
Mining constraints for Testing and Verification

Weixin Wu

Thesis submitted to the Faculty of

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Michael S. Hsiao, Chair

Chao Huang

Yilu Liu

January 20, 2009

Blacksburg, Virginia

Keywords: Mining, Learning, Multi-node Constraint, SAT, Simulation

Copyright c© 2009, Weixin Wu

Mining constraints for Testing and Verification

Weixin Wu

Abstract

With the advances in VLSI and System-On-Chip (SOC) technologies, the complexity of hardware

systems has increased manifold. The increasing complexity poses serious challenges to the dig-

ital hardware design. Functional verification has become one of the most expensive and time-

consuming components of the current product development cycle. Today, design verification alone

often surpasses 70% of the total development cost and the situation has been projected to con-

tinue to worsen. The two most widely used formal methods for design verification are Equivalence

Checking and Model Checking. During the design phase, hardware goes through several stages

of optimizations for area, speed, power, etc. Determining the functional correctness of the design

after each optimization step by means of exhaustive simulation can be prohibitively expensive. An

alternative to prove functional correctness of the optimized design is to determine the design’s

functional equivalence with respect to some golden model which is known to be functionally cor-

rect. Efficient techniques to perform this process is known as Equivalence Checking. Equivalence

Checking requires that the implementation circuit should be functionally equivalent to the specifi-

cation circuit. Complexities in Equivalence Checking can be exponential to the circuit size in the

worst case.

Since Equivalence Checking of sequential circuits still remains a challenging problem, in this

thesis, we first address this problem using efficient learning techniques. In contrast to the tradi-

tional learning methods, our method employs a mining algorithm to discover global constraints

among several nodes efficiently in a sequential circuit. In a Boolean satisfiability (SAT) based

framework for the bounded sequential equivalence checking, by taking advantage of the repeated

search space, our mining algorithm is only performed on a small window size of unrolled circuit,

and the mined relations could be reused subsequently. These powerful relations, when added as

new constraint clauses to the original formula, help to significantly increase the deductive power

for the SAT engine, thereby pruning a larger portion of the search space. Likewise, the memory

required and time taken to solve these problems are alleviated.

We also propose a pseudo-functional test generation method based on effective functional con-

straints extraction. We use mining techniques to extract a set of multi-node functional constraints

which consists of illegal states and internal signal correlation. Then the functional constraints are

imposed to a ATPG tool to generate pseudo functional delay tests.

 iii

To my Family

 iv

Acknowledgements

It is a pleasure to acknowledge all the people who made this work possible. I would like to

thank Dr. Michael S. Hsiao, Dr. Chao Huang and Dr. Yilu Liu to serve on my committee and

spend precious time on the thesis review and oral presentation. I would like also to thank all the

Proactive members for their suggestions on my research and thesis.

Finally, I would like to express my deep gratitude to my family members and friends for their

constant support and love.

Weixin Wu

January, 2009

 v

Contents

1 Introduction 1

1.1 Functional Verification . 1

1.1.1 The Need for Functional Verification . 1

1.1.2 Different Functional Verification Approaches 2

1.2 Contributions of This Thesis . 4

1.3 Outline of the Thesis . 5

2 Background 6

2.1 Boolean Satisfiability (SAT) . 6

2.2 Logic Implications . 10

2.2.1 Direct Implications . 11

2.2.2 Indirect Implications . 13

2.2.3 Extended backward implications . 13

2.2.4 Other Works on Implication . 14

2.3 Data mining . 14

2.3.1 Association rule mining . 16

2.3.2 Apriori technique . 18

2.3.3 Min-Hashing and Locality-Sensitive Hashing 20

3 Bounded Sequential Equivalence Checking 23

3.1 Introduction . 23

3.2 Motivation . 25

vi

3.3 Global constraint mining . 25

3.3.1 Global constraint mining framework . 26

3.3.2 Incorporating Domain Knowledge . 28

3.3.3 Three-node Constraints . 30

3.3.4 Validity check of the mined constraints 33

3.3.5 Application to SAT-based bounded sequential equivalence checking 33

3.4 Experimental Results . 35

3.5 Summary . 40

4 Mining Sequential Constraints for Pseudo-Functional Testing 45

4.1 Introduction . 45

4.2 The Proposed Approach . 49

4.2.1 Overall framework . 49

4.2.2 Selection of State Variables . 50

4.2.3 Mining sequential relations . 51

4.2.4 Validity check of all mined relations . 52

4.3 Experimental Results . 53

4.4 Summary . 55

5 Summary of Thesis 57

Bibliography 59

 vii

List of Figures

1.1 A miter circuit for equivalence checking . 3

2.1 A Simple Circuit . 7

2.2 Example sequential circuit . 12

2.3 Implication Graph . 12

2.4 The lattice for the itemsets I . 17

2.5 Min-hashing Example . 21

2.6 Locality-Sensitive Hashing . 22

3.1 Combinational portion of a sequential circuit . 26

3.2 Mining framework . 27

3.3 1 time frame of unrolled circuit . 30

3.4 3-node mining flow . 31

3.5 A sequential miter circuit . 34

3.6 Bounded equivalence checking model . 35

4.1 Overall framework . 50

viii

List of Tables

2.1 Conjunctive normal forms of basic gates . 7

2.2 Controlling, Non-Controlling and Inversion values 11

2.3 Database DB . 17

2.4 First iteration of Apriori . 19

2.5 Second iteration of Apriori . 20

2.6 Similarity Comparison . 21

3.1 Mining database . 26

3.2 Comparison of computation complexity . 36

3.3 Mining Results . 41

3.4 Bounded sequential equivalence Checking . 42

3.5 equivalent-node vs 3-node . 43

3.6 Analysis of constraints . 44

4.1 Mining database . 49

4.2 Transformed database . 51

4.3 Constraints found by our approach . 54

4.4 Results of Test Coverage . 55

4.5 Comparison of constraint extraction . 56

ix

Chapter 1

Introduction

1.1 Functional Verification

1.1.1 The Need for Functional Verification

The advances in VLSI technology have led to an increased complexity in hardware system designs.

The complexity of large designs pose serious challenges to pre-silicon verification and post-silicon

testing. Design errors or bugs, especially the corner cases in a complex system, are expensive to

discover and fix. However, it would be even more expensive if bugs slip the verification and testing

stage and remain in the chip after they are manufactured. One well known example is the floating

point division math bug in Intel’s Pentium processor, which cost $475 million to fix.

Functional verification of sequential systems is rapidly becoming one of the most crucial and

resource-intensive components of the product design cycle. Functional verification is the process

of checking if a design implementation conforms to its specifications of functionality, timing,

testability and power dissipation. In most of the industrial designs, more than 70% of the effort is

spent on design verification. The capacities of verification algorithms to handle large designs have

been increased dramatically in recently years. However, these increases are often surpassed by the

1

Chapter 1. Introduction 2

complexity increases of the design. With the ever increasing sizes and complexity of designs, it

has been projected that the reality of functional verification continues to worsen.

1.1.2 Different Functional Verification Approaches

Functional verification can be broadly classified into simulation, emulation and Formal approaches.

Simulation based verification has traditionally been used as the primary approach for design

verification from system level to component level. In most of the industrial designs, simulation has

been the most common way of verifying the designs. In simulation-based verification, a test pattern

is applied at the inputs of the design implementation and the specification (could be a software

model of the design) is simulated. The response obtained is analyzed against the expected response

to check the correctness of the design. In order to completely verify a design, all the test patterns

need to be generated, but the number of test patterns increases exponentially with the number of

inputs. For instance, for an n-input circuit, there are 2n possible input vectors and hence it becomes

impractical to completely verify large circuits. Generally, instead of generating all the test patterns,

a tractable set of input patterns are intelligently generated and the design is verified against those

patterns. However, simulation based methods may miss some corner case errors as was seen in the

case of infamous Pentium bug. Another drawback of simulation based methods is the huge amount

of time taken to simulate the design for every test pattern. With complex designs, especially with

system-on-chip (SOC), traditional simulation-based verification has become ineffective in finding

subtle design bugs.

Emulation based methods, using Field Programmable Gate Array (FPGA) chips, offer a poten-

tial alternative to simulation based methods. They help to speed up simulation by several orders

of magnitude. However, the fundamental drawbacks of this approach are the expensive hardware

emulators and long time requirements to map the design under verification to the emulator. Fur-

thermore, monitoring different sets of properties/assertions may be difficult to do.

A comparatively recent alternative to simulation has been formal verification. Formal verifi-

Chapter 1. Introduction 3

cation has gained increased attention in recent years. With advances of formal verification tech-

niques, especially BDD and SAT, formal verification has been accepted and applied in many real

projects. It has been shown that formal verification can be very cost-effective in finding hard bugs.

Also it can mathematically prove or disprove the correctness of a design. Formal verification is

analogous to a mathematical proof, where the correctness of a formally verified hardware design

holds regardless of the input values that are applied. The consideration of all test cases is implicit in

formal verification. In general, the formal methods for verifying hardware designs can be broadly

classified into Equivalence checking and Model Checking.

In the case of equivalence checking, we attempt to see if the formal description of the imple-

mentation conforms to the “golden model” or specification. A common premise for equivalence

checking is to see if the optimized version of a circuit conforms to its original version. The basic

idea for equivalence checking is to construct a miter circuit as shown in Figure 1.1 and prove that

the output of the miter circuit is a tautology zero. Basically, we tie the inputs of both the circuits

to apply same input patterns. Then, we check if the outputs of both the circuits are same. If the

output of the miter circuit is proved to be a tautology zero, then it implies that the outputs of the

implementation circuit and the specification circuit are the same for all possible input patterns.

Therefore, we can be 100% sure that the functionality of the implementation circuit is equivalent

to the functionality of the golden model.

Circuit F

Circuit G XOR

XOR

OR
Output

Input

Figure 1.1: A miter circuit for equivalence checking

Chapter 1. Introduction 4

In the case of model checking, we need to verify if the design satisfies a property or not. The

specification is usually a set of properties that need to be verified for the circuit. For example, in

a Traffic Light Controller, we need to verify the property that two perpendicular roads should not

get green at the same time. Model Checking is usually performed on Kripke structures or Finite

State Machine models of the hardware design, where analytical techniques are used to verify the

properties.

Model Checking largely relies on state-space traversal of the sequential circuit. Explicit meth-

ods for state space traversal need a complete representation of the State Transition Graph. Since the

number of states is exponential to the number of state elements, explicit model checking methods

are applicable only to small designs. With the increase in size of hardware designs, the state space

increases exponentially for most of the them, thus making explicit methods infeasible. Therefore

symbolic methods were introduced a decade ago, where the transition relation and set of states

are represented as Boolean formulas and state space traversal is done formally using mathematical

computations.

However, for very complex systems, formal verification often suffers from either state explo-

sion problem or requires exponentially long time to finish. The reason is that these problems are

the NP-complete problem. And the worst case complexity of NP-complete problem is exponential.

1.2 Contributions of This Thesis

It is clear that no single functional verification method will rule over all cases. We believe that

the promising approach is a unified scheme, which combines the merits of different verification

approaches and relies on both simulation-based approach and formal verification in assuring a

satisfactory validation. The contributions of this thesis includes:

• Improve the performance of simulation assisted formal verification

• Search new constraint extraction techniques for pseudo functional testing

Chapter 1. Introduction 5

1.3 Outline of the Thesis

The rest of this thesis is organized as follows: The next chapter gives the preliminaries of various

functional verification and testing techniques such as: Boolean Satisfiability and logic implication.

Data mining algorithms are also introduced. How to applying mining technique to discover multi-

nodes global invariants and how to apply global invariants to improve performance of bounded

sequential equivalence checking are presented in chapter 3. In Chapter 4, we present several

new mining techniques to extract powerful functional constraints to generate pseudo-functional

transition and path delay tests. All works are summarized in Chapter 5.

Chapter 2

Background

2.1 Boolean Satisfiability (SAT)

Boolean Satisfiability (SAT) is a well-known constraint satisfaction problem, which has a wide

variety of applications in the fields of computer-aided design and Artificial Intelligence. Given a

propositional formula f that depends on a set of variables V , the Boolean Satisfiability problem is

to determine whether there exists a satisfying assignment for V that evaluates f to true, or no such

assignment exists. If such assignment exists, f is satis f iable. Otherwise, f is unsatis f iable. The

SAT problem was known to be a NP-complete problem a few decades ago [13].

For most modern SAT solvers, Conjunctive Normal Form (CNF) is the widely used format

for the propositional formula f . In a CNF formula, a boolean expression is represented as a con-

junction of one or more disjunctive clauses. Each clause is a disjunction of one or more literals. A

literal is a variable or its negation. For a CNF formula to be satisfiable, all of the disjunctive clauses

must be true simultaneously. For instance, for a CNF formula f = (a)(a+b+c+d)(c+d)(d), one

satis f iable assignment is a = 1,b = 0,c = 1,d = 1. There exist polynomial algorithms [39] that

can transform an arbitrary propositional formula into a equivalent CNF formula. The equivalent

CNF formula is satisfiable if and only if the original formula is satisfiable. Similarly, a Boolean

6

Chapter 2. Background 7

circuit may be encoded as a satisfiability equivalent CNF formula [27]. Table 2.1 summarizes the

conjunctive normal forms of some basic gates, where x1 and x2 are inputs, z is the output.

Table 2.1: Conjunctive normal forms of basic gates

Gate Type Conjunctive Normal Form

AND (z+ x1)(z+ x2)(z+ x1 + x2)

OR (z+ x1)(z+ x2)(z+ x1 + x2)

NAND (z+ x1)(z+ x2)(z+ x1 + x2)

NOR (z+ x1)(z+ x2)(z+ x1 + x2)

XOR (z+ x1 + x2)(z+ x1 + x2)(z+ x1 + x2)(z+ x1 + x2)

NOT (z+ x1)(z+ x1)

Figure 2.1 shows a simple circuit. Using Table 2.1, it is straightforward to translate it to a

CNF formula: (G1 +G4)(G1 +G4)(G2 +G5)(G3 +G5)(G2 +G3 +G5)(G4 +G6)(G5 +G6)(G4 +

G5 +G6). We can see that the number of the clauses in the translated CNF formula is linear to the

number of the gates in the circuit, and the translation can be done very efficiently.

G3

G5

G4

G6

G1

G2

Figure 2.1: A Simple Circuit

Most modern SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algo-

rithm [10, 11], which performs a backtracking decision tree branching on the variables to solve the

SAT problem. The DPLL algorithm is sound and complete. It finds a solution if and only if the for-

mula is satisfiable. The introduction of conflict analysis [35, 53] and optimized Boolean Constraint

Chapter 2. Background 8

Propagation (BCP) with two-literal watching [36], has significantly accelerated the performance

of present day SAT solvers.

The basic procedure of DPLL-based SAT solver is shown in Algorithm 1. The initial step

consists of some preprocessing, during which it may be discovered that the formula is unsatisfi-

able. The outer loop starts by picking an unassigned decision variable and assert its implications

(decide-next-branch). If no such variable exists, a solution has been found. Otherwise, the variable

assignments deducible from this decision are made through BCP (using deduce). It typically con-

sists of iterative application of the unit clause rule, which is invoked whenever a clause becomes a

unit clause, i.e., all but one of its literals are false and the remaining literal is unassigned. Accord-

ing to the rule, the last unassigned literal is implied to be true C this avoids the search path where

the last literal is also false, since such a path cannot lead to a solution. A conflict occurs when a

variable is implied to be true as well as false. If no conflict is discovered during BCP, then the outer

loop is repeated by choosing the next variable for making a decision. However, if a conflict does

occur, backtracking is performed within an inner loop in order to undo some decisions and their

implications and backtrack to the decision level that was responsible for the conflict. Backtracking

also analyze the conflict and derive a clause that constraints the conflict space. If we backtrack

to the root decision level, due to a conflict, the formula is declared unsatisfiable since the entire

search space has been exhausted. Otherwise, we will find an assignment to all the variables in the

formula and declare the formula to be satisfiable. We proceed in this manner until all the variables

have been assigned a value.

Various variable ordering heuristics were investigated to pick a free decision variable, depend-

ing on the application of SAT solving. It was shown that the time taken to solve the problem

depends significantly on the variable order chosen. We refer the reader to [52], for a survey on

SAT solving and further information on SAT solvers. We also point out that a number of SAT

solvers, such as [12, 34], are available in the public domain for research purpose. Further, we

refer the reader to [41] for a recent survey on the recent advances on using SAT solvers for formal

verification. In recent years, significant amount of research works have been done on using SAT

solvers for Model Checking and Equivalence Checking. We will discuss these works in details in

Chapter 2. Background 9

Algorithm 1: DPLL-based SAT solver

sat solve(){1

if (preprocess() == CONFLICT) then2

return UNSAT ;
end
while (true) do3

/*Pick an unassigned variable as a decision */
if not decide next branch() then4

return SAT ;5

end

/*Find its implications and see if there is a conflict */
while (deduce() == CONFLICT) do6

/*Add conflict clause & backtrack to that level */
blevel ⇐ analyze conflict() ;7

if (blevel == 0) then8

return UNSAT ;9

end

backtrack(blevel) ;10

end
end

}

Chapter 2. Background 10

the subsequent sections.

2.2 Logic Implications

Logic implications capture the effect of asserting logic values throughout a logic circuit. As impli-

cations capture relationships among two or more signals in the circuit, they can be viewed as con-

straints which can potentially help to constrain the search for several electronic design automation

(EDA) problems, such as design verification [25], multi-level logic optimization [17, 26], auto-

matic test pattern generation (ATPG) [23, 47], logic and fault simulation [19], fault diagnosis [3],

redundancy identification [33], etc.

There is a body of work that has dealt with computing static implications among signals. Static

implication is obtained by a procedure which sets each gate in the Boolean circuit to logic value

1 and 0, and analyzing the result of propagating these values throughout the circuit. The static

logic implications are made up of direct, indirect and extended backward implications. Direct

implications can be easily determined whereas indirect and extended backward implications [46,

55, 56] are non-trivial, and their discoveries require combination of simulation, transitive law and

contrapositive law [47].

In general, the total number of implications associated with the entire circuit can be exponential

in the size of the circuit. Thus, a memory efficient technique must be used to store the implications

associated with each gate. A graphical representation to store implications in a sequential circuit

was proposed by Zhao et al. [56], which allows implications between nodes across different time-

frames to be easily modeled. This representation has the advantage of being used for sequential

circuits without suffering from the problem of memory explosion. For a given circuit with K gates,

the total number of nodes in this graph is 2K, since each gate can take on a logic value of 0 or 1. A

directed edge between two nodes represents an implication between the two nodes. For example,

An edge from node a to node b means that a implies b (a→ b). The weight associated with an edge

represents the relative time frame associated with the implication where the current time-frame is

Chapter 2. Background 11

time-frame 0. When an implication propagates across a D flip-flop, the time frame is incremented

or decremented accordingly. Also, by representing the sequential implications as a graph, transitive

closure of a node can be easily obtained using the depth-first search technique. Another advantage

is that whenever a new indirect or extended backward implication is computed, its contrapositive

implication (from contrapositive law) can be immediately added to the implication graph.

In the following description of logic implications, we use (g,v, t) represent assign logic value v

to gate g in time frame t. imply(g = v) represents the set of implications from assign logic value v

to gate g.

2.2.1 Direct Implications

Direct implications of a gate g consist of implications associated with the gates driving and driven

by g. Such implications are easily computed by traversing through the immediate fanins and

fanouts of the gate. The direct implications are of two types: direct forward implications, direct

backward implications. To compute direct forward implications, a controlling value (cv) at any of

the gate g’s fanins implies a value of (cv⊕ i) at the gate output, where i is the inversion value of the

gate. Similarly, to compute direct backward implications, a value of (ncv⊕ i) at the gate g’s output

implies ncv at all the gate’s fanins. Table 2.2 gives the controlling value (cv), the non-controlling

value (ncv) and the inversion value (i) for several basic gates. Note that the non-controlling value

is just the complement of the controlling value. Direct implications can be easily learned during

an ATPG process.

Table 2.2: Controlling, Non-Controlling and Inversion values
Gate CV NCV I
AND 0 1 0

NAND 0 1 1
OR 1 0 0

NOR 1 0 1

Consider the example circuit in Figure 2.2. A logic value of A = 1 would imply B = 1,D = 1, it

also imply H = 1, I = 1. The direct implication of A = 1 is the set (A,1,0),(B,1,0),(D,1,0),(H,1,0),(I,1,0).

Chapter 2. Background 12

Similarly, the direct implication of B = 1 is (B,1,0),(C,1,0),(A,1,0). These implications are

stored in the implication graph. Figure 2.3 (a) shows the complete set of direct implications from

the root A = 1.

a

b

J

H

I

A

B
C

D

E

F

G

O

Figure 2.2: Example sequential circuit

A=1

B=1

C=1 J=1

D=1

0
0 0

0

0

H=1I=1

0

−1

A=1

B=1

C=1

I=1

J=1

D=1 H=1 F=1

0
0

0 0

0
0

0−1

0

0
0 0 0

0

0

0 −1

A=1

F=1O=1 B=1 I=1

J=1C=1

D=1 H=1

(a)

(c)

(b)

Figure 2.3: Implication Graph

Chapter 2. Background 13

2.2.2 Indirect Implications

Schulz et al. were the first to improve the quality of implications by computing indirect impli-

cations [46]. Computation of indirect implications involves extensive use of contra-positive law,

transitive law, and logic simulation. The indirect implications of gate g set to value v are computed

by inserting the gate values pertaining to all its direct implications onto the circuit, and performing

logic simulation. All gates whose output value changes from a dont-care to logic 0 or 1, form

the indirect implications of (g = v). This could be represented as imply(g = v) ≡ imply(g =

v)
�

logicSim(imply(g = v)).

In Figure 2.2, consider A = 1, by inserting the implications of A = 1 into the circuit and do

logic simulation, we obtain F = 1. Here either C = 1 nor D = 1 implies a logic value of gate F ,

but together they imply F = 1. So indirectly A = 1 would imply F = 1. This new implication is

added as an additional outgoing edge from A = 1 in the implication graph as shown in Figure 2.3

(b).

2.2.3 Extended backward implications

The extended backward implications [55] extend the concept of indirect implications to unjustified

signals to obtain more signal relationships. These implications are computed by considering the

target gate and the unjustified output specified gates in the implication list of the target gate. So the

extended backward implication aim at the relations of the implying gate with respect to unjustified

gates in its implication list.

In Figure 2.2, gate H = 1 is an unjustified gate in the implication list for A = 1, as none of its

inputs is implied to a value of logic 1. Thus H is a candidate of extended backward implications.

To perform extend backward implications on H, a transitive closure is first performed for each of

its unspecified inputs, obtaining imply(a = 1) and imply(b = 1) respectively. The implications of

A = 1 are simulated together with imply(a = 1) and imply(b = 1) in turn, create a set of newly

found logic assignments for each input. For example, when the implications of (a = 1) and (A = 1)

Chapter 2. Background 14

are simulated, the new assignments found are (E,0,0) and (O,0,0). For the implications of (b = 1)

and (A = 1), the new assignments are (G,0,0) and (O,0,0). All logic assignments that are common

among these sets are the extended backward implications of gate A = 1. In this example, (O,0,0)

is the common assignment, it is the extended backward implication of A = 1. This new implication

is added as an additional outgoing edge from A = 1 in the implication graph as shown in Figure 2.3

(c).

2.2.4 Other Works on Implication

There are some other works on logic implication that worth mention. Cox et al. introduced the use

of a 16-valued algebra and reduction lists to determine node assignments [42]. A transitive closure

procedure on implication graph was proposed by Chakradhar et al. [7]. A complete implication

engine based on recursive learning [24] proposed by Kunz et al. can capture all pair-wise relation-

ships in a circuit. However, for large circuits, the depth of recursion is kept low to avoid excessive

computational costs. Due to the NP-hard nature of finding all the implications for a given set of

nodes, the practicality of such complete algorithms is limited. Syal et al. proposed the concept

of the extended forward implications [48], which use implication frontiers to capture additional

pair-wise implication relationships. To further the application of implications, static learning was

extended to dynamic learning [23, 46].

2.3 Data mining

Progress in digital data acquisition and storage technology has resulted in the growth of huge

databases. We have grown accustomed to the fact that there are tremendous volumes of data filling

our computers, networks, and lives. However, frequently only a small fraction of the data can be

used because (1) the data volumes are simply too large to manage, or (2) the data structures them-

selves are too complicated to be analyzed effectively. Analysis of these complex, information-rich

data sets and extraction of useful information is of great interest to many fields including busi-

ness, science, and engineering. The discipline concerned with this task has become known as data

Chapter 2. Background 15

mining. Data mining is the process of applying a computer-based methodology for discovering

knowledge from (often large) observational data sets. The knowledge could be various models,

patterns and derived values from a given collection of data. Examples include linear equations,

rules, clusters, graphs, tree structures, and recurrent patterns in time series. The general experi-

mental procedure adapted to data mining problems involves the following steps:

• State the problem and formulate the hypothesis

• Collect the data

• Preprocessing the data

• Estimate the model

• Interpret the model and draw conclusions

Data mining techniques can be classified as follows:

Statistical Methods where the typical techniques are Bayesian inference, logistic regression, ANOVA

analysis, and log-linear models.

Cluster Analysis are the common techniques of which are divisible algorithms, agglomerative

algorithms, partitional clustering, and incremental clustering.

Decision Trees and Decision Rules are the set of methods of inductive learning developed mainly

in artificial intelligence. Typical techniques include the CLS method, the ID3 algorithm, the

C4.5 algorithm and the corresponding pruning algorithms.

Association Rules represent a set of relatively new methodologies that include algorithms such as

market basket analysis, apriori algorithm, and WWW path-traversal patterns.

Artificial Neural Networks where the emphasis is on multilayer perceptrons with back-propagation

learning and Kohonen networks.

Chapter 2. Background 16

Genetic Algorithms are very useful as a methodology for solving hard optimization problems.

Fuzzy Inference Systems are based on the theory of fuzzy sets and fuzzy logic. Fuzzy modeling

and fuzzy decision making are steps very often included in the data-mining process.

N-dimensional Visualization Methods are typical data mining visualization techniques includ-

ing geometric, icon-based, pixel-oriented, and hierarchical techniques.

2.3.1 Association rule mining

An association rule is the most common form of local-pattern discovery; it finds interesting patterns

in a database which probably cannot be explicitly articulated. Among all data mining techniques,

mining association rules are one of the major techniques. It is a form of data mining that most

closely resembles the process that most people think about when they try to understand the data

mining process. Association rule mining retrieves all highly correlated relations in the database.

Several notations commonly used in association rule mining are:

1. item: The basic element in a database, e.g., an item sold in a supermarket.

2. k-itemset: A set of k different items.

3. basket: A set of items, e.g., the things a customer buys.

4. support for k-itemset: The number of baskets containing all items in a k-itemset.

5. frequent itemsets: Given a support threshold, sets of items that appear in ≥ threshold baskets.

Table 2.3 shows an example database DB. In Table 2.3 there is a total of six items, A, B, C,

D, E and F , and four transactions. Each mark of ‘1’ in the table indicates that the item in that

column occurred in the corresponding transaction. For example, the 3-itemset {B,E,F} occurs in

transactions 2 and 3, thus the support of {B,E,F} is 2. If the support threshold is set to be s = 1,

then {B,E,F} is a frequent 3-itemset since more than 1 baskets contained {B,E,F}.

Chapter 2. Background 17

Table 2.3: Database DB
Items

Trans ID A B C D E F
1 1 1 1
2 1 1 1
3 1 1 1 1 1
4 1 1

For the purpose of association rule generation, it suffices to find all frequent itemsets. The

search space of all itemsets can be represented by a ”subset-lattice”. Figure 2.4 shows an example

lattice over the set of items I = {x1,x2,x3,x4}. The bold line is an example of actual itemset

support and separates the frequent itemsets in the upper part from the infrequent ones in the lower

part. The task of discovering all frequent itemsets is quite challenging because the search space is

exponentially growing with |I|. Therefore it is impractical to calculate whether it is frequent for

each subsets of I.

{x1, x2, x3, x4}

{x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3, x4}

{}

{x4}{x3}{x2}{x1}

{x1, x2, x3} {x2, x3, x4}{x1, x3, x4}{x1, x2, x4}

Figure 2.4: The lattice for the itemsets I

Instead, the downward closure property of itemset support is employed by most association

rule mining algorithms to traverse the lattice as little as possible.

Theorem 1: (Downward Closure Property) Given a transaction database D over I, let X ,Y ⊆ I

be two itemsets. Then X ⊆ Y ⇒ support(Y) ≤ support(x).

Chapter 2. Background 18

Hence, if an itemset is infrequent, all of its supersets must be infrequent. With this pruning, the

search space is drastically reduced.

2.3.2 Apriori technique

Apriori [1, 2] is an efficient and popular methodology for association-rule mining. It combines

breadth-first search with counting of occurrences of candidates. Using downward closure property

of itemset support, Apriori prunes search space this way: Look at all the subsets of size |k| of a

candidate (k + 1)-itemset, whenever there is at least one of those subsets infrequent, then prune

this (k +1)-itemset without counting its support.

For example, applying Apriori algorithm on itemsets I in Figure 2.4, after 2 mining iterations,

we obtain infrequent 2-itemsets: {x2,x3} and {x3,x4}. For the 3-itemsets mining iteration, we only

need to count support of 3-itemset {x1,x2,x4}. The other 3-itemsets all have infrequent subsets,

thus can be directly pruned.

Apriori computes the frequent itemsets in the database through several iterations. Each iteration

has two steps: (1) candidate generation and (2) candidate counting and selection. In the first step of

the first iteration, the generated set of candidate itemsets contains only 1-itemsets (i.e., all items in

the database). In the second step, the algorithm counts the support s for each itemset by searching

through the entire database. Finally, only 1-itemsets whose support is above a specified threshold

will be selected. Thus, after the first iteration, all 1-itemsets whose supports are greater than the

threshold will be selected.

In the second iteration, the 2-itemset candidates are selected only from the 1-itemsets obtained

in the first iteration. Even though the 2-itemsets denote all possible pairs of items, the number of

2-itemsets will not include all possible items because we are considering only a filtered 1-itemset.

The pruning is based on the observation that if an itemset is frequent, then all its subsets must be

frequent as well. Therefore, before entering the candidate-counting step, the algorithm discards

every candidate itemset that has an infrequent subset. This process iterates, and in any given

iterations i, all the frequent i-itemsets will be obtained.

Chapter 2. Background 19

For example, consider the database illustrated in Table 2.3. Assume that the threshold is set

to be s = 50%. Then, an itemset is considered frequent if it is contained in at least 50% of the

transactions. In each iteration, the Apriori algorithm constructs a candidate set of frequent itemsets,

counts the number of occurrences of each candidate, and based on the predetermined minimum

support s = 50% the frequent itemsets are determined. These two steps of Apriori are given in

Table 2.4. Initially, six 1-itemsets are possible as illustrated in C1 and, of these, only four are

computed as frequent in L1 because their support is greater than or equal to two, or s ≥ 50%.

Table 2.4: First iteration of Apriori
Initial 1- frequent

itemset C1 count s(%) itemset L1 count s(%)
{A} 2 50 {A} 2 50
{B} 3 75 {B} 3 75
{C} 1 25
{D} 1 25
{E} 3 75 {E} 3 75
{F} 3 75 {F} 3 75

Next, to discover the set of frequent 2-itemsets, the 1-itemsets are used. Because any subset of

a frequent itemset must be frequent, the Apriori algorithm uses L1 �L1 to generate the candidates.

The operation � is defined as

Lk �Lk = {X ∪Y whereX ,Y ∈ Lk, |X ∩Y | = k−1}.

The operation � guarantees that each candidate k-itemset is generated from a frequent (k-1)-

itemset. For k = 1 the operation represents a simple concatenation. Therefore, C2 consists of

2-itemsets generated by the operation |L1|·(|L1−1|)
2 as candidates in the second iteration. In our ex-

ample, this number is (4×3)
2 = 6. Scanning the database DB with this list, the algorithm counts the

support for every candidate, and in the end, a frequent 2-itemsets L2 for which s≥ 50% is obtained.

The results for the second iteration are given in Table 2.5.

By carrying these steps iteratively, the algorithm could mine all possible association rules. As

we can see from the example, the key to reduce the computation complexity is by pruning the

number of itemsets with support s ≥ threshold in each iteration.

Chapter 2. Background 20

Table 2.5: Second iteration of Apriori
Initial 2- frequent

itemset C2 count s(%) itemset L2 count s(%)
{A,B} 1 25
{A,E} 1 25
{A,F} 2 50 {A,F} 2 50
{B,E} 3 75 {B,E} 3 75
{B,F} 2 50 {B,F} 2 50
{E,F} 2 50 {E,F} 2 50

2.3.3 Min-Hashing and Locality-Sensitive Hashing

While the Apriori algorithm is efficient in mining the highly correlated relations with high support,

the Min-hashing and Locality-Sensitive Hashing algorithms [6, 8, 18] target on the low support yet

high-correlation relations in the database.

In low support, high-correlation mining, the similarity of two items i and j is the ratio of the

sizes of the intersection and union of i and j.

Sim(i, j) =
| i
�

j |
| i
�

j |
For example, the similarity of item A and B in Table 2.3 is 0.2. The key idea of the hashing

algorithm is to hash each column of item i to a small signature Sig(i) such that two items i and j

are highly similar if and only if Sig(i) and Sig(j) are highly similar.

The Min-hashing algorithm hashes each column of database using several different hash func-

tions. In the signature matrix, each row maintains the lowest hash value of each column in database

in which that column has a 1. Figure 2.5 shows a simple example of Min-hashing, where the

database has 4 items and 7 baskets, three hash functions, H1, H2, and H3, are used to generate the

signature matrix. Sim(i, j) is the probability that Sig(i) = Sig(j) and is computed as the fraction

of the rows in the signature matrix that match. Table 2.6 shows the similarity of the column pairs

for both the original database and signature matrix on the second and third rows, respectively. For

example, columns 1 and 2 in the original database have no items in common, leading to a similarity

of 0. In the signature matrix, between columns 1 and 2, no signatures match, thus the similarity is

Chapter 2. Background 21

also 0. As the number of hash functions increases, the similarity values will be closer between the

original and signature matrices.

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

3

7

6

2

5

4

4

2

3

6

7

5

3

4

7

6

2

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H1H2H3 Database

2

1 2

2

1

1

H3

H2

H1

1

4

2

2

1

1

Signature Matrix

Figure 2.5: Min-hashing Example

Table 2.6: Similarity Comparison
Similarity (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
database 0 0.75 0.14 0 0.75 0

Sig matrix 0 0.67 0 0 1 0

After Min-hashing, the signatures for all N columns are stored in the signature matrix. Similar

signatures will refer to similar columns. However, to identify similarity among k columns, with

2 < k < N, it may require an exponential number of column combinations. Locality-Sensitive

Hashing (LSH) is a technique to identify similar columns with sub-quadratic complexity. In LSH,

the signature matrix is divided to b bands of r rows. Each band is hashed into k buckets. Candidate

similar columns are those that hash to the same bucket for at least 1 band. Tuning b and r could

catch most similar columns with least non-similar columns (false negative). Figure 2.6 shows

the basic idea of LSH. In this figure, the portion of each column corresponding to a given band

is hashed and placed into the respective buckets. All columns that appear in any one bucket are

grouped together as a set of similar items.

Chapter 2. Background 22

r rows

Signature Matrix

Buckets

b bands

Figure 2.6: Locality-Sensitive Hashing

Chapter 3

Bounded Sequential Equivalence Checking

In this chapter, we present a novel technique on mining relationships in a sequential circuit to dis-

cover global constraints. In contrast to the traditional learning methods, our mining algorithm can

find important relationships among several nodes efficiently. We utilize the domain knowledge to

prune the search space for our mining process. We propose two types of domain-based constraints

in this chapter: the distance based and the region based. Incorporating domain constraint in our

mining algorithm, the nodes involved may often span several time-frames, thus improving the de-

ductibility of the problem instance. Experimental results demonstrate that the application of these

global constraints to SAT-based bounded sequential equivalence checking can achieve one to two

orders of magnitude speedup. In addition, because it is orthogonal to the underlying SAT solver, it

can help to enhance the efficiency of typical SAT-based verification flows.

3.1 Introduction

There is a body of work that has dealt with computing non-trivial Boolean relations among sig-

nals via static implications. However, they are mostly focused on pair-wise signal relationships.

Methods to extend learning to more than two variables have been attempted. A method to find

multi-node static implications has been proposed which selects node pairs based on circuit struc-

ture information [14]. In [38], a local search is performed over a subset of selected variables to

23

Chapter 3. Bounded Sequential Equivalence Checking 24

find multi-variable relationships. As finding relationships among multiple signals may involve an

exponential number of signal combinations, methods that require low computational costs must be

investigated.

A naive method to compute all relationships among three variables of the form (a ·b → c) can

have a cubic cost in the number of nodes in the circuit. Instead of exhaustively searching for all

possible pairs of signals a and b, we obtain a subset of hard-to-find implications via data mining.

To the best of our knowledge, no work currently exists that employs data mining [9] algorithms to

capture global constraints among signals in the circuit.

In our proposed mining approach, we view the set of all relationships among three signals as

an ocean of information, and we develop a mining strategy to obtain the subset of global invariants

from all the possible relationships. One advantage of using domain knowledge within the data

mining process is that it can constrain the search space, thus make the mining process much more

efficient [4, 37]. We utilize the domain knowledge in the circuit to constrain the search space

for the mining approach, which we name domain constraint. We propose two domain constraint

strategies: distance based and region based. These constraints are incorporated in our mining

approach. We describe the parameters used in our mining approach which are targeted at increasing

the usefulness of the learned constraints, while reducing the computational overheads. While

numerous applications can benefit from these global constraints, we demonstrate the efficacy of

mined global constraints by applying them to SAT-based bounded sequential equivalence checking,

a special case of bounded model checking (BMC) [5, 22] on product machines. Our experimental

results show that the proposed mining algorithm can drastically reduce the computation complexity

of finding multi-node relationships. The global constraints obtained can be used to simplify the

problem instance and prune the search space of the SAT solver. Consequently, one to two orders of

magnitude speedup was achieved when compared with the platform without such learning for the

SAT-based bounded sequential equivalence checking. Finally, because the technique is orthogonal

to the underlying SAT solver, it can help to enhance typical SAT-based BMC flows.

The rest of the chapter is organized as follows. Section 3.2 gives the motivation, the concept of

Chapter 3. Bounded Sequential Equivalence Checking 25

domain knowledge and bounded sequential equivalence checking. Section 3.3 presents the basic

flow of our mining framework. Section 3.4 discusses the experimental results, and Section 3.5

concludes the chapter.

3.2 Motivation

Among many sub-areas of data mining, mining association rules is one major sub-area. An as-

sociation rule is a simple probabilistic statement about the co-occurrence of certain events in a

database. An association rule takes the following form:

IfA = 1andB = 1, thenC = 1with probability p

We note that the association rule is nothing but a probabilistic implication. Considering the suc-

cesses of data mining in finding complicated association rules on huge database, we want to know

if it is possible to use this technique help us identify powerful constraints efficiently.

3.3 Global constraint mining

In this section, we describe our mining approach which efficiently captures signal relationships

that involve three circuit nodes. In our approach, the mining database is first built by running

a number of logic simulations on the circuits and record the values for all circuit nodes. For

example, consider the combinational portion of a sequential circuit shown in Figure 3.1, where G1

and G2 are primary inputs (PI), and G3 is a pseudo primary input (PPI). When performing logic

simulation, random vectors are used. The values for the PPIs in the first time-frame are set to don’t

cares (X). Consider the four random patterns {0, 0, X}, {0, 1, X}, {1, 0, X}, {1, 1, X}. After logic

simulation, the mining database is shown in Table 3.1.

By setting a threshold, we can use the mining algorithm to compute the global constraints from

the table. However, the mining constraints obtained will be probabilistic, and we need to verify if

they are true global constraints in the sequential circuit via an additional verification check, which

Chapter 3. Bounded Sequential Equivalence Checking 26

G2

G1

G3 G6

G5

G7
G4

Figure 3.1: Combinational portion of a sequential circuit

Table 3.1: Mining database
Vector G1 G2 G3 G4 G5 G6 G7
V1 0 0 X 0 0 X 0
V2 0 1 X 0 0 X 0
V3 1 0 X 0 0 X 0
V4 1 1 X 1 1 1 1

is described in Section 3.3.4.

3.3.1 Global constraint mining framework

Our framework of mining multi-node relationships is shown in Figure 3.2. First, a miter circuit is

constructed from the sequential circuit and its optimized version. Then the circuit is unrolled to k

time frames. M random input vectors are generated and applied to the circuit, and the logic value

of each gate is recorded in the mining database. When performing logic simulation, the initial state

of PPIs is always set to don’t cares. This is because we are interested in finding potential 3-node

relationships that do not depend on any state. Thus, the signal relationships we obtain will be more

likely to be globally true. The mining database is thus obtained, where one dimension lists the

circuit nodes, and the other dimension lists the vectors. Then we mine the 3-node constraints from

the database.

Unlike general data mining where an item is either included in or excluded from a transaction,

in our work, we need to learn relations among signals with both logic 0 or logic 1 values. Fur-

thermore, as each item (gate) is 3-valued, a don’t-care value indicates that the node is absent from

Chapter 3. Bounded Sequential Equivalence Checking 27

Start

Perform logic simulations, generate mining database

Mine 3−node constraints

Real Discard

Record it to constraint table

All
constraints
verified ?

End

Pick one constraint
Perform validity checking

Yes

No

Create miter circuit, unroll it to k time frames

Figure 3.2: Mining framework

Chapter 3. Bounded Sequential Equivalence Checking 28

that entry in the database. To capture the effect of both logic 0 and 1 values, we need to compute

association rules for both logic 0 and 1. We first calculate the signal probability of 0 and 1 for each

gate with respect to the random test set. For each gate gi, the probability of gi having logic 0, (P0
i),

and the probability of gi having logic 1, (P1
i), are computed as follows:

P0
i = ∑(gi = 0)/M

P1
i = ∑(gi = 1)/M

where M is total number of vectors simulated. After P0
i and P1

i have been computed, we check

if the probability is within the following range: thresholdlow ≤ Pv
i ≤ thresholdhigh. If so, we mark

it as a candidate gate. In our experiments, we set thresholdlow to 0.0 and thresholdhigh to 0.1. The

reason for choosing these threshold values is that the corresponding controllability values of these

nodes are very low. Therefore, assigning a value to the gate might be regarded as difficult, and the

constraints we learned are more likely to be hard-to-learn relationships. As we will see from the

experiments, such constraints are very useful for the SAT solver.

After obtaining the initial candidate gate list, we will attempt to mine the potential candidate

pairs from the database. Only those pairs whose combinations appear in the database within the

same probability ranges are selected, as explained earlier on mining association rules. Furthermore,

domain knowledge is used to reduce the number of candidates, which is described next.

3.3.2 Incorporating Domain Knowledge

Generally speaking, domain knowledge is the knowledge which is valid and directly used for a

pre-selected domain of human or computer activity [15]. For example, most text editors encode

specific knowledge about fonts and formatting of text. Domain knowledge is a useful way of

constraining or pruning the search space for a mining process, enhancing the performance of the

system. In data mining, if the user has some background information (domain knowledge), the

mining system could be able to use it. Incorporating available domain knowledge into data mining

Chapter 3. Bounded Sequential Equivalence Checking 29

techniques could improve the quality of the discovered rules and could constrain the search space

and improve the overall efficiency of the mining process.

We apply the domain knowledge in selecting the candidate pairs. The domain knowledge

we propose is the structural information of the underlying sequential circuit. When we choose

the candidate pairs, we favor those nodes that are not locally close. Because if two nodes are

locally close, the correlation of their signals are generally higher than if the two nodes are far

away. The mined constraints of locally closed pairs are more likely to be local relationships. As

we are interested in mining global relationships, we employ the domain knowledge of structural

information to help us avoid locally close candidate pairs.

In this chapter, we propose two types of domain constraints: the distance based and the region

based. In the distance-based domain constraint, if the distance between 2 nodes is within a preset

limit, they are considered locally close and will not be considered as a potential candidate pair.

The distance between 2 nodes is defined as the number of nodes along the shortest path between

two nodes. For example, in Figure 3.1, the distance between G1 and G7 is 2; the distance between

G1 and G3 is 3. To select a candidate pair (a,b), after picking a gate a from the candidate gate

list, we perform a depth-first search from node a, the search depth is the distance limit. All gates

within the distance limit will not be considered to be candidate gates.

In the region-based domain constraint, each time-frame of the unrolled circuit is partitioned

into 2 approximately equal-sized regions. By equal size, we mean that the time frame of circuit

is divided at a circuit level, l, such that the number of gates in before and after the level l is

approximately equal. For example, Figure 3.3 shows one time frame of the unrolled circuit, the

region partition is at level 1, which makes 2 equal regions. To select a candidate pair (a,b), when a

gate a is chosen from the candidate gate list, gate b must not in the same or adjacent region of gate

a. This forces b to come from a different time-frame and is not locally close to a.

In the distance-based domain constraint, we favor mining of node relationships that are not

locally close to each other. On the other hand, in the region-based domain constraint, the mining

toward relationships of nodes is biased toward those that cross time frame boundaries and are not

Chapter 3. Bounded Sequential Equivalence Checking 30

G7

G6

G2

G3

G7

G1

G6

Level 1 Level 2 Level 3

Region 2Region 1

G4

G5

Figure 3.3: 1 time frame of unrolled circuit

locally close.

Besides the two mining approaches that have domain constraints, We also include a basic

mining approach without any domain constraints. In this basic mining approach, when we choose

the candidate pairs, we simply check the two gates’ fanin gate lists. If 2 gates that have common

fanin gates or if one gate is a successor of the other, we eliminate this pair. In the experiments,

the efficiency of the tow proposed domain constrained mining approaches are compared with this

basic mining approach.

3.3.3 Three-node Constraints

For each selected candidate pair (a,b), we will find the third node by computing the implied gates

by the pair. We first build fanout cones for nodes a and b, then we calculate the overlapping area;

only those gates in the overlapping area are considered for the potential implication gates. Note

that the cones may cross several time-frame boundaries. After computing the implication gates for

each pair of nodes, we check the consistency of implication gates. That is, we check the value of

each implication gate in the database to see if it is consistent with every vector that was simulated.

Chapter 3. Bounded Sequential Equivalence Checking 31

In Algorithm 2 below, we describe the procedure of consistency checking.

For example, if the pair of gates is (a = 1 and b = 1), and gate c is a candidate implication gate,

we check gate c’s logic value for all a = 1 and b = 1 conditions in the database. If in all cases

where a = 1 and b = 1, c appears in only one polarity, then we consider c as a consistent gate.

Any inconsistent implication gate is discarded. For a consistent gate c, if c = 0, then the potential

relationship is a · b → c; if c = 1, then the relationship is a · b → c. We skip the c = X instances.

We record all these potential consistent 3-node constraints. The details of this 3-node constraint

mining algorithm are shown in Figure 3.4.

Database

Perform 1st mining iteration

gates in overlapping area
Build fanout cone of gate pair, find all

iterationPerform 2nd mining

Save all potential 3−nodes
constraints

construct pair of nodes
Apply domain constraint to

check consistency
Put the gates into implication list

Figure 3.4: 3-node mining flow

Chapter 3. Bounded Sequential Equivalence Checking 32

Algorithm 2: Check consistency

check consistency(g1,g2){1

/*Given a selected pair of gates (g1=val1, g2=val2), mining database is db, implication
gate value is impVal, M is total number of simulation vectors. */

for (int i = 1; i ≤ total number o f gates; ++i) do2

if (i in implication gate checklist) then3

impVal = X ;4

/*X means don’t care */
for (int j = 0; j < M; ++ j) do5

if ((db[j][g1]==val1) && (db[j][g2]==val2)) then6

if (db[j][i] �= X && impVal == X) then7

impVal = db[j][i] ;8

end
else if ((impVal == 0) && (db[j][i] == 1)) then9

impVal = Invalid ;10

break ;11

end
else if ((impVal == 1) && (db[j][i] == 0)) then12

impVal = Invalid ;13

break ;14

end
end

end
end

/*save consistent implication gate to implication gate list */
if (impVal == 0 || impVal == 1) then15

implication gate list.push back(i) ;16

end
end

}

Chapter 3. Bounded Sequential Equivalence Checking 33

3.3.4 Validity check of the mined constraints

We need to verify each mined constraint to determine if the constraint is indeed globally correct.

We do so by leaving all initial PPIs’ states unconstrained. For example, if the potential constraint

a ·b → c, we add three unit clauses (a) (b) (¬c) to the original CNF formula of the unrolled miter

circuit. If the SAT solver returns UNSAT for the augmented CNF formula, then a ·b → c is indeed

a globally true constraint, since the validity check puts no constraints on the initial state value. On

the other hand, if the SAT solver returns SAT for the formula, no conclusion can be made for this

3-node relationship. Such relationships are removed.

We use zChaff [36](2004.11.15 Version) as the underlying SAT solver because it supports

incremental SAT solving, where portions of clauses can be added or deleted from the database

after each run based on their group ID. So we can easily add and delete the augment clauses from

the original CNF formula. Each time we complement the implication clause, only the complement

clauses are added to CNF formula to be verified. After verification, we only need to remove these

unit clauses. This could greatly reduce the overhead in checking the validity of the mined global

constraints.

3.3.5 Application to SAT-based bounded sequential equivalence checking

The global constraints can be applied to various verification problems. In our work, these con-

straints are applied to SAT-based bounded sequential equivalence checking between an original

sequential circuit with its optimized version. SAT-based bounded sequential equivalence checking

is a special case of SAT-based bounded model checking, where the property is on trying to check if

the miter circuit output is a constant 0 from an initial state. The miter circuit is built by connecting

a sequential circuit to its optimized version in the following manner. The corresponding primary

inputs are tied together, and the corresponding primary outputs are connected by XOR gates. Then

all XOR gates are connected to an OR gate. Figure 3.5 shows the model of our miter circuit.

In our SAT-based bounded sequential equivalence, the miter is unrolled k time frames, and

Chapter 3. Bounded Sequential Equivalence Checking 34

1

C 2

(specification)

(implementation)

FF’s

FF’s

PI’s

g

C

o

o

1

2

Figure 3.5: A sequential miter circuit

the equivalence property is checked on these k bounded time frames. The sequential equivalence

checking model is shown in Figure 3.6, where each time frame consists of both the original and

optimized circuits. For each time frame the circuit flip-flops are converted to pseudo primary inputs

(PPIs) and pseudo primary outputs (PPOs). At time frame 0 the initial state of 0 is applied at each

PPI. For each time frame i, i ∈ {0,k− 2}, the PPOs are connected to the corresponding PPIs of

time frame i+1. The verification is on checking if the miter output can be satisfied to 1. Zchaff is

again used as underlying SAT solver.

In our lightweight and effective global constraint mining framework, the mined clauses can

involve gates crossing not only time-frames, but also crossing the two circuits being checked. In

addition, these mined constraints are global invariants, so the replicated constraints are also added

to successive time frames. For example, consider that the mining is applied to a 4-time-frame

unrolled miter. If a learned constraint involves node a in time frame #1 and node b in time frame

#3 imply node c in time frame #4: a1 · b3 → c4. Then, this constraint can be replicated to more

deeply unrolled miters as well. For instance, the replicated constraint a3 · b5 → c6 is also valid

and can be added to the formula. In section 3.4 we will show that add learned constraints in this

manner could obtain a significant performance gain.

Chapter 3. Bounded Sequential Equivalence Checking 35

Figure 3.6: Bounded equivalence checking model

3.4 Experimental Results

The proposed technique was implemented in C++. All tests were performed on a Pentium IV, 2.8

GHz, with 1GB of RAM, running the Linux Redhat v9. Because equivalence checking on some

ISCAS benchmarks was very easy for the SAT solvers, especially the ones with equivalent-node

heuristic like BerkMin; For such easy benchmarks, adding constraints using our approach will

not improve the results. Thus, we build the miter circuits ourselves in the experiments. First, the

ISCAS’89 and ISCAS’93 Verilog circuits are deeply optimized by the Synopsys tools. Then the

optimized version and the original circuit are combined to form the miter circuit. In doing this,

we are expecting that the equivalent points of the optimized versions and the original circuits are

reduced as much as possible. The miter circuits are checked using BerkMin561 with equivalence

checking strategy turned on. We exclude those easy benchmarks in our experimental results and

only report the hard instances. In our experiments, we implement 3 mining approaches: mining

without any domain constraints, mining with the distance-based domain constraint, and mining

with the region-based domain constraint.

Before we apply the learned 3-node constraints to bounded sequential equivalence checking,

Chapter 3. Bounded Sequential Equivalence Checking 36

we will first discuss the efficiency of our learning method. Table 3.2 reports the computational

complexity of our method with a naive method. The naive method explores all possible 3-node

combinations, whose complexity is n(n−1)(n−2)
6 , where n is the number of nodes in the unrolled

miter circuit. The column “3-node mining” shows the total number of 3-node relationships selected

by our mining algorithm without domain constraint, where the probability threshold is 0.1. The

last column reports the number of relationships using the naive 3-node combinations. From this

table we can see that even for a very small circuit s298, the total number of 3-node combinations

is already very large. It will easily cause both memory and temporal explosion, and completing

such searches for global constraints will be infeasible. On the other hand, our mining algorithm is

shown to be very efficient, with the computation complexity growing linearly with the circuit size.

Table 3.2: Comparison of computation complexity
time Total # Our 3-node All 3-node

Miter frames nodes mining combinations
s298 40 9948 65 1.64×1011

s832 20 11670 42 2.64×1011

s1196 20 20716 1437 5.06×1011

s1488 20 24052 694 2.32×1012

s3330 7 27963 300 3.64×1012

s4863 7 27004 6115 3.28×1012

s5378 7 42372 8607 1.27×1013

s15850 7 147081 6280 5.30×1014

s35932 5 183171 8217 1.02×1015

s38584 5 211414 9817 1.57×1015

Table 3.3 shows the mining results. The first column shows the miter circuits used. The second

column reports how many time-frames the miter circuit was unrolled. While stronger constraints

could be discovered in more deeply unrolled circuits, the mining time must also be considered to

keep the learning cost low. We chose the number of time frames to keep the total number of nodes

in the unrolled circuit between 10,000 to 500,000. Experimental results show that within this range

the mining time is kept low, yet the global constraints learned are powerful enough. The third,

fourth columns report mining method without domain constraint where the probability threshold

is 0.1. The third column reports the number of true constraints identified for each benchmark.

Chapter 3. Bounded Sequential Equivalence Checking 37

The fourth column reports the total mining time in seconds. For instance, in miter-circuit s4863

with its optimized circuit, the learning was performed on a 7-time-frame unrolled miter, 4831 3-

node true global constraints were learned. The total learning time was 147.8 seconds. Note that

the number of true constraints depend on the threshold values used in the mining algorithm. For

the comparison, the fifth, sixth columns report mining method without domain constraint where

the probability threshold is 0.2. As the number of true constraints identified was increased, the

mining time was also increased. In the experiments, we find that set the threshold to 0.1 could

give us the best overall performance. The seventh to tenth columns report the mining method with

distance based domain constraint. In the seventh and eighth columns, the distance limit is set to

4. In the ninth and tenth columns, the distance limit is set to 8. From the results we can see

that the distance based mining method pruned some 3-node relationships learned by eliminating

those locally close relationships, and the mining time are correspondingly reduced when compares

to the method without any domain knowledge. When the distance limit was increased from 4 to

8, the number of true constraints learned were reduced as expected. However, the mining times

were slightly increased in most instances. For example, in s5378, with the distance limit of 4,

the number of constraints learned was 2948, with the mining time of 206.5 seconds; when the

distance limit was increased to 8, the number of constraints is reduced to 2193, with the mining

time of 218.7 seconds. The reason is that increasing the depth-first search limit on a large number

of candidate nodes increases the overall overhead. Finally, the last two columns report the mining

method with region-based domain constraint. From the results we can see that in all instances the

region based method could further prune the 3-node relationships learned in mining process, the

mining times were also reduced. From Table 3.3, we observed that applying domain constraints to

mining approach could reduce the total mining times.

Table 3.4 shows the result of applying the learned constraints to bounded sequential equiva-

lence checking. Because we are checking the equivalence of a sequential circuit with its optimized

version, all results are UNSAT.1 For each miter circuit, the number of time frames is first reported.

Note that the number of time frames unrolled here can be different from the number of time frames
1Equivalence check of buggy optimized designs was very easy for the SAT solver, thus they are not included.

Chapter 3. Bounded Sequential Equivalence Checking 38

used to learn the constraints as reported in Table 3.3. The third column reports the original exe-

cution time of the SAT solver without any learned constraints. The next three columns report the

results of mining approach without the domain constraint. In the forth column, the SAT solving

time after adding global constraints is reported, followed by the total time (mining + equivalence

checking) in fifth column. The speedup is reported in sixth column. All times are again reported in

seconds. From the results we can see that in most cases the 3-node constraints could speed up the

SAT solving time significantly. Noteworthy improvements were achieved for all miter circuits: in 6

of the 10 cases, more than one order of magnitude speedup was obtained; in the s3330 miter, more

than 2 orders of magnitude speed was achieved. The seventh to ninth columns report results of the

distance-based mining method. Finally, the last three columns report results of the region based

mining method. For each miter circuit, the maximum speedup is shown in bold. We can see that

in all cases, the domain constraint based mining methods are almost always better than the min-

ing method without domain constraints. Comparing of the distance based method with the region

based method, the region based method gave better results. Across the 10 cases, the distance-based

method achieved better results in 2 instances while the region-based method achieved better results

in the other 8 instances.

We notice in some cases, the equivalence checking time of the mining method with domain

constraint is longer than the mining method without domain constraint. For instance, in miter

circuit s3330, the equivalence checking time of the distance based method was 53.83 seconds,

while the equivalence checking time of the basic method without domain constraint was only 28.62

seconds. In s15850, the equivalence checking time of the basic method without domain constraint

was 10.28 seconds, while the equivalence checking time of the region-based method was 43.61

seconds. The reason is likely due to the fact that the domain constraint based methods prune some

3-node relationships which are useful for the equivalence checking. However, the total mining

time of the domain constraint based methods was largely reduced, thus the overall performance

was still improved.

Table 3.5 compares our technique to Berkmin, with the equivalence checking (EC) strategy

turned on as well as turned of. The third column reports the original BerkMin (without EC on) run

Chapter 3. Bounded Sequential Equivalence Checking 39

time. The fourth column reports the BerkMin run time with EC strategy turned on. Finally, the

last column reports our results, run with the basic Berkmin solver. Note that with the equivalence

checking strategy, it is as if two-node constraints are added. From the results, we can see that the

3-node invariants are more powerful than equivalent checking strategy. For example, in the s15850-

miter, the basic Berkmin solver took 19021.1 seconds; with EC turned on, Berkmin required 2575.0

seconds; finally, our approach only took 245.27 seconds. Results for other sequential miter circuits

followed a similar trend. We note that for the miter circuits we used, the optimized versions and the

original circuits did not have many structural equivalent points, thus the equivalent-node heuristic

would not be powerful enough for these instances.

In Table 3.6, the learned constraints from the three mining approaches are analyzed. The

CF columns report the percentage of true 3-node constraints that cross time frames. If not all 3

nodes are within the same time frame, the constraint is considered as placed in this category. The

CC columns report the percentage of constraints that cross circuits. This means that the 3 nodes

are located in both the original circuit and its optimized version. The PEP columns report the

percentage of the pair of nodes that are potential equivalent points. When we calculated the PEP,

we simply check the the logic values for the pair of nodes in the mining database to see if they are

consistent. For example, if the pair of nodes is (a=1 and b=1), we check if there exist instance that

(a=0 and b=1) or (a=1 and b=0). If no such instance exist, we consider the pair of nodes as PEP.

From this table, we can see that the majority of the mined 3-node constraints cross time frames.

This demonstrates that the constraints are not locally close. A good percentage of the constraints

cross the original circuit and the optimized version. Finally, the percentage of PEP shows that

the number of equivalent points in the 3-node relationship are not very high. With added domain

knowledge, the percentage of CF clauses increased, as expected, since the emphasis was to weed

out those locally close relationships.

Chapter 3. Bounded Sequential Equivalence Checking 40

3.5 Summary

In this chapter, we presented a novel mining technique to quickly identify global constraints in

sequential circuits. The proposed mining method combined with domain knowledge allows us to

efficiently identify the useful global constraints in the huge number of possible relationships in the

circuit. Experiments show that the proposed mining strategy is very efficient in identifying impor-

tant multi-nodes relationships that can significantly enhance the SAT solver in a bounded sequential

equivalence checking framework. One to two orders of magnitude speedup was achieved for many

cases. Future work includes improvement of mining technique to further reduce the overhead,

mining of relationships that involve more than 3 nodes, and application to general model checking

instances.

Chapter 3. Bounded Sequential Equivalence Checking 41

Ta
bl

e
3.

3:
M

in
in

g
R

es
ul

ts
W

ith
ou

tD
K

(0
.1

)
W

ith
ou

tD
K

(0
.2

)
D

is
ta

nc
e

ba
se

d
(d

=
4)

D
is

ta
nc

e
ba

se
d

(d
=

8)
R

eg
io

n
ba

se
d

M
ite

r
#

fr
am

es
#

C
la

us
es

T
im

e(
s)

#
C

la
us

es
T

im
e(

s)
#

C
la

us
es

T
im

e(
s)

#
C

la
us

es
T

im
e(

s)
#

C
la

us
es

T
im

e(
s)

s2
98

40
56

15
.4

22
4

57
.3

24
2.

3
20

2.
3

16
1.

8
s8

32
20

40
31

.5
20

9
10

8.
7

28
19

.7
22

20
.3

18
5.

2
s1

19
6

20
10

20
85

.2
27

92
17

5.
4

70
4

59
.6

61
2

63
.2

42
3

42
.8

s1
48

8
20

22
9

12
2.

0
57

8
22

6.
2

17
6

87
.9

16
1

92
.4

11
5

66
.5

s3
33

0
7

22
5

10
3.

6
17

16
39

2.
0

18
6

96
.3

16
5

10
2.

8
12

3
74

.6
s4

86
3

7
48

31
14

7.
8

11
63

9
57

8.
0

32
37

11
3.

2
30

67
12

5.
8

23
05

91
.4

s5
37

8
7

34
43

24
7.

5
74

58
71

2.
3

29
48

20
6.

5
21

93
21

8.
7

16
41

15
7.

2
s1

58
50

7
50

87
56

2.
2

16
47

0
10

13
.0

32
76

31
5.

4
30

35
34

2.
8

20
76

22
5.

5
s3

59
32

5
62

45
10

97
.6

18
37

4
28

61
.0

53
54

89
7.

1
46

93
91

4.
6

37
43

58
7.

6
s3

85
84

5
80

50
25

67
.0

24
06

3
54

32
.0

67
18

20
36

.4
62

06
22

47
.8

31
15

16
41

.6

Chapter 3. Bounded Sequential Equivalence Checking 42

Ta
bl

e
3.

4:
B

ou
nd

ed
se

qu
en

tia
le

qu
iv

al
en

ce
C

he
ck

in
g

W
ith

ou
td

om
ai

n
kn

ow
le

dg
e

D
is

ta
nc

e
ba

se
d

R
eg

io
n

ba
se

d
M

ite
r

#
fr

am
es

or
ig

in
al

(s
)

ne
w

(s
)

to
ta

l(
s)

Sp
ee

du
p

ne
w

(s
)

to
ta

l(
s)

Sp
ee

du
p

ne
w

(s
)

to
ta

l(
s)

Sp
ee

du
p

s2
98

40
48

.2
4

0.
10

15
.5

0
3.

11
0.

53
2.

85
16

.9
3

1.
65

3.
43

14
.0

6
s8

32
30

15
94

.5
5

0.
23

31
.7

0
50

.3
0

0.
48

20
.1

9
78

.9
8

0.
42

5.
58

28
5.

76
s1

19
6

30
22

1.
31

0.
32

85
.5

3
2.

59
2.

69
62

.2
5

3.
56

4.
58

47
.3

6
4.

67
s1

48
8

30
41

87
.1

1
1.

35
12

3.
39

33
.9

3
5.

10
93

.0
0

45
.0

2
8.

77
75

.2
9

55
.6

1
s3

33
0

15
>

86
40

0
28

.6
2

13
2.

22
>

65
3.

46
53

.8
3

15
0.

16
>

57
5.

38
21

.3
6

95
.9

6
>

90
0.

37
s4

86
3

15
65

94
.7

6
28

9.
68

43
7.

52
15

.0
7

17
2.

26
28

5.
48

23
.1

0
89

.3
0

18
0.

66
36

.5
0

s5
37

8
15

82
48

.5
3

12
9.

90
37

7.
43

21
.8

5
55

.4
7

26
1.

94
31

.4
9

16
9.

13
32

6.
28

25
.2

8
s1

58
50

15
23

05
7.

20
10

.2
8

57
2.

45
40

.2
8

39
.7

2
35

5.
10

64
.9

3
43

.6
1

26
9.

09
85

.6
9

s3
59

32
10

49
84

.3
7

3.
28

10
97

.6
2

4.
54

3.
51

90
0.

63
5.

53
1.

77
58

9.
38

8.
46

s3
85

84
10

88
32

.4
5

4.
63

25
71

.5
8

3.
43

7.
13

20
43

.5
3

4.
32

2.
58

16
44

.1
6

5.
37

Chapter 3. Bounded Sequential Equivalence Checking 43

Table 3.5: equivalent-node vs 3-node
Miter # frames BerkMin BerkMin(EC) Region based
s298 40 37.75 45.32 2.23
s832 30 1261.40 384.90 5.36

s1196 30 196.52 129.04 44.60
s1488 30 1760.29 1440.63 68.86
s3330 15 >86400 49053.10 84.16
s4863 15 3672.91 461.75 116.14
s5378 15 5386.46 2384.85 211.73

s15850 15 19021.10 2575.00 245.27
s35932 10 5602.94 1597.34 588.42
s38584 10 5156.34 3354.82 1642.78

EC: equivalence checking strategy

Chapter 3. Bounded Sequential Equivalence Checking 44

Ta
bl

e
3.

6:
A

na
ly

si
s

of
co

ns
tr

ai
nt

s

W
ith

ou
td

om
ai

n
kn

ow
le

dg
e

m
in

in
g

D
is

ta
nc

e
ba

se
d

m
in

in
g

R
eg

io
n

ba
se

d
m

in
in

g
M

ite
r

#
fr

am
es

#
cl

au
se

s
C

F(
%

)
C

C
(%

)
PE

P(
%

)
#

cl
au

se
s

C
F(

%
)

C
C

(%
)

PE
P(

%
)

#
cl

au
se

s
C

F(
%

)
C

C
(%

)
PE

P(
%

)
s2

98
40

56
75

62
10

24
10

0
64

8
16

10
0

58
6

s8
32

20
40

80
46

8
28

10
0

52
10

18
10

0
50

5
s1

19
6

20
10

20
72

52
9

70
4

94
58

12
42

3
10

0
63

12
s1

48
8

20
22

9
81

48
6

17
6

10
0

56
11

11
5

10
0

51
8

s3
33

0
7

22
5

85
46

10
18

6
96

54
7

12
3

10
0

45
5

s4
86

3
7

48
31

75
60

9
32

37
92

67
14

23
05

10
0

54
10

s5
37

8
7

34
43

85
65

11
29

48
96

71
12

16
41

10
0

62
17

s1
58

50
7

50
87

70
48

7
32

76
85

56
5

20
76

10
0

50
8

s3
59

32
5

62
45

85
74

16
53

54
94

79
18

37
43

10
0

66
14

s3
85

84
5

80
50

83
51

9
67

18
90

63
8

31
15

10
0

53
7

C
F:

C
ro

ss
in

g
T

im
e

Fr
am

e
C

C
:C

ro
ss

in
g

C
ir

cu
it

PE
P:

Po
te

nt
ia

lE
qu

iv
al

en
tP

oi
nt

s

Chapter 4

Mining Sequential Constraints for
Pseudo-Functional Testing

Using DFT methods such as scan can improve testability and increase fault coverage. However,

scan tests may scan in illegal or unreachable states during test application, which may result in

incidental detection of functional untestable delay faults during the scan test. Recent research has

shown that these over-testing problems may cause yield loss. This chapter presents novel mining

techniques for fast top-down functional constraint extraction. The extracted functional constraints

capture illegal states through internal signal relations. Imposing these relations as functional con-

straints to a commercial ATPG tool allows for the generation of effective pseudo-functional tests.

We analyze its impact on minimizing the over-testing problem of the scan-based circuits. The

experimental results on transition faults and path delay faults reveal that the proposed method pro-

duces a small fraction, yet extremely powerful functional constraints effective for constraining the

state space.

4.1 Introduction

DFT techniques such as scan are widely used to increase the testability of a design. However,

some faults that are untestable under the functional operation mode may become testable under the

scan mode. Furthermore, scanning vectors that have non-functional operations can cause higher

45

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 46

power/current consumption and results in over-testing. Recent research results have shown that

such non-functional scan tests may incur yield loss, especially due to the exercising of functionally

untestable path delay faults [44, 45].

Pseudo-functional testing was proposed to address the over-testing problem in recent years

[29, 54]. In pseudo-functional testing, the test vectors are generated (or sometimes modified) such

that they are as close to functional vectors as possible. These vectors are to achieve as high a

fault coverage as possible without incidentally detecting the functionally untestable faults. Thus

the scanned states should resemble the functionally reachable states as much as possible. This not

only mitigates the detection of functionally untestable faults, but also restricts the peak power/cur-

rent consumption during testing close to normal operation. Consequently, the over-testing problem

is minimized, and the yield loss can be reduced. From a different angle, pseudo-functional testing

restricts scan tests by avoiding illegal/unreachable states. This requires the computation of illegal

states, which can be a computationally expensive process. Identification of illegal states has been

studied in sequential ATPG via the identification of partial assignments to state variables that can-

not be justified [20, 28]. In [28], three-value simulation is used to traverse the state space from an

unknown initial state, all the valid states are recorded. In [20], illegal states are specified by the

values of state variables, and it tries to merge illegal state space to larger cubes.

In pseudo-functional testing, a common method is to represent functional states or illegal states

as functional constraints. By imposing such functional constraints, although the states generated

do not necessarily guarantee to be within the functionally reachable states, the search space is

reduced so that it more closely resembles the functional state space. Several methods to extract

functional constraints have been proposed earlier. For instance, high-level design descriptions have

been used to extract constraints in [43, 50]. At the gate level, identifying a subset of invalid states

with low cost techniques have been investigated in [30, 31, 40, 49, 54]. In [30, 31], the constraint

generation is fault specific. In [49, 54], implication-based learning for functional extraction was

used. In [54], the illegal states are determined using implication learned during static learning in

a preprocessing step. The illegal state cubes are saved in a list. The ATPG procedure derives test

cube which does not contain any identified illegal state. In the work by Syal et al. [49], pair-wise

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 47

and multi-node functional constraints are also identified via sequential implications. Sequential

implications are those relations among signals in the same time-frame that cannot be identified

within a single time-frame. In other words, a sequential implication a → b in the same time frame

is only possible via two additional implications a→ c and c→ b with c in a different time frame. As

a result, even though a → b seems like a combinational relation as both a and b reside in the same

time-frame, it is sequential in nature. They demonstrate that such sequential relationships are very

useful for identifying functionally untestable faults. In [40], a methodology to prevent overtesting

in scan-based delay test was proposed in a test compression flow. They found that most functional

constraints result in a decrease of the overall test data. Unlike all the previous techniques which

use state variables to specify illegal states, the illegal states are captured with arbitrary nodes in

the circuit [49]. The reason is that explicitly using state variable to specify illegal states may result

in a very large number of constraints, while using arbitrary nodes could significantly reduce the

storage overhead.

In our work, rather than starting from logic implications as the underlying platform to learn

the functional constraints (which can be viewed as a bottom-up approach), we apply data mining

techniques to extract the embedded functional constraints. Since we bypass the step of explicitly

computing the logic implications, our approach can be viewed as a top-down strategy for learning

these functional constraints. Stated differently, in [49], each sequential implication is computed by

static learning techniques, and the functional constraints are thus computed. However, one prob-

lem of this bottom-up constraint extraction technique is the lack of good guiding heuristic on the

sequential implication selection. Thus, a large number of constraints may result and the overall

identified functional constraints might not be able to effectively prune the illegal state space. Our

approach, on the other hand, employs intelligent search strategies to identify the important regions

first. Then, it finds all the potential important implication candidates from these regions, then the

actual functional constraints are proven from these candidates. We propose a novel methodology

to identify these useful functional constraints, which can be easily imposed on any ATPG tools

to generate pseudo-functional patterns. We target on sequential implications since the combina-

tional constraints will be automatically derived during the ATPG process. We extract functional

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 48

constraints on arbitrary nodes instead of only state variables in the circuit.

Our approach is based on the observation that not all state variables are equally important on

functional constraint extraction. For example, in [28], the state variables are grouped and their re-

lationships are represented as dependence graph. Some state variable sets are more important than

others on identifying invalid states. The dependency graph has also been used in [30] to search

groups of state variables which are strongly correlated. In our approach, novel data mining tech-

niques are employed to efficiently partition the state variables and capture non-trivial sequential

relations over the circuit.

In chapter 3, we demonstrate that a mining strategy can capture important global invariants

among several nodes in a sequential circuit for the purpose of bounded equivalence checking.

In this chapter, several new mining techniques are employed to extract functional constraints

for pseudo-functional testing. A mining algorithm Min-hashing and Locality-Sensitive Hashing

(LSH)(refer to 2.3.3) is first applied to the state variable selection phase . After forming the state

variable sets, the fanin cones of each set is computed. Then, we apply a second mining algorithm

Apriori to identify any potentially important sequential implications in these fanin cones. These

potential sequential implications are verified by the the assume-then-verify techniques [16] and

form the functional constraints. In all, powerful functional constraints can be obtained in only a

few minutes, even for large sequential circuits. These functional constraints are passed to a com-

mercial ATPG tool to generate pseudo-functional transition and path delay tests. The experiments

on transition faults and path delay faults reveal that the proposed method produces a small fraction,

yet extremely powerful functional constraints effective for constraining the state space.

The rest of the chapter is organized as follows. Section 4.2 details the proposed approach.

Section 4.3 analyzes the experimental results. Section 4.4 concludes the chapter.

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 49

4.2 The Proposed Approach

4.2.1 Overall framework

The basic flow of our approach is shown in Figure 4.1. First, a sequential circuit is unrolled

to a k time-frames combinational circuit, with the state variables (pseudo primary inputs (PPIs))

unconstrained in the first time-frame. Next, n randomly generated input vectors are applied to

the unrolled circuit. In our experiment, a maximum number of 20,000 vectors are generated for

each benchmark circuit. Each input vector assigns logic values to all the primary inputs (PIs) and

PPIs. In our work, each node can take three values: logic 0, logic 1 or don’t-care x. After logic

simulation, the logic values for all nodes in time-frame 1 and time-frame k are recorded in the

mining databases DB1 and DBk accordingly, where the columns list the sequential circuit nodes

in the time-frame, the rows list the vectors, and the entries in the database denote gate values. An

example partial database DBk consisting of 3 PIs and 3 state variables is shown in Table 4.1.

Table 4.1: Mining database
Vector PI1 PI2 PI3 FF1 FF2 FF3

v1 0 1 x x 1 1
v2 1 x 0 1 1 0
v3 x 0 0 0 x 1
v4 1 1 1 0 1 x

From database DBk (corresponding to the right-most time-frame), Min-Hashing and LSH al-

gorithms are applied only to the state variables to perform state variable selection. For each state

variable set, the nodes within these fanin cone of these state variables are candidate nodes for

sequential relation mining, as these candidate nodes have common paths to a similar set of state

variables in time-frame k. Apriori is applied to database DBk on candidate nodes to mine pair-wise

and 3-node relations. After consistency check, the potential relations are pruned using database

DB1 to remove any combinational relations. The rest of the potential sequential relations are veri-

fied by assume-then-verify validity check to determine if each constraint is indeed a true constraint.

Then the constraints are passed to ATPG tool for pseudo-functional test generation. The details of

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 50

each step are described in the following subsections.

Unroll sequential
circuit to k time frames

Random generate n
input sequences

Perform logic simulation
Create mining database DB1 and DBk

Using Min−Hashing &LSH
to perform state variable
abstraction

Mine pair−wise and multi−node sequential relations

Apply constraints to ATPG tools

Perform assume−then−verify validity check

Figure 4.1: Overall framework

4.2.2 Selection of State Variables

The state variable selection is performed on the state variables from database DBk. Min-Hashing

and LSH are applied at this step. Unlike the general data mining approach, our mining algorithm

needs to consider both logic 0 and logic 1 for each variable, as two variables can be positively

or negatively correlated. So we first transform the mining database DBk by splitting each state

variable into positive and negative variables. For example, for mining database in Table 4.1, the

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 51

transformed database is shown in Table 4.2, where each FFi is split into two columns. Since we

only consider state variables, all the other nodes in DBk can be excluded at this time. Then, the

standard Min-hashing and LSH algorithm is applied to compute the frequent k-itemsets, where the

state variables in a frequent k-itemset forms a partition state variable set.

Table 4.2: Transformed database
FF1 FF1’ FF2 FF2’ FF3 FF3’

x x 1 x 1 x
1 x 1 x x 1
x 1 x x 1 x
x 1 1 x x x

The state variables in each set computed this way will be strongly correlated. Thus, the fanin

nodes within the state variable set will likely have relations that can be discovered. By setting

proper LSH algorithm parameters, the size of state variable set is generally not greater than 8.

Limiting the size of state variables in each set could greatly reduced the computation effort needed

in the next phase of sequential relation mining. This is based on the fact that generally in a test

vector for a target delay fault, only a small subset of state variables are specified. Thus mining

state variable sets with a small number of highly correlated flip-flops would be enough to identify

the illegal space.

4.2.3 Mining sequential relations

We mine sequential relations in a way similar to the work in [51]; we briefly outline it here. For

selected nodes from the state variable selection phase, we first calculate the signal probabilities

for each node in the database DBk. For each node gi, the probability of gi having logic 0 and

logic 1, i.e., P0
i and P1

i , are computed as: P0
i = ∑(gi = 0)/n, P1

i = ∑(gi = 1)/n, where n is total

number of vectors in DBk. After P0
i and P1

i have been computed, we mine frequent 1-itemset

with threshold = 0.3. Next, we proceed to mine the potential candidate pairs from DBk. For each

candidate pair (a,b), we first check if there exists a correlation between them in DBk. For example,

we check the logic value of b for all rows that have a = 1 in DBk. If in all cases where a = 1, b = 1

is always true, then we consider the node pair (a,b) as a potential pair-wise implications and add it

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 52

to the potential pair-wise implication list. Then next iteration of mining is carried to find potential

3-node relations.

Since we focus on the sequential relations within the same time-frame. The combinational

relations need to be removed. Here the database DB1 comes in handy. The selection is performed

this way: for all potential 2-node and 3-node relations, we perform a consistency check in DB1.

But this time, only the relations that fail the consistency check will be considered as potential

sequential relations, the rest will be removed from the list. For example, for a potential implication

(a → b) obtained from DBk, we check the logic value of b for all rows that have a = 1 in DB1.

If for all instances where a = 1, b = 1 is always true, then the relation (a → b) would very likely

to be a combinational relation. We will delete all such relations. If there exists an instance where

a = 1, b �= 1, that means the implication a → b is definitely not true in the first time-frame. If it

is proven that (a → b) is true in the k-th time-frame in the final validity check, then the relation

(a → b) is a k-th time-frame invariant. The concept of k-th invariants is introduced in [32]. By

choosing database at time-frame 1 and k, our methods could mine potential 2 to k-th time-frame

sequential relations. These potential sequential relations will go to next phase for validity check.

4.2.4 Validity check of all mined relations

The validity check verifies each mined potential relation to determine if the relation is indeed

globally correct. A method similar to the assume-then-verify [16] is used here. The difference

of our method from [16] is that we do not simplify the circuit structure in the assumption step.

We perform assume-then-verify in a window of 2× k time-frames. The first k time-frames make

up the assume window, and the second k time-frames make up the verify window. We divide

potential relations to 20 per group, and a group of relations is verified at a time. With all the initial

PPIs unconstrained, we assume all 20 constraints are initially true in the assume window, and we

iteratively verify each relation in the verify window.

For example, consider the potential constraints in a group to be c1 . . .c20. We insert 20 clauses

corresponding to these constraints to the assume window. If we are verifying c1 at this time, we add

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 53

(c1) to the verify window. If the solver returns SAT for this instance, no conclusion can be made for

c1, and this relation needs to be removed from both the assume and verify windows. If the solver

returns UNSAT for this instance, then we remove (c1) from the verify window and continue to

verify the next potential constraint c2. If all constraints are verified UNSAT, we can conclude that

this group of constraints is indeed globally true. On the other hand, if the solver returns SAT for

any constraint ci, after removing ci from the assume window, all the previously verified constraints

in this group need to be re-verified. To keep the overhead low, we only allow for 2 iterations for

each group. In our experiments, we found that for most instances, two iterations were sufficient to

identify most real constraints. All proven constraints are added to both assume and verify windows

to expedite the verification of subsequent groups. We verify the easier potential relations first, and

use the verified relations to help verifying the harder potential constraints later. In the experiments,

we verify the relations in the following order: pair-wise relations, three-node relations. When we

group the constraints, we place the constraints that from same cone in the same group.

We use zChaff [36](2004.11.15 Version) as underlying SAT solver because it has an excellent

incremental SAT solving ability.

4.3 Experimental Results

We implemented the proposed method to extract functional constraints on a Pentium-4, 3.2GHz

processor with 1GB RAM Linux machine. All constraints extracted are used with a commercial

ATPG tool. Experimental results for generating pseudo-functional tests for transition faults and

path-delay faults are presented on the large ISCAS-89 and ITC-99 sequential benchmark circuits.

Table 4.3 shows functional constraint extraction results. For each circuit, the number of flip-

flops is first reported, followed by the number of state variable sets mined using Min-Hashing and

LSH algorithm. The number of state variables in a set generally are from 3 to 8, and not every

state variable may be included in any state variable set. The final two columns report the number

of functional constraints obtained and the runtime in seconds to extract them. For example, in

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 54

s38417 which has 1452 flip-flops, 63 sets of flip-flops were mined, and a total of 6953 functional

constraints were mined and proven in only 95.47 seconds.

Table 4.3: Constraints found by our approach
circuit # FFs # Sets # Constr time(s)
s5378 179 15 395 1.41
s9234 228 11 643 4.28

s13207 669 32 1208 8.9
s15850 597 28 1148 42.1
s38417 1452 63 6953 95.47
s38584 1426 51 2152 29.6

b14 245 7 406 1.3
b15 449 12 1403 76.38
b17 1415 35 6532 21.76

To demonstrate that the extracted constraints are useful for mitigating the over-testing problem,

we run experiments for both transition faults and path delay faults with a commercial ATPG. By

imposing all the extracted constraints, the ATPG is prohibited from generating any scan pattern

that violates the constraints. As a result, some originally detectable faults without any functional

constraints may become untestable by the constrained ATPG. The results are reported in Table 4.4.

Column 2 gives the total number of transition faults. Column 3 and 4 compares the transition fault

coverage of ATPG without constraints and with constraints. We note that no fault was aborted by

the ATPG. It can be observed that in all circuits, the constrained ATPG avoids detection of many

functionally untestable transitions. For example, in s5378, 14.8% of the originally detectable faults

were actually functionally untestable. We performed a similar experiment on path-delay faults.

Column 5 to 7 reports the results of path delay faults. Since the number of paths for large circuits

are huge, we target a maximum of 5000 most critical paths (longest paths assuming unit delay). For

each path, both rising and failing transitions on the input are targeted (making a total of 10,000 path

delay faults). Column 6 shows the fault coverage obtained by ATPG without constraints imposed,

and column 7 reports the coverage by the ATPG with functional constraints. We note that there

is a larger percentage drop comparing to the transition fault model, indicating that a significant

portion of the longest paths are actually functionally untestable, and they should be avoided during

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 55

scan-test to reduce over-testing.

Table 4.4: Results of Test Coverage
Transition fault Path delay fault

circuit # w/o% with% # w/o% with%
s5378 6874 93.7 78.9 10k 78.45 19.7
s9234 11328 90.2 84.1 10k 2.9 0

s13207 15546 89.9 81.4 10k 11.3 5.8
s15850 19040 89.4 71.5 10k 2.1 0
s38417 49582 96.8 94.6 10k 23.6 1.8
s38584 60950 93.8 90.3 10k 28.4 17.2

b14 8888 96.7 88.04 10k 49.5 14.4
b15 16676 98.33 79.5 10k 65.1 32.9
b17 45290 96.85 89.46 10k 15.7 0

Note: No fault was aborted

Finally, Table 4.5 compares our mining based approach with static learning based approach

in [49]. Columns 2 and 3 report the number of constraints obtained for each method. Columns

4 and 5 compare the percentage of faults declared as functionally untestable on transition faults.

The right-most 2 columns compare the percentage of faults declared as functionally untestable

on path-delay faults. It can be seen that in all cases our mining based approach generates less

than 1% of the functional constraints as compared with [49], yet these constraints are powerful

enough to identify more functional untestable transition faults! This demonstrates that our top-

down learning strategy could identify extremely intelligent and powerful functional constraints

that able to prune the illegal state space. We note that the constraint extraction time is similar

between the two approaches. However, the ATPG performance may be significantly degraded if it

needs to consider a large number of constraints.

4.4 Summary

We have presented a suite of novel mining techniques to quickly identify a small yet powerful

set of functional constraints from a sea of relations in a sequential circuit. With less than 1% of

functional constraints compared with a previous approach, our method is able to avoid much of

Chapter 4. Mining Sequential Constraints for Pseudo-Functional Testing 56

Table 4.5: Comparison of constraint extraction
of Constraints % Func Unt TF % Func Unt PDF

circuit Ours [49] Ours [49] Ours [49]
s5378 395 135751 14.8 11.3 58.75 33.9
s9234 643 228736 6.1 3.5 2.9 1.4

s13207 1208 1500k 8.5 6.2 5.5 12.2
s15850 1148 1500k 17.9 2.5 2.1 3.5
s38417 6953 181106 2.2 1.1 21.8 1.4
s38584 2152 1500k 3.5 2.1 11.2 46.2

the illegal state space. The proposed mining methods allow us to efficiently extract a small yet

powerful set of constraints from the huge number of possible relations in the circuit. Experimental

results show that the constraints can be extracted in a matter of a few minutes even for large circuits.

By adding the the small set of mined functional constraints, the ATPG avoids generating tests for

functionally untestable delay faults and hence minimizing the over-testing problem.

Chapter 5

Summary of Thesis

This thesis is mainly focusing on how to mine constraints to solve testing and verification problems.

In Chapter 1, we briefly discussed the development of functional verification and testing and why

are they so important in EDA communities. Then the motivation of this thesis was discussed.

Major contributions of this thesis were outlined.

To help readers to understand our proposed techniques, various background knowledge are in-

troduced in Chapter 2. Boolean Satisfiability is described on section 2.1. Section 2.2 provided

the necessary background in implication, such as direct implication, indirect implication and ex-

tended backward implication. Data mining techniques are introduced on section 2.3. In this thesis,

we mainly focusing on association rule mining techniques such as Apriori algorithm 2.3.2, Min-

Hashing and Locality-Sensitive Hashing algorithm 2.3.3. .

In Chapter 3, we presented a learning aided formal verification approach. In our approach,

we first ran logic simulation to generate a database, then we applied a mining technique on this

database to discover global invariants in a sequential circuit. In contrast to the traditional learning

methods, our mining algorithm can efficiently discover important relations among several nodes.

We also utilized domain knowledge to prune the search space during mining process. We propose

two types of domain-based constraints in this chapter: the distance based and the region based.

Incorporating domain constraint in our mining algorithm, the nodes involved may often span sev-

eral time-frames, thus improving the deductibility of the problem instance. Finally, we applied

57

Chapter 5. Summary of Thesis 58

these invariants to help the formal verification process. In our case, it is bounded sequential equiv-

alence checking. Experimental results demonstrated that the application of these global invariants

to SAT-based bounded sequential equivalence checking can achieve one to two orders of magni-

tude speedup. In addition, because it is orthogonal to the underlying SAT solver, it can help to

enhance the efficiency of typical SAT-based verification flows.

Research results have shown that the traditional structural testing for delay and crosstalk faults

may result in over-testing [21, 44]. The reason is due to the non-trivial number of such faults

that are testable in the scan-test mode while untestable in the functional mode. The reason why a

structurally testable fault might become untestable in the functional mode is that various types of

functional constraints exist due to the functional operations of the logic. The pseudo-functional test

generation is a methodology of identifying useful functional constraints, which can be imposed on

the ATPG process so that the generated patterns are more likely to be functional patterns [29]. The

goal of the pseudo-functional test generation approach is to find effective functional constraints

so that the space restricted by these constraints (called pseudo-functional space) is as close to the

functional space as possible. In a pseudo-functional test method, the first pattern of a two-pattern

test is still scanned in the test mode but the pattern is generated in such a way that it tries not to

violate the functional constraints extracted from the functional logic.

In Chapter 4, we explored effective functional constraints extraction method. Our approach

employs several mining techniques to extract a set of multi-node functional constraints which

consists of illegal states and internal signal correlation. Then the functional constraints are imposed

to a ATPG tool to generate pseudo functional delay tests.

The major contribution of this thesis is that we address functional verification and testing prob-

lems by novel multi-nodes mining techniques. The multi-nodes mining techniques proposed in

this thesis can capture various important invariant relations in a design. We believe the research

that has been presented in this thesis makes a substantial foundation to many ongoing and future

researches.

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective.

IEEE Trans. on Knowledge and Data Engineering, 5(6):914–925, December 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of

association rules. In Advances in knowledge discovery and data mining, pages 307–328,

1996.

[3] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana. Implication and evaluation

techniques for proving fault equivalence. In Proceedings of VLSI Test Symposium, pages

201–207, 1999.

[4] S. S. Anand, D. A. Bell, and J. G. Hughes. The role of domain knowledge in data mining. In

Proceedings of International Conference on Information and knowledge management, pages

37–43, 1995.

[5] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using

SAT procedures instead of bdds. In Proceedings of Design Automation Conference, pages

317–320, 1999.

[6] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. In Proc. of ACM Symp. on Theory of Computing, pages 327–336, 1998.

[7] S. Chakradhar, V. D. Agrawal, and S. G. Rothweiler. A transitive closure algorithm for

test generation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 12(7):1015–1028, July 1993.

59

Bibliography 60

[8] E. Cohen and et al. Finding interesting associations without support pruning. In Proc. of Int’l

Conference on Data Engineering, pages 489–500, 2000.

[9] H. M. D. J. Hand and P. Smyth. Principles of Data Mining. MIT Press, 2001.

[10] M. Davis and H.Putnam. A computing procedure for quantification theory. In Journal of the

ACM, pages 201–215, 1960.

[11] M. Davis, G. Logeman, and D. Loveland. A machine program for theorem proving. In

Proceedings of the Communications of the ACM, pages 394–397, 1962.

[12] N. Eén and N. Sörensson. An extensible sat-solver. In SAT ’03: Proceedings of SAT, 2003.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

Np-Completeness. W.H. Freeman, 1979.

[14] K. Gulrajani and M. S. Hsiao. Multi-node static logic implications for redundancy identifica-

tion. In Proceedings of Design, Automation and Test in Europe Conference, pages 729–733,

2000.

[15] B. Hjorland and H. Albrechtsen. Toward a new horizon in information science: domain

analysis. Journal of the American Society for Information Science, 46(6):400–425, July 1995.

[16] S. Y. Huang, K. C. Chen, K. T. Cheng, C. Y. Huang, and F. Brewer. Aquila: An equivalence

verifier for large sequential designs. IEEE Trans. on Computers, 49(5):443–464, May 2000.

[17] H. Ichihara and K. Kinoshita. On acceleration of logic circuits optimization using implication

relations. In Proceedings of Asian Test Symposium, pages 222–227, 1997.

[18] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of

dimensionality. In Proc. of ACM Symp. on Theory of Computing, pages 604–613, 1998.

[19] S. Kajihara, K. K. Saluja, and S. M. Reddy. Enhanced 3-valued logic/fault simulation for full

scan circuits using implicit logic values. In Proceedings of European Test Symposium, pages

108–113, 2004.

Bibliography 61

[20] M. H. Konijnenburg, J. T. V. D. Linden, and A. J. V. de Goor. Illegal state space identification

for sequential test generation. In IEEE Design and Test in Europe, pages 741–746, 1999.

[21] A. Krstic, J. J. Liou, K. T. Cheng, and L. C. Wang. On structural vs. functional testing for

delay faults. In Proceedings of International Symposium on Quality Electronic Design, pages

438–441, 2003.

[22] A. Kuehlmann. Dynamic transition relation simplification for bounded property checking. In

Proc. of Int’l Conference on Computer Aided Design, pages 50–57, 2004.

[23] W. Kunz and D. K. Pradhan. Accelerated dynamic learning for test pattern generation in

combinational circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 12(5):684–694, May 1993.

[24] W. Kunz and D. K. Pradhan. Recursive Learning: A new Implication Technique for Ef-

ficient Solutions to CAD problems test, verification, and optimization. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 13(9):1149–1158, September

1994.

[25] W. Kunz, D. Pradhan, and S. M. Reddy. A Novel Framework for Logic Verification in a

Synthesis Environment. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 15(1):20–32, Janurary 1996.

[26] W. Kunz, D. Stoffel, and P. R. Menon. Logic optimization and equivalence checking by

implication analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 16(3):266–281, March 1997.

[27] T. Larrabee. Test pattern generation using boolean satisfiability. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 11(1):4–15, Janurary 1992.

[28] H.-C. Liang, C. L. Lee, and J. E. Chen. Identifying invalid states for sequential circuit test

generation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 16

(9):1025–1033, Sept. 1997.

Bibliography 62

[29] Y. C. Lin, F. Lu, and K.-T. Cheng. Pseudo-functional scan-based bist for delay fault. In

Proceedings of VLSI Test Symposium, pages 229–234, 2005.

[30] Y.-C. Lin, F. Lu, K. Yang, and K.-T. Cheng. Constraint extraction for pseudo-functional

scan-based delay testing. In IEEE Proc. of ASP-DAC, pages 166–171, 2005.

[31] X. Liu and M. S. Hsiao. A novel transition fault atpg to reduce yield loss. IEEE Design &

Test of Computers, 22(6):576–584, November-December. 2005.

[32] F. Lu and K.-T. Cheng. Sequential equivalence checking based on k-th invariants and circuit

SAT solving. In High-Level Design Validation and Test Workshop, pages 45–51, 2005.

[33] M. lyer and M. Abramovici. FIRE: A Fault-independent Combinational Redundancy Identi-

fication Algorithm. IEEE Transactions on VLSI Systems, 4(2):295–301, June 1996.

[34] S. Malik. Boolean Satisfiability Research Group at Princeton. In

http://www.princeton.edu/ chaff/zchaff.html.

[35] J. P. Marques-Silva and K. A. Sakallah. A Search Algorithm for Propositional Satisfiability.

In IEEE Transactions on Computers, Vol. 48, No. 5, pages 506–521, 1999.

[36] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proc. of Design Automation Conference, pages 530–535, 2001.

[37] Z. Nazeri and E. Bloedorn. Exploiting available domain knowledge to improve mining avi-

ation safety and network security data. In Proceedings of European Conference on Machine

Learning, 2004.

[38] Y. Novikov. Local search for Boolean relations on the basis of unit propagation. In Proceed-

ings of Design, Automation and Test in Europe Conference, pages 810–815, 2003.

[39] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. Journal of

Symbolic Computation, 2(3):293–304, September 1986.

Bibliography 63

[40] I. Polian and H. Fujiwara. Functional constraints vs. test compression in scan-based delay

testing. In Proc. of Design, Automation and Test in Europe Conference, pages 1039–1044,

2006.

[41] M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-based formal

verification. International Journal on Software Tools for Technology and Transfer, 7(2):156–

173, April 2005.

[42] J. Rajski and H. Kox. A Method to Calculate Necessary Assignments in ATPG. In Proceed-

ings of the International Test Conference, pages 25–34, 1990.

[43] R. S. Ram and D. E. Thomas. Behavioral test generation using mixed integer non-linear

programming. In IEEE Int’l Test Conference, pages 958–967, 1994.

[44] J. Rearick. Too much delay fault coverage is a bad thing. In Proceedings of the International

Test Conference, pages 624–633, 2001.

[45] J. Saxena, K. M. Butler, V. B. Jayaram, and et.al. A case study of IR-drop in structured

at-speed testing. In Proc. of Int’l Test Conference, pages 1098–1104, 2003.

[46] M. H. Schulz and E. Auth. Improved deterministic test pattern generation with applications

to redundancy identification. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(7):811–816, July 1989.

[47] M. H. Schulz, E. Trischler, and T. M. Sarfert. SOCRATES: A highly efficient automatic

test pattern generation system. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 7(1):126–137, Janurary 1988.

[48] M. Syal, R. Arora, and M. S. Hsiao. Extended forward implications and dual recurrence

relations to identify sequentially untestable faults. In Proceedings of IEEE International

Conference on Computer Design, pages 453–460, 2005.

Bibliography 64

[49] M. Syal, K. Chandrasekar, V. Vimjam, M. S. Hsiao, Y.-S. Chang, and S. Chakravarty. A study

of implication based pseudo functional testing. In IEEE Int’l Test Conference, pages 1–10,

2006.

[50] V. M. Vedula and J. A. Abraham. Actor: A hierarchical methodology for functional analysis,.

In IEEE Design and Test in Europe, pages 730–734, 2002.

[51] W. Wu and M. S. Hsiao. Mining global constraints for improving bounded sequential equiv-

alence checking. In Proc. Design Automation Conf., pages 743–748, 2006.

[52] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In Proceedings

of International Conference on Computer Aided Verification, pages 17–36, 2002.

[53] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient Conflict Driven Learning

in a Boolean Satisfiability. In Proceedings of International Conference on Computer Aided

Design, pages 279–285, 2001.

[54] Z. Zhang, S. M. Reddy, and I. Pomeranz. On generating pseudo-functional delay fault tests

for scan designs. In IEEE Int’l Symp. Defect and Fault Tolerance in VLSI Systems, pages

398–405, 2005.

[55] J. K. Zhao, E. M. Rudnick, and J. H. Patel. Static Logic Implication with Application to Fast

Redundancy Identification. In Proceedings of VLSI Test Symposium, pages 288–293, 1997.

[56] J. K. Zhao, J. A. Newquist, and J. H. Patel. A graph traversal based framework for sequential

logic implication with an application to c-cycle redundancy identification. In Proceedings of

the VLSI Design Conference, pages 163–169, 2001.

	1 Introduction
	1.1 Functional Verification
	1.1.1 The Need for Functional Verification
	1.1.2 Different Functional Verification Approaches

	1.2 Contributions of This Thesis
	1.3 Outline of the Thesis

	2 Background
	2.1 Boolean Satisfiability (SAT)
	2.2 Logic Implications
	2.2.1 Direct Implications
	2.2.2 Indirect Implications
	2.2.3 Extended backward implications
	2.2.4 Other Works on Implication

	2.3 Data mining
	2.3.1 Association rule mining
	2.3.2 Apriori technique
	2.3.3 Min-Hashing and Locality-Sensitive Hashing

	3 Bounded Sequential Equivalence Checking
	3.1 Introduction
	3.2 Motivation
	3.3 Global constraint mining
	3.3.1 Global constraint mining framework
	3.3.2 Incorporating Domain Knowledge
	3.3.3 Three-node Constraints
	3.3.4 Validity check of the mined constraints
	3.3.5 Application to SAT-based bounded sequential equivalence checking

	3.4 Experimental Results
	3.5 Summary

	4 Mining Sequential Constraints for Pseudo-Functional Testing
	4.1 Introduction
	4.2 The Proposed Approach
	4.2.1 Overall framework
	4.2.2 Selection of State Variables
	4.2.3 Mining sequential relations
	4.2.4 Validity check of all mined relations

	4.3 Experimental Results
	4.4 Summary

	5 Summary of Thesis
	Bibliography

