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EEG-Based Control of Working Memory Maintenance Using

Closed-Loop Binaural Stimulation

Christine E. Beauchene

(ABSTRACT)

The brain is a highly complex network of nonlinear systems with internal dynamic states that are not eas-

ily quantified. As a result, it is essential to understand the properties of the connectivity network linking

disparate parts of the brain used in complex cognitive processes, such as working memory. Working mem-

ory is the system in control of temporary retention and online organization of thoughts for successful goal

directed behavior. Individuals exhibit a typically small capacity limit on the number of items that can be

simultaneously retained in working memory. To modify network connections and thereby augment working

memory capacity, researchers have targeted brain areas using a variety of noninvasive stimulation interven-

tions. However, few existing methods take advantage of the brain’s own structure to actively generate and

entrain internal oscillatory modulations in locations deep within the auditory pathways. One technique is

known as binaural beats, which arises from the brain’s interpretation of two pure tones, with a small fre-

quency mismatch, delivered independently to each ear. The mismatch between these tones is perceived as

a so-called beat frequency which can be used to modulate behavioral performance and cortical connectivity.

Currently, all binaural stimulation therapeutic systems are open-loop “one-size-fits-all” approaches. How-

ever, these methods can prove not as effective because each person’s brain responds slightly differently to

exogenous stimuli. Therefore, the driving motivation for developing a closed-loop stimulation system is to

help populations with large individual variability. One such example is persons with mild cognitive impair-

ment (MCI), which causes cognitive impairments beyond those expected based on age. Therefore, applying

a closed-loop binaural beat control system to increase the cognitive load level to people with MCI could

potentially maintain their quality of life.In this dissertation, I will present a comparison of algorithms to

determine brain connectivity, results of open-loop based binaural stimulation, the development of a closed-

loop brain network simulation platform, and finally an experimental study to determine the effectiveness of

closed-loop control to modulate brain networks hence influencing cognitive abilities.
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Closed-Loop Binaural Stimulation

Christine E. Beauchene

(GENERAL AUDIENCE ABSTRACT)

In order to do complex tasks, such as creating a memory, multiple regions of the brain must

interact to become a network. Specifically for this work, we are looking at working memory

which is the system that allows us to remember and manipulate information in the presence

of additional incoming information. Working memory capacity, which is the number of

items we can remember, is dependent upon synchronization between particular regions of

the brain, particularly the frontal and parietal lobes. Higher synchronization means that

people will, on average, respond with higher accuracy during a working memory task. To

modify the connections in the network and thereby augment working memory capacity,

a non-invasive brain stimulation technique called binaural beats can be used. Binaural

beats take advantage of the brain’s response to two pure tones, delivered independently to

each ear, when those tones have a small frequency mismatch. The mismatch between the

tones is interpreted as a beat frequency, which may act to synchronize brain waves. This

research seeks to answer the question of whether binaural beats can be used to identify and

control working memory. Currently, nearly all therapeutic stimulation systems are open-loop

“one-size-fits-all” approaches. However, these methods can prove not as effective because

each person’s brain responds slightly differently to external stimuli. Therefore, the driving

motivation for developing a closed-loop stimulation system is to help populations with large

individual variability. One such example is persons with mild cognitive impairment (MCI)

which is considered a precursor to Alzheimer’s. Therefore, applying a closed-loop binaural

beat control system to increase the cognitive load level to people with MCI could potentially

maintain their quality of life. In this dissertation, we have showed that we can successfully

increase the connectivity in the brain using binaural beats in a closed-loop system.
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Chapter 1

Introduction

The frequency response of the brain has been associated with a wide range of brain states

and abilities, including concentration, mood, attention, and memory. To access particular

neural responses, a variety of interventions target stimulating areas of the brain at certain fre-

quencies; methods of stimulation include electrical signals, magnetic fields, and ultrasounds.

However, few existing techniques take advantage of the brain’s structure to actively generate

and entrain internal oscillatory modulations in locations deep within the auditory pathways.

One technique that does exploit existing brain structure is known as binaural beats, which

arises from the brain’s interpretation of two pure tones, with a small frequency mismatch,

delivered independently to each ear. The mismatch between these tones is perceived as a

so-called beat frequency. The use of binaural beats to entrain certain brain structures has

been preliminarily explored, and results suggest that this safe and accessible stimulation

method can be used to modulate behavioral performance.

This dissertation seeks to answer the question of whether binaural beats can be used to

identify and control working memory. Working memory is the system in control of tem-

porary retention and online organization of thoughts for successful goal-directed behavior.

Remarkably, individuals exhibit a typically small capacity limit or ‘maximum load’ on the

number of items that can be simultaneously retained in working memory.

Before binaural beats can be used within a closed-loop system to augment working memory,

the open-loop brain and behavioral responses to binaural beats must be assessed. Therefore,

1
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two experiments are completed to assess the effects of constant binaural beats on working

memory performance. The results of the studies show that binaural beats can produce a

more connected network and the more accurate responses during the tasks. Based on these

outcomes, a closed-loop system can be developed to control the binaural beat frequency

using measured brain signals.

Currently, nearly all therapeutic stimulation systems are open-loop ‘one-size-fits-all’ ap-

proaches. However, these methods can prove not as effective because each person’s brain

responds slightly differently to exogenous stimuli. Therefore, the driving motivation for

developing a closed-loop stimulation system is to help populations with large individual

variability. One such example is persons with mild cognitive impairment (MCI). MCI causes

cognitive impairments beyond those expected based on age, but which are not significant

enough to interfere with their daily life or independent function [2]. However, MCI is con-

sidered to be an early symptom of Alzheimer’s disease. Previous studies have found that,

overall, approximately 1 in 10 people with MCI progress to probable Alzheimer’s disease

per year [3]. In MCI, working memory capacity and the ability to maintain complex task

subgoals are impaired. Therefore, applying a closed-loop binaural beat control system to

increase the cognitive load level to people with MCI could potentially reduce their rate of

cognitive decline and maintain their quality of life.

1.1 Cortical Structure and Functionality

1.1.1 Overview

The cerebral cortex is an incredibly complex brain structure capable of acquiring, analyzing,

and inducing action based on data from different sources. At the cellular level, the cerebral
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cortex is primarily composed of neurons and synapses, which transmit information through

electrical signals. When a large number of neurons synchronize their firing patterns, macro-

scopic oscillations can be recorded using electroencephalography (EEG). The frequencies of

these oscillations are characterized as gamma (25-40Hz), beta (12-25Hz), alpha (8-12Hz),

theta (4-8Hz), and delta waves (0-4Hz), and these ranges are associated with higher mental

activity, alertness, relaxation, drowsiness, and deep sleep, respectively [4, 5].

At the macroscopic level, the cerebral cortex can be divided into different regions of func-

tionality, as shown in Figure 1.1. The frontal, parietal, occipital, and temporal lobes are

primarily associated with high-level decision making, the perception of sensory information,

visual processing, and auditory processing, respectively [6].

Figure 1.1: The brain, divided into the frontal, temporal, parietal, and occipital lobes.

The brain is a highly complex network of nonlinear systems with internal dynamic states that

are not easily quantified. Understanding how the brain is connected is of utmost importance

for understanding its functionality. Findings from the cognitive neuroimaging literature

show that the large-scale brain networks are required for complex cognitive processing (e.g.,

some memory tasks involve prefrontal, temporal, and parietal cortical processes). In memory

tasks, these interactions are reflected in multiple EEG oscillatory bands, particularly at theta

and gamma frequencies [7, 8, 9, 10]. Networks describing the interconnections between these

regions exhibit a high degree of randomness, high modularity, and relatively low heterogene-
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ity. The network properties, which are conserved over all scales, include small world degree

distributions, short path lengths, modularity, hierarchy, hub nodes, and robustness [11].

To understand the complex cortical networks, three main types of connectivity (Structural,

Functional, and Effective) have been defined to provide an operational framework.

1.1.2 Structural Connectivity

Structural connectivity refers to the anatomical connections between neural elements and

scales from single cell circuits to networks connecting different cortical regions. On a short

time scale (seconds to minutes), these networks are considered to be static. Nevertheless, on

a larger time scale (hours to days), the networks are considered to be plastic and modify, for

example, during learning or aging [11]. Neuroimaging techniques, such as magnetic resonance

imaging (MRI), can identify neuronal connections to quantify the structural connectivity [12].

1.1.3 Functional Connectivity

Functional connectivity refers to the statistical dependencies between observed neuronal pop-

ulation responses. Functional connectivity may be inferred from EEG, magnetoencephalog-

raphy (MEG), functional MRI (fMRI), or other time series data. Dynamic coupling is

assumed in cases when two regions are no longer statistically independent [12]. Functional

connectivity does not depend on a given model, but rather it is simply a measure of the

multivariate responses probability distributions. Therefore, no inference can be made about

the causal interactions between nodes [13].

Typical statistical methods for measuring of the dependencies include coherence [14] and syn-

chronization measures [15, 16]. The coherence of two signals measures the phase consistency

between them in each frequency band [14].
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Since EEG is noisy, non-linear, and non-stationary, phase synchronization is well suited for

cortical network determination. Short-range, or local, phase synchronization can be inter-

preted as creating regional “perceptual binding” [17]. Long-range phase synchronization,

between brain regions, is thought to sub-serve motor planning [18, 19], emotion [20, 21], and

memory [22, 23, 24, 25].

One measure of synchronization is Phase Locking Value (PLV) which has been applied in

the fields of nonlinear dynamics and chaotic systems [26, 27, 28]. The PLV is a measure of

the phase coherence between two signals [29]. For example, the PLV of two oscillators with

the same frequency equals one, regardless of the phase shift, ∆φ, between them, as shown

in Figure 1.2. PLV is different from coherence because only the phase information from the

two signals are used determine the coupling strength.

Figure 1.2: PLV values for three examples of coupled oscillators.

1.1.4 Effective Connectivity

Effective connectivity refers to the causal effect one neuronal population (brain region) exerts

over another. The connectivity can be inferred through model-based or model-free time series

analysis. Model-based techniques include Structural Equation Modeling [30] and Dynamic

Causal Modeling [31]. Conversely, information theory concepts, which are model-free, namely

Transfer Entropy (TE) [32] and Granger Causality (GC) [33], have been used to define

effective connectivity networks based on patterns in data alone [11]. A newly developed
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method of assessing causation between time series, Convergent Cross-Mapping (CCM) [34],

has been shown to identify predefined causal relationships in manufactured datasets that

GC may miss due to the time series inherent nonlinearity or deterministic nature. CCM has

been applied in a limited number of studies using different neuroimaging modalities including

EEG [35], lead field potentials [36], and fMRI [37].

1.2 Working Memory

The four-part working memory model developed by Baddeley and Hitch in [38] proposed that

a central executive system is necessary for reasoning, comprehension, and successful goal-

directed behavior. It is responsible for the online organization and processing of information

by controlling the flow of information to its subsystems, the phonological loop, visual-spatial

sketchpad, and episodic buffer. The phonological loop stores spoken and written information.

The visual-spatial sketchpad stores information about what the objects look like and where

they are. The episodic buffer is responsible for connecting the visual, spatial, and verbal

information to form integrated memories with time [38, 39].

Humans exhibit a capacity limit on the ‘load’, or number of items, that can be actively

maintained. Capacity is defined as KC = C(H− F), where C is the load, H is the hit rate,

and F is the false alarm rate. The hit rate is the percentage of correctly identified matches,

and the false alarm rate is the percentage of non-matches identified as matches [40]. Thus,

capacity measures how well the participants can identify correct matches scaled by the

number of targets in the task.

A popular working memory test is the visuospatial delayed match-to-sample task, as shown

in Figure 1.3a. After encoding an initial image, the subject must retain the image in the

absence of continuing input during working memory maintenance. During the retrieval
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process, the subject must compare the retained and current image to indicate if the images

match or not. Another test is an N-back task, where the subject is presented with a sequence

of letters, one at a time, and must indicate when the current letter on the screen matches

the letter “N” steps before, as shown in Figure 1.3b.

Figure 1.3: a) Match and no-match trials of a visuospatial delayed match-to-sample working
memory task. b) Examples of a 1-, 2-, and 3-back task.

From a neurophysiological point of view, the network governing working memory is dis-

tributed over a large part of the brain. Previous neuroimaging data suggests that hemi-

spheric specialization varies with the working memory domain (verbal or visuospatial) [41].

Verbal working memory tasks tend to be left lateralized and recruit more regions in the left

hemisphere. Visuospatial working memory tasks tend to be right lateralized and recruit more

regions from the right hemisphere. Alternatively, it has been proposed that verbal working

memory performance rely on the successful encoding of a stimulus as both a spatial object

in the right hemisphere and a verbal construct in the left hemisphere [42]. Also, throughout

working memory maintenance, the prefrontal and parietal neuronal ensembles are activated

simultaneously, as shown in Figure 1.4 [43, 44]. A positive correlation exists between the

degree of connectivity and the difficulty of the working memory tasks [45].



8 Chapter 1. Introduction

Figure 1.4: The fronto-parietal Working Memory Network

1.2.1 Cortical Synchronization and Working Memory

Since working memory relies upon communication between brain regions and plasticity, it is

benefited by phase synchronization of theta, beta, and gamma waves [25], as demonstrated

by the literature below. Previous research has shown that an increase in electrocortical

phase synchronization across the cortex facilitates neural communication, promotes neural

plasticity, and supports working memory [25]. Increased neural communication is facilitated

when several synaptic inputs arrive simultaneously at a postsynaptic neuron resulting in

higher firing rate output than usual [46]. Synchronous gamma oscillations are confined to

local neuronal areas, whereas theta synchronization is effective across long distances (i.e.,

disparate regions of the brain) [47, 48, 49]. Studies have shown that successful encod-

ing of information during a working memory task requires increased phase synchronization

[22, 50, 51, 52, 53, 54, 55]. Theta phase synchronization during a working memory task

is sustained during encoding, maintenance, and retrieval between the prefrontal and pari-

etal regions and increases with memory load (difficulty of the task) [48, 56]. Induced beta

and gamma synchronization produce increased coherence between frontal and parietal areas

during working memory maintenance [57, 58].
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1.2.2 Mild Cognitive Impairment and Working Memory

During various working memory tasks, people with MCI show impaired performance and

decreased working memory capacity [59, 60, 61]. Most importantly, MCI is associated with

a loss of synchronization among neural networks. Both Pijnenburg and Koenig reported that

synchronization in the alpha and beta bands is significantly decreased [62, 63]. Also, reduced

beta band synchronization is correlated with cognitive impairment [64]. This suggests that,

if phase synchronization is increased in people with MCI, then their working memory abilities

could be persistently augmented.

1.3 Common Noninvasive Brain Stimulation Methods

Over the past two decades, noninvasive brain stimulation (NIBS) has been a beneficial tool

for probing the dynamics of the brain. NIBS provides a safe way to investigate causal links

between brain structures involved with cognition, sensory and motor functions. Also, local

and regional brain network organization can be determined [65]. The two most common

methods of noninvasive brain stimulation are transcranial magnetic stimulation (TMS) and

transcranial direct current stimulation (tDCS).

TMS uses a coil connected to a magnetic stimulator to induce current flow and neural

activation in the targeted area, as shown in Figure 1.5a. The coil is placed over the desired

stimulation region. When the TMS is pulsed repetitively, known as rTMS, inhibitory or

excitatory neurons can be activated [66]. TMS is considered to be safe, but some adverse

effects include pain and temporary impaired cognition.

tDCS uses a stimulator which delivers weak (<1 mA) currents between two saline-soaked

surface sponge electrodes, with one placed on the scalp over the desired area of stimulation
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and the other over a reference location, as shown in Figure 1.5b. Anodal and cathodal

stimulation produce inhibition and excitation, respectively [67]. A few potential minor side

effects to tDCS include skin irritation, nausea, and headaches.

Figure 1.5: a) Standard figure-eight TMS coil placed on the scalp. b) Bipolar tDCS electrode
configuration [67].

1.3.1 rTMS and tDCS Effects on Working Memory

Some studies using rTMS and tDCS have explored the influence of the dorsolateral prefrontal

cortex (DLPFC) on working memory. A meta-analysis completed by [68] compared 33 N-

back studies (19 tDCS and 14 rTMS) who stimulated the DLPFC. The primary results from

the analysis showed that, overall, participants who received the NIBS had significantly faster

and accurate responses than those who received the sham, or control condition. In addition,

stimulating the parietal cortex [69], the cerebellum[70], and the temporal cortex[71] also pro-

duced increases in working memory performance. Therefore, noninvasive brain stimulation

approaches can induce working memory improvement.
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1.4 Binaural Beats

Binaural beats utilize a phenomenon that occurs within the cortex when two different tones

are presented separately to each ear [72]. A simplification of the auditory pathway, as shown

in Figure 1.6a, begins with the cochlea which converts sound waves entering the ears into

electrical impulses which travel up the vestibulocochlear nerve. A third phantom binaural

beat, whose frequency is equal to the difference of the two presented tones, is produced within

the inferior colliculus (IC). The IC compares the minute differences in timing and timbre

from each ear to determine the direction of the sound. The interaural phase difference

(IPD) is computed in the IC. The binaural beat is projected up the auditory pathway to

primary auditory cortex (A1) [73]. A1 contains a tonotopic map, a representative structure

of the cochlea, to map the decomposed frequencies of the acoustic input from high to low.

The afferent nerves from the tonotopic map continue to other cortical processing areas [74].

Figure 1.6b shows an example of a 15Hz binaural beat.

Figure 1.6: a) Auditory pathway which transmits sounds from the cochlea to the auditory
cortex. b) Example of 15Hz binaural beats.
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Based on the results of Fitzpatrick et al., the auditory cortex experiences the highest amount

of synchronization due to binaural beats in the beta band around 16Hz [75]. By selecting

appropriate frequencies, auditory entrainment occurs which is characterized by the amplifi-

cation and transmission of the binaural beat to other areas of the cerebral cortex. Previous

research has shown that binaural beats can affect the frequency-specific EEG responses and

cortical phase synchronization.

1.4.1 Frequency-Specific Effects

The majority of the studies investigating binaural beat effects on the frequency response are

in the gamma range at 40Hz. Ross et al. found that binaural beats using a base frequency

less that 3kHz is necessary to produce entrainment. He reported that 40Hz binaural beats

produced the largest gamma response [76]. Draganova et al. determined that the sources

creating the auditory steady state responses to 40Hz binaural beats are found in the frontal

and medial areas of the cortex [77]. Schwarz and Taylor presented a binaural beat of 40Hz to

evoke a steady response. The results of the study indicate that a higher frequency binaural

beat exhibited less power but the entrainment is evident in the measured responses over the

frontal and parietal lobes [78]. Pastor et al. used positron emission topography (PET) and

regional cerebral blood flow (rCBF) to find that an increase in rCBF corresponded with os-

cillatory responses at 40Hz when the subject with presented with a 40Hz binaural beat. The

increase in steady state amplitude peak is associated with increased cortical synaptic activity

[79]. Some additional studies have investigated lower binaural beat frequencies. Frederick et

al. reported results that a binaural stimulation at 18.5Hz increased EEG amplitude by 21%

at the vertex (top of the head) [80]. Kennerly reported evidence of auditory entrainment after

five minutes of binaural stimulation. The binaural stimuli are designed to target the theta or

delta ranges. When listening to the presented stimuli, the participants exhibited increased
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theta or delta EEG activity during the theta or delta stimulation, respectively [81]. Karino

et al. published evidence of entrainment within the theta range with the presentation of a

binaural beat in the theta frequency range. Also, source analysis showed that the primary

activation sites are found in the parietal, frontal cortices, and temporal areas including the

auditory cortex [82]. Pratt et al. stated that theta binaural beat stimuli evoked typical event

related potential (ERP) components followed by oscillations at the binaural beat frequency.

Source analysis determined that binaural beats activate the frontal and temporoparietal ar-

eas [83]. Gao et al. investigated the how binaural beats of differing frequencies affect the

EEG activity. They conclude that the various frequency bands influence each other. During

delta and alpha binaural beat stimulations, the relative power increased in theta and alpha

frequency band response [84].

1.4.2 Phase Synchronization

Becher et al. investigated how binaural beats change cortical phase synchronization. They

found that EEG power and phase synchronization is significantly modulated at the intracra-

nial EEG temporal-basal, temporal-lateral, mediotemporal sites, and surface EEG sites.

Phase synchronization increased at the temporal-lateral site during a 5Hz binaural beat. In

addition, EEG power at the mediotemporal, temporal-basal anterior, and temporal-lateral

sites increased during a 10Hz binaural beat [85]. Ioannou et al. determined that musical

expertise does not affect electrocortical activity in response to binaural beats. However,

EEG analysis indicates that listening to alpha binaural beats produces the most significance

steady state response. Also, cortical network analysis based on phase synchronization shows

that listening to theta and alpha binaural beats had a significant impact on the structure of

the cortical connectivity network [86].



14 Chapter 1. Introduction

1.4.3 Cognitive Effect on Memory

Kennerly investigated the effect of beta frequency binaural beat on different measures of

human memory. Participants performed tests while binaural beats are played with instru-

mental music and just during instrumental music. He concluded that the binaural beat

group performed significantly better during the word list recall test, the digit symbol test,

and the digit span test [87]. Lane et al. tested participant performance during a 1-back

working memory test while listening to either theta or beta range binaural beats. EEG

analysis showed improvement in target deduction and decreased false alarm rate while lis-

tening to binaural beats in the beta frequency range compared to theta range. Furthermore,

beta binaural beats caused lower task-related confusion and fatigue when compared to theta

binaural beats [88]. Fernandez et al. tested the effects of theta binaural beat on verbal

memory. Participants performed significantly better at the word recall task when listening

to 5Hz binaural beat compared to 13Hz [89].

1.5 Noninvasive Brain Stimulation Controllers

In the majority of clinical trials and therapy sessions, NIBS is applied in an open-loop

stimulation setting. However, recently, TMS stimulation protocols have been developed

which are controlled by the EEG to close the loop. Specific brain state markers, such as a

certain phase or power of cortical oscillatory activity, are continuously monitored and used

to trigger the NIBS in a feed-forward manner [90]. This paradigm is used to modulate

brain activity during non-REM sleep by pulsing the TMS in phase and out of phase of the

slow-wave oscillations detected by EEG [91]. Alternatively, similar experiments used visual

flashes [92] or auditory stimulation [93], in the form of short bursts of noise, to drive the

cortical oscillations at the desired low frequency.
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Brittain et al. demonstrated that NIBS could be used in conjunction with a closed-loop

controller to suppress tremor amplitude in people with Parkinson’s disease [94]. The phase of

the tremor, as measured by an accelerometer, is used as the feedback signal to the controller.

The proportional controller generated transcranial alternating current (tACS) oscillations to

phase-cancel the endogenous tremor rhythm. The stimulation is applied to the motor cortex.

Overall, the tremor amplitudes could be suppressed up to 50% by using the closed-loop

control method.

To the best of our knowledge, only once before have binaural beats been utilized within

a closed-loop control system for neural stimulation. In [95], Settapat et al. developed a

binaural beat control system to entrain the user to a meditative state in real-time. An

autoregressive forecasting model is implemented to predict the user’s arousal state from the

frequency response of the EEG within the alpha band. A fuzzy logic controller is used to

modulate the presented binaural beat based on the EEG power and forecasting error signal.

The results of the experiment showed that the arousal state of the participant could be

altered to be maintained within the meditative state. If the arousal state is too high, then a

lower frequency binaural beat is played bringing the arousal state down, or inversely if the

arousal state is too low [95]. While this work promises the ability to drive EEG with binaural

beats, the controller is unable to dynamically adapt to subjects’ states and furthermore does

not demonstrate behavioral outcomes that may be associated with such controlled signals.

Up to this point, no closed-loop controllers and noninvasive brain stimulation methods have

been coupled to modulate working memory.
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1.6 Summary of Work

The research presented in this dissertation includes a comparison of techniques to build

networks, open-loop binaural beat stimulation studies, development of a closed-loop control

brain network simulation environment, and an experimental closed-loop EEG-based binaural

beat study.

The second chapter compares the results of using PLV and CCM to develop resting state

brain connectivity networks. The resting state network is primarily activated when the

person allows their mind to wander and the brain is resting, but awake. When the person

is not purposefully engaging in a task, this network activates “by default”. The results

suggest that the network characteristics follow the same trends and the similarity between

the computed networks, for both algorithms, is highly significant. However, CCM is able to

identify low or one-way connection strengths better than PLV but takes exponentially longer

to compute.

The third chapter through the fifth chapter details the results of the use of open-loop bin-

aural beats used to entrain certain brain structures utilized during working memory via

existing neural pathways. The brain signals are recorded using EEG. In these two studies,

we determined the effects of different acoustic stimulation conditions on participant response

accuracy and cortical network topology, as measured by EEG recordings, during visuospa-

tial (Chapter 3) and verbal (Chapter 4) working memory tasks. Three acoustic stimulation

control conditions and three binaural beat stimulation conditions are used: None, Pure

Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats.

Chapter 5 shows additional analysis which compares the networks developed for each task.

Overall, these results suggest that this safe and accessible stimulation method can be used

to modulate behavioral performance and cortical connectivity.
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Chapter 6 describes the large scale brain network model used to assess closed-loop controller

performance. Using a computational model of the brain (The Virtual Brain), we studied,

in simulation, the effect of a binaural beat stimulus on key brain regions associated with

auditory processing. The simulations are used to test both a linear and adaptive controller’s

ability to change cortical responses using the controlled binaural beat stimulus.

Chapter 7 details the development and testing of an experimental closed-loop EEG-based

controller used to modulate the binaural beat stimulus that the person hears during a working

memory task. Each person’s brain functions in slightly different ways, so an open-loop control

system for brain stimulation is impractical from a control engineering perspective. The input

of the system will be binaural beats delivered through headphones. Entrainment of the beat

frequency throughout the brain will be recorded using EEG.

1.6.1 Significance of Work

Only a limited number of studies have investigated the effects of binaural beats on work-

ing memory, which controls the temporary retention and online processing of information.

Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity

during working memory tasks.

Connectivity Metric Comparison. We found that PLV is a fast metric to compute

functional connectivity which makes it ideal for on-line network identification and as a feed-

back signal within a closed-loop control system since it is an excellent approximation of the

network computed with CCM.

Visuospatial Working Memory Task. We found that listening to 15Hz binaural beats

during the delayed match-to-sample visuospatial working memory task not only increased

the response accuracy but also modified the strengths of key connections in the cortical
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networks during the task. The three auditory control conditions and the 5Hz and 10Hz

binaural beats all decreased accuracy. Based on graphical network analyses, the cortical

activity during 15Hz binaural beats produced networks characteristic of high information

transfer with consistent connection strengths throughout the visuospatial task.

Verbal Working Memory Task. We determined that listening to 15Hz BB during an

N-Back working memory task increased the individual participant’s accuracy, and changed

the connection strengths of the cortical networks during the task. Only the 15Hz BB pro-

duced a significant change in relative accuracy compared to the None condition. Based on

graphical network analyses, listening to 15Hz BB produced networks characterized by higher

information transfer during the N-back task than other auditory stimulation conditions.

Closed-Loop Simulation Platform. We developed the first simulation environment for

an EEG-based closed-loop control of TVB using binaural beats. Results suggest that the

connectivity networks, constructed from simulated EEG, may change with certain binaural

beats stimulation frequency. In this work, we demonstrated that a linear controller and an

adaptive controller can successfully modulate TVB connectivity.

EEG-based closed-loop control of working memory. The developed system provides

the first experimental assessment of cortical connectivity using closed-loop binaural beats.

Compared to current methods of brain stimulation both for system identification or therapeu-

tic interventions (i.e., transcranial alternating/direct current, transcranial magnetic stimu-

lation, and ultrasound), binaural beats capitalize on existing brain structures to entrain

higher-level areas of the cortex. In addition, binaural stimulation does not require extensive

equipment or a clinical setting to be used safely. As a result, this system has the potential

to be further developed into a medical device to identify and control working memory disor-

ders indicative of cognitive impairment even outside clinical settings. Thus, any associated

therapies developed in the future have a strong potential for broad application and usability.
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Comparison of Phase Locking Value

and Convergent Cross Mapping

Beauchene C., Roy S., Moran R., Leonessa A., Abaid N., Comparing brain

connectivity metrics: A didactic tutorial with toy simulations. Journal of Neural

Engineering, under review

Quantifying the resting state connectivity of the brain–which is a complex network of neural

circuits–is a nontrivial task. The resting state network is primarily activated when the person

allows their mind to wander and the brain is resting, but awake. When the person is not

purposefully engaging in a task, this network activates “by default”. The primary regions

activated in the network are the posterior cingulate cortex and medial prefrontal cortex

[96, 97, 98]. The purpose of this chapter is to compare the resulting connectivity networks

using both the PLV and CCM algorithms. PLV is a model-based metric since the data is

assumed to be oscillatory. PLV is typically a better choice than correlation for EEG data,

since it is more robust to amplitude fluctuations [99, 100]. Networks defined using PLV

are undirected weighted graphs since PLV is a functional connectivity metric, and therefore

pairwise comparisons between nodes are symmetric. On the other hand, CCM is a model-

free method, since it detects causal influences based on the ability to estimate one time series

with another. Networks developed using CCM are directed weighted graphs since CCM is

an effective connectivity metric, which is generally not symmetric. In terms of computation

19
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time, PLV is significantly faster than CCM. However, CCM is able to identify and quantify

more nuanced pairwise interactions than PLV. To investigate the two methods, we apply

both PLV and CCM algorithms to simulation and resting-state fMRI and EEG datasets.

The connectivity networks they generate are analyzed using network characteristic metrics

and a similarity metric.

2.1 Methods

Three different datasets are used in this analysis. The first is a toy dataset made up of

simulations to test the PLV and CCM algorithms under different known synchronization

conditions. The second and third datasets contain experimental resting state EEG and

fMRI data, respectively.

2.1.1 Toy Synchronization Dataset

To understand the output of the two analytical methods on a known system, we created a toy

synchronization dataset from a two degree of freedom mass-spring-damper system illustrated

in Figure 2.1 and with governing equations

m1ẍ1 = −cẋ1 − kx1 + a1(x2 − x1) + F1, (2.1)

m2ẍ2 = −cẋ2 − kx2 + a2(x1 − x2) + F2, (2.2)

where the masses (m) are m1 = m2 = 1 kg, the spring constant is k = 5000 kg · s−2, and

the damping coefficient is c = 2ζ
√
mk = 70.71 kg · s−1 using a damping ratio ζ = 0.5. The

initial starting conditions are ẋ1 = 0.01, x1 = 1, ẋ2 = 0.01, and x2 = 1. The coupling

strengths, a1 and a2, are equal to ak where a ∈ {0%, 25%, 50%}. Each mass is displaced by
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its respective forcing function F1 or F2. Each forcing function is a linear combination of five

different sine waves with an amplitude of 1 N and frequencies selected between 4Hz and 8Hz

using a uniformly distributed random variable. The simulated inputs are designed to mimic

endogenous theta/alpha oscillatory inputs with random power and frequencies (within this

range) and thus demonstrate the robustness of each method to variations in endogenous

dynamics. As a1 increases, x1 converges to the x2 response since the coupling between the

system dominates the individual forcing. Alternatively, as a2 increases, x2 converges to the

x1 response similarly. The governing equations are numerically solved in Matlab using ode45

with a fixed time step of 0.01 seconds for a total of 21 seconds. The first second of data is

chopped to remove the transient.

Figure 2.2 illustrates the structure of the toy synchronization dataset generated from the

numerical solver. A simulation is defined as the set all of the trials using the same forcing

functions F1 and F2. A trial is defined as the resulting time series for a specific combination

of a1 and a2. Every combination of a1 and a2 is used, which results in a total of nine different

trials per simulation. In total, we ran 1000 simulations to understand the distribution of

responses resulting from the random forcing functions.

Figure 2.1: Illustration of the coupled mass-spring-damper dynamical system used to create
the toy dataset.
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Figure 2.2: The structure of the toy synchronization dataset. In each simulation box, the five
frequencies used in the forcing functions are listed. The breakout box shows all of the trials
within Simulation 1 for different a1 and a2 combinations. The 9 graphs show the frequency
responses of x1 and x2.

2.1.2 Resting State Datasets

For this paper, we tested an EEG dataset and a fMRI dataset, from participants at rest, to

compute the resting state networks. The resting state EEG dataset is obtained from [101],

which is the data presented in [102]. In total, they comprise recorded 64 channels of data

from 12 participants (6 females, aged 26.6 ± 2.1 years) for 5 minutes [102]. The channels are

placed according to the 10-20 system. The resting state fMRI data set, called Beijing Zang

[103], is obtained from the 1000 Functional Connectomes Project database. For acquisition,

the researchers use a 3T scanner with a repetition time (TR) value of 2 seconds, 33 slices,

and a total of 225 time points. Of the total 198 healthy adult subjects in the dataset (122

female, aged 18 – 26), 50 participants are randomly selected for this analysis.

EEG Data Processing

The EEGlab toolbox in Matlab is used to preprocess the raw EEG data [104] (Table S1).

First, the EOG, ECG, TP9, and TP10 channels are removed. Next, the EEG data is
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downsampled to 500Hz from 5000Hz. Then, the data is bandpass filtered (0.5Hz – 50Hz)

to remove drift and the 60Hz power line noise. Next, the filtered EEG is re-referenced to

the average. Subsequently, the artifacts are removed using automatic continuous rejection

in EEGlab. Independent component analysis is used to remove the eye blink components

[105]. Next, the clean EEG is bandpass filtered (8Hz – 12Hz) to focus on the alpha band

which has previously been associated with resting state [106, 107, 108]. Finally, the network

computation is only performed on the last minute of clean EEG data to ensure the participant

had achieved resting state.

fMRI Data Processing

The SPM12 [109] and CONN toolboxes [110, 111] in Matlab are used to extract the regional

activity. First, the images are preprocessed using SPM12, where slice-timing correction,

realignment, normalization, and segmentation are performed. Then, in CONN, the func-

tional data is smoothed, the voxel-to-voxel covariance is computed, and the regional activity

is extracted. By default, CONN uses a combination of the Harvard-Oxford atlas and the

AAL atlas to define 136 regions of interest (ROI). For this paper, the 91 ROIs from the

Harvard-Oxford atlas are used.

2.1.3 Connectivity Networks

Using the time series data from each of the datasets, we develop networks that are comprised

of nodes and edge weights. The toy data network is made up of two nodes which represent

the responses x1 and x2, for each simulation. For the EEG and fMRI datasets, the electrode

channels and the ROIs are set as the nodes, respectively. In this paper, we assume all

networks are all-to-all and we apply two different measures to define the edge weights, namely
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Phase Locking Value and Convergent Cross-Mapping.

Phase Locking Value

PLV measures the phase coherence between two signals. For example, the PLV of two

identical oscillators is 1 if the phase difference is continually fixed, and is 0 if constantly

changing [29]. We compute the PLV by first converting the time series into analytic signals

using a Hilbert transform [112]. The phase, in radians, of channel h is denoted φh(t). The

phase difference between channels h and i is given by

θhi(t) = (φh(t)− φi(t)) mod 2π. (2.3)

All pairs of channels are compared against each other via the PLV defined as

PLVhi =
1

N

∣∣∣∣∣
N∑
k=1

exp

(
jθhi(k∆t)

)∣∣∣∣∣, (2.4)

where j =
√
−1 is the imaginary unit, and ∆t = T

N
where T is the time series duration

and N is total number of discrete time steps. The implemented PLV algorithm uses the

entire length of the time series for the phase difference computation. However, before the

computation of the PLV value, the initial 10% and final 10% of the data is removed to

account for the edge effect from the Hilbert transform.

Convergent Cross-Mapping

As opposed to the functional connectivity measured by PLV, we seek a method to quantify

causal relationships, and thus effective connections, in imaging data at different brain regions.

However, the lack of universal definition of causality has attracted researchers from various

disciplines, and a variety of methods have been proposed. The earliest method developed
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is Granger causality [33], which relies on the idea of separability. Separability indicates

separating the influence of causative factors from the effects [34, 113]. GC is a model-

dependent method as it assumes a linear vector-autoregressive model to fit the dataset

[114], and hence reliably captures a linear relationship. Since most real-world systems are

non-linear, research has turned toward the discovery of model-free methods that do not

assume a background model, namely transfer entropy [32] and convergent cross-mapping

[34]. Transfer entropy and Granger causality both have the underlying assumption that cause

precedes the effect, and hence can better predict the future of the effect. In addition, TE and

GC are equivalent measures for Gaussian-distributed random variables [115]. The idea of

separability in GC has been identified to be problematic as the causal variables can be falsely

removed from the set of causes without deteriorating the predictability of the effect (see an

example in the supplementary information of [34]). Recently, a multivariate extension of GC

has been developed and applied to neuroscience applications [115, 116]. CCM is relatively

recent and introduces a new definition of causality based on the hypothesis that the cause

is better estimated by the effect, thus the definition differs fundamentally from GC and TE.

Furthermore, CCM has the potential to capture non-linear relationships and may be better

at correctly identifying the causal variable in comparison to both TE and GC, particularly

for systems with strong deterministic components [34]. CCM has only been explored in the

context of neuroscience in a couple of journal publications [35, 36, 37]. This study seeks

to test the usability of CCM for effective connectivity brain networks from both EEG and

fMRI data, and to compare these results to PLV.

CCM is an algorithm to detect and quantify causal influence between two time series vari-

ables, and is first introduced in [34]. Given two causally related time series variables, X(t)

and Y (t) where t denotes the time index and in the case of unidirectional causality (X

drives Y ), the causal variable (X) is assumed to imprint evidence of causation on the af-
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fected variable (Y ). CCM exploits this idea by testing whether past values of Y can be

used to better estimate the values of X. In particular, the algorithm compares the abil-

ity of lagged components of one time series variable to estimate the dynamics of another,

and the relative skill of estimation is defined as the strength causal influence. A detailed

description of the algorithm can be found in the supplementary materials of [34] which is

summarized as follows. The first step of the algorithm is to create a shadow manifold from

time-delayed projections of each time series independently. We compute the shadow mani-

fold for X by embedding the time series on an E-dimensional manifold as points of the form

(X(t), X(t − τ), X(t − 2τ), · · · , X(t − (E − 1)τ)), where τ is a constant time delay. These

data points are defined for t ∈ {1 + (E − 1)τ, 2 + (E − 1)τ, · · · , L}, where L, also called

the library size, is the length of the time series used for the embedding. The E-dimensional

manifold containing these points is called the shadow manifold of X, denoted by MX . Sim-

ilarly, we construct a shadow manifold of Y , called MY . Next, cross-mapped estimates of

Y (t) (and X(t)) are computed by locating the nearest neighbors on MX (and MY ). Finally,

cross-mapped estimation skill is evaluated using Pearson’s correlation coefficient between Y

and estimated Y , where correlation coefficient values close to one indicate better estima-

tion skill. The negative correlation values are replaced by zeros in line with the method in

[34], and the CCM values range in between 0 and 1 and are unitless. As the library size

is increased, the cross-mapped estimation improves and converges to a constant value, and

thus the causal variable is identified by the asymptotic value of cross-mapped estimation. In

real-world datasets, the convergence value is dictated by the presence of measurement error,

process noise, and the length of the dataset [34]. CCM in the present study is implemented

using rEDM package [117] in R, where the optimal embedding dimension E is evaluated

following Simplex Projection method [118], and the lag τ used for the construction of the

shadow manifold is set to 1 by default. Note that the computation of E follows an existing

method that may yield the same result as other methods seeking optimal embedding dimen-
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sions, but the use of the E-dimensional time-delayed shadow manifold to estimate causality

through nearest-neighbor relationships is unique to CCM.

Network Construction and Computation Time

The graphical network is constructed using the index of a set of time series as the nodes

(V = {1, ..., n}), where n = 2 (Toy data), n = 60 (EEG data), and n = 91 (fMRI data).

The connectivity network is assumed to be all-to-all, meaning there is an edge between every

pair of nodes. The weights associated with these edges are computed using both PLV and

CCM, and they are represented in weighted adjacency matrices whose ijth entry captures

the weight of connection from node i to node j. Using PLV, we define the weighted adjacency

matrix WPLV with elements wij = PLVij, i, j = 1, 2, ..., n. Due to the properties of PLV, wij

is in [0, 1] and WPLV is symmetric since PLV (and hence the network) is undirected. Using

CCM, we define the weighted adjacency matrix WCCM with elements wij as the cross-mapped

skill from node i to node j. The network is directed since WCCM is not symmetric in general.

The computation time for the PLV algorithm is much faster than the CCM algorithm. As

the number of nodes and length of the time series increases, the computation time for CCM

increases exponentially while the increase for PLV is linear. The results presented in this

paper are run on a Windows 8 64-bit computer with an Intel i7-2600 CPU at 3.40GHz using

16GB of RAM. Table 2.1 lists the mean and standard deviation of the computation time,

over 5 runs, for the toy, EEG, and fMRI datasets.

Table 2.1: Computation time statistics, over 5 runs, for each of the datasets.

Toy Data Set EEG Dataset fMRI Dataset
PLV CCM PLV CCM PLV CCM

Mean 5.51 E-3 s 4.02 s 2.57 s 4.14 E+4 s 1.91 s 105.12 s
SD 2.93 E-3 s 0.06 s 0.07 s 9.65 s 0.01 s 0.12 s
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Network Similarity Statistic

A general similarity metric between two networks, WPLV and WCCM, is defined as

S(k) = 1− ||WPLV(k)−WCCM(k)||2
||WPLV(k)||2

, (2.5)

where k is the index of networks in the dataset, and ‖ · ‖2 is the Euclidean norm. The

range of the similarity metric is between 0 and 1, where 1 indicates perfect similarity or that

the matrices are equal. The second term in the equation is roughly equivalent to percent

difference. Therefore, as the difference between the two matrices increases, the second term

becomes larger, which causes the similarity metric to decrease. For the toy dataset, the

similarity metric is notated with subscripts Sa1,a2 since it is also a function of the coupling

strengths a1 and a2. For the neuroimaging datasets, the diagonal values of WPLV and WCCM

are 1 and 0, respectively. Therefore, in order to not consider the diagonal values in the

similarity metric, they are all set to zero before computation.

In order to assess the significance of the similarity between the CCM and PLV networks

from the neuroimaging data, six control cases are created where a percentage of the nodes

(channels or ROIs) in the WCCM matrix are re-ordered using 100 independent random permu-

tations, per participant. The re-ordering percentages used are 0% (no nodes are re-ordered)

to 100% (all nodes are re-ordered) by steps of 20%. In all of the computations, the order of

the nodes in the PLV matrix remained constant. Therefore, for each participant and node

scrambling percentage, 100 similarity metrics are computed, and the mean value is used

as a control for the statistical analysis. The mean of the similarity metrics, one for each

participant, is implemented in a one-way ANOVA to determine the effect the six different

percentages of scrambled nodes has on the similarity metrics. The familywise error rate is

set at 0.05 for the Tukey HSD post hoc test.
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2.1.4 Toy Dataset Analysis

The toy dataset is analyzed for the specific purpose of understanding how increasing the

coupling parameters affected the frequency response of the system and the resulting PLV

and CCM networks.As the coupling parameters a1 and a2 increase, the resulting x1 and x2

time series responses become increasingly similar. In order to show this trend, we compared

the frequency responses of x1 and x2, for specific a1 and a2 combinations. The magnitude

components of the frequency response of x1(a1, a2) and x2(a1, a2), for the kth simulation, are

defined as Fx1(k, fi) and Fx2(k, fi), respectively. The frequencies evaluated in the FFT are

fi where i = {1, ..., N}, where N is the total number of frequencies used. The mean absolute

spectral difference, ds, between the two responses is computed using

ds(k) =
1

NFn(k)

N∑
i=1

|Fx1(k, fi)− Fx2(k, fi)|, (2.6)

Fn(k) =
1

2

[
||Fx1(k, fi)||2 + ||Fx2(k, fi)||2

]
, (2.7)

where Fn is a normalization factor. A higher ds value indicates a larger difference between

the two frequency responses.

In addition, the 2×2 interaction networks determined using PLV and CCM are computed for

all the trials in each simulation. The mean and standard deviation of the similarity metrics,

over all 1000 simulations, are computed for all coupling strength combinations.

2.1.5 Resting State Neuroimaging Dataset Analysis

After processing the data, networks for the neuroimaging data are computed using both

the PLV and CCM algorithms. For the EEG and fMRI data, the library size for the CCM

algorithm is set to the entire length of the time series which are 5000 and 255, respectively.
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The convergence graphs for the EEG (Figure A.2) and fMRI data (Figure A.3) are shown in

Appendix A. The cross-mapped estimation skill is seen to converge for data of this length

by visual inspection. The network characteristic measures computed are used to compare

the structural features of the resulting graphs. Then, the similarity of the PLV and CCM

matrices are compared.

Mean Theta Network Comparisons

Two analyses assess the differences between the derived PLV and CCM networks. First, the

range of the edge weights (largest – smallest) in the networks for both PLV and CCM are

compared in a one-tailed t-test, over all participants. Second, for each specific link in the

network, a t-test is used to compare the CCM and PLV connection strengths, which results

in an [n×n] matrix of uncorrected t-statistic values. For both the EEG and fMRI networks,

the links where WPLV and WCCM are significantly different (p < 0.01), over all participants,

are assessed. Two separate graphs are developed to show the links where WPLV > WCCM

and WPLV < WCCM.

Network Characteristics Measures

The PLV and CCM networks are analyzed using four different network measures. The

measures are computed at different network densities, which is the number of connected

edges over the total number of possible edge connections sorted by edge weight from high to

low. For example, at a density of 0.1, only the largest 10% of edge weights in the network

are kept and the rest are set to 0. The Brain Connectivity Toolbox (BCT) in Matlab is used

to compute the degree, clustering coefficient, betweenness centrality, and efficiency metrics

[119]. In order to assess the differences between the PLV and CCM results for each network
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characteristic, a t-test is applied at each network density.

1. The degree of the ith node (Di) is the sum of the edge weights connected to the node.

It is a measure of the amount of information coming into the node from other regions,

and is computed using

Di =
n∑
j=1

wji, (2.8)

where n is the number of nodes.

2. The clustering coefficient of the ith node (CCi) is the proportion of its adjacent nodes

which are interconnected. It is a measure of local connectivity around the node and

can be defined using

CCi =
2

ki(ki − 1)

n∑
j=1

n∑
h=1

(w̃ijw̃ihw̃hj)
1/3, (2.9)

where ki =
∑n

j=1 |sgn(wji)| is the unweighted degree. The weights are normalized, to

ensure that CCi remains between 0 and 1, using w̃ij = wji/ max
i,j=1,...,n

wji.

3. The betweenness centrality of the ith node (BCi) is the number of shortest paths

between all node pairs that pass through node i. A path of length k from node j to h

is a sequence of k + 1 distinct nodes with consecutive nodes adjacent with respect to

the edges in the graph. A shortest path between j and h minimizes k. The number of

shortest paths from j to h is given by σjh and the number of those paths which include

node i is given by σjh(i). The value is scaled between 0 and 1 by the number of nodes

in the network, n. The betweenness centrality, defined as

BCi =
1

(n− 1)(n− 2)

∑
h,j∈V
h6=i 6=j

σjh(i)

σjh
, (2.10)
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sums the fraction of shortest paths between nodes on which the ith node lies. High

betweenness centrality indicates that the node has a large influence on the overall

transfer of information through the network.

4. The efficiency (E) of the network is the average of inverse shortest path length, and is

inversely related to the characteristic path length. The efficiency is defined as

E =
1

n(n− 1)

∑
i,j∈V
i<j
i 6=j

1

d(i, j)
, (2.11)

where d(i, j) is the length of the shortest path between nodes i and j.

2.2 Results

2.2.1 Toy Data Simulations

For the toy data, the simulated time responses are analyzed to assess the effect of coupling

strength on the frequency response and the PLV and CCM networks.

Frequency Response of the Simulations

The comparison of the frequency response of the two coupled time series of the toy data is

shown in Figure 2.3. The average spectral difference, over 1000 simulations, is shown as the

blue surface. The standard deviation, at each coupling combination, is denoted by the black

dots. When the coupling strength is 0%, the difference between the frequency response of two

signals is high. However, as both coupling parameters increase, the two signal’s frequency

responses converge to each other and the difference decreases. In addition, over the 1000
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simulations, the resulting mean and standard deviation values are symmetric for both a1

and a2. Therefore, the model does not favor one coupling direction over another, which is

to be expected since the two systems are identical when unforced and decoupled.

Figure 2.3: The difference between the frequency responses for different coupling combina-
tions. The surface and dots indicate the means and standard deviations, respectively.

Similarity between the PLV and CCM networks

Figure 2.4 shows two examples of the computed PLV and CCM networks for different cou-

pling strengths. The networks follow the same naming convention so the strength from x1

to x2 is read as from the 1st column to the 2nd row. The forcing functions used in this

simulation are

F1(t) = sin(4.8t) + sin(5.7t) + sin(5.8t) + sin(6.1t) + sin(7.1t), (2.12)

F2(t) = sin(4.5t) + sin(6.7t) + sin(6.8t) + sin(7.0t) + sin(7.2t). (2.13)

Figure 2.4a shows a one-way coupling case since only a1 > 0 which means that only the x1

response is influenced by x2. The PLV algorithm cannot differentiate the one-way coupling

and therefore the network is symmetric. In addition, the PLV algorithm estimated the
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strength of the connection to be higher than the output of the CCM algorithm. In the CCM

network, the connection strength from x2 to x1 is higher than the reciprocal connection.

Therefore, the CCM algorithm identified the predominant directionality within the network.

In Figure 2.4b, the coupling is present in both directions but is strongest from x1 to x2. In

this case, the connection strength computed using PLV is closer to those found with CCM.

In this case, CCM is able to identify that the connection from x1 to x2 is higher than the

reciprocal connection. For the CCM algorithm, the library size is set to 2000, which is the

maximum length of the dataset. In Appendix A, the convergence graphs, for the two cases,

are shown in Figure A.1; the cross-mapped estimation skill is seen to converge for data of

this length by visual inspection.

Figure 2.4: Comparison of the PLV and CCM network results for the a) one-way coupling
case and b) two-way coupling case. The diagonal is equal to 1 for PLV and 0 for CCM.
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The mean and standard deviation of the similarity metric, over the 1000 simulations, for

various coupling strengths is shown in Figure 2.5. When the coupling is small, the similarity

between the PLV and CCM matrices is approximately 0.9. The lower values are largely due to

the fact that CCM can identify lower coupling or one-way coupling while PLV overestimates

the strength. However, as the strength of both coupling parameters increase, the similarity

metric increases to nearly 1, which is a nearly perfect match between the two matrices.

Overall, the standard deviation is very low. The largest variations occur around the lower

coupling strengths.

Figure 2.5: The mean and standard deviation of the similarity metric, over the 1000 simu-
lations, for different coupling strengths.

2.2.2 Theta EEG Networks

The mean PLV and CCM networks, over 12 participants, are shown in Figure 2.6. The list of

the channels used is located Table A.1 in Appendix A. Both networks exhibit highly similar

patterns. However, the range of the edge weight strength in the CCM network (0.960± 0.026)

is greater than the PLV network (0.936 ± 0.032). A one-tailed t-test showed that the range

of the CCM network is significantly higher than the PLV network (t(22) = 1.97, p = 0.031).
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Figure 2.6: Mean PLV and CCM networks from the resting state EEG dataset. Right,
Midline, and Left correspond to the electrodes in the right hemisphere, midline, and left
hemisphere respectively. The diagonal for PLV and CCM is 1 and 0, respectively.

In addition, Figure 2.7 shows the individual links which are significantly different (p < 0.01)

between the two networks. The number of links where the edge weight of the PLV network

is significantly higher than the CCM network greatly outnumbers the number of links where

CCM is greater than PLV. Therefore, the CCM algorithm can detect nuances in the data,

which we assume is driven by real changes in network strength structures.

EEG Network Characteristics

The PLV and CCM network characteristics at the previously defined densities are shown in

Figure 2.8. For all of the metrics between densities of 0.1 and 0.4, the mean values overlap

nearly perfectly. However, as more edge weights are considered at each density, the means

diverge but are not significantly different from each other when considered in t-test, for any

of the properties. This result indicates that PLV and CCM produce networks with very

similar characteristics.
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Figure 2.7: The circular graphs show which links have significant differences between the PLV
and CCM networks. The left graph shows the connections where the CCM edge weights are
significantly stronger than the PLV network. The right graph shows the connections where
the PLV edge weights are significantly stronger than the CCM network. The blue, yellow,
and green dots represent the left, midline, and right hemisphere, respectively. The black and
red lines indicate the intra-hemispheric and inter-hemispheric links, respectively.

Figure 2.8: The mean and standard deviation of the EEG network characteristics at different
network densities.
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EEG Network Similarity

In order to statistically assess the agreement between the PLV and CCM networks, we

computed the similarity metric for the 12 participants. A percentage of the nodes in the

CCM matrix are shuffled, 100 times independently, in the control cases, and the mean of

those values are used. The quantiles of the mean similarity metric, for the six cases, are shown

in Figure 2.9. The results of the one-way ANOVA (F(5,66) = 50.9, p < 0.0001) indicates

that the original networks (0% shuffled) are significantly more similar when compared to the

other randomly shuffled cases. Therefore, based on the results in Figure 2.7 and Figure 2.8,

the PLV and the CCM algorithms produce networks with very small differences and this

similarity is above a baseline noise value.

Figure 2.9: The similarity metric for the EEG data and the control conditions with varying
percentages of network nodes scrambled. For each non-zero percentage of re-ordered nodes,
the average of 100 random permutations of node labels, per each of the 12 participants, are
generated for each designated percent of nodes re-ordered. The box and whisker plots show
for the results. Conditions marked with different letters, shown on the right vertical axis of
the figure, are significantly different.

2.2.3 fMRI Networks

Figure 2.10 shows the mean networks computed using PLV and CCM. The list of the ROIs

used is located in Table A.2 in Appendix A. Again, both algorithms produced networks with

very similar patterns. Similar to the EEG networks, the range of the edge weights in the

CCM network (0.908 ± 0.045) is larger than the PLV network (0.884 ± 0.061). A one-
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tailed t-test showed that, consistent with the EEG results, the range of the CCM network

is significantly larger than the PLV network (t(98) = 2.19, p = 0.015). Also, Figure 2.11

shows the specific links between nodes which are significantly different (p < 0.01) between

the PLV and CCM networks. As opposed to EEG results, for the fMRI data, the PLV edge

connection strengths are always significantly higher than the CCM network. Consequently,

only one graph is shown. Overall, similar to the results observed in the EEG data, the CCM

algorithm can detect nuances in the fMRI data better than PLV.

Figure 2.10: Mean resting state fMRI PLV and CCM networks. Right, ML, and Left corre-
spond to the ROIs in the right hemisphere, midline, and left hemisphere respectively. The
diagonal for PLV and CCM is 1 and 0, respectively.

fMRI Network Characteristics

The characteristics of the PLV and CCM networks at the defined densities are shown in

Figure 2.12. At all of the density values, the mean network characteristic values for CCM

and PLV overlap more than is seen with the EEG data. At each network density, none of

the network properties are significantly different from each other when considered in t-test.

Again, this result indicates that the network characteristics are very similar for both the

PLV and CCM algorithms.
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Figure 2.11: The circular graph shows the connections where the PLV edge weights are
significantly stronger than the CCM network. The blue, yellow, and green dots represent
the left, midline, and right hemisphere, respectively. The black and red lines indicate the
intra-hemispheric and inter-hemispheric links, respectively.

Figure 2.12: The mean and standard deviation of the fMRI network characteristics at dif-
ferent network densities.
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fMRI Network Similarity

The similarity metric, between the PLV and CCM networks, is computed for the 50 par-

ticipants. The control cases shuffle a percentage of nodes in the CCM matrix, 100 times

independently, and the mean of those values are used. Figure 2.13 shows the quantiles of

the mean similarity metrics for the six cases. In line with the EEG results, the results of

the one-way ANOVA (F(5, 294) = 68.4, p < 0.0001) indicates that the original networks

(0% shuffled) are significantly more similar than the other shuffled cases. Therefore, based

on the results in Figures 2.11 and 2.12, we conclude that the PLV and the CCM algorithms

produce networks with very small differences.

Figure 2.13: The similarity metric for the fMRI data and the control conditions with varying
percentages of network nodes scrambled. For each non-zero percentage of re-ordered nodes,
the average of 100 random permutations of node labels, per each of the 50 participants, are
generated for each designated percent of nodes re-ordered. The box and whisker plots show
for the results. Conditions marked with different letters, shown on the right vertical axis of
the figure, are significantly different.

2.3 Discussion

The networks derived by the PLV and CCM algorithms provide very similar

information. The PLV and CCM algorithms quantify the synchronization between two time

series responses using very different methodologies. However, for the toy synchronization

dataset and the neuroimaging datasets, the algorithms produced similar results overall.
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In the toy dataset, the minimum similarity metric value between the PLV and CCM networks,

across 1000 simulations, is 0.9 out of a maximum value of 1, as shown in Figure 2.5. In these

simulations, we can see that CCM is able to pick up on one-way or low coupling strengths

better than PLV. However, as the coupling strength increased, the similarity between the

two responses is nearly identical.

For the EEG and fMRI resting state data, the networks derived by both PLV and CCM

provide nearly identical information, as demonstrated by qualitatively comparing patterns

of the networks illustrated in Figures 2.6 and 2.10. However, the range of the edge weights

is significantly higher in CCM than in PLV, which is consistent with the results observed

in the toy dataset that CCM is able to pick up on one-way or low coupling strengths bet-

ter. In addition, Figures 2.7 and 2.11 corroborate those findings by showing that the edge

weights, for particular links, in the CCM network is significantly less than the PLV network.

Remarkably, though the CCM approach can detect asymmetric coupling between sources,

the data-derived connectivity structures appear to show that symmetric coupling strengths

are present in both the EEG and fMRI datasets, given the high similarity between the PLV

and CCM connectivity matrices. This suggests that at rest, the brain may recruit reciprocal

connections or at least that these reciprocal processes dominate the observable data features

for these modalities. This in turn suggests that functional connectivity indices may indeed

be appropriate and an adequate representation when studying resting state dynamics.

Overall, the differences between the PLV and CCM network characteristics, for both EEG

(Figure 2.8) and fMRI (Figure 2.12) data, are insignificant at all network density values.

Furthermore, the similarity between the computed CCM and PLV networks for the EEG

(Figure 2.9) and fMRI (Figure 2.13) data is computed for six different cases with different

percentages of the nodes that are re-ordered. The mean rate of decay of the similarity metric

is shallower for the fMRI data than observed in the EEG data. This suggests that the fMRI
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network has finer and more distributed structures than the EEG networks, since increasing

the reshuffling is not as detrimental to the similarity metric. However, in both datasets,

the similarity between the original computed networks (0% nodes re-ordered) is significantly

higher than all of the other cases with the shuffled nodes. Therefore, based on these results,

we can conclude that the PLV and CCM algorithms are consistent methods for network

computation. However, both algorithms have particular advantages over the other.

Type 1 error is reduced in networks computed using the CCM algorithm. For

off-line analysis of neuroimaging data, CCM is potentially a better choice than PLV. Since

CCM is model-free, no initial assumptions regarding synchronization are introduced into

the network computation. With CCM, Type 1 error is reduced in the network computation

because it can more accurately capture the low connections better than PLV. Therefore,

the risk of finding falsely high connections is reduced. This may be important to consider

when studying patient data where subtle differences in network connectivity structures may

emerge more reliably using the CCM approach. In addition, since the output of CCM is

not symmetric, unlike PLV, it is potentially a better choice for analyses that are looking at

causal, or directed, influences. However, CCM is much more computationally intensive and

requires a significantly longer time to run than PLV, as shown in Table 2.1.

The PLV algorithm produces good network approximations for applications re-

quiring fast network identification. Currently, the need for on-line neuroimaging data

analysis is increasing for applications such as brain-computer interfaces and therapeutic sys-

tems. For such analyses, the ability to identify the network and quantify the connection

strength needs to be done quickly. The close correspondence between the CCM and PLV

networks validates the use of PLV as a metric of connectivity between brain regions. There-

fore, PLV is a viable metric for computing the network strengths to be used as the feedback
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signal in a closed-loop control system.

In conclusion, we found that the network computed using both the CCM and PLV algorithms

produced comparable results. The characteristics of both the networks follow a very similar

trend for the EEG and fMRI data. In addition, the similarity between the two networks

is highly significant when compared to control cases where the nodes of the network are

shuffled. However, a few key differences do exist in the results between the two methods.

PLV is unable to capture low or one-way connection strengths as well as CCM. As a result, for

off-line analysis, CCM is potentially the preferred metric because it is able to more accurately

capture the directional synchronization of the network. However, PLV is a fast metric to

compute which makes it ideal for on-line network identification and as a feedback signal

within a closed-loop control system since it is an excellent approximation of the network

computed with CCM.



Chapter 3

Visuospatial Working Memory and

Binaural Beats

Beauchene C., Abaid N., Moran R., Diana R.A., Leonessa A., The Effect of

Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.

PloS One 11.11 (2016): e0166630.

Binaural beats utilize a phenomenon that occurs within the cortex when two different fre-

quencies are presented separately to each ear. This procedure produces a third phantom

binaural beat, whose frequency is equal to the difference of the two presented tones and

which can be manipulated for non-invasive brain stimulation. The effects of binaural beats

on working memory, the system in control of temporary retention and online organization of

thoughts for successful goal directed behavior, have not been well studied. In this chapter,

we determined the effects of different acoustic stimulation conditions on participant response

accuracy and cortical network topology, as measured by EEG recordings, during a visuospa-

tial working memory task. Three acoustic stimulation control conditions and three binaural

beat stimulation conditions are used: None, Pure Tone, Classical Music, 5Hz binaural beats,

10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural

beats during a visuospatial working memory task not only increased the response accuracy,

but also modified the strengths of the cortical networks during the task. The three audi-

tory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based

45
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on graphical network analyses, the cortical activity during 15Hz binaural beats produced

networks characteristic of high information transfer with consistent connection strengths

throughout the visuospatial working memory task.

3.1 Materials and Methods

3.1.1 Participants

Twenty-eight healthy adults (12 women, 16 men) aged 19 to 46 yr (mean 27.6 yr) participated

in this study. All participants are informed about the task to be completed and provided

written consent. The protocols in this study are approved by the Virginia Tech Institutional

Review Board. All participants are tested for color blindness and corrected-to-normal vision.

In addition, participants self-evaluated their hearing using guidelines from the American

Speech-Language-Hearing Association. None of the participants reported any history of

neurological disorders or hearing problems.

3.1.2 Auditory Stimulus

A battery of acoustic stimulation conditions are tested during the task. The three control

conditions are 1) No Sound, 2) Pure Tone (R: 240Hz, L: 240Hz), and 3) Classical Music

(Vivaldi - Spring). The three experimental conditions are 1) 5Hz Binaural Beat (R: 240Hz,

L: 245Hz), 2) 10Hz Binaural Beat (R: 240Hz, L: 250Hz), and 3) 15Hz Binaural Beat (R:

240Hz, L: 255Hz). R and L indicate the frequency of the tones in the right and left ear

respectively. The experimental binaural beats, 5Hz, 10Hz, and 15Hz, are chosen to represent

the theta, alpha, and beta bands, respectively. Figure 1.6b shows an example of the 15Hz

binaural beat. The tones are created in Matlab and presented to the participants using
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stereo headphones (MDR-NC7, Sony). Before the start of the experiment the volume of the

auditory stimuli are set by the participants.

3.1.3 EEG Recordings

A 16 gold cup passive electrode EEG system (OpenBCI, Inc., New York, NY) interfaced

with LabVIEW is used to record the data at a sampling frequency of 128Hz. The locations

of the electrode channels are Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, P3, P4, O1, O2, Fz,

Cz, which are placed using the 10-20 system [120]. The reference and ground electrodes are

placed on the ear lobes. Electrodes are prepared with Ten20 EEG conductive paste (Weaver

and Co., Aurora, CO) and electrode impedances are verified < 5 kΩ prior to data collection.

The testing took place in a quiet, dimly lit room.

3.1.4 Visuospatial Task

The working memory task selected for this experiment is the delayed match-to-sample visu-

ospatial task [40]. Figure 1.3a shows a match and no match trial. After encoding an initial

image, the subject is instructed to retain the image in the absence of continuing input during

working memory maintenance. During the retrieval process, the subject is asked to compare

the retained and current image and to indicate whether they matched. Capacity, the limit

on the ‘load’ that can be actively maintained, is calculated as KC = C(H − F ), where C

is the load, H is the hit rate, and F is the false alarm rate. The hit rate is the percentage

of correctly identified matches, and the false alarm rate is the percentage of non-matches

identified as matches [40]. Thus, capacity measures how accurately the participants can

identify correct matches scaled by the number of targets in each image.

The participants are seated comfortably in front of a computer monitor which presented the
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task. Two clearly marked buttons on the keyboard allowed the participant to indicate a

match (left arrow) or a no match (right arrow) with their right hand. Before the start of

the experiment, an initial load titration test is completed and involved an example practice

round (one block of a 2-load task) and then proceeded to increasingly difficult loads (one

block each of 3-, 4-, and 5-load versions of the task). The titrated load for the experimental

task is determined by finding the load that produced the maximum capacity estimate for

each individual participant. If two of the loads resulted in the same capacity, then the load

with the highest hit rate is chosen.

After EEG preparations, the participant performed the experimental task at the load deter-

mined by the initial titration for 30 minutes. Every 5 minutes, the sound playing though the

stereo headphones would change to one of the six different acoustic stimulation conditions. In

order to minimize bias, all trials and all conditions are randomized over all participants. The

task is presented using a custom script written with the Cogent Graphics Matlab toolbox.

3.1.5 Behavioral Data Processing

The recorded behavioral data is processed for analysis using a custom Matlab script. First,

trials on which the participant did not respond or pressed a non-target key are discarded

(less than 5%). In order to effectively assess improvement due to oscillatory synchrony in

the brain, it is important that each participant be tested at the limit of their individual

working memory capacity. Therefore, the metrics used to compare behavior across acoustic

stimulation conditions are ∆ Accuracy and reaction time. Accuracy is defined as the number

of correct trials both matches (Hit) and non-matches (Correct Rejection) divided by the total

number of trials. ∆ Accuracy is the difference between the accuracy at the end (3.5 – 5 mins)

as compared to the beginning (0 – 1.5 mins) of the acoustic stimulation condition. Reaction
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time is the amount of time between when the target image appeared on the screen and when

the participant hit a response button.

3.1.6 EEG Data Processing

The raw EEG data is preprocessed using EEGlab [104]. First, the data are bandpassed

filtered between 0.5Hz and 50Hz to remove drift and the 60Hz power line noise. Then, the

filtered EEG is re-referenced to the average. Afterwards, the maintenance (125 ms – 4125 ms,

which corresponded to the time when no visuospatial array is present on the screen between

the sample and probe stimuli) and retrieval (4125 ms – 6125 ms) epochs are extracted.

The retrieval epoch length remained constant even if the participant responded before the

end of the 2 second interval. Finally, the baseline is removed (0-200 ms before stimulus

presentation). Only correct trials (i.e. a Hit or Correct Rejection) are used. Epochs are

inspected by hand for artifacts from eye blinks, movement, or other sources and are removed.

The rejection rate is less than 5%.

Given that the goal is to analyze the overall brain configuration during the different acoustic

stimulation conditions, regional links are determined by averaging the connections between

the clusters of electrodes over the frontal, temporal, parietal, and occipital lobes. It should

be noted that regions, in this context, refers to the average of the surface sites over the

different cortices. All of the conditions are normalized against the No Sound results to show

the changes in link strengths.

3.1.7 Network Construction and Analysis

The processed EEG signals are filtered again, using EEGlab, into the four common frequency

bands: theta (4Hz – 8Hz), alpha (8Hz - 12Hz), beta (12Hz – 25Hz), and gamma (25Hz –
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40Hz) [4]. These filtered signals are then used to compute the time-frequency synchronization

measure between channels. The time-frequency synchronization measure is PLV which is

previously defined in section 2.1.3 in Equations 2.3 and 2.4. The graphical networks are

constructed using the channels as the nodes and the time-frequency synchronization measure

as the edge weights. Separate networks are created for the maintenance and retrieval epochs

and the four different frequency bands.

Graphical Network Measures.Quantifying characteristics of the functional networks de-

rived from neuroimaging data can be achieved using graphical network metrics [86, 121].

The graphical network is undirected and weighted and is constructed using the electrode

channels as the nodes (V = {1, ..., n}) and the PLV connection strength as the undirected

edges (E = {(i, j) : ∃ an edge from i to j}). The network is undirected and weighted, and

can be defined as an adjacency matrix, A, made up of aij elements and a edge weight ma-

trix, W , made up of wij elements. The adjacency matrix has aij = 1 if (i, j) ∈ E and

0 otherwise. The elements of the edge weight matrix are wij = PLVij with the property

that 0 ≤ wij = wji ≤ 1 for i, j = 1, ..., n, i 6= j. Note that both A and W are symmetric.

The networks are analyzed using three common metrics: degree (Equation 2.8), cluster-

ing coefficient(Equation 2.9), and betweenness centrality(Equation 2.10). These metrics are

computed using the Brain Connectivity Toolbox (BCT) in Matlab.

Connectivity Ratio. In addition to the standard graphical network measures, a new

metric, the connectivity ratio (CR), is defined to investigate the differences between the

maintenance and retrieval networks. The 16 x 16 PLV matrices are averaged over all epochs

for maintenance and retrieval separately, and the two average matrices which result are given

by PLVRetrieval and PLVMaintenance, respectively. To compute the CR, each the elements of

the PLV retrieval matrix are is divided by the corresponding maintenance connection values

elementwise and the resulting matrix is defined as CR. This metric provides a method of
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combining the two graphs into a single graph while maintaining valuable information about

the continuity of the strength between them. Based on this definition, the lower the CR

value the smaller the change in connection strengths between the maintenance and retrieval

networks.

3.1.8 Statistical Methods

The statistical software JMP is used to analyze both the behavioral and EEG data. Multiple

ANOVAs are completed to analyze the behavioral response data and the network structures.

Henceforward, CONDITION refers to the six acoustic stimulation conditions: None, Pure

Tone, Classical Music, 5Hz BB, 10Hz BB, and 15Hz BB. BAND refers to the frequency

band: theta, alpha, beta, and gamma. CHANNELS refers to the 16 individual channels of

recorded EEG data. LINK refers to the Frontal – Temporal (F – T), Frontal – Parietal (F –

P), Frontal – Occipital (F – O), Parietal – Occipital (P – O), Parietal – Temporal (P – T),

and Temporal – Occipital (T – O) connections. The post hoc test chosen is the Tukey HSD,

which is used to evaluate pairwise comparisons on the marginal means. The familywise error

rate is kept at a maximum of 0.05.

For the behavioral data, the original dataset (N = 28) is bootstrapped 100 times. This

number is chosen so it is on the same order of magnitude as the number of EEG data

samples. An alpha level of 0.01 is chosen since all statistical analyses are completed on the

bootstrapped behavioral dataset. In addition, the regional links are bootstrapped 100 times

due to the large standard deviation of the dataset, and the alpha level is set to 0.0001, to be

conservative.

Finally, ordinary least squares (OLS) regression is used to identify key metrics in understand-

ing the relationship between the EEG and the behavioral data. The dependent variable is the
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∆ Accuracy. The independent variables included the maintenance and retrieval responses

for degree, clustering coefficient, betweenness centrality, the regional link strengths, and the

connectivity ratio. Each variable is bootstrapped 10,000 times so that the variation between

the regressors and dependent variable could be accounted for. The regression is completed

on the bootstrapped dataset. A correlation analysis determined that there is a high degree

of multicollinearity between each of these metrics. The correlation coefficient, r, for each

pair is either strongly positive (yellow) or negative (blue). The high multicollinearity means

that adding more than one parameter to the regression would be both redundant and in-

significant, since all parameters would predict similar outputs. Therefore, multiple linear

regression models and linear mixed models would not be appropriate for this analysis. In-

stead, each metric is evaluated separately, using OLS regression, to determine its ability to

describe the recorded ∆ Accuracy. The dataset, including the behavioral responses and the

PLV connectivity networks, have been made publicly available [122].

3.2 Results

3.2.1 Working Memory Task Performance

A one-way ANOVA showed that the effect of CONDITION on the ∆ Accuracy is signifi-

cant (F(5,594) = 67.184, p < 0.0001). Post hoc pairwise analyses are shown in Figure 3.1.

Participants’ performance during the 15Hz BB is significantly more accurate over time than

all other conditions. It is the only auditory stimulation condition that produced a positive

change in accuracy over 5 minutes. All other acoustic stimulation conditions produce nega-

tive ∆ Accuracy. However, no significant change occurred in the participants’ reaction time

when compared in an ANOVA using CONDITION (F(5,594) = 0.194, p = 0.965).
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Figure 3.1: ∆ Accuracy. Conditions marked with different letters are significantly different.

3.2.2 Connectivity Networks

The first one-way ANOVA examining the EEG data determined that the edge weights of the

networks are significantly different between the maintenance (M = 0.472, SD = 0.037) and

retrieval networks (M = 0.524, SD = 0.035) (F(1,2878) = 1180.243, p < 0.0001). Therefore,

two separate 6 x 4 factorial ANOVAs, for maintenance and retrieval, are completed to

determine the effect of CONDITION and BAND on the network structure. Both ANOVAs

produced similar significant main effects, as shown in Table 3.1. For both maintenance and

retrieval, the main effects of CONDITION and BAND are significant, but their interaction is

not significant. Post hoc analyses revealed that the theta band had the largest activations in

both the maintenance and retrieval segments (p < 0.0001). No significant effects are found

in the other frequency bands. Henceforth, only the theta band will be examined for the rest

of this analysis. Figure 3.2 shows the average PLV networks for the six conditions during

both maintenance and retrieval as built by the EEG signal in the theta band.
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Figure 3.2: Theta band PLV connectivity network weight matrices. For each weight matrix,
the diagonal is always equal to one.

Table 3.1: Results from the factorial ANOVA comparing Condition and Frequency Band.

Maintenance
Metric F-value p-value

CONDITION F(5,5736) = 53.1 p < 0.0001
BAND F(3,5736) = 199.1 p < 0.0001

CONDITION × BAND F(15,5736) = 0.9 p = 0.497

Retrieval
Metric F-value p-value

CONDITION F(5,5736) = 53.9 p < 0.0001
BAND F(3,5736) = 733.1 p < 0.0001

CONDITION × BAND F(15,5736) = 1.1 p = 0.266
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Connectivity Ratio. The CR, computed from the weight matrices in Figure 3.2, are

analyzed for a significant effect due to CONDITION using a one-way ANOVA. Based on the

results, the acoustic stimulation type had a significant effect on the CR (F(5,1434) = 39.938,

p < 0.0001). Significant post hoc pairwise analyses are represented by differing letters in

Figure 3.3. The CRs resulting from the 10Hz BB and 15Hz BB conditions are significantly

higher and lower, respectively, than all other conditions. This indicates that the change

in connection strengths between the maintenance and retrieval networks is smallest for the

15Hz BB condition and largest for the 10Hz BB condition.

Figure 3.3: Connectivity Ratio for the six acoustic stimulation conditions. Conditions
marked with different letters are significantly different.

Graphical Network Measures. To gain a more in-depth evaluation of the network struc-

ture in the theta band, two separate two-way ANOVAs (on the maintenance and retrieval

segments) are constructed to compare the effect of CONDITION and CHANNELS on de-

gree (Figure 3.4), clustering coefficient (Figure 3.5), and betweenness centrality (Figure 3.6).

Table 3.2 shows the F-values from the ANOVAs. All p-values are less than 0.0001. For all

network measures, the values from the two hemispheres are generally symmetric.
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Maintenance
Metric Channel Condition

D F (15, 69536) = 57.674 F (5, 69536) = 120.473
CC F (15, 69536) = 23.691 F (5, 69536) = 147.065
BC F (15, 69536) = 143.793 F (5, 69536) = 11.548

Retrieval
Metric Channel Condition

D F (15, 69536) = 34.858 F (5, 69536) = 58.719
CC F (15, 69536) = 15.058 F (5, 69536) = 73.088
BC F (15, 69536) = 37.452 F (5, 69536) = 5.662

Table 3.2: Two-way ANOVA results comparing CONDITION and CHANNELS.

Figure 3.4: Mean degree of EEG nodes in cortical networks for all six acoustic stimulation
conditions. Bars indicate standard error.

Figure 3.7 shows a comparison of the three metrics averaged over all the channels for each

time segment. The significances are determined from the two-way ANOVAs described pre-

viously. For degree and clustering coefficient, the network measure is generally lower and

higher for the 10Hz BB and 15Hz BB conditions, respectively, compared to all other condi-

tions. Conversely, the betweenness centrality is higher and lower for the 10Hz and 15Hz BB

conditions, respectively, compared to all other conditions.
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Figure 3.5: Mean clustering coefficient of EEG nodes in cortical networks for all six acoustic
stimulation conditions. Bars indicate standard error.

Figure 3.6: Mean betweenness centrality of EEG nodes in cortical networks for all six acoustic
stimulation conditions. Bars indicate standard error.

Regional Link Strength

A 6 x 6 factorial ANOVA is constructed to compare the effect of LINK and CONDITION on

the PLV link strengths for both maintenance and retrieval segments. Figure 3.8 shows the

link strengths for both maintenance and retrieval. For both the maintenance and retrieval

networks, the main effects of CONDITION, LINK and the interaction between CONDITION

× LINK are significant, as shown in Table 3.3. Notably, the 15Hz BB connection strength

values are significantly higher than all other conditions in all connections except for the

Temporal – Occipital link during maintenance. This indicates that the 15Hz BB stimulus

increased connectivity between the frontal lobe and all other brain regions as well as between



58 Chapter 3. Visuospatial Working Memory and Binaural Beats

Figure 3.7: Comparison of degree, clustering coefficient, and betweeness centrality for each
condition. Conditions marked with different letters are significantly different. The bars show
standard error.

the parietal lobe and all other brain regions. The connectivity pattern during retrieval are

less clear, although the 15Hz BB link strength values are one of the highest conditions.

Thus the effect of 15Hz BB on communication between brain regions is higher, and more

distinguishable from other auditory stimuli, during maintenance than it is during retrieval

of visuospatial stimuli.

Maintenance
Metric F-value p-value

CONDITION F (5, 1764) = 2.09E+3 p < 0.0001
LINK F (5, 1764) = 1.17E+4 p < 0.0001

CONDITION × LINK F(25,1764) = 48.2 p < 0.0001

Retrieval
Metric F-value p-value

CONDITION F (5, 1764) = 1.05E+3 p < 0.0001
LINK F (5, 1764) = 8.04E+3 p < 0.0001

CONDITION × LINK F(25,1764) = 35.2 p < 0.0001

Table 3.3: Results from the factorial ANOVA comparing Condition and Regional Link
Strength.
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Figure 3.8: Regional Link Strengths. Each condition is normalized against None. The
significances are shown for each link individually. Conditions marked with different letters
are significantly different.

3.2.3 Correlations Between Behavior and Network Topology

Table 3.4 displays, in order of predictive ability, the coefficient of determination (R2), inter-

cept, and slope for each metric from the individual OLS regressions. All the metrics, except

for betweeness centrality and CR, have a positive correlation with the behavioral changes.

Based on the magnitude of the R2 values, the metrics computed during maintenance gener-

ally describe the change in behavioral changes better than those during retrieval.

3.3 Discussion

15Hz binaural beats increases accuracy in a visuospatial working memory task.

Listening to 15Hz BB positively influenced the participants’ accuracy during the course of

the 5 minutes by 3%. During all other conditions, the participants’ accuracy decreased

by 1% – 3%. No Sound and 5Hz BB produced a smaller decrease in accuracy while the
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Metric R2 Intercept Slope
CR 0.230 0.836 -0.737

(P−O)M 0.210 -0.519 1.099
(F− P)M 0.185 -0.430 1.062
(F−O)M 0.171 -0.445 1.097
(P− T)M 0.145 -0.261 0.689

DM 0.134 -0.338 0.057
CCM 0.134 -0.301 0.817
BCM 0.128 0.305 -0.071

(F− T)M 0.122 -0.302 0.768
(F− P)R 0.088 -0.527 1.164
(T−O)M 0.081 -0.304 0.709
(P−O)R 0.079 -0.442 0.858
(P− T)R 0.076 -0.288 0.653
(F− T)R 0.051 -0.325 0.720

DR 0.047 -0.311 0.046
CCR 0.045 -0.274 0.644

(F−O)R 0.037 -0.340 0.741
(T−O)R 0.008 -0.130 0.258

BCR 0.006 0.077 -0.022

Table 3.4: OLS Regression. M: Maintenance, R: Retrieval

Pure Tone, Classical Music, and 10Hz BB produced the largest decreases. This increase in

performance of the working memory task can be explained by noting that 15Hz BB produces

high synchronization within the auditory cortex[75] and falls within the beta band which is

often associated with active concentration.

Acoustic stimulation significantly affects the relative network connections during

maintenance and retrieval in a visuospatial working memory task. Based on the

results in Figure 3.3, 15Hz BB induces the smallest relative change in network connection

strengths between the maintenance and retrieval portions of the working memory trials.

Therefore, the networks are better preserved throughout the working memory task. Working

memory maintenance is thought to be driven by reverberatory loops that allow sustained

neuronal firing and thereby allow cognitive representations to be held in consciousness [123].
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Consequently, sustained neural activity in appropriate networks is the hallmark of working

memory task success, as seen in Table 3.4. The CR negatively correlates with the change in

accuracy during the working memory task and has the highest R2 value of 0.23. Therefore, as

the accuracy of the performance increases, the relative differences in the network activation

between maintenance and retrieval decrease. To our knowledge, this paper is the first to

demonstrate that 15Hz BB improves the consistency of relative connection strengths better

than the other acoustic stimulation conditions and to use the CR to predict working memory

task performance.

Acoustic stimulation consistently impacts regional linkages during both mainte-

nance and retrieval. The strengths of the regional connections offer some insight into the

overall functional connectivity of the brain during the working memory task. In previous

studies, the interactions between the parietal and prefrontal cortices have been strongly asso-

ciated with working memory performance [43, 44]. As shown in Table 3.4, the frontoparietal

connection for maintenance has a higher correlation (R2 = 0.185) with the performance

than during retrieval (R2 = 0.088). Given the increase in working memory performance

during exposure to 15Hz BB, we might infer that frontoparietal connectivity is more impor-

tant during visuospatial working memory maintenance than during retrieval. This inference

is consistent with the finding that parietal cortex is involved in storage of visuospatial in-

formation [124, 125] whereas the prefrontal cortex itself is important for executive control

processes such as decisions made during retrieval. In addition, the regional links between P

– O, F – O, and P – T for maintenance are on the same order of magnitude of the R2 value

with the F – P link, as shown in Table 3.4. All of the links have a positive correlation with

the behavior. Therefore, if the link strength increases, then working memory performance is

positively affected as well.

Stimulation condition significantly changes network structures by introducing
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edges that emphasize or de-emphasize the role of certain nodes. As shown in

Figures 3.4 – 3.6, there is a high level of symmetry between the left and right hemispheres

for the degree, clustering coefficient, and betweenness centrality. When the participants are

surveyed after the completion of the session, the majority responded that they remembered

the names of the colors which could account for the left hemisphere activation, which is

associated with verbal processing. In addition, the channels with the highest values are Fp1,

Fp2, F3, F4, P3, P4, O1, and O2 which correspond to the frontal, parietal, and occipital

lobes. The 15Hz BB produces a high cumulative transfer of information over the whole

network and edge weights which are homogeneously distributed. This is evidenced by Figure

3.7, which shows that 15Hz BB has a high degree and clustering coefficient in addition to

a low betweenness centrality value. The low betweenness centrality indicates that all nodes

are of more equal importance in the graph. Conversely, when the degree and clustering

coefficient are low and the betweenness centrality is high, such as 10Hz BB, then the edge

weights are not equally distributed and a few certain nodes are favored in the network. These

data demonstrate that binaural beats significantly changes how edge weights, and therefore

the structures in the network itself, are assigned. These metrics from the EEG data provide

insight into the mechanism driving the behavioral findings that 15Hz BB improved working

memory performance whereas 10Hz BB reduced working memory performance. It seems

that a visuospatial working memory task is well served by increased communication across

brain regions, particularly frontoparietal regions, and by consistency across nodes rather

than increased strength in individual nodes.

In conclusion, listening to 15Hz binaural beats during a visuospatial working memory task

can not only increase the response accuracy but also change the properties of the the cortical

networks supporting task performance. A 3% increase in ∆ Accuracy, over the 5 minutes,

is found in participants who listened to the 15Hz binaural beat. All other acoustic stimula-
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tion conditions produced a negative change. In addition, the best predictor of the working

memory performance is the connectivity ratio (CR), which indicates the relative change

in network connection strengths between the maintenance and retrieval segments. During

15Hz binaural beats, the network characteristics are better preserved from the maintenance

to the retrieval portions of each trial than the other acoustic stimulation conditions. This

similarity in the network likely reflects the participants’ continued maintenance of the vi-

suospatial pattern through the retrieval phase, when they must report the pattern held in

mind. Finally, the 15Hz binaural beats produced the network with the most efficient data

transmission. Therefore, a 15Hz binaural beat can be used to successfully augment working

memory performance.
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Synchronization in activated regions of cortical networks affect the brain’s frequency re-

sponse, which has been associated with a wide range of states and abilities, including memory.

A non-invasive method for manipulating cortical synchronization is binaural beats. Binau-

ral beats take advantage of the brain’s response to two pure tones, delivered independently

to each ear, when those tones have a small frequency mismatch. The mismatch between

the tones is interpreted as a beat frequency, which may act to synchronize cortical oscilla-

tions. Neural synchrony is particularly important for working memory processes, the system

controlling online organization and retention of information for successful goal-directed be-

havior. Therefore, manipulation of synchrony via binaural beats provides a unique window

into working memory and associated connectivity of cortical networks. In this study, we

examined the effects of different acoustic stimulation conditions during an N-back working

memory task, and we measure participant response accuracy and cortical network topology

via EEG recordings. Six acoustic stimulation conditions are used: None, Pure Tone, Classical

Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We determined

64
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that listening to 15Hz binaural beats during an N-Back working memory task increased the

individual participant’s accuracy, modulated the cortical frequency response, and changed

the cortical network connection strengths during the task. Only the 15Hz binaural beats

produced significant change in relative accuracy compared to the None condition. Listening

to 15Hz binaural beats during the N-back task activated salient frequency bands and pro-

duced networks characterized by higher information transfer as compared to other auditory

stimulation conditions.

4.1 Materials and Methods

4.1.1 Participants

Thirty-four healthy adults (15 women, 19 men) aged 18 to 46 yr (mean 27.1 yr) participated

in this study. Each participant provided written consent after being familiarized with the ex-

perimental protocols, which are approved by the Virginia Tech Institutional Review Board.

Before the start of the task, participants are tested for corrected-to-normal vision and evalu-

ated their hearing using the American Speech-Language-Hearing Association guidelines. No

participants reported any previous neurological or hearing problems.

4.1.2 Auditory Stimulus

Multiple acoustic stimulation conditions are evaluated during the course of the session. The

control conditions included 1) None, 2) Pure Tone (R: 240Hz, L: 240Hz), and 3) Classical

Music (Vivaldi - Spring). The experimental conditions included 1) 5Hz Binaural Beat (R:

240Hz, L: 245Hz), 2) 10Hz Binaural Beat (R: 240Hz, L: 250Hz), and 3) 15Hz Binaural Beat

(R: 240Hz, L: 255Hz). The tones presented to the right and left ears are indicated by R
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and L, respectively. The binaural beats, 5Hz, 10Hz, and 15Hz, serve as theta, alpha, and

beta band stimulation, respectively. The tones are created in Matlab. The stimulus volume,

played through stereo headphones (MDR-NC7, Sony), is set by the participants at the start

of the session to a comfortably loud level.

4.1.3 EEG Recordings

The EEG data are recorded using a 16 gold cup passive electrode EEG system (OpenBCI,

Inc., New York, NY) that is interfaced with LabVIEW. The sampling rate is 128Hz. The

chosen 10-20 electrode channel locations [120] are Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3,

C4, P3, P4, O1, O2, Fz, Cz. The ear lobes are used for the reference and ground electrodes.

Prior to data collection, Ten20 EEG conductive paste (Weaver and Co., Aurora, CO) is used

to prepare the electrodes and electrode impedances are verified to be < 5 kΩ.

4.1.4 N-Back Task

Figure 1.3b shows the chosen N-Back verbal working memory task. During the task, each

letter is encoded and the sequence is retained in the working memory. For each letter

presented on the screen, the subject must compare the retained (no longer visible) and

current (visible on-screen) letters and indicate when the current letter on the screen matches

the letter that occurred “N” steps prior. Individual cognitive differences determine the limit

on the ‘load’, or number of letters, that can be successfully maintained and manipulated in

this task. Capacity is computed using KC = C(H− F), where C is the load, H is the hit

rate (percentage of correctly identified matches), and F is the false alarm rate (percentage

of non-matches identified as matches) [40].

Participants completed the N-back test in a quiet, dimly lit room and are seated in front
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of a computer monitor. A custom script written for the Cogent Graphics Matlab toolbox

presented the task. The participant pressed the left arrow or right arrow on the keyboard to

indicate a match or no match, respectively. An initial load titration test is completed, before

starting the experiment, and involved a practice round (one block of a 1-back task) and then

increased in difficulty (one block each of 1-, 2-, and 3-back task). For each participant, the

load used in the experimental task is set by selecting the load which produced the highest

capacity estimate. In the event that two loads produced identical capacity values, the load

with the largest hit rate less than 100% is used. In case the hit rate equaled 100%, the next

highest load is chosen. Each individual is tested at their working memory capacity limit to

assess their improvement due to the acoustic stimulation. Of all the participants, thirty-two

participants completed the task at a load of 1 and two participants at a load of 2.

Following the EEG setup, each participant performed the task at the selected load for thirty

minutes. The sound condition changed every five minutes to one of the six different acoustic

stimulation conditions. The binaural beats began precisely with the first working memory

trial of a block and ended with the final trial. Between each block is a two-minute break.

Over all participants, all trials and sound conditions are randomized to minimize bias.

4.1.5 Behavioral Data Processing and Analysis

A custom Matlab script is used to process the recorded behavioral data. First, trials are

discarded if the participant pressed an incorrect key or didn’t respond in time (less than

5%). The metrics used to assess performance during each acoustic stimulation condition

are accuracy, ranked accuracy, and reaction time. Accuracy is computed by dividing the

number of correct trials, both matches (Hit) and non-matches (Correct Rejection), by the

total number of trials. To identify relative trends in the accuracy results, of each individual
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participant, a new dataset is constructed by ranking the accuracy of the six sound conditions

from 1 (lowest accuracy) to 6 (highest accuracy), for each participant. By ranking each

participant’s accuracy scores, the data is normalized on a standard scale that eliminated

the effect of an individual’s mean accuracy. Reaction time is defined as the time observed

between when the letter appeared on the screen and when the participant pressed a response

button. The statistical software JMP (SAS, Cary, NC) is used to analyze the behavioral data.

The nonparametric Mann-Whitney U statistical test is used since the data (N = 34) is non-

normal. The post hoc test chosen is the Steel-Dwass All Pairs, which is the nonparametric

equivalent to Tukey HSD, and the familywise error rate is kept at a maximum of 0.05. For

the behavioral data, CONDITION refers to all acoustic stimulation conditions: None, Pure

Tone, Classical, 5Hz BB, 10Hz BB, and 15Hz BB.

4.1.6 EEG Data Processing

The EEGlab toolbox in Matlab is used to preprocess the raw EEG data [104]. Initially, the

EEG recordings are bandpass filtered (0.5Hz – 50Hz) to remove drift and the 60Hz power

line noise. Then, the filtered EEG is re-referenced to the average. Two different datasets are

then derived from the preprocessed EEG data.

The first dataset contains the continuous five-minute block of EEG recordings used for a

frequency analysis. First, artifacts are removed using automatic continuous rejection in

EEGlab. Then, independent component analysis (ICA) is used to remove the eye blink

components [105]. The resulting dataset contained approximately five minutes of clean EEG

data, for each condition, for each of the thirty-four participants.

The second dataset contains the epoched EEG used for the graphical network analysis. The

onset (0 ms – 1000 ms, which corresponded to the time when the letter is on the screen)
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epochs are extracted using EEGlab. The onset epoch length remained constant even if the

participant responded before the end of the one-second interval. Finally, the baseline is

removed (0-200 ms before stimulus presentation). Only correct trials (i.e. a Hit or Correct

Rejection) are used. Epochs with artifacts from eye blinks, movement, or other sources are

removed following manual inspection of the automatically identified artifacts in EEGlab (less

than 5% rejection). The resulting dataset contained approximately 100 epochs of clean EEG

data, for each of the thirty-four participants, for each condition.

4.1.7 Graphical Network Construction

The processed epoched EEG signals are filtered again, using EEGlab, to focus on the theta

(4Hz - 8Hz) band. The time-frequency synchronization measure between channels is com-

puted using the processed EEG signals. The graphical networks are comprised of nodes (the

channels) and the edge weights (time-frequency synchronization measure). A measure of

synchronization used in the literature is the Phase Locking Value (PLV) which is previously

defined in section 2.1.3 in Equations 2.3 and 2.4.

The graphical network is constructed using the electrode channels as the nodes (V =

{1, ..., n}), where n = 16, and the PLV connection strength is associated with the undirected

edges as edge weights (E = {(i, j) : ∃ an edge from i to j}). The network is undirected and

weighted, and can be defined as an adjacency matrix, A, made up of aij elements and a edge

weight matrix, W , made up of wij elements. The adjacency matrix has aij = 1 if (i, j) ∈ E

and 0 otherwise. The elements of the edge weight matrix are wij = PLVij with the property

that 0 ≤ wij = wji ≤ 1 for i, j = 1, ..., n, i 6= j. Note that both A and W are symmetric.

Edge weights in terms of PLV are computed for each epoch and averaged over all epochs to

define the graphical network for each participant.
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4.1.8 EEG Analysis

Three different EEG data analyses are undertaken. First, a frequency analysis determined

the changes in EEG frequency band power. Second, a graphical network measure analysis

determined the modulation of the nodes in the network. Third, the regional connection

strengths analysis determined the overall changes in the networks. A power analysis con-

ducted for each EEG analysis determined that greater than 1,000 points are necessary for a

power of 0.8 and α = 0.05. Therefore, we chose to bootstrap the results of each analysis 100

times. The post hoc test chosen is the Tukey HSD, and the familywise error rate is kept at

a maximum of 0.05.

Frequency Band Analysis. For each condition, for each participant, the theta (4Hz –

8Hz), alpha (8Hz – 12Hz), beta (12Hz – 25Hz), and gamma (25Hz – 40Hz) band FFT power

is computed, for each channel. To determine the effect of the stimulation on the frequency

response of the EEG, multiple t-tests are computed comparing, for each channel, the None

condition against each of the binaural beat stimuli conditions (5Hz, 10Hz, 15Hz). In addition,

a two-way factorial ANOVA is used to determine the effect of the experimental binaural beat

stimulation CONDITION (None, 5Hz BB, 10Hz BB, 15Hz BB) and BAND (Theta, Alpha,

Beta, Gamma) on the mean FFT power for each channel. Furthermore, looking specifically

at Fp1, an electrode placed over a key region involved with verbal working memory, a one-

way ANOVA is performed to analyze the effect of CONDITION on the bootstrapped FFT

band power.

Graphical Network Measure Analysis. Functional networks built from neuroimaging

data can be quantified using traditional graphical network metrics [86, 121]. The networks

are analyzed using the degree metric (Equation 2.8) computed by the Brain Connectivity

Toolbox (BCT) in Matlab. Multiple ANOVAs are completed to analyze the bootstrapped
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degree at the channel and hemispheric level. For this analysis, “regions” refers to the average

of the surface sites over the different cortices. We define three bilateral REGIONS to identify

overall connectivity: Frontal (F), Centro-temporal (CT), and Parieto-occipital (PO). The

Central and Temporal, and Parietal and Occipital channels are combined since the total

number of electrodes is low. As an example, the left hemisphere regions are Frontal (Fp1,

F7, and F3), Centro-temporal (C3 and T3), and Parieto-occipital (P3 and O1). For the

EEG data, CONDITION refers only to the None and 15Hz BB conditions (which will be

explained in section 3.3.2). CHANNELS refers to the 16 individual channels of recorded

EEG data. HEMISPHERE refers to the electrodes in the left or right hemispheres.

Regional Connection Strength Analysis. The effect of CONDITION (None and 15Hz

BB) on the regional connection (LINK) bootstrapped PLV strength is evaluated in a two-

way ANOVA. LINK refers to the three anterior - posterior connections (F – CT, F – PO,

and CT – PO) for each hemisphere and three bilateral connections (F – F, CT – CT, and

PO – PO). The regional links are determined by averaging the regional connections between

the clusters of electrodes.

4.2 Results

4.2.1 N-Back Task Performance

No significant changes due to CONDITION are found for the participants’ reaction time

(χ2(5, 34) = 2.63, p = 0.757) nor for the raw accuracy scores (χ2(5, 34) = 0.59, p = 0.968)

when compared in a nonparametric Mann-Whitney U statistical test. Table 4.1 shows the

mean accuracy and standard deviation for each condition. Overall, the mean values for the

experimental conditions are higher than the control conditions but the differences are not
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statistically significant due to high variability. The large variance is likely due to the different

load levels or larger age range.

None Pure Classical 5Hz BB 10Hz BB 15Hz BB
Mean 92.95% 92.77% 93.33% 94.39% 93.92% 94.15%
SD 8.08% 11.60% 9.25% 7.04% 7.64% 9.53%

Table 4.1: Average and Standard Deviation of Accuracy

A nonparametric Mann-Whitney U test showed that the effect of CONDITION on the ranked

accuracy is statistically significant (χ2(5, 34) = 15.07, p = 0.0101). Post hoc pairwise anal-

yses are shown in Figure 4.1. The only statistically significant result is that, individually,

participants’ performed significantly better during the 15Hz BB than during the None con-

dition (p = 0.0041). The other conditions are not significantly different from either None or

15Hz BB.

Figure 4.1: Ranked Accuracy for the six acoustic stimulation conditions.
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4.2.2 Frequency Band

The results of the frequency band analysis are shown in Figure 4.2. The uncorrected t-

statistics, comparing the FFT power for the None condition and the three binaural beat

conditions, for each channel, are shown in Figure 4.2A. The results of the two-way factorial

ANOVA determined that there are significant effects of CONDITION (F(3,240) = 15.8, p <

0.0001), and BAND (F(3,240) = 723.0, p < 0.0001) on the mean FFT power but their

interaction is not significant (F(9,240) = 1.8, p = 0.07). Based on Tukey HSD post hoc

analysis, the theta band (p < 0.0001) and 15Hz BB (p < 0.002) are significantly higher over

all other frequency bands and conditions, respectively.

Figure 4.2: A) The uncorrected t-statistic values comparing the FFT power for None against
the binaural stimulation conditions. B) The mean and standard deviation for channel Fp1.
Conditions marked with different letters are significantly different. Bars show standard error.
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In addition, Figure 4.2B shows the FFT power for only the left prefrontal electrode (Fp1).

Four one-way ANOVAs, one for each frequency band, analyzed the effect of CONDITION on

the bootstrapped FFT power. CONDITION is significant for Theta (F(3,396) = 165.3, p <

0.0001), Alpha (F(3,396) = 165.0, p < 0.0001), Beta (F(3,396) = 133.7, p < 0.0001), and

Gamma (F(3,396)= 230.4, p < 0.0001).

Therefore, based on the behavioral and frequency response results, only the theta band EEG

responses for the None and 15Hz BB conditions are considered for the remaining analysis.

4.2.3 Graphical Network Measure

The mean theta networks, computed over all participants, are shown in Figure 4.3. The

networks show, overall, how the networks modified during stimulation.

Figure 4.3: Mean theta weight matrices for the None and 15Hz BB acoustic stimulation
conditions averaged over all participants.

Specifically looking at the structure of the networks, a two-way ANOVA, shown in Figure

4.4A, is constructed to analyze the effect of CONDITION and CHANNELS on the boot-

strapped degree values of the theta networks computed for each participant. CONDITION

(F(1,3168)= 70.6, p < 0.0001), CHANNELS (F(15,3168)= 153.5, p < 0.0001), and their in-

teraction CONDITION × CHANNELS (F(15,3168)= 3.8, p < 0.0001) are significant. Over-
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all, the degree values are higher for 15Hz BB when compared against None. Figure 4.4B

shows the differences between the two conditions in Figure 3.4A, topographically, for each

channel. The prefrontal, parietal, and occipital channels have the largest positive changes

between conditions.

Figure 4.4: A) Mean degree of nodes in connectivity networks averaged over 100 bootstrapped
samples. Bars show standard error. B) Difference between conditions (15Hz BB - None).

Furthermore, three separate two-way ANOVAs, one for each REGION, are constructed to

determine the effect of CONDITION and HEMISPHERE on degree, and are shown in Figure

4.5. Listed on the graph are the F values from each ANOVA (DOF = 2, NF = 1197, NCT

= 797, and NPO = 797). Generally, the left hemisphere values are higher than the right.

Figure 4.5: Mean degree for each condition across hemispheres averaged over 100 boot-
strapped samples. Conditions marked with different letters are significantly different. Bars
show standard error.
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4.2.4 Regional Connectivity

A 2 × 9 factorial ANOVA is constructed to compare the effect of LINK and CONDITION

on the bootstrapped PLV connection strengths computed from the theta networks from

each participant. The main effects of CONDITION (F(1,1780) = 71.9, p < 0.0001), LINK

(F(8,1780) = 486.4, p < 0.0001), and their interaction CONDITION × LINK (F(8,1780) =

9.31, p < 0.0001) are significant. Figure 4.6 highlights the differences in link strengths of

the networks between those formed when listening to 15Hz BB versus None. Red indicates

that the strength increased during 15Hz BB stimulation, and blue shows a decrease. Regions

connected by a dotted line produced insignificant changes between conditions. All connec-

tions, except for the right centro-temporal to parieto-occipital and interhemispheric centro-

temporal connections, increased when listening to 15Hz BB. Most importantly, the 15Hz BB

produced significant increases in the bilateral frontoparietal network and left hemispheric

connections. Table 4.2 shows mean and standard deviation of the connection strengths over

100 bootstrapped samples, the mean difference between the two conditions, and the results

of the t-tests comparing None to the 15Hz BB for each link.

Figure 4.6: Bootstrapped regional PLV connection strength differences between the None
and 15Hz BB conditions.
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Link None PLV 15Hz BB PLV Difference p-value t-statistic
PO – PO 0.479± 0.019 0.499± 0.016 0.020 < .0001 8.25

F – PO (L) 0.501± 0.027 0.519± 0.024 0.018 < .0001 5.01
F – PO (R) 0.477± 0.016 0.488± 0.014 0.011 < .0001 5.37

CT – PO (L) 0.554± 0.026 0.564± 0.024 0.010 0.005 2.84
F – CT (L) 0.501± 0.024 0.510± 0.023 0.009 0.005 2.82

F – F 0.507± 0.017 0.514± 0.016 0.007 0.006 2.76
CT – PO (R) 0.526± 0.019 0.522± 0.016 -0.004 0.130 -1.52

CT – CT 0.456± 0.019 0.454± 0.018 -0.002 0.416 -0.81
F – CT (R) 0.470± 0.018 0.471± 0.016 0.001 0.777 0.28

Table 4.2: Regional Connections

4.3 Discussion

15Hz binaural beats increases relative accuracy during an N-Back task. Based on

a power analysis, the participant N number is not large enough to determine any significances

in raw accuracy scores. However, the ranked accuracy values, shown in Figure 4.1, produced

the key result that, individually, participants performed significantly better overall when

listening to 15Hz BB than None. Classical Music and Pure Tone produced an insignificant

change from None which is consistent with previous literature [126]. In addition, neither

the 5Hz or 10Hz BB produced significant changes from the None condition. The increase in

performance when listening to 15Hz BB can be potentially explained by noting that 15Hz

BB produced the highest change in the theta band frequency response magnitude, increased

the degree of the network in prefrontal and parietal channels, and increased synchronization

within the frontoparietal network.

15Hz binaural beats impacts EEG frequency response magnitude. As shown in

Figure 4.2, binaural stimulation frequency changes the EEG frequency responses over all

channels. The theta (5Hz) BB stimulation responses show that, overall, the frequency power

is unchanged or decreased when compared to None, except for within the gamma band. The
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alpha (10Hz) and beta (15Hz) binaural stimulation frequencies resulted in similar responses

across the four bands. However, 15Hz BB produces higher power within the theta band in

the left frontal and parietal electrodes. Activation of both regions, within the theta band,

is key to working memory performance. Additionally, over all frequency bands, the 15Hz

BB produced significantly higher power in the left prefrontal electrode (Fp1) than all other

stimulation conditions. Finally, for Fp1, the theta band had the largest change in magnitude

between the 15Hz BB and 10Hz BB. These results are consistent with the role of frontal theta

networks supporting working memory [25, 48].

15Hz binaural beats modifies network structure. As shown in Figure 4.4A, the chan-

nels with the highest degree values, in each hemisphere, correspond to the electrodes over

the frontal and parieto-occipital cortices. This result is reflected in Figure 4.4B and Figure

4.5 which shows that, generally, the frontal and parieto-occipital values are higher than the

centro-temporal results. The results shown in Figure 4.5 agree with [42, 127] that a verbal

working memory task activates both bilateral frontal and parietal regions with additional

regions recruited in the left hemisphere. In addition, as shown in both Figure 4.4 and Figure

4.5, 15Hz BB increases the degree values in both the left and right hemispheres. The network

of brain activity produced when listening to 15Hz BB, has higher global information transfer

than does the baseline network produced by only task performance (no auditory stimulation).

The increase in information transfer could explain the change in the behavioral data.

15Hz binaural beats changes regional linkages. 15Hz binaural beats produces the

largest change in four links, shown in Figure 4.6: PO – PO, bilateral F – PO, and left CT –

PO. Of all the links, the bilateral parieto-occipital connectivity strength increased the most

when compared to the None condition. The parietal cortices are involved with early visual

signal processing[128] and visual attention feedback [129]. The letters of the N-Back task

are encoded as both visuospatial (right hemisphere) and verbal (left hemisphere) objects.
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In addition, the bilateral frontoparietal network connectivity strength increased significantly

when listening to the 15Hz BB. In previous studies, the interactions between the parietal and

prefrontal cortices have been strongly associated with working memory performance [43, 44].

Also, the left hemisphere parieto-occipital to centro-temporal link strength increased. The

connection between these two regions is associated with verbal working memory in the form

of phonological storage and subvocal rehearsal of the information [39, 130]. Synthesizing

these results, we see that the 15Hz BB influences the most important links used within the

working memory network which could explain the benefited performance we observe.

In conclusion, this study demonstrates that listening to 15Hz binaural beats can affect cor-

tical network properties during a verbal working memory task. The network produced when

listening to 15Hz binaural beats indicates more information transfer than that produced

when listening to no sound. Also, the frontoparietal bilateral network increased significantly

in connectivity when listening to the 15Hz binaural beats. Furthermore, only the 15Hz bin-

aural beats condition produced significantly more accurate responses, in individuals, when

compared to listening to no sound. The other acoustic stimulation conditions produced no

significant changes. Therefore, these results indicate that 15Hz binaural beats can be used to

change the frequency response and connectivity of cortical networks, and thereby influence

verbal working memory task performance.

Future experiments should focus on determining the nonlinear relationship between the

binaural beat stimuli and the observed cortical activity and behavior. From previous exper-

iments, it has been shown that 40Hz BB produces maximal responses. If 40Hz BB had been

included with the battery of binaural stimulation frequencies tested, then it potentially might

have produced a greater modulation of network characteristics. However, it is unknown if it

would have produced the desired changes in the behavior, which should be explored.



Chapter 5

Comparison of Visuospatial and

Verbal Working Memory Tasks

Beauchene C., Abaid N., Moran R., Diana R.A., Leonessa A., Using non-invasive

brain stimulation to augment working memory. Scientific Reports, under review

Synchronization in cortical networks is necessary for complex cognitive function and can

be influenced through the auditory system using binaural beats. Binaural beats utilize the

brain’s response to two pure tones, with a small frequency mismatch, presented separately to

each ear. The frequency difference is interpreted as a beating frequency that can manipulate

synchrony in connected cortical networks. One such network, the working memory network,

is the system responsible for temporarily holding and processing information and may be

amenable to modulation via binaural beats. The two experiments presented here show that

listening to different sound conditions influenced both participant response accuracy and

cortical connectivity during working memory tasks. Different working memory domains, vi-

suospatial and verbal, are tested in each experiment using a delayed match-to-sample task

and an N-back task, respectively. The six sound conditions used are None, Pure Tone, Clas-

sical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. The recorded

electroencephalography data is used to quantitatively assess the cortical network topology.

The results presented in this chapter are from two recent studies by our group [131, 132].

The objective of these experiments is to quantify the cortical connectivity changes measured

80
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when listening to binaural beats during cognitive tasks. Specifically, both visuospatial and

verbal working memory tasks are chosen because binaural beats activate cortical regions

key to working memory, which in turn, may impact quantifiable performance.information

transfer.

5.1 Methods

5.1.1 Working Memory Tasks

The two different working memory domains, visuospatial and verbal, are tested using a

delayed match-to-sample task [40] and an N-back task [133], respectively. Figure 1.3A shows

a match and no match trial for the visuospatial task. After encoding an initial image of

colored squares, the subject is told to remember that image during a working memory

maintenance period of 4 seconds. During retrieval, the subject indicates if the remembered

and current image match or not. The spatial layout of the squares does not change on a

single trial, only the colors potentially change. Figure 1.3B shows the N-Back task. The

sequence of letters is encoded on each trial. The mental set of “N” items must be updated

to include a newly presented item and to exclude the oldest item in the set and the set

is retained in the working memory. For each letter shown on the screen, the participant

is asked to determine if the remembered (no longer visible) and current (visible on-screen)

letters match. The participant responds when the current letter on the screen matches the

letter that is shown “N” letters prior.
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5.1.2 Participants

Thirty-four healthy adults (15 women, 19 men) aged 18 to 46 yr (mean 27.1 yr) are recruited

to participate in these studies. Written consent is obtained from each participant after

being introduced to the experimental protocols, which are approved by the Virginia Tech

Institutional Review Board. All of the experiments were performed in accordance with

guidelines and regulations set forth by the Virginia Tech Institutional Review Board. Each

participant, before starting the task, is tested to ensure that there are no vision or hearing

problems. None of the participants disclosed any previous neurological or hearing problems

when asked. Due to equipment malfunction during the visuospatial task, only 28 of the

participants (12 women, 16 men) aged 19 to 46 yr (mean 27.6 yr) are included in the analysis

of that task. However, for the N-back task, all 34 participants are used in the analysis. The

participants used in this comparison are the same used in Chapters 3 and 4.

5.1.3 Auditory Stimulus

During the working memory tests, six different sound conditions are evaluated. The control

conditions are chosen to be: 1) None, 2) Pure Tone (R: 240Hz, L: 240Hz), and 3) Classical

Music (Stereo: Vivaldi - Spring). The experimental conditions are selected to be: 1) 5Hz

Binaural Beat (R: 240Hz, L: 245Hz), 2) 10Hz Binaural Beat (R: 240Hz, L: 250Hz), and 3)

15Hz Binaural Beat (R: 240Hz, L: 255Hz). R and L indicate which tones are played into the

right and left ears, respectively. The experimental binaural beat conditions, 5Hz, 10Hz, and

15Hz, are chosen to represent the theta, alpha, and beta band stimulation, respectively. The

sound files are created in Matlab and are played through stereo headphones (MDR-NC7,

Sony). Each participant set the stimulus volume to a comfortably loud level at the start of

the session.
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5.1.4 EEG Recordings

An EEG system (OpenBCI, Inc., New York, NY) with 16 gold cup passive electrodes is

interfaced with LabVIEW to record the brain activity at a sampling rate of 128Hz. The

channel locations are Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, P3, P4, O1, O2, Fz,

Cz, which are set using the 10-20 system [120]. The earlobes are used for the ground and

reference electrodes. Prior to data collection, the electrodes are prepared using Ten20 EEG

conductive paste (Weaver and Co., Aurora, CO) and each of the electrode impedances are

verified to be < 5 kΩ.

5.1.5 Experimental Paradigms

The participants complete the tasks on two separate days. The order that the tasks are given

is randomized over all subjects. The same paradigm is used for both sessions, as shown in

Figure 5.1, with only the task changing. Participants complete the tasks in a quiet, dimly

lit room and sit in front of a computer monitor. A custom script written for the Cogent

Graphics Matlab toolbox presents the tasks. The participant presses the left arrow or right

arrow on the keyboard to indicate a match or no match, respectively.

Individual cognitive differences determine the limit on each participant’s ‘load’, which is the

number of letters or color squares, that can be successfully maintained and manipulated

during the tasks. Capacity is computed using KC = C(H− F), where C is the load, H is the

hit rate (percentage of correctly identified matches), and F is the false alarm rate (percentage

of non-matches identified as matches) [40]. Before starting the experiment, an initial load

titration test is completed for each participant. First, the participant would practice the

test at an easy load and then complete the task at increasingly difficult loads. For the

visuospatial task, the practice is one block of a 2-load task and then followed by one block
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each of the 3-, 4-, and 5-load versions of the task. For the N-Back task, the practice is one

block of a 1-back task and then followed by one block each of the 1-, 2-, and 3-back task.

For each participant, the load used in the experimental task is set by selecting the load

which produced the highest capacity estimate. In the event that two of the loads produced

equal capacity values, the load with the largest hit rate less than 100% is chosen. If the

hit rate is equal to 100%, then the next highest load is chosen. The purpose of choosing a

titrated load is to ensure that each individual is tested at their working memory capacity

limit, hence allowing the identification of any improvement in working memory capacity due

to the sound conditions.

After the EEG is setup, each participant performed the task at their selected load for approx-

imately thirty minutes. Every five minutes, the sound condition would switch to one of the

other six different sound conditions. For each sound condition, the stimulus began precisely

with the first working memory trial of a block and ended with the final trial. Between each

block is a two-minute break where no sound is played. Over all participants, each trial and

the order of the sound conditions are randomized to minimize bias.

Figure 5.1: An overview of the experimental paradigm used for both tasks.
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5.1.6 Behavioral Data Processing

A custom Matlab script processed the recorded behavioral data for analysis. First, the trials

where the participant pressed an incorrect key or didn’t respond in time are discarded (less

than 5%). The behavioral metrics chosen to assess performance during each sound condition

are accuracy and ranked accuracy. Accuracy is calculated by dividing the number of correct

trials, both matches (Hit) and non-matches (Correct Rejection), by the total number of

trials. For each participant, we identify relative trends, over time, in the accuracy results by

constructing a new dataset, from the raw accuracy data, by ranking the raw accuracy of the

six sound conditions from 1 (lowest accuracy) to 6 (highest accuracy). The ranked accuracy

is computed, for each participant, at two segments of time, the start (0 – 1.5 min) and

the end (3.5 - 5 min) of each five-minute block. The purpose of ranking each participant’s

accuracy scores is to normalize the data to a standard scale which eliminates the effect of

an individual’s mean accuracy. We divide the data into two different time segments in order

to assess the change in accuracy over time.

5.1.7 EEG Data Processing

To process the raw EEG data, the EEGlab toolbox in Matlab is used [104]. First, the EEG

recordings are bandpass filtered (0.5Hz – 50Hz) to remove both drift and the 60Hz power

line noise. The bandpass filter used is a linear FIR filter with an order of 846. Second, the

filtered EEG data is re-referenced to the average. Next, the epochs are extracted. For the

visuospatial task, the maintenance (125 ms – 4125 ms, which corresponded to the time when

no visuospatial array is present on the screen) epochs are extracted. For the N-Back task,

the onset (0 ms – 1000 ms, which corresponded to the time when the letter is on the screen)

epochs are extracted. Finally, the baseline is removed (0-200 ms before stimulus presentation)
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for all epochs. For both tasks, only correct trials (i.e. a Hit or Correct Rejection) are

used. Epochs with eye blinks, movement, or other artifacts are removed following manual

inspection of the automatically identified artifacts in EEGlab (less than 5% rejection).

5.1.8 Connectivity Network Construction

The processed epoched EEG signals are bandpass filtered, using EEGlab, to focus on the

theta band (4Hz – 8Hz). A measure of synchronization is PLV (defined in section 2.1.3 in

Equations 2.3 and 2.4), which is used to define the edge weights in a network that considers

each EEG channel as a node. The connectivity network is constructed using the EEG

channels as the nodes (V = {1, ..., n}), where n = 16. The network is assumed to be all-to-

all, meaning that between every pair of nodes there exists an edge. The weights associated

with these edges are determined using the PLV metric. The weighted adjacency matrix is

defined as WPLV with elements wij = PLVij, i, j = 1, 2, .., n. Due to the properties of PLV,

wij is in [0, 1] and WPLV is symmetric since PLV, and therefore the network, is undirected.

Edge weights in terms of PLV are computed for each epoch. An average network is computed

over all epochs, for each person, to create an average network, for each condition.

5.1.9 Behavioral and EEG Analysis

The behavioral data are analyzed using the statistical software JMP (SAS, Cary, NC). For

each task, two one-way ANOVAs, one for each of the starting and ending time segments,

are computed to assess the effect of CONDITION on the ranked accuracy. For the behavior

analysis, CONDITION refers to all sound conditions: None, Pure Tone, Classical, 5Hz BB,

10Hz BB, and 15Hz BB. The post hoc test chosen is the Tukey HSD, and the familywise

error rate is set at 1E-6 to be conservative.
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Two different methods are utilized to analyze the EEG data. First, a network measure

analysis is used to determine how the nodes in the network are affected by the different

sound conditions. Second, the regional connection strengths are analyzed to find the overall

changes in the networks between regions. For the EEG analyses, CONDITION refers only

to the None and 15Hz BB conditions. Over the two tasks, the None and 15Hz BB conditions

had the largest changes when compared to the other conditions. Additional EEG analyses

can be found in [131, 132].

A power analysis conducted for all of the behavior and EEG analyses determined that greater

than 1,000 points are necessary for a power of 0.8 and α = 0.05. Therefore, the results of

each analysis are bootstrapped 100 times in order to maintain the same N number for all

of the following analyses. The familywise error rate is kept at a maximum of 0.05. The

datasets generated during and/or analysed during the current study are available from the

corresponding author on reasonable request.

Network Measure Analysis. Characteristics of functional networks computed from neu-

roimaging data can be quantified using traditional network metrics [86, 121]. The degree

metric, defined in Equation 2.8, of the networks is computed the Brain Connectivity Toolbox

(BCT) in Matlab. To analyze the bootstrapped degree at the channel and hemispheric level,

multiple ANOVAs are used. In this analysis, CHANNELS refers to the 16 individual chan-

nels of recorded EEG data. Also, “regions” refers to the average of the surface electrode over

the different cortices. We define three bilateral REGIONS to identify overall connectivity:

Frontal (F), Centro-temporal (CT), and Parieto-occipital (PO). Since the total number of

electrodes is low, the Central and Temporal, and the Parietal and Occipital channels are

clustered. As an example, the regions in the left hemisphere include Frontal (Fp1, F7, and

F3), Centro-temporal (C3 and T3), and Parieto-occipital (P3 and O1). HEMISPHERE

indicates if the electrodes are in the right or left hemispheres.
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Regional Connection Strength Analysis. A two-way ANOVA is used to investigate the

effect of CONDITION (None and 15Hz BB) on the regional connection (LINK) bootstrapped

PLV strength. LINK refers to the three anterior - posterior connections (F – CT, F – PO,

and CT – PO) for each hemisphere, and the three bilateral (BL) connections (F – F, PO –

PO, and F – PO). The regional links are determined by averaging the regional connections

between all of the clusters of electrodes.

5.2 Results

5.2.1 Behavioral Results

No significant changes due to CONDITION are found for the participants’ raw accuracy

scores, as shown in Table 5.1, in either the visuospatial (VS) task (χ2(5, 28) = 6.37, p = 0.27)

or the verbal (VB) task (χ2(5, 34) = 0.59, p = 0.97) when compared in a nonparametric

Mann-Whitney U statistical test.

Task None Pure Classical 5Hz BB 10Hz BB 15Hz BB
VS 80.9± 11% 82.5± 8% 76.8± 9% 76.9± 11% 78.6± 10% 80.1± 11 %
VB 93.0± 8% 92.8± 11% 93.3± 9% 94.4± 7% 93.9± 7% 94.2± 9 %

Table 5.1: Mean and Standard Deviation of the Raw Accuracy.

However, the results of the ANOVA indicate that the effect of CONDITION on the boot-

strapped ranked accuracy is statistically significant for both the visuospatial task (Starting:

F (5, 594) = 333.5, p < 0.0001, Ending: F (5, 594) = 267.1, p < 0.0001) and verbal task

(Starting: F (5, 594) = 1117.1, p < 0.0001, Ending: F (5, 594) = 675.5, p < 0.0001). Post

hoc pairwise analyses, for both tasks, are shown in Figure 5.2.
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Figure 5.2: Bootstrapped ranked accuracy for the six sound conditions for both the visuospa-
tial and verbal tasks, averaged over all participants. The bars show ± standard deviation.
Conditions marked with different letters are significantly different.

The visuospatial task produced more variability, over time, in the relative accuracy of each

individual than is observed in the verbal task results. Comparing the two tasks, listening to

15Hz BB produced the largest increase in relative accuracy from the None condition. Given

our goal of analyzing how changes in brain network synchrony cause behavioral changes,

further analyses focus only on the None and 15Hz BB conditions that represent the extremes

of performance on the task.

5.2.2 Mean Theta Connectivity Networks

The mean theta PLV connectivity networks for the visuospatial (Figure 5.3) and verbal

(Figure 5.4) tasks show similar structures but also illustrate task-related differences. The

networks show that the connection strengths change when listening to 15Hz BB when com-

pared to the no sound condition.
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Figure 5.3: Mean theta weight matrices, for the visuospatial task, for the None and 15Hz
BB sound conditions averaged over all participants. The diagonal is equal to 1.

Figure 5.4: Mean theta weight matrices, for the verbal task, for the None and 15Hz BB
sound conditions averaged over all participants. The diagonal is equal to 1.

5.2.3 Network Analysis

To analyze the network structures, two different two-way ANOVAs, are constructed to ana-

lyze the effects of CONDITION and CHANNELS on the bootstrapped degree values of the

theta PLV networks, for each task. The F statistics are reported in Table B.1) in Appendix

B and for each effect p is always less than 0.0001. Figure 5.5A and Figure 5.5C show the
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degree values, at each node, for the visuospatial and verbal tasks, respectively. Comparing

the F values between the tasks, the degree as a function of CONDITION is greater than

CHANNELS for the visuospatial task. The opposite is true for the verbal task. Overall, for

both tasks, the degree values for 15Hz BB are generally higher than the None condition.

Figure 5.5: Mean degree of the nodes averaged over the 100 bootstrapped samples for the
visuospatial (A) and verbal (C) tasks. Bars show ± standard error. The percent difference
between conditions is shown for the visuospatial (B) and verbal (D) tasks.

In addition, Figure 5.5B and Figure 5.5D show the percent difference between the degree

values computed for the None and 15Hz BB networks, topographically. For the visuospatial

task, the larger increase is found in the right hemisphere and the opposite is found for the

verbal task. The right occipital (O2) channel has the largest increase in both tasks. In order

to find the hemispheric differences in the degree values, three separate factorial two-way

ANOVAs, one for each REGION, are constructed, for each task. The purpose is to isolate

the effects of CONDITION and HEMISPHERE on the degree values. Figure 5.6 shows the

results for the visuospatial (Figure 5.6A) and the verbal (Figure 5.6B) tasks. On each graph

is listed the F values from each two-way ANOVA (DOF = 3, NF = 1196, NCT = 1196,

NPO = 796). Similar to the results found in Figure 5.5, for the visuospatial task, the degree
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Figure 5.6: Mean degree for each hemisphere averaged over the bootstrapped samples for
the visuospatial (A) and verbal (B) tasks. Conditions marked with different letters are
significantly different. Bars show ± standard error.

values in the right hemisphere are generally higher than in the left. For the frontal region,

the hemispheric difference is minimal but 15Hz BB is significantly higher than None. In

addition, the parieto-occipital region shows that there is no significant difference between

the None and 15Hz BB conditions in the left hemisphere, but the right hemisphere has

the largest change of any region. The opposite effect is seen in the verbal task since the

left hemisphere is generally higher than the right. The differences, across hemispheres and

conditions, is greater in the frontal and parieto-occipital regions than the visuospatial task.

5.2.4 Regional Connectivity

A 2× 9 factorial ANOVA is constructed to compare the effects of LINK and CONDITION

on the bootstrapped PLV connection strengths computed from the mean theta networks,
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from each participant. The F statistics are reported in Table B.2) in Appendix B and for

each effect p is always less than 0.0001. Figure 5.7 shows the differences in the regional link

strengths between those formed when listening to 15Hz BB versus None. The lines indi-

cate that the strength increased significantly during 15Hz BB stimulation in comparison to

None. The line thickness indicates the amount of change. The hemispheric specialization,

due to the working memory domain, can be seen in Figure 5.7. For the visuospatial task,

all the connections increased significantly during the 15Hz BB condition when compared to

no sound. Most importantly, the 15Hz BB produced significant increases in the right hemi-

sphere frontoparietal connection and right hemispheric connections. For the verbal task, all

connections, except for the right centro-temporal connections, increased when listening to

15Hz BB. Most notably, the 15Hz BB produced significant increases in the bilateral fron-

toparietal network and left hemispheric connections. Table B.3) and Table B.4 in Appendix

B show the statistical results from the visuospatial and verbal tasks, respectively. Included

in the tables are the mean and standard deviation of the connection strengths over 100 boot-

strapped samples, the mean difference between the two conditions, and the results of the

two-tailed t-tests comparing None to the 15Hz BB for each link.

Figure 5.7: Bootstrapped regional PLV connection strength differences between the None
and 15Hz BB conditions. The verbal task network does not include the right centro-temporal
node because no significant changes in the connected links are observed.
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5.3 Discussion

Based on a power analysis, the number of participants is not large enough to determine any

significances in raw accuracy scores. However, the bootstrapped ranked accuracy values,

shown in Figure 5.2, produced the key result that, individually, participants performed

significantly better overall when listening to 15Hz BB than None. For the visuospatial

task, the conditions which produced higher relative accuracy changed over time. In the

beginning of the five-minute condition block, listening to a Pure Tone, 10Hz BB, and 15Hz

BB all produced high relative accuracy. However, by the end of the five minutes, all other

conditions had dropped but 15Hz BB remained significantly higher. Therefore, even though

other conditions produced high accuracy at the beginning of the task block, 15Hz BB is

the only condition to sustain that relative accuracy. This pattern is similar to the results

observed in [131] which found a mean 3% increase in the change in raw accuracy over the

5 minutes. For the verbal task, the same general pattern is seen in the ranked accuracy in

the beginning and at the end of the task. Overall, the key result is that listening to 15Hz

BB consistently outranked all of the other conditions. The increase in performance when

listening to 15Hz BB can be potentially explained by noting that 15Hz BB increased both

the degree of the network in prefrontal and parietal channels and synchronization within the

frontoparietal network which would suggest that more information is able to travel over the

connected network. Additionally, listening to 15Hz BB might be able to maintain network

function across an interval in the face of either fatigue or interference from previous trials.

The results in Figure 5.5, which shows the degree values for each channel, agree with the pre-

vious literature which supports hemispheric specialization depending on the working memory

domain. The degree values in the right and the left hemisphere are higher in the visuospatial

and verbal task, respectively. Also, regardless of the task, the channels with the highest de-

gree values correspond to the electrodes over the frontal and parieto-occipital cortices, which
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are the dominant regions in the working memory network. This result is reflected in Figure

5.6 which shows that, generally, the frontal and parieto-occipital values are higher than the

centro-temporal results. The results in Figure 5.6 also show an activated bilateral frontal

and parietal regions with additional regions recruited in the right and left hemisphere, for

the visuospatial and verbal working memory task, respectively. However, regardless of the

task, the 15Hz BB consistently produced higher degree values than the None condition. The

network of brain activity produced when listening to 15Hz BB has higher global information

transfer than does the baseline network produced by only task performance (no auditory

stimulation). The increase in information transfer could explain the changes in the observed

behavior.

Significant increases in the frontoparietal network are observed in both tasks, due to listening

to 15Hz BB, as shown in Figure 5.7. The change during the verbal task is symmetric.

However, in the visuospatial task, the dominant increase is observed in the right hemisphere.

Between the two tasks, listening to 15Hz BB produces the largest change in the bilateral

PO – PO, bilateral F – PO, right F – PO, and left CT – PO connections. The parietal

cortices are involved with early visual signal processing[128] and visual attention feedback

[129]. In previous research, the co-activation of the parietal and prefrontal cortices is strongly

associated with increased working memory performance [43, 44]. The connection between the

parieto-occipital to centro-temporal regions is associated with working memory in the form

of phonological storage and subvocal rehearsal of the information [39, 130]. Combining all

of the results together, we see that the 15Hz BB promotes and enhances the most important

links within the working memory network, which could explain the observed increase in

performance.

The results of these studies demonstrate that listening to 15Hz binaural beats can affect

cortical network properties during both a verbal and visuospatial working memory task.
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The networks evidenced during the 15Hz binaural beats condition show that more informa-

tion is transferred across the network than when listening to no sound. In addition, the

connectivity of the frontoparietal network increased significantly when listening to the 15Hz

binaural beats. Hemispheric specialization, which is known to be involved in working mem-

ory processing, is observed in both tasks with the visuospatial task recruiting more regions

in the right hemisphere and the verbal task in the left hemisphere. In both tasks, the 15Hz

binaural beats condition produced the largest significant change in accurate responses, in

individuals, when compared to listening to no sound. Therefore, the combination of these

results shows that listening to 15Hz binaural beats can be used to modify the connectivity

of cortical networks, and thereby influence verbal and visuospatial working memory task

performance.
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13, 2017, Tysons Corner, Virginia, USA.

The brain is a highly complex network and analyzing brain connectivity is a nontrivial task.

Consequently, the neuroscience community created a large-scale, customizable, mathematical

model which simulates brain activity called The Virtual Brain (TVB). Using TVB, we seek to

control electroencephalography (EEG) measured brain states using auditory inputs, through

TVB. This chapter details the development and proof-of-concept testing of a simulation

environment for an EEG-based closed-loop control of TVB using BB. Results suggest that

the connectivity networks, constructed from simulated EEG, may change with certain BB

stimulation frequency. In this work, we demonstrate that a linear and an adaptive controller

can successfully modulate TVB connectivity.

97



98 Chapter 6. The Virtual Brain Controller Testing Environment

6.1 The Virtual Brain

The Virtual Brain (TVB), schematized in Figure 6.1, is a large scale brain network model

which can be used to simulate brain activity [134, 135]. The completely open-source architec-

ture of TVB is implemented in Python. TVB approximates brain activity using a graphical

network made up of nodes, which represents partitioned areas of the brain. The connectivity

matrix, based on structural MRI or diffusion tensor imaging data, defines the edge weights

and time delays between all nodes in the network. Neural mass models are used to define

the local dynamics at each node. TVB can simulate the EEG response, using a forward

head model, from the computed local field potentials at each node. In addition, regional

stimulation can be simulated by applying a series of pulses to any node. The combination of

the neural mass models at each node, the connectivity matrix, and the 3D brain structure

create the full virtual brain model. We use TVB to determine the effect of the binaural beat

by apply a regional stimulus and evaluating the simulated EEG response.

Figure 6.1: The Virtual Brain Model [1].
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6.1.1 Neural Mass Model

One of the neural mass models integrated into TVB is the Generic 2D Oscillator model

[134]. This model is capable of generating different phenomena that neuronal populations

can exhibit. The equations governing the dynamics are given by

V̇ = dτ [−fV 3 + eV 2 + gV + αW + γI], (6.1)

Ẇ =
d

τ
[cV 2 + bV − βW + a], (6.2)

where V and W can be considered to be the neuron’s membrane potential and recovery

variable, respectively. I is the external current which contains inputs from the local and

long-rang connectivity. For this application, we are using the parameters from [135], so

a = −0.5, b = −10, c = 0, d = 0.2, e = 3, f = 1, g = 0, I = 0, α = 1, β = 1, γ = 1, τ = 1.

6.1.2 Binaural Beat Stimulus

Based on previous literature [75, 136, 137], the neural response to the binaural beat input,

as shown in Figure 6.2a, is completely dependent on the interaural phase difference (IPD)

produced. The period of the IPD, TIPD, is determined by the amount of time required

for the IPD to cycle through 360o, as shown in Figure 6.2b. The neurons in the inferior

colliculus (IC), which is contained within the auditory pathway, are tuned so that the firing

rate spikes for approximately half the IPD cycle, as shown in Figure 6.2c. The overall phase

difference information is preserved from the IC to the primary auditory cortex (A1) by the

periodic neural firing at the binaural beat frequency. TVB does not include the brainstem

so we need to bypass the auditory pathway and stimulate the model directly at the cortex

level at A1. The input to the TVB, as shown in Figure 6.2d, is based on the temporal

Gaussian bump (TGB). The TGB is an approximation of the graded action potential input
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Figure 6.2: a) Two sin wave inputs for a binaural beat period TIPD. b) The IPD per TIPD.
c) The IC normalized firing rate per TIPD. d) The exogenous TGB input for every TIPD.

that is received by A1 from the IC neurons. The TGB is centered on the maximal firing rate,

DC , and is 4ms long. For more information on the TGB, please refer to [138]. Within the

TVB framework, we can approximate the TGB with a pulse. Therefore, we mimic binaural

beats using the same pulse train, with the specific binaural beat period, at the left and right

A1 nodes. From the simulated EEG results, we can compute the connectivity networks to

analyze the differences due to the changing frequency. The simulated EEG channels are

shown in Appendix C in Table C.1.

6.1.3 Connectivity Network Construction

In order to see changes in the networks in the different frequency bands, the simulated

EEG data is filtered into the theta (4Hz – 8Hz), alpha (8Hz – 12Hz), beta (12Hz – 25Hz),

and gamma (25Hz – 40Hz) bands. The time-frequency measure between channels is com-

puted using the filtered EEG signals. The graphical networks are comprised of nodes (the

channels) and the edge weights (Phase Locking Value) defined in section 2.1.3. The graph-
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ical network is constructed using the electrode channels as the nodes (V = {1, ..., n}),

where n = 60, and the PLV connection strength defines the edge set (E = {(i, j) :

∃ an edge from node i to nodej}). The network can be defined as a weighted adjacency

matrix, W , made up of elements ωij = PLVij with the property that 0 ≤ ωij ≤ 1 for

i, j = 1, ..., n. An edge of weight ωij exists between nodes i and j when ωij 6= 0, and doesn’t

otherwise. The network is undirected and weighted, so W is symmetric.

6.1.4 TVB Model Parameters

The frequency response of the TVB under both open-loop and closed-loop control are eval-

uated and compared. The closed-loop simulation environment implemented around TVB is

developed in Matlab. The platform could have a wide range of applications and can be used

to test different controller types and feedback signals.

TVB is highly customizable and can be fit to different simulation requirements. For an in-

depth explanation of the mathematical description and and implementation of TVB, please

refer to [134, 135]. We have chosen the use the model configuration as shown in Table 6.1.

TVB is able to simulate 60 channels of EEG. The location of the stimulus is at left and

right primary auditory cortex (A1) nodes. One of the TVB stochastic integrators is used to

compute dynamics and introduce noise (a scaled derivative of a Wiener process). The seed

of the noise can be defined a priori.

6.2 Open-Loop Simulations

In order to characterize the response of the model to different stimuli, a random sweep of

the binaural beat frequency input, between 4Hz and 40Hz, is simulated. The binaural beat
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Model Components Name Parameters
Coupling Linear Default

Connectivity 76 nodes Default
Neural Mass Model 2D Generic oscillator [135]

Integrator Heun Stochastic dt = 2−4 sec
Noise Additive Scaling = 5e-4

Monitor EEG Fs = 1024Hz
Stimulus Pulse Train BB frequencies

Table 6.1: Model Configuration

frequency changed after 8 seconds. The EEG data is filtered using a IIR filter with two

bands at theta (4Hz – 8Hz) and gamma (25Hz – 40Hz). These bands are chosen because

previous studies have shown that to successfully remember information during a working

memory task, increased phase synchronization in the theta and gamma bands is needed

[22, 53, 54]. The PLV network is computed using the filtered EEG data. The Frontal (F) –

Parietal (P) PLV connection strength is computed by averaging all the connections between

the frontal and parietal electrodes. Six simulations are run, using a different seed for the

noise, to compute a mean and standard deviation for each frequency.

6.3 Closed-Loop Simulation Platform

The testing platform can be used to test various controllers such as linear (PID, LQR, etc)

and nonlinear (extremum seeking control [139] , predictor-based adaptive output feedback

control [140], etc). For this application, a proportional-integral (PI) controller and an adap-

tive augmented PI controller are implemented to control the network strength between the

frontal and parietal electrodes. The following algorithm, which is shown in Figure 6.3, de-

scribes the general process used to implement TVB within a closed-loop controller. Pulse

trains of different frequencies can be applied to any node within TVB.



6.4. Proportional-Integral (PI) Controller 103

Define model

Define initial stimulus frequency

for i = 1:N for N simulation steps

Run simulation for Ts seconds

Compute feedback signal

Update feedback to the controller

Update stimulus frequency

end

The same network analysis procedure described in the previous section is used. For each stim-

ulation step, the EEG data is filtered, then the F-P PLV connection strength is computed.

We currently have implemented the closed-loop framework in both Matlab and Simulink.

Figure 6.3: Closed-loop simulation platform for controller testing

6.4 Proportional-Integral (PI) Controller

For each of the results shown in this analysis, the simulations are run for 8 seconds. The

simulation time is chosen because the transient response of changing from one binaural beat

stimulus frequency to another ends after approximately 3 seconds. Therefore, the networks
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are computed on the steady state response during the last 4 seconds of data. To show that

it is possible to regulate the F-P PLV connection strength, a PI controller is implemented

within the developed closed-loop simulation environment. The controller output BBj, at

each simulation step, is defined as

BBj = KPej +KIeIj + BB0, for j = 1, 2, ..., N. (6.3)

where BB0 is the starting binaural beat frequency, at t = 0. KP is the proportional gain

and KI is the integral gain. The error ej is the difference between the desired F-P PLV

connection strength and is the current F-P PLV connection strength. The integral of the

error, eIj , is defined as eIj =
∑j

k=1 ek. The KP and KI gains are tuned using an iterative

process to balance the settling time and overshoot for a variety of starting frequencies. The

final gains chosen are KP = 0.1 and KI = 1.8. The controllers ability to track a desired F-P

PLV connection strength value is tested in a number of simulations. The tracking error of

is evaluated at four initial frequencies (BB0): 5Hz, 13Hz, 22Hz, 30Hz.

6.5 Adaptive Augmented PI Controller

A summary of the adaptive augmented PI controller developed by [141] is detailed in this

section. Using this control strategy allows for the classical PI controller to provide the linear

contribution which is augmented by adding an adaptive control effort. The adaptive gains,

current state of the system, desired trajectory, and a set of structures functions of the state

all affect the adaptive control effort. A first-order model is used to describe the behavior of

the connectivity in the brain. The system is given by

ẋ(t) = ax(t) + bλ∗(u(t) +W ∗Tφ(x(t)), (6.4)
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where a ∈ R is a known state constant, b ∈ R is a known input constant, λ∗ > 0 is a

constant of known sign but unknown magnitude, u(t) ∈ R is the control effort, W ∗ ∈ Rp is

an unknown constant vector where p > 0 is the number of linear and nonlinear functions

contained in φ(x(t)) No loss in generality occurs when assuming the state constant a is

known as a vector of basis functions φ(x(t)) will also contain the linear functions x(t), which

provides and overall uncertainty on the linear coefficient of the dynamics of the system.

The PI controller relies on the integration of the error between the desired and current state.

Therefore, another state is introduced, xI(t) ,
∫ t
0
(x(τ) − xd(τ))dτ where xd is the desired

trajectory. The new model of the system, which includes the integral state, is described as

ẋa(t) ,

a 0

1 0

xa(t) +

b
0

λ∗(u(t) +W ∗Tφ(x(t)) +

 0

−1

xd(t), (6.5)

where xa(t) , [x(t) xI(t)]
T. In order to use the adaptive control algorithm, a reference

system must be defined. We chose to use the known dynamics of Equation 6.5 which can be

written as

ẋlin(t) ,

a 0

1 0

xlin(t) +

b
0

ulin(t) +

 0

−1

xd(t). (6.6)

where xlin(t) , [xl(t) xlI(t)]
T. The PI controller chosen to guarantee that Equation 6.6 tracks

the desired trajectory is defined by

ulin(t) , −K∗T (xlin(t)− r(t)) , (6.7)

where K∗ , [KP KI]
T and r(t) = [xd(t) 0]T. Substituting equation 6.7 into 6.6 results in the

following closed-loop linear system, which is chosen as the reference system for the adaptive



106 Chapter 6. The Virtual Brain Controller Testing Environment

controller design,

ẋlin(t) = Arxlin(t) +

bKP

−1

xd(t), (6.8)

where Ar is defined as

Ar ,


a 0

1 0

−
b

0

K∗T
 . (6.9)

To guarantee that the augmented system Equation 6.5 converges to the reference system

Equation 6.8, a tracking error is given by

ea(t) , xa(t)− xlin(t), (6.10)

The total control effort applied to the system, u(t) is the combination of the linear and

adaptive part and is described as

u(t) , ulin(t) + uad(t). (6.11)

uad(t) is designed by analyzing the error dynamics [141]. The resulting adaptation laws are

defined as

˙̂
K(t) = sign(λ∗)ΓK (xa(t)− r(t)) eTa (t)P

b
0

 , (6.12)

˙̂
W (t) = sign(λ∗)ΓWφ(x(t))eTa (t)P

b
0

 . (6.13)

where K̂(t) , [K̂1(t) K̂2(t)]
T and the adaptation gains are ΓK > 0 and ΓW > 0. The

adaptive control law implemented into the closed-loop system is given by

uad(t) , −ŴT(t)φ(x(t))− K̂T(t) (xa(t)− r(t)) , (6.14)
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is Lyapunov stable and the tracking error ea(t) converges to zero.

6.6 Adaptive Augmented Controller Implementation

6.6.1 Integration

The standard forward Euler method for numerical integration is not capable of accounting

for the large time steps. Therefore, the backwards, or implicit, Euler method is implemented

for this system. If we define a differential equation dy
dt

= f(t, y) where f is the function with

an initial value y(t0) = y0. Applying a numerical integration method produces a sequence

y0, y1, y2, ... such that yk approximates y(t0 + kh), where h is the step size. The backward

Euler method algorithm computes the approximation of the function using

yk+1 = yk + hf(tk+1, yk+1). (6.15)

For this implementation, the integral of ẋI(t), ẋlin(t),
˙̂
K(t), and

˙̂
W (t) are computed using

the backward Euler integration method.

6.6.2 Selection of Controller Parameters

The parameters of the linear reference system are a = 0.1, b = 0.1 and λ∗ = 1, where a and b

are determined using PI controller results from TVB. The gains for the linear controller were

originally chosen so that KP = 1 is an order of magnitude larger than KI = 0.1. After an

iterative tuning process to balance the settling time and overshoot for a variety of starting

frequencies, the adaptive gains ΓW and ΓK are set to 0.002. In order to compare to the

results of the PI controller, the desired trajectory, xd(t) is equal to 0.9.
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6.7 Results

6.7.1 Open-Loop Control Results

The results of the open-loop controlled simulations are used to understand frequency re-

sponse of the model and to help inform the controller choice for the closed-loop control

implementation. Figure 6.4 shows the response of the F-P PLV connection strength of the

TVB model as a function of input binaural beat frequency. Several maxima occur in the

F-P PLV connection strength at approximately 8Hz, 15Hz, and 25Hz and ranges between

0.85 and 0.98, which indicates the EEG signals are highly synchronized.

Figure 6.4: The average and standard deviation of the frontal-parietal PLV connection
strength values as a function of the binaural beat frequency

6.7.2 PI Controller Results

A PI controller is successfully implemented and tested within the developed closed-loop sim-

ulation environment. The PI controller is able to drive the F-P PLV connection strength to

the desired value of 0.9. The desired value is arbitrarily chosen to represent the approximate
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maximum responses of the system. However, due to the multiple maxima in the response

shown in Figure 6.4, the controller drives the binaural beat frequency to different values

depending on the initial starting frequency value. Figure 6.5 shows the mean and standard

deviation, over five simulations, of the controller starting from four different initial frequen-

cies. The results for BB0 = 5, BB0 = 13, BB0 = 22, and BB0 = 30 are shown in red, blue,

green, and gray, respectively. The controller is able to successfully drive the tracking error

to approximately zero for the first three starting conditions. However, the fourth starting

frequency, BB0 = 30, is unable to converge because the PI controller is unable to detect the

maximum value which is at a frequency less than the initial starting frequency. Since the

initial error and the gains are positive, then the PI controller will start searching higher so

it will not converge.

6.7.3 Adaptive Augmented PI Controller Results

The Adaptive Augmented PI controller is able to drive the F-P PLV connection strength to

the desired value of 0.9. Similar to the results of the PI controller in Figure 6.5, the controller

drives the binaural beat frequency to different values. Figure 6.6 shows the simulation results

for four different initial binaural beat frequencies. The results for BB0 = 6, BB0 = 13,

BB0 = 22, and BB0 = 30 are shown in blue, yellow, green, and purple, respectively. Two

simulations are run for each initial frequency. The controller is able to successfully drive the

tracking error to approximately zero for all the starting conditions. Figure 6.7 shows how

the adaptive laws evolve over time.
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Figure 6.5: The binaural beat output of the PI controller and the resulting F-P PLV con-
nection strength values for four starting frequencies : BB0 = 5 (red), BB0 = 13 (blue),
BB0 = 22 (green), and BB0 = 30 (gray). The shaded areas are one standard deviation.

6.8 Discussion

A controller can change the binaural beat frequency to modify the strengths of the connectiv-

ity network. The closed-loop simulation environment is developed to be customizable to fit

a range of applications. The stimulus input and feedback signal can be modified depending

on the chosen controller.

The implemented PI controller is an example of how well a linear controller is able to drive

a response of the model to a certain desired value. However, the PI controller is not able to

necessarily find the closest maximum value. For example, if the initial starting frequency is
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Figure 6.6: The binaural beat frequency output of the Augmented Adaptive PI controller
and the resulting F-P PLV connection strength values for four starting frequencies: BB0 = 6
(blue), BB0 = 13 (yellow), BB0 = 22 (green), and BB0 = 30 (purple).

Figure 6.7: The adaptive laws for each of the simulations.
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18Hz, then, according to Figure 6.4, the closest maximum would be around 15Hz. However,

with a PI controller, it would drive the frequency to approximately 25Hz, since it primarily

pushes upward.

The adaptive augmented PI controller is also able to drive the frontal-parietal PLV values

to the desired connection strength. A major advantage over the simple PI controller is that

the adaptive augmented PI controller is able to find the desired F-P PLV value below the

initial starting frequency.

In conclusion, a both a simple PI controller and an adaptive augmented PI controller are able

to drive the binaural beat frequency to produce a higher frontal-parietal connection in TVB.

Using non-invasive stimulation within a closed-loop controller is a new and emerging field

within neuroscience. Our developed closed-loop simulation environment is a valuable tool

because it has the ability to test various controllers and allows for major parameter tuning

outside of a clinical setting. It is both a cheaper and safer option for initial controller testing,

since it does not require a human participant. Closed-loop non-invasive brain stimulation,

including binaural beats, can modulate depending on the brain-state of the user, which can

change over shorter and longer time scales. For example, cognitive abilities of persons with

MCI change over time so an open-loop stimulation protocol might be ineffective a couple

hours or six months later. Therefore, a closed-loop stimulation protocol is the best option

for a therapeutic system.
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Closed-Loop Binaural Stimulation

Results

The objective of this chapter is to show that there exists a controller that changes the

synchronization between the frontal and parietal regions of the brain. We focused on finding

an effective control strategy, laying the foundation for future research on control optimization.

The overall purpose of this system, shown in Figure 7.1, is to augment the user’s working

memory capacity using binaural beat stimulation. First, the EEG data is collected and

processed in real-time. Then, the behavioral data and the EEG data is used to evaluate the

working memory state of the user and the frontal-parietal PLV connection strength is fed

to the controller. The control action is fed to the binaural beat generator whose output is

played to the user through stereo headphones.

Figure 7.1: An overview of the EEG=based closed-loop controller developed for the experi-
ment.
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7.1 Experimental Paradigm

In total, 30 people are recruited to participate in this study. The first 14 participants

(23.8 ± 4.6, 8 male) are used to tune the controller. The last 16 people were tested after

the controller parameters are set (25.7 ± 3.6, 7 male). Written consent is obtained from

each participant after being introduced to the experimental protocols, which are approved

by the Virginia Tech Institutional Review Board. All of the experiments are performed

in accordance with guidelines and regulations set forth by the Virginia Tech Institutional

Review Board. Each participant, before starting the task, is tested to ensure that they have

no vision or hearing problems. None of the participants disclosed any previous neurological

or hearing problems when asked.

The working memory task that the participants completed during the test is the same delayed

match-to-sample visuospatial working memory task described in Chapter 3. Additionally,

the load, or number of color blocks, is titrated to each person individually (for details see

section 3.1.4).

After the load is selected, the EEG is set up. OneStep Cleargel (H + H Medizinprodukte

GbR Munster, Germany) is injected into each hole in the cap, which contains the electrode,

using a blunt needle syringe. The skin under the left eye is cleaned using the Nuprep skin

prep gel (Weaver and Co. Aurora, CO, USA). The EOG channel is placed under the left

eye using OneStep Adhesive Conductive Paste (H + H Medizinprodukte GbR Munster,

Germany) and a bandaid to keep it in place. The EEG electrodes are verified to be less than

< 20 kΩ prior to data collection. The testing took place in a quiet, dimly lit room. For

three participants, the impedance of the EEG electrodes is much greater than < 20 kΩ so

they are not included in the final analysis.

After the EEG setup is complete, the initial step is to connect the DAQ to the OpenViBE
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software [142] which is used to record and process the EEG data. Next, we record a minute of

EEG data where the participant is blinking approximately every second. The recorded EEG

file is used to calibrate the de-noising block in OpenViBE, which is used to remove the eye

blink artifacts [143]. Next, the volume of the binaural beats is adjusted by the participants

to their comfort level.

Finally, the experiment begins and the participant performs the visuospatial working memory

task for a total of 20 minutes at their previously determined titrated load. For the initial 4

minutes no sound is played and this time acts as a baseline control. Then, for the remaining

16 minutes, the adaptive augmented PI controller modifies the binaural beat frequency that

the participant listens to.

7.2 Experimental System

For this application, a eego sports system (ANT Neuro, Philadelphia, PA USA) is used. The

system has the capability of recording EEG data at a sampling frequency of up to 2kHz.

The cap has 63 EEG electrodes and an EOG channel to record eye blinks. The layout of the

channels and the order of the recordings are shown in Appendix D in Figures D.1 and D.2.

The default reference channel is CPz which is used for this application.

7.2.1 EEG Processing

In OpenViBE, the sampling rate of the EEG is set to 512Hz. In addition, OpenViBE

processed the EEG data using the following steps.

1. The EEG is downsampled to 128Hz.
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2. An initial 4th order Butterworth bandpass filter between 1Hz and 40Hz is applied to

the data to remove drift and powerline noise.

3. The eye blink artifacts are minimized using the EOG denoising block [143]. To use the

EOG denoising box, first, the denoising matrix is calibrated off-line using the file where

the participant blinks a lot. The fundamental principle of the algorithm to estimate

the matrix, d is based on regression analysis where d =< UTU >−1< UTS > with U

being the noise (EOG electrode) and S the source (EEG electrodes) [143]. The EEG

signals can be processed, on-line, using the EOG denoising block which computes the

clean EEG as Sprocessed = S − bU .

4. The processed signals are re-referenced to a common average.

5. The frontal and parietal EEG channels are selected for further processing in order to

reduce the computational load.

6. An additional 4th order Butterworth bandpass filter between 4Hz and 8Hz is applied

to the data to focus on the theta band.

7. The clean EEG signals are epoched using a sliding window of 20 seconds that shifts

every one second.

8. The Matlab scripting block calls a script which uses the processed epoched data to

first compute the bipartite network using PLV as the edge weights. A total of 50

connections are computed. For each epoch, x(t) is equal to the average of all the

PLV edge weights. Second, the integration of the adaptive augmented PI controller

is computed. The states, adaptive laws, and the desired trajectory are updated to

compute the controller effort. Finally, based on the current control action, tones are

generated and played to the participant to produce the binaural beats.
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Figure 7.2: A screen shot of the OpenViBE block diagram used to process the data and call
the Matlab script.

7.2.2 Auditory Stimulation

The tones that the participant listens to during the experiment are generated in Matlab. The

tone played into the right ear is always 240Hz. Depending on the output of the controller,

the tone played into the left ear is the sum of 240Hz and u(t). The tones are presented to the

participants using stereo headphones (QuietComfort 35 (Series II), Bose). The sounds are
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kept constant for 20 seconds in order to allow the brain connectivity to modulate. In order

that the changing tones do not overlap, the sound is ramped up and down over 1 second in

the beginning and end of the 20 seconds, respectively.

7.3 Implementation

The implementation of the controller for the experimental system is more complicated than

is described in section 6.6. The numerical integration algorithm is still the backwards Euler

method since it is stable at large time steps. However, one major difference is that the con-

troller effort must remain constant for 20 seconds in order for the brain to adapt. Therefore,

a zero-order hold is applied to the controller effort which leads to the development of the

reference trajectory, r(t). After initial implementation during the tuning phase, additional

filters were added to the adaptive laws and the controller output.

7.3.1 Filtering the Adaptive Laws

Due to the noise in the system, adaptation laws previously defined in Equations 6.12 and

6.13 are modified to be

˙̂
K(t) = sign(λ∗)ΓK (xa(t)− r(t)) eTa (t)P

b
0

− αK̂(t), (7.1)

˙̂
W (t) = sign(λ∗)ΓWφ(x(t))eTa (t)P

b
0

− αŴ (t), (7.2)

where α = 0.1 acts as a low pass filter. The parameter α was tuned by first setting the value

to 0.5 and slowly decreasing it over the initial 14 participants.
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7.3.2 Approximations Using the Backwards Euler Algorithm

The approximations of the linear reference system using the backwards Euler algorithm is

easily found to be

xlin(t+ 1) =

1− h(a− bKP) hbKI

−h 1


−1xlin(t) + h

bKP

−1

xd(t+ 1)

 . (7.3)

Additionally, the approximations of the adaptive laws are described as

K̂(t+ 1) =

K̂(t) + h

sign(λ∗)ΓK (xa(t+ 1)− xd(t+ 1)) ea(t+ 1)T(t)P

b
0




1 + hα
, (7.4)

Ŵ (t+ 1) =

Ŵ (t) + h

sign(λ∗)ΓWφ(x(t+ 1))ea(t+ 1)T(t)P

b
0




1 + hα
. (7.5)

7.3.3 Vector of Nonlinearities

Initially, the nonlinearities was simply φ(x(t)) = x(t). However, based on the results for

the first 14 participants used during the tuning process showed very slow oscillations in the

PLV connection strength. Therefore, the vector of nonlinearities used for the experiments

is defined as φ(x(t)) = [x(t), sin(0.005x(t)), sin(0.01x(t)), sin(0.02x(t)), sin(0.03x(t))]. The

frequency of the sine waves are determined using a frequency analysis of x(t). A potential

reason behind the very slow oscillations is due to the timing of the task. Another viable

reason is due to the long periodicity of the resting state networks which oscillate around

0.001Hz to 0.1Hz [144, 145, 146].
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7.3.4 Selection of the Desired Trajectory

As stated previously, the first four minutes of the test are silent to act as a baseline mea-

surement. From this data, the mean and standard deviation of the frontal-parietal PLV

connection strength is determined from the last minute of baseline data. The desired trajec-

tory, xd(t), which is the desired frontal-parietal (F-P) PLV connection strength, is computed

by adding two times the standard deviation to the mean value. Therefore, the adaptive

augmented PI controller will work to drive the PLV connection strength to be significantly

higher than the baseline values.

7.3.5 Zero-Order Hold on the Controller Effort

Since the controller input can only be changed every 20 seconds, we have implemented a

zero-order hold on the controller effort. In essence, when the controller is held constant, the

reference trajectory, r(t), and the control output, u(t) are switched.

Therefore, when t = 20, 40, 60, ... seconds,

1. The reference trajectory is set to r(t) = [xd(t) 0]T, where xd(t) is the previously defined

desired trajectory.

2. A simple first order filter is applied to the controller and is computed as

u(t) = β
(
ulin(t) + uad(t) + BB0

)
+ (1− β)u(t− 1) (7.6)

where BB0 = 13Hz is the initial binaural beat frequency and β = 0.95. The parameter

β was tuned by first setting the value to 0.5 and slowly increasing it over the initial 14

participants.
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3. The new u(t) is set as uprev to keep constant for the next 20 seconds.

4. The integral terms xI(t) and xlI(t) are reset to zero.

For all other t,

1. u(t) is set equal to uprev

2. The reference trajectory is derived from the controller equation and is given by

r(t) =

 (u(t)−BB0)+K∗Txlin(t)+Ŵ
T(t)φ(x(t))+K̂T(t)xa(t)

KP+K̂1(t)

0

 (7.7)

3. Recompute ulin(t) and uad(t) using the new r(t) and states.

7.3.6 Selection of Controller Parameters

An iterative process is implemented to tune the parameters for the first 14 participants.

Over all the participants, the parameters are increased until the response began to oscillate

or grow unbounded and then the values are reduced. For KP and KI the initial values are

1 and 0.1 respectively. Only KP is tuned and the final value is set KP = 1.7. The adaptive

gains ΓW and ΓK are initially set at 0.001 and increased to ΓW = 0.01 and ΓK = 0.01. The

parameters of the reference system are still a = 0.1, b = 0.1 and λ∗ = 1. The initial binaural

beat frequency is arbitrarily selected to be 13Hz.
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7.4 Statistical Analysis

To assess the effectiveness of the controller, the response x(t) is divided into 48 twenty-

second epochs corresponding to the time when the controller output is held constant. For

each of the 48 epochs, a one-tailed t-test is used to determine if the controller driven F-P

PLV connection strength response is significantly higher than the baseline PLV response. In

order to be conservative, α is set to 0.001. An overall summary of the controller response, S,

is computed by summing the number of significant epochs and dividing by the total number

of epochs.

7.5 Results

Overall, the controller is able to modulate the frontal-parietal PLV connection strength. The

results, for all of the participants, are shown in Table 7.1. All of the participants, except

for one, showed some amount of increase in the frontal-parietal PLV connection strength

when compared to baseline. The median S = 47.9% indicates that, over all the participants,

nearly 48% of the time the controller has driven the frontal-parietal PLV connection strength

significantly higher than baseline. However, large variability exists between participants since

the standard deviation of S is 26.3%. In addition, the overall accuracy during the 20 minutes

is listed. Accuracy is defined as the number of correct trials both matches (Hit) and non-

matches (Correct Rejection) divided by the total number of trials. The median accuracy

over all the participants is 80.3%± 7.1%.

The following three results showcase the variability observed among participants. All of the

responses are shown in Appendix D.
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Table 7.1: Summary of Experiments

ID (Load) S Accuracy
1(3) 41.6% 80.3%
2(4) 12.5% 77.4%
3(4) 58.3% 82.4%
4(3) 47.9% 81.2%
5(5) 70.8% 70.8%
6(5) 20.8% 70.1%
7(4) 87.5% 73.4%
8(3) 72.9% 83.8%
9(5) 0% 92.4%
10(5) 25.0% 66.4%
11(5) 35.5% 88.4%
12(4) 70.8% 84.6%
13(4) 52.1% 73.6%

7.5.1 Case 1: Tracking the Reference and Achieving Steady State

The frontal-parietal PLV connection strength response to the controller for participant 8

is shown in Figure 7.3. In this case, the PLV response towards the end of the 20 minutes

is oscillating around the desired reference value. In addition, the binaural beat frequency

achieves steady state around 900 seconds. In addition, the person answered more accurately

towards the end of the task once the F-P PLV connection strength is consistently higher.

The adaptive law updates are shown in Figure 7.4. The values varied a lot over the 16

minutes but achieved an oscillatory steady state at the end.

7.5.2 Case 2: Achieving Steady State

The frontal-parietal PLV connection strength response to the controller for participant 1 is

shown in Figure 7.5. In this case, at around 800 seconds, the PLV response is oscillating

around a steady state value but is lower than the reference. Similar to Case 1, the participant
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was more likely to answer correctly towards the end of the session when their PLV was

significantly higher. The controller output also remains relatively constant around 18Hz after

600 seconds. The adaptive laws are shown in Figure 7.6 and remain relatively consistent 300

seconds after the controller started to modulate the binaural beats.

7.5.3 Case 3: Remained at Baseline

The frontal-parietal PLV connection strength response to the controller for participant 2

is shown in Figure 7.7. In this case, the PLV response very rarely moves from oscillating

around the baseline, which is not the desired result. However, over time, the PLV connection

strength did not decay below the baseline. Therefore, the controller is able to maintain the

connection strength even if it is not improved. The controller output remains relatively

constant around 20Hz after around 300 seconds. The adaptive laws are shown in Figure 7.8

and remain relatively consistent 100 seconds after the controller starts.
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Figure 7.3: The F-P PLV connection strength as a function of time and the corresponding
controller output for Participant 8. The mean and one standard deviation of the PLV, for
each epoch, is shown by the error bars in red.

Figure 7.4: The adaptive laws for Participant 8. 0s indicates the start of the controller.
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Figure 7.5: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 1. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure 7.6: The adaptive laws for Participant 1. 0s indicates the start of the controller.



7.5. Results 127

Figure 7.7: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 2. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure 7.8: The adaptive laws for Participant 2. 0s indicates the start of the controller.
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7.5.4 Tracking Analysis of the Controller

Figure 7.9 shows the histograms of the controller output and the measured PLV output,

for each participant. The large peak in the histogram of the controller output corresponds

with the initial binaural beat frequency at 13Hz. For each participant, the PLV values are

normalized by the desired trajectory value. If the normalized PLV response is equal to one,

then the PLV is equal to the desired trajectory. The normalized PLV values for the majority

of the participants is centered around 0.9. Therefore, the measured PLV values are similar

to the desired trajectory value for most participants.

Figure 7.9: The histogram results, for each participant, of the binaural beat frequency
controller output and the measured PLV response normalized by the desired trajectory.
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7.5.5 Example Controller Outputs

Figure 7.10 shows the results of the measured PLV output, x(t), the reference system, xl,

and the reference trajectory, r(t). At the beginning of each 20 second period the reference

trajectory system increases rapidly to try to force the system to reach the desired trajectory.

Since the controller effort is maintained throughout the 20 seconds, the reference system

must adjust accordingly which produced the large peaks in the response.

Figure 7.10: The top plot shows a comparison of the reference system to the PLV values
computed from the EEG signals in relation to the desired trajectory. The bottom plot shows
the reference trajectory in comparison to the desired trajectory.

7.6 Discussion

Overall, the controller is effective in modulating the brain connectivity using binaural beats.

In many of the cases, the controller is able to find a binaural beat frequency that worked for

that individual at that period in time. If the participants are tested again, then the results
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may vary. Many different factors could impact the response of the participants including the

time of day, fatigue, response to the binaural beats, and many more which are very hard to

quantify or control for.

For most participants, the trials in which they answered incorrectly, indicated by the red

“x”, is often when their frontal-parietal PLV connection strength is low. Previous research

has shown that increased synchronization between the between the frontal and the parietal

regions of the brain corresponds to better working memory task performance [22, 50, 51, 52,

53, 54, 55].

All participants, except for one, showed some significant increase in the frontal-parietal PLV

connection strength when compared to the baseline measurement. Over all the participants,

the controller has driven the frontal-parietal PLV connection strength significantly higher

than baseline for nearly 48% of the 16 minutes. However, the change in brain connectivity

that the controller is able to achieve is dependent on the individual and there is a large

variability between participants since the standard deviation is 26%.

7.7 Future Work

One aspect of the future work for this project which should be addressed the arbitrarily cho-

sen parameters which are the desired trajectory and the initial binaural beat frequency. The

desired frontal-parietal PLV value is chosen to be two standard deviations above the mean

baseline PLV value. A large amount of variability is observed in the thirteen participants.

For some, the controller is able to drive the PLV to the desired value, for others it is unable

to do so. For future implementations, the desired value could be adjusted based on the past

PLV values. Therefore, if the person responds well to the binaural beats (i.e Participant

6) then the desired trajectory could be set higher. In addition, potentially more than the
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last minute of the 4 minutes of no sound should be used for determining the baseline PLV

values. For example, with Participant 9, if the baseline computation had been over the last 2

minutes, then the mean would have reflected a more accurate connection strength. However,

using the current method, the desired value is set too high which resulted in none of the

epochs being significantly above baseline.

In addition, the initial binaural beat frequency is chosen to be 13Hz. For most of the

participants, the binaural beat frequency at the end of the 16 minutes is different from 13Hz.

However, in two of the cases (i.e Participants 12 and 13), the frequency barely deviated from

13Hz because the initial binaural beat frequency worked well in driving the PLV connection

strength to the desired value so the controller essentially isn’t required. A more systematic

way of choosing the initial binaural beat frequency should be determined.

Future applications should also address the current limitations of the system which includes

the computational processing load limit and the movement of the participant. First, the

processing of the EEG data in OpenViBE has limitations. The software lags behind if the

EEG data is not downsampled to 128Hz and the time shift for the epoching window is less

than one second. In addition, the code that is called within the Matlab scripting block

must be completed within 1 second or else OpenViBE crashes. In addition, a problem which

was not addressed in this work are the movement artifacts in the EEG. Even though the

participants are instructed to keep as still as possible, movement artifacts still occurred. The

artifacts can affect the PLV computation and therefore affect the controller results.

In the future, a controller which does not require a model could be implemented, such as in

[147, 148, 149, 150]. The fundamental idea of the algorithm is that when the system model

is unknown and the state vector is unmeasured, the construction of the model dynamics

and and estimation of the full state is not necessary if all we need to control is the output

(i.e. the measurements). Instead, an output predictor is used to predict the system output
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using the history of the input and output stored in autoregressive filtered vectors. Therefore,

designing an output tracking control for the unknown system is equivalent to developing a

tracking control for the predictor, which is a system with known dynamics and states. With

this approach, the tracking task can be achieved by designing a tracking controller for a

linear time varying system, using one of many approaches existing in the literature.
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Conclusions

In conclusion, this dissertation details theoretical, computational, and experimental research

at the intersection of neuroscience, system dynamics, and controls.

The second chapter compares the results of using PLV and CCM to develop resting-state

brain connectivity networks. The results suggest that the network characteristics follow

the same trends and the similarity between the computed networks, for both algorithms, is

highly significant. However, CCM can identify low or one-way connection strengths better

than PLV but takes exponentially longer to calculate.

The next three chapters detail the results of the use of open-loop binaural beats used to

entrain specific brain structures utilized during visuospatial (Chapter 3) and verbal (Chap-

ter 4) working memory tasks. We determined the effects of different acoustic stimulation

conditions on participant response accuracy and cortical network topology, as measured by

EEG recordings. We found that listening to 15Hz binaural beats during both working mem-

ory tasks not only increased the response accuracy but also modified the strengths of the

cortical networks during the task. Chapter 5 shows additional analysis which compares the

networks developed for each task. Overall, these results suggest that this safe and accessible

stimulation method can modulate behavioral performance and cortical connectivity.

Chapter 6 describes the large-scale brain network model called The Virtual Brain used to

assess closed-loop controller performance. We developed the first simulation environment

133
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for an EEG-based closed-loop control of TVB using binaural beats. Results suggest that the

connectivity networks, constructed from simulated EEG, may change with certain binaural

beats stimulation frequency. The simulations are used to test both a linear and adaptive

controller’s ability to change cortical responses using the controlled binaural beat stimulus.

Chapter 7 details the development and testing of the first experimental closed-loop EEG-

based controller which modulates the binaural beat stimulus played to the participant during

a working memory task. Each person’s brain functions in slightly different ways, so an

open-loop control system for brain stimulation is impractical from a control engineering

perspective. The input of the system is the binaural beats delivered through headphones.

Entrainment of the beat frequency throughout the brain is recorded using EEG.

8.1 Significance of Work

Only a limited number of studies have investigated the effects of binaural beats on working

memory, which controls the temporary retention and online processing of information. Fur-

thermore, no studies, before this work, have evaluated the effects of binaural beats on brain

connectivity during working memory tasks.

Compared to current methods of brain stimulation both for system identification or thera-

peutic interventions (i.e. transcranial alternating/direct current, transcranial magnetic stim-

ulation, and ultrasound), binaural beats capitalize on existing brain structures to entrain

higher-level areas of the cortex. In addition, binaural stimulation does not require large

equipment or a clinical setting to be used safely. As a result, this system has the potential

to be further developed into a medical device to identify and control working memory disor-

ders indicative of cognitive impairment even outside clinical settings. Thus, any associated

therapies developed in the future have a strong potential for wide application and usability.
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8.2 Open Questions

This research seeks to answer the question of whether binaural beats can be used to identify

and control working memory using both open and closed-loop control. However, many open

questions for future research exist, for example,

1. What is the time constant for when the brain starts to respond to the binaural beats?

Additionally, after the binaural beats stop, how long does the brain remain in that

state? Qualitatively assessing the previous research, the time constants appear to be

small, meaning that the brain reacts fairly quickly to the binaural beats but also reverts

back quickly after the sounds stop.

2. How do closed-loop binaural beats affect other cognitive tasks such as attention or

long-term memory?

3. How does the past history of binaural beat frequency affect the response? From the

results of the closed-loop experiment shown in Chapter 7 it would appear that the

previous binaural beats that the person listened to does matter.

4. What are the long term effects of listening to binaural beats? For example, a longitu-

dinal study could be undertaken to evaluate the long term effects of listening to both

open-loop and closed-loop binaural beats.

5. What is the nonlinear relationship between the input binaural beat frequency and the

brain’s response?

6. Why do some people respond better to the binaural beat frequency than others?

The work in this dissertation lays a foundation for exploring these questions with the

experimentally-tested hardware and control infrastructure in the future.
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scale functional networks identified from resting-state eeg using spatial ica. PloS one,

11(1):e0146845, 2016.

[103] Maarten Mennes, Bharat B Biswal, F Xavier Castellanos, and Michael P Milham.

Making data sharing work: the fcp/indi experience. Neuroimage, 82:683–691, 2013.

[104] Arnaud Delorme and Scott Makeig. Eeglab: an open source toolbox for analysis

of single-trial eeg dynamics including independent component analysis. Journal of

Neuroscience Methods, 134(1):9–21, 2004.

[105] Scott Makeig, Anthony J Bell, Tzyy-Ping Jung, Terrence J Sejnowski, et al. In-

dependent component analysis of electroencephalographic data. Advances in neural

information processing systems, pages 145–151, 1996.

[106] SI Goncalves, JC De Munck, PJW Pouwels, R Schoonhoven, JPA Kuijer, NM Maurits,

JM Hoogduin, EJW Van Someren, RM Heethaar, and FH Lopes Da Silva. Correlat-

ing the alpha rhythm to bold using simultaneous eeg/fmri: inter-subject variability.

Neuroimage, 30(1):203–213, 2006.

[107] Robin I Goldman, John M Stern, Jerome Engel Jr, and Mark S Cohen. Simultaneous

eeg and fmri of the alpha rhythm. Neuroreport, 13(18):2487, 2002.

[108] Matthias C Meyer, Erik SB van Oort, and Markus Barth. Electrophysiological corre-

lation patterns of resting state networks in single subjects: a combined eeg–fmri study.

Brain topography, 26(1):98–109, 2013.



150 BIBLIOGRAPHY

[109] William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E

Nichols. Statistical parametric mapping: the analysis of functional brain images. Aca-

demic press, 2011.

[110] Susan Whitfield-Gabrieli and Alfonso Nieto-Castanon. Conn: a functional connectivity

toolbox for correlated and anticorrelated brain networks. Brain connectivity, 2(3):125–

141, 2012.
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Appendix A

Comparison of Phase Locking Value

and Convergent Cross Mapping
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Figure A.1: The convergence of the CCM algorithm as the library size increases for the
example CCM computation in Figure 2.4a and Figure 2.4b.
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Figure A.2: The convergence of the CCM algorithm as the Library size increases for the
EEG data. Four example time series pairs were chosen at random to show the convergence.
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Figure A.3: The convergence of the CCM algorithm as the Library size increases for the
fMRI data. Four example time series pairs were chosen at random to show the convergence.
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Order Channel Location Order Channel Location
1 Fp2 31 CPz
2 AF8 32 Pz
3 AF4 33 POz
4 F8 34 Oz
5 F6 35 Fp1
6 F4 36 AF7
7 F2 37 AF3
8 FT8 38 F7
9 FC6 39 F5
10 FC4 40 F3
11 FC2 41 F1
12 T8 42 FT7
13 C6 43 FC5
14 C4 44 FC3
15 C2 45 FC1
16 TP8 46 T7
17 CP6 47 C5
18 CP4 48 C3
19 CP2 49 C1
20 P8 50 TP7
21 P6 51 CP5
22 P4 52 CP3
23 P2 53 CP1
24 PO8 54 P7
25 PO4 55 P5
26 O2 56 P3
27 Fpz 57 P1
28 AFz 58 PO7
29 Fz 59 PO3
30 Cz 60 O1

Table A.1: EEG channel order and locations
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Order Location Order Location Order Location
1 FP r 44 MedFC 49 FP l
2 FOrb r 45 SubCalC 50 FOrb l
3 PaCiG r 46 AC 51 PaCiG l
4 IFG tri r 47 PC 52 IFG tri l
5 IFG oper r 48 Precuneous 53 IFG oper l
6 MidFG r 54 MidFG l
7 SFG r 55 SFG l
8 FO r 56 FO l
9 TP r 57 TP l
10 aPaHC r 58 aPaHC l
11 pPaHC r 59 pPaHC l
12 aTFusC r 60 aTFusC l
13 pTFusC r 61 pTFusC l
14 aITG r 62 aITG l
15 toITG r 63 toITG l
16 pITG r 64 pITG l
17 aMTG r 65 aMTG l
18 toMTG r 66 toMTG l
19 pMTG r 67 pMTG l
20 pSTG r 68 pSTG l
21 aSTG r 69 aSTG l
22 aSMG r 70 aSMG l
23 pSMG r 71 pSMG l
24 TOFusC r 72 TOFusC l
25 LG r 73 LG l
26 AG r 74 AG l
27 HG r 75 HG l
28 PT r 76 PT l
29 PP r 77 PP l
30 IC r 78 IC l
31 PreCG r 79 PreCG l
32 PostCG r 80 PostCG l
33 SMA r 81 SMA L
34 CO r 82 CO l
35 PO r 83 PO l
36 SPL r 84 SPL l
37 Cuneal r 85 Cuneal l
38 SCC r 86 SCC l
39 ICC r 87 ICC l
40 iLOC r 88 iLOC l
41 sLOC r 89 sLOC l
42 OFusG r 90 OFusG l
43 OP r 91 OP l

Table A.2: ROI order and locations
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Comparison of Visuospatial and

Verbal Working Memory Tasks

Task CONDITION CHANNEL CONDITION × CHANNELS
VS F(1,3168) = 246.9 F(15,3168) = 95.8 F(15,3168) = 5.5
VB F(1,3168) = 70.6 F(15,3168) = 153.5 F(15,3168) = 3.8

Table B.1: Results of the two-way ANOVA comparing CHANNEL and CONDITION.

Task CONDITION LINK CONDITION × LINK
VS F(1,1782) = 831.6 F(8,1782) = 322.6 F(8,1782) = 5.6
VB F(1,1782) = 112.9 (F(8,1782) = 344.3 F(8,1782) = 8.1

Table B.2: Results of the two-way ANOVA comparing CHANNEL and LINK.

Link None 15Hz BB Difference p-value t-statistic
F – PO (BL) 0.418± 0.010 0.444± 0.019 0.027 < .0001 12.34

PO – PO (BL) 0.386± 0.017 0.424± 0.027 0.038 < .0001 12.09
CT – PO (L) 0.434± 0.020 0.471± 0.026 0.038 < .0001 11.58
F – PO (R) 0.354± 0.024 0.399± 0.031 0.045 < .0001 11.54
F – CT (R) 0.362± 0.024 0.404± 0.030 0.042 < .0001 10.87
F – F (BL) 0.365± 0.013 0.392± 0.023 0.027 < .0001 10.08
F – CT (L) 0.360± 0.024 0.394± 0.029 0.034 < .0001 8.95

CT – PO (R) 0.429± 0.030 0.461± 0.030 0.031 < .0001 7.40
F – PO (L) 0.374± 0.023 0.393± 0.029 0.019 < .0001 5.12

Table B.3: Results of the visuospatial task regional connections.

161



162 Appendix B. Comparison of Working Memory Tasks

Link None 15Hz BB Difference p-value t-statistic
PO – PO (BL) 0.479± 0.019 0.499± 0.016 0.020 < .0001 8.25
F – PO (BL) 0.500± 0.016 0.516± 0.016 0.016 < .0001 7.16
F – PO (R) 0.477± 0.016 0.488± 0.014 0.011 < .0001 5.37
F – PO (L) 0.501± 0.027 0.519± 0.024 0.018 < .0001 5.01

CT – PO (L) 0.554± 0.026 0.564± 0.024 0.010 0.005 2.84
F – CT (L) 0.501± 0.024 0.510± 0.023 0.009 0.005 2.82
F – F (BL) 0.507± 0.017 0.514± 0.016 0.007 0.006 2.76

CT – PO (R) 0.526± 0.019 0.522± 0.016 -0.004 0.130 -1.52
F – CT (R) 0.470± 0.018 0.471± 0.016 0.001 0.777 0.28

Table B.4: Results of the verbal task regional connections.
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TVB Controller Testing Environment

Order Location Order Location
1 Fp1 35 CP5
2 Fp2 36 CP6
3 F4 37 CP1
4 F3 38 CP2
5 C3 39 FT9
6 C4 40 FT10
7 P4 41 FC2
8 P3 42 FC1
9 O2 43 AF3
10 O1 44 AF4
11 F8 45 FC6
12 F7 46 FC5
13 T8/T4 47 CPz
14 T7/T3 48 P1
15 P8/T6 49 POz
16 P7/T5 50 P2
17 Pz 51 P6
18 Fz 52 C6
21 AF9 53 P5
22 AF10 54 C1
23 F9 55 C2
24 F10 56 C5
25 CB1 57 F2
26 CB2 58 F6
27 TP7 59 F1
28 TP9 60 AF8
29 TP10 61 F5
30 TP8 62 AF7
31 Oz 63 Fpz
32 Iz 64 FCz
33 PO4 65 Cz
34 PO3

Table C.1: EEG channel order and locations. For the simulations CB1, CB2, TP10, TP, Iz
were discarded.
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Appendix D

Closed-Loop Binaural Stimulation

Results

D.1 EEG Cap Technical Specifications

Figure D.1: Layout of the 64 EEG channels
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Figure D.2: Order of the EEG channels

D.2 Results
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Figure D.3: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 3. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure D.4: The adaptive laws for Participant 3. 0s indicates the start of the controller.
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Figure D.5: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 4. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure D.6: The adaptive laws for Participant 4. 0s indicates the start of the controller.
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Figure D.7: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 5. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure D.8: The adaptive laws for Participant 5. 0s indicates the start of the controller.
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Figure D.9: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 6. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure D.10: The adaptive laws for Participant 6. 0s indicates the start of the controller.
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Figure D.11: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 7. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure D.12: The adaptive laws for Participant 7. 0s indicates the start of the controller.
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Figure D.13: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 9. The mean and one standard deviation of
the PLV, for each epoch, is shown by the error bars in red.

Figure D.14: The adaptive laws for Participant 9. 0s indicates the start of the controller.
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Figure D.15: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 10. The mean and one standard deviation
of the PLV, for each epoch, is shown by the error bars in red.

Figure D.16: The adaptive laws for Participant 10. 0s indicates the start of the controller.
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Figure D.17: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 11. The mean and one standard deviation
of the PLV, for each epoch, is shown by the error bars in red.

Figure D.18: The adaptive laws for Participant 11. 0s indicates the start of the controller.
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Figure D.19: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 12. The mean and one standard deviation
of the PLV, for each epoch, is shown by the error bars in red.

Figure D.20: The adaptive laws for Participant 12. 0s indicates the start of the controller.
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Figure D.21: The frontal-parietal PLV connection strength as a function of time and the
corresponding controller output for Participant 13. The mean and one standard deviation
of the PLV, for each epoch, is shown by the error bars in red.

Figure D.22: The adaptive laws for Participant 13. 0s indicates the start of the controller.
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