Design of a Cyclic Sliding, Dynamically Loaded Wear Testing Device for the Evaluation of Total Knee Replacement Materials

Matthew Thomas Thompson

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Approved by:

Dr. Jonette Rogers Foy, Co-Chair Dr. Charles Reinholtz, Co-Chair Dr. Harry Robertshaw

> July 30, 2001 Blacksburg, Virginia

Keywords: wear testing device, UHMWPE wear, total knee replacements, knee simulator

Copyright 2001, Matthew T. Thompson

Design of a Cyclic Sliding, Dynamically Loaded Wear Testing Device for the Evaluation of Total Knee Replacement Materials

Matthew T. Thompson Department of Mechanical Engineering

Abstract

During normal walking, the relative motion of the human knee involves flexion/extension, anterior/posterior sliding, and medial/lateral rotation. As well, the knee experiences a complex, dynamic loading curve with a peak of up to seven times body weight. However, most wear testing machines that have been used to evaluate total knee replacement materials are unidirectional and/or apply only static force. This thesis presents an alternate wear testing device capable of simulating the most prevalent motions of the knee, and applying physiologically-correct loading to the material interface. By incorporating a CoCr disc, an UHMWPE block, stepping motors, pneumatic components, computer control, and linear tables in an x-y configuration, the device is capable of quickly screening new and alternative materials to UHMWPE before evaluating them on a much more expensive knee simulator. In addition, flexibility of the device allows programming of many different motion and loading configurations permitting materials testing under only certain circumstances, or evaluating the effects on wear of specific motions. Design rationale, development, validation, and future recommendations are presented.

ii

Acknowledgements

I would like to thank my co-chair, Dr. Jonette Foy, for her initial guidance and continued supervision from over 250 miles away, as well as for the freedom and responsibilities that she gave me without reluctance throughout the project. I want to thank my other co-chair, Dr. Charles Reinholtz, for his help whenever it was needed and for his support in the final stages of this project. I am also grateful to Dr. Robertshaw for being a member of my committee, and for providing funding through assistantships at the most needed times.

This work would not have been possible without the financial support provided by the Optical Sciences and Engineering Research Center / Carilion[®] Health Initiative of Virginia Tech. Additionally, I would like to thank Dave Simmons and Darrell Link of the ESM Machine Shop for their exceptional work, and for putting up with my occasional design changes and constant pestering. I also appreciated the administrative assistance of Paul Siburt, Patricia Baker, and several others in the ESM office. Finally, I would like to thank my mother and father for their unconditional support throughout graduate school and their continued support beyond.

Abbreviations and Acronyms

A/A	=	Abduction/adduction
ACL	=	Anterior cruciate ligament
AP	=	Anterior/posterior, as in AP sliding
BW	=	Bodyweight
CAD	=	Computer Aided Drawing
CoCr	=	Cobalt chrome
COF	=	Coefficient of friction
F/E	=	Flexion/extension
H.S.	=	Heel strike
I/E	=	Internal/external, or internal/external rotation
OA	=	Osteoarthritis
PCI	=	Peripheral Component Interconnect
PCL	=	Posterior cruciate ligament
PS	=	Posterior stabilizing
Т.О.	=	Toe off
TKR	=	Total Knee Replacement or Total Knee Replacements. The term is used to represent both the singular and the plural of the implanted devices.
UHMWPE	=	Ultra-high molecular weight polyethylene
VI	=	Virtual Instrument (Labview TM)

Variables

Section 3.2.1.1

А	=	area of the required cylinder
D	=	minimum cylinder diameter (i.e., bore size).
F	=	required maximum force
Р	=	maximum input pressure

Section 3.2.3.1

L	=	travel life
V	=	maximum travel rate,

Section 3.2.4

a	=	semi-contact width
Е*	=	contact modulus
E_1	=	modulus of material 1
E_2	=	modulus of material 2
\mathbf{v}_1	=	Poisson's ratio of material 1
v_2	=	Poisson's ratio of material 2
σ_{avg}	=	mean contact stress
σ_{max}	=	maximum contact stress
R	=	effective curvature
Р	=	applied load
W	=	width of the CoCr

Section 3.2.7.1

А	=	operating pulses required by the motor
θs	=	motor resolution
f_1	=	starting pulse speed
t_1	=	acceleration period
t_0	=	positioning period
μ	=	coefficient of friction
W	=	maximum load on each rod
R	=	CoCr disc radius
Jo	=	rotor inertia
J_1	=	total inertia
g	=	gravitational constant (386 in/s ²)
J_{x}	=	inertia of a cylinder

- material density cylinder length cylinder diameter total inertia motor inertias = ρ L =
- D =
- = \mathbf{J}_1
- J_0 motor inertia =

Section 3.2.7.2

А	=	operating pulses required by the motor
D	=	cylinder diameter
D_B	=	ball screw diameter
θs	=	motor resolution
\mathbf{f}_1	=	starting pulse speed
f_2	=	maximum operating pulse speed
F_0	=	pilot pressure load in the table
g	=	gravitational constant (386 in/s^2)
1	=	feed per unit
t_0	=	positioning period
t_1	=	acceleration period
P_{B}	=	ball screw pitch
μ	=	coefficient of friction on the sliding surface
μ_0	=	coefficient of friction at the pilot pressure nut
η	=	ball screw efficiency
W	=	maximum applied load
Jo	=	rotor inertia
J_1	=	total inertia
$J_{\rm B}$	=	ball screw inertia
\mathbf{J}_{T}	=	inertia of the table and work
L _B	=	ball screw length
ρ	=	material density
T_{M}	=	total required torque

T	able of (Contents	Page			
	Abstrac	t	ii			
	Acknowledgements					
	Abbrevi	ations and Acronyms	iv			
	Variable	25	V			
	Table of	[°] Contents	vii			
	List of F	ïgures	X			
	List of T	ables	xiii			
1	Introdu	ction	1			
	1.1 1.2	Thesis Organization	2			
2	Literatu	re Review	4			
	2.1	Human Knee Anatomy and Physiology 2.1.1 Anatomy of the Knee 2.1.2 Motions of the Knee 2.1.3 Knee Joint Forces	4 4 6 9			
	2.2	Osteoarthritis	12			
	2.3	 Total Knee Replacements 2.3.1 TKR Component Shape and Size 2.3.2 Contact Stresses of TKR 2.3.3 TKR Kinematics and Friction 2.3.4 TKR Failure and Revision 	13 13 15 17 18			
	2.4	UHMWPE Wear	19			
	2.5 2.6	Knee Simulators Simplified Wear Testing Devices 2.6.1 Howmedica Biaxial Line Contact Wear Machine	20 21 22 24			
	2.7	Research Goals	25			
3	Materia 3.1	Is and Methods - Apparatus Design Design Criteria 3.1.1 Loading Criterion 3.1.2 Maximum Contact Stress Criterion 3.1.3 CoCr Disc Size	26 26 26 27			
		3.1.5 Coch Disc Size3.1.4 Motion Criteria3.1.5 Testing Criteria	27 27 28			

	3.2	System D	lesigns	29
		3.2.1	Loading Mechanism	29
			3.2.1.1 Pneumatic Cylinder	30
			3.2.1.2 Par-15 [™] Series Programmable Valve	32
		3.2.2	Initial Design Concept	34
		3.2.3	Table Selection	35
			3.2.3.1 AP Sliding Table	35
			3.2.3.2 Tibial Rotation Table	38
		3.2.4	CoCr Disc Size	38
		3.2.5	UHMWPE Tray	40
		3.2.6	Apparatus Frame Design	42
			3.2.6.1 Frame Height	43
			3.2.6.2 Frame Width and Depth	44
			3.2.6.3 Structural Components	44
			3.2.6.4 Finite Element Analysis of Frame	45
		3.2.7	Apparatus Motors	48
			3.2.7.1 Flexion/Extension Motors	48
			3.2.7.2 Linear Table Motors	53
		3.2.8	F/E Rod and Bearing Design	59
4	Test App	aratus Ass	embly	60
	4.1	Frame Co	onstruction	60
	4.2	Integratio	n of Components	62
		4.2.1	Linear Guides	62
		4.2.2	UHMWPE Tray	63
		4.2.3	CoCr Discs and F/E Rods	64
		4.2.4	F/E Motor Mount	64
		4.2.5	Mounting the Motors	66
	4.3	Hardware	Integration	66
		4.3.1	Par-15 TM Valve Operation	66
		4.3.2	Motor Controllers and Drivers	68
			4.3.2.1 PCI Motion Controller	69
			4.3.2.2 Linear Guide Motor Drivers	69
		a b	4.3.2.3 Flexion/Extension Motor Drivers	70
	4.4	Software	Development	72
		4.4.1	Valve Software	73
		4.4.2	Motion Control Software	75
		4.4.3	Synchronizing the VIs	77
5	Device V	alidation a	nd Performance	79
	5.1	Motor and	d Linear Guide Validation (Unloaded)	79
		5.1.1	Accuracy Measurement	80
		5.1.2	Repeatability Measurement	81
	5.2	Validating	g the Applied Force	81
		5.2.1	Validation of the Valve	82
		5.2.2	Estimation of the Cylinder Force	82

		5.2.3 Strain Gage Calibration	83
		5.2.4 Loading Dynamics	86
	5.3	Initial Preliminary Tests	87
	5.4	Preliminary Test of UHMWPE and CoCr	88
6	Recomm	endations and Conclusions	90
	6.1	Recommendations	91
	6.2	Conclusions	93
Ref	erences		94
Ap	pendix A	- Apparatus CAD Drawings	98
Ap	pendix B	- LabView TM Screenshots and VI Diagrams	112
Apj	pendix C	- Pneumatic Valve Validation	116
Apj	pendix D	- Strain Gage Calibration	117
Apj	pendix E	- Operating Procedure	118
Ap	pendix F	- Parts, Vendors, and Cost Analysis	122
Apj	pendix G	- Estimation of Lifted Weight	124
Apj	pendix H	- Finite Element Results and Boundary Conditions	125
Vit	a		126

List of Figures

P	a	g	e
-		-	•

Figure 2-1.	Frontal Section of a generalized diarthrotic (synovial) joint	5
Figure 2-2.	Frontal view of the knee joint shown in extension and flexion	6
Figure 2-3.	Secondary motions (AP sliding and tibial rotation) of the knee	7
Figure 2-4.	Flexion angle (A), medial/lateral shift (B), AP sliding/drawer (C), and	8
	axial displacement (D) for five different subjects	
Figure 2-5.	Internal/external (tibial) rotation and abduction/ adduction of the knee	9
Figure 2.6	as a function of nexton angle Departed knew joint reaction forces in terms of hady weight through	10
rigule 2-0.	one walking cycle	10
Figure 2-7.	Knee joint reaction and components, in terms of body weight, through	11
U	one walking cycle	
Figure 2-8.	Front and side x-ray views of an arthritic knee	12
Figure 2-9.	A commercially-available TKR and a schematic showing how these components fit in the knee	13
Figure 2-10	Left and front view X-rays of an implanted TKR	14
Figure 2-11	The coefficient of friction at a velocity of 140 mm/s and a load of	18
1 19410 2 11	1000 N for a CoCr disc rolling on UHMWPE	10
Figure 2-12	Three stations of the AMTI-Boston Six Station Knee Simulator	21
Figure 2-13	. Simple schematic showing the loading and motions of the proposed	22
U	configuration of a CoCr disc on an UHMWPE block	
Figure 2-14	. Two stations of the 12 station Howmedica biaxial line-contact wear	23
C	machine	
Figure 3-1.	Labeled picture of a pneumatic cylinder	30
Figure 3-2.	Photograph and specifications of the Parker Par-15 [™] Programmable	33
	Valve	
Figure 3-3.	Initial design concept drawn in AutoCAD	34
Figure 3-4.	AP sliding curve for one walking cycle	35
Figure 3-5.	Drawing of the Accuslide 2HB linear table from Thomson Industries	37
Figure 3-6.	Load/life and travel rate graphs for the Accuslide 2HB	37
Figure 3-7.	Autodesk Inventor TM representation of the SS UHMWPE tray with and	42
	without the UHMWPE specimens	
Figure 3-8.	Structural components and basic dimensions of the apparatus frame	45
Figure 3-9.	FEA mesh of the imported frame with 1" elements and boundary conditions	46
Figure 3-10	IDEAS FEA output showing areas of stress in the apparatus frame	47
Figure 3-11	Exaggerated displacement of the frame during vertical loading of	47
i iguie 5 i i	2000 pounds	17
Figure 3-12	Flexion angle of the knee versus time during one walking cycle	49
Figure 3-13	Speed vs. torque curve for the selected F/E stepper motor	52
Figure 3-14	Dimensions (in inches) of the F/E motor. UPK596AW-T20	53
Figure 3-15	. Speed vs. torque curve for the CSK596-NATA	57
0	1 1 1	

Figure 3-16	. Dimensions (in inches) of the motor, CSK596-NATA, responsible for	58
	moving the two linear tables	
Figure 3-17	. A UPK motor and driver package from Oriental Motors	58
Figure 3-18	. Picture and relevant dimensions of the VAK series pillow block	59
	bearing	
Figure 4-1.	CAD drawing of the device components constructed from cold-rolled	60
	steel: the frame, table support, and vertical guide rods	
Figure 4-2.	A typical CAD drawing given to the machine shop to construct the	61
	frame	
Figure 4-3.	Photograph of the completely assembled device	62
Figure 4-4.	Labeled photograph showing the parts that make up the bottom, or	63
	"tibial", portion of the wear testing device	
Figure 4-5.	Top view of the device showing the stainless steel tray that houses the	64
	UHMWPE blocks	
Figure 4-6.	CAD representation of the F/E motor mount	65
Figure 4-7.	Photograph showing the motor mount attached to the apparatus frame	65
Figure 4-8.	Schematic of the backplane and modules	67
Figure 4-9.	Schematic of the PAR-15 TM pneumatic valve's 6-pin connector	67
Figure 4-10	. Photograph of the main components of the motion control hardware	68
Figure 4-11	. Wiring diagram for the linear guide motor drivers	70
Figure 4-12	. Wiring diagram for the F/E motor drivers	71
Figure 4-13	. Schematic showing the integration of the device's key components	72
Figure 4-14	. Truth table for the Par- 15^{TM} Valve	74
Figure 4-15	. Screen shot of the Labview TM VI responsible for controlling the	75
-	pneumatic valve	
Figure 4-16	Screen shot of the motion control software	76
Figure 4-17	. Screen shot of the motion control software, showing the capability of	77
-	programming cross-shear into the device	
Figure 4-17	. Screen shot of the final VI	78
Figure 5-1.	Photograph showing the metal ruler used to validate the linear guide	80
-	motions	
Figure 5-2.	Plot of the recorded strains at various cylinder pressures, illustrating	84
-	the linearity of the strain gage	
Figure 5-3.	Plot of the resulting strain for each of the known weights	85
Figure 5-4.	The strains at the predicted interface forces and the strains from the	86
-	known applied loads plotted together	
Figure 5-5.	The worn UHMWPE block after 50,000 cycles of testing	88
Figure A-1.	Bottom plate of frame	99
Figure A-2.	Long side bars of frame	100
Figure A-3.	Middle support bar A	101
Figure A-4.	Middle support bar B	102
Figure A-5.	Top bar A	103
Figure A-6.	Top bar B	104
Figure A-7.	Top middle bar	105
Figure A-8.	Table support	106
Figure A-9.	Tray spacer	107

Figure A-10. Stainless steel specimen tray, 1 of 2	108
Figure A-11. Stainless steel specimen tray, 2 of 2	109
Figure A-12. Motor mount	110
Figure A-13. Assembled frame	111
Figure B-1. User interface of the wear testing device	113
Figure B-2. VI diagram (upper part), 1 of 2	114
Figure B-3. VI diagram (lower part), 2 of 2	115

List of Tables

Table 2-1.	Sagittal radii of some common TKR models	15
Table 2-2.	Comparison of estimated contact areas and contact stresses using different methods	16
Table 2-3.	Specifications for two simplified wear testing devices	25
Table 3-1.	Design criteria for the cyclic sliding wear machine	29
Table 3-2.	Required pneumatic cylinder specifications	32
Table 3-3.	AP sliding linear table requirements	36
Table 3-4.	Resulting contact stresses for varying CoCr disc radii and widths using Hertzian contact equations	40
Table 3-5.	Dimensions used in the calculation of the minimum and maximum frame heights	43
Table 3-6.	Independent variables needed for F/E motor selection	49
Table 3-7.	Motor specifications for the UPK596AW-T20	52
Table 3-8.	Independent variables necessary for linear table motor selection	54
Table 3-9.	Motor specifications for the CSK596-NATA	57
Table 5-1.	Estimated loads experienced by the device and each station for increasing cylinder pressure	63
Table C-1.	Several measurements taken to ensure the valve was properly pressurizing the cap end of the cylinder	116
Table D-1.	Data taken during the calibration of the pneumatic cylinder	117
Table D-2.	Strain gage calibration data using known weight	117
Table F-1.	List of vendors and prices for all parts and services related to the device	123
Table G-1.	Known and estimated weights of parts that are lifted by the pneumatic cylinder	124

Page