
Chapter 4

Simulation results for magnetized
plasmas

In this chapter, we consider the dust charge fluctuation mode and lower hybrid wave

damping in a magnetized plasma. Also, we consider plasma instabilities associated with

streaming of dust relative to the background plasma across a magnetic field as well as

the expansion of a dust cloud into a background plasma across a magnetic field. Results

from the linearized versions of the model equations are utilized to guide the simulation

results. The linearized quantities for the plasma and dust are taken to be

ne,i = ne0,i0 + ñe,i,

�ve,i = �ve0,i0 + �̃ve,i,
nd = nd0 + ñd,

Qd = Qd0 + Q̃d,

Ie,i = Ie0,i0 + Ĩe,i,

φf = φf0 + φ̃f ,

where the zeroth and first order terms are denoted. The first order terms are taken to

have exp(i�k · �x− iωt) spatial and temporal dependence. All numerical simulations are

initialized charge neutral with the number of positive and negative charges equal, that

is, ene0 +Qd0nd0 = eni0. All dust grains are initialized with Ie0 + Ii0 = 0 in the absence

of perturbations as described in section 3.6. The simulation box used is 128 × 128 or

256 × 128 grid cells. The theory and the details of simulation results are presented in

40
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the following sections.

4.1 Dust Charge Fluctuation Mode

4.1.1 Theory

Our first investigation is a fundamental study of the dust charge fluctuation mode.

This is a fundamental wave mode in dusty plasmas that results from dust charging. It

has been described theoreticaly by other investigators [Jana et al., 1993; Jana et al.,

1995; Varma et al., 1993]. Using equation (3.8), the dust charge fluctuations due to the

plasma current fluctuations can be expressed by

dQ̃d

dt
= Ĩe + Ĩi. (4.1)

Linearizing the currents, equation (3.11) and (3.12), the dust charge fluctuation dy-

namics equation can be shown to be [Jana et al., 1993]

dQ̃d

dt
+ ηQ̃d = |Ie0|

(
ñi
ni0

− ñe
ne0

)
, (4.2)

where the dust charge fluctuation relaxation rate η is given by

η =
e|Ie0|
C

(
1

kTe
+

1

kTi − eφf0

)
. (4.3)
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Physically η describes the rate at which a perturbation to the dust charge will decay

back to the equilibrium value. Equation (4.2) shows that dust charge fluctuations may

be driven by electron and ion density perturbations (ñe , ñi) such as those produced by

plasma waves. The dust charge fluctuations damp in the absence of electron and ion

density perturbations. The damped mode is described as [Jana et al., 1993; Varma et

al., 1993]

ω ≈ −iη. (4.4)

To investigate this mode, we initialize the dust charge with a 10% perturbation given by

Qd(x, y, t = 0) = Qd0(1 + 0.1 cos(kxx)) (4.5)

where kx =
2πm
L

(m = 5 for mode 5 in our study) and Qd0 = 1000 electrons. The dust

density is 100 particles per cell, the dust charge density is 1% of the ion charge density,

and ñe = ñi = ñd = 0.

4.1.2 Results

Figure 4.1 (a) shows the dust charge temporal decay for a single dust particle. The

dust particle is arbitrarily chosen to have the maximum positive charge perturbation

at t = 0, that is, Q̃d = + 0.1Qd0. Three values of the normalized dust fluctuation

relaxation constant η̃ = η/ωlh, 0.05, 0.25, and 0.5, are shown. It can be seen that the

e-folding decay of the dust charge agrees well with the prediction of (4.4). Figure 4.1

(b) shows the decay of the dust charge perturbation in the simulation box for the fixed

value of y/∆y = 64 and η̃ = 0.05.
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Figure 4.2 shows the current temporal decay of a single dust particle for η̃ = 0.05,

0.25, and 0.50. Again the dust grain is arbitrary chosen to have the maximum positive

perturbation Q̃d = + 0.1Qd0. For this positive charge perturbation, the corresponding

electron current perturbation is negative and the ion perturbation is positive as can be

seen in Figure 4.2. For the case η̃ = 0.5, it can be seen that on the time scale of η−1,

the electron and ion currents approach the equilibrium value I0 where I0 = |Ie0| = |Ii0|.
This brings the dust grain charge and potential back to the equilibrium values Qd0 and

φf0 since

Ie + Ii → 0. (4.6)

For higher values of η̃ = 0.25 and 0.5, it can be seen that the currents reach equilibrium

faster as expected. Note that the slow decrease in the equilibrium current as time evolves

is due to the slow reduction in the background plasma density from the dust charging

since the production rate qs = 0 for these results. Figure 4.3 shows the electron and

ion current and density at ωlht = 0, 30, and 60 for y/∆y = 64. The electron and ion

current perturbed with (4.5) are 180o out of phase. The small electron and ion density

in-phase perturbation result from the decay of the dust charge fluctuation.

4.2 Damping of Lower Hybrid Oscillations due to

Dust Charging

4.2.1 Theory

Damping of plasma waves in a dusty plasmas due to dust charging has been studied

theoretically by several investigators [Jana et al., 1993; Jana et al., 1995; Varma et al.,

1993]. This collisionless damping is unique to dusty plasmas and our numerical model
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can provide insight into this fundamental process. The primary low frequency ion wave

in our model is the lower hybrid wave. Our investigation here considers the damping

of this wave mode by dust charging and the associated physical processes. To incorpo-

rate the effects of dust charge fluctuations into the dispersion relation for lower hybrid

waves, we use the formalism described by other investigators. The general dispersion

relation for electrostatic waves including the effects of dust charge fluctuations is given

by [Jana et al., 1993]

1 + χe(ω, k)

(
1 +

iβ

ω + iη

)
+ χi(ω, k)

(
1 +

iβ

ω + iη

ne0
ni0

)
+ χd(ω, k) = 0 (4.7)

where χe(ω, k), χi(ω, k) and χd(ω, k) are the electron, ion, and dust susceptibilities,

respectively. Note that to simplify our investigation here, we neglect the effects of the

dust dynamics and take χd = 0 in (4.7). In general for lower hybrid waves, χe = ω2
pe/Ω

2
ce

and χi = −ω2
pi/ω

2 where Ωce is the electron cyclotron frequency. It should be noted

that in our model for strongly magnetized electrons, χe = ω2
pe/Ω

2
ce → 0. Using these

susceptibilities we can obtain the following dispersion relation

(ω2 − ω2
lh)(ω + iη) = −iβne0

ni0
ω2
lh, (4.8)

where in our strongly magnetized limit, the lower hybrid frequency ωlh = ωpi. The

dispersion relation has been written in a form to make the wave modes it describes

apparent. On the l.h.s of equation (4.8), the three roots correspond to the two lower

hybrid modes and the dust charge fluctuation mode which was described in the previ-

ous section. The r.h.s describes the coupling of the lower hybrid modes to dust charge
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fluctuations. The parameter β is the dust charge damping rate and is given by

β =
|Ie0|
e

nd0
ne0

, (4.9)

where nd0 is the equilibrium dust density and e is the unit charge. Typically, β de-

scribes the damping of a wave mode due to the dust charging. Solving this dispersion

relation analytically under the assumption β/ωlh < η/ωlh � 1 gives the roots for the

lower hybrid modes as

ω ≈ ±ωlh − i
β

2

ne0
ni0

. (4.10)

Therefore, the damping rate ν = β
2
ne0

ni0
depends directly on the parameter β which

may be interpreted as an effective collision frequency of electrons with the dust grains.

Figure 4.4 shows the lower hybrid oscillation damping rate ν̃ = ν/ωlh for η̃ = 0.01, 0.1,

0.5, and 1.0 with ne0/ni0 = 0.99. In case of small η̃, the damping rate ν̃ is propotional

to β̃/2 as described in (4.10). As η̃ increases, the damping rate decreases and scales

as β̃/4 for η̃ ≈ 1.0. From section 4.1, large η̃ is expected to inhibit the growth of dust

fluctuations which in turn results in less damping of the ion waves as will be described

shortly.

To study the damping of lower hybrid waves, we initialize the simulation with a weak

1% ion density perturbation of the form

ni(x, y, t = 0) = ni0(1 + 0.01 cos(kxx)) (4.11)
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where kx = 2πm
L

and m = 1 for mode 1 used here. Also, we chose ñe = ñd = Q̃d = 0

initially. In this case, we use 9 simulation dust particles per cell with an equilibrium dust

charge Qd0 = 1100 electrons which gives a dust charge density of 1% of the background

equilibrium ion charge density for the chosen value of ni0.

4.2.2 Results

Figure 4.5 shows the potential and ion density for the lower hybrid mode for two cases,

β̃ = β/ωlh = 0.00 and 0.003. These cases correspond to η̃ = η/ωlh = 0.0 and 1.0.

The simulation is run for 100 initial lower hybrid periods. It can be seen that for the

case β̃ = 0.003, the lower hybrid mode is damped and the calculated damping rate is

0.0008 which agrees well with the theoretical estimation in Figure 4.4 of 0.00074. The

decrease in frequency of the lower hybrid wave near the end of the simulation is due

to the slow decrease in background plasma density due to the dust charging since the

production rate qs = 0 for these simulations. Also in Figure 4.5, it is seen that growth

of dust charge fluctuations is associated with the damping of the lower hybrid mode.

Therefore, it can be seen that the parameter β̃ provides a description of the response of

dust fluctuations to electron and ion density perturbations and indicates a growth time

for the dust fluctuations. Figure 4.6 shows a temporal plot of the ion density and dust

charge for one lower hybrid period. It can be seen that the dust charge fluctuation lags

the ion density by 135o as is predicted by equation (4.2). Of course, the actual value of

the phase lag depends on η̃ and this phase lag will be between 90o (small η̃) and 180o

(large η̃).
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4.3 Plasma Instability Associated with Streaming

Dust

4.3.1 Theory

Streaming of dust relative to a background plasma across a magnetic field at velocities

larger than the ion thermal velocity may provide free energy for the production of lower

hybrid waves [Rosenberg et al., 1999]. This lower hybrid streaming LHS instability may

have important applications in space plasmas. For example, the LHS instability may

produce irregularities in the ionospheric plasma that have been proposed to produce

radar signal returns from the space shuttle exhaust [Rosenberg et al., 1999; Bernhardt

et al., 1995]. Equation (4.7) may be used to study the linear dispersion relation of this

instability. The electron and ion susceptibilities of the previous section may be used.

In this case, the dust susceptibility χd = −ω2
pd/(ω − kvd)

2 must be included where ωpd

and vd are the dust plasma frequency and streaming velocity, respectively. Using these

susceptibilities in (4.7) and presently neglecting the effects of the dust charge fluctua-

tions, the dispersion relation can easily be shown to be

ω̃4 − 2k̃ω̃3 + (k̃2 − 1− ω̃2
pd)ω̃

2 + 2k̃ω̃ − k̃2 = 0 (4.12)

where ω̃ = ω/ωlh, k̃ = kvd/ωlh, and ω̃pd = ωpd/ωlh. Again note that for our strongly

magnetized electron case, ωlh = ωpi. In our investigation here we will consider the

classical weak cold beam limit for simplicity. In this case, the growth rate γ is given by

[Rosenberg et al., 1999]
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γ ≈
√
3

21/3
ωlh

(
ωpd

ωpi

) 2
3

, (4.13)

where ωlh ≈ kvd (for maximum growth of waves).

4.3.2 Results

Figure 4.7 shows a numerical calculation of (4.12) for the beam strength parameter

ω2
pd/ω

2
pi = 0.01. At maximum growth, the frequency, growth rate and wavelength

scale as ωr ∼ ωlh, γ ∼ ωlh(ωpd/ωpi)
2/3, λ ∼ vd/flh, respectively. Inclusion of dust

charge fluctuation effects is expected to introduce damping into the growth rate shown

in Figure 4.7. This damping will be of the order of β as described in the previous

section. However, for the weak beam limit, we find that the inclusion of dust charge

fluctuations has minor effects on the linear wave growth. This can be seen by considering

equation (4.9). For weak beams, typically, the parameter nd0/ne0 is expected to be quite

small which implies β and therefore the damping is small. However, even though the

linear development of the LHS instability is essentially unaffected by the dust charge

fluctuations in this regime, we observe unique dust charging effects during the nonlinear

development of the instability with our numerical model which we would like to discuss

presently.

In our numerical simulation investigation, we consider the case of a weak beam with

the classical beam strength parameter ω2
pd/ω

2
pi = 0.01. In this case, nd0 = 100 dust

particles per cell, Qd0 = 1000 electrons and the dust charge is 1% of the background

ion charge density. The dust streaming velocity is taken to be 10vti. The dust charge

fluctuation parameter β̃ = 0.002. Figure 4.8 shows the time evolution of the electrostatic

field energy and average floating potential < eφf > /kTe for the simulation. Note that

< eφf > /kTe can be interpreted as the average negative charge on the dust particles.

The field energy increases exponentially in the linear regime. The growth rate is in



Gyoo-Soo Chae Chapter 4. Simulation results for magnetized plasmas 55

good agreement with the theoretical value. The field energy oscillates after the LHS

instability nonlinearly saturates. This oscillation is due to classical trapping [Chen,

1998]. The floating potential also oscillates as the dust grains collect and loose charge as

they bounce in the potential wells. In the linear regime, the floating potential remains

near the equilibrium value (< eφf0 > /kTe ≈ 2.5 for an equal temperature electron-

hydrogen plasma [Goertz, 1989]). It should be noted that for the ratio Qd

md

qi
mi

∼ 10−3

as in this investigation, dust trapping dominates the ion trapping and the ion fluid

approximation is valid. For smaller values of this ratio, ion trapping becomes more

important and the fluid approximation for ions used here is no longer valid in the

nonlinear regime. Figure 4.9 shows the density fluctuations of each species. Note that

well defined perturbations in the dust charge as well as plasma ans dust densities are

produced by the instability. Linear growth occurs to time ωlht = 100. The growth

agrees well with equation (4.13) for the parameters under investigation. At later time

nonlinear processes occur.

Associated with cold beam streaming instabilities is the modification of the velocity

distribution function. This may be observed in the background plasma and/or beam

plasma. The modification of the velocity distribution is one means of saturating the

instability [Winske and Rosenberg, 1998; Winske et al., 1995] and an important conse-

quence of the nonlinear development of the instabilities in general. Modification in the

velocity distribution of dust grains is observed in the simulations. We also observe an

interesting new effect due to the incorporation of dust charge fluctuations. Considering

a phase space of dust charge, we also observe nonlinear evolution of charges on the

dust grains. Figure 4.10 shows the evolution of the phase space simultaneously for dust

velocity and charge. These are shown at three different times during the simulation.

At early times (ωlht = 40), the LHS instability can be seen to grow in both the dust

velocity and charge by producing a small amplitude sinusoidal perturbation.
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Later (ωlht = 50) some of the dust grains start to become trapped in the growing

potential of the instability. Finally at late times (ωlht = 100), the charge phase space

shows considerable scattering as well as the velocity phase space. Therefore nonlinear

effects are seen to have fundamental effects on the dust charge. The charging and

discharging of the dust particles as they bounce in the wave potential wells ultimately

results in a broadening of the dust charge distribution in a manner similar to that of

the broadening of the velocity distribution.

4.4 Plasma Instability Associated with Expanding

Dust Clouds

4.4.1 Theory

Expansion of dust into a background plasma across a magnetic field has many appli-

cations in space plasmas [Bernhardt et al., 1995; Goertz, 1989]. There are numerious

physical processes associated with expansion of dust into a background plasma. Here

we only consider the details of development of plasma instabilities. One likely source

for the free energy required to drive plasma waves during the expansion of dust across

a magnetic field into a background plasma is the inhomogeneity in the boundary be-

tween the the background plasma and dusty plasma produced by the dust charging.

Steep boundary layer electron density gradients may be produced by electron capturing

agents such as dust. Such a configuration may lead to highly sheared electron E × B

flows in the boundary [Ganguli et al., 1988]. If these electron flows have shear scale

lengths of the order of or less than the ion gyroradius and shear frequencies of the

order of the lower hybrid frequency, the EIH instability may result [ Ganguli et al.,

1988; Scales et al., 1995]. The EIH instability results in shear driven waves in the

lower hybrid frequency range. Equation (4.7) may be used to calculate the dispersion

relation of the EIH instability assuming a local approximation. The direction of the

dust expansion is taken to be x̂ which implies the direction of the sheared E×B flow
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is ŷ. From previous work [Scales et al., 1995], we can write χi = −ωpi/ω
2 as before

and χe = −ω2
pi/(Ωci(ω − kyVE)kyLn) where VE is the electron E×B flow velocity and

Ln = (dne0/dx)/ne0 is the electron density gradient scale length. The dust motion may

be neglected for simplicity and χd = 0. Using these susceptibilities, the local dispersion

relation of this instability including the effects of dust charge fluctuations can be shown

to be

ω̃4 +

(
δiS

k̃y
− αi

δi
k̃y + i η̃

)
ω̃3 +

(
−1 + i

(
−αi

δi
k̃yη̃ +

(
η̃ + β̃

) δiS
k̃y

))
ω̃2

+
(
αi

δi
k̃y − i

(
η̃ + β̃

ne0
ni0

))
ω̃ + i

(
η̃ + β̃

ne0
ni0

)
αi

δi
k̃y = 0 (4.14)

where ω̃ = ω/ωlh, k̃y = kyLE, δi = ωpi/Ωci, S = LE/Ln, αi = VE/ΩciLE, LE is the

electron flow velocity shear scalelength, VE is the electron flow velocity, and Ωci is the

ion cyclotron frequency. Figure 4.11 and figure 4.12 shows numerical calculations of

equation (4.14). The effect of increasing β is to reduce the growth rate and frequency

slightly and narrow the bandwidth of the growing waves. The parameters are δi = 24,

S = 0.75, αi = 244, LE = 6, VE = 11, Ln = 8, and Ωci = 0.0075. These parameters in

simulation units correspond to the results to follow. The frequency, growth rate, and

wavelength at maximum growth scale as ωr ∼ ωlh, ωi ∼ ωlh, λ ∼ LE. In the results

presented in figure 4.11 and figure 4.12, we have taken η̃ and β̃ = 0 for simplicity. Figure

4.13 shows a reduction of the growth rate with increasing β and decreasing η.

4.4.2 Results

Figure 4.14 and figure 4.15 show the electron and ion densities and dust charge for

β̃ = 0.15 and β̃ = 0.7 for the EIH instability. These figures clearly show that the dust
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charge decreases with time as the plasma depletion can be observed to develop. Figure

4.16 shows electron flow velocities at β̃ = 0.15 and β̃ = 0.7.

In the numerical simulation results to be presented, the dust is allowed to diffusively

expand across the magnetic field into the background plasma at a speed of approxi-

mately 0.3vti in the x̂ direction. The dust is taken to have an equilibrium charge Qd0 of

300 electrons and 100 dust grains per cell are used. The dust charge density is 0.75ni0.

Therefore, the dust charge is larger than the initial electron charge density unlike the

previous two cases discussed.

As the dust expands across the magnetic field, the charging of the dust and reduc-

tion of electron density produces and sustains a well-defined boundary layer between

the dusty plasma and the background plama. An ambipolar electric field develops

across the boundary (x̂ direction) which produces a highly sheared electron E×B flow

velocity along the boundary (ŷ direction). These are the conditions necessary for the

development of the EIH instability. Figure 4.17 and Figure 4.18 show the time evolution

of the electric field energy for β̃ = 0.15 and β̃ = 0.7 during the simulation. The energy

in the ambipolar field Ex can be seen to grow initially as the dust expands and charges.

The E × B electron flow resulting from this field is highly sheared and provides free

energy for development of lower hybrid waves propagating in the ŷ direction. Subse-

quently, the Ey field grows due to the development of the EIH instability. This velocity

shear-driven instability produces vortex-like structures of wavelength of the order of

the velocity shear scale size. Figure 4.19 and figure 4.20 shows the two dimensional

electron and ion density as well as the dust charge at the end of the simulation (ωpit =

12.6) for the previous Figure. For the parameter regime under consideration, the dust

motion may be neglected so the dust density is not shown. Mode 4 has been chosen to

be excited in the simulations. The simulation has a relatively large value of β̃ ∼= 0.7.

Well defined vortex structures are observed to develop in the dust charge Qd as well as

the electron density. The development of the vortices in the nonlinear evolution of the

EIH instability broadens the boundary layer and reduces the flow velocity and velocity
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shear. This ultimately saturates the growth of the instability as can be seen in Figure

4.17 in the field energy. Well defined vortices in the dust charge are due to the fact

that the charge fluctuations are able to follow the electron and ion density fluctuations

faithfully. This is because the relatively large value of β̃ indicates a rapid development

of the dust fluctuations in response to the electron density perturbations as described

in section 4.2. Smaller values of β̃ show negligible dust charge fluctuations produced by

the EIH instability. The results indicate the importance of wave perturbations in the

dust charge as well as the electron and ion densities. The growth rate and frequency

observed in the simulations generally agrees well with the theoretical predictions from

(4.14).
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Figure 4.11: EIH instability dispersion relation and growth rate vs wavenumber.
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Figure 4.12: EIH instability growth rate vs frequency.
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Figure 4.13: EIH instability growth rate vs β̃ for η̃ = 0.01, 0.1, and 1.0.
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Figure 4.14: Electron and ion densities and dust charge at β̃ = 0.15 for EIH instability.
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Figure 4.15: Electron and ion densities and dust charge at β̃ = 0.7 for EIH instability.
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Figure 4.16: Electron flow velocities at β̃ = 0.15 and β̃ = 0.7 for EIH instability.
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Figure 4.17: Time evolution of EIH instability electrostatic field energy at β̃ = 0.15.
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Figure 4.18: Time evolution of EIH instability electrostatic field energy at β̃ = 0.7.
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Figure 4.19: EIH instability 2-D plasma
density and dust charge for ωlht = 12.6 at
β̃ = 0.15.

Figure 4.20: EIH instability 2-D plasma
density and dust charge for ωlht = 12.6 at
β̃ = 0.7.


