE REF. (3), TABLE V AND EQN. (9) OF REF. (4)	DAN 20560
С			DAN20570
		DO 360 I=1,NB	DAN20580
		AX(I)=0.D0	DAN20590
		ED(I)=0.00	DAN20600
		DO 310 J=1,NB	DAN20610
		JM=J-1	DAN20620
		AX(I)=AX(I)+(-1.DO)**JM*CK(JM,O,NA,NB,KIK)*FA(J,I)	DAN20630
	310	CONTINUE	DAN20640
		AX(I)=AX(I)/SOMEGA(KIK)	DAN20650
		IM = I - I	DAN20660
		DD 320 K=1,NB	DAN20670
	320	ED(I)=ED(I)+(-1.DC)**K*CK(K,O,NA,NB,KIK)*FA(K,I)	DAN20680
		ED(I) = ED(I) / SOMEGA(KIK)	DAN20690
		IF(I.EQ.1) GO TO 360	DAN20700
		DO 350 J=1,IM	DAN20710
		A2 [](1)=1.D0	DAN20720
		IF(NB.LE.1)GO TO 224	DAN20730
		DO 324 K=2,NB	DAN20740
	324	A2IJ(K) = FA(K, I) - EB(J) * A2IJ(K-1)	DAN 20750
С			DAN20760
С		A2IJ(K) IS ASUBK(I,J) OF REF. (2)	DAN20770
С			DAN20780
	224	H(I,J)=0.00	DAN2 0790
		H(J,I)=0.00	DAN20800

		IF(NB.LE.1)GD TO 225	DAN20810
		DO 330 K=1,NBM	DAN20820
		KM=K-1	DAN20830
	330	H(I,J)=H(I,J)+(-1.DO)**KM*CK(KM,0,NA,NB,KIK)*A2IJ(K)	DAN20840
	340	H(I,J)=H(I,J)/SOMEGA(KIK)	DAN20850
	225	BETA(I,J) = (AX(I) - H(I,J)) / EB(J)	DAN20860
		H(J,I)=(ED(I)-BETA(I,J))/EB(J)	DAN20870
	350	CONTINUE	DAN20880
	360	CONTINUE	DAN 20890
С			DAN20900
С		PROJECTED CHARGE DENSITY CALCULATION	DAN20910
С		SEE TABLE II OF REF. (2)	DAN20920
С			DAN20930
		DO 380 I=1,NC	DAN20940
		DO 380 J=1,I	DAN20950
		CB(I,J)=0.D0	DAN20960
		DO 370 K=1,M	DAN20970
		IF(K.LE.NB)GO TO 75	DAN20980
		IF(K.LE.NA)GO TO 85	DAN20990
		IF(K.GT.N)GO TO 370	DAN21000
		IF(K.GT.NA)GO TO 95	DAN21010
	75	$CB(I,J) = CB(I,J) + (1 \cdot DO + DSQRT(EB(K)) * (AX(K) + ED(K))) * CA(I,K)$)*CA(JDAN21020
	1	L,K)	DAN21030
		GO TO 370	DAN21040
	85	CB(I,J) = CB(I,J) + CA(I,K) * CA(J,K)	DAN 21050
		GO TO 370	DAN21060
	95	II = M - K + 1	DAN21070
		CB(I,J) = CB(I,J) + (1,D) - DSQRT(EB(II)) + (AX(II) + ED(II))) + CA(I)	I,K) *CDAN21080
]	LA(J,K)	DAN21090
	370	CONTINUE	DAN21100
	380	CB(J,I)=CB(I,J)	DAN21110
		WRITE(NTO,79)S2	DAN21120

	CALL MWRITE(CB,6HPROJ.,6HCHARGE,6HDENS.,0,NC,NC,NRX)	DAN21130
	E1P=CB(1,1)*BETA(1,1)	DAN21140
	DO 390 I=2,NC	DAN 21150
	E1P=E1P+CB(I,I)*BETA(I,I)	DAN21160
	IM = I - I	DAN21170
	DD 390 J=1,IM	DAN21180
390	E1P=E1P+(CB(I,J)+CB(J,I))*BETA(J,I)	DAN21190
	WRITE(6,89)E1P	DAN21200
	E1UP=E1UP+SOMEGA(KIK)*E1P	DAN21210
	E2P=0.D0	DAN21220
	QM=0	DAN21230
	J =0	DAN21240
	DQ 430 K=1,NB	DAN21250
	KP=M-K+1	DAN21260
C	CALCULATE IIII	DAN21270
	$\mathbf{J} = \mathbf{J} + \mathbf{I}$	DAN21283
	GX=0.25D0*((1.D0+BE(K))**2)*(AX(K)+ED(K))	DAN21290
	QM=QM+GX*TENO(J)	DAN21300
	IF(K.LT.MNM)GO TO 115	DAN21310
	IF(BE(K).GT.0.999999)GG TO 115	DAN21320
С	CALCULATE I'I'I'I'	DAN21330
	1+L=L	DAN21340
	GX=0.25D0*((1.D0-BE(K))**2)*(AX(K)+ED(K))	DAN21350
	QM=QM+GX*TEND(J)	DAN21360
С	CALCULATE III'I'	DAN21370
	J=J+1	DAN21380
	GX=-0.25D0*(DELW(K)**2)*(AX(K)+ED(K))	DAN 21390
	QM=QM+GX*TEND(J)	DAN21400
С	CALCULATE II'II'	DAN21410
	J=J+1	DAN21420
	GX=0.2500*(DELW(K)**2)*(AX(K)-ED(K))	DAN21430
	QM=QM+GX*TENO(J)	DAN21440

C	CALCULATE II'I'I	DAN21450
	GX=-0.25D0*(DELW(K)**2)*(AX(K)-ED(K))	DAN21460
	$QM = QM + GX \times TENO(J-1)$	DAN21470
	IF(K.EQ.NB)GO TO 125	DAN21480
	115 KAND=K+1	DAN21490
	DO 410 LN=KAND,NB	DAN21500
	LP=M-LN+1	DAN21510
C	CALCULATE IJIJ	DAN21520
	J=J+1	DAN21530
	GX=0.5D0*(1.D0+BE(K))*(1.D0+BE(LN))*(H(LN,K)+(BE(K)+BE(LN))*BE	TA(LDAN21540
	1N,K)+BE(K)*BE(LN)*H(K,LN))	DAN21550
	QM=QM+GX*TEND(J)	DAN21560
С	CALCULATE IJJI	DAN21570
	1 + L = L	DAN21580
	GX=-0.25D0*(1.D0+BE(K))*(1.D0+BE(LN))*(H(LN,K)-BETA(LN,K)+2.D0	*(BEDAN21590
	1(K)+BE(LN))*BETA(LN,K)-BE(K)*BE(LN)*(BETA(LN,K)-H(K,LN)))	DAN21600
	QM=QM+GX*TENO(J)	DAN21610
	IF(LN.LT.MNM)GO TO 116	DAN21620
	IF(BE(LN).GT.0.999999)GO TO 116	DAN 21630
С	CALCULATE IJ'IJ'	DAN21640
	1+L=L	DAN21650
	GX=0.5D0*(1.D0+BE(K))*(1.D0-BE(LN))*(H(LN,K)+(BE(K)-BE(LN))*BE	TAILDAN21660
	1N,K)-BE(K)*BE(LN)*H(K,LN))	DAN21670
	QM=QM+GX*TEND(J)	DAN 21630
С	CALCULATE IJ'J'I	DAN21690
	J=J+1	DAN21700
	GX=-0.25D0*(1.D0+BE(K))*(1.D0-BE(LN))*(H(LN,K)-BETA(LN,K)+2.D0	*(BEDAN21710
	1(K)-BE(LN))*BETA(LN,K)+BE(K)*BE(LN)*(BETA(LN,K)-H(K,LN)))	DAN21720
	QM=QM+GX*TEND(J)	DAN21730
	116 IF(K.LT.MNM)GO TO 410	DAN21740
	IF(BE(K).GT.0.999999)GD TO 410	DAN21750
С	CALCULATE JI'JI'	DAN21760

	J=J+1	DAN21770
	GX=0.5D0*(1.D0+BE(LN))*	1.DO-BE(K))*(H(LN,K)+(BE(LN)-BE(K))*BETA(LDAN21780
	1N,K)-BE(LN)*BE(K)*H(K,L)) DAN21790
	QM=QM+GX*TENO(J)	DAN21800
С	CALCULATE JI'I'J	DAN21810
	J=J+1	DAN21820
	GX=-0.25D0*(1.D0+BE(LN))*(1.D0-BE(K))*(H(LN,K)-BETA(LN,K)+2.DO*(BEDAN21830
	1(LN)-BE(K))*BETA(LN,K)+I	BE(LN)*BE(K)*(BETA(LN,K)-H(K,LN))) DAN21840
	QM=QM+GX*TENO(J)	DAN21850
С	CALCULATE I'J'I'J'	DAN 21860
	j = j +1	DAN21870
	GX=0.5D0*(1.D0-BE(K))*()	L.DO-BE(LN))*(H(LN,K)-(BE(K)+BE(LN))*BETA(LDAN2188(
	1N,K)+BE(K)*BE(LN)*H(K,L)	DAN21890
	QM=QM+GX*TENO(J)	DAN21900
С	CALCULATE I'J'J'I'	DAN21910
	J=J+1	DAN21920
	GX=-0.25D0*(1.D0-BE(K))*	<pre>%(1.DO-BE(LN))*(H(LN,K)-BETA(LN,K)-2.DO*(BEDAN21930</pre>
	1(K) + BE(LN)) * (BETA(LN,K))	-BE(K)*BE(LN)*(BETA(LN,K)-H(K,LN))) DAN21940
	QM=QM+GX*TENO(J)	DAN21950
С	CALCULATE IJJ'I'	DAN21960
	J = J + 1	DAN21970
	GX=-0.25D0*DELW(K)*DELW	LN)*(H(LN,K)+BETA(LN,K)+BE(K)*BE(LN)*(BETADAN21980
	1(LN,K)+H(K,LN)))	DAN21990
	QM=QM+GX*TENO(J)	DAN22000
С	CALCULATE IJ'JI'	DAN22010
	J=J+1	DAN22020
	GX=-0.25D0*DELW(K)*DELW	LN)*(H(LN,K)+BETA(LN,K)-BE(K)*BE(LN)*(BETADAN22030
	1(LN,K)+H(K,LN))	DAN22040
	QM=QM+GX*TENO(J)	DAN22050
	410 CONTINUE	DAN22060
	125 IF(MO.LE.0)GO TO 430	DAN22070
	DO 425 LQ=1,MO	DAN22080

	LN=LQ+NB	DAN22090
С	CALCULATE ITIT	DAN 22100
	J=J+1	DAN22110
	GX=0.5D0*(1.D0+BE(K))*(AX(K)+BE(K)*ED(K))	DAN22120
	QM=QM+GX*TENO(J)	DAN22130
C	CALCULATE ITTI	DAN22140
	J=J+1	DAN22150
	GX=-0.5D0*(1.D0+BE(K))*(0.5D0*(AX(K)-ED(K))+BE(K)*ED(K))	DAN22160
	QM=QM+GX*TENO(J)	DAN22170
	IF(K.LT.MNM)GO TO 425	DAN22180
	IF(BE(K).GT.0.999999)GD TD 425	DAN22190
С	CALCULATE I'TI'T	DAN22200
	1+L=L	DAN22210
	GX=0.5D0*(1.D0-BE(K))*(AX(K)-BE(K)*ED(K))	DAN22220
	QM=QM+GX*TEND(J)	DAN22230
С	CALCULATE I'TTI'	DAN22240
	J=J+1	DAN22250
	GX=-0.5D0*(1.D0-BE(K))*(0.5D0*(AX(K)-ED(K))-BE(K)*ED(K))	DAN 22260
	QM=QM+GX*TEND(J)	DAN22270
С	CALCULATE ITTI ·	DAN22280
	1+t=t	DAN22290
	GX=25DO*(DELW(K)*(AX(K)+ED(K)))	DAN22300
420	QM=QM+GX*TEND(J)	DAN22310
425	CONTINUE	DAN22320
430	CONTINUE	DAN22330
421	IF(MO.LE.1)GO TO 441	DAN22340
	DO 440 KQ=1,MO	DAN22350
	K=KQ+NB	DAN22360
	IF(KQ.EQ.MO)GO TO 440	DAN22370
	KQ1=KQ+1	DAN22380
	DO 435 LQ=KQ1,MO	DAN22390
	LN=LQ+NB	DAN22400

С	CALCULATE TUTU	DAN22410
	1+L=L	DAN22420
	GX=.500	DAN22430
	QM=QM+GX*TEND(J)	DAN22440
С	CALCULATE TUUT	DAN22450
	J=J+1	DAN22460
	GX=500	DAN22470
435	QM=QM+GX*TENC(J)	DAN22480
440	CONTINUE	DAN22490
441	CONTINUE	DAN22500
	E2P=E2P+QM	DAN22510
5030	CONTINUE	DAN22520
6000	CONTINUE	DAN 2253 0
	ETP=E1P+E2P	DAN22540
	E2UP=E2UP+SUMEGA(KIK)*E2P	DAN22550
	WRITE(6,259)E2P	DAN22560
259	FORMAT('0',3X,'TWO-ELECTRON PART OF ENERGY = ',1PD14.6)	DAN22570
	WRITE(6,99)S2,ETP	DAN 22580
	XA12=ETP*SOMEGA(KIK)	DAN22590
	WRITE(6,139)XA12	DAN22600
	ETP1=ETP1+XA12	DAN22610
	WRITE(6,149)ETP1	DAN22620
	WRITE(NTO,279)E1UP	DAN22630
	WRITE(NTO,269)E2UP	DAN22640
470	CONTINUE	DAN22650
9	FORMAT('0','EB')	DAN22660
19	FORMAT(' ',5(1PD15.6,2X))	DAN22670
29	FORMAT ('0', 'A')	DAN22680
39	FORMAT('-','THE WEIGHTING FACTOR FOR THE S=', F6.4,' STATE =',1	PD15DAN22690
1	L.7)	DAN22700
49	FORMAT('0', 'NATURAL ORBITALS OF CHARGE')	DAN22710
59	FORMAT("1",25X, RESULTS OF PROJECTION FOR S=", F6.4)	DAN22720

```
69 FORMAT('0', 'ATOMIC SPIN DENSITIES FOR S='.F6.4)
                                                                          DAN22730
   79 FORMAT('0'. PROJECTED CHARGE DENSITY FOR S='.F6.4)
                                                                          DAN22740
   89 FORMAT('0', 'ONE-ELECTRON PART OF ENERGY =', 1PD14.6)
                                                                          DAN22750
   99 FORMAT('0', 'FOR S=', F8, 4, 5X, 'ENERGY =', 1PD14.6)
                                                                          DAN22760
  119 FORMAT('0'.'B')
                                                                           DAN22770
  129 FORMAT( '0' . 'A(K+1)')
                                                                          DAN22780
  139 FORMAT('0', 'THE WEIGHTED ENERGY FOR THIS PROJECTION =', 1PD14.6)
                                                                          DAN22790
  149 FORMAT('0', 'THE SUM OF THE WEIGHTED ENERGIES FOR THE ABOVE PROJECTDAN22800
     1IONS INCLUDING THIS'/5X, 'PROJECTION=', 1PD14.6)
                                                                           DAN22810
  169 FORMAT(315)
                                                                           DAN22820
  179 FORMAT(' ', 'MODIFIED NATURAL ORBITALS OF CHARGE')
                                                                           DAN22830
  209 FORMAT('1', 'BEGINNING OF HARRIMAN PROJECTION TREATMENT')
                                                                          DAN22840
  269 FORMAT('0', 'UNPROJECTED TWO-ELECTRON ENERGY ='.1P015.8)
                                                                          DAN22850
  279 FORMAT('0','UNPROJECTED ONE-ELECTRON ENERGY =',1PD15.8)
                                                                          DAN22860
  299 FORMAT('0', 'CALCULATION FOR ', 15, ' ALPHA ELECTRONS AND ', 15, 'BETA DAN22870
     LELECTRONS!)
                                                                           DAN22880
      RETURN
                                                                           DAN22890
      END
                                                                           DAN22900
CF
          FUNCTION F
                                                                           DAN22910
      FUNCTION F(INM.MNR)
                                                                           DAN22920
С
                                                                           DAN22930
С
          CALCULATES FACTORIAL (INM)/FACTORIAL (MNR-1)
                                                                           DAN22940
Ĉ
                                                                           DAN22950
      IMPLICIT REAL*8 (A-H,O-Z)
                                                                           DAN22960
      XF = 1.00
                                                                           DAN22970
      IF(INM.LE.1) GO TO 5
                                                                           DAN22980
      DO 10 J=MNR, INM
                                                                           DAN22990
      XJ=J
                                                                           DAN23000
   10 XF = XF \times XJ
                                                                           DAN23010
    5 F=XF
                                                                           DAN23020
                                                                           DAN23030
      RETURN
      END
                                                                           DAN23040
```

CCK	FUNCTION CK	DAN23050
	FUNCTION CK(I,NLM,NA,NB,KIK)	DAN23060
С		DAN23070
C	SUMS FACTORIALS USING EQUATION (20) OF REFERENCE (2)	DAN 23080
С	CSUBK(S,M,NP) WHERE K=I, 2S=NA-NB+2*(KIK-1), 2M=NA-NB,	DAN23090
C	2*NP=NA+NB-NLM*2	DAN23100
С		DAN23110
	IMPLICIT REAL*8 (A-H,O-Z)	DAN23120
	IB=NB-KIK+2-NLM	DAN23130
	IS=KIK-1	DAN23140
	JS=NA-NB+KIK-1	DAN23150
	NS=NB-NLM	DAN23160
	IS2=NA-NB+2*KIK-2	DAN23170
	XSX=DFLOAT(IS2)	DAN23180
	WY=0.00	DAN23190
	IF(IB.LE.0)GD TD 45	DAN23200
	IF((NS-I).LT.0)GG TO 45	DAN23210
	DO 13 J=1,IB	DAN23220
	JM=J-1	DAN23230
	IF((IB-JM-1).LT.0)G0 TO 10	DAN23240
	I1=J	DAN23250
	I2=IS+JM	DAN23260
	IF(IS.GT.0)GD TO 5	DAN23270
	ZZ=1.D0	DAN23280
	GO TO 15	DAN23290
5	ZZ=F(12,11)	DAN23300
15	5 I1=IS+J-I	DAN23310
	I2=IS+JM	DAN 23320
	IF((11-1).LT.0)G0 TO 10	DAN23330
	IF(I.EQ.0)GO TO 25	DAN23340
	YY=F(12,11)	DAN23350
	GO TO 35	DAN23360
25	YY=1.00	DAN23370
-------	---	-----------
35	WY=(-1.DO)**JM*ZZ*YY*F(NS-I,2)/(F(IB-JM-1,2)*F(IS2+J,2))+WY	DAN 23380
10	CONTINUE	DAN23390
	CK=(XSX+1.DO)*F(JS,1)/F(IS,1)*WY	DAN23400
	RETURN	DAN23410
45	CK=0.D0	DAN23420
	RETURN	DAN23430
	END	DAN23440
CMTBS	YM SUBROUTINE MTBSYM	DAN23450
	SUBROUTINE MTBSYM(A, N, NMAX)	DAN23460
	IMPLICIT REAL*8(A-H, O-Z)	DAN23470
	DIMENSION A(NMAX,NMAX)	DAN23480
С	THIS SUBROUTINE SYMMETRIZES THE MATRIX A.	DAN23490
С	A IS ORIGINALLY STORED IN THE TOP HALF OF A.	DAN23500
С	A(J,I) = A(I,J)	DAN 23510
С		DAN23520
	DO 1 J=2, N	DAN23530
	JM=J-1	DAN23540
	DO 1 $I=1, JM$	DAN23550
	A(J,I) = A(I,J)	DAN23560
1	CONTINUE	DAN23570
	RETURN	DAN23580
	END	DAN23590
CMBTS	YM SUBROUTINE MBTSYM	DAN23600
	SUBROUTINE MBTSYM(A,N,NMAX)	DAN23610
	IMPLICIT REAL*8(A-H,O-Z)	DAN23620
	DIMENSION A(NMAX,NMAX)	DAN23630
C	THIS SUBROUTINE SYMMETRIZES THE MATRIX A.	DAN23640
C	A IS ORIGINALLY STORED IN THE LOWER HALF OF A.	DAN23650
С	A(I,J)=A(J,I)	DAN23660
	DO 1 J=2, N	DAN23670
	JM=J-1	DAN23680

DO 1 I=1, JM	DAN23690
A(I,J)=A(J,I)	DAN23700
1 CONTINUE	DAN23710
RETURN	DAN23720
END	DAN23730
CSWITCH SUBROUTINE SWITCH	DAN23740
SUBROUTINE SWITCH(A, 8, NR, NC, NRX)	DAN23750
IMPLICIT REAL*8(A-H,O-Z)	DAN23760
DIMENSION A(NRX,NRX),B(NRX,NRX)	DAN23770
C SUBROUTINE SWITCHES ROWS FOR COLUMNS IN MATRIX A.	DAN23780
C B IS A DUMMY MATRIX USED TO SWITCH ROWS FOR COLUMNS	DAN23790
DO 10 I=1,NC	DAN23800
DO 10 J=1,NR	DAN23810
10 B(I,J)=A(J,I)	DAN23820
DO 20 I=1,NC	DAN23830
DO 20 J=1,NR	DAN23840
20 A(I,J)=B(I,J)	DAN23850
RETURN	DAN23860
END	DAN23870
CMMBAT2 SUBROUTINE MMBAT2	DAN23880
SUBROUTINE MMBAT2(A,B,NCA,NR,NCB,X,NBMX)	DAN23890
IMPLICIT REAL*8(A-H,O-Z)	DAN23900
DIMENSION A(NBMX,NBMX),B(NBMX,NBMX),X(NBMX)	DAN23910
C	DAN23920
C THIS SUBROUTINE COMPUTES THE MATRIX PRODUCT	DAN23930
$C \qquad C = B \neq AT$	DAN23940
C WHERE AT IS THE TRANSPOSE OF A, A IS NR BY NCA, B IS NCB BY	NRDAN23950
C AND THE RESULT C IS NOB BY NOA (ROWS BY COLUMNS)	DAN23960
C ON RETURN FROM THIS SUBROUTINE B CONTAINS C, A CONTAINS AT.	DAN23970
C TAKE THE TRANSPOSE OF A. STORE RESULTS IN A.	DAN23980
DOUBLE PRECISION SUM	DAN23990
NMAX=NR	DAN24000

```
IF (NCA.GT.NR)NMAX=NCA
                                                                            DAN24010
      DO 3 J=2, NMAX
                                                                            DAN24020
      IHI=J-1
                                                                            DAN24030
      DO 3 I=1.IHI
                                                                            DAN24040
      FT=A(I,J)
                                                                            DAN24050
      A(I,J)=A(J,I)
                                                                            DAN24060
                                                                            DAN24070
      A(J,I) = FT
                                                                            DAN24080
    3 CONTINUE
С
                                                                            DAN24090
Ĉ
          COMPUTE C ONE ROW AT A TIME. STORE THE ROW IN X. THEN STORE DAN24100
С
          X IN B.
                                                                            DAN24110
С
                                                                            DAN24120
      DO 7 I=1,NCB
                                                                            DAN24130
С
                                                                            DAN24140
С
          COMPUTE A ROW OF C. STORE IT IN X
                                                                            DAN24150
С
                                                                            DAN24160
      DO 5 K=1,NCA
                                                                            DAN24170
      SUM=0.DO
                                                                            DAN24180
      DO 4 J=1,NR
                                                                            DAN24190
      SUM=SUM+B(I,J)*A(J,K)
                                                                            DAN24200
    4 CONTINUE
                                                                            DAN24210
      X(K) = SUM
                                                                            DAN24220
    5 CONTINUE
                                                                            DAN24230
С
                                                                            DAN24240
C.
          STORE ROW IN B
                                                                            DAN24250
      DO 6 K=1, NCA
                                                                            DAN24260
      B(I,K)=X(K)
                                                                            DAN24270
    6 CONTINUE
                                                                            DAN24280
    7 CONTINUE
                                                                            DAN24290
      RETURN
                                                                            DAN24300
      END
                                                                            DAN24310
CMULT2
          SUBROUTINE MULT2
                                                                            DAN24320
```

	SUBROUTINE MULT2(A,B,C,N,NRX)	DAN24330
С	MATRIX MULTIPLICATION ROUTINE FOR SQUARE MATRICES.	DAN24340
C	C = A * B	DAN24350
	IMPLICIT REAL*8(A-H,O-Z)	DAN24360
	DIMENSION A(NRX,NRX),B(NRX,NRX),C(NRX,NRX)	DAN 24370
	DO 10 I=1,N	DAN24380
	DD 10 J=1,N	DAN24390
	C(I, J) = 0.00	DAN24400
	DO 10 M=1,N	DAN24410
10	C(I,J)=C(I,J)+A(I,M)*B(M,J)	DAN24420
	RETURN	DAN24430
	END	DAN24440
CLAB	SUBROUTINE LAB	DAN24450
	SUBROUTINE LAB	DAN24460
	COMMON/LABELS/ILBL(12),ILAB(12)	DAN24470
	COMMON/ZEIT/LAPSE,LAPST	DAN24480
	REAL*8 ILBL, ILAB	DAN24490
	REAL*4 LAPSE, LAPST	DAN24500
	COMMON/IOIND/ICON(24)	DAN24510
	WRITE(6,101)ILAB	DAN24520
	READ(5,100)ILBL	DAN24530
	WRITE(6,102)ILBL	DAN24540
	READ(5,200) (ICUN(I),I=1,24)	DAN24550
	WRITE(6,201) (I,I=1,24),(ICON(I),I=1,24)	DAN 24560
	LAPSN=0.0	DAN24570
	CALL STIME(ITIME)	DAN24580
	LAPSE=(FLOAT(ITIME))*0.36	DAN24590
	LAPST=LAPSE	DAN24600
	RETURN	DAN 2461 0
100	FORMAT(12A6)	DAN24620
101	FORMAT(1H1///29X,12A5//)	DAN24630
102	FORMAT(29X,12A6//)	DAN 24640

200	FORMAT(2413)	DAN24650
201	FORMAT(51X,28H** INPUT - OUTPUT OPTIONS **/29X,24I3/29X,24I3)	DAN24660
	END	DAN24670
CFILE	SUBROUTINE FILE (NAMFIL, NTAPE, LABLE)	DAN24680
	SUBROUTINE FILE(NAMFIL,NTAPE,LABLE)	DAN 24690
С	THE SUBROUTINE FILE SEARCHES THE FILE UNIT NTAPE FOR THE DATA	DAN24700
C	FILE NAMED NAMFIL. IF IT FINDS IT THE FILE UNIT IS POSITIONED	TODAN24710
С	READ THE FILE.	DAN 24720
	REAL*8 NAMFIL,LABLE,NAMTAP	DAN24730
	EQUIVALENCE (NOFILE, XNOFIL)	DAN24740
	COMMON /IOIND/ ICON(24)	DAN24750
	DIMENSION LABLE(1)	DAN24760
	NT=NTAPE	DAN24770
	IF(ICON(10).GT.0) WRITE(6,100) NT,NAMFIL	DAN24780
	M=3	DAN24790
1	CALL EFSKIP (NT,1)	DAN24800
	READ(NT) NAMTAP, NOFILE, (LABLE(I), I=3, NOFILE)	DAN24310
С	SEARCH FOR FILE NAME	DAN 24820
	DO3I=M, NOFILE	DAN 24830
	1 I = I	DAN24840
	IF(LABLE(I).EQ.NAMFIL) GOTO6	DAN 24850
3	CONTINUE	DAN24860
	IF(LABLE(NOFILE).EQ.0) GOTO10	DAN24870
	M=NOFILE+1	DAN24880
	GOTO1	DAN24590
С	FOUND FILE NAME	DAN24900
6	IF(ICON(10).GT.0) WRITE(6,105)	DAN24910
	IF(NOFILE.EQ.I) GOTO9	DAN24920
3	CALL EFSKIP(NT, (I-NOFILE-1))	DAN24930
С	CALL EFSKIP(NT,1)	DAN24940
	REWIND NT	DAN24950
	CALL EFSKIP (NT, I-2)	DAN2496J

	READ(NT) NAMTAP, NOFILE, (LABLE(I), I=3, NOFILE)	DAN24970
	IF(LABLE(NOFILE).EQ.NAMFIL) GOTO9	DAN24980
10	WRITE(6,107)NT, NAMFIL	DAN24990
107	FORMAT(33HOFILE LABELLED WRONG ON FILE NO. 13/	DAN25000
1	L12HOFILE LABEL A6,17H CAN NOT BE FOUND)	DAN 25010
	CALL ABT	DAN25020
9	LABLE(1)=NAMTAP	DAN25030
	LABLE(2)=XNOFIL	DAN25040
	RETURN	DAN25050
100	FORMAT(70X,4HTAPE,I3, 19H SEARCHED FOR FILE A6)	DAN25060
105	FORMAT(70X,15HFILE NAME FOUND)	DAN25070
	END	DAN25080
CSEC	SUBROUTINE SEC	DAN25090
	SUBROUTINE SEC(A,B,C)	DAN25100
	COMMON/ZEIT/LAPSE,LAPST	DAN25110
	REAL*4 LAPSE, LAPST, LAPSN	DAN25120
	REAL*3 A,B,C	DAN25130
	CALL STIME(ITIME)	DAN25140
	LAPSN=(FLOAT(ITIME))*0.36	DAN25150
	TIM=LAPSN-LAPSE	DAN25160
	LAPSE=LAPSN	DAN25170
	WRITE(6,100) A,B,C, TIM	DAN25180
	RETURN	DAN25190
100	FORMAT(/50X,3A6,15H ELAPSED TIME =,F9.3,8H SECONDS)	DAN25200
	END	DAN25210
CMMOVE	E SUBROUTINE MMOVE	DAN25220
	SUBROUTINE MMOVE(A, B, NR, NC, NMAX)	DAN25230
	IMPLICIT REAL*8 (A-H,O-Z)	DAN25240
	DIMENSION A(NMAX,NMAX),B(NMAX,NMAX)	DAN25250
C TH	HIS SUBROUTINE SETS THE NR BY NO ELEMENTS OF A EQUAL TO THE	DAN25260
C • • • C (DRRESPONDING ELEMENTS OF B.	DAN25270
	DO 1 I=1,NR	DAN25280

	DO 1 J=1,NC	DAN25290
	B(I,J)=A(I,J)	DAN25300
1	CONTINUE	DAN25310
	RETURN	DAN25320
	END	DAN25330
CMWRIT	T SUBROUTINE MWRITT	DAN25340
	SUBROUTINE MWRITT(A,WA,WB,WC,ITR,NC,NRX)	DAN25350
	IMPLICIT REAL*8 (A-H,O-Z)	DAN25360
C Tr	HIS SUBROUTINE PRINTS OUT THE UPPER TRIANGULAR HALF (INCLUDING THE	DAN25370
CD1	(AGONAL) OF THE MATRIX A.	DAN25380
	DIMENSION A(NRX,NRX)	DAN25390
	REAL*8 WA,WB,WC,ILBL,ILAB	DAN25400
	COMMON/LABELS/ILBL(12),ILAB(12)	DAN25410
	WRITE(6,100) (ILBL(I),I=1,12),WA,WB,WC	DAN25420
	IF(ITR.GT.O) WRITE(6,101) ITR	DAN25430
	WRITE(6,102) ($M, M=1, 10$)	DAN 25440
	DO 1 I=1,NC	DAN25450
	WRITE($(3, 104)$ I,(A(J,I),J=1,I)	DAN25460
1	CONTINUE	DAN25470
	RETURN	DAN25480
100	FORMAT(1H1////31X,12A6/58X,3A6)	DAN25490
101	FORMAT(61X, 10HITERATION , 13)	DAN25500
102	FORMAT(4HOROW,5X,12,9(10X,12))	DAN25510
104	FORMAT(14,10F12.7/(4X,10F12.7))	DAN25520
	END	DAN25530
CMMATE	SUBROUTINE MMATB1	DAN25540
	SUBROUTINE MMATBI(A,B,NCA,NR,NCB,X,NBMX)	DAN25550
	IMPLICIT REAL*8 (A-H,O-Z)	DAN25560
	DIMENSION A(NBMX,NBMX),B(NBMX,NBMX),X(1)	DAN25570
C TH	IIS SUBROUTINE COMPUTES THE MATRIX PRODUCT -	DAN25580
С	C = AT * B	DAN25590
C WH	HERE AT IS THE TRANSPOSE OF A, A IS NR BY NCA, B IS NR BY NCB,	DAN25600

C A	ND THE RESULT. C. IS NCA BY NCB. (ROWS BY COLUMNS)	DAN25610
C ON RETURN FROM THIS SUBROUTINE A CONTAINS C. B IS UNAFFECTED.		
C T	HE VECTOR X IS USED FOR TEMPORARY STORAGE.	DAN25630
C T	AKE TRANSPOSE OF A. STORE RESULT IN A.	DAN25640
	DOUBLE PRECISION SUM	DAN25650
	NMA X=NR	DAN25660
	TE(NCA.GT.NR) NMAX=NCA	DAN25670
	$DD3J=2.NM\Delta X$	DAN25680
		DAN25690
	DD3I=1.THI	DAN25700
	$FT = \Lambda (I - I)$	DAN25710
	$A(T_{1}) = A(T_{1})$	DAN25720
	A(1,1)-FT	DAN25720
3	CONTINUE	DAN25740
с <u>с</u>	DURINUE DADHTE C DAE DOW AT A TIME CTODE THE DOW IN Y THEN STORE Y BACK	DAN25750
	NA	DAN25760
	い A • - ハロ 7 I-1-NCA	DAN25770
r r	OMDUTE A DOU OF C STORE IT IN V	DAN25790
	UMPUTE A RUM OF C. STURE IT IN A.	DANZJIOU
	DU D N-1;NUD SUM-0.000	DAN25190
		DANZJOUU
		DANZOOLU
,	$SUM = SUM + A \left[1 \right] J + B \left[J \right] K $	DAN25820
4		DAN25830
-		DAN25840
5		DAN25850
C • • • S	TURE THE ROW BACK IN A.	DAN25860
	DC = 6 K = 1, NCB	DAN25870
	A(1, K) = X(K)	DAN25880
6	CONTINUE	DAN25890
7	CONTINUE	DAN25900
	RETURN	DAN25910
	END	DAN25920

CMCLR	T SUBROUTINE MCLRT	DAN25930
	SUBROUTINE MCLRT(A, N, NMAX)	DAN 25940
	IMPLICIT REAL*8 (A-H,O-Z)	DAN25950
	DIMENSION A (NMAX, NMAX)	DAN25960
C TH	HIS SUBROUTINE SETS ALL THE ELEMENTS IN THE UPPER TRIANGULAR HALF	DAN 25970
C (INCLUDING THE DIAGONAL) OF A EQUAL TO 0.0 THE POSITION OF THE	DAN25980
C • • • 1	,1 ELEMENT OF A IS DEFINED BY THE CALLING PROGRAM.	DAN25990
	DO 1 J=1, N	DAN26000
	$DO \ 1 \ I=1, J$	DAN26010
	A(I, J) = 0.0	DAN26020
1	CONTINUE	DAN26030
	RETURN	DAN26040
	END	DAN26050
CMCLE	AR SUBROUTINE MCLEAR	DAN26060
	SUBROUTINE MCLEAR(A, NR, NC, NMAX)	DAN26070
	IMPLICIT REAL*8 (A-H,O-Z)	DAN26080
	DIMENSION A(NMAX,NMAX)	DAN26090
C Tł	HIS SUBROUTINE SETS THE NR BY NC ELEMENTS OF A EQUAL TO 0.0	DAN26100
C TI	HE 1,1 ELEMENT OF A IS DEFINED BY THE CALLING PROGRAM.	DAN26110
	DO 1 J=1,NC	DAN26120
	DO 1 I=1, NR	DAN26130
	A(I,J)=0.0	DAN26140
1	CONTINUE	DAN26150
	RETURN	DAN26160
	END	DAN26170
CHDIA	G SUBROUTINE HDIAG	DAN26180
	SUBROUTINE HDIAG(H,U,X,IQ,N,NBMX,IEGEN,NR)	DAN26190
	IMPLICIT REAL*8 (A-H,O-Z)	DAN26200
С	FORTRAN IV DIAGONALIZATION OF A REAL SYMMETRIC MATRIX BY THE	DAN26210
С	JACOBI METHOD.	DAN26220
С	MAY 19,1959, REVISED TO FORTRAN IV AUG 17,1966	DAN26230
С	CALLING SEQUENCE FOR DIAGONALIZATION	DAN26240

С	CALL HDIAG(H,U,X,IQ,N,NBMX,IEGEN,NR)	DAN26250
С	WHERE H IS THE ARRAY TO BE DIAGONALIZED.	DAN26260
C	N IS THE ORDER OF THE MATRIX, H.	DAN26270
C	IEGEN MUST BE SET UNEQUAL TO ZERO IF ONLY EIGENVALUES ARE	DAN26280
С	TO BE COMPUTED.	DAN26290
С	IEGEN MUST BE SET EQUAL TO ZERO IF EIGENVALUES AND EIGENVECTORS	DAN26300
C	ARE TO BE COMPUTED.	DAN26310
С	U IS THE UNITARY MATRIX USED FOR FORMATION OF THE EIGENVECTORS.	DAN26320
C	NR IS THE NUMBER OF ROTATIONS.	DAN 26330
С	NBMX IS THE MAXIMUM ORDER OF THE MATRIX H TO BE DIAGONALISED	DAN26340
C	X,IQ ARE ADDITIONAL ARRAYS BOTH ARE OF LEGNTH AT LEAST NBMX	DAN26350
С	THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE	DAN 26360
С	RIGHT OF THE MAIN DIAGONAL. THUS, ONLY A TRIANGULAR	DAN26370
C	SECTION NEED BE STORED IN THE ARRAY H.	DAN26380
	DIMENSION H(NBMX,NBMX),U(NBMX,NBMX),X(1),IQ(1)	DAN26390
C	SET INDICATOR FOR SHUT OFF RAP IS APPROX 2**-43.	DAN26400
C	SPECIFICALLY FOR THE CDC6600 48 BIT MANTISSA	DAN26410
	DATA RAPS/2.0E-13/,HDTES/1.0E38/	DAN26420
	IF(IEGEN.NE.O) GO TO 15	DAN26430
	DO 10 I=1,N	DAN26440
	DO 10 J=1,N	DAN26450
	U(I,J)=0.	DAN26460
	$IF(I \cdot EQ \cdot J) \cup (I, J) = 1.$	DAN 26470
10	CONTINUE	DAN26480
15	NR=0	DAN26490
	IF(N.LE.1) RETURN	DAN26500
С	SCAN FOR LARGEST OFF DIAGONAL ELEMENT IN EACH ROW	DAN26510
C	X(I) CONTAINS LARGEST ELEMENT IN ITH ROW	DAN26520
C	IQ(I) HOLDS SECOND SUBSCRIPT DEFINING POSITION OF ELEMENT	DAN26530
	NMIl=N-1	DAN26540
	DO 30 I=1,NMI1	DAN26550
	X(I) = 0.	DAN26560

	IPL1=I+1	DAN26570
	DO 30 J=IPL1,N	DAN26580
	IF(X(I).GT.DABS(H(I,J))) GO TO 30	DAN26590
	X(I) = DABS(H(I,J))	DAN26600
	IQ(I)=J	DAN26610
30	CONTINUE	DAN25620
C	SET UP ZERU CUT OFF (RAP) . INITIALIZE HDTEST.	DAN26630
	RAP=7.45058060E-9	DAN26640
	HDTEST=1.0E38	DAN26650
С	FIND MAXIMUM OF X(I) S FOR PIVOT ELEMENT AND TEST FOR END OF PROB	DAN26660
40	DO 70 I=1,NMI1	DAN26670
	IF(I.LE.1) GO TO 60	DAN26680
	IF(XMAX.GE.X(I)) GO TO 70	DAN26690
60	XMAX=X(I)	DAN26700
	IPIV=I	DAN26710
	JPIV = IQ(I)	DAN26720
70	CONTINUE	DAN26730
C	IS MAX. X(I) EQUAL TO ZERO, IF LESS THAN HOTEST, REVISE HOTEST	DAN26740
	IF(XMAX.LE.O.O) RETURN	DAN26750
	IF(HDTEST.LE.0.0) GO TO 90	DAN26760
	IF(XM4X.GT.HDTEST) GO TO 148	DAN26770
90	HDIMIN=DABS(H(1,1))	DAN26780
	DO 110 $I = 2, N$	DAN26790
	IF(HDIMIN.GT.DADS(H(I,I))) HDIMIN=DABS(H(I,I))	DAN26800
110	CONTINUE	DAN26810
	HDTEST=HDIMIN*RAP	DAN26320
С	RETURN IF MAX.H(I,J)LESS THAN RAP*ABS(MIN(H(K,K)))	DAN26830
	IF (HDTEST.GE.XMAX) RETURN	DAN26840
148	NR = NR+1	DAN26850
С	COMPUTE TANGENT, SINE AND COSINE, H(I,I), H(J,J)	DAN26860
150	TANG=DSIGN(2.D0,(H(IPIV,IPIV)-H(JPIV,JPIV)))*H(IPIV,JPIV)/(DABS	DAN26870
	1(H(IPIV,IPIV)-H(JPIV,JPIV))+DSQRT((H(IPIV,IPIV)-H(JPIV,JPIV))**2	DAN26880

	2 +4.0*H(IPIV,JPIV)**2))	DAN 26890
	COSINE=1./DSQRT(1.+TANG**2)	DAN26900
	SINE=TANG*COSINE	DAN26910
	HII=H(IPIV, IPIV)	DAN26920
	H(IPIV,IPIV)=COSINE**2*(HII+TANG*(2.*H(IPIV,JPIV)+TANG*H(JPIV,JPIV)	DAN26930
	1)))	DAN26940
	H(JPIV,JPIV)=COSINE**2*(H(JPIV,JPIV)-TANG*(2.*H(IPIV,JPIV)-TANG*H	DAN26950
	111))	DAN26960
	H(IPIV,JPIV)=0.	0AN26970
С	PSEUDO RANK THE EIGENVALUES	DAN26980
С	ADJUST SINE AND COS FOR COMPUTATION OF H(IK) AND U(IK)	DAN26990
	IF(H(IPIV,IPIV).GE.H(JPIV,JPIV)) GO TO 153	DAN27000
	HTEMP=H(IPIV,IPIV)	DAN27010
	H(IPIV,IPIV)=H(JPIV,JPIV)	DAN27020
	H(JPIV,JPIV)=HTEMP	DAN27030
С	RECOMPUTE SINE AND COS	DAN27040
	HTEMP=DSIGN(1.DO,-SINE)*COSINE	DAN 27050
	COSINE=DABS(SINE)	DAN27060
	SINE=HTEMP	DAN27070
153	CONTINUE	DAN27080
C	THE I OR J ROW.	DAN27090
	DO 350 I=1,NMI1	DAN27100
	IF(I.EQ.IPIV.OR.I.EQ.JPIV) GO TO 350	DAN27110
	IF(IQ(I).NE.IPIV.AND.IQ(I).NE.JPIV) GO TO 350	DAN27120
	K = IQ(I)	DAN27130
	HTEMP=H(I,K)	DAN27140
	H(I,K)=0.	DAN27150
	IPL1=I+1	DAN27160
	X(I)=0.	DAN27170
С	SEARCH IN DEPLETED ROW FOR NEW MAXIMUM	DAN27180
	DO 320 J=IPL1,N	DAN27190
	IF(X(I).GT.DABS(H(I,J))) GD TG 320	DAN27200

		X(I) = DABS(H(I,J))	DAN27210
		IQ(I)=J	DAN27220
	320	CONTINUE	DAN27230
		H(I,K)=HTEMP	DAN27240
•	350	CONTINUE	DAN27250
		X(IPIV)=0.	DAN27260
		X(JPIV) = 0.	DAN27270
		DO 530 I=1,N	DAN27280
		IF(I-IPIV)370,530,420	DAN27290
	370	HTEMP = H(I, IPIV)	DAN27300
		H(I, IPIV) = COSINE*HTEMP + SINE*H(I, JPIV)	DAN27310
		IF(X(I).GE.DABS(H(I,IPIV))) GO TO 390	DAN27320
		X(I)=DABS(H(I,IPIV))	DAN27330
		IQ(I) = IPIV	DAN27340
	390	H(I,JPIV) = -SINE*HTEMP + COSINE*H(I,JPIV)	DAN27350
		IF(X(I).GE.DABS(H(I,JPIV))) GO TO 530	DAN27360
		X(I) = DABS(H(I, JPIV))	DAN27370
		IQ(I) = JPIV	DAN27380
		GO TO 530	DAN27390
	420	IF(I-JPIV)430,530,480	DAN27400
	430	HTEMP = H(IPIV, I)	DAN27410
		H(IPIV,I) = COSINE*HTEMP + SINE*H(I,JPIV)	DAN27420
		IF(X(IPIV).GE.DABS(H(IPIV,I))) GO TO 450	DAN27430
		X(IPIV)=DABS(H(IPIV,I))	DAN27440
		IQ(IPIV)=I	DAN27450
	450	H(I,JPIV) = -SINE*HTEMP + COSINE*H(I,JPIV)	DAN27460
		IF(X(I).GE.DABS(H(I,JPIV))) GO TO 530	DAN27470
		X(I) = DABS(H(I, JPIV))	DAN 27480
		IQ(I)=JPIV	DAN27490
		GG TO 530	DAN27500
	480	HTEMP = H(IPIV, I)	DAN27510
		H(IPIV,I) = COSINE*HTEMP + SINE*H(JPIV,I)	DAN27520

	IF(X(IPIV).GE.DABS(H(IPIV,I))) GO TO 500	DAN27530
	X(IPIV)=DABS(H(IPIV,I))	DAN27540
	IQ(IPIV) = I	DAN27550
500	H(JPIV,I) = -SINE*HTEMP + COSINE*H(JPIV,I)	DAN27560
	IF(X(JPIV).GT.DABS(H(JPIV,I))) GO TO 530	DAN27570
	X(JPIV) = DABS(H(JPIV, I))	DAN27580
	IQ(JPIV)=I	DAN27590
530	CONTINUE	DAN27600
С	TEST FOR COMPUTATION OF EIGENVECTORS	DAN27610
	IF(IEGEN.NE.O) GO TO 40	DAN27620
	DO 550 I=1,N	DAN27630
	HTEMP=U(I, IPIV)	DAN27640
	U(I, IPIV)=COSINE*HTEMP+SINE*U(I, JPIV)	DAN27650
550	U(I,JPIV)=-SINE*HTEMP+COSINE*U(I,JPIV)	DAN27650
	GO TO 40	DAN27670
	END	DAN27680
CFOLLO	DW SUBROUTINE FOLLOW	DAN 27690
	SUBROUTINE FOLLOW	DAN27700
	COMMON /ZEIT/ LAPSE,LAPST	DAN27710
	COMMON /LABELS/ ILBL(12),ILAB(12)	DAN27720
	REAL*8 ILBL,ILAB	DAN27730
	REAL*4 LAPSE, LAPST	DAN27740
	LAPSE = LAPST	DAN27750
	WRITE (6,100) ILAB	DAN27750
	WRITE (6,101) ILBL	DAN27770
	CALL SEC (GHFINISH, GHED PRO, GHBLEM)	DAN27780
	STOP	DAN27790
100	FORMAT(1H1 //// 15X 12A6)	DAN27800
101	FORMAT (15X 12A6)	DAN27810
	END	DAN27820
CEMEU	HF SUBROUTINE FMFUHF	DAN27830
	SUBROUTINE FMFUHF(A,B,C,NC,NRX)	DAN27840

IMPLICIT REAL*8 (A-H,O-Z)	DAN27850
DIMENSION A(NRX,NRX),B(NRX,NRX),C(NRX,NRX)	DAN27860
CTHIS SUBROUTINED FORMS THE UNRESTRICTED HARTREE FOCK HAMILTONIAN	DAN27870
CMATICES, FA AND FB.	DAN27880
FA = H + JT - KA	DAN27890
$C_{\bullet\bullet\bullet} \qquad FB = H + JT - KB$	DAN27900
C ON ENTRY C CONTAINS THE MATRIX FT, FT = H + JT, A CONTAINS KA, AND	DAN27910
CB CONTAINS KB. ON EXIT A CONTAINS FA. AND B CONTAINS FB. ONLY THE	DAN27920
C UPPER TRIANGULAR HALF (INCLUDING THE DIAGONAL) OF A. B. AND C. IS	DAN27930
C USED IN THIS ROUTINE AS ALL THE MATRICES ARE SYMMETRIC.	DAN27940
DO 2 J=1.NC	DAN27950
DD = I = I = I	DAN27960
A(1, 1) = C(1, 1) - A(1, 1)	DAN27970
$B(I_{-1}) = C(I_{-1}) - B(I_{-1})$	DAN27980
1 CONTINUE	DAN27990
2 CONTINUE	DAN28000
RETURN	DAN28010
END	DAN28020
CEMULHE SUBBOUTINE EMULHE	DAN28030
SUBBOUTINE EMULHELT-RESATTARESSENBENSENBMXENAMENTAPEETLABLE	DAN 28040
	DAN28050
IMPLICIT REAL*8 (A-H, D-7)	DAN28060
SEAL #8 INTNAM. VLABI TLABITIRI NAM	DAN28070
DIMENSION T(NBMX.NBMX).TI(NBMX.NBMX).R(NBMX.NBMX).	DAN28080
1 RR(NRMX, NRMX), S(NRMX, NRMX), SS(NRMX, NRMX),	DAN28090
$1 \qquad PK(\Delta B)(NTNM\Delta X) \cdot VA(NFNMAX).$	DAN28100
$1 \qquad \qquad \text{IDRT}(36) \cdot \text{IIAR}(1)$	DAN28110
C INITIALIZE COUNTERS.	DAN20110
NRECNT=0	DAN20120
	DAN20100
	DAN20140
TRC=1	DAN28160
	DHUCOTOO

IF(IPTI.EQ.0) GO T9 70 DAN28180 WRITE(6,100) DAN28190 70 CONTINUE DAN28200 CPOSITION TAPE TO READ TWO ELECTRON INTEGRALS. DAN28210 CLOP UNTIL LAST RECORD OF TWO ELECTRON INTEGRALS IS REACHED DAN28230 CPEAD A RECORD OF INTEGRALS. DAN28230 CPEAD A RECORD OF INTEGRALS. DAN28230 CPEAD A RECORD COUNTER. DAN28260 NRECNT=NRECNT+1 DAN28260 CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. DAN28270 C.ALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA) DAN28300 CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA) DAN28300 CALL UNPACK(PKLABL(NINTS),IB,JB,KB,LB,IZ,ITB) DAN28300 IPRT(IRC+1)=JA DAN28300 IPRT(IRC+2)=LA DAN28300 IPRT(IRC+3)=NINTS DAN28300 IPRT(IRC+4)=JB DAN28300 IPRT(IRC+4)=JB DAN28300 IPRT(IRC+5)=LB DAN28300 IPRT(IRC+5)=D DAN28300 IRC=irC+5 DAN28300 IF(IRC.NE.36) GO TO 75 DAN28300 IPRT(IRC+5)=LB DAN28300 IPRT(IRC+5)=C DAN28300	CPRINT HEADER IF CHECK SUM FLAG IS ON.	DAN28170
WRITE[6,100) DAN28190 70 CONTINUE DAN28200 CPOSITION TAPE TO READ TWO ELECTRON INTEGRALS. DAN28210 CALL FILE(NAM,NITAPE,ILABL) DAN28220 CLOOP UNTIL LAST RECORD OF TWO ELECTRON INTEGRALS IS REACHED DAN28220 CDOP UNTIL LAST RECORD OF THEGRALS. DAN28220 CDOP UNTIL LAST RECORD OF THECKALS. DAN28220 CDOP NOTIC LAST RECORD OF THEGRALS. DAN28220 CDOP NOTIC LAST RECORD OF THEGRALS. DAN28220 CDOP NECOND OF ONTERALS. DAN28250 CDOP RECORD COUNTER. DAN28250 CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. DAN28270 CALL UNPACK (PKLABL(1), IA,JA,KA,LA,IZ,ITA) DAN28300 CALL UNPACK (PKLABL(1),IA,JA,KA,LA,IZ,ITA) DAN28310 CALL UNPACK (PKLABL(1),IA,JA,KA,LA,IZ,ITA) DAN28320 IPRT (IRC.41)=JA DAN28320 IPRT (IRC+1)=LA DAN28320 IPRT (IRC+2)=LA DAN28320 IPRT (IRC+4)=JB DAN28320 IPRT (IRC+5)=LB DAN28320 IF(IRC.6103) IPRT DAN28420 IRC=1RCN DAN28420 CCHECK FOR ERONEDUS VALUES OF NINTS.	IF(IPTI.EQ.O) GO TO 70	DAN28180
70CONTINUEDAN28200CPOSITION TAPE TO READ TWO ELECTRON INTEGRALS.DAN28210C.ALL FILE(NAM,NITAPE,ILABL)DAN28220CLOOP UNTIL LAST RECORD OF TWO ELECTRON INTEGRALS IS REACHEDDAN28230CREAD A RECORD OF INTEGRALS.DAN2824072READ(NITAPE) NINTS,LSTRCD,PKLABL,VALUEMDAN28260CUP RECORD COUNTER.DAN28260NRECNT=NRECNT+1DAN28270CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON.DAN28270CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA)DAN28300CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA)DAN28310CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITB)DAN28320IPRT(IRC+1)=JADAN28320IPRT(IRC+3)=NINTSDAN28320IPRT(IRC+4)=JBDAN28320IPRT(IRC+5)=LBDAN28370DAR28300IPRT(IRC+5)=LBCCHECK FOR ERRDNEGUS VALUES OF NINTS.DAN28420CCHECK FOR ERRDNEGUS VALUES OF NINTS.DAN28420DAN28450DO 29 M=1,NINTS.DAN28450DO 29 M=1,NINTSDAN28450DAN28450DO 29 M=1,NINTSDAN28450DAN28450DO 29 M=1,NINTSDAN28450DAN28450DA 29 M=1,NINTSDAN28450<	WRITE(6,100)	DAN28190
CPOSITION TAPE TO READ TWD ELECTRON INTEGRALS. DAN28210 CALL FILE(NAM, NITAPE, ILABL) DAN28230 CCLOP UNTIL LAST RECORD OF TWD ELECTRON INTEGRALS IS REACHED DAN28230 CREAD A RECORD OF INTEGRALS. DAN28240 72 READ(NITAPE) NINTS, LSTRCD, PKLABL, VALUEM DAN28250 CUP RECORD COUNTER. DAN28270 CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. DAN28280 IF(IPTI.EQ.O) GO TO 75 IF(IRC.EQ.1) IPRT(I)=NRECNT DAN28310 CALL UNPACK(PKLABL(NINTS), IB, JB, KB, LB, IZ, ITB) DAN28320 IPRT(IRC+1)=JA DAN28320 IPRT(IRC+4)=JB DAN2830 IPRT(IRC+5)=LB DAN28370 IF(IRC.FS) GO TO 75 WRITE(6,103) IPRT DAN28310 CALC UNPACK (PKLABL(NINTS), IB, JB, KB, LB, IZ, ITB) DAN28320 IPRT(IRC+5)=LB DAN28320 IPRT(IRC+5)=LB DAN28370 IF(IRC.FS)=LB DAN28370 IF(IRC.FS)=LB DAN28370 IF(IRC.FS)=LB DAN28370 IRC=IRC+5 IF(INITS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 IPRZ INTEGRAL. DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 IRC=20 DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 IRC2=1 C+1 INTEGRAL. DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 DAN28420 DAN28420 DAN28420 DAN28420 DAN28420 DAN28420 DAN28420 DAN28420 DAN28440 DAN2840 DAN28440 DAN2840 DAN	70 CONTINUE	DAN28200
CALL FILE(NAM,NITAPE,ILABL)DAN28220CLOOP UNTIL LAST RECORD OF TWO ELECTRON INTEGRALS IS REACHEDDAN28230CREAD A RECORD OF INTEGRALS.DAN2824072 READ(NITAPE) NINTS,LSTRCD,PKLABL,VALUEMDAN28250CUP RECORD COUNTER.DAN28260NRECNT=NRECNT+IDAN28280CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON.DAN28290IF(IPTI.EQ.O) GO TO 75DAN28300CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA)DAN28310CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA)DAN28320IPRT(IRC+1)=JADAN28340IPRT(IRC+2)=LADAN28340IPRT(IRC+3)=NINTSDAN28350IPRT(IRC+4)=JBDAN28370IRC=IRC+5DAN28370IRC=IRC+5DAN28370IRC=1DAN28370CCHECK FOR ERRONEOUS VALUES OF NINTS.DAN28410CCHECK FOR ERRONEOUS VALUES OF NINTS.DAN28420CLOOP ON EACH INTEGRAL.DAN28420CLOOP ON EACH INTEGRAL.DAN28450DO 29 M=1,NINTSDAN28450DA 29 M=1,NINTSDAN28450DA 29 M=1,NINTSDAN28450DA 29 M=1,NINTSDAN28450DA 28470DAN28450DA 28470DAN28450DA 28470DAN28470DAN28470DAN28470DAN28470DAN28470DAN28470DAN28470DAN28470 <t< td=""><td>CPOSITION TAPE TO READ TWO ELECTRON INTEGRALS.</td><td>DAN28210</td></t<>	CPOSITION TAPE TO READ TWO ELECTRON INTEGRALS.	DAN28210
CLOOP UNTIL LAST RECORD OF TWO ELECTRON INTEGRALS IS REACHED DAN28230 CREAD A RECORD OF INTEGRALS. DAN28250 72 READ(NITAPE) NINTS,LSTRCD,PKLABL,VALUEM DAN28250 0UP RECORD COUNTER. DAN28260 NRECNT=NRECNT+1 DAN28270 CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. DAN28280 IF(IPTI.EQ.0) GO TO 75 DAN28290 CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA) DAN28310 CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA) DAN28320 IPRT(IRC+1)=JA DAN2830 IPRT(IRC+2)=LA DAN2830 IPRT(IRC+2)=LB DAN2830 IPRT(IRC+4)=JB DAN28360 IPRT(IRC+5)=LB DAN28360 IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28360 IF(IRC+6,103) IPRT IRC=1 DAN28360 IPRTS. DAN28400 IRC=1 CALUES OF NINTS. DAN28400 IRC=1 CALUES OF NINTS. DAN28400 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28400 IRC=1 CALUES OF NINTS. DAN28400 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28400 IRC=1 CALUES OF NINTS DAN28400 IRC=1 CALUES DAN28400 IRC=1 CALUE	CALL FILE(NAM,NITAPE,ILABL)	DAN28220
CREAD A RECORD OF INTEGRALS. DAN28240 72 READ(NITAPE) NINTS,LSTRCD,PKLABL,VALUEM DAN28250 CUP RECORD COUNTER. DAN28260 NRECNT=NRECNT+1 DAN28270 CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. DAN28280 IF(IPTI.EQ.O) GO TO 75 DAN28300 CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA) DAN28310 CALL UNPACK(PKLABL(ININTS),IB,JB,KB,LB,IZ,ITB) DAN28320 IPRT(IRC+1)=JA DAN28320 IPRT(IRC+2)=LA DAN28350 IPRT(IRC+3)=NINTS DAN28350 IPRT(IRC+4)=JB DAN28350 IPRT(IRC+4)=JB DAN28350 IPRT(IRC+5)=LB DAN28350 IPRT(IRC+5)=LB DAN28350 IF(IRC.NE.36) GO TO 75 DAN28360 IPRT(IRC+5) IPRT IRC=IRC+5 DAN28360 IPCT(IRC+5)=LB DAN28370 IRC=IC DAN28360 IPCT(IRC+5)=LB DAN28370 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 CLOOP ON EACH INTEGRAL. DAN28420 CLOOP ON EACH INTEGRAL. DAN28470 DAN28440 CLOOP ON EACH INTEGRAL. DAN28470	CLOOP UNTIL LAST RECORD OF TWO ELECTRON INTEGRALS IS REACHED	DAN28230
72READ(NITAPE) NINTS,LSTRCD,PKLABL,VALUEMDAN28250CUP RECORD COUNTER.DAN28260NRECNT=NRECNT+1DAN28270CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON.DAN28290IF(IPTI.EQ.O) GO TO 75DAN28300CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA)DAN28310CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA)DAN28320IPRT(IRC+1)=JADAN28320IPRT(IRC+2)=LADAN28340IPRT(IRC+4)=JBDAN28350IPRT(IRC+4)=JBDAN28360IPRT(IRC+5)=LBDAN28360IPRT(IRC+5)=LBDAN28370IRC=IRC+5DAN28380IF(IRC.NE.36) GO TO 75DAN28400IRC=1DAN28400CCHECK FOR ERRONEOUS VALUES OF NINTS.DAN28420CLODP ON EACH INTEGRAL.DAN28420CLODP ON EACH INTEGRAL.DAN28420DA 29 M=1,NINTSDAN28420DA 20 A0(PRE)DAN28420DA 20 A0(PRE)DAN284	CREAD A RECORD OF INTEGRALS.	DAN28240
CUP RECORD COUNTER. NRECNT=NRECNT+1 CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. IF(IPTI.EQ.O) GO TO 75 DAN28280 CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA) CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA) CALL UNPACK(PKLABL(NINTS),IB,JB,KB,LB,IZ,ITB) DAN28310 CALL UNPACK(PKLABL(NINTS),IB,JB,KB,LB,IZ,ITB) DAN28320 IPRT(IRC+1)=JA DAN28340 IPRT(IRC+2)=LA DAN28340 IPRT(IRC+4)=JB DAN28350 IPRT(IRC+5)=LB IF(IRC.NE.36) GO TO 75 WRITE(6,103) IPRT DAN28400 IRC=1 CCHECK FOR ERRONEOUS VALUES OF NINTS. 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 CLOOP ON EACH INTEGRAL. CPLACE EACH INTEGRAL. CPLACE EACH INTEGRAL. CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DAN284	72 READ(NITAPE) NINTS,LSTRCD,PKLABL,VALUEM	DAN28250
NRECNT=NRECNT+1 DAN28270 CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. DAN28220 IF(IPTI.EQ.O) GO TO 75 DAN28200 IF(IRC.EQ.1) IPRT(I)=NRECNT DAN28310 CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA) DAN28320 IPRT(IRC+1)=JA DAN28330 IPRT(IRC+2)=LA DAN28330 IPRT(IRC+2)=LA DAN28350 IPRT(IRC+4)=JB DAN28350 IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28420 VRITE(6,103) IPRT DAN28420 IRC=I DAN28420 OAN28410 DAN28420 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 CLOOP ON EACH INTEGRAL. DAN28430 CLOOP ON EACH INTEGRAL. DAN28450 D0 29 M=1,NINTS DAN28450 D2 9 M=1,NINTS DAN28450 D2 9 M=1,NINTS DAN28470 DAN28450 DAN28450 DAN28450 DAN28450 DAN28450 DAN28450	C UP RECORD COUNTER.	DAN28260
CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON. IF(IPTI.EQ.O) GO TO 75 OAN28290 IF(IRC.EQ.I) IPRT(I)=NRECNT CALL UNPACK(PKLABL(I),IA,JA,KA,LA,IZ,ITA) CALL UNPACK(PKLABL(NINTS),IB,JB,KB,LB,IZ,ITB) DAN28320 IPRT(IRC+1)=JA DAN28330 IPRT(IRC+2)=LA IPRT(IRC+3)=NINTS IPRT(IRC+4)=JB DAN28350 IPRT(IRC+5)=LB DAN28350 IF(IRC.NE.36) GO TO 75 WRITE(6,103) IPRT IRC=1 CCHECK FOR ERRONEOUS VALUES OF NINTS. 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 CLOOP ON EACH INTEGRAL. CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DAN28450 DAN28460 DAN28460 DAN28450 DAN28460 DAN28460 DAN28450 DAN28460 DAN28450 DAN28460 DAN28460 DAN28450 DAN28460 DAN28450 DAN28450 DAN28460 DAN28450 D	NRECNT=NRECNT+1	DAN28270
IF(IPTI.EQ.0) G0 T0 75 DAN28290 IF(IRC.EQ.1) IPRT(I)=NRECNT DAN28300 CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA) DAN28310 CALL UNPACK(PKLABL(NINTS),IB,JB,KB,LB,IZ,ITB) DAN28320 IPRT(IRC+1)=JA DAN28330 IPRT(IRC+2)=LA DAN28340 IPRT(IRC+3)=NINTS DAN28350 IPRT(IRC+4)=JB DAN28360 IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28390 IF(IRC.NE.36) G0 T0 75 DAN28390 WRITE(6,103) IPRT DAN28400 IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28420 CLOOP ON EACH INTEGRAL. DAN28440 CLOOP ON EACH INTEGRAL. DAN28450 DO 29 M=1,NINTS DAN28450 DO 29 M=1,NINTS DAN28450 DAN28450 DAN28450 DA28450 DAN28450 DA28450 DAN28450 DA28450 DAN28450 DA28450 DAN28450 DA28450 DAN28450	CSET UP AND PRINT CHECKSUMS IF CHECKSUM PRINT FLAG IS ON.	DAN 28280
IF(IRC.EQ.1) IPRT(1)=NRECNT DAN28300 CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA) DAN28310 CALL UNPACK(PKLABL(NINTS),IB,JB,KB,LB,IZ,ITB) DAN28320 IPRT(IRC+1)=JA DAN28330 IPRT(IRC+2)=LA DAN28340 IPRT(IRC+3)=NINTS DAN28360 IPRT(IRC+4)=JB DAN28360 IPRT(IRC+4)=JB DAN28370 IRC=IRC+5 DAN28370 IRC=IRC+5 DAN28370 IRC=1 DAN28370 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 CLOOP ON EACH INTEGRAL. DAN28450 DO 29 M=1,NINTS DAN28450 DO 29 M=1,NINTS DAN28450 V=VALUEM(M) DAN28460 DA28450 DAN28450	IF(IPTI.EQ.0) GO TO 75	DAN28290
CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA) DAN28310 CALL UNPACK(PKLABL(NINTS),IB,JB,KB,LB,IZ,ITB) DAN28320 IPRT(IRC+1)=JA DAN28330 IPRT(IRC+2)=LA DAN28340 IPRT(IRC+3)=NINTS DAN28350 IPRT(IRC+4)=JB DAN28350 IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28370 IRC=1 DAN28380 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28400 IRC=1 DAN28400 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL. DAN28450 DD 29 M=1,NINTS DAN28450 DD 29 M=1,NINTS DAN28450 DA 28450 DAN28450 DA 28450 DAN28450 DAN28450 DAN28450	IF(IRC.EQ.1) IPRT(1)=NRECNT	DAN28300
CALL UNPACK(PKLABL(NINTS), IB, JB, KB, LB, IZ, ITB) DAN28320 IPRT(IRC+1)=JA DAN28330 IPRT(IRC+2)=LA DAN28340 IPRT(IRC+2)=LA DAN28340 IPRT(IRC+3)=NINTS DAN28350 IPRT(IRC+3)=NINTS DAN28360 IPRT(IRC+4)=JB DAN28370 IRC=IRC+5 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28380 WRITE(6,103) IPRT DAN28400 IRC=1 DAN28400 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28420 CPLACE EACH INTEGRAL. DAN28450 DO 29 M=1,NINTS DAN28450 DO 29 M=1,NINTS DAN28470 CALL UNPACK(PKLABL(M), I, J, K, L, MU, IZ) DAN28480	CALL UNPACK(PKLABL(1),IA,JA,KA,LA,IZ,ITA)	DAN28310
IPRT(IRC+1)=JA DAN28330 IPRT(IRC+2)=LA DAN28340 IPRT(IRC+3)=NINTS DAN26350 IPRT(IRC+4)=JB DAN28360 IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28380 WRITE(6,103) IPRT DAN28390 IRC=1 DAN28390 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28400 T5 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28420 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL. DAN28450 DO 29 M=1,NINTS DAN28450 DO 29 M=1,NINTS DAN28450 DAN28460 DAN28470 CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	CALL UNPACK(PKLABL(NINTS), IB, JB, KB, LB, IZ, ITB)	DAN28320
IPRT(IRC+2)=LA DAN28340 IPRT(IRC+3)=NINTS DAN26350 IPRT(IRC+3)=NINTS DAN28360 IPRT(IRC+4)=JB DAN28370 IRC=IRC+5 DAN28380 IF(IRC.NE.36) GD TD 75 DAN28380 WR ITE(6,103) IPRT DAN28400 IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28420 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL. DAN28450 DD 29 M=1,NINTS DAN28450 DD 29 M=1,NINTS DAN28450 DAN28460 CALL UNPACK(PKLABL(M), I, J, K, L, MU, IZ) DAN28480	IPRT(IRC+1)=JA	DAN28330
IPRT(IRC+3)=NINTS DAN28350 IPRT(IRC+4)=JB DAN28360 IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28390 WRITE(6,103) IPRT DAN28400 IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28430 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL. DAN28450 DD 29 M=1,NINTS DAN28450 DA 28460 DAN28460 DAN28460 DAN28460 DAN28460 DAN28460	IPRT(IRC+2)=LA	DAN28340
IPRT(IRC+4)=JB DAN28360 IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28390 WRITE(6,103) IPRT DAN28400 IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28420 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DO 29 M=1,NINTS DAN28450 V=VALUEM(M) DAN28470 CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	IPRT(IRC+3)=NINTS	DAN28350
IPRT(IRC+5)=LB DAN28370 IRC=IRC+5 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28390 WRITE(6,103) IPRT DAN28400 IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28420 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DO 29 M=1,NINTS DAN28450 V=VALUEM(M) DAN284(M),I,J,K,L,MU,IZ) DAN28480	IPRT(IRC+4)=JB	DAN28360
IRC=IRC+5 DAN28380 IF(IRC.NE.36) GO TO 75 DAN28390 WRITE(6,103) IPRT DAN28400 IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28430 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DO 29 M=1,NINTS DAN28460 V=VALUEM(M) DAN28470 CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	IPRT(IRC+5)=LB	DAN28370
IF(IRC.NE.36) GO TO 75 DAN28390 WRITE(6,103) IPRT DAN28400 IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28420 CLOOP ON EACH INTEGRAL. DAN28440 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DO 29 M=1,NINTS DAN28460 V=VALUEM(M) DAN28470 CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	IRC=IRC+5	DAN28380
WRITE(6,103) IPRTDAN28400IRC=1DAN28410CCHECK FOR ERRONEOUS VALUES OF NINTS.DAN2842075 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500DAN28430CLOOP ON EACH INTEGRAL.DAN28440CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES.DAN28450DO 29 M=1,NINTSDAN28450V=VALUEM(M)DAN28470CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ)DAN28480	IF(IRC.NE.36) GO TO 75	DAN28390
IRC=1 DAN28410 CCHECK FOR ERRONEOUS VALUES OF NINTS. DAN28420 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 DAN28430 CLOOP ON EACH INTEGRAL. DAN28440 CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DO 29 M=1,NINTS VALUEM(M) V=VALUEM(M) CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	WRITE(6,103) IPRT	DAN28400
CCHECK FOR ERRONEOUS VALUES OF NINTS. 75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500 CLOOP ON EACH INTEGRAL. CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DO 29 M=1,NINTS V=VALUEM(M) CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	IRC=1	DAN28410
75IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500DAN28430CLOOP ON EACH INTEGRAL.DAN28440CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES.DAN28450DD 29 M=1,NINTSDAN28460V=VALUEM(M)DAN28470CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ)DAN28480	CCHECK FOR ERRONEOUS VALUES OF NINTS.	DAN28420
CLOOP ON EACH INTEGRAL. CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DO 29 M=1,NINTS V=VALUEM(M) CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28460 DAN28470 DAN28480	75 IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500	DAN28430
CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES. DAN28450 DU 29 M=1,NINTS V=VALUEM(M) CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	CLOOP ON EACH INTEGRAL.	DAN28440
DD 29 M=1,NINTS DAN28460 V=VALUEM(M) DAN28470 CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	CPLACE EACH INTEGRAL WITH ITS PROPER MULTIPLIER IN THE MATRICES.	DAN28450
V=VALUEM(M) CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	DO 29 M=1, NINTS	DAN28460
CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ) DAN28480	V=VALUEM(M)	DAN28470
	CALL UNPACK(PKLABL(M),I,J,K,L,MU,IZ)	DAN28480

CSKIP THE INTEGRAL IF ITS VALUE IS SMALL.	DAN28490
IF(DABS(V).LT.CUTLO) GO TO 29	DAN28500
LSUMNW=LSUMNW+L	DAN28510
NMINNW=NMINNW+1	DAN28520
CDEPENDING ON THE TYPE OF LABEL OF THE INTEGRAL AS GIVEN BY THE	DAN28530
CINDEX MU, MULTIPLY THE VALUE OF THE INTEGRAL BY ITS PROPER	DAN28540
CDENSITY MATRIX PREFACTORS AND ADD THE PRODUCTS TO THE PROPER ELEMEN	TDAN28550
COF THE MATRICES TO BE FORMED.	DAN28560
GUTC(12,13,14,15,16,17,18,19,20,21,22,23,24,25),MU	DAN 28570
CI/I/I/I	DAN28580
12 T(I,I)=T(I,I)+TT(I,I)*V	DAN28590
R(I,I)=R(I,I)+RR(I,I)*V	DAN28600
S(I,I)=S(I,I)+SS(I,I)*V	DAN28610
GD TO 29	DAN23620
CI/J/I/JI.GT.J	DAN28630
13 T(J,I)=T(J,I)+2.*TT(I,J)*V	DAN28640
R(J,I)=R(J,I)+RR(I,J)*V	DAN28650
S(J,I)=S(J,I)+SS(I,J)*V	DAN28660
R(1,1)=R(1,1)+RR(J,J)*V	DAN28670
S(I,I) = S(I,I) + SS(J,J) * V	DAN28680
R(J,J)=R(J,J)+RR(I,I)*V	DAN28690
S(J,J)=S(J,J)+SS(I,I)*V	DAN28700
GO TO 29	DAN 28710
CI/I/K/KI.GT.K	DAN28720
14 T(I,I)=T(I,I)+TT(K,K)*V	DAN28730
T(K,K)=T(K,K)+TT(I,I)*V	DAN28740
R(K,I)=R(K,I)+RR(I,K)*V	DAN28750
S(K, I) = S(K, I) + SS(I, K) * V	DAN 28760
GO TO 29	DAN28770
CI/I/I/LI.GT.L	DAN28780
15 T(L,I)=T(L,I)+TT(I,I)*V	DAN28790
T(I,I)=T(I,I)+2.*TT(I,L)*V	DAN28800

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	R(L,I)=R(L,I)+RR(I,I)*V	DAN28810
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	S(L, I) = S(L, I) + SS(I, I) * V	DAN23820
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$R(I,I) = R(I,I) + 2 \cdot RR(I,L) * V$	DAN28830
G0 T0 29 DAN28350 CI/I/K/K.LI.GT.K.GT.L DAN28360 16 T(L,K)=T(L,K)+TT(I,I)*V DAN28870 T(I,I)=T(I,I)+2.*TT(K,L)*V DAN28880 R(L,I)=R(L,I)+RR(I,K)*V DAN28890 S(L,I)=S(L,I)+SS(I,K)*V DAN28910 S(K,I)=S(K,I)+SS(I,L)*V DAN28910 S(K,I)=S(K,I)+SS(I,L)*V DAN28920 G0 T0 29 DAN28920 CI/J/JI.GT.J DAN28950 I7 T(J,J)=T(J,J)+2.*TT(I,J)*V DAN28920 G0 T0 29 DAN28950 CI/J/JI.GT.J DAN28950 I7 T(J,J)=T(J,J)+2.*TT(I,J)*V DAN28950 T(J,I)=T(J,I)+TT(J,J)*V DAN28950 R(J,J)=R(J,J)+2.*TT(I,J)*V DAN28950 R(J,I)=R(J,I)+R(J,J)*V DAN28950 S(J,J)=S(J,J)+2.*SS(I,J)*V DAN28960 R(J,I)=R(J,I)+R(J,J)*V DAN28970 S(J,I)=S(J,J)+3.*SS(J,J)*V DAN2892010 CI/J/K/KI.GT.GT.K DAN29010 CI/J/K/KI.GT.K.K DAN29020 I8 T(K,K)=T(K,K)+R(I,K)*V DAN29050 R(K,J)=R(K,J)+RR(I,K)*V DAN29050 S(K,J)=S(K,J)+SS(I,K)*V DAN29050	S(I,I) = S(I,I) + 2 * SS(I,L) * V	DAN28840
CI/I/K/LI.GT.K.GT.L DAN23860 16 T(L,K)=T(L,K)+TT(I,J)*V DAN28870 T(I,I)=T(I,I)+2.*TT(K,L)*V DAN2880 R(L,I)=R(L,I)+RR(I,K)*V DAN28900 R(K,I)=R(K,I)+RS(I,L)*V DAN28910 S(L,I)=S(L,I)+SS(I,L)*V DAN28920 G(K,I)=S(K,I)+SS(I,L)*V DAN28920 CI/J/J/JI.GT.J DAN28930 CI/J/J/JI.GT.J DAN28930 CI/J/J/JI.GT.J DAN28920 T(J,J)=T(J,J)+2.*TT(I,J)*V DAN28920 T(J,J)=R(J,J)+2.*SS(I,J)*V DAN28920 S(J,J)=S(J,J)+2.*SS(I,J)*V DAN28970 S(J,J)=S(J,J)+2.*SS(I,J)*V DAN28970 S(J,J)=S(J,J)+2.*SS(I,J)*V DAN28970 CI/J/K/KI.GT.J.GT.K DAN29000 GO TO 29 CI/J/K/KI.GT.J.GT.K DAN29010 CI/J/K/KI.GT.J.GT.K DAN29010 CI/J/K/KI.GT.J.GT.K DAN29020 18 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29020 18 T(K,K)=T(K,K)+S(I,K)*V DAN29020 CI/J/K/KI.GT.J.GT.K DAN29020 CI/J/K/KI.GT.J.GT.K DAN29020 18 T(K,K)=T(K,K)+S(I,K)*V DAN29020 18 T(K,K)=T(K,K)+S(J,K)*V DAN29020 18 T(K,J)=R(K,J)+SS(J,K)*V DAN29020 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29020 10 DAN29020 10 T(X,K)=T(K,K)+2.*TT(I,J)*V DAN29020 11 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29020 12 T(K,I)=R(K,I)+S(J,K)*V DAN29020 13 T(K,I)=C(K,I)+S(J,K)*V DAN29020 14 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29020 15 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29020 16 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29020 17 T(J,J)=T(J,J)+TT(K,K)*V DAN29020 18 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29020 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29120 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29120 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29120 10 DAN28020 10 DAN2802	GO TO 29	DAN28850
16 $T(L,K) = T(L,K) + TT(T,T) *V$ DAN28870 $T(I, I) = T(I, I) + 2, *TT(K,L) *V$ DAN28880 $R(L, I) = T(I, I) + 2, *TT(K,L) *V$ DAN28890 $S(L, I) = S(L, I) + SS(I, K) *V$ DAN28900 $R(K, I) = R(K, I) + RR(I, L) *V$ DAN28910 $S(K, I) = S(K, I) + SS(I, L) *V$ DAN28920 $GO TO 29$ DAN28930 $C \dots I/JJ/J \dots I + GT \dots J$ DAN28940 17 $T(J, J) = T(J, J) + 2, *TT(I, J) *V$ $DAN28950$ T(J, I) = T(J, J) + 2, *RR(I, J) *V $DAN28960$ R(J, J) = R(J, J) + 2, *RR(I, J) *V $AN28970$ DAN28960 $R(J, J) = R(J, J) + 2, *RR(I, J) *V$ DAN28970 $S(J, J) = S(J, I) + 2, *SS(I, J) *V$ DAN28980 $R(J, I) = R(J, I) + RS(J, J) *V$ DAN289900 $GO TO 29$ DAN29000 $C \dots I/J/K/K \dots I + GT \dots GT$	CI/I/K/LI.GT.K.GT.L	DAN23860
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	16 $T(L,K) = T(L,K) + TT(I,I) * V$	DAN28870
$R(L, I) = R(L, I) + RR(I, K) * V$ DAN 28390 $S(L, I) = S(L, I) + SS(I, K) * V$ DAN 28910 $R(K, I) = R(K, I) + RR(I, L) * V$ DAN 28910 $S(K, I) = S(K, I) + SS(I, L) * V$ DAN 28920 $GO TO 29$ DAN 28930 $C \dots I/J/J/J \dots I = GT J$ DAN 28950 $IT T(J, J) = T(J, J) + 2 * TT(I, J) * V$ DAN 28950 $T(J, I) = T(J, J) + 2 * TT(I, J) * V$ DAN 28950 $T(J, I) = T(J, J) + 2 * TT(I, J) * V$ DAN 28950 $R(J, J) = R(J, J) + 2 * RR(I, J) * V$ DAN 28950 $R(J, J) = R(J, J) + 2 * SS(I, J) * V$ DAN 28970 $S(J, J) = S(J, I) + 2 * SS(I, J) * V$ DAN 28970 $GO TO 29$ DAN 28970 $C \dots I/J/K/K \dots I = GT J = GT K$ DAN 29010 $C \dots I/J/K/K \dots I = GT J = GT K$ DAN 29020 $IB T(K, K) = T(K, K) + 2 * TT(I, J) * V$ DAN 29020 $R(K, J) = R(K, J) + RR(I, K) * V$ DAN 29050 $R(K, J) = R(K, J) + RR(I, K) * V$ DAN 29050 $R(K, J) = R(K, J) + RR(I, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + RS(I, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + RS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29010 $I) T(K, K) = T(L, J) + TT(K, K) * V$ DAN 29110 $I) T(K, K) = T(J, I) + TT(K, K) * V$ DAN 29110 $I) T(J, L) = T(J, I) + TT(K, K) * V$ DAN 29120	T(I,I) = T(I,I) + 2.*TT(K,L)*V	DAN28880
$S(L, I) = S(L, I) + SS(I, K) * V$ DAN28900 $R(K, I) = R(K, I) + RR(I, L) * V$ DAN28910 $S(K, I) = S(K, I) + SS(I, L) * V$ DAN28920 $G0 T0 29$ DAN28930 $C \cdots I / J / J J \cdots I \cdot GT \cdot J$ DAN28930 $17 T(J, J) = T(J, J) + 2 \cdot * TT(I, J) * V$ DAN28950 $r(J, I) = T(J, J) + 2 \cdot * RR(I, J) * V$ DAN28950 $R(J, J) = R(J, J) + 2 \cdot * RR(I, J) * V$ DAN28960 $R(J, I) = R(J, I) + 2 \cdot * S(I, J) * V$ DAN28970 $S(J, J) = S(J, J) + 2 \cdot * S(I, J) * V$ DAN28970 $S(J, I) = S(J, I) + SS(J, J) * V$ DAN28970 $G0 T0 29$ DAN29000 $G0 T0 29$ DAN29000 $C \cdots I / J / K / K \cdot I \cdot GT \cdot J \cdot GT \cdot K$ DAN29020 $18 T(K, K) = T(K, K) + 2 \cdot * TT(I, J) * V$ DAN29030 $r(K, J) = R(K, J) + RR(I, K) * V$ DAN29040 $R(K, J) = R(K, J) + SS(I, K) * V$ DAN29070 $S(K, I) = S(K, I) + SS(I, K) * V$ DAN29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN29080 $G0 T0 29$ DAN29080 $C \cdots I / J / K / K \cdots I \cdot GT \cdot K \cdot GT \cdot J$ DAN29080 $G0 T0 29$ DAN29100 $I9 T(K, K) = T(K, K) + 2 \cdot *TT(I, J) * V$ DAN29100 $I9 T(K, K) = T(J, I) + TT(K, K) * V$ DAN29110 $I9 T(J + I) = T(J + I) + T (K + A * V)$ <td< th=""><td>R(L,I)=R(L,I)+RR(I,K)*V</td><td>DAN 28890</td></td<>	R(L,I)=R(L,I)+RR(I,K)*V	DAN 28890
$R(K, I) = R(K, I) + RR(I, L) * V$ DAN 28910 $S(K, I) = S(K, I) + SS(I, L) * V$ DAN 28920 $GO TO 29$ DAN 28930 $C \dots I / J / J / J \dots I \cdot GT \cdot J$ DAN 28940 $17 T(J, J) = T(J, J) + 2 \cdot * TT(I, J) * V$ DAN 28950 $T(J, I) = T(J, J) + 2 \cdot * RR(I, J) * V$ DAN 28950 $R(J, J) = R(J, J) + 2 \cdot * RR(I, J) * V$ DAN 28950 $R(J, J) = R(J, J) + 2 \cdot * SS(I, J) * V$ DAN 28970 $S(J, J) = S(J, J) + 2 \cdot * SS(I, J) * V$ DAN 28970 $S(J, I) = R(J, I) + RR(J, J) * V$ DAN 28970 $GO TO 29$ DAN 29010 $C \dots I / J / K / K \dots I \cdot GT \cdot J \cdot GT \cdot K$ DAN 29010 $IB T(K, K) = T(K, K) + 2 \cdot * TT(I, J) * V$ DAN 29020 $R(K, J) = R(K, J) + RR(I, K) * V$ DAN 29050 $S(K, J) = S(K, J) + SS(J, K) * V$ DAN 29070 $S(K, J) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = S(K, I) + SS(J, K) * V$ DAN 29070 $S(K, I) = I(J, I) + TT(K, K) + 2 \cdot * TT(I, J) * V$ DAN 29070 $I = T(J, I) + TT(K, K) + 2 \cdot * TT(I, J) * V$ DAN 29100 $I = T(J, I) + TT(K, K) + 2 \cdot * TT(I, J) * V$ DAN 29100 $I = T(J, I) + TT(K, K) + 2 \cdot * TT(I, J) * V$ DAN 29120 $I = T(J, I) + TT(K, K) + 2 \cdot * TT(I, J) * V$ DAN 29120	S(L,I)=S(L,I)+SS(I,K)*V	DAN28900
S(K, I) = S(K, I) + SS(I, L) * VDAN28920GO TO 29DAN28930CI/J/J/JI.GT.JDAN28950IT T(J,J) = T(J, I) + T(I, J) * VDAN28950T(J, I) = T(J, I) + TT(J, J) * VDAN28950R(J, J) = R(J, J) + 2. * RR(I, J) * VDAN28950S(J, J) = S(J, J) + 2. * SS(I, J) * VDAN28970S(J, I) = S(J, I) + R(J, J) * VDAN28960R(J, I) = R(J, I) + R(J, J) * VDAN28960S(J, I) = S(J, I) + SS(I, J) * VDAN28960GO TO 29DAN29020CI/J/K/KI.GT.J.GT.KDAN2902018 T(K,K) = T(K,K) + 2. * TT(I, J) * VDAN29030T(J, I) = T(J, I) + TT(K,K) * VDAN29030S(K, J) = S(K, J) + SS(I, K) * VDAN29050S(K, J) = S(K, I) + SS(I, K) * VDAN29050S(K, I) = R(K, I) + RR(I, K) * VDAN29060GO TU 29DAN29070CI/J/K/KI.GT.K.GT.JDAN29070I) T(K,K) = T(K,K) + 2. * TT(I, J) * VDAN29070S(K, I) = S(K, I) + SS(J, K) * VDAN29070S(K, I) = C(K, I) + SS(J, K) * VDAN29070S(K, I) = S(K, I) + SS(J, K) * VDAN29070GO TU 29DAN29070CI/J/K/KI.GT.K.GT.JDAN29070I) T(K,K) = T(K,K) + 2. * TT(I, J) * VDAN29100I) T(K,K) = T(J, I) + TT(K, K) * VDAN29100I) T(K,K) = T(J, I) + TT(K, K) * VDAN29120	$R(K,I) = R(K,I) + RR(I,L) \times V$	DAN 2891 0
G0 T0 29 DAN28930 CI/J/J/JI.GT.J DAN28940 17 T(J,J)=T(J,J)+2.*TT(I,J)*V DAN28950 T(J,I)=T(J,I)+TT(J,J)*V DAN28950 R(J,J)=R(J,J)+2.*RR(I,J)*V DAN28960 R(J,J)=R(J,J)+2.*RR(I,J)*V DAN28970 S(J,J)=S(J,J)+2.*SS(I,J)*V DAN28970 S(J,I)=R(J,I)+RR(J,J)*V DAN28990 S(J,I)=S(J,I)+SS(J,J)*V DAN29000 G0 T0 29 DAN29010 CI/J/K/KI.GT.J.GT.K DAN29020 18 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29040 R(K,J)=R(K,J)+RR(I,K)*V DAN29050 S(K,J)=S(K,J)+SS(I,K)*V DAN29050 S(K,I)=R(K,I)+RR(I,K)*V DAN29050 S(K,I)=S(K,I)+SS(J,K)*V DAN29070 C(K,I)=S(K,I)+SS(J,K)*V DAN29080 G0 T0 29 DAN29080 G0 T0 29 DAN29080 G0 T0 29 DAN29090 CI/J/K/KI.GT.K.GT.J DAN29020 I9 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29100 I9 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29100 I9 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29120	S(K,I) = S(K,I) + SS(I,L) * V	DAN28920
CI/J/J/JI.GT.JDAN2894017 $T(J,J) = T(J,J) + 2.*TT(I,J) * V$ DAN28950 $T(J,I) = T(J,I) + TT(J,J) * V$ DAN28960 $R(J,J) = R(J,J) + 2.*RR(I,J) * V$ DAN28970 $S(J,J) = S(J,J) + 2.*RR(I,J) * V$ DAN28980 $R(J,I) = R(J,I) + RR(J,J) * V$ DAN28990 $S(J,I) = S(J,I) + SS(I,J) * V$ DAN28900 $GO TO 29$ DAN29010 $C \dots I/J/K/K \dots I.GT.J.GT.K$ DAN29020 $I8 T(K,K) = T(K,K) + 2.*TT(I,J) * V$ DAN29030 $R(K,J) = R(K,J) + RR(I,K) * V$ DAN29050 $S(K,I) = S(J,I) + SS(I,K) * V$ DAN29050 $R(K,J) = R(K,J) + RR(J,K) * V$ DAN29050 $R(K,J) = S(K,I) + SS(I,K) * V$ DAN29060 $R(K,I) = R(K,I) + RR(J,K) * V$ DAN29060 $C \dots I/J/K/K \dots I.GT.K.GT.J$ DAN29070 $DAN29030$ DAN29030 $DAN29030$ DAN29050 $R(K,I) = S(K,I) + SS(J,K) * V$ DAN29060 $C \dots I/J/K/K \dots I.GT.K.GT.J$ DAN29080 $DAN29100$ DAN29100 $I9 T(K,K) = T(K,K) + 2.*TT(I,J) * V$ DAN29100 $I9 T(K,K) = T(J,I) + TT(K,K) + 2.*TT(I,J) * V$ DAN29100 $I9 T(K,K) = T(J,I) + TT(K,K) + 2.*TT(I,J) * V$ DAN29100 $I9 T(J,I) = T(J,I) + TT(K,K) + 2.*TT(I,J) * V$ DAN29100 $I10 T(J,I) = T(J,I) + TT(K,K) + 2.*TT(I,J) * V$ DAN29110 $I11 T(K,K) = TT(K,K) + 2.*TT(I,J) * V$ DAN29120 $I12 T(J,I) = T(J,I) + TT(K,K) + 2.*TT(I,J) * V$ DAN29120	GO TO 29	DAN28930
17 $T(J,J)=T(J,J)+2.*TT(I,J)*V$ DAN28950 $T(J,I)=T(J,I)+TT(J,J)*V$ DAN28960 $R(J,J)=R(J,J)+2.*RR(I,J)*V$ DAN28970 $S(J,J)=S(J,J)+2.*SS(I,J)*V$ DAN28980 $R(J,I)=R(J,I)+RR(J,J)*V$ DAN28990 $S(J,I)=S(J,I)+SS(J,J)*V$ DAN29000 GO TO 29DAN29010 $CI/J/K/KI.GT.J.GT.K$ DAN29020 18 $T(K,K)=T(K,K)+2.*TT(I,J)*V$ DAN29030 $R(K,J)=R(K,J)+RR(I,K)*V$ DAN29030 $R(K,J)=R(K,J)+RR(I,K)*V$ DAN29050 $S(K,J)=S(K,J)+SS(I,K)*V$ DAN29060 $R(K,I)=R(K,I)+RR(J,K)*V$ DAN29070 $S(K,I)=S(K,I)+SS(J,K)*V$ DAN29080 GO TO 29DAN29010	CI/J/J/JI.GT.J	DAN28940
T(J,I)=T(J,I)+TT(J,J)*VDAN28960 $R(J,J)=R(J,J)+2.*RR(I,J)*V$ DAN28970 $S(J,J)=S(J,J)+2.*SS(I,J)*V$ DAN28980 $R(J,I)=R(J,I)+RR(J,J)*V$ DAN28990 $S(J,I)=S(J,I)+SS(J,J)*V$ DAN29000 GO TO 29DAN29010 $CI/J/K/KI.GT.J.GT.K$ DAN29020 18 $T(K,K)=T(K,K)+2.*TT(I,J)*V$ DAN29030 $R(K,J)=R(K,J)+RR(I,K)*V$ DAN29040 $R(K,J)=R(K,J)+RR(I,K)*V$ DAN29050 $S(K,J)=S(K,J)+SS(J,K)*V$ DAN29050 $S(K,I)=S(K,I)+SS(J,K)*V$ DAN29060 $R(K,I)=R(K,K)+RR(J,K)*V$ DAN29070 $S(K,I)=S(K,I)+SS(J,K)*V$ DAN29030 $IJ/J/K/KI.GT.K.GT.J$ DAN29030 $IJ = T(K,K)=T(K,K)+2.*TT(I,J)*V$ DAN29110 $IJ = T(K,K)=T(K,K)+2.*TT(I,J)*V$ DAN29120	17 T(J,J)=T(J,J)+2.*TT(I,J)*V	DAN28950
$R(J,J) = R(J,J) + 2 \cdot RR(I,J) * V$ DAN28970 $S(J,J) = S(J,J) + 2 \cdot SS(I,J) * V$ DAN28980 $R(J,I) = R(J,I) + RR(J,J) * V$ DAN28990 $S(J,I) = S(J,I) + SS(J,J) * V$ DAN29000GO TD 29DAN29010 $C \cdot I / J / K / K \cdot I \cdot GT \cdot J \cdot GT \cdot K$ DAN2902018 $T(K,K) = T(K,K) + 2 \cdot *TT(I,J) * V$ DAN29030 $T(J,I) = T(J,I) + TT(K,K) * V$ DAN29040 $R(K,J) = R(K,J) + RR(I,K) * V$ DAN29050 $S(K,J) = S(K,J) + SS(J,K) * V$ DAN29050 $R(K,I) = R(K,I) + RR(J,K) * V$ DAN29070 $S(K,I) = S(K,I) + SS(J,K) * V$ DAN29070 $S(K,I) = S(K,I) + SS(J,K) * V$ DAN29070 GO TD 29DAN29070 $C \cdot I / J / K / K \cdot I \cdot GT \cdot K \cdot GT \cdot J$ DAN29100 $I 9$ $T(K,K) = T(K,K) + 2 \cdot *TT(I,J) * V$ DAN29100 $I 9$ $T(K,K) = T(K,K) + 2 \cdot *TT(I,J) * V$ DAN29100 $I 9$ $T(K,K) = T(K,K) + 2 \cdot *TT(I,J) * V$ DAN29120	T(J,I)=T(J,I)+TT(J,J)*V	DAN28960
S(J,J)=S(J,J)+2.*SS(I,J)*V DAN28980 R(J,I)=R(J,I)+RR(J,J)*V DAN28990 S(J,I)=S(J,I)+SS(J,J)*V DAN29000 GO TO 29 DAN29010 CI/J/K/KI.GT.J.GT.K DAN29020 18 T(K,K)=T(K,K)+2.*TT(I,J)*V T(J,I)=T(J,I)+TT(K,K)*V DAN29030 R(K,J)=R(K,J)+RR(I,K)*V DAN29040 R(K,J)=R(K,J)+RR(I,K)*V DAN29050 S(K,I)=S(K,J)+SS(I,K)*V DAN29060 R(K,I)=R(K,I)+RR(J,K)*V DAN29060 GO TO 29 DAN29070 S(K,I)=S(K,I)+SS(J,K)*V DAN29080 GO TO 29 DAN29080 CI/J/K/KI.GT.K.GT.J DAN29100 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29110 T(J,I)=T(J,I)+TT(K,K)*V DAN29120	R(J,J)=R(J,J)+2.*RR(I,J)*V	DAN28970
R{J,I}=R(J,I)+RR{J,J}*V DAN23990 S{J,I}=S(J,I)+SS(J,J)*V DAN29000 GD TD 29 DAN29010 CI/J/K/KI.GT.J.GT.K DAN29020 18 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29030 r{J,I}=T{J,I}+TT{K,K}*V DAN29030 R{K,J}=R{K,J}+RR{I,K}*V DAN29040 R{K,J}=R{K,J}+RR{I,K}*V DAN29050 S{K,J}=S{K,J}+SS(I,K)*V DAN29050 S{K,I}=S{K,I}+RR{J,K}*V DAN29060 R{K,I}=R{K,I}+RR{J,K}*V DAN29070 S{K,I}=S{K,I}+SS{J,K}*V DAN29080 GD TD 29 DAN29090 CI/J/K/KI.GT.K.GT.J DAN29100 19 T{K,K}=T{K,K}+2.*TT{I,J}*V DAN29110 T{J,I}=T{J,I}+TT{K,K}*V DAN29120	S(J,J)=S(J,J)+2.*SS(I,J)*V	DAN28980
S(J,I)=S(J,I)+SS(J,J)*V DAN29000 GO TO 29 DAN29010 CI/J/K/KI.GT.J.GT.K DAN29020 18 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29030 T(J,I)=T(J,I)+TT(K,K)*V DAN29040 R(K,J)=R(K,J)+RR(I,K)*V DAN29050 S(K,J)=S(K,J)+SS(I,K)*V DAN29060 R(K,I)=R(K,I)+RR(J,K)*V DAN29060 R(K,I)=S(K,I)+SS(J,K)*V DAN29070 S(K,I)=S(K,I)+SS(J,K)*V DAN29080 GO TO 29 DAN29090 CI/J/K/KI.GT.K.GT.J DAN29100 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29110 T(J,I)=T(J,I)+TT(K,G)*V DAN29120	R(J,I)=R(J,I)+RR(J,J)*V	DAN 28990
G0 T0 29 DAN29010 CI/J/K/KI.GT.J.GT.K DAN29020 18 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29030 T(J,I)=T(J,I)+TT(K,K)*V DAN29040 R(K,J)=R(K,J)+RR(I,K)*V DAN29050 S(K,J)=S(K,J)+SS(I,K)*V DAN29060 R(K,I)=R(K,I)+RR(J,K)*V DAN29060 S(K,I)=S(K,I)+SS(J,K)*V DAN29070 S(K,I)=S(K,I)+SS(J,K)*V DAN29080 G0 T0 29 DAN29090 CI/J/K/KI.GT.K.GT.J DAN29100 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29110 T(J,I)=T(J,I)+TT(K,K)*V DAN29120	S(J,I)=S(J,I)+SS(J,J)*V	DAN29000
CI/J/K/KI.GT.J.GT.K DAN29020 18 $T(K,K)=T(K,K)+2.*TT(I,J)*V$ DAN29030 $T(J,I)=T(J,I)+TT(K,K)*V$ DAN29040 $R(K,J)=R(K,J)+RR(I,K)*V$ DAN29050 $S(K,J)=S(K,J)+SS(I,K)*V$ DAN29060 $R(K,I)=R(K,I)+RR(J,K)*V$ DAN29070 $S(K,I)=S(K,I)+SS(J,K)*V$ DAN29070 GO TU GO TU IO DAN29090 IO TU IO DAN29090 IO DAN29090 GO TU IO DAN29090 IO DAN29090 IO DAN29100 IO T(K,K)=T(K,K)+2.*TT(I,J)*V IO DAN29110 $I(J,I)=T(J,I)+TT(K,K)*V$ DAN29120	GO TO 29	DAN29010
18 $T(K,K)=T(K,K)+2.*TT(I,J)*V$ DAN29030 $T(J,I)=T(J,I)+TT(K,K)*V$ DAN29040 $R(K,J)=R(K,J)+RR(I,K)*V$ DAN29050 $S(K,J)=S(K,J)+SS(I,K)*V$ DAN29060 $R(K,I)=R(K,I)+RR(J,K)*V$ DAN29070 $S(K,I)=S(K,I)+SS(J,K)*V$ DAN29080 GD TD GD TD $I = T(J,K)+S(J,K)*V$ DAN29090 $C \dots I/J/K/K \dots I \dots GT \dots K \dots GT \dots J$ DAN29100 $I = T(K,K)=T(K,K)+2 \dots *TT(I,J)*V$ DAN29110 $T(J,I)=T(J,I)+TT(K,K)*V$ DAN29120	CI/J/K/KI.GT.J.GT.K	DAN29020
$T(J,I)=T(J,I)+TT(K,K)*V$ DAN29040 $R(K,J)=R(K,J)+RR(I,K)*V$ DAN29050 $S(K,J)=S(K,J)+SS(I,K)*V$ DAN29060 $R(K,I)=R(K,I)+RR(J,K)*V$ DAN29070 $S(K,I)=S(K,I)+SS(J,K)*V$ DAN29080 GO TD 29DAN29090 $C \dots I/J/K/K \dots I \dots GT \dots K \dots GT \dots J$ DAN29100 $I9$ $T(K,K)=T(K,K)+2 \dots *TT(I,J)*V$ DAN29110 $T(J,I)=T(J,I)+TT(K,K)*V$ DAN29120	18 T(K,K)=T(K,K)+2.*TT(I,J)*V	DAN29030
$R(K,J) = R(K,J) + RR(I,K) * V$ DAN29050 $S(K,J) = S(K,J) + SS(I,K) * V$ DAN29060 $R(K,I) = R(K,I) + RR(J,K) * V$ DAN29070 $S(K,I) = S(K,I) + SS(J,K) * V$ DAN29080GO TO 29DAN29090 $C \cdots I/J/K/K \cdots I \cdot GT \cdot K \cdot GT \cdot J$ DAN2910019 T(K,K) = T(K,K) + 2 \cdot * TT(I,J) * VDAN29110T(J,I) = T(J,I) + TT(K,K) * VDAN29120	T (J , I) =T (J , I) +TT (K , K) *V	DAN 29040
$\begin{array}{cccc} S(K,J) = S(K,J) + SS(I,K) *V & DAN29060 \\ R(K,I) = R(K,I) + RR(J,K) *V & DAN29070 \\ S(K,I) = S(K,I) + SS(J,K) *V & DAN29080 \\ GD TD 29 & DAN29090 \\ C \dots I/J/K/K \dots I \dots GT \dots K \dots GT \dots J & DAN29100 \\ 19 T(K,K) = T(K,K) + 2 \dots *TT(I,J) *V & DAN29110 \\ T(J,I) = T(J,I) + TT(K,K) *V & DAN29120 \\ \end{array}$	R(K,J)=R(K,J)+RR(I,K)*V	DAN29050
$R(K,I) = R(K,I) + RR(J,K) * V$ DAN 29070 $S(K,I) = S(K,I) + SS(J,K) * V$ DAN 29080 GO TU 29 DAN 29090 $C \cdot \cdot I / J / K / K \cdot \cdot I \cdot GT \cdot K \cdot GT \cdot J$ DAN 29100 19 T(K,K) = T(K,K) + 2 . * TT(I,J) * V DAN 29110 T(J,I) = T(J,I) + TT(K,K) * V DAN 29120	S(K,J)=S(K,J)+SS(I,K)*V	DAN29060
S(K,I)=S(K,I)+SS(J,K)*V DAN29080 GD TD 29 DAN29090 CI/J/K/KI.GT.K.GT.J DAN29100 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29110 T(J,I)=T(J,I)+TT(K,K)*V DAN29120	R(K,I)=R(K,I)+RR(J,K)*V	DAN 29070
GO TO 29 DAN29090 CI/J/K/KI.GT.K.GT.J DAN29130 19 T(K,K)=T(K,K)+2.*TT(I,J)*V DAN29110 T(J,I)=T(J,I)+TT(K,K)*V DAN29120	S(K,I)=S(K,I)+SS(J,K)*V	DAN29080
CI/J/K/KI.GT.K.GT.J 19 T(K,K)=T(K,K)+2.*TT(I,J)*V T(J.I)=T(J.I)+TT(K,K)*V DAN29100 DAN29100 DAN29120	GO TO 29	DAN29090
19 $T(K,K)=T(K,K)+2.*TT(I,J)*V$ DAN29110 $T(J,I)=T(J,I)+TT(K,K)*V$ DAN29120	CI/J/K/KI.GT.K.GT.J	DAN29100
$T(J \cdot I) = T(J \cdot I) + TT(K \cdot K) * V $ DAN 29120	19 T(K,K)=T(K,K)+2.*TT(I,J)*V	DAN29110
	T(J,I) = T(J,I) + TT(K,K) * V	DAN 29120

	R(J,K)=R(J,K)+RR(I,K)*V	DAN 29130
	S(J,K) = S(J,K) + SS(I,K) * V	DAN29140
	R(K,I)=R(K,I)+RR(K,J)*V	DAN29150
	S(K,I)=S(K,I)+SS(K,J)*V	DAN29160
	GO TO 29	DAN29170
	C···I/J/J/L···I·GT·J·GT·L	DAN 29180
1	2) T(J,I)=T(J,I)+2.*TT(J,L)*V	DAN29190
:	T(L,J)=T(L,J)+2.*TT(I,J)*V	DAN29200
	R(J,J)=R(J,J)+2.*RR(I,L)*V	DAN29210
	S(J,J)=S(J,J)+2.*SS(I,L)*V	DAN29220
	R(J,I)=R(J,I)+RR(J,L)*V	DAN29230
	S(J,I)=S(J,I)+SS(J,L)*V	DAN29240
	R(L,J)=R(L,J)+RR(I,J)*V	DAN29250
	S(L,J)=S(L,J)+SS(I,J)*V	DAN 29260
	R(L,I)=R(L,I)+RR(J,J)*V	DAN29270
	S(L,I)=S(L,I)+SS(J,J)*V	DAN29280
	GO TO 29	DAN29290
	C···I/J/I/L···I·GT·J·GT·L	DAN29300
	21 T(J,I)=T(J,I)+2.*TT(I,L)*V	DAN 29310
	T(L,I)=T(L,I)+2.*TT(I,J)*V	D4N29320
	R(I,I)=R(I,I)+2.*RR(J,L)*V	DAN29330
	S(I,I)=S(I,I)+2.*SS(J,L)*V	DAN 29340
	R(J,I)=R(J,I)+RR(I,L)*V	DAN29350
	S(J,I)=S(J,I)+SS(I,L)*V	DAN29360
	R(L,J)=R(L,J)+RR(I,I)*V	DAN29370
	S(L,J)=S(L,J)+SS(T,T)*V	DAN29380
	R(L,I)=R(L,I)+RR(I,J)*V	DAN 29390
	S(L, I) = S(L, I) + SS(I, J) * V	DAN29400
	GO TO 29	DAN29410
	CI/J/K/JI.GT.K.GT.J	DAN 29420
	22 T(J,I)=T(J,I)+2.*TT(K,J)*V	DAN29430
	T(J,K)=T(J,K)+2.*TT(I,J)*V	DAN29440

R(J,J)=R(J,J)+2.*RR(I,K)*VS(J,J) = S(J,J) + 2 * SS(I,K) * V $R(J \cdot K) = R(J \cdot K) + RR(I \cdot J) \neq V$ S(J,K)=S(J,K)+SS(I,J)*V R(J,I)=R(J,I)+RR(K,J)*VS(J,I)=S(J,I)+SS(K,J)*VR(K,I)=R(K,I)+RR(J,J)*VS(K,I) = S(K,I) + SS(J,J) * VGO TO 29 C...I/J/K/L...I.GT.J.GT.K.GT.L 23 T(J,I)=T(J,I)+2.*TT(K,L)*V $T(L,K) = T(L,K) + 2 \cdot TT(I,J) * V$ R(K,I)=R(K,I)+RR(J,L)*VS(K,I)=S(K,I)+SS(J,L)*VR(K,J)=R(K,J)+RR(I,L)*VS(K,J)=S(K,J)+SS(I,L)*VR(L,J)=R(L,J)+RR(I,K)*VS(L,J)=S(L,J)+SS(I,K)*VR(L,I)=R(L,I)+RR(J,K)*VS(L,I)=S(L,I)+SS(J,K)*VGO TO 29 C...I/J/K/L...I.GT.K.GT.J.GT.L 24 T(J,I)=T(J,I)+2.*TT(K,L)*V T(L,K)=T(L,K)+2.*TT(I,J)*VR(K,I)=R(K,I)+RR(J,L)*VS(K,I)=S(K,I)+SS(J,L)*VR(J,K)=R(J,K)+RR(I,L)*VS(J,K)=S(J,K)+SS(I,L)*V $R(L,J)=R(L,J)+RR(I,K) \neq V$ S(L,J)=S(L,J)+SS(I,K)*VR(L,I)=R(L,I)+RR(K,J)*VS(L,I) = S(L,I) + SS(K,J) + V

DAN29450 DAN29460 DAN29470 DAN29480 DAN29490 DAN29500 DAN29510 DAN29520 DAN29530 DAN29540 DAN29550 DAN29560 DAN29570 DAN29580 DAN29590 DAN29600 DAN29610 DAN29620 DAN29630 DAN29640 DAN29650 DAN29660 DAN29670 DAN29680 DAN29690 DAN29700 DAN29710 DAN29720 DAN29730 DAN29740 DAN29750 DAN29760

GO TO 29	DAN29770
CI/J/K/LI.GT.K.GT.L.GT.J	DAN29780
25 T(J,I)=T(J,I)+2.*TT(K,L)*V	DAN29790
T(L,K)=T(L,K)+2.*TT(I,J)*V	DAN29800
R(K,I)=R(K,I)+RR(L,J)*V	DAN29810
S(K,I)=S(K,I)+SS(L,J)*V	DAN29820
R(J,K)=R(J,K)+RR(I,L)*V	DAN29830
S(J,K)=S(J,K)+SS(I,L)*V	DAN29840
R(J,L)=R(J,L)+RR(I,K)*V	DAN29850
S(J,L)=S(J,L)+SS(I,K)*V	DAN29860
R(L,I)=R(L,I)+RR(K,J)*V	DAN29870
S(L,I)=S(L,I)+SS(K,J)*V	DAN29830
29 CONTINUE	DAN29890
CIF THIS WAS NOT THE LAST RECORD GO BACK INTO THE LOOP AND READ	DAN29900
CANOTHER RECORD OF INTEGRALS IN.	DAN29910
IF(LSTRCD.EQ.0) GO TO 72	DAN29920
CIF CHECK SUM PRINT FLAG IS ON AND THERE ARE MORE CHECKSUMS THEN	DAN29930
CPRINT THEM.	DAN29940
IF(IPTI.EQ.O.AND.IRC.EQ.1) GO TO 76	DAN29950
WRITE(6,103) (IPRT(MN), MN=1, IRC)	DAN29960
CCOMPARE THE CHECKSUMS OBTAINED ON THIS RUN THROUGH THIS ROUTINE	DAN 29970
CWITH THOSE OBTAINED ON THE PREVIOUS RUN THROUGH. IN CASE OF ERROR	DAN29980
CABORT. ALSO PRINT CHECK SUMS IF PRINT FLAG IS SET.	DAN29990
76 IF(IX.EQ.0) GO TO 79	DAN30000
IF(LSUM.NE.LSUMNW.OR.NOSINT.NE.NMINNW) GO TO 500	DAN30010
IF(IPTI.EQ.O) GO TO 79	DAN 30020
WRITE(6,102) LSUM, LSUMNW, NOSINT, NMINNW	DAN30030
CSTORE THE CHECK SUMS OF THIS RUN THROUGH FOR CHECKING LATER ON NEX	KTDAN30040
CPASS	DAN 30050
79 L SUM=L SUMNW	DAN30060
NOSINT=NMINNW	DAN30070
CSET FLAG TO INDICATE THAT A PASS THROUGH THIS ROUTINE HAS BEEN MADE	E.DAN30080

I X = 1	DAN30090
CRETURN TO SCFUHF PROGRAM.	DAN30100
RETURN	DAN30110
CERROR EXIT.	DAN30120
500 WRITE(6,501)	DAN30130
CALL ABT	DAN30140
STOP	DAN30150
100 FORMAT(1H1////37X,	DAN30160
161HINTERNAL CHECK SUMS, ETC. FROM READING TWO ELECTRON INTEGRALS//	DAN30170
1 6H REC ,7(1X,17H FIRST NOS LAST)/	DAN30180
1 6H NOS ,7(1X,17H LABEL OF LABEL)/	DAN30190
$1 \qquad 6X,7(1X,17H J L INTS J L))$	DAN30200
102 FORMAT(1X,10HLAST L SUM,112,11H THIS L SUM,112/1X,17HLAST NOS. OF	DAN30210
LINTS, I12, 18H THIS NOS. OF INTS, I12)	DAN30220
103 FORMAT(1X,14,1X,7(13,13,1X,14,13,13,1X))	DAN 30230
501 FORMAT(22HOREAD ERROR IN FMJUHF)	DAN30240
END	DAN30250
CFMEXTB SUBROUTINE FMEXTB	DAN30250
SUBROUTINE FMEXTB(A,P,NBFNS,NBMX,PRE,EX)	DAN30270
IMPLICIT REAL*8 (A-H,G-Z)	DAN 30280
DIMENSION A(NBMX, NBMX), P(NBMX, NBMX)	DAN30290
DOUBLE PRECISION EY	DAN30300
CSUBROUTINE FMEXTB COMPUTES THE TRACE OF THE PRODUCT OF THE	DAN30310
CSYMMETRIC MATRICES A AND P. FURTHER IT MULTIPLIES THE VALUE	DAN30320
COF THE TRACE BY THE FACTOR PRE. THE UPPER TRIANGULAR HALF (INCLUDING	DAN30330
CTHE DIAGONAL) OF A IS USED AND THE LOWER TRIANGULAR HALF (INCLUDING	DAN30340
CTHE DIAGONAL) OF P IS USED. THUS	DAN30350
$C \bullet \bullet \bullet \qquad EX = PRE*TRACE(A * P)$	DAN30360
EY=0.0D0	DAN30370
DO 2 I=1, NBFNS	DAN30380
DO 1 J=1, I	DAN30390
COD=2.0	DAN30400

•

.

	IF(I.EQ.J) COD=1.0	DAN30410
	EY=EY+COD*A(J,I)*P(I,J)	DAN30420
1	CONTINUE	DAN30430
2	CONTINUE	DAN30440
	EX=PRE*EY	DAN30450
	RETURN	DAN30460
	END	DAN30470
CEFSK	IP SUBROUTINE EFSKIP(NTAPE,NFILS)	DAN30480
	SUBROUTINE EFSKIP(NTAPE, NFILS)	DAN30490
С	THIS SUBROUTINE MOVES TAPE NO. NTAPE JUST OVER NFILS NUMBER OF	DAN30500
С	END-OF-FILE MARKS, EITHER FORWARD OR BACKWARDS DEPENDING ON THE	DAN30510
0	SIGN OF NFILS. IFNFILS=0, THE SUBROUTINE DOES NOTHING.	DAN30520
	REAL*8 EOF, WORD1	DAN30530
	DATA EOF/6H***EOF/	DAN30540
	NT=NTAPE	DAN30550
	IF(NFILS) 20,18,10	DAN30560
С	FORWARD SPACE OVER NFILS END-OF-FILES ON TAPE NTAPE	DAN30570
10	DO16K=1,NFILS	DAN30580
12	READ(NT) WORD1	DAN30590
	IF(WORD1.NE.EOF) GOTO12	DAN30600
16	CONTINUE	DAN30610
18	RETURN	DAN30620
20	N=-NFILS	DAN 30630
С	BACKSPACE FILE UNIT NTAPE OVER NFILS FILE MARKS	DAN30640
	D030K=1,N	DAN30650
	KOUNT=0	DAN30660
32	BACKSPACE NT	DAN30670
	KOUNT=KOUNT+1	DAN30680
	READ(NT) WORD1	DAN30690
	BACKSPACE NT	DAN30700
	IF(KOUNT.GT.50) GD TO 40	DAN30710
	IF(WORD1.NE.EOF) GOTO32	DAN 30720

•

30	CONTINUE	DAN30730
	RETURN	DAN30740
40	WRITE (6,99) K	DAN30750
	CALL ABT	DAN30760
99	FORMAT(7H0 FILE 13,30H CONTAINS MORE THAT 50 RECORDS)	DAN30770
	END	DAN30780
CADDT	SUBROUTINE ADDT	DAN30790
	SUBROUTINE ADDT (NAM, NITAPE, ILABL, ARRAY, NBMX, PKOLBL, VALINT, NINMAX)	DAN30800
	IMPLICIT REAL*8 (A-H,O-Z)	DAN30810
	DIMENSION PKOLBL(NINMAX),VALINT(NINMAX)	DAN30820
	DIMENSION ARRAY(NBMX,NBMX),ILABL(1)	DAN30830
	REAL*8 NAM, ILABLE	DAN33840
C PC	DSITION TAPE, NITAPE, TO READ THE FILE WHOSE NAME IS NAM.	DAN30850
CF	ILE NAM CONTAINS BINARY RECORDS OF INTEGRAL LABELS AND VALUES.	DAN30860
	CALL FILE(NAM,NITAPE,ILABL)	DAN30870
C R 8	EAD A RECORD OF INTEGRAL LABELS AND VALUES.	DAN30880
1	READ (NITAPE) NINTS, LSTRCD, PKDLBL, VALINT	DAN30890
	IF(NINTS.GT.NINMAX.OR.NINTS.LE.O) GO TO 500	DAN30900
C L (DOP OVER THE NINTS LABELS AND VALUES IN THE RECORD JUST READ IN.	DAN30910
	DO 2 M=1,NINTS	DAN 30920
C UN	NPACK A LABEL.	DAN30930
	CALL UNPACK(PKDL8L(M),I,J,IZ,IZ,IZ,IZ)	DAN30940
C Pl	JT VALUE INTO CORRECT POSITION IN ARRAY (UPPER TRIANGULAR HALF)	DAN30950
	ARRAY(J,I)=ARRAY(J,I)+VALINT(M)	DAN30960
2	CONTINUE	DAN30970
CIF	F THE RECORD JUST READ IN WAS NOT THE LAST GO TO I AND READ ANOTHER	RDAN30980
CFF	ROM TAPE. IF LSTRCD IS NONZERC THEN THE RECORD JUST READ WAS THE	DAN30990
CLA	AST.	DAN31000
	IF(LSTRCD.EQ.0) GO TO 1	DAN31010
	RETURN	DAN31020
CE#	RROR EXIT FOR INCORRECT VALUE OF NINTS (POSSIBLE TAPE READ ERROR).	DAN31030
500	WRITE(6,510)	DAN31040

	CALL ABT	DAN31050
	STOP	DAN 31060
	510 FORMAT(22HOREAD ERROR IN ADDT)	DAN31070
	END	DAN31080
	CABT SUBROUTINE ABT	DAN31090
	SUBROUTINE ABT	DAN31100
	A=2./0.	DAN31110
	A=A+2.	DAN31120
	STOP	DAN31130
	END	DAN31140
	CMWRITE SUBROUTINE MWRITE	DAN31150
	SUBROUTINE MWRITE(A,WA,WB,WC,ITR,NR,NC,NRX)	DAN31160
	IMPLICIT REAL*8 (A-H,O-Z)	DAN31170
	CTHIS SUBROUTINE PRINTS OUT THE MATRIX A.	DAN31180
	DIMENSION A(NRX,NRX)	DAN31190
	REAL*8 WA,WB,WC,ILBL,ILAB	DAN31200
	COMMON/LABELS/ILBL(12), ILAB(12)	DAN31210
	WRITE(6,100) (ILBL(I),I=1,12),WA,WB,WC	DAN 31220
·	IF(ITR.GT.O) WRITE(6,101) ITR	DAN31230
	WRITE(5,102) (M,M=1,10)	DAN 3 124 0
	DO 1 I=1, NR	DAN31250
	WRITE(6,104) I, (A(I,J), J=1, NC)	DAN31250
	1 CONTINUE	DAN31270
	RETURN	DAN31280
	100 FORMAT(1H1///31X,12A6/58X,3A6)	DAN31290
	101 FORMAT(61X, 10HITERATION , I3)	DAN 31300
	102 FORMAT(4HOROW,5X,12,9(10X,12))	DAN31310
	104 FORMAT(I4,10F12.7/(4X,10F12.7))	DAN31320
	END	DAN31330
	CREDRD SUBROUTINE REORD	DAN31340
	SUBROUTINE REORD(A, B, X, X1, NR, NC, NRX)	DAN31350
	C	DAN31360

C	ORDERS EIGENVECTORS FROM LOWEST TO HIGHEST EIGENVALUES.	DAN31370
С	EIGENVECTORS ARE IN B. REORDERED EIGENVECTORS ARE IN A.	DAN31380
С	REORDERED EIGENVALUES ARE IN X.	DAN31390
С		DAN31400
	IMPLICIT REAL*8(A-H,O-Z)	DAN31410
	DIMENSION A(NRX,NRX),B(NRX,NRX),X(NRX),X1(NRX)	DAN31420
	AB=X1(1)	DAN31430
	DO 20 I=2,NR	DAN31440
	IF(X1(I).LE.AB)GO TO 20	DAN 31450
	AB=X1(I)	DAN31460
20	CONTINUE	DAN31470
	BA=2.DO*DABS(AB)	DAN31480
	00 30 K=1,NR	DAN31490
	J=1	DAN31500
	AB=X1(1)	DAN31510
	DO 40 I=2,NR	DAN31520
	IF(X1(I).GE.AB)GO TO 40	DAN 31530
	AB=X1(I)	DAN31540
	J=I	DAN31550
40	CONTINUE	DAN31560
	X(K) = X1(J)	DAN31570
	X1(J)=BA	DAN31580
	DO 50 I=1,NC	DAN31590
50	A(K,I)=B(J,I)	DAN31600
30	CONTINUE	DAN 31610
	RETURN	DAN31620
	END	DAN31630
CFMDMI	B SUBROUTINE FMDMB	DAN31640
	SUBROUTINE FMDMB(Y,D,FR,GA,NSOS,NBFNS,NBMX)	DAN31650
	IMPLICIT REAL*8 (A-H,O-Z)	DAN31660
	DIMENSION Y(NBMX,NBMX),D(NBMX,NBMX),FR(1)	DAN31670
	DOUBLE PRECISION DD	DAN31680

CTHIS SUBROUTINE COMPUTES THE DENSITY MATRIX. D. FROM THE MOLECHLAR	DAN31690
C. ORBITAL COEFFICIENTS STORED IN THE ROWS DE Y. THUS -	DAN31700
$C_{AAA} = D(I_{A}I_{A}) = GA \times SIM(DVER K) = FR(K) \times Y(K_{A}I) \times Y(K_{A}I)$	DAN31710
C. WHERE ERIKA IS THE ERACTIONAL OCCUPANCY OF THE KTH DRBITAL AND	DAN31720
CGA IS A CONSTANT GIVEN BY THE CALLING ROUTINE.	DAN31730
C SINCE DIS SYMMETRIC ONLY ITS HOWED TRIANCH AD HAVE (INCLUDING	DAN21740
CONSTRUCT DIS STRUCTRIC UNLI ITS LUWER TRIANGULAR HALF (INCLUDING)	0AN31740
00 2 I-1 NRENS	DANS1750
	UAN31760
$UU \ge J=I,I$	DANSLITO
DD = 0.0DO	DAN31780
DO 1 K=1, NSOS	DAN31790
FRO=FR(K)	DAN31800
IF(FRO.EQ.O.) GO TO 1	DAN31810
DD=DD+Y(K,I)*Y(K,J)*FRO	DAN31820
1 CONTINUE	DAN31830
D(I,J)=GA*DD	DAN31840
2 CONTINUE	DAN31850
RETURN	DAN31860
END	DAN31870
CEMDTB SUBROUTINE EMDTB	DAN31880
SUBROUTINE FMDTB(A.B.C.T.NC.NRX)	DAN31890
IMPLICIT REAL≠8 (A-H,O-Z)	DAN31900
DIMENSION $\Delta(NRX_1) \cdot B(NRX_1) \cdot C(NRX_1)$	DAN31910
C. THIS SUBBOUTINE FORMS THE MATRIX C WHERE	DAN31920
$C_{1} = A(1,1) + T + B(1,1)$	0AN31920
CTHE MATRICES A. B. AND C ARE DRESHMARLY SYMMETRIC. AND THEREEDRE	DAN31940
CONTRACTICES AND THE AND CARE PRESCHABLE STATEMENTLY AND SHEREFORE	DANZIOSO
COMENTIAL LOWER INTANGULAR HALF (INCLUDING THE DIAGONAL) OF UTS	DAN31930
COOFURMED FRUM THE CURRESSPUNDING SECTIONS OF A AND DO	DANDL90U
UU Z J=I;NU	DANS1970
	UAN31480
U(1,J)=A(1,J)+1*B(1,J)	UAN31990
1 CUNTINUE	DAN32000

` •.

	2	CONTINUE	DAN32010
		RETURN	DAN32020
		END	DAN 32 03 0
CTE	EST	2 SUBROUTINE TEST2(NT, JNAM)	DAN32040
		SUBROUTINE TEST2(NT, JNAM)	DAN32050
С		TEST2 REWINDS TAPE NO. NT AND CHECKS TO SEE IF THE CORRECT TAPE	DAN 32060
С		HAS BEEN MOUNTED. IN CASE OF ERROR PROGRAM IS TERMINATED.	DAN32070
		REAL*8 IEOF, JNAM, NAMTAP, IWRD	DAN32080
		COMMON /IDIND/ ICON(24)	DAN32090
		DATA IEUF /6H***EOF/	DAN32100
		NTAPE=NT	DAN32110
		REWIND NTAPE	DAN32120
1		READ(NTAPE) IWRD	DAN32130
		IF(IWRD.NE.IEOF) GOTO1	DAN32140
		READ(NTAPE) NAMTAP	DAN32150
		CALL EFSKIP (NTAPE,-1)	DAN32160
		IF(JNAM.EQ.NAMTAP) GOTO6	DAN32170
4		WRITE(6,5) NTAPE	DAN32180
		CALL ABT	DAN32190
6		IF(ICON(10).GT.O) WRITE(6,3) NTAPE,JNAM	DAN32200
		RETURN	DAN32210
5		FORMAT(30H0 WRONG TAPE NAME ON TAPE NO. 13)	DAN 32220
3		FORMAT(70X,4HTAPE I3,2X,24HIS LOADED WITH THE NAME A6)	DAN32230
		END	DAN32240
CMV	WRIT	TB SUBROUTINE MWRITB	DAN32250
		SUBROUTINE MWRITB(A,WA,WB,WC,ITR,NC,NRX)	DAN32260
		IMPLICIT REAL*8 (A-H,O-Z)	DAN32270
С.	• • Tł	HIS SUBROUTINE PRINTS OUT THE LOWER TRIANGULAR HALF (INCLUDING THE	DAN32280
С.	• D]	IAGONAL) OF THE MATRIX A.	DAN32290
		DIMENSION A(NRX,1)	DAN32300
		REAL*8 WA,WB,WC,ILBL,ILAB	DAN32310
		COMMON/LABELS/ILBL(12), ILAB(12)	DAN32320

•

	WRITE(6,100) (ILBL(I),I=1,12),WA,WB,WC	DAN32330
	IF(ITR.GT.O) WRITE(6,101) ITR	DAN32340
	WRITE(6,102) (M,M=1,10)	DAN32350
	DO 1 I=1,NC	DAN32360
	WRITE(6,104) I,(A(I,J),J=1,I)	DAN32370
1	CONTINUE	DAN32380
	RETURN	DAN32390
100	FORMAT(1H1////31X,12A6/58X,3A6)	DAN32400
101	FORMAT(61X, 10HITERATION , 13)	DAN32410
102	FORMAT(4HORDW,5X,12,9(10X,12))	DAN32420
104	FORMAT(14,10F12.7/(4X,10F12.7))	DAN32430
	END	DAN32440
CMODB	ILK SUBROUTINE MODBLK	DAN32450
	SUBROUTINE MODBLK(V,F,Y,NS,OE,GQ,CA,NSOS,NBFNS,NBMX,WA,ITR,IX)	DAN32460
	IMPLICIT REAL*8 (A-H,O-Z)	DAN32470
	DIMENSION CA(NBMX, NBMX)	DAN32480
	DIMENSION V(NBMX,NBMX),F(NBMX,NBMX),Y(NBMX,NBMX),	DAN32490
	1 NS(1), GE(1), GQ(1)	DAN32500
	REAL*8 WA	DAN32510
С		DAN32520
C	THE MATRIX TO BE BLOCK DIAGONALIZED IS STORED IN F. THE	DAN32530
С	SYMMETRY BLOCKING TRANSFORMATION MATRIX IS STORED IN V.	DAN32540
С	THE SYMMETRY BLOCKED MATRIX, F, IS DIAGONALIZED A BLOCK AT A	DAN32550
С	TIME. THE EIGENVALUES ARE ORDERED BY BLOCKS - MOST NEGATIVE	DAN 32560
С	FIRST - AND THEN THE EIGENVECTORS ARE TRANSFORMED BACK INTO	DAN32570
C	THE BASIS FUNCTION REPRESENTATION.	DAN32580
С		DAN32590
C T	AKE TRACE OF F MATRIX	DAN32600
5	TRFM=0.	DAN32610
	DO 1 I=1,NSOS	DAN32620
1	TRFM=TRFM+F(I,I)	DAN32630
C • • • I	NITIALIZE EIGENVECTOR MATRIX	DAN32640

CALL MCLEAR(Y, NSOS, NSOS, NBMX)	DAN32650
CPERFORM DIAGONALIZATION BY BLOCKS	DAN32660
NR=0	DAN32670
ISYM=1	DAN32680
ILO=1	DAN32690
2 NSYM=NS(ISYM)	DAN32700
CDIAGONALIZE THE BLOCK OF FSYM WHOSE 1,1 ELEMENT IS AT F(ILO,ILO)	DAN32710
CTHE EIGENVECTORS OF THAT BLOCK ARE STORED IN THE NSYM BY NSYM	DAN32720
CBLOCK OF Y STARTING WITH Y(ILO,ILO)	DAN32730
IF(NSYM.EQ.O) GOTO4	DAN32740
CALL HDIAG(F(ILO,ILO),Y(ILO,ILO),OE,GQ,NSYM,NBMX,O,NROT)	DAN32750
NR=NR+NROT	DAN32750
ILO=ILO+NSYM	DAN32770
4 CONTINUE	DAN32780
ISYM=ISYM+1	DAN32790
IF(ILO.LE.NSOS) GO TO 2	DAN32800
CORDER THE EIGENVALUES AND EIGENVECTORS SUCH THAT THE I+1 TH EIGEN-	DAN32810
CVALUE IS GREATER THAN THE ITH AND SUCH THAT THE EIGENVECTOR	DAN32820
CCORRESPONDING TO THE ITH EIGENVALUE IS IN THE ITH COLUMN OF Y.	DAN32830
CALL URDREI(F,Y,OE,NS,GQ,NSOS,NBMX)	DAN32840
CTRANSFORM EIGENVECTORS BACK TO ORIGINAL NON BLOCKED BASIS	DAN32850
CAT THIS POINT THE EIGENVECTORS OF FSYM, W, ARE CONTAINED IN THE	DAN32860
CCOLUMNS OF Y. TO EFFECT THE TRANSFORMATION OF W BACK TO THE ORIGINAL	DAN32870
CBASIS PERFORM THE FOLLOWING -	DAN32880
$C \bullet \bullet \bullet \qquad X = WT * V$	DAN32890
CWHERE X IS THE MATRIX OF EIGENVECTORS IN THE ORIGINAL BASIS	DAN32900
CAND CONTAINS THOSE EIGENVECTORS AS ROWS.	DAN32910
CON ENTRY TO MMATBL THE MATRIX W IS CONTAINED IN Y AND THE MATRIX V	DAN32920
CIS CONTAINED IN V.	DAN32930
CON RETURN FROM MMATB1 THE MATRIX X IS CONTAINED IN Y.	DAN32940
CALL MMATB1(Y,CA,NSDS,NSDS,NBFNS,GQ,NBMX)	DAN32950
CTAKE TRACE OF EIGENVALUES	DAN 32960

TROE=0.	DAN32970
$DO_3 I=1,NSOS$	DAN32980
3 TROE=TROE+DE(I)	DAN32990
CDOE IS THE DIFFERENCE BETWEEN THE TRACE BEFORE AND AFTER	DAN33000
CDIAGUNALIZATION.	DAN33010
DOE=TROE-TRFM	DAN 33020
WRITE(6,130) WA,DOE,NR	DAN33030
RETURN	DAN33040
130 FORMAT(1H0,60X,A6,35H FSYM MATRIX DIAGONALIZATION ERROR ,	DAN33050
1 E15.8/80X, 20HNUMBER OF ROTATIONS , 16)	DAN33060
END	DAN33070
CORDREI SUBROUTINE ORDREI	DAN33090
SUBROUTINE ORDREI(F,U,OE,NS,NEXT,N,NBMX)	DAN33090
IMPLICIT REAL*8 (A-H,O-Z)	DAN33100
DIMENSION F(NBMX,NBMX),U(NBMX,NBMX),CE(1),NS(1),NEXT(1)	DAN33110
CTHIS SUBROUTINE ORDERS THE EIGENVALUES, WITHIN SYMMETRY BLOCKS,	DAN33120
CPLACING THE MOST NEGATIVE FIRST.	DAN33130
CON ENTRY TO THIS SUBROUTINE THE DIAGONAL ELEMENTS OF F CONTAIN	DAN33140
CTHE EIGENVALUES, DIAGONAL ELEMENTS 1 THRU NS(1) BELONG TO THE FIRST	DAN33150
CBLOCK, ELEMENTS NS(1)+1 THRU NS(2) +NS(1) TO THE SECOND BLOCK, ETC.	DAN33160
CTHE CORRESPONDING COLUMNS OF U CONTAIN THE EIGENVECTORS.	DAN33170
CON EXIT FROM THIS SUBROUTINE THE ORDERED EIGENVALUES ARE IN DE AND	DAN33130
CTHE EIGENVECTORS IN THE CORRESPONDING ORDER ARE IN U (AS COLUMNS).	DAN33190
ILO=1	DAN33200
I SYM=1	DAN 33210
1 IF(NS(ISYM).EQ.0) GOTO19	DAN33220
IHI=ILO+NS(ISYM)-1	DAN 3323)
IF(ILO.EQ.IHI) GOTO9	DAN33240
DO 2 I=ILO, IHI	DAN33250
2 NEXT(I)=I	DAN33260
KLO=ILO	DAN33270
3 K=NEXT(KLO)	DAN33280

	FMAX=F(K,K)	DAN33290
	KLP1=KLO+1	DAN33300
	DO 4 I=KLP1,IHI	DAN33310
	J=NEXT(I)	DAN33320
	IF(F(J,J).GE.FMAX) GO TO 4	DAN 3333 0
	M=NEXT(KLO)	DAN33340
	NEXT(KLO)=J	DAN33350
	NEXT(I)=M	DAN33360
	FMAX=F(J,J)	DAN33370
4	CONTINUE	DAN33380
	KLO=KLP1	DAN 33390
	IF(KLP1.LT.IHI) GO TO 3	DAN33400
	I=ILO	DAN 3341 0
5	J=NEXT(I)	DAN33420
	FMAX=F(I,I)	DAN33430
	DO 6 K=1,N	DAN33440
6	OE(K)=U(K,I)	DAN33450
	F(I,I)=F(J,J)	DAN33460
	F(J,J)=FMAX	DAN33470
	DO 7 K=1,N	DAN33480
	U(K,I)=U(K,J)	DAN33490
7	U(K,J)=OE(K)	DAN33500
	DO 8 M=ILO,IHI	DAN33510
	IF(NEXT(M).EQ.I) NEXT(M)=J	DAN33520
8	CONTINUE	DAN33530
	I=I+1	DAN33540
	IF(I.LT.IHI) GO TO 5	DAN 33550
9	ILO=IHI+1	DAN33560
19	ISYM=ISYM+1	DAN33570
	IF(ILO.LE.N) GO TO 1	DAN33580
	DO 10 KK=1,N	DAN33590
10	OE(KK)=F(KK,KK)	DAN33600

RETURN	DAN33610
END	DAN33620
CMABAT SUBROUTINE MABAT	DAN 33630
SUBROUTINE MABAT(A,B,NR,NC,Y,NBMX)	DAN33640
IMPLICIT REAL*8 (A-H,O-Z)	DAN33650
DIMENSION A(NBMX,1), B(NBMX,1), Y(NBMX,1)	DAN33660
CTHIS SUBROUTINE TAKES THE MATRIX PRODUCT -	DAN33670
$C \bullet \bullet \bullet \qquad C = A = B + AT$	DAN33680
CWHERE THE MATRIX AT IS THE TRANSPOSE OF A, A IS NR BY NC, B IS	DAN33690
CNC BY NC, AND C IS NR BY NR.	DAN33700
CTHE MATRIX B IS ASSUMED SYMMETRIC THUS ONLY ITS UPPER TRIANGULAR	DAN33710
CHALF (INCLUDING THE DIAGONAL) IS USED. THE MATRIX C IS ALSO ASSUMED	DAN33720
CTO BE SYMMETRIC, AND THEREFORE ONLY ITS UPPER TRIANGULAR HALF IS	DAN33730
CCALCULATED. THIS UPPER TRIANGULAR HALF OF C IS RETURNED IN THE UPPE	RDAN33740
CTRIANGULAR HALF OF B.	DAN33750
CCOMPUTE A * B . STORE THAT IN Y TEMPORARILY.	DAN33760
DOUBLE PRECISION SUM	DAN33770
DO 10 I=1,NR	DAN33780
DO 10 K=1,NC	DAN 33790
SUM=0.0D0	DAN33800
DÛ 8 J=1,K	DAN33810
SUM=SUM+A(I,J)*B(J,K)	DAN33820
8 CONTINUE	DAN33830
K1 = K + 1	DAN 3384 0
IF(K1.GT.NC) GUT013	DAN33850
DD 9 J=K1, NC	DAN33860
$SUM = SUM + A(I,J) \times B(K,J)$	DAN33870
9 CONTINUE	DAN33880
13 Y(I,K)=SUM	DAN33890
10 CONTINUE	DAN33900
CMULTIPLY Y * A TO GET UPPER HALF OF C, STORING THAT IN B.	DAN33910
DU 12 K=1,NR	DAN33920

.:

	DO 12 I=1,K	DAN33930
	SUM=0.0D0	DAN33940
	DO 11 J=1,NC	DAN33950
	SUM = SUM + Y(I, J) * A(K, J)	DAN33960
11	CONTINUE	DAN33970
	B(I,K)=SUM	DAN33980
12	CONTINUE	DAN33990
	RETURN	DAN 34000
	END	DAN34010
CMPRY	2 SUBROUTINE MPRY2	DAN34020
	SUBROUTINE MPRY2(A, E, FR, WA, WB, WC, ITR, NR, NC, NRX)	DAN34030
CTI	HIS SUBROUTINE PRINTS OUT THE MOLECULAR ORBITALS (IN COLS), THEIR	DAN34040
CE	IGENVALUES, AND FRACTIONAL OCCUPANCIES(IF ITR .NE.O)	DAN 34050
	IMPLICIT REAL*8 (A-H,O-Z)	DAN34060
	DIMENSION A(NRX,1),E(1),FR(1),NS(1),NSN(1)	DAN34070
	COMMON/LABELS/ILBL(12),ILAB(12)	DAN34080
	REAL*8 WA,WB,WC,ILBL,ILAB	DAN34090
C TI	HIS SUBROUTINE PRINTS OUT THE MOLECULAR ORBITALS WITH THEIR	DAN34100
C S	YMMETRY DESIGNATIONS, THEIR EIGENVALUES, AND THEIR FRACTIONAL	DAN34110
CO	CCUPANCIES.	DAN34120
	WRITE(6,100) (ILBL(I),I=1,12),WA,WB,WC	DAN34130
	WRITE(6,102) (M,M=1,10)	DAN34140
	DO 4 I=1, NR	DAN34150
	IF(ITR)1,2,1	DAN 34160
1	WRITE(6,103)M,E(I),FR(I)	DAN34170
	GO TO 3	DAN34180
2	WRITE(6,103)M,E(1)	DAN34190
3	WRITE(6,104)I,(A(J,I),J=1,NC)	DAN34200
4	CONTINUE	DAN34210
5	CONTINUE	DAN34220
6	RETURN	DAN34230
100	FORMAT(1H1////31X,12A6/58X,3A6)	DAN 34240

• •

102	FORMAT(4HOROW,5X,12,9(10X,12))	DAN34250
103	FORMAT('0', 13, F15.7, F10.5)	DAN34260
104	FORMAT(14,10F12.7/(4X,10F12.7))	DAN34270
	END	DAN34280
CMPRYI	SUBROUTINE MPRY1	DAN 34290
	SUBROUTINE MPRY1(A, E, FR, WA, WB, WC, ITR, NR, NC, NRX)	DAN34300
	IMPLICIT REAL*8 (A-H,O-Z)	DAN34310
	DIMENSION A(NRX,1),E(1),FR(1),NS(1),NSN(1)	DAN34320
	COMMON/LABELS/ILBL(12),ILAB(12)	DAN34330
	REAL*8 WA,WB,WC,ILBL,ILAB	DAN34340
C TH	HIS SUBROUTINE PRINTS OUT THE MOLECULAR ORBITALS (ALREADY IN	ROWSI DAN34350
C TO	DGETHER WITH THEIR EIGENVALUES AND FRACTIONAL OCCUPANCIES(IF	•TR •NDAN34360
	WRITE(6,100) (ILBL(I),I=1,12),WA,WB,WC	DAN34370
	WRITE(6,102) (M,M=1,10)	DAN34380
	DU 4 I=1,NR	DAN34390
	IF(ITR)1,2,1	DAN34400
1	WRITE(6,103)M,E(I),FR(I)	DAN34410
	GO TO 3	DAN 34420
2	WRITE(5,103)M,E(I)	DAN34430
3	WRITE(6,104)I,(A(I,J),J=1,NC)	DAN34440
4	CONTINUE	DAN34450
5	CONTINUE	DAN34460
6	RETURN	DAN34470
100	FORMAT(1H1////31X,12A6/58X,3A6)	DAN34480
102	FORMAT(4HORDW,5X,12,9(10X,12))	DAN34490
103	FURMAT('0', 13, F15.7, F10.5)	DAN34500
104	FORMAT(I4,10F12.7/(4X,10F12.7))	DAN34510
	END	DAN34520

The two page vita has been removed from the scanned document. Page 1 of 2
The two page vita has been removed from the scanned document. Page 2 of 2

SPIN PROJECTION OF SEMI-EMPIRICAL AND <u>AB</u> INITIO UNRESTRICTED HARTREE-FOCK WAVEFUNCTIONS

Ъy

Dana Alice Brewer

(ABSTRACT)

The method of spin projection was examined by developing and applying computer programs to calculate projected semi-empirical and <u>ab</u> <u>initio</u> unrestricted Hartree-Fock (UHF) wavefunctions.

The electronic spectra of naphthalene, anthracene, naphthacene and pentacene were calculated using the Pariser-Pople-Parr (PPP) π -electron approximations and both UHF and configurational interaction (CI) techniques. The results of both techniques were compared with experimentally determined spectra with reasonable agreement between the CI and projected UHF results. While the CI calculations generally produced lower energies for the triplet states than the UHF calculations, the spectra from UHF calculations were in somewhat better agreement with experiment. Anomalies encountered with degeneracies and the presence of open shell ground states are also discussed.

The geometry of monohomocyclooctatetraene anion radical (MHCOT) was studied using spin projection of the UHF INDO wavefunction. The theoretical molecular geometry was varied until the experimental hyperfine coupling constants matched hyperfine constants obtained from using both projected and unprojected UHF wavefunctions. The two types of calculations resulted in slightly different energies and geometries with the projected calculations giving a higher energy for the doublet state; essentially no differences were noted in the bond orders obtained from the two types of calculations. The geometry from the projected calculations was a somewhat more strained conformation than the geometry from the unprojected calculation.

<u>Ab initio</u> UHF calculations with spin projection were performed on H₂O(+) to compare the energies of pure spin states from <u>ab initio</u> multi-configurational self-consistent field with CI (MCSCF/CI) with those from spin projection. The MCSCF/CI calculations are superior to the UHF plus spin projection calculations. This result will always be observed when the UHF wavefunction is very close to a pure spin state before spin projection.

The dissociation of CF_2^0 was studied using <u>ab initio</u> wavefunctions. The energies of the unprojected UHF wavefunctions were examined along with those for the dissociated $CF_2 + 0$ fragments. Good agreement exists between the calculated and experimental vertical ionization potentials for CF_2^0 at the equilibrium geometry.