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Abstract 
 

During normal walking, the relative motion of the human knee involves 

flexion/extension, anterior/posterior sliding, and medial/lateral rotation.  As well, the knee 

experiences a complex, dynamic loading curve with a peak of up to seven times body weight.  

However, most wear testing machines that have been used to evaluate total knee replacement 

materials are unidirectional and/or apply only static force.  This thesis presents an alternate wear 

testing device capable of simulating the most prevalent motions of the knee, and applying 

physiologically-correct loading to the material interface.  By incorporating a CoCr disc, an 

UHMWPE block, stepping motors, pneumatic components, computer control, and linear tables 

in an x-y configuration, the device is capable of quickly screening new and alternative materials 

to UHMWPE before evaluating them on a much more expensive knee simulator.  In addition, 

flexibility of the device allows programming of many different motion and loading 

configurations permitting materials testing under only certain circumstances, or evaluating the 

effects on wear of specific motions.  Design rationale, development, validation, and future 

recommendations are presented.   
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Abbreviations and Acronyms 
 
A/A  = Abduction/adduction 
 
ACL  = Anterior cruciate ligament 
 
AP  = Anterior/posterior, as in AP sliding 
 
BW  = Bodyweight 
 
CAD  = Computer Aided Drawing 
 
CoCr  = Cobalt chrome 
 
COF  = Coefficient of friction 
 
F/E  = Flexion/extension 
 
H.S.  = Heel strike 
 
I/E  = Internal/external, or internal/external rotation 
 
OA  = Osteoarthritis 
 
PCI  =  Peripheral Component Interconnect 
 
PCL  = Posterior cruciate ligament 
 
PS  = Posterior stabilizing 
 
T.O.  =  Toe off 
 
TKR   = Total Knee Replacement or Total Knee Replacements.  The term is used 

to represent both the singular and the plural of the implanted devices. 
 
UHMWPE = Ultra-high molecular weight polyethylene 
 
VI  = Virtual Instrument (LabviewTM) 
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Variables 
 
 
Section 3.2.1.1 
 
A  = area of the required cylinder  
D  = minimum cylinder diameter (i.e., bore size).   
F =  required maximum force  
P = maximum input pressure 
 
 
Section 3.2.3.1 
 
L  = travel life  
V  = maximum travel rate,  
 
 
Section 3.2.4 
 
a = semi-contact width 
E* = contact modulus 
E1 = modulus of material 1 
E2 = modulus of material 2 
ν1 = Poisson's ratio of material 1  
ν2 = Poisson's ratio of material 2 
σavg = mean contact stress 
σmax = maximum contact stress 
R  = effective curvature  
P  = applied load  
w = width of the CoCr 
 
 
Section 3.2.7.1 
 

 A = operating pulses required by the motor 
θs = motor resolution 
f1  =   starting pulse speed 
t1  =   acceleration period 
t0  =  positioning period  
µ  =   coefficient of friction 
W  =   maximum load on each rod 
R  = CoCr disc radius 
Jo =  rotor inertia 
J1 =   total inertia 
g = gravitational constant (386 in/s2) 
Jx = inertia of a cylinder 
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ρ = material density 
L = cylinder length 
D = cylinder diameter  
J1 = total inertia motor inertias 
J0 = motor inertia 
 
 
Section 3.2.7.2 

 
 A = operating pulses required by the motor  
 D = cylinder diameter 
 DB = ball screw diameter 

θs = motor resolution 
f1  =   starting pulse speed  
f2  =   maximum operating pulse speed 
F0  =   pilot pressure load in the table 
g =  gravitational constant (386 in/s2) 
l  =   feed per unit 
t0  =   positioning period  
t1  =   acceleration period 
PB =  ball screw pitch  
µ  =   coefficient of friction on the sliding surface 
µ0  =   coefficient of friction at the pilot pressure nut 
η =  ball screw efficiency 
W  =   maximum applied load 
Jo =  rotor inertia 
J1 =   total inertia 
JB  =   ball screw inertia 
JT  =   inertia of the table and work 
LB =  ball screw length 
ρ = material density 
TM = total required torque 
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