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MODELING AND LQR CONTROL OF A TWO-DIMENSIONAL AIRFOIL

Shana D. Olds

(ABSTRACT)

In this paper we develop a mathematical model of a two-dimensional aeroelastic airfoil.
This model is used to design a flutter suppression controller. Flutter is a vibration in a wing
caused by airstream energy being absorbed by the lifting surface. Flutter increases with
increasing speed. For simplicity, we consider a flate plate in a two-dimensional flow. The
model is developed in the frequency domain and then transformed into the time domain.

The uncontrolled model is numerically simulated using MATLAB. Linear Quadratic
Regulator (LQR) theory is used to design a state feedback controller. The LQR control
scheme consists of using a full state feedback controller of the form u = −Kcx, where Kc

is a control gain matrix. The goal is to use LQR theory to supress flutter and to maintain
stability of the closed loop system.
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Chapter 1

Introduction

The goal of this thesis is to develop a state space model for the so-called typical aeroelastic
airfoil and then apply LQR control to this system to dampen flutter. As stated by York in
[10], flutter is an aeroelastic self-excited unstable vibration in which the airstream energy
is absorbed by the lifting surface. The motion involves both bending and torsional compo-
nents which are basically simple harmonic oscillations with a unique flutter frequency. The
basic model may be found in York’s thesis [10]. However, we repeat the derivation here in
order to correctly identify all of the system’s parameters in the model. We begin with the
fundamental force and inertia equations. A second order dynamical system is constructed
and used to develop a first order state space system of the form,

ẋ(t) = Ax(t) +Bu(t), (1.1)

where each parameter is explicitly defined. The system is tested with u = 0 to analyze its
behavior and to test the model for accuracy.

The control objective is to use state feedback to stabilize the system and prevent flutter.
We focus on the infinite time Linear-Quadratic Regulator problem. This approach leads
to a full state-feedback controller of the form u = −Kcx to maintain stability. We show
that a stable solution exists and use the algebraic Riccati equation to solve for an optimal
control u?. MATLAB is used in all numerical simulations. In particular, we use the Control
System Toolbox to compute the gain matrix Kc and the ordinary differential equation solver
ODE45 to run time simulations.

1



Chapter 2

The Two-Dimensional Aeroelastic
Airfoil

In this chapter we derive a state space model for a two-dimensional airfoil in an unsteady
flow. We start by describing the positions and motions of the airfoil and then discuss the
aerodynamic loads. We make heavy use of York’s work [10].

2.1 The Positions and Motions of the Airfoil Model

Consider the typical airfoil as described in Figure 2.1. We develop the basic dynamic
equations for the airfoil in terms of the airfoil’s position, velocity, and so-called aerodynamic
lag states. For this paper, the airfoil is viewed as a flat plate suspended from a fixed object
by a spring. The motion of the airfoil is described by three positions: the plunge h, the
pitch α, and the flap angle β. The plunge h is the position along the y-axis measured
positive down. The pitch α is the angle measured from the x-axis. The flap angle β is
the angle of the flap with respect to the airfoil. To provide the correct forces so that this
cross-section behaves like part of the attached wing, we will use linear and torsional springs.
The linear spring that provides a restoring force for the plunge of the airfoil is assumed to
have stiffness constant Kh. Likewise the torsional spring has stiffness constant Kα and the
flap spring has stiffness constant Kβ.

2.2 The Aerodynamic Loads

The airfoil is subjected to three aerodynamic loads. The lift L is measured positive in
the upward direction. The pitching moment M is assumed to be centered about the one-
quarter chord of the airfoil. The flap torque T is applied to the flap hinge. The goal is to

2



develop a state space model that can be used for control design.
We first derive the equations of motion. Newton’s second law of motion and the moment

equation for a rigid body in planar motion are given by∑
~Fy = mi~ac.m. (2.1)

and

∑
~Mc.m. = Ic.m.ω̇, (2.2)

respectively. Here F is force, m is mass, ~a is acceleration, Mc.m. is momentum, Ic.m. is
inertia, and ω̇ is the angular acceleration. The free body diagram is shown in Figure 2.2.
Equations (2.1) and (2.2) are applied to the main body and to the trailing edge control
surface. We assume angles α and β are small so that we can linearize about the zero
equilibrium point. In particular, we assume that

α = β = α̇ = β̇ = α̈ = β̈ = 0 (2.3)

is an equilibrium for the system.
Assuming the angles are small and linearizing yields the system (see [10])

Khh− qy + L1 +m1

[
ḧ+ bx1α̈

]
= 0, (2.4)

IQα̈+M1 +Kαα−Kββ −Khhbx1 − L1

[
db− b

2
+ bx1

]
− qy [cb− bx1] = 0, (2.5)

qy + L2 +m2

[
ḧ+ bcα̈ + l(β̈ + α̈)

]
= 0, (2.6)

and
−(qy + L2)l +Kβ +M2 + IG(α̈+ β̈) = 0. (2.7)

The subscript 1 denotes equations for the main body (body 1) of the airfoil. The subscript
2 denotes equations for the trailing edge flap (body 2). Therefore, equations (2.4) and
(2.5) apply to body 1 of the airfoil and equations (2.6) and (2.7) apply to body 2. Here qy
is the vertical flap hinge force, l is the distance to the trailing edge flap center of gravity
from c, m1 is the mass of body 1, m2 is the mass of body 2, x1 is the nondimensionalized
distance of the main section center of gravity, IQ is the inertia per unit length of the total
section, IG is the moment of inertia per unit span of trailing edge flap about point G, b
is a normalizing constant, and c is the nondimensionalized distance to the flap hinge line.
Adding equations (2.4) and (2.6) yields the plunge equation

(mb)
ḧ

b
+ [m1bx1 +m2(bc + l)] α̈+m2lβ̈ + (bKh)

h

b
= −L. (2.8)

3



Equations (2.4) through (2.7) are combined so that the pitching moment about the
one-quarter chord point has the form

M = M1 +M2 + L2

[
c+ d− 1

2

]
b. (2.9)

Equations (2.4) through (2.7) are combined as(
d− 1

2
+ x1

)
b [eq.(2.4)] + 1 [eq.(2.5)] +

[
b
(
c+ d− 1

2

)
+ l
]

[eq.(2.6)] + 1 [eq.(2.7)] , (2.10)

so that the pitch equation becomes

[
m1b

2
(
d− 1

2
+ x1

)
+m2b

2

(
c+ d− 1

2
+
l

b

)]
ḧ

b

+

[
m1b

2x1

(
d− 1

2
+ x1

)
+ IQ +m2b

(
c+ d− 1

2
+
l

b

)
(bc+ l) + IG

]
α̈

+

[
m2bl

(
c+ d− 1

2
+
l

b

)
+ IG

]
β̈

+
[
Khb

2
(
d− 1

2

)]
h

b
+Kαα = −M. (2.11)

Solving equation (2.6) for qy and substituting this into (2.7) produces the equation

(bm2l)
ḧ

b
+ [m2l(bc+ l) + IG] α̈ + (m2l

2 + IG)β̈ +Kββ = −(T + TS). (2.12)

The torque TS is an additional flap hinge torque used to control the flap. The open loop
(or uncontrolled) system is defined by TS = 0. Finally, equation (2.8) is multiplied by

−b
[
d+ a− 1

2

]
and added to equation (2.11). Combining (2.11), (2.8), and (2.12) produces

the second order system

 bm Sα Sβ
bSα Iα Iβ + Sβbc
bSβ Iβ + Sβbc Iβ




ḧ
b

α̈

β̈

+

 Kh 0 0
0 Kα 0
0 0 Kβ




h
b

α
β

 =

 −L
−Me.a.

−(T + TS)

 .
(2.13)

We write this system in the form

M ′Ÿ (t) +KY (t) =

 −L
−M

−(T + TS)

 , (2.14)
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where

M ′ =

 bm Sα Sβ
bSα Iα Iβ + Sβbc
bSβ Iβ + Sβbc Iβ

 (2.15)

and

K =

 Kh 0 0
0 Kα 0
0 0 Kβ

 . (2.16)

This is the matrix form of the equations of motion where M ′ is the mass matrix and K is
the stiffness matrix. In the above equations, Sα is the static moment of the airfoil per unit
length about xα measured in terms of mass and nondimensionalized distances, Sβ = m2l
is the static moment of the trailing edge flap per unit length about c, b is a normalizing
factor for h, and c is the distance between the flap hinge and the spring Kh.

2.3 The Aeroelastic Model

Following York [10], we apply the Laplace transform to equation (2.14). This converts the
system to the frequency domain and the motion of the airfoil is defined as simple harmonic
oscillations. We use linearized, unsteady aerodynamic theory from [5] and apply it to
derive the formulas which give the pressure distribution over the wing and the aerodynamic
responses of the oscillating hinges for any position of the hinge with respect to the leading
edge. The linearization allows the total aerodynamic loads to be found by superposition
of the forces and moments associated with each degree of freedom. Once the basic system
has been derived, the inverse Fourier transform is used to construct a state space model.
From [10], the three degrees of freedom are:

1. The plunging or bending oscillation of the airfoil,

z1(x) = heiωt,

2. The pitching oscillation of the airfoil about the one-quarter chord point,

z2(x) = αb
[
x+

1

2

]
eiωt,

and

3. The oscillation about the leading edge or hinge line,

z3(x) =
{

0 for 0 ≤ Θ ≤ φ
βeiωt(cosφ− cos Θ) for φ ≤ Θ ≤ π

.

5



Here, x represents the position along the airfoil so that z1 and z3 are independent of x.
From [5] the aerodynamic loads are defined as follows:

L ≡ total wing lift

unit depth
= πρV 2beiωt

3∑
g=1

Gkg, (2.17)

M ≡ total wing moment about the 1/4 chord

unit depth
= πρV 2b2eiωt

3∑
g=1

Gmg, (2.18)

and

T ≡ total f lap hinge about its leading edge

unit depth
= πρV 2b2eiωt

3∑
g=1

Gng. (2.19)

Here ρ is the air density, V is the velocity, t is the time, and G is the amplitude of degree
of freedom g.

Since the pitching, plunging, and control surface oscillations are have small amplitudes,
we omit eiωt for convenience. Finally, we substitute the expressions for kg, mg, and ng from
[9] into equations (2.17), (2.18), and (2.19). Hence, in the frequency domain L, M , T are
given by

L(ω) = πρV 2b

[{
i

(
ωb

V

)
[2C(k)]− ω2b2

V 2

}
h

b
+

{
2C(k)

(
1 +

iωb

V

)
+
iωb

V
− ω2b2

2V 2

}
α

]

+ πρV 2b

[{
1

π

[
2C(k)

(
Φ1 +

iωb

2V
Φ2

)
+
iωb

V
Φ3 −

ω2b2

2V 2
Φ4

]}
β

]
, (2.20)

M(ω) = πρV 2b2

{
−
(
ω2b2

2V 2

)
h

b
+

(
iωb

V
− 3ω2b2

8V 2

)
α +

1

π

[
Φ5 +

iωb

2V
Φ6 −

ω2b2

4V 2
Φ7

]
β

}
,

(2.21)
and

T (ω) = πρV 2b2

[{
1

π

[
C(k)

iωb

V
Φ8 −

ω2b2

2V 2
Φ4

]}
h

b

]

+ πρV 2b2

[{
1

π

[
C(k)

(
1 +

iωb

V

)
Φ8 +

iωb

2V
Φ9 −

ω2b2

4V 2
Φ7

]}
α

]

+ πρV 2b2

[{
1

π2

[
C(k)

(
Φ1 +

iωb

2V
Φ2

)
Φ8 + Φ10

+
iωb

2V
Φ11 −

ω2b2

4V 2
Φ12

]}
β

]
, (2.22)
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respectively. Equations (2.20), (2.21), and (2.22) are written in terms of the transformed
plunge, pitch, flap angle, and frequency ω. The constants Φi can be found in [5] and are
listed in Table 2.1. The Theodorsen function C(k) is a function that, in the frequency
domain, determines the aerodynamic loads for a given airfoil motion. From [8] equations
(2.20), (2.21), and (2.22) can be rewritten as

L(ω) = −πρb2

[
ω2h+

(
ω2b

2
− iωV

)
α− 1

π

(
iωVΦ3 −

ω2b

2
Φ4

)
β

]

− 2πρV b

[
C(k)

iω

]{
ω2h+ (ω2b− iωV )α+

V

π

(
ω2b

2V
Φ2 − iωΦ1

)
β

}
, (2.23)

M(ω) = πρb3

[
−1

2
ω2h+

(
iωV − 3bω2

8

)
α +

(
V 2

πb
Φ5 +

iωV

2π
Φ6 −

ω2b

4π
Φ7

)
β

]
, (2.24)

and

T (ω) = πρb2

{
−ω2h

(
b

2π

)
Φ4 +

(
iωbV

2π
Φ9 −

ω2b2

4π
Φ7

)
α

}

+ πρb2

{(
V 2

π2
Φ10 +

iωV b

2π2
Φ11 −

ω2b2

4π2
Φ12

)
β

}

+ πρV b

[
C(k)

iω

]{(
−ω

2b

π
Φ8

)
h+

[
V b

π

(
iω − ω2b

V

)
Φ8

]
α

}

+ πρV b

[
C(k)

iω

] [
V b

π2

(
iωΦ1 −

ω2b

2V
Φ2

)
Φ8

]
β, (2.25)

respectively.
These oscillatory loads are the Fourier transforms of the transient loads. Therefore,

the inverse Fourier transforms of the oscillatory loads are the transient loads. The inverse
Fourier transform of the terms containing the Theodorsen Function, C(k), are found using
the Convolution Theorem (Theorem 12.4.4 in [6]). The Fourier transform of the Wagner

Function, Φ
(
V t
b

)
, is

F
{

Φ
(
V t

b

)}
=
C(k)

iω
,

where C(k) is the Theodorsen Function.
Applying inverse Fourier transforms to the oscillatory loads yields the transient loads.

Thus, in the time domain the aerodynamic loads have the form (see [10])

L(t) = πρb2

[
ḧ+

b

2
α̈ +

b

2π
Φ4β̈ + V α̇ +

V

π
Φ3β̇

]
+ 2πρV bD(t), (2.26)
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M(t) = πρb3

[
1

2
ḧ(t) +

3b

8
α̈(t) +

b

4π
Φ7β̈(t) + V α̇(t) +

V

2π
Φ6β̇(t) +

V 2

πb
Φ5β(t)

]
, (2.27)

and

T (t) = πρb2

[(
b

2π
Φ4

)
ḧ(t) +

(
b2

4π
Φ7

)
α̈(t) +

(
b2

4π2
Φ12

)
β̈(t) +

(
bV

2π
Φ9

)
α̇(t)

]

+ πρb2

[(
V b

2π2
Φ11

)
β̇(t) +

(
V 2

π2
Φ10

)
β(t)

]
+ πρV bG(t), (2.28)

respectively. The functions D(t) and G(t) are Duhamel integrals given by

D(t) =
∫ t

0
Φ

[
V (t− τ)

b

]
Q′1(τ)dτ, (2.29)

and

G(t) =
∫ t

0
Φ

[
V (t− τ)

b

]
Q′2(τ)dτ, (2.30)

where

Q′1(τ) =
dQ1(τ)

dτ
= h′′(τ) + α′′(τ)b+

b

2π
Φ2β

′′(τ) + V α′(τ) +
V

π
Φ1β

′(τ), (2.31)

Q′2(τ) =
dQ2(τ)

dτ
=
b

π
Φ8h

′′(τ) +
b2

π
Φ8α

′′(τ) +
b2

2π2
Φ2Φ8β

′′(τ) +
V b

π
Φ8α

′(τ) +
V b

π2
Φ1Φ8β

′(τ),

(2.32)
and τ = V t

b
. The moment equation (2.27) does not require a Duhamel integral because the

moment is assumed to be centered at the one-quarter chord of the airfoil.
In order to evaluate the Duhamel integrals, one needs the Wagner Function or a numer-

ical approximation. We use the standard two-term Jones exponential approximation of Φ
given by

Φ
(
V t

b

)
= 1− α1e

−β1V t
b − α2e

−β2V t
b , (2.33)

where, α1 = .165, β1 = .041, α2 = .335, and β2 = .32. Substituting this approximation
into equations (2.26) and (2.28) yields the expressions

D(t) = Q1(t)− α1B1(t)− α2B2(t) (2.34)

and
G(t) = Q2(t)− α1A1(t)− α2A2(t), (2.35)
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where the functions A1(t), A2(t), B1(t), and B2(t) are called aerodynamic lag states. The
aerodynamic lag states are used to describe the ”states” of the fluid and satisfy the first-
order differential equations given by

Ḃ1(t) +

(
β1V

b

)
B1(t) = Q̇1(t),

Ḃ2(t) +

(
β2V

b

)
B2(t) = Q̇1(t),

Ȧ1(t) +

(
β1V

b

)
A1(t) = Q̇2(t),

Ȧ2(t) +

(
β2V

b

)
A2(t) = Q̇2(t). (2.36)

In the equations (2.31) and (2.32), we substitute t for τ and integrate with respect to t to
obtain

Q1(t) = ḣ(t) + α̇(t)b+
b

2π
Φ2β̇(t) + V α(t) +

V

π
Φ1β(t) (2.37)

and

Q2(t) =
b

π
Φ8ḣ(t) +

b2

π
Φ8α̇(t) +

b2

2π2
Φ2Φ8β̇(t) +

V b

π
Φ8α(t) +

V b

π2
Φ1Φ8β(t). (2.38)

Therefore, the aerodynamic loads are given by

L(t) = πρb2(b)
ḧ(t)

b
+ πρb2

(
b

2

)
α̈(t) + πρb2

(
b

2π
Φ4

)
β̈(t) + πρb2(2V )

ḣ(t)

b
+ πρb2(3V )α̇(t)

+ πρb2V

π
(Φ3 + Φ2)β̇(t) + πρb2

(
2V 2

b

)
α(t) + πρb2

(
2V 2

πb
Φ1

)
β(t)

− πρb2
(

2V α1

b

)
B1(t)− πρb2

(
2V α2

b

)
B2(t), (2.39)

M(t) = πρb2

[(
b2

2

)
ḧ(t)

b
+

(
3b2

8

)
α̈(t) +

(
b2

4π
Φ7

)
β̈(t) + (V b)α̇(t)

]

+ πρb2

[(
V b

2π
Φ6

)
β̇(t) +

(
V 2

π

)
β(t)

]
, (2.40)

and

T (t) = πρb2

[(
b2

2π
Φ4

)
ḧ(t)

b
+

(
b2

4π
Φ7

)
α̈(t) +

(
b2

4π2
Φ12

)
β̈(t) +

(
V b

π
Φ8

)
ḣ(t)

b

]
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+ πρb2

[[
V b

π

(
Φ9

2
+ Φ8

)]
α̇(t) +

[
V b

2π2
(Φ11 + Φ2Φ8)

]
β̇(t) +

(
V 2

π
Φ8

)
α(t)

]

+ πρb2

[[
V 2

π
(Φ10 + Φ1Φ8)

]
β(t)−

(
V α1

b

)
A1(t)−

(
V α2

b

)
A2(t)

]
, (2.41)

respectively.

Φ1(φ) = π − φ+ sin φ
Φ2(φ) = (π − φ)(1 + 2 cosφ) + sin φ(2 + cosφ)
Φ3(φ) = π − φ+ sin φ cosφ
Φ4(φ) = (π − φ)2 cosφ+ sinφ2

3
(2 + cos2 φ)

Φ5(φ) = sinφ(1− cos φ)
Φ6(φ) = 2(π − φ) + sinφ2

3
(2− cosφ)(1 + 2 cosφ)

Φ7(φ) = (π − φ)(1
2

+ 2 cosφ) + sinφ1
6
(8 + 5 cosφ+ 4 cos2 φ− 2 cos3 φ)

Φ8(φ) = (π − φ)(−1 + 2 cosφ) + sinφ(2− cosφ)
Φ9(φ) = (π − φ)(1 + 2 cosφ) + sin φ1

3
(2 + 3 cosφ+ 4 cos2 φ)

Φ10(φ) = Φ31(φ) · Φ5(φ)
Φ11(φ) = Φ2(φ) · Φ3(φ)
Φ12(φ) = (π − φ)2(1

2
+ 4 cos2 φ) + (π − φ) sinφ cosφ(7 + 2 cos2 φ)

+ sin2 φ(2 + 5
2

cos2 φ)
Φ31(φ) = π − φ− sinφ

Table 2.1: List of Φi’s
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Figure 2.1: The 2-D cross-section of a typical airfoil.
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Chapter 3

The First Order System

The goal of this chapter is to reduce our second order system to a first order system of the
form

ẋ(t) =

 Ÿ (t)

Ẏ (t)
ẋA(t)

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


 Ẏ (t)
Y (t)
xA(t)

+B[u(t)] (3.1)

where
Y (t) =

[
h(t)
b

α(t) β(t)
]T

(3.2)

and
xA(t) =

[
B1(t) B2(t) A1(t) A2(t)

]T
. (3.3)

To complete the model we start with the equation

M ′Ÿ (t) +KY (t) =

 −L(t)
−M(t)

−[T (t) + TS(t)]

 , (3.4)

and use the representations for L(t), M(t), and T (t) given by equations (2.39), (2.40), and
(2.41) to rewrite equation (3.4) in the form

M ′Ÿ +KY = −πρb2
[
Z1Ÿ + Z2Ẏ + Z3Y + Z4xA

]
. (3.5)

Here,

Z1 =

 b b
2

b
2π

Φ4
b2

2
3b2

8
b2

4π
Φ7

b2

2π
Φ4

b2

4π2 Φ7
b2

4π
Φ12

 , (3.6)

Z2 =


2V 3V V

π
(Φ3 + Φ2)

0 V b V b
2π

Φ6
V b
π

Φ8
V b
π

(
Φ9

2
+ Φ8

)
V b
2π2 (Φ11 + Φ2Φ8)

 , (3.7)
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Z3 =

 0 2V 2

b
2V 2

πb
Φ1

0 0 V 2

π
Φ5

0 V 2

π
Φ8

V 2

π2 (Φ10 + Φ1Φ8)

 , (3.8)

and

Z4 =


−2V α1

b
−2V α2

b
0 0

0 0 0 0
0 0 −V α1

b
−V α2

b

 . (3.9)

The matrices Zi, i=1, 2, 3, 4 are found by using the equation −L(t)
−M(t)

−(T (t) + TS(t))

 = −πρb2
[
Z1Ÿ + Z2Ẏ + Z3Y + Z4xA

]
(3.10)

and moving all of the coefficients of Ÿ into Z1, all of the coefficients of the Ẏ into Z2, all
of the coefficients of Y into Z3, and all of the coefficients of xA into Z4. Solving equation
(3.5) for Ÿ yields the second order system

Ÿ = −[M ′ + πρb2Z1]−1[πρb2Z2Ẏ + (K + πρb2Z3)Y + πρb2Z4xA]. (3.11)

This system yields the first six submatrices of the A matrix.
To find the elements of the last row of the A matrix, we augment the system by adding

the equations in (2.36) to (3.11). From [8], the first order differential equation for the
aerodynamic lag states are written as

ẋA =


Ḃ1

Ḃ2

Ȧ1

Ȧ2

 =


−β1V
b

0 0 0
0 −β2V

b
0 0

0 0 −β1V
b

0
0 0 0 −β2V

b



B1

B2

A1

A2

+


Q̇1

Q̇1

Q̇2

Q̇2

 . (3.12)

Equations (2.31) and (2.32) provide representations of Q̇1(t) and Q̇2(t) in terms of Ÿ and
Ẏ . In particular,

Q̇1 =
[
R1 R2 R3

] 
ḧ
b

α̈

β̈

+
[

0 R4 R5

] 
ḣ
b

α̇

β̇

 (3.13)

and

Q̇2 =
[
R6 R7 R8

] 
ḧ
b

α̈

β̈

+
[

0 R9 R10

] 
ḣ
b

α̇

β̇

 , (3.14)
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respectively. We want to reduce Q̇1 and Q̇2 to first order equations. Use the representation
of Ÿ from equation (3.1) and substitute for Ÿ in terms of Ẏ , Y , and xA into equations
(3.13) and (3.14) to obtain

Q̇1 =
[
R1 R2 R3

]A11


ḣ
b

α̇

β̇

+A12


h
b

α
β

+A13


B1

B2

A1

A2


+

[
0 R4 R5

] 
ḣ
b

α̇

β̇


(3.15)

and

Q̇2 =
[
R6 R7 R8

]A11


ḣ
b

α̇

β̇

+A12


h
b

α
β

+A13


B1

B2

A1

A2


+

[
0 R9 R10

] 
ḣ
b

α̇

β̇

 .
(3.16)

R1 = b2

V
R6 = b2

πV
Φ8

R2 = b2

V
R7 = b3

πV
Φ8

R3 = b2

2πV
R8 = b3

2π2V
Φ2Φ8

R4 = V R9 = V b
π

Φ8

R5 = V
π

Φ1 R10 = V b
π2 Φ1Φ8

Table 3.1: List of Ri’s

The Ri’s are listed in Table 3.1 and are found by comparing the Q̇i’s with the Q′i’s. Now,
using equations (3.12), (3.15), and (3.16) collecting all of the Ẏ coefficients, Y coefficients,
and xA coefficients, we obtain the submatrices A31, A32, and A33, respectively. Hence, the
10× 10 A matrix in equation (3.1) is be constructed using the following submatrices:

A11 = −[M ′ + πρb2Z1]−1πρb2Z2, (3.17)

A12 = −[M ′ + πρb2Z1]−1(K + πρb2Z3), (3.18)

A13 = −[M ′ + πρb2Z1]−1πρb2Z4, (3.19)

A21 = [I3×3], A22 = [03×3], A23 = [03×4], (3.20)

A31 =



[
R1 R2 R3

]
A11 +

[
0 R4 R5

][
R1 R2 R3

]
A11 +

[
0 R4 R5

][
R6 R7 R8

]
A11 +

[
0 R9 R10

][
R6 R7 R8

]
A11 +

[
0 R9 R10

]

 , (3.21)
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A32 =



[
R1 R2 R3

]
A12[

R1 R2 R3

]
A12[

R6 R7 R8

]
A12[

R6 R7 R8

]
A12

 , (3.22)

and

A33 =




−β1V
b

0 0 0
0 −β2V

b
0 0

0 0 −β1V
b

0
0 0 0 −β2V

b

+



[
R1 R2 R3

]
A13[

R1 R2 R3

]
A13[

R6 R7 R8

]
A13[

R6 R7 R8

]
A13



 (3.23)

where A11 is 3× 3, A12 is 3× 3, A13 is 3 × 4, A31 is 4× 3, A32 is 4× 3, and A33 is 4× 4.
The 10× 1 input matrix B is given by

B =
1

Iβ



(M ′)−1

 0
0
1


0
0
0
0
0
0
0



. (3.24)
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Chapter 4

Numerical Simulations

We now test the model to see if it behaves as as a reasonable model of flutter. The constants
used are listed in Table 4.1. The open loop system in equation (3.1) will be simulated
using velocities of 950 feet/sec, 975.6 feet/sec, and 1000 feet/sec. The velocity V f = 975.6
feet/sec is the flutter speed. The flutter speed is the speed at which the open loop system
becomes marginally stable. In other words, the system is neither asymptotically stable nor
unstable. We solved the systems on 5 second time intervals. The plunge, pitch, and flap
angle will be graphed for all simulations. Also, we plot graphs of the plunge rate, pitch rate,
flap rate, and aerodynamic lag states. However, we shall concentrate on the three degrees
of freedom. The units of the plunge are feet and the units for the pitch and flap angle are
radians (1 radian ≈ 57.3 degrees). The units of the plunge rate are feet/sec and the units
of pitch rate and flap rate are radians/sec. The aerodynamic lag states are dimensionless.
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α1 = .0165
α2 = .335
b = 3 feet
β1 = .041
β2 = .32
c = 1.0

Iα = 6.04868 slug−feet2
feet

Iβ = .151217 slug−feet2
feet

Kα = Iα ∗ 1002

Kβ = Iβ ∗ 5002

Kh = m ∗ 502

m = 2.6883 slugs/feet
ρ = .002378 ∗ 1
Sα = 1.61298 ∗ 1.0 slugs
Sβ = .10081 ∗ 1.0 slugs
V = 950, 975.6, 1000 feet/sec
V f = 975.6 feet/sec

Table 4.1: List of Constants
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4.1 Open Loop Simulations

Since A is a 10 × 10 matrix and x is a 10× 1 column vector, the initial condition, x0 is a
10× 1 column vector. The following x0 is used in these simulations:

x0 =



.05
−.01
.005
−.1
.001
−.0001

0
0
0
0



. (4.1)

We analyze the stability of the system by looking at the eigenvalues of the system matrix
A. The eigenvalues of an n× n matrix A are the roots of the characteristic polynomial

p(λ) = det(A− λI) (4.2)

where I is the corresponding n×n identity matrix. If the real parts of all of the eigenvalues
of A are negative, i.e., the eigenvalues are in the open left half plane, then the system
ẋ(t) = Ax(t) is asymptotically stable.

At V = 950 feet/sec, the plunge, pitch, flap angle, their respective velocities, and the
aerodynamic lag states asymptotically approach zero as shown in Figures (4.1), (4.2), (4.3),
and (4.4). At t = 2 seconds, almost all oscillations have disappeared. The eigenvalues of
this system are given in Table 4.2. Note that for V = 950 feet/sec the real parts of the
eigenvalues are negative.
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Figure 4.1: The plunge, pitch, and flap angle for the open loop system: Stable, V=950.

λ1 = −6.20 + 563.58i
λ2 = −6.20− 563.58i
λ3 = −2.34 + 81.63i
λ4 = −2.34− 81.63i
λ5 = −17.84 + 66.81i
λ6 = −17.84− 66.81i
λ7 = −93.18
λ8 = −12.98
λ9 = −101.33
λ10 = −12.98

Table 4.2: Eigenvalues of open loop system for V = 950.
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Figure 4.2: The velocities of the plunge, pitch, and flap angle for the open loop system:
Stable, V=950.
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Figure 4.3: The aerodynamic lag states B1 and B2 for the open loop system: Stable,
V=950.
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Figure 4.4: The aerodynamic lag states A1 and A2 for the open loop system: Stable,
V=950.
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Figure 4.5: The plunge, pitch, and flap angle for the open loop system: Marginally stable,
V=Vf.
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Figure 4.6: The velocities of the plunge, pitch, and flap angle for the open loop system:
Marginally Stable, V=Vf.
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Figure 4.7: The aerodynamic lag states B1 and B2 for the open loop system: Marginally
Stable, V=Vf.
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Figure 4.8: The aerodynamic lag states A1 and A2 for the open loop system: Marginally
Stable, V=Vf.
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At V = V f = 975.6 feet/sec, the plunge, pitch, flap angle, their respective deriva-
tives, and the aerodynamic lag states all settle into harmonic oscillations as shown in
Figures (4.5), (4.6), (4.7), and (4.8). After about .5 seconds, the plunge oscillates between
-.075 feet and .075 feet and the pitch oscillates between -.075 and .075 radians. The flap
angle settles into oscillations between ±.01 radians. This means that the plunge, pitch,
and flap angle oscillate at this constant rate as long as the airplane is flown at this speed.
These oscillations never disappear since the system is marginally stable. The eigenvalues
of the system, shown in Table 4.3, are all in the open left half plane. However, λ3 and λ4

have zero real parts.

λ1 = −6.38 + 563.35i
λ2 = −6.38− 563.35i
λ3 = 0.00 + 80.33i
λ4 = 0.00− 80.33i
λ5 = −20.92 + 67.37i
λ6 = −20.92− 67.37i
λ7 = −95.19
λ8 = −13.32
λ9 = −104.04
λ10 = −13.33

Table 4.3: Eigenvalues of open loop system for V=Vf=975.6.

At V = 1000 feet/sec, a velocity above the flutter speed, the plunge, pitch, flap angle,
their respective velocities, and the aerodynamic lag states continue to increase without
bound with increasing time as shown in Figures (4.9), (4.10), (4.11), and (4.12). After
about 4 seconds, the plunge of the wing is oscillating at an amplitude of about 500 feet.
The pitch grows to an amplitude of about 500 radians and the flap angle has an amplitude
of about 175 radians. Clearly, the model is no longer valid and in a real system, the airfoil
would have become unstable and wing separation would have occured. In Table 4.4, we
see that λ3 and λ4 have moved to the right half plane.
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Figure 4.9: The plunge, pitch, and flap angle for the open loop system: Unstable, V=1000.

λ1 = −6.56 + 563.13i
λ2 = −6.56− 563.13i
λ3 = 2.09 + 79.61i
λ4 = 2.09− 79.61i
λ5 = −23.78 + 67.33i
λ6 = −23.78− 67.33i
λ7 = −97.10
λ8 = −13.66
λ9 = −106.67
λ10 = −13.67

Table 4.4: Eigenvalues of open loop system for V=1000.
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Figure 4.10: The velocities of the plunge, pitch, and flap angle for the open loop system:
Unstable, V=1000.
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Figure 4.11: The aerodynamic lag states B1 and B2 for the open loop system: Unstable,
V=1000.

31



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1
x 10

5 Aerodynamic Lag State A1, V=1000, open loop

time in seconds

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5
x 10

4 Aerodynamic Lag State A2, V=1000, open loop

time in seconds

Figure 4.12: The aerodynamic lag states A1 and A2 for the open loop system: Unstable,
V=1000.
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Chapter 5

The LQR Problem

In this chapter, the optimal Linear Quadratic Regulator control is discussed and applied to
the flutter suppression problem. If V > V f = 975.6 feet/sec, then the airfoil is unstable.
In this case, the objective is to find a control funtion u(t) on [0,∞] to stabilize the system.
From [11], a system is stabilizable if there exists a state feedback control u = Kcx such
that the closed loop system is exponentially stable. If the system is stabilizable, then the
LQR problem has a solution.

The idea of feedback control is simple. Take the state, multiply it by a gain matrix
denoted by Kc, and add it back to the system. In particular, given the system,

ẋ(t) = Ax(t) +Bu(t) (5.1)

we want to find the control input

u(t) = −Kcx(t) (5.2)

such that the closed loop system

ẋ(t) = [A−BKc]x(t) (5.3)

is exponentially stable. This means that there exists an M > 0 and a γ > 0 such that if
x(t) is the solution to the closed loop system with x(0) = x0, then

‖x(t)‖ ≤Me−γt‖x0‖. (5.4)

If such a Kc exists, then (5.1) is said to be stabilizable.

5.1 LQR Control

One way of finding Kc is by using Linear-Quadratic Regulator (LQR) design. We will state
our problem as follows.
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Consider the system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (5.5)

We seek a control u?(t) that minimizes the performance measure

min
u
J =

∫ ∞
0
{〈Qx(t), x(t)〉 + 〈Ru(t), u(t)〉}dt (5.6)

where x(t) is the solution of (5.5). Here Q = QT ≥ 0 and R = RT > 0 are weighting
matrices. It is well known that if an optimal control u?(t) exists, it has the form

u?(t) = −Kcx(t), (5.7)

where Kc is a constant gain matrix. Moreover, the closed loop system

ẋ(t) = Ax(t)−BKcx(t) = (A−BKc)x(t) (5.8)

is stable. The assumption that R > 0 ensures that the energy of the control is finite. The
following result may be found in Dorato, Abdallah, and Cerone (see [3], p.21 and 23).

Existence and Stability of the Steady-State LQR Solution: Given the LQR problem
with R > 0, and Q = CTC, where the pair (A,C) is detectable and the pair (A,B) is
stabilizable, it follows that a solution to the steady-state LQR problem exists. In particular,
there exists a unique positive semidefinite solution P̄ to the algebraic Riccati equation

0 = ATP + PA+Q− PBR−1BTP, (5.9)

and if
Kc = R−1BT P̄ , (5.10)

then the closed loop system (5.8) is asymptotically stable.

In order to apply this result, we need to show that the system is stabilizable and that
(A,C) is detectable. Since C = Q = I, it follows that for any velocity V , (A,C) is
detectable. If V < V f , then the open loop system is stable, hence (A,B) is stabilizable
with K = [010×1]. The only case that needs attention is the problem of stabilizability for
velocities V ≥ V f .

The pair (A,B) is stabilizable if there exists a state feedback control u = −KV x at a
specific V such that (A− BKV ) is stable. This means that there exists a gain martix KV

so that the eigenvalues of (A − BKV ) have negative real parts. For V = 1000 feet/sec >
Vf and the parameters listed in Table 4.1, let

KV =
[

9.8 −39.9 −1.6 −1279.7 −804 −650.2 .1 .9 0 .1
]
. (5.11)
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λ1 = -44.61 + 563.47i
λ2 = -44.61 - 563.47i
λ3 = -2.77 + 79.33i
λ4 = -2.77 - 79.33i
λ5 = -23.93 + 67.29i
λ6 = -23.93 - 67.29i
λ7 = -96.99
λ8 = -13.66
λ9 = -106.67
λ10 = -13.67

Table 5.1: Eigenvalues of (A−BKV ): V=1000.

From Table 5.1, we see the eigenvalues of (A−BKV ) have negative real parts. Hence,
the pair (A,B) is stabilizable. For V = Vf = 975.6 feet/sec let

KV =
[
.547 −1.5529 .6858 −38.6409 −39.4681 −27.4179 .0017 .0349 .0001 .0173

]
.

(5.12)

λ1 = -29.05 + 562.64i
λ2 = -29.05 - 562.64i
λ3 = -.15 + 80.32i
λ4 = -.15 - 80.32i
λ5 = -20.95 + 67.37i
λ6 = -20.95 - 67.37i
λ7 = -95.2
λ8 = -13.33
λ9 = -104.06
λ10 = -13.33

Table 5.2: Eigenvalues of (A−BKV ): V=Vf=975.6.

Again, we see from Table 5.2 that (A−BKV ) is a stable matrix and (A,B) is stabilizable.

For V = V f and V = 1000 feet/sec, we now know that an optimal controller exists. If
P is the positive definite solution of the algebraic Riccati equation

0 = ATP + PA+Q− PBR−1BTP, (5.13)

then define
Kc = R−1BTP. (5.14)
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If u(t) is given as
u(t) = −Kcx(t), (5.15)

then the closed loop system has the form

ẋ(t) = (A−BKc) x(t). (5.16)

5.2 Closed Loop Simulations: Control Initiated at t=0

We now turn to the closed loop simulations for the velocities V = 950 feet/sec, V = V f =
975.6 feet/sec, and V = 1000 feet/sec. The constants used will be the same as the ones
used for the open loop system in Chapter 4. For V = 950 feet/sec, the open loop system is
stable. In Figures (5.1)-(5.4) the performance of the closed loop system is comparable to
that of the open loop system. The controlled system dampens oscillations slightly faster
than does the uncontrolled system. For V = V f = 975.6 feet/sec, the open loop system is
marginally stable. The closed loop system shown in Figures (5.5)-(5.8) is asymptotically
stable. The performance is better in the controlled system. For V = 1000 feet/sec, the
open loop system is unstable. The closed loop system shown in Figures (5.9)-(5.12) is again
asymptotically stable. Much better performance is obtained using the LQR controller than
using the open loop system. As shown in Figure (5.1), Figure (5.5), and Figure (5.9), the
pitch, plunge, and flap angle asymptotically approach zero by 1.5 seconds. The velocities
of the pitch, plunge, and flap angle and the aerodynamic lag states also asymptotically
approach zero. Notice the small spikes near t = 0 seconds in the graphs of the flap angle
and flap angle rate for all three velocities. This motion indicates that the controller requires
fast responses. However, the systems are stabilized in about 1.5 seconds. Clearly, the LQR
control performs well and since it uses full state feedback, it is robust. The eigenvalues
for the closed loop system at the various velocities are found in Table 5.3, Table 5.4, and
Table 5.5. They show that the closed loop system is stable at each of these velocities.
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Figure 5.1: The plunge, pitch, and flap angle for the closed loop system: Stable, V=950.
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Figure 5.2: The velocities of the plunge, pitch, and flap angle for the closed loop system:
Stable, V=950.
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Figure 5.3: The aerodynamic lag states B1 and B2 for the closed loop system: Stable,
V=950.
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Figure 5.4: The aerodynamic lag states A1 and A2 for the closed loop system: Stable,
V=950.

40



λ1 = -45.47 + 563.84i
λ2 = -45.47 - 563.84i
λ3 = -2.87 + 81.37i
λ4 = -2.87 - 81.37i
λ5 = -17.95 + 66.78i
λ6 = -17.95 - 66.78i
λ7 = -93.06
λ8 = -12.98
λ9 = -101.33
λ10 = -12.98

Table 5.3: Eigenvalues of closed loop system for V=950.
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Figure 5.5: The plunge, pitch, and flap angle for the closed loop system: Stable, V=Vf.
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Figure 5.6: The velocities of the plunge, pitch, and flap angle for the closed loop system:
Stable, V=Vf.
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Figure 5.7: The aerodynamic lag states B1 and B2 for the closed loop system: Stable,
V=Vf.
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Figure 5.8: The aerodynamic lag states A1 and A2 for the closed loop system: Stable,
V=Vf.
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λ1 = -45.02 + 563.66i
λ2 = -45.02 - 563.66i
λ3 = -1.75 + 80.07i
λ4 = -1.75 - 80.07i
λ5 = -21.06 + 67.33i
λ6 = -21.06 - 67.33i
λ7 = -95.07
λ8 = -13.32
λ9 = -104.04
λ10 = -13.33

Table 5.4: Eigenvalues of cloosed loop system for V=Vf=975.6.
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Figure 5.9: The plunge, pitch, and flap angle for the closed loop system: Stable, V=1000.

45



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

10
plunge rate, V=1000, closed loop

time in seconds

fe
et

/s
ec

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5
pitch rate, V=1000, closed loop

time in seconds

ra
di

an
s/

se
c

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

10
flap angle rate, V=1000, closed loop

time in seconds

ra
di

an
s/

se
c

Figure 5.10: The velocities of the plunge, pitch, and flap angle for the closed loop system:
Stable, V=1000.
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Figure 5.11: The aerodynamic lag states B1 and B2 for the closed loop system: Stable,
V=1000.
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Figure 5.12: The aerodynamic lag states A1 and A2 for the closed loop system: Stable,
V=1000.
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λ1 = -44.61 + 563.47i
λ2 = -44.61 - 563.47i
λ3 = -2.77 + 79.33i
λ4 = -2.77 - 79.33i
λ5 = -23.93 + 67.29i
λ6 = -23.93 - 67.29i
λ7 = -96.99
λ8 = -13.66
λ9 = -106.67
λ10 = -13.67

Table 5.5: Eigenvalues of closed loop system for V=1000.
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5.3 Closed Loop Simulations: Control Initiated at t>0

Here we investigate the system response when the control is initiated at a time greater than
t = 0 seconds. In particular, we are interested in performance when the system is flying
beyond the flutter speed and the control is delayed by a few seconds. Consequently, we
concentrate on the case V = 1000 feet/sec, a velocity above the flutter speed. Of course,
when the control is turned on at t = 0 seconds, the closed loop responses are shown in
Figures (5.9)-(5.12). If we initiate the control at .5 seconds as shown in Figures (5.13)-
(5.16), the flap has to exert a small amount of force to control the plunge and pitch. The
oscillations disappear at t = 2 seconds. If we wait 1 second before the control is applied
as shown in Figures (5.17)-(5.20), the plunge has oscillates between ±.5 feet and the pitch
has oscillates between ±.5 radians. Here the flap has to work harder to control the wing.
The sharp spikes in the flap angle rate in Figure (5.18) show that the flap must jump to
almost 175 radians/sec very quickly. This may begin to cause some problems for the flap
but is still realistic. The oscillations disappear at t = 2.5 seconds. If the control is delayed
until t = 2 seconds as shown in Figures (5.21)-(5.24), then it is likely the system would
fail. As shown in Figure (5.21), by the time the control is applied, the plunge is oscillating
between -4 feet and 4 feet and the pitch is oscillating between 4 radians and -4 radians.
This means that the wing is oscillating up and down 4 feet and twisting back and forth
a displacement of 4 radians. Figure (5.22) shows that the velocity of the flap would have
to increase to 500 radians/sec at t = 2 seconds. For this 6 foot airfoil, wing separation
would have occurred by this time. The flap would have to displace about 2.5 radians to
control the wing, and that is not realistic. These results show that delaying the control
until 2 seconds is too long. Therefore, it follows that if the controller is turned on much
later than 1 second, then the wing would separate from the fuselage. Although we have
presented the simulation results for one specific velocity V=1000 feet/sec, we conducted
simular numerical experiments for other velocities and control times. The results presented
here are typical of all such runs.
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Figure 5.13: The plunge, pitch, and flap angle for the closed loop system with the control
initiated at t=.5 seconds: V=1000.
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Figure 5.14: The velocities of the plunge, pitch, and flap angle for the closed loop system
with the control initiated at t=.5 seconds: V=1000.
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Figure 5.15: The aerodynamic lag states B1 and B2 for the closed loop system with the
control initiated at t=.5 seconds: V=1000.
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Figure 5.16: The aerodynamic lag states A1 and A2 for the closed loop system with the
control initiated at t=.5 seconds: V=1000.
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Figure 5.17: The plunge, pitch, and flap angle for the closed loop system with the control
initiated at t=1 second: V=1000.
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Figure 5.18: The velocities of the plunge, pitch, and flap angle for the closed loop system
with the control initiated at t=1 second: V=1000.
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Figure 5.19: The aerodynamic lag states B1 and B2 for the closed loop system with the
control initiated at t=1 second: V=1000.
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Figure 5.20: The aerodynamic lag states A1 and A2 for the closed loop system with the
control initiated at t=1 second: V=1000.
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Figure 5.21: The plunge, pitch, and flap angle for the closed loop system with the control
initiated at t=2 seconds: V=1000.
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Figure 5.22: The velocities of the plunge, pitch, and flap angle for the closed loop system
with the control initiated at t=2 seconds: V=1000.
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Figure 5.23: The aerodynamic lag states B1 and B2 for the closed loop system with the
control initiated at t=2 seconds: V=1000.
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Figure 5.24: The aerodynamic lag states A1 and A2 for the closed loop system with the
control initiated at t=2 seconds: V=1000.
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Chapter 6

Conclusions

In this paper we developed a state space model for the typical aeroelastic airfoil and in-
vestigated the application of LQR control to the flutter suppression problem. We started
with Newton’s second law of motion and the moment equation for a rigid body in planar
motion. By manipulating and linearizing, the equations were transformed into a second
order system. These second order equations were then reduced to a first order system of
the form ẋ = Ax+Bu where A is a 10× 10 partitioned matrix and B is a 10× 1 column
matrix. This open loop system was simulated at speeds below, equal to, and above the
flutter speed and the corresponding eigenvalues and dynamic responses were analyzed.

Linear-Quadratic Regulator theory was used to stabilize this system. This closed loop
system was also analyzed at speeds below, equal to, and above the flutter speed. It was
shown that even above the flutter speed, the LQR controller performs well. We also found
that the controller does not have to be applied to the system at t = 0 seconds. For the
specific speed of V=1000 feet/sec the control could be activated anytime up to t = 1 second
and still stabilize the system. If the control is initiated later, say at t = 2 seconds, the
system is probably going to become unstable and wing failure will occur.

This work was a preliminary study in modeling and control motivated by York’s the-
sis [10]. The derivation was repeated to correctly identify all of the system’s parameters.
Further study should be done in describing the motions of the airfoil more explicitly. This
would provide a more realistic model. Also, by using more degrees of freedom and better
aerodynamics, we could more accurately model the movement of an actual wing. Var-
ious approximations of the Wagner Function should be tested to determine which most
accurately describes the aerodynamic loads.

LQR control is attractive but unrealistic. Even though, as discussed in [3], LQR is a
very robust control law, it is impractical. The LQR controller requires that all states be
known at all times in order to use state feedback. In the real world, there is the problem of
sensor noise and it is not reasonable to expect that the 10 states used here can be sensed.
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In particular, the aerodynamic lag states are not physical states and cannot be sensed.
Linear-Quadratic Gaussian (LQG) control and H∞ control can be used to achieve this goal
and is the subject of Bail’s thesis [2]. In [2], Bail applies LQG and H∞ control to the two-
dimensional airfoil problem presented in this paper. These methods use state estimators to
compensate for the lack of information. The results in [2] are very encouraging and suggest
that robust active flutter control is possible.
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Appendix A

Nomenclature

A system matrix for first order differential equation
~ac.m. acceleration
Ai aerodynamic lag state variables
Aii submatrix of A
AT transpose of a matrix A
A∗ conjugate transpose of a matrix A
α pitch angle
Bi aerodynamic lag state variables
b normalizing constant
β flap angle
c nondimensionalized distance to flap hinge line
C state matrix
C(k) Theodorsen function
d nondimensionalized distance to elastic axis from leading edge
D control input matrix
~F force
F {·} Fourier transform of {·}
Φ
(
V t
b

)
Wagner function

g degree of freedom
G amplitude of g
h position with respect to plunge
i

√
−1

Iα inertia of pitch angle
Iβ inertia of flap angle
Ic.m. inertia
IG moment of inertia per unit span of trailing edge flap point G
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IQ inertia per unit length of total section
K stiffness matrix
Kc gain matrix
Kα stiffness of pitch spring
Kβ stiffness of flap spring
Kh stiffness of plunge
l distance to trailing-edge flap center of gravity from c(ft.)
L lift
L1 lift per unit span on main section (body 1)of airfoil
L2 lift per unit span on trailing-edge flap (body 2) of the airfoil
M pitching moment
M1 pitching moment per unit span of main section (body 1) about 1

4
chord

M2 pitching moment per unit span of trailing-edge flap (body 2) about c
M ′ mass matrix
Mc.m. momentum
m mass of airfoil
m1 mass of main body (body 1) of the airfoil in mass-spring system
m2 mass of trailing edge control surface (body 2) in mass-spring system
ρ air density
qy vertical flap hinge force
S static moment
Sα static moment of pitch angle
Sβ static moment of flap angle
T torque of flap spring
t time
u control vector
V velocity
V f flutter speed
ω̇ angular acceleration
x state vector
xA column vector of aerodynamic lag state variables
x1 nondimensionalized distance of main section center of gravity
Y column vector of plunge, pitch, and flap displacement
z controlled output

()′ d()
dτ

()′′ d2()
dτ2

(̇) d()
dt

(̈) d2()
dt2
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Appendix B

MATLAB Codes

LQROPEN.M

%Runs the open loop system, xdot=Ax+Bu, and prints the

%graps of the plunge, pitch, and flap angle. Also

%states the eigenvalues of A.

runab;

eig(A);

global A ;

[t,w]=ode45(’flutrhs’,0,5,w0);

subplot(3,1,1), plot(t,w(:,4))

title(’plunge, V=1000, open loop’)

xlabel(’time in seconds’)

ylabel(’feet’)

subplot(3,1,2), plot(t,w(:,5))

title(’pitch, V=1000, open loop’)

xlabel(’time in seconds’)

ylabel(’radians’)

subplot(3,1,3), plot(t,w(:,6))

title(’flap angle, V=1000, open loop’)

xlabel(’time in seconds’)

ylabel(’radians’)

RUNAB.M

%Calls and runs subprograms to build system.

%The w0’s are the initial conditions.
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cnstnt

phi

tees

arrs

ells

emms

zees

mkprime

biga

bmatrix

gmatrix

save bmatrix B

save amatrix A V

save gmatrix G

clear

load amatrix

load bmatrix

load gmatrix

load gusty

w0=zeros(10,1);

w0(1)=.05;

w0(2)=-.01;

w0(3)=.005;

w0(4)= -.1;

w0(5)=.001;

w0(6)=-.0001;

FLUTRHS.M

%Solves the right hand side, Ax.

function y=flutrhs(t,w)

global A

y=A*w;

CNSTNT.M

%Constants for the flutter problem.
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b = 3;

c = 1;

V = 1000

%V = 975.6

%Vflutter at .6 flap = 975.6

m =2.6883;

Row = .002378*1;

ALPHA1 = .0165;

ALPHA2 = .335;

SALPHA = 1.61298*1.0;

SBETA = .10081*1.0;

IALPHA = 6.04868;

IBETA = .151217;

KH = m*50^2;

BETA1 = .041;

BETA2=.32;

KALPHA = IALPHA*100^2;

KBETA = IBETA*500^2;

Vflutter = 975.6

gvert = 1;

ghoriz = 1;

PHI.M

%Calculates phi’s and sets the location of the flap angle.

xflap=.6

Phi=acos(-xflap)

%Phi = pi-.75

%xflap=-cos(Phi)

Phi1 = pi - Phi + sin(Phi);

Phi2 = (pi - Phi)*(1 + 2*cos(Phi)) + sin(Phi)*(2 + cos(Phi));

Phi3 = pi - Phi + sin(Phi)*cos(Phi);

Phi4 = (pi - Phi)*2*cos(Phi) + sin(Phi)*2/3*(2 + (cos(Phi))^2);

Phi5 = sin(Phi)*(1 - cos(Phi));

Phi6 = 2*(pi - Phi) + sin(Phi)*2/3*(2-cos(Phi))*(1 + 2*cos(Phi));

Phi7 = (pi - Phi)*(.5 + 2*cos(Phi)) + sin(Phi)*(1/6)*(8 + 5*cos(Phi)

+ 4*cos(Phi)^2 - 2*cos(Phi)^3);

Phi8 = (pi - Phi)*(-1 + 2*cos(Phi)) + sin(Phi)*(2-cos(Phi));

Phi9 = (pi - Phi)*(1 + 2*cos(Phi)) + sin(Phi)*1/3*(2 + 3*cos(Phi)
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+ 4*(cos(Phi))^2);

Phi31= pi - Phi - sin(Phi);

Phi10= Phi31 * Phi5;

Phi11= Phi2 * Phi3;

Phi12= (pi - Phi)^2 *(.5 + 4*cos(Phi)^2)

+(pi - Phi) *sin(Phi)*cos(Phi)*(7 + 2*(cos(Phi))^2)

+ (sin(Phi))^2*(2 + 2.5*(cos(Phi))^2);

TEES.M

%Generates T’s in the Z matrices.

%Phi’s defined in PHI.M.

%ALPHA1, ALPHA2, V, b defined in CNSTNT.M.

TH2 = (b^2/(2*pi))*Phi4;

TALPHA2 = (b^2/(4*pi^2))*Phi7;

TBETA2 = (b^2/(4*pi^2))*Phi12;

TH1 = (V*b/pi)*Phi2;

TALPHA1 = (V*b/pi)*(Phi9/2 + Phi8);

TBETA1 = (V*b/(2*pi^2))*(Phi11 + Phi2*Phi8);

TH0 = 0;

TALPHA0 = (V^2/pi)*Phi8;

TBETA0 = (V^2/pi^2)*(Phi10 + Phi1*Phi8);

TA1 = -V*ALPHA1/b;

TA2 = -V*ALPHA2/b;

ARRS.M

%Generates R values for the A matrix.

%V, b defined in CNSTN.M.

%Phi’s defined in PHI.M.

%R’s called from BIGA.M.

R1 = b^2/V;

R2 = b^2/V;

R3 = (b^2/(2*pi*V))*Phi2;

R4 = V;

R5 = V/pi *Phi1;

R6 = (b^3/(pi*V))*Phi8;

R7 = (b^3/(pi*V))*Phi8;
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ELLS.M

%Generates the L values for the Z matrices.

%V, b, ALPHA1, ALPHA2 defined in CNSTNT.M.

%Phi’s defined in PHI.M.

LH2 = b;

LALPHA2 = b/2;

LBETA2 = (b/(2*pi))*Phi4;

LH1 = 2*V;

LALPHA1 = 3*V;

LBETA1 = (V/pi)*(Phi3 + Phi2);

LH0 = 0;

LALPHA0 = 2*(V^2)/b;

LBETA0 = (2*(V^2)/(pi*b))*Phi1;

LB1 = -2*V*ALPHA1/b;

LB2 = -2*V*ALPHA2/b;

EMMS.M

%Generates the M values for the Z matrices.

%V, b defined in CNSTN.M.

%Phi’s defined in PHI.M.

MH2 = (b^2)/2;

MALPHA2 = (3*b^2)/8;

MBETA2 = ((b^2)/(4*pi))*Phi7;

MH1 = 0;

MALPHA1 = V*b;

MBETA1 = (V*b/(2*pi))*Phi6;

MH0 = 0;

MALPHA0 = 0;

MBETA0 = ((V^2)/pi)*Phi5;

ZEES.M

%Generates the Z matrices used in building the A matrix.

Z1 = [LH2 LALPHA2 LBETA2; MH2 MALPHA2 MBETA2; TH2 TALPHA2 TBETA2];
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Z2 = [LH1 LALPHA1 LBETA1; 0 MALPHA1 MBETA1; TH1 TALPHA1 TBETA1];

Z3 = [0 LALPHA0 LBETA0; 0 0 MBETA0; 0 TALPHA0 TBETA0];

Z4 = [LB1 LB2 0 0; 0 0 0 0; 0 0 TA1 TA2];

MKPRIME.M

%Builds the mass and stiffness matrices used in building matrix A.

%SALPHA, SBETA, IALPHA, IBETA, b, m, c, KH, KALPHA, KBETA

%defined in CNSTNT.M.

MPRIME = [ b*m SALPHA SBETA; b*SALPHA IALPHA IBETA+(SBETA*b*c);

b*SBETA IBETA+(SBETA*b*c) IBETA];

KPRIME = [b*KH 0 0; 0 KALPHA 0; 0 0 KBETA];

global MPRIME KPRIME

BIGA.M

%Generates the A matrix from the submatrices A11 through A33.

%This is the A matrix used in y=Ax.

%R’s are defined in ARRS.M.

%MPRIME, KPRIME defined in MKPRIME.M.

%Row, pi, b, V, BETA1, BETA2 defined in CNSTNT.M.

%Z’s defined in ZEES.M.

A11 = -1*inv(MPRIME + (pi*Row*(b^2)*Z1)) * pi*Row*(b^2)*Z2;

A12 = -1*inv(MPRIME + (pi*Row*(b^2)*Z1)) * (KPRIME + pi*Row*(b^2)*Z3);

A13 = -1*inv(MPRIME + (pi*Row*(b^2)*Z1)) * pi*Row*(b^2)*Z4;

A21 = eye(3);

A22 = zeros(3);

A23 = zeros(3,4);

A31 = [[R1 R2 R3]*A11 + [0 R4 R5]; [R1 R2 R3]*A11 + [0 R4 R5];

[R6 R7 R8]*A11 + [0 R9 R10]; [R6 R7 R8]*A11 + [0 R9 R10]];

A32 = [[R1 R2 R3]*A12; [R1 R2 R3]*A12; [R6 R7 R8]*A12; [R6 R7 R8]*A12];

A330=eye(4);

A330(1,1)=-BETA1*V/b;
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A330(2,2)=-BETA2*V/b;

A330(3,3)=-BETA1*V/b;

A330(4,4)=-BETA2*V/b;

A33 = [A330 + [[R1 R2 R3]*A13; [R1 R2 R3]*A13;[R6 R7 R8]*A13;

[R6 R7 R8]*A13]];

A = [A11 A12 A13; A21 A22 A23; A31 A32 A33];

save aparts A11 A12 A13 A21 A22 A23 A31 A32 A33

BMATRIX.M

%B matrix used in the control system, xdot=Ax + Bu.

%MPRIME defined in MKPRIME.M.

%IBETA defined in CNSTNT.M.

bbb0=[0 0 1];

bbb1=[0 0 0];

bbb2=[0 0 0 0];

bbb0=inv(MPRIME)*bbb0’;

B=(1/IBETA)*[bbb0’ bbb1 bbb2]’;

%save bmatrix

LQRRUNS.M

%Runs the closed loop system and prints the

%graps of the plunge, pitch, and flap angle. Also

%states the eigenvalues of Acl=A-BK.

runab;

runlqr;

eig(Acl);

global A Acl fk;

[tcl,wcl]=ode45(’clrhs’,0,5,w0);

subplot(3,1,1), plot(tcl,wcl(:,4))

title(’plunge, V=950, closed loop’)

xlabel(’time in seconds’)

ylabel(’feet’)

subplot(3,1,2), plot(tcl,wcl(:,5))

title(’pitch, V=950, closed loop’)

xlabel(’time in seconds’)
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ylabel(’radians’)

subplot(3,1,3), plot(tcl,wcl(:,6))

title(’flap angle, V=950, closed loop’)

xlabel(’time in seconds’)

ylabel(’radians’)

RUNLQR.M

%Sets up and runs the LQR problem

Q=eye(10,10);

Q(1,1)=1000*Q(1,1);

Q(4,4)=1000*Q(4,4);

Q(2,2)=1*Q(2,2);

Q(5,5)=1*Q(5,5);

Q(3,3)=100*Q(3,3);

Q(6,6)=100*Q(6,6);

Q(7,7)=.0001*Q(7,7);

Q(8,8)=.0001*Q(8,8);

Q(9,9)=.0001*Q(9,9);

Q(10,10)=.0001*Q(10,10);

Q=eye(10,10);

R=V^2/1000000

fk=lqr(A,B,Q,R);

Acl=A-B*fk;

CLRHS.M

%Solves the closed-looped (controlled) right hand side,

%y=Acl*x where Acl=A-BK.

function y=clrhs(t,w)

global Acl

y=Acl*w;

LQRSTEP.M

%Runs the closed loop system with the control turned on at a

%specified time.
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%Prints the graps of the plunge, pitch, and flap angle. Also

%Also states the eigenvalues of Acl=A-BK.

runab;

runlqr;

eig(Acl);

global A Acl fk B jstep25 tcl;

[ts,ws]=ode45(’clrhs25’,0,5,w0);

subplot(3,1,1), plot(ts,ws(:,4))

title(’plunge, V=1000, LQR on at 2 sec, closed loop’)

xlabel(’time in seconds’)

ylabel(’feet’)

subplot(3,1,2), plot(ts,ws(:,5))

title(’pitch, V=1000, LQR on at 2 sec, closed loop’)

xlabel(’time in seconds’)

ylabel(’radians’)

subplot(3,1,3), plot(ts,ws(:,6))

title(’flap angle, V=1000, LQR on at 2 sec, closed loop’)

xlabel(’time in seconds’)

ylabel(’radians’)

CLRHS25.M

%Solves the right hand side, Acl*x. Acl=A-BK.

%Turns the control on at a specified time.

function y=clrhs25(t,w)

global Acl A fk B

y=A*w-jstep25(t)*B*fk*w;

JSTEP25.M

%Step function that turns on control at specified time, lqron.

function z=jstep25(tt)

z=0;

lqron=2;

if tt>lqron

z=1;

end
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