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Activity Recognition Processing in a Self-Contained Wearable System

Justin B. Chong

(ABSTRACT)

Electronic textiles provide an effective platform to contain wearable computing elements, espe-

cially components geared towards the application of activity recognition. An activity recogni-

tion system built into a wearable textile substrate can be utilized in a variety of areas including

health monitoring, military applications, entertainment, and fashion. Many of the activity

recognition and motion capture systems previously developed have several drawbacks and lim-

itations with regard to their respective designs and implementations. Some such systems are

often times expensive, not conducive to mass production, and may be difficult to calibrate.

An effective system must also be scalable and should be deployable in a variety of environ-

ments and contexts. This thesis presents the design and implementation of a self-contained

motion sensing wearable electronic textile system with an emphasis toward the application of

activity recognition. The system is developed with scalability and deployability in mind, and

as such, utilizes a two-tier hierarchical model combined with a network infrastructure and

wireless connectivity. An example prototype system, in the form of a jumpsuit garment, is

presented and is constructed from relatively inexpensive components and materials.
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Chapter 1

Introduction

1.1 Motivation

Electronic textiles and wearable computing devices have begun to play an increasing role

in the fields of pervasive and embedded computing. In these modern times virtually ev-

eryone from children, adolescents, full grown adults, to even the elderly interact with some

form of sophisticated embedded technology on a daily basis. With the rising popularity and

prevalent use of cellular phones, PDA’s, laptops, and portable media devices, as well as the

ever evolving gamut of health monitoring technologies, many people are beginning to incor-

porate or, in some cases, even rely upon computing elements to function in their everyday

life. Whether these devices are worn on clothes, stored in pockets, held in hands, or even

strapped to the user’s head, electronic textiles can provide an excellent platform on which to

house, connect, and conceal these computing elements. By clustering groups of embedded

devices into network configurations, wearable systems targeted for supporting sophisticated

applications, like realtime activity detection, become realizable.
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These systems, however, are often times difficult to construct and deploy due to the large

number of hardware and software components that are required to be individually developed

as well as the physical limitations that are imposed within a practical implementation. Pro-

cessor speed, memory requirements, communication interfaces/protocols, power consump-

tion/distribution, and scalability are all major concerns for system designers. The primary

goals of this thesis are to provide guidelines for the design of a self-contained wearable elec-

tronic textile system as well as to provide a means of evaluating system performance by

identifying bottlenecks.

1.2 Contributions

This thesis presents the design and implementation of a self-contained motion sensing elec-

tronic textile with particular emphasis toward the application of activity recognition. A hi-

erarchical design methodology is provided to serve as a framework upon which sophisticated

processing applications can be built. To demonstrate the effectiveness of this approach,

a prototype e-textile jumpsuit was created to monitor and analyze the movements of the

wearer using a Singular Value Decomposition classification environment.

1.3 Thesis Organization

The thesis is organized in the following fashion. Chapter 2 introduces the background in-

formation needed to understand the research that was conducted in this study. Chapter 3

provides a high level overview of the wearable system as well as some design guidelines for

the components required for a successful implementation. Chapter 4 discusses the specifics

of the hardware utilized in the system, and Chapter 5 provides information regarding the

2



software components that were developed. Chapter 6 describes the communication medi-

ums and protocols incorporated into the prototype implementation. Chapter 7 describes the

results obtained through experimentation as well as an analysis of the performance of the

system. Finally, Chapter 8 provides a summary of the contributions of this thesis as well as

conclusions that can be drawn and possible areas where future work can be conducted.
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Chapter 2

Background

This chapter presents research in related fields to the work conducted for this thesis. Several

key concepts from previous academic research efforts as well as commercial products were

leveraged to develop the embedded system design approach presented in this thesis. Infor-

mation from these areas was also used for the development of the electronic textile prototype

platform on which experimentation was performed.

2.1 Electronic Textiles and Wearable Computing

Textiles, in general, are networks of threads or yarns that are woven in intersecting patterns

to create a flexible fabric substrate. Electronic textiles (e-textiles) are simply fabrics with

the addition of materials with electrical characteristics. These electrical materials typically

include electronics for data processing as well as an assortment of wires or films used for

sensing, communication, power distribution, and actuation. A field closely related to e-

textiles is wearable computing in which computing elements are attached or worn on the

body for a variety of purposes such as health monitoring, communication, or even more

4



recently for fashion.

In e-textiles and wearable computing research conducted thus far, particular attention has

been focused in the medical field as well the development of systems for military applications.

Projects like Georgia Tech’s wearable motherboard [1] and the US Army Soldier Systems

Center’s smart vest [2] are excellent examples of the current state of wearable computing.

Although medical and military applications have been the major driving force thus far for

e-textiles, it is believed entertainment and personal safety will be next fields to push e-

textiles and wearable computing into the mainstream. This shift in fields is not because

entertainment and personal safety products will feature the most cutting edge sophisticated

technology, but rather because they incorporate technologies and purposes geared toward

everyday activities. Products like PDD’s Illuminated Cycling Jacket [3], Swany’s G.Cell

hands free cell phone ski and snowboard glove [4], Raymarine’s LifeTag man-overboard

safety communicator [5], and the abundance of iPod related clothing from companies like

Zegna [6], Burton [7], and Nike [8] support this claim.

These entertainment and safety systems will need to follow a different set of criteria in order

to become widely adopted and to be effective for use in everyday life. One of a kind, custom,

and expensive systems will not suffice. As such, the next generation of e-textiles must feature

low power consumption, low material costs, fault tolerance, and must be easily manufactured

through some automated process for cost-effective mass distribution.
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2.2 Previous Electronic Textile Research at Virginia

Tech

The Virginia Tech E-Textiles Laboratory has conducted many research efforts in the field

of electronic textiles in the past several years. Many of these projects have particular focus

in wearable computing as well as large-scale sensor networks. The Virginia Tech E-Textiles

Laboratory utilizes a computer controlled, automated loom to weave custom smart fabrics

in-house using standard textile manufacturing techniques. Although most e-textile research

efforts performed at Virginia Tech are mainly proof of concept in nature, particular emphasis

is placed on design methodologies for mass-manufacturing and fault-tolerance reliability.

Some examples of e-textiles previously developed at Virginia Tech include an acoustic beam-

former [9], a smart carpet [10], and an activity recognition pants system [11]. Important

design methodologies can be leveraged from each one of these projects. For example, the

acoustic beamformer consisted of a 30-foot long computational fabric capable of determining

the location and movement of approaching vehicles such as tanks and trucks. Acoustical sens-

ing devices as well as computing elements were distributed across the textile substrate and

interconnected to form a communications network. A software simulator was also created to

aid in the development of the beamformer prototype.

In contrast to the military-oriented application of the beamformer, other projects like the

smart carpet serve as excellent platforms for commercial and safety applications. As part of

a joint research venture between Virginia Tech and the Intel Corporation, a floor mounted

carpet electronic textile was developed with various sensing and actuation technologies [10].

Using an intersecting grid of resistive wires and rows of parallel peizo-electric cables, both

a software simulation model and hardware prototype system were constructed to support

a footstep tracking application. The smart carpet also featured visual actuation through

6



the use of electro-luminescent (EL) wires. An important design feature of the smart carpet

was the use of a publish-subscribe service protocol. Utilizing the concept of services allows

developers to work at a higher level of abstraction and helps to facilitate the generation of

more complex applications.

The activity recognition pants system [11] is perhaps the most influential and relevant effort

from Virginia Tech with regard to the research presented in this thesis. The pants system

essentially consisted of a wearable lower body textile substrate with several acceleration

modules symmetrically distributed on the hips, knees, and ankles. Piezo-electric films were

also included to capture heel strike data. Raw 2-d motion data was streamed directly off

of the pants using a serial Bluetooth device connected to a backend PC. The backend PC

executes an activity recognition application which processes the raw motion data. Using

Singular Value Decomposition (SVD), the classification environment is able to effectively

match the movements of a person wearing the pants to a corresponding set of trained motions

in pseudo-realtime.

2.3 Sensor Based Activity Recognition

Sensor based activity recognition has been gaining much popularity, especially in the en-

tertainment and consumer electronics industries. The Nintendo Wii game console utilizes

a hand-held controller device containing a 3-d accelerometer along with a small infrared

camera to provide user input to game applications using a pre-determined range of hand

gestures and movements [12]. The Sony Playstation 3 (PS3) also features an accelerom-

eter based tilt-sensing controller to provide input to the console for motion-based gaming

activities [13]. Other more discrete consumer electronics devices like laptop computer hard

drives use sensors to detect when the object is free falling with respect to gravity [14]. Many
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consumer products use sensors to recognize specific activities, like the Nike iPod shoe inserts

which use piezo-electric sensors to monitor running statistics [8].
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Chapter 3

System Overview

A self-contained activity recognition system is comprised of many components. There are

various hardware and software modules which must be set properly in place to provide

an infrastructure adequate enough for data to efficiently flow and be effectively processed.

These modules need to be designed with flexibility and expandability in mind, in order to

ensure support for future applications. As such, a generic hardware/software infrastructure

should incorporated into the textile substrate. The following sections provide general design

guidelines for developing a system capable of self contained application level processing.

3.1 Design Hierarchy and Data Flow

Experience with a range of e-textile applications has shown that a two-tier hierarchy of

processors is an appropriate architecture for e-textiles [10]. To achieve this hierarchy, two

distinct classifications of nodes are required. The two tier model is comprised of a bottom

level of several nodes defined here as type Tier 1 and an upper level of one or more nodes

defined here as type Tier 2.
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Components

Microcontroller
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Interface

#include <iostream>
 using namespace std;

 int main ()
 {

...

...

...
 }

Application
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Processing
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Components

Microcontroller

Sensor 
Interface

Sensor 
Components

Microcontroller

Sensor 
Interface

Tier 2

Tier 1

Data Packets
Network

Interconnect

Figure 3.1: Two Tiered Model

As shown in Figure 3.1, sensor data is collected by the Tier 1 nodes. The sensor data is

aggregated into packets and then streamed across the network to the Tier 2 node. The Tier 2

node buffers the data from all of the Tier 1 nodes and can then begin to perform application-

level processing. It should be noted that, for the activity recognition application, the Tier

1 nodes do not communicate between one another; although the network infrastructure of

the overall system does include support for inter-Tier 1 communication in the event that

future applications may make use of this feature. The two-tier model is intended to serve as

a scalable hierarchy for any e-textile in general, not necessarily just wearable technologies.

Figure 3.2 demonstrates how the two levels of nodes may be distributed across a jumpsuit

garment worn on the human body.
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3.2 Two-Tier Model

The following two sections describe the responsibilities of each class of node utilized in the

two-tier model. Design guidelines are provided for each tier to serve as a starting point to

aid future developers in selecting components for prototype implementations which make

use of the two-tiered approach. It should be noted that these guidelines are meant to

approximate the processor speed and memory space required to support an application like

activity recognition within the confines of a wearable e-textile.

3.2.1 Tier 1

Tier 1 consists of an interconnected network of nodes with each node containing a relatively

low-performance microprocessor. This microprocessor need not be very sophisticated since

limited data processing is performed within Tier 1. These Tier 1 microprocessors are re-

sponsible only for interfacing with various sensor components, performing analog-to-digital

(A/D) conversions on sensor signals, and streaming the results of those conversions across

the network to the node(s) contained in Tier 2. Due to these relatively low levels of process-

ing, the speed and memory footprint requirements for these processors are relatively low as

well. Processors with speeds in the single digits or tens of megahertz range and with only a

few kilobytes of memory space are sufficient to operate in Tier 1.

3.2.2 Tier 2

Tier 2 consists of at least one, more sophisticated type of node. This Tier 2 node contains

a much more powerful microprocessor capable of performing application-level processing on

the data streamed to it from the Tier 1. Since Tier 2 nodes should be capable of running an

12



operating system with potentially multiple threads of execution, a processor with moderate

clock speed, in the hundreds of megahertz range, is required. Also, since a fair amount

of data from several Tier 1 nodes is being received, buffered, and analyzed, the memory

requirements for Tier 2 nodes are much larger. Memory space in the tens of megabytes is

sufficient to contain the amount of data streamed to this tier, at least for the application

described in this thesis.
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Chapter 4

Hardware Development

The following sections provide example prototype implementations for the hardware com-

ponents needed to perform activity recognition within the confines of a jumpsuit e-textile.

In order to test the effectiveness of the two-tiered approach, a variety of hardware proto-

types for the Tier 1 and Tier 2 nodes were constructed. Most of these hardware modules

were re-developed from the ground up but were based upon lessons learned from previous

designs from Virginia Tech [15]. Some of the more sophisticated hardware prototypes were

constructed by adding custom interface modules to commercially available products.

Before development began, the limitations and problematic issues encountered in the previ-

ously developed e-textile systems were analyzed to find out where adjustments and enhance-

ments could be made for the new jumpsuit system. Many valuable lessons were learned from

the previous version of smart pants developed at Virginia Tech [16] [11] [17]. These issues

include, but are in no ways limited to, how to physically attach and connect the modules

to the textile substrate as well as how data must flow between nodes properly to ensure

effective processing. Also, important design considerations were taken to reduce and prevent

electro-magnetic-interference (EMI) noise problems stemming from analog sensor signals and
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high speed digital communication lines.

4.1 Tier 1 Acceleration Modules

The development of the Tier 1 acceleration modules is outlined in the following sections.

First a discussion regarding the types of acceleration sensing components incorporated in

the Tier 1 hardware prototypes is provided. Next, the problems associated with using piezo-

electric materials is addressed. A power regulation circuit is also presented as an upgrade

to the design typically used in previous Virginia Tech E-Textiles Lab prototypes. Finally, a

description of the initial breadboard Tier 1 node prototype as well as the final miniaturized

printed circuit board design is provided.

4.1.1 Acceleration Sensors

Since the main focus of the jumpsuit prototype system was to perform activity recognition,

a generic set of acceleration sensing modules was developed to comprise the homogeneous

lower tier of the system. Each acceleration module contains both an analog accelerometer

as well as an analog gyroscope sensor. The accelerometer used in the jumpsuit prototype

is an MMA7260 manufactured by Freescale Semiconductor. This three axis accelerometer

was selected because it features four selectable sensitivities: +/-1.5g, +/-2g, +/-4g, and

+/-6g [18]. The accelerometer sensor is used to collect readings of how the module is

moving with respect to gravity. The gyroscope utilized in the jumpsuit prototype is a single

axis ADXL330 angular rate sensor made by Analog Devices [19]. The gyroscope is used

to measures the angular acceleration imparted in the plane perpendicular to the surface

of the module. Each Tier 1 acceleration module also features an 8-bit Atmel Atmega8L
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microcontroller [20] used to convert the analog signals from the accelerometer and gyroscope

to equivalent 10-bit digital values. The microcontroller then streams those digital values

over an Inter-Integrated Circuit (I2C) communications bus to the Tier 2 processing node.

Although conceptually similar to the design shown in [15], the acceleration sensing modules

were redesigned from the ground up to include many hardware optimizations. Foremost, all

of the acceleration modules used on the jumpsuit are homogeneous in that each one contains

identical processor and sensor circuitry. This was not the case in the previously developed

pants system since some modules had accelerometer and gyroscope sensors and some had

only accelerometers.

4.1.2 Piezo-Electric Material

The previous pants also featured piezo-electric film sensors that proved to not be very useful

for activity recognition. Piezo-electric films and cables [21], as shown in Figure 4.1, have

proven themselves to be fairly susceptible to EMI noise in the development of the previous

pants and carpet systems described in [11] and [10]. To further illustrate the problem with

using these types of materials, Figure 4.2 shows the noise introduced into the signal of

a piezo-electric cable caused by simply overlaying a wire carrying a high frequency AC

signal in an orthogonal orientation to the piezo-electric cable. The waveforms on the left

show an attempt to capture large and small heel strikes on a piezo-electric cable in a noisy

environment. It is possible to extract useful information from these waveforms using digital

signal processing (DSP) techniques, as shown by the application of an 8th order bandstop

filter in the waveforms on the right side of Figure 4.2. However, this DSP functionality

would require specialized multiply-accumulate hardware not available on the general-purpose

microcontrollers utilized in this Tier 1 prototype implementation. Performing the filtering
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Figure 4.1: Piezo-Electric Material

techniques strictly in software is not feasible with the Atmega8L hardware selected, thus

piezo-electric sensory input was not incorporated into the jumpsuit prototype.

4.1.3 Power Regulation

The power circuitry for the acceleration sensing module was also redesigned to utilize a

more reliable set of 3.3V and 5V LP2292 series linear regulators manufactured by National

Semiconductor [22]. These regulators provide more stable power output than the linear reg-

ulators made by Microchip that were used in [11] and [10]. These regulators are also ROHS

compliant, and feature high temperature auto-cutoff and current over-draw protection func-

tionality to ensure that sensor components on the module will not be damaged if the power

circuitry malfunctions or is otherwise abused. A schematic of the revamped power circuitry

is provided in Figure 4.3. Upon experimentation, it was determined that insufficient equiv-

alent series resistance (ESR) was the leading cause of malfunction with the Microchip linear

regulators. As such, tantalum capacitors could have been used instead of ceramic capacitors

in the power circuitry as they are less susceptible to capacitance change due to temperature

variation and typically have slightly higher ESR ratings. However, tantalum capacitors are
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Figure 4.2: Piezo-Electric Noise
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Figure 4.3: Linear Voltage Regulator Circuit

significantly more expensive to purchase, particularly for the 0402 size parts. The National

Semiconductor LP2292 series linear regulator relies on low ESR ceramic capacitors to tune

and filter the supply voltage and were thus an inexpensive and logical replacement [22].

4.1.4 Breadboard Prototype

Initially, a breadboard prototype of the Tier 1 acceleration module was created to verify the

functionality of the design as shown in Figure 4.4. To verify the operation of the breadboard

version, a rotating test platform, shown in Figure 4.5, was created out of Lego R© building

blocks. The breadboard was easily mounted in either a horizontal or vertical orientation

and rotated through 360 degrees by either a small DC motor or cranked by hand. A small

serial Bluetooth radio module was also attached to the breadboard to stream the acceleration

values wirelessly to a backend PC for analysis.
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Figure 4.4: Breadboard Prototype

Figure 4.5: Gyronator Test Platform
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Figure 4.6: Acceleration Module (Front)

4.1.5 Miniaturized Tier 1 Prototype

After verifying the functionality of the overall Tier 1 module design on the breadboard, a

miniaturized version in a wearable form-factor was developed. Since space is at a premium

on an electronic textile so as not to restrict the range of mobility of the person wearing the

garment, the modules themselves were built on a four layer printed circuit boards (PCB)

to reduce the routing area between hardware components. The PCB also contains separate

analog and digital ground planes connected via a ferrite bead. This reduces EMI introduced

by the analog sensor signals being physically close to the high speed digital traces used for

communication. The populated acceleration module is shown in Figures 4.6 and 4.7.
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Figure 4.7: Acceleration Module (Back)

4.2 Tier 2 Processing Element

The single Tier 2 module used on the jumpsuit prototype was intended to replace the backend

PC used in the previous pants system [16] [11]. It serves as the main processing element for

the activity recognition application and is responsible for receiving, buffering, and analyzing

the motion data streamed to it from all of the Tier 1 modules. Due to the added level of

sophistication necessary for this type of processing, it was believed that finding a commercial

product would be a more viable alternative for constructing a Tier 2 prototype than trying

to build one from scratch. A product feature matrix, like the one shown in Figure 4.8, was

constructed to determine what product most closely matches the requirements outlined for

a Tier 2 module.
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Figure 4.8: Product Feature Matrix

4.2.1 Gumstix Motherboard

After much searching, it was determined that a product from Gumstix, the Verdex 400xm-

bt [23], shown in Figure 4.9, would be the best candidate due to its processing power,

memory, storage, connectivity, form factor, and online community support. The Gumstix

used in the prototype system features a Marvel 400 MHz xScale microprocessor, 64 MB

of RAM, 16 MB of flash memory, Bluetooth, USB, and serial connectivity as well as an

expansion slot for connecting an array of expansion cards. The Gumstix was also selected

for its ability to run a full Linux operating system as described in the Chapter 5.

4.2.2 Network Interface Module

In order to interface the Gumstix motherboard to the I2C network on the jumpsuit proto-

type, an expansion board called the Breakout-gs [24] was also purchased from Gumstix to

break out the small pins of the Hirose connector on the Verdex motherboard. A custom

I2C to universal asynchronous receiver/transmitter (UART) daughter card, shown in Figure

4.10, was then created to interface the Tier 1 communications network to the Gumstix via
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Figure 4.9: Gumstix Verdex 400xm-bt

Figure 4.10: I2C to UART Daughter Card/Gumstix Assembly

the Breakout-gs expansion board. The I2C to UART daughter card contains an Atmega8L

microcontroller and provides backwards compatibility support for the older pants system.

The daughter card also includes a 9 pin D-Sub connector and MAX232 TTL/CMOS line

driver/receiver to serve as a configuration port to the Gumstix for flashing the operating sys-

tem image or performing serial connectivity in the event the wireless Bluetooth connection

fails as outlined in the appendix. The Tier 2 Gumstix node essentially utilizes a specialized

Tier 1 module as a proxy gateway to the I2C network.
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4.3 Interconnections and Textile Substrate

A major concern in all wearable computing systems is how to provide physical interconnec-

tions between the computing devices and the garment substrate itself. An effective inter-

connection method must adhere to the following criteria. First, the interconnections should

always be polarized, that is to say that there should only be one unique way to plug the

device into the system. The polarization ensures that the power, ground, and communi-

cation lines are always connected properly as to not damage the devices since often times

many sensor components are not tolerant to a wide range of voltage configurations. Sec-

ond, the interconnections should provide a robust mechanical fastening interface such that

the computing devices will not fall off or become otherwise disconnected from the garment

as the result of movement by the person wearing the system. Third, the interconnections

should allow the computing devices to be easily removed so that the garment can be washed

or so that the computing devices can be moved around to facilitate different geographical

topologies.

The interconnections on the jumpsuit prototype were achieved using male and female USB

connectors. The four contacts on each USB connector are used to connect power and ground

as well the two I2C communication lines Serial Clock (SCL) and Serial Data (SDA). For

the ease of rapid prototyping, flat ribbon cables were attached to a pair of sweatpants and

a long-sleeve t-shirt, as shown in Figure 4.11, to simulate a jumpsuit or coverall garment.

The computing devices themselves are connected through the USB connectors to the ribbon

cables via a 4-position USB to 0.1 inch dual row pin header converter board Figure 4.12. In

an actual woven textile, these USB to 0.1 inch dual row pin header converter boards would

be replaced by an insulation displacement connector (IDC) as shown in Figure 4.13.

The IDCs, as shown in Figure 4.14, provide an effective means of splicing into the woven wire
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Figure 4.11: Ribbon Cable Prototype

Figure 4.12: USB to Ribbon Cable Converter Board

26



Figure 4.13: USB to IDC Converter Board

Figure 4.14: IDC Attached to Wire Bus
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Figure 4.15: Perpendicular Bus Jumpering Via IDC Connector

busses without significantly compromising the structural integrity of the wires. Using IDCs,

perpendicular wire busses can be jumpered across intersections to route power, ground, and

communication signals throughout the textile as shown in Figure 4.15. Connecting parallel

and perpendicular busses throughout the garment also provides a level of fault tolerance

as the signals may propagate through alternative paths should an individual wire become

damaged.
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Chapter 5

Software Development

The following sections provide a discussion on the various software components required

to effectively perform activity recognition within the confines of a jumpsuit e-textile. Two

software models are presented for use on the Tier 1 nodes. The selection of an operating

system to run on the Tier 2 Gumstix module is then described in detail. Finally, the

modification and porting of the activity recognition application to the embedded Gumstix

platform is outlined.

5.1 Tier 1 Firmware

The Tier 1 nodes are responsible for performing analog to digital conversions on sensor in-

puts and forwarding those conversion values to the Tier 2 processing module. There are

multiple ways to implement such a system, and as such, two very different software models

were developed for Tier 1. The first model was an event-driven approach intended to provide

application level flexibility to the end user or developer [25]. It provides support for register-

ing services via a publish subscribe methodology [10], easy selection of A/D operations, and
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communications support for robust network configurations. The second software approach

was an optimized solution intended to maximize overall system performance by increasing

throughput and minimizing overhead. The following sections provide an overview of the

designs of each of these software implementations.

5.1.1 Event-Driven Software Model

In order to provide a flexible baseline from which application specific Tier 1 firmware can

be developed, an event-driven paradigm was selected. In this approach, the flow of the

program execution is determined at runtime by sensor input, internal timer notifications,

and network communication exchanges. The baseline application basically provides a generic

programming stub from which the application developer can simply register the events he or

she needs to support a given task. Initially, before user configuration, the stub provides only

basic single timer functionality as well as I2C network communications support. Additional

support may be included for multiple timers, A/D samples and conversions on multiple

channels, UART communication, serial peripheral interface (SPI) communication, and a

variety of other services. The developer can then mix and match these abstracted options

to suit the requirements of the application without having to understand the specifics of

the underlying hardware platform. This approach was designed with portability in mind so

that the stub baseline can serve as a starting point for virtually any e-textile application in

general, not just wearables.

A flow diagram for the stub baseline is provided in Figure 5.1. The baseline is architected as

follows: First, board specific peripherals and options are initialized based upon the hardware

platform. Next, event registration begins. This is the section where the application developer

would configure the system to suit his or her needs. Finally, there is the main dispatch loop

30



Initialize Platform 
Specific 

Peripherals

Register Events

Dispatch 
Loop

Extract Next 
Event

FIFO 
Event 
Queue

Event 
Generation

Parse Event 
Header Metadata

Call Appropriate 
Event Handler 

Routine

Handler 1

Handler 2

Handler N

Is Event 
Queue 
Empty?

Put Processor to 
Sleep

No
Yes

Encapsulate 
Event Into Data 

Strucure

.

.

.

Boot

Handlers may themselves 
trigger events

Figure 5.1: Stub Baseline Execution Flow

which is responsible for calling the appropriate event handlers. As events are generated, they

are encapsulated in a generic event data structure, shown in Figure 5.2, and then stored in

a first-in-first-out (FIFO) queue. During each iteration of the dispatch loop, the next event

to be serviced is extracted from the event queue. The metadata of the event data structure

is then parsed and the service ID of the event is used to determine which event handler

function to call. If the event queue is empty, the processor is put into a sleep state until the

next event is triggered.
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Figure 5.2: Event Data Structure
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5.1.2 Optimized Software Model

The optimized software model was targeted towards the activity recognition application

specifically. The focus of this approach is to collect and transfer motion data from the

sensors to Tier 2 as quickly and efficiently as possible within the physical limitations of the

hardware platform. This model is finely tuned for performing A/D conversions and I2C

exchanges quickly and is architected in a lock-step fashion as follows: First, board specific

device drivers are initialized to configure the sensitivity on the accelerometer as well as

enable the output of the accelerometer and gyroscope sensors. Next, the I2C network driver

is initialized with the address of the specific module, and a basic timer interrupt is enabled.

An infinite transmission loop is then initiated wherein an A/D conversions complete flag

is polled so see if motion capture data is ready to be transmitted to the Tier 1. If the

conversions complete flag is set, the data is sent out over the wire and then the processor is

put to sleep to conserve power until the next timer interrupt fires. Upon reaching the timer

interrupt service routine, successive A/D conversions are performed, one for each of the X,

Y, and Z channels on the accelerometer and the one conversion for output of the gyroscope

as well. The four 10-bit conversion values are stored in a buffer and the conversions complete

flag is set so that the transmission loop will know when the data in the buffer is valid. A

flow diagram for the optimized solution is provided in Figure 5.3.

5.2 Tier 2 Software

In the jumpsuit prototype, only one Tier 2 node was utilized. This Tier 2 node serves as

the primary computing element for the system and is responsible for the application level

processing of the motion data streamed to it from the Tier 1 nodes. The following two

sections describe the selection of an embedded operating system for the Tier 2 Gumstix as
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well as how the activity recognition application was benchmarked and ported to the self-

contained environment.

5.2.1 Operating System

The Marvell xScale PXA270 microprocessor [26] featured on the Gumstix Verdex mother-

board is capable of running a Linux operating system since it is based off of ARMV5TE

core technology. It should be noted that although Marvell now owns the rights to the xScale

PXA270 product, this is actually still an Intel chipset design. Gumstix explicitly provides

two main avenues for running an operating system on the xScale, Buildroot and OpenEm-

bedded. Both of the kernel codebases for Buildroot and OpenEmbedded provide similar

useability, that is to say that virtually the same applications will run on both systems. It

was determined through preliminary testing that OpenEmbedded provides more complete

and more reliable Bluetooth and TCP/IP support for the specific Verdex motherboard used

in the jumpsuit prototype.

OpenEmbedded is an opensource effort geared towards providing Linux support for em-

bedded device platforms. Software development for OpenEmbedded is centered around a

managed collection of BitBake recipes. The modular BitBake recipe/package management

concept is similar to the ebuild process implemented in the popular Linux flavor Gentoo.

Each Bitbake recipe contains information about the location of the package source code

as well as specific compilation and installation options. The BitBake recipes are also used

to determine and manage dependencies between packages. The BitBake utility provides a

method for invoking GNU make commands inside the recipe to use the ARM GCC/G++

toolchain. This cross compiler flexibility makes it possible to port C and C++ applications

developed and tested on a standard Linux PC to the embedded Gumstix platform.
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The argument can be made that one should use a Real-Time Operating System (RTOS)

for a sophisticated embedded platform like the e-textile jumpsuit. However, it was decided

that the generic Linux support provided by OpenEmbedded was a better design choice.

Although RTOS’s like ECOS, QNX, and RTLinux could theoretically run on the xScale

arm architecture, the advantages stemming from the ease of application code portability

outweighed the potential increase of runtime performance provided by a real-time operating

system. Tutorials for the installation, configuration, and use of OpenEmbedded are provided

in the appendices for the convenience of peer researchers.

5.2.2 Application Code

After the OpenEmbedded Linux operating system was installed and flashed to the Tier 2

Gumstix module, the activity recognition application [11] developed by Vineet Jolly for the

old pants system was ported to the embedded Gumstix platform. The original activity recog-

nition application was intended for use on a standard backend Linux PC. As such, certain

optimizations were made to increase runtime performance in the embedded environment. To

identify the bottlenecks and areas for improvement within the application, the source code

needed to be profiled and a baseline for the general performance of the original application

on the embedded environment needed to be evaluated. An opensource C/C++ source code

profiler tool called Gprof was initially used to first measure the performance of the applica-

tion on the standard Linux PC. To be able to use Gprof, a special GCC/G++ compiler flag

option is utilized to link the Gprof components into the application code. Gprof essentially

relies on a frequently expiring timer to monitor which subroutines in the application source

code utilize the most CPU time. Upon each timer expiration, information regarding the

currently executing subroutine is logged to an output file until the application terminates.

This information is then later parsed by the Gprof tool to develop a histogram showing the
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relative execution statistics for each subroutine in the application.

Unfortunately, the subroutine granularity provided by Gprof was not fine enough to precisely

measure the runtime execution of the activity detection application. The application code

itself contains several nested loop sections within a Recognize Activity function that

are used to perform the matrix multiplication operations required by the SVD algorithm

[11]. These operations include query vector generation and activity matching calculations.

Also the streaming nature of the application was expanded to be able to operate on raw

data from an input file that was previously captured from the old pants prototype. This

change was made to provide a deterministic testing platform as well as to satisfy Gprof’s

requirement for the application to exit normally versus just abruptly ending the process.

Diagnostic information sent to the standard output as well as log file I/O were also removed

from the application because the execution of those procedures tended to skew the runtime

performance results. The activity recognition application was also expanded to support 3-d

accelerometer data sets.

A custom C/C++ code profiler tool called VTprof was developed in order to achieve finer

runtime performance granularity. Rather than relying on an expiring timer to develop exe-

cution histograms, VTprof uses a user defined delta-time per code section approach. Instead

of providing a compiler flag option when using VT prof, the user must include the profiler

library into their source code and add start/stop conditions around each code segment of in-

terest. The user must also register these start/stop conditions with the profiler. At runtime,

as the code segment of interest begins, a start time is captured. Once the code segment

has been completed, a stop time is captured and the difference between the two times is

logged to an output file. This operation is performed for every code segment of interest, and

once the execution of the entire application is complete, a performance report summary is

generated. This report contains information regarding the execution times and frequency of
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each code segment of interest. A tutorial on the use of the VTprof tool is provided in the

appendix.

Although VTprof is somewhat cumbersome to use due to the manual configuration of each

code segment of interest, its flexibility and finer execution performance monitoring granular-

ity provides much more useful information than Gprof for the activity recognition application.

VTprof also provides helpful statistics such as the minimum, maximum, and mean execution

times for each code segment of interest as well as the number of times each segment was

executed as shown in Figure 5.3. Since VTprof was implemented using standard C++, it

along with the activity recognition application were easily ported to the embedded Gum-

stix platform using Bitbake. It should be noted that another motivation for the creation of

VTProf was the lack of GProf support within the embedded Gumstix platform.
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Figure 5.4: Sample Gprof and VTProf Output
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Chapter 6

Communication

The jumpsuit prototype contains several mediums through which communications interfaces

are provided. These interfaces include Tier 1 to Tier 2 communications as well as PC

to jumpsuit communications. The following sections describe the interfaces and protocols

implemented in the jumpsuit design.

6.1 I2C

In the jumpsuit prototype, the Tier 1 nodes sample and temporarily buffer motion data

from the sensor interfaces and then stream that information to the Gumstix Tier 2 node

over an I2C bus. I2C is a serial communications bus protocol developed by Philips [27].

This protocol was selected since only two wires, SCL and SDA, are needed to implement an

I2C network. Fewer wires in the overall design of an e-textile lead to lower materials and

manufacturing costs as well as help to introduce fewer points of failure since less physical

wire interconnections need to be made. The I2C protocol also provides multi-master support

which allows each Tier 1 node to individually master the bus only when motion data is valid
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and available for transfer. This multi-master paradigm is more efficient than having only

one master Tier 2 node which successively polls each slave Tier 1 node for its motion data

because the overall communications overhead for the system is reduced. Also, communication

exchanges only occur when valid data is available, thus eliminating sample wait and hold

time. If one node is busy performing an analog to digital conversion, another node may be

able master the bus to transfer its data in the meantime.

I2C is typically used to interface general-purpose microcontrollers to external EEPROM

memories, and thus are often times only used in configurations with only one master device

and one or more slaves. However, the Virginia Tech E-textiles Lab has found good success

in using I2C for multi-master inter-node communications. The I2C protocol operates as

follows: The bi-directional SCL and SDA lines are pulled high to 3.3V using pull-up resistors.

These lines remain normally high until a node attempts to master the bus by issuing a start

condition by successfully pulling down the SDA line. There is an arbitration process that

occurs at this point to ensure that only one device can master the bus as any given time.

The master then sends a unique 7-bit slave address in big-endian format while clocking each

bit on the SCL line. The master then specifies a read/write bit denoting whether or not

the master is expecting to send or receive data. For the multi-master configuration used

in the jumpsuit prototype, this bit typically always set to 1 for sending data to the Tier

2 node. Next, if a slave matching the destination address is present on the network, the

slave device will acknowledge with an ACK bit on the SDA line. The master will then begin

transferring one data byte at a time with the slave acknowledging reception of the data after

each byte. Once all of the data bytes are transferred and acknowledged, the master issues

a stop condition and the control of the SCL and SDA lines are relinquished. Figure 6.1

shows an example I2C transaction. It should be noted that the I2C protocol supports three

data speeds: standard (100 kbps), fast (400 kbps) and high speed (3.4 Mbps) although the
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Figure 6.1: Example I2C Transaction

Atmega8L microcontrollers only support the standard and fast speeds [28]. For the activity

recognition application, the I2C network is configured to operate at 400 kbps.

Since both an optimized and an event-driven software model were developed for the jumpsuit

system, corresponding networking protocols were implemented. Each of these protocols was

developed on top of I2C to support the exchange of data between nodes on the network.

The protocol used in conjunction with the optimized solution featured a raw payload model.

Only the information necessary for the activity recognition application was included in each

packet. As shown in Figure 6.2, each packet consists of ten bytes containing the I2C

network address of the of the sender, the current sample count, the X channel accelerometer

data, the Y channel accelerometer data, the Z channel accelerometer data, and the gyro

angular acceleration data. It should be noted that since the Atmega8L features a 10-bit

A/D converter, each acceleration value is stored as two bytes.

The network software developed for the flexible software model provides a higher level of

abstraction similar to that of TCP or UDP implemented on top of IP. The concept was to

provide network protocol layered on top of I2C that would allow for complex networking

schemes for use in any e-textile network regardless of topology of the nodes. Support for

packet routing, virtual circuit connections, and error checking were included. This protocol is

called the Virginia Tech E-textile Data Protocol (VTEDP) and each packet contains both a

header and data segment much like a UDP datagram. The header itself contains nine bytes
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Bits 0 - 7 Bits 8 - 15

Source ID Sample Count

X Channel Acceleration Data

0

16

32

48

64

+

Y Channel Acceleration Data

Z Channel Acceleration Data

Gyro Angular Acceleration Data

Figure 6.2: Raw Payload Packet

including the source node address, destination node address, virtual circuit ID, sequence

number, service ID, checksum, and data length as shown in Figure 6.3. The data segment

contains the message payload. For the jumpsuit prototype, the raw data payload used for the

optimized model was aggregated into each VTEDP message, although for other applications

this data segment could contain theoretically any kind of information and not just serialized

motion data. Each VTEDP packet is then wrapped inside an I2C frame much like the

MAC layer used in ethernet and broken up into clocked byte-wise acknowledged exchanges

in the same manner outlined in the I2C protocol description above. Although, VTEDP

introduces a fair amount of communications overhead, for some applications, the ability

to route information through the network and support large numbers of nodes distributed

across an e-textile is valuable. Since I2C natively only supports 128 addresses within the

7-bit address space, utilizing an upper layer protocol, like VTEDP, becomes essential for

dense network configurations. VTEDP provides a 16-bit address space as well as a level of

transmission robustness through the use of sequence numbers and checksum values.
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Bits 0 - 7 Bits 8 - 15

Destination Address

0
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32
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64

+
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Data Length Payload Byte 0

Payload Byte ... Payload Byte N80

Figure 6.3: Raw VTEDP Packet

6.2 Serial

Once a packet is received by the I2C interface daughter card on the Tier 2 Gumstix module,

the data is parsed and transferred serially to the Gumstix Verdex motherboard for processing.

If a raw payload packet was received, then a simple 4-bit checksum is constructed before the

data is forwarded to the Gumstix. It should be noted that the upper nibble of the checksum

byte is masked to indicate the end of an exchange to the Gumstix serial parsing algorithm.

This serial connection is run at 230k baud with 1-8-1 framing and no flow control. In the case

of a VTEDP packet, the header information is parsed, stripped, and then the encapsulated

data is transferred in the same manner as the raw payload model.

6.3 Bluetooth

An interesting improvement of the jumpsuit prototype over the old pants system is in the

use of Bluetooth. The previous pants system used the serial port profile provided in the

Bluetooth stack to form a wireless serial connection between the pants and the back-end PC.

Raw data was then simply streamed to the PC for activity recognition processing. In the new
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jumpsuit prototype, TCP/IP over Bluetooth is used to form a personal area network (PAN)

connection between the jumpsuit and any device supporting the PAN Bluetooth protocol.

The user can simply Secure Shell (SSH) into the jumpsuit from a remote machine and execute

commands wirelessly just like any other remote Linux machine. Users can also conveniently

transfer files on and off the jumpsuit using Secure Copy (SCP). It should be noted that no

application data is transferred over Bluetooth for the activity recognition application, unlike

the earlier pants versions of this application [16] [11]. All of the processing is performed

on the garment itself, and the Bluetooth connection merely serves as a convenient interface

through which to interact with the jumpsuit.
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Chapter 7

Results

This chapter summarizes the experimentation performed to validate the hardware and soft-

ware components described in the previous chapters. First a validation of the individual

acceleration modules is provided. Next, the entire jumpsuit prototype system, containing

both the Tier 1 and Tier 2 nodes, is tested using the activity recognition application. Fi-

nally, the runtime performance of the I2C network is evaluated and a discussion regarding

the maximum sample rates sustainable within the jumpsuit prototype is provided.

7.1 Individual Acceleration Module Accuracy

Each Tier 1 acceleration module was individually tested to ensure the accuracy and validity

of the motion data acquired from each sensor device. Initially, the motion data captured

from some Tier 1 acceleration modules was found to be intermittently invalid due to the

non-deterministic output of the the accelerometer sensor. The source of the problem was

discovered and the design of the Tier 1 acceleration modules was modified as described in

the following two sections.
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7.1.1 Avoidance of Slow VDD Rise Time

After some preliminary testing, it was discovered that the MMA7260 accelerometer made

by Freescale contains an undocumented design flaw that affects the output of the device. A

slow VDD rise time on the power supply pin of the accelerometer can potentially cause the

incorrect initialization of the trimming circuitry inside the device. This condition results in

incorrect acceleration outputs on the X, Y, and Z channels of the accelerometer. The output

values will typically become clamped to either 0V or 3.3V and will not respond accordingly

as motion is imparted on the device. It should be noted that temperature also appears to

have some effect on the likelihood of mis-initialization.

To rectify this problem, a PMOS power transistor was added to the acceleration module

to facilitate the powering on of the accelerometer after all of the other components on the

board have been successfully powered on and initialized. A GPIO pin was tied to the gate

of the PMOS transistor to act as an on/off toggle switch for the accelerometer as shown in

Figure 7.1. Applying a logic 0 to the gate of the PMOS transistor after the VDD supply

has settled as well as applying a logic 1 to the enable pin allows for proper initialization of

the accelerometer. Figure 7.2 shows the proper enabling of the accelerometer sensor output

when the PMOS transistor is switched on and then back off.

7.1.2 Accelerometer and Gyroscope Output

Once the VDD rise time problem was averted, the rotational acceleration tests were con-

ducted. Each board was rotated through 360 degrees to ensure a 2 g swing through the plane

of orientation parallel to the force of gravity. Waveforms demonstrating the correct output of

the X, Y, and Z accelerometer channels is provided in Figure 7.3. A simple X, Y, Z, and Gyro

oscillation test was then performed to validate the functionality of the acceleration module by
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Figure 7.1: PMOS Power Transistor Configuration
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Figure 7.2: Switching Accelerometer On and Off Via PMOS Transistor
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Figure 7.3: 2 g Swing Level Test

holding the board in a horizontal orientation, level with the ground, and moving the module

up/down, left/right, forward/backward, and rotating the board clockwise/counter-clockwise

in repeating patterns. Output waveforms for this test are provided in Figure 7.4.

7.2 Activity Recognition Application Performance

After the operation all of the individual acceleration modules were validated, the two-tier

jumpsuit system as a whole was tested. Acceleration modules were placed on the mid-calf,

mid-thigh, hip, mid-forearm, and mid-upper arm areas as well as one module in the middle of

the chest as shown in Figure 7.5. It should be noted that the placement of these modules is
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Figure 7.4: Hand Held Oscillation Test
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Acceleration 
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Figure 7.5: Acceleration Module Placement

different from the joint locations used in the previous pants system. Later, custom e-textile

fabric, featuring an intersecting grid of tinsel wire buses, was woven. The completed textile

is shown in Figure 7.6.

7.2.1 Jumpsuit Prototype Validation

The expanded activity recognition application was then loaded to the Tier 2 Gumstix module.

Training data for several rudimentary activities was then collected to calibrate the SVD
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Figure 7.6: Jumpsuit Prototype

algorithm using the classifier techniques provided in [11]. Once training was complete, the

prototype jumpsuit e-textile was evaluated and found to be able to successfully recognize the

prescribed motions of the person wearing the garment as shown in Figure 7.7. Application

level processing for activity recognition example application was shown to be adequately

supported within the embedded platform. The correct detection of the motions for marching

in place, referred to here as mark time, by the activity recognition application is demonstrated

in Figure 7.7.

7.2.2 CPU Utilization

To further validate the runtime performance of the Gumstix xScale microprocessor, the

activity recognition application was profiled using the VTProf library. By profiling strategic

code segments of interest, it was determined that most of the CPU time is utilized in the
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Figure 7.7: Recognize Application Output (Marching in Place)

generation of the query vectors for the SVD algorithm. Most of the significant processing is

spent in the code segments that contain nested loops which are performing matrix-matrix

multiplication. The relative CPU utilization times for each of the major code segments

within the Recognize Activity subroutine are summarized in Table 7.1.

7.3 Network Communication Performance

Typically, in most multi-node systems, network communications performance is a critical

factoring component which affects the overall runtime execution. This is specially true in the

case of data stream-centric applications like sensor-based activity recognition. As such, an

analysis of the utilization of the I2C network resources is provided in the following sections.

7.3.1 Theoretical Network Bandwidth Utilization

A theoretical model of the projected network bandwidth usage for varying numbers of ac-

celeration sensing modules was developed. As a baseline, the projected estimations were
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Table 7.1: Relative Percentage Utilization of CPU Within Recognize Subroutine

Code Segment
Percentage CPU

Time
Description

Generating Query Vector 78.10
Populate initial query vector
with buffered motion data

Multiply Query Vector and Query
Constants

12.83
Perform matrix-matrix

multiplication of query vector
and query constants

Show Result 8.16
Match corresponding activity

and display to user

Calculating Query Magnitude 0.74
Calculated the square root of
the dot product of the query

vector with itself

Generating Cosines 0.09
Compare query vector to

activity vectors to generate
cosines

Zero Out Query Vector Result 0.04
Clear the resultant query

vector

calculated using information from the I2C bus protocol specification [27] as well as some

experimental data collected from benchmarks performed on the jumpsuit prototype.

The benchmarks were conducted as follows: First, a Tier 1 node was configured to repeat-

edly transmit a test packet at a relatively slow frequency of 4 Hz with the I2C interface

configured for fast mode (400 kHz). Two test packet sizes were utilized: 19 bytes for the

event-driven model, and 10 bytes for the optimized software model. A logic analyzer was

then utilized to capture the waveforms of the transmitted messages as shown in Figure 7.8

and Figure 7.9 respectively. Upon inspection, the overall delta time needed to transmit

a single packet contained within an I2C frame was found to be on average 1.192 millisec-

onds for the event-driven software model and 440 microseconds on average for the optimized

software configuration.

The criteria for the projected bandwidth utilization model was constructed using several

metrics. The number of overall bits, P, actually transmitted per I2C frame for a 19 byte
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Figure 7.8: Logic Analyzer Capture Waveform for a 19 Byte Packet
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Figure 7.9: Logic Analyzer Capture Waveform for a 10 Byte Packet

56



message is 182 bits. For a 10 byte payload, there are 101 bits transmitted. This can be

confirmed with the calculations shown in Equations 7.1 and 7.2.

Poptimized = 1 start bit + 7-bit address + 1 r/w bit + ACK bit +  
    (10 data bytes)(8 bits/byte + 1 ACK bit/byte) + 1 stop bit 

 
   = 1 start bit + (11 bytes)(8 bits/byte + 1 ACK bit/byte) +  
    1 stop bit 
 
   =  1 start bit + (11 bytes)(9 bits/byte) + 1 stop bit 
 
   =  1 start bit + 99 bits + 1 stop bit 
 
   =  101 bits 
 
Pevent_driven = 1 start bit + 7-bit address + 1 r/w bit + ACK bit +  
    (19 data bytes)(8 bits/byte + 1 ACK bit/byte) + 1 stop bit 

 
   = 1 start bit + (20 bytes)(8 bits/byte + 1 ACK bit/byte) +  
    1 stop bit 
 
   =  1 start bit + (20 bytes)(9 bits/byte) + 1 stop bit 
 
   =  1 start bit + 180 bits + 1 stop bit 
 
   =  182 bits 
 

(7.1)

Poptimized = 1 start bit + 7-bit address + 1 r/w bit + ACK bit +  
    (10 data bytes)(8 bits/byte + 1 ACK bit/byte) + 1 stop bit 

 
   = 1 start bit + (11 bytes)(8 bits/byte + 1 ACK bit/byte) +  
    1 stop bit 
 
   =  1 start bit + (11 bytes)(9 bits/byte) + 1 stop bit 
 
   =  1 start bit + 99 bits + 1 stop bit 
 
   =  101 bits 
 
Pevent_driven = 1 start bit + 7-bit address + 1 r/w bit + ACK bit +  
    (19 data bytes)(8 bits/byte + 1 ACK bit/byte) + 1 stop bit 

 
   = 1 start bit + (20 bytes)(8 bits/byte + 1 ACK bit/byte) +  
    1 stop bit 
 
   =  1 start bit + (20 bytes)(9 bits/byte) + 1 stop bit 
 
   =  1 start bit + 180 bits + 1 stop bit 
 
   =  182 bits 
 

(7.2)

Although the I2C interface hardware in the Atmega8L microcontroller was configured using

the fast mode for 400kHz SCL oscillation, the actual SCL wire twiddle rate was observed

to be on average 344 kHz throughout the transmission of each acknowledged data byte.

Significant relative delay was introduced between successive data byte writes due to the

software processing of the I2C network driver. Additional delay was also observed between
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the transmission of start and stop conditions and the data bytes contained therein. This

rather byte-pulsed transmission phenomenon was modeled as a constant transmission of bits

clocked at a slower frequency. The theoretical equivalent mean bitrate µ was found to be

152.7 kHz for the event-driven model and 229.5 kHz for the optimized solution. These values

were calculated by dividing the number of raw bits transferred per I2C packet by the total

amount of time ∆ttransmission required to transmit the packet as shown in Equation 7.3.

µ =
P

∆ttransmission

(7.3)

The projected network bandwidth utilization model was then constructed based upon the

assumption that a constant stream of I2C packets could be transmitted with one packet

directly after another. It should be noted that this theoretical model incurs no arbitration or

bus mastering overhead, just a predetermined amount of raw data at fixed bitrate transmitted

from a varying number of devices. Since a fixed packet size is assumed, the total bandwidth

consumed grows as a multiple of the number of nodes active on the network. The theoretical

maximum sample rate srn sustainable for a varying number devices can be estimated as

shown in Equation 7.4 where µ represents the equivalent mean bitrate, n is the number of

nodes on the network, and P is the packet size in bits. It should be noted that this sample

rate is uniform across all devices on the network and is thus referred to as the global sample

rate in the remainder of this text.

srn =
µ

(n)(P )
(7.4)
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Figure 7.10: Theoretical Maximum Global Sample Rates

A plot of the maximum theoretical global sample rates for varying quantities of actively

transmitting nodes on the I2C bus is provided in Figure 7.10. As shown, an inverse rela-

tionship is implied between the global sample rate and the number of devices present on the

network. As expected, the maximum theoretical sample rate sustainable for the event-driven

software model is significantly less than the optimized model since more overhead is incurred

from the use of the VTEDP protocol and the object-oriented event queue based approach

in general as indicated by the benchmarks conducted.

7.3.2 Experimental Sample Rate Sustainability

Experimental data was collected for both the event-driven and optimized software models.

This data was generated by incrementally adjusting the global sample rate upward for the

specified number of nodes upward until I2C network communication becomes unsustainable

59



Table 7.2: Experimental Data
Number of Max Sample Rate Max Sample Rate

Nodes Event-Driven (Hz) Optimized (Hz)

1 340 1400
2 305 992
3 230 725
4 170 510
5 140 393
6 120 357
7 80 240
8 60 156
9 45 135
10 33 105
11 25 85

due to the exceeding of the bandwidth supported by the network infrastructure. Once the

experimental limit was reached, the global sample rate was throttled back down to tune in

the point at which stable network communication was observed. Table 7.2 summarizes the

experimental data collected.

For the event-driven software model, a plot of the experimental global sample rate data with

respect to the corresponding theoretical projections formulated by Equation 7.4 is provided

in Figure 7.11. Comparing the experimental and theoretical values reveals substantial

deviation, especially for network configurations containing larger numbers of nodes as well

as the in case of a single node.

For the optimized software model, a plot of the experimental global sample rate data with

respect to the corresponding theoretical projections formulated by Equation 7.4 is provided

in Figure 7.12. Comparing the experimental and theoretical values reveals some deviation,

particularly for network configurations containing larger numbers of nodes as well as in the

case of a single node.
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7.3.3 Deviation From Expected Results

The significant maximum sample rate deviations for the single node configurations are con-

sidered red-herring outliers because the upper limit of the sampling rates supported by a

single acceleration module for this hardware platform is being reached. This limit is imposed

by the hardware timer prescaling values and the respective I2C driver used in conjunction

with each software model. As such, the maximum sample rate achievable on a single node

using the optimized software model is 1.4 kHz. The maximum sample rate achievable for

the event-driven model, 350 Hz, is significantly lower due to the overhead inherently present

in the object-oriented event-queue based approach.

The deviation of the bitrate values contained within the 7 to 12 node range can be attributed

to the latency introduced by the I2C bus arbitration process. It is widely stated, in most

I2C literature [28] [29], that arbitration is an uncommon occurrence. This statement is only

partially true in that it only applies to the typical use cases of I2C. In most applications, I2C

is almost always used in a single-master/multiple-slave configuration. Within that topology,

arbitration is virtually impossible because there is only one master. However, in the case of a

dense multi-master configuration, the need for arbitration becomes apparent and is actually

a more common occurrence than most I2C documentation suggests.

When multiple devices attempt to master the bus simultaneously, each node looks at the

state of the SDA line and compares the current level with what it thinks the level should

be using wired AND logic. If the current level of the SDA line does not match the expected

level, the node assumes that it lost arbitration and is forced to wait until the bus becomes

free again. It should be noted that this arbitration can go on for several bits depending on

the data being sent by both nodes that are attempting to master the bus. The arbitration

time is inherently longer in this particular system, since each Tier 1 node is always sending
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to the same Tier 2 node slave address. This causes the first byte sent in every I2C frame in

this system to be identical for every packet transmitted regardless of the sender. Therefore,

when two nodes attempt to master the bus at the same time, it will take at least one byte

before one of the nodes realizes it has lost arbitration. Fortunately, by design, the I2C

protocol prevents data corruption with this arbitration process so no retransmissions of data

are required by the node that won the arbitration. It should be noted though, that no

random back-off procedure or alternate form of congestion or flow control is provided in this

situation by the I2C protocol. The node which loses arbitration waits until the bus becomes

free and attempts a retransmission.

For the embedded jumpsuit platform, it is very difficult to accurately know when an arbitra-

tion has occurred, let alone be able to effectively measure the frequency of these occurrences.

Since, the I2C interface is the primary form of communication I/O for these devices, the

options for debugging and evaluating the runtime execution are rather limited. However, a

low-level rudimentary solution was discovered. In order to be able to accurately provide an

indication that a node has realized it has lost an arbitration, one of the few unused general-

purpose I/O (GPIO) pins on the Atmel Atmega8L microcontroller was utilized. A short,

thin wire was soldered to this GPIO pin. The other end of wire was connected to the analog

input of a logic analyzer. The I2C network software driver was then modified to drive GPIO

line high as soon as the Arbitration Lost condition in the I2C interrupt service routine was

reached. The GPIO pin is then driven back down low right before the I2C interrupt service

routine exits. Due to the limited resources of the testing environment, only two acceleration

modules can be monitored for arbitration loss at any given time since the logic analyzer used

only supports two analog input sources.

As a simple arbitration test scenario, three Tier 1 nodes were configured to send pre-

determined 10-byte test packets at the maximum sustainable sample rate for five nodes.
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This test leaves plenty of bandwidth for each node to be able to successfully transfer its test

packet before the next round of packets must be sent. As shown in Figure 7.13, it was

discovered that at least one arbitration can commonly be detected while monitoring only

two out of the three nodes. This effectively proves that arbitration does occur in even the

minimal use case of multi-master I2C. It was also discovered, as shown in Figure 7.13, that

when two nodes attempt to master the bus, the node losing arbitration backs off and waits

for the bus to become free so that it can attempt to master the bus again. Each byte of

data sent by the node that won the arbitration process is acknowledged (ACK) successfully

by the slave. However, an interesting phenomenon occurs once the bus becomes free and

the losing node attempts to re-master the bus and transmit the 7-bit address of the slave

node. The first 7-bit slave address and read/write bit comprising the first byte transferred is

not acknowledged (NACK) by the slave, indicating a state where the slave device is not yet

ready to accept a message. The sending node then retries sending the packet again after the

failed communication attempt, and each byte the message is then successfully acknowledged

by the slave device.

Upon observing many sample tests, it was demonstrated that this failed communication

attempt occurs every time after an arbitration lost signal is present on the monitored GPIO

line. This extra unacknowledged byte, along with its corresponding start and stop condition

delays, incurs a 58us delay each time an arbitration occurs as shown in Figure 7.14. As

indicated in Figure 7.15, the number of observed arbitrations increases multiplicatively to the

number of nodes attempting to master the bus. The added delay caused by the transmission

of the unacknowledged bytes builds up as the number of nodes on the network increases,

thus leading to the deviation from the expected values since the theoretical maximum sample

rate model does not factor in the overhead associated with this phenomenon.

It should be noted that the I2C driver utilized in the jumpsuit prototype for the optimized
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Figure 7.13: Logic Analyzer Capture of Arbitration Detection
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Figure 7.15: Logic Analyzer Capture of Multiple Arbitrations
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software model was essentially the same driver code utilized in the previous pants system.

The driver utilized in the event-driven model was based off this same design with added

support for the generation of I2C events. However, the finite state machine which controls

the actual I2C hardware interface was not modified. The added latency induced by the

situation outlined earlier is considered a day-one issue and was therefore present in the

previous pants system as well. This design flaw was simply highlighted by the fact that the

I2C communications network is being pushed to the limit in the experiments presented in

this text. As the optimization of multi-master I2C network communication is not the focus

of this thesis, the improvement of the I2C communication driver to resolve this issue is left

as an exercise for future developers.

7.3.4 Comparison of Software Approaches

The overall results show that in general, for the event-driven software model, the experi-

mental maximum global sample rates sustainable are significantly lower than the optimized

model due to the increased packet size and the additional overhead incurred through the use

of VTEDP and the event-queue based software architecture. As shown in Figure 7.16, both

the event-driven and optimized software models conform to the inversely proportional rela-

tionship as expected by the theoretical approximations. As indicated in previous research

[11], a sample rate between 20 and 120 Hz is suitable for the detection of most everyday ac-

tivities. As such, the implementation presented in this thesis provides sustainability within

that 20 to 120 Hz range for up to 11 nodes for the event-driven software model and is well

above that range utilizing the optimized software model. The optimized approach supports

a factor of almost three improvement when compared to the previous pants design where six

acceleration modules are utilized. It should be noted that the experimental data showing the

maximum sustainable global sample rate for each respective software model demonstrates
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the physical limitations of this design and should not be thought of as average use case

sample rate for typical applications.

340 305
230

170 140 120 80 60 45 33 25

1,400

992

725

510
393 357

240
156 135 105 85

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12

Comparison of Software Models
Experimental Maximum Global Sample Rates (Hz) Vs. 

Number of Tier 1 Sensor Modules

Event-Driven Model Optimized Model

Figure 7.16: Comparison of Event-Driven and Optimized Software Models
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Chapter 8

Conclusions

8.1 Contributions

In conclusion, many lessons learned can be taken from the development of the activity

recognition jumpsuit prototype. Most notably, effective application-level processing, like the

activity recognition application, is possible to achieve on an e-textile without the use of

a back-end PC. Although the network communication appears to be the main bottleneck

in the overall system, the raw data stream processing model implemented in this solution

does provide sufficient performance for the 20 to 120 Hz sample rates needed to support

activity recognition for up to eleven nodes using the flexible event-driven software model.

The optimized solution, however, provides performance well surpassing the 20 to 120 Hz

sample rate range.

The jumpsuit prototype system as a whole shows significant improvement over the previously

developed pants design. The SVD based activity recognition algorithm has been shown to be

successfully extended to utilize 3-d motion data collected at mid-limb locations rather than
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being centered around the joints of the human body. The sample rate limitations imposed

by the Bluetooth radio communication speeds in the previous pants have also been avoided

since no motion data is streamed off of the textile. Computation has not only been success-

fully migrated to the confines of the wearable textile itself, but the generic infrastructure

provided by the event-driven approach can be used to effectively realize complex applica-

tions other than just activity recognition. It should also be noted that fine grain application

runtime performance within an embedded environment can be analyzed through the use of

the VTProf source code profiler library.

8.2 Future Work

Depending the sample rate requirements for future applications, the raw data processing

model may not be effectively scalable for dense sensor module networks. One certainly

viable solution to increase the scalability of the design presented in this thesis is to separate

the sections of network into subnets, and assign Tier 1 router nodes the task of managing the

state of each specified region. Each router could then act as a regional manager by collecting

and preprocessing the capture sensor data and then send summary statistics to one or more

Tier 2 nodes. This approach would reduce the network bandwidth necessary for network as

a whole and may extend the range of the number of devices physically supportable within

an e-textile.

Future work for this research includes potential development in many areas. In terms of

future work in the realm of hardware, a two-axis gyro should be included into the design of the

acceleration modules. This would allow each acceleration module to act as a six-axis Inertial

Measurement Unit (IMU) similar to those used in various land, air, and watercraft vehicles.

The addition of a magnetic field sensor may also help provide some useful absolute positional

71



information for motion capture applications. Also, the 400 pF limitations associated with

I2C SDA and SCL line capacitance should be analyzed further as that is another factor with

may limit the network performance of the system particularly with regard to dense sensor

configurations. A rough estimation for capacitance added by each Tier 1 node attached to

an I2C bus is provided in the appendix. In terms of software, network software support

work should be performed to increase network speed and throughput as well as to provide

more complex routing algorithms.

The e-textile infrastructure provided in this research can serve as a strong starting point

for future researchers to develop more complex applications tangent to the process of ac-

tivity recognition. One such application is a self-aware wearable textile that contains nodes

which can dynamically ascertain their individual locations on the garment. The jumpsuit

infrastructure also provides application-level motion processing capabilities that would allow

for future research into predictive fall technologies. With the memory space and processing

power of the Gumstix platform, adaptive filter technology could be employed to monitor

and analyze the gait of the person wearing the jumpsuit and potentially enact measures to

reduce the severity of a fall, particularly in the case of the elderly.
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Appendix A

Gumstix Tutorials

A.1 How To Connect to the Gumstix

A.1.1 Connecting Via Serial Port

1. First, attach the gumstix motherboard to the I2C converter board via the breakout-

gs expansion board and connect the serial RS-232 connection from the PC to the gumstix

assembly.

2. Make sure you have kermit installed. You can use Minicom if you prefer but it is more

complicated. If kermit is not installed already, use

sudo apt-get install ckermit

3. Next Launch kermit

kermit -l /dev/<path_to_serial_port>

*** Note if you are using a USB to Serial RS-232 converted, the path you will most likely
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use is /dev/ttyUSB0. If you plug in your USB to serial converted and it does not show up as

ttyUSB0 but dmesg does acknowledge that it was attached, then you must do the following,

sudo apt-get remove brltty

This is caused by a bug in ubuntu, where a package meant to connect a serial brail teletype

machine messes up the mounting of the USB to RS-232 converter to /dev/ttyUSB0.

3. Next load the correct setting into kermit and try to connect to the gumstix

C-Kermit> take ˜/gumstix/gumstix-oe/extras/kermit-setup

C-Kermit> connect

4. Next connect power to the gumstix.

5. You should now see a 3 second countdown screen, and then you should see a verbose boot

sequence. When prompted for a username and password, use the following,

user: root

pass: gumstix

6. To log out use,

ctrl + \ + c

7. Type ”exit” to quit kermit

A.1.2 Connecting Via Bluetooth

When connecting to the gumstix wirelessly, TCP/IP over Bluetooth is used. For some

reason, the gumstix always wants to be the master for the Bluetooth connection. This can
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be changed after the initial connection is made. First set up the PC, then automatically

bind the connection with the gumstix. Then log into the gumstix via SSH.

1. First, plug in the Bluetooth dongle into the PC and tell it to listen and accept a connection

using,

pand --listen

2. Next, power on the gumstix. Upon booting, the gumstix should automatically attempt

to connect to the PC and set up it’s IP address on bnep0 as 192.168.1.2

3. Now setup the connection on the PC by setting its IP address using

sudo ifconfig bnep0 192.168.1.1

*** Note, if you get an error, just reboot the PC and try the process over.

4. Finally you can log into the gumstix via SSH using,

ssh root@192.168.1.2

When prompted for the password, use ”gumstix”.

*** Note you can also use standard SCP calls to the gumstix to transfer files back and forth.

A.2 OpenEmbedded Build Environment Setup

These instructions are for setting up an OpenEmbedded build environment using Ubuntu

Linux.

1. Set up your machine with the require packages. Make sure you have the following packages

installed:
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subversion

gcc

patch

help2man

diffstat

texi2html

texinfo

libncurses5-dev

cvs

gawk

python-dev

python-pysqlite2

To install these packages, use

sudo apt-get install <name of package>

*** Note you can install multiple packages at once i.e.

sudo apt-get install subversion gcc patch help2man diffstat 

texi2html texinfo 

libncurses5-dev cvs gawk python-dev python-pysqlite2 

** Note, on ubuntu /bin/sh is linked to /bin/dash. This will cause an image that will not

boot once compiled. To fix this run,

sudo dpkg-reconfigure dash

And say no to installing dash as /bin/sh
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2. Checkout the OE source from subversion repository

mkdir ~/gumstix 

cd ~/gumstix 

svn co 

https://gumstix.svn.sourceforge.net/svnroot/gumstix/trunk 

gumstix-oe 

** Note to check out a specific version, use the following command instead:

svn co -rXXX 

https://gumstix.svn.sourceforge.net/svnroot/gumstix/trunk 

gumstix-oe 

 XXX is the version number you want to check out. Currently, revision 308 is being used,

which should build fine with no errors. At this point you should have the OE source in

gumstix/gumstix-oe

3. Set up Environment. Append gumstix’s bash profile file to our .bashrc using,

cat gumstix-oe/extras/profile >> ˜/.bashrc

*** Note, if you did not check out the source code from subversion to /home/–username–

/gumstix/gumstix-oe this file with not work because it relies on that explicit path to

work.

4. Set up Source code caching. This part may be skipped for a single user system, but

it is recommended to set up a global cache directory for the tarballs to be stored in for a

multi-user setup to save both disk space and download time
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sudo groupadd oe

sudo usermod -a -G oe your_username

*** Note, the last command may fail when using the machines in CCM Lab since they are

using NFS and the home directories for the users are mounted over the network. Typi-

cally when a Linux machine is set up on the CCM Network, a dummy account is created

and added to /etc/passwd. You may have to add yourself after this dummy entry to the

/etc/passwd file as follows:

your_username:x:1001:1001:your_username,,,:/home/your_username

:/bin/bash 

Then modify the permissions on the sources directory

sudo mkdir /usr/share/sources

sudo chgrp oe /usr/share/sources

sudo chmod 0775 /usr/share/sources

sudo chmod ug+s /usr/share/sources

5. Start the build. You must log out and then log back in for the changes you made to the

build environment to take effect.

*** Note this assumes you are building an image for the Verdex motherboard, if you want

to build an image for the Basix motherboard, you must edit

/gumstix/gumstix-oe/build/conf/auto.conf

Comment out the verdex line and uncomment the Basix line. Start the build using bitbake

as follows:
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bitbake gumstix-basic-image

Bitbake should complain here if you do not have all the required packages. If you missed

something, install it with apt-get and execute the command above again. Ignore any mes-

sages about user.collection/packages/*/*.bb as this directory is for your user developed

programs which we do not have any yet so do not worry about this.

*** Note that although bitbake also suggests you to install the psyco JIT compile for better

performance, this in not required. To install it, use

sudo apt-get install python-psyco

This supposedly speeds up the build time by acting as a just-in-time compile like Java but

little performance gain by using this.

6. Wait a long long long time ... You may as well go do something else why performing this

initial build as it takes hours to complete. This is mainly because the first time you do the

build it has to download a lot of tarballs from an ftp server which is usually really slow.

Once the build completes, you should have the image in

˜/gumstix/gumstix-oe/tmp/deploy/glibc/images/gumstix-custom-verdex

If you do,

$ ls -l ~/gumstix/gumstix-oe/tmp/deploy/glibc/images/gumstix-

custom-verdex/ 

You should see something like,
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Angstrom-gumstix-basic-image-glibc-ipk-2007.9-test-20071101-

gumstix-custom-verdex.rootfs.jffs2 

gumstix-basic-image-gumstix-custom-verdex.jffs2 

modules-2.6.22-r1-gumstix-custom-verdex.tgz 

uImage-2.6.22-r1-gumstix-custom-verdex.bin 

 
*** Note that there is really only one .jffs2 file and that’s the one with the long name. The

gumstix-basic-image-gumstix-custom-verdex.jffs2 is the symbolic link to that file with

a shorter name for convenience for typing when flashing the file to the gumstix.

And now you should have a build environment setup and ready to go.

A.3 Flashing the OpenEmbedded Filesystem Image to

the Gumstix

Note that for the setup we have, it is advised to flash the filesystem image using a serial

connection to the gumstix. The I2C to serial conversion board has a 9-pin d-sub connector

which breaks out the FFUART on the gumstix to the PC. Simply connect the gumstix

motherboard to the I2C converter board via the breakout-gs expansion board and connect

the serial RS-232 connection from the PC to the gumstix assembly.

First setup a serial connection.

1. Make sure you have kermit installed. You can use Minicom if you prefer but its is more

complicated. If kermit is not installed already, use

sudo apt-get install ckermit

84



2. Next Launch kermit,

kermit -l /dev/<path_to_serial_port>

*** Note if you are using a USB to Serial RS-232 converted the path you will most likely use

is /dev/ttyUSB0. If you plug in your USB to serial converted and it does not show up as

ttyUSB0 but dmesg does acknowledge that it was attached then, you must do the following:

sudo apt-get remove brltty

This is because of a bug in ubuntu where a package meant to connect a serial brail teletype

machine messes up the mounting of the converter to /dev/ttyUSB0.

3. Next load the correct setting into kermit and try to connect to the gumstix.

C-Kermit> take ˜/gumstix/gumstix-oe/extras/kermit-setup

C-Kermit> connect

4. Next connect power to the gumstix. You should see a U-Boot screen with a 3-second

countdown. Press any key to stop the gumstix from booting into Linux and put it into the

programming mode. You should see a terminal that says

GUM>

5. Next, tell U-Boot to start receiving a file at location a2000000 in RAM.

GUM> loadb a2000000

6. Break the serial connection and return to the kermit prompt by using,
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-------------------------------------------------------------- 
C-Kermit 8.0.211, 10 Apr 2004, localhost 
 
 
 
Current Directory: /home/jchong/gumstix/gumstix-oe/tmp/deploy/glibc/images/ 
Communication Device: /dev/ttyUSB0 
Communication Speed: 115200 
Parity: none 
RTT/Timeout: 01 / 02 
SENDING:  => GUMSTIX-BASIC-IMAGE-GUMSTIX-CUSTOM-VERDEX.JFFS2 
File Type: BINARY 
File Size: 7491192 
Percent Done: 2   / 
...10...20...30...40...50...60...70...80...90..100 
Estimated Time Left: 00:13:32 
Transfer Rate, CPS: 8963 
Window Slots: 1 of 1 
Packet Type: D 
Packet Count: 68 
Packet Length: 4096 
Error Count: 0 
Last Error: 
Last Message: 
 
 
X to cancel file, Z to cancel group,  to resend last packet, 
 
E to send Error packet, ^C to quit immediately, ^L to refresh screen. 
-------------------------------------------------------------- 
 

Figure A.1: Download Monitor Screen

ctrl-\-c

7. Send the filesystem image using,

C-Kermit> cd ~/gumstix/gumstix-

oe/tmp/deploy/glibc/images/gumstix-custom-verdex/ 

C-Kermit> send gumstix-basic-image-gumstix-custom-

verdex.jffs2 

You should see a download monitor screen which appears similar to Figure A.1.
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The download should take around 12 to 15 minutes to complete depending on what packages

you selected in the filesystem build.

8. Once the download completes, the filesystem is loaded into RAM. You still need to write

the contents of the RAM to flash. To do this type,

C-Kermit> connect

9. Erase the current contents of flash using,

GUM> protect on 1:0-1

GUM> erase all

*** Note, this is the most important part. The 1:0-1 protects the bootloader from being

erased. Omitting this line will brick your gumstix although it can be fixed by sending back

to gumstix to be factory re-flashed for a small fee.

10. Then write the contents of RAM to flash using,

GUM> cp.b a2000000 40000 ${filesize}

11. Now we have to load the kernel image using the same steps as above.

GUM> loadb a2000000

C-Kermit> send uImage-2.6.21-r1-gumstix-custom-verdex.bin

C-Kermit> connect

GUM> katinstall 100000

GUM> katload 100000

GUM> bootm
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12. Your gumstix should now boot into Linux. When prompted for a username and password,

use the following:

User: root

Password: gumstix

A.4 Developing Applications for Gumstix OpenEm-

bedded

1. Set up the build environment using the instructions found in the OpenEmbedded Build

Environment Setup appendix.

2. To Build a Sample C Hello World program use instructions here:

http://www.gumstix.net/Software/view/Build-system-

overview/Hello-world-tutorial/111.html 

** Note this is for C++ for a new gumstix install – fresh out of box

In order to run C++ programs you need to download

libstdc++6_4.1.2-r10_armv5te.ipk

from here:

http://gumstix.net/feeds/current-old/glibc/ipk/armv5te/

Then,
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scp ~/gumstix/libstdc++6_4.1.2-r10_armv5te.ipk 

root@192.168.1.2:/home/root 

While SSHed into the gumstix,

cd /home/root

ipkg install helloworld2_1.0.0-r2_armv5te.ipk

3. /gumstix/gumstix-oe/user.collection/packages is where user programs source code

goes.

4. hellofunction is the template for a multi-source-file C++ program using bitbake with

make. See step 2 for more details.

5. To compile, use

bitbake <name_of_program>

*** Note, to trigger a recompile, you need to either change the revision number in the bitbake

recipe, or you can use the rebuild flag (there is no make clean).

bitbake -c rebuild <name_of_program>

6. Then copy the package over to the gumstix via scp, (package not built in source dir).

scp ˜/gumstix/<path_to_package> root@192.168.1.2:/home/root

While SSHed into the gumstix,

cd /home/root

ipkg install <name_of_package>_1.0.0-r2_armv5te.ipk
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7. To remove an installed package, use

ipkg remove <name_of_package>_1.0.0-r2_armv5te.ipk

A.5 Setting up Bluetooth on the Verdex 400xm-bt Gum-

stix

After flashing the Gumstix with a fresh kernel image, you must tweak some setting on the

Gumstix to get Bluetooth configured properly. First, set up a serial connection:

1. Make sure you have kermit installed. You can use Minicom if you prefer but it is more

complicated. If kermit is not installed already, use

sudo apt-get install ckermit

2. Next Launch kermit,

kermit -l /dev/<path_to_serial_port>

*** Note if you are using a USB to Serial RS-232 converted the path you will most likely use

is /dev/ttyUSB0. If you plug in your USB to serial converted and it does not show up as

ttyUSB0 but dmesg does acknowledge that it was attached then, you must do the following:

sudo apt-get remove brltty

This is because of a bug in ubuntu where a package meant to connect a serial brail teletype

machine messes up the mounting of the converter to /dev/ttyUSB0.

3. Next load the correct setting into kermit and try to connect to the gumstix.
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C-Kermit> take ˜/gumstix/gumstix-oe/extras/kermit-setup

C-Kermit> connect

4. Next connect power to the gumstix.

5. You should now see a 3 second countdown screen and then you should see a verbose boot

sequence. When prompted for a username and password use the following,

user: root

pass: gumstix

6. Once logged in, edit /etc/init.d/bluetooth as follows:

vi /etc/init.d/bluetooth

Make sure that the startup script uses the ttyS1 serial port, this is sometimes set incorrectly

in some OpenEmbedded builds. If it is set correctly you should see this line,

HCIATTACH_TTY=ttyS1

Next make sure the following lines appear in the start stanza after the /sbin/modprobe

proc-gpio line:

echo "AF3 out" > /proc/gpio/GPIO9

echo "AF1 in" > /proc/gpio/GPIO42

echo "AF2 out" > /proc/gpio/GPIO43

echo "AF1 in" > /proc/gpio/GPIO44

echo "AF2 out" > /proc/gpio/GPIO45

7. Next edit /etc/network/interfaces to set up the Bluetooth interface with a static IP

address as follows:

91



vi /etc/network/interfaces

Comment out the line

#iface bnep0 inet dhcp

And replace it with,

iface bnep0 inet static

address 192.168.1.2

netmask 255.255.255.0

network 192.168.1.0

gateway 192.168.1.1

broadcast 192.168.1.255

8. Finally, edit /etc/default/bluetooth to configure pand as follows:

vi /etc/default/bluetooth

Change the line,

PAND_ENABLE=false

to,

PAND_ENABLE=true

Then replace the line,

PAND_OPTIONS="--listen --role NAP"
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with,

PAND_OPTIONS="--role PANU --connect 00:11:67:24:05:BD"

where 00:11:67:24:05:BD is the MAC address of the Bluetooth dongle on the PC you are

going to connect to. This address can be found by executing the following command on the

PC,

hcitool dev

9. Now the Gumstix should be properly configured to automatically try to pair with the

Bluetooth dongle on the PC and set up its own IP address to 192.168.1.2
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Appendix B

Atmel Tutorials

B.1 Programming an Atmel Microcontroller

To program an Atmel Microcontroller, you must have the programmer connected to the PC

and the correct build environment set up.

1. To set up the build environment, you must have the gcc, avrdude, avr-libc, binutils-avr,

and gcc-avr packages installed. To do this, use

sudo apt-get install gcc avrdude avr-libc binutils-avr gcc-avr

2. Next, many of the applications rely on the libraries found in /jumpsuit/lib/. Inside

that directory you will find avr-2.0 and avr1.1. You may use either set of libraries for your

application depending upon your specific needs.

3. Next make sure your directory is /jumpsuit/build as this contains some scripts the

programmer uses to flash the Atmel.

4. Develop your source code in directories parallel to the lib and build directories. You may
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~$ lsusb 
Bus 005 Device 006: ID 1131:1001 Integrated System Solution Corp. KY-BT100 

Bluetooth Adapter 
Bus 005 Device 005: ID 05e3:1205 Genesys Logic, Inc. Afilias Optical Mouse H3003 
Bus 005 Device 002: ID 0409:0058 NEC Corp. HighSpeed Hub 
Bus 005 Device 001: ID 0000:0000 
Bus 004 Device 002: ID 03eb:2104 Atmel Corp. 
Bus 004 Device 001: ID 0000:0000 
Bus 002 Device 003: ID 0403:6001 Future Technology Devices International, Ltd 8-bit 

FIFO 
Bus 002 Device 001: ID 0000:0000 
Bus 003 Device 001: ID 0000:0000 
Bus 001 Device 001: ID 0000:0000 

 

Figure B.1: Permissions Setup Output

change this if you like, but then you must edit the top source directory path in the Makefile

for your applications as follows:

Find the line,

top_srcdir = ..

Change it to,

top_srcdir = <path_to_your_source_files>

5. Next attach the avrmkII programmer to the PC. Most likely when you first connect the

programmer, it will not have the correct permissions to allow you to flash the Atmel. To

setup the permissions properly do the following:

lsusb

You should see output similar to Figure B.1.

Now edit the permission for the programmer by specifying the bus number and device ID

number.
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sudo chmod a+rw /dev/bus/usb/004/002

***Note, you will need to use your specific numbers found from lsusb

6. Next connect the programmer to the board containing the Atmel. A six pin programming

header is used, and the connector must face the proper orientation to work. Fortunately,

plugging in the programmer backwards does not damage the Atmel. If it is connected

properly you should see a green light on the programmer. If the light is orange, then you

have it backwards. The is red when the programmer is disconnected or when it is connected

and the Atmel is not powered on.

7. Finally in your source code directory execute the following:

make clean

make

make usb_prog

This will delete any old hex files, create the new hex files, and flash the Atmel with your

program.

B.2 Fixing the slow or skewed clock on the Atmel At-

mega8l

If when you flash the Atmel with your program code and it appears to be running, but much

slower than you anticipated for an 8Mhz clock rate, it may be the case that the fuses have

been set incorrectly to use the internal oscillator.

To fix this problem, connect the Atmel programmer to the board and issue the following
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command to reset the fuses on the Atmel Atmega8l microcontroller:

make usb_init

This should reset the fuses to use the 8Mhz internal oscillator.
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Appendix C

VTProf Tutorial

C.1 Using VTprof to Profile your C/C++ Source Code

VTprof is a profiling library used for time specific sections of C and C++ code. Unlike gprof,

VTprof can be used for more than just monitoring the execution time of functions. It can be

used to time loop structures or even individual instructions with microsecond precision. This

flexibility does come as a cost. However, you must include timing code segments explicitly

in your source in order to use VTprof.

1. Include profile.h in your source files, and make sure you have profile.cpp in the same

source directory.

2. VTprof relies on using extern struct pointer variables to collect the timing information.

You must declare a function counter pointer for each function or code segment you want to

monitor in profile.h. You must also edit the corresponding declarations in profile.cpp.

3. Next, declare two struct timeval’s in profile.h for each code segment you want to monitor.

Two timevals are required because one is needed for capturing the time the segment starts
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and the other is for capturing the time the code segment ends. Again you must edit the

corresponding declarations in profile.cpp.

4. Next, you must edit your main subroutine to initialize these function counter variables

and place gettimeofday calls before and after each code segment you want to monitor. For

more information about the gettimeofday call, see the Linux manpages.

man gettimeofday

To, illustrate how to edit the main subroutine, the following example code is provided in

Figure C.1.

5. Finally, compile your source code normally using G++. When you run your program,

the function counters will monitor your code and a profile report will be written to a text

file profile.txt. The report will look similar to Figure C.2.
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/////////////////////////////////////////////////////////////////////////////////// 
 
// At the top of your code be sure to include the profile header file, 
#include "profile.h" 
 
// In your main routine, 
 
 //////////////////////////////////////////////////////////////////////////// 
 // Add this to the beginning of your program to set up an outputfile, and 
 // the profiler 
 FILE *outputFile; 
 outputFile = fopen("profile.txt", "w"); 
 init_profiler( &myProfiler ); 
 //////////////////////////////////////////////////////////////////////////// 
 
 //////////////////////////////////////////////////////////////////////////// 
 // Register each function you want to monitor with the profiler 
 //////////////////////////////////////////////////////////////////////////// 
 counter_test_function1 = register_function( "test_function1", &myProfiler ); 
 counter_test_function2 = register_function( "test_function2", &myProfiler ); 
 counter_test_function3 = register_function( "test_function3", &myProfiler ); 
 //////////////////////////////////////////////////////////////////////////// 
 
 //////////////////////////////////////////////////////////////////////////// 
 // Add this before the work really begins to save the start time for overall 
 // program 
 gettimeofday (&prog_start, NULL); 
 //////////////////////////////////////////////////////////////////////////// 
 
*********************************************************************************** 
// Actual program starts here 
*********************************************************************************** 
 // Your code goes here 
 
 //////////////////////////////////////////////////////////////////////////// 
 // Add this right before each function call you want to monitor 
 gettimeofday (&f1_start, NULL); 
 //////////////////////////////////////////////////////////////////////////// 
  <**** Your function call goes here ****> 
 //////////////////////////////////////////////////////////////////////////// 
 // Add this right after each function call you want monitor 
 gettimeofday (&f1_current, NULL); 
 end_func_call(counter_test_function1, &t_start, &t_current ); 
 //////////////////////////////////////////////////////////////////////////// 
 
 // Your code goes here 
 
*********************************************************************************** 
// Actual program ends here 
*********************************************************************************** 
 
 //////////////////////////////////////////////////////////////////////////// 
 // Add this to the end of the code to record the stop time for the overall 
 // program and print the profile report 
 gettimeofday (&prog_stop, NULL); 
 print_profile_report( outputFile, &myProfiler, &prog_start, &prog_stop ); 
 //////////////////////////////////////////////////////////////////////////// 

 
Figure C.1: Example Code
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-------------------------------------------------------------------------------- 
Profile Report 
-------------------------------------------------------------------------------- 
Total Execution time: 64844 us 
-------------------------------------------------------------------------------- 
 % Time  | # Called | Total us |  Min us  |  Max us  |  Avg us  | Function Name 
-------------------------------------------------------------------------------- 
    92.8 |    60190 |       20 |     2315 |     4427 |     3169 | test_function1 
     7.0 |     4510 |       50 |       71 |      118 |       92 | test_function2 
     0.1 |       81 |       30 |        2 |        3 |        2 | test_function3 
     0.0 |       31 |       20 |        1 |        3 |        1 | test_function4 
     0.1 |       40 |       30 |        1 |        2 |        1 | test_function5 
    -0.0 |      N/A |      N/A |      N/A |      N/A |      N/A | Other (Misc) 
-------------------------------------------------------------------------------- 

 

Figure C.2: Profile Report
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Appendix D

Miscellaneous

D.1 Soldering Tips and Tricks

D.1.1 General Soldering Tips

Before reading any further or attempting to solder anything on your own, be sure to check

out the following link. These tutorials from sparkfun contain excellent information on sol-

dering various types of components.

http://www.sparkfun.com/commerce/present.php?p=BEE-6-

SolderingBasics 

In general soldering is not that complicated an operation to perform, but it does take a fair

amount of practice to become proficient. It is advised that you start by getting comfortable

soldering through-hole components first, then move on to surface mound devices. If you do

not solder on a regular basis or feel that you are rusty on the hand-eye coordination skills

needed, it is advised that you warm up on a test piece before trying to solder anything too
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important.

D.1.2 SMD Soldering Techniques

Once you become proficient using the soldering iron for through-hole parts, you will find

that surface mount devices (SMD’s) are the next logical progression. Typically for any given

design, you will have only maybe 2 or 3 difficult parts to put on like a microcontroller,

accelerometer, gyro, and etc. Everything else will be easy SMD’s like resistors, capacitors,

inductors, and voltage regulators. Most of the resistors, capacitors, and inductors used come

in the same size packages, typically 0805, 0603, or 0402. These numbers refer to the widths

and lengths of the actual device. It is advised that you start out practicing on soldering 0805

packages since those are the biggest of the sizes typically used. You’ll find that once you

can put these size components on proficiently, soldering smaller packages like 0402 is just as

easy.

To solder one of these rectangular SMD packages, start by putting a small amount of solder

on one of the pads. Next, using tweezers, carefully pick up the part and move into position

on top of the pads. Then press the tip of the iron onto the small bit of solder previously put

on the pad. This should secure the device in place so that you can apply solder to the other

side of the part without having to hold it with the tweezers. Often times, several of these

types of components need to be put on the board, so just solder one side of all the parts first

to get them in place then go back and solder the other sides of all the parts at once at the

end. Here are some good links to tips on SMD soldering

http://www.sparkfun.com/commerce/present.php?p=BEE-7-SMDSoldering

http://www.sparkfun.com/commerce/present.php?p=SMD-HowTo-2

http://www.sparkfun.com/commerce/present.php?p=Crazy%20Soldering
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http://www.youtube.com/watch?v=EWeAOemTY_E&feature=related

D.1.3 SMD With Leads Soldering Techniques

Small Outline Packages (SOP) like TSOP, MSOP, SOIC, and even Thin Quad Flat Pack

(TQFP) packages that have short gull-wing leads on 2 or 4 sides are relatively easy to attach

as well. You can use a technique similar to the regular SMD parts where you can put solder

on one of the pads, typically on a corner, and then align the part tacking down the corner.

Then, I solder the opposite corner, and fill in the rest of the pins in between. As I solder

each individual pin, I place the tip of the soldering iron onto the edge of the lead where

lead meets the pad. Then simply heat up that pin and touch the solder to the lower half

of the pin. Usually the solder will wick down the remaining length of the pin and meet the

pad since solder flows toward the heat source naturally. Alternatively you can just hold the

soldering iron horizontally across groups of pins and allow the solder flow across them all

effectively shorting them all together. Then you can use a solder wick copper braid to remove

the excess solder thus removing the shorts. The following links demonstrate this technique.

http://www.youtube.com/watch?v=e5qYG95bbz8&feature=related

http://www.youtube.com/watch?v=AcbezX8TrOU&feature=related

http://www.youtube.com/watch?v=0EUAEtri3h0&feature=related

D.1.4 BGA Soldering Techniques

Soldering Ball Grid Array (BGA) parts may look like a daunting task at first, but in general,

they are fairly easy to put on if you use a stencil. Since BGA parts already have the solder

balls mounted on the underside of the device, no external solder is needed. Also the stencil
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used is a one-time-use stencil that gets permanently sandwiched between the PCB and the

part. The stencil is typically made of vinyl with an adhesive backing on it. Simply peel the

stencil off of its paper or plastic backing and align the holes in the stencil with the pads

on the PCB. If you mess up and do not get the stencil aligned properly on the first try, do

not worry, just carefully peel the stencil off the board, realign it, and reapply it. This lab

usually get the stencils from a company called Stencils Unlimited. It usually take about a

week to get a stencil from them, and if it is a custom stencil like the one used for our gyro

parts, you will have to select the custom stencil option from their website and enter in the

part number. Typically, you will have to order in multiples of ten stencils, with each set of

ten costing around 75 dollars. The part number for the gyro stencil is BT03208007007050.

Below is a link to the Stencils Unlimited webpage:

http://www.stencilsunlimited.com/

Now, in order to actually attach the BGA part to the PCB you will need a hot plate. Some

people have had success using a toaster oven or a skillet to mount these devices but it

has been found that the using a hot plate directly works quite well. You can monitor the

temperature of the hot plate using an infrared thermometer. Through testing, it was found

that around 285 degrees Celsius is the ideal temperature for reliably mounting these parts.

If you cannot pin down 285 degrees Celsius exactly on the hot plate, do not worry, anything

between 270-295 will work (this corresponds to setting the knob on the hot plate to a little

above the markings for the low setting). This may seem too hot for the part to handle as per

the datasheets, but you have to remember that the actual part is not touching the hot plate

or even the PCB for that matter since it is essentially sitting on top of the grid of solder

balls. Once you have the hot plate set to the right temperature, carefully put the BGA part

on top of the stencil, aligning the solder balls to the holes. Next, place the assembly on top

of the hot plate roughly 1/3 of the way from the outer edge. This is an area you want to
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be monitoring with the infrared thermometer. Let it sit there for around 1-1/2 minutes to 2

minutes, then carefully remove the assembly from the hot plate using tweezers or needle-nose

pliers. Let the assembly cool for a minute or two, and you should be good to go. Note, never

push down on top of the BGA at any point when the solder balls are hot, just let gravity do

the work. On another side note, if you are simply prototyping a board that requires the use

of a BGA part, you may want to look into using a schmart board. These generic perf-boards

are specially designed with vias which align perfectly to the pitch of the ball grid array. Here

are links to this product and how to use them.

http://www.schmartboard.com/index.asp?page=products_bga&id=109

http://www.youtube.com/watch?v=D3PTpaB4kro

Here is a link to a side profile view of how the BGA works,

http://www.necel.com/pkg/en/mount/4/4_2/index.html

D.1.5 QFN Soldering Techniques

Parts with Quad Flat No leads (QFN) packages are quite possibly the most difficult types of

components to put on. This is because there are no leads sticking out, and the only way to

connect the part is by soldering the pads on the bottom of the component to the pads on PCB.

This can not be accomplished using a soldering iron especially for pad located in the middle

of part. There are two quite reliable methods for attaching these QFN components but much

care must be taken when performing these techniques as to not damage the components or

create unwanted shorts between pads.

The first technique is to use solder paste. Solder paste is basically a cream composed of

small solder particle suspended in a flux based substrate liquid. It can be stored at room
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temperature, but it is recommended to store it in a refrigerated environment to prolong the

life of the product since there is an expiration date associated with it. With refrigeration,

the manufacturers of most solder paste products say the paste can last up to 9 months or so.

Through experimentation, it was found that the solder paste is still good past a year and a

half with virtually no problems. If you do refrigerate the paste, be sure to allow it to warm

up to room temperature before using it. Also, mix it thoroughly with a small stirring stick

before use, as typically the solder particles will settle in the fluid slightly.

The concept of this solder paste method is simple. Apply the paste to the pads on the PCB

surface using a reusable stencil, line up the part above the pads in the proper orientation,

and carefully mate the component to the pasted surface. It may be possible to create a jig

system to ease the process of placing the QFN components onto the pastes pads, but from

experience it is just better to practice doing it by hand a lot until you become proficient.

If you place the part crooked or incorrectly or some how smudge the paste, you can simply

remove the component at this time, clean both the part and PCB surface with rubbing

alcohol, and attempt another placement. Once the part is placed correctly, steps similar to

the BGA approach can be used to permanently attach the component. The solder paste will

”flash” at around 265 degrees Celsius. The color of the paste will change from grey to silver,

and the component will be electrically connected once it cools. Be sure to allow adequate

cooling time before moving the assembly as the solder pasted components may shift while

the solder is still hot. The following links illustrate the solder pasting technique.

http://www.sparkfun.com/commerce/present.php?p=Reflow%20Toaster

http://www.sparkfun.com/commerce/present.php?p=Reflow%20Skillet

The second method found to work quite well for soldering QFN parts involves essentially

turning the QFN part into a BGA component by hand and applying heat with hot air re-flow
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gun. This is the preferred method as it reliable creates the electrical connection between

the component and the board and also typically takes less time to perform the operation

compared to the hot plate solder paste method.

First, clean both the surface of the PCB as well as the part with rubbing alcohol. Next, tin

the pads on the PCB surface with solder by hand. Try to distribute the solder as evenly as

possible to minimize having some solder bumps higher than others. Minor variations in the

size of the bumps is acceptable. Next, use a flux pen to apply a think layer of flux to the

bottom of the QFN part. Apply a small amount of solder to each pad on the part creating

essentially solder balls similar to a BGA part. Next, apply a fairly generous layer of flux

paste to the bottom of the component. The flux paste helps keep the component down in

place during alignment as well allow the solder to make a better connection between the

part and the PCB once heat is applied. Next, align the part over the tinned pads on the

PCB. Using the hot air reflow gun, use a circular motion around the perimeter of the part to

heat up the entire area evenly. Once the solder reaches its ”flashing” point, you will see the

part drop down into position, and slightly realign itself. The conduction of heat from the

paste flux as well as the viscous nature of solder in its liquid state helps to make the process

almost self aligning. Once the part looks like it is finished dropping down and moving, turn

off the hot air reflow gun and wait for the assembly to cool down. If for some reason, the

part is not aligned properly, you can remove it again with the hot air reflow gun in a similar

processes as you attached it. You can then clean off all the solder from the PCB and QFN

component using copper braid and attempt the entire process over again. The following link

demonstrates a similar technique.

http://www.curiousinventor.com/guides/Surface_Mount_Soldering/QFN
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D.2 How to Tile Boards Into a Merged Panel Using

Gerbermerge

1. First design the boards you wish to build using eagle. Once the board layout has been

completed, use one of the following CAM process for 2 or 4 layer boards to generate gerber

files for each individual board:

/jumpsuit/gerber/SFE-Special-Border_2.cam

/jumpsuit/gerber/SFE-Special-Border_4.cam

2. Next, using layout.cfg as a template add the paths to each board directory to the end of

a configuration file as follows:

[name_of_board]

Prefix=<path_to_board_files>

*TopLayer=%(prefix)s.cmp

*BottomLayer=%(prefix)s.sol

*TopSilkscreen=%(prefix)s.plc

*BottomSilkscreen=%(prefix)s.pls

*TopSoldermask=%(prefix)s.stc

*BottomSoldermask=%(prefix)s.sts

Drills=%(prefix)s.drd

BoardOutline=%(prefix)s.bor

Repeat=4

*** Note for 4 layer board you must include paths to the inner layer files as follows,

[name_of_board]
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Prefix=<path_to_board_fil

*TopLayer=%(prefix)s.cmp

*Layer2=%(prefix)s.lay2

*Layer3=%(prefix)s.lay3

*BottomLayer=%(prefix)s.sol

*TopSilkscreen=%(prefix)s.plc

*BottomSilkscreen=%(prefix)s.pls

*TopSoldermask=%(prefix)s.stc

*BottomSoldermask=%(prefix)s.sts

Drills=%(prefix)s.drd

BoardOutline=%(prefix)s.bor

Repeat=9

3. Next, edit the sources line in the gerber Makefile to use the configuration file created in

step 2.

SRCS=<name_of_your_configuration_file>.cfg

4. To run gerbermerge and merge all of the individual gerbered boards into one panel, type

make

You should see a screen that appears as in Figure D.1.

5. When you are satisfied with the percentage of board area utilization, type

ctrl-c
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-------------------------------------------------------------------------------- 
 echo y | gerbmerge gumstix_converter.cfg 
 
 **************************************************** 
 *           R E A D    C A R E F U L L Y           * 
 *                                                  * 
 * This program comes with no warranty. You use     * 
 * this program at your own risk. Do not submit     * 
 * board files for manufacture until you have       * 
 * thoroughly inspected the output of this program  * 
 * using a previewing program such as:              * 
 *                                                  * 
 * Windows:                                         * 
 *          - GC-Prevue <http://www.graphicode.com> * 
 *          - ViewMate  <http://www.pentalogix.com> * 
 *                                                  * 
 * Linux:                                           * 
 *          - gerbv <http://gerbv.sourceforge.net>  * 
 *                                                  * 
 * By using this program you agree to take full     * 
 * responsibility for the correctness of the data   * 
 * that is generated by this program.               * 
 **************************************************** 
 
 To agree to the above terms, press 'y' then Enter. 
 Any other key will exit the program. 
 
 
 Reading data from gumstix_converter ... 
 Job gumstix_converter: (4 instances) 
   Extents: (793,1590)-(35163,14586) 
   Size: 3.437000" x 1.299600" 
 
 Trimming Excellon data to board outlines ... 
 Trimming Gerber data to board outlines ... 
 Performing layout ... 
 ====================================================================== 
 Starting random placement trials. You must press Ctrl-C to 
 stop the process and use the best placement so far. 
 Estimated maximum possible utilization is 93.3%. 
   1411 placements / Smallest area: 19.1 sq. in. / Best utilization: 93.7% 
-------------------------------------------------------------------------------- 

Figure D.1: Screen After Gerbermerge
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-------------------------------------------------------------------------------- 
Interrupted. 
Computed 1411 placements in 5 seconds / 277.0 placements/second 
====================================================================== 
Writing merged output files ... 
-------------------------------------------------- 
     Job Size : 2.724200" x 6.999000" 
     Job Area : 19.07 sq. in. 
   Area Usage : 93.7% 
   Drill hits : 424 
Drill density : 22.2 hits/sq.in. 
 
Tool List: 
  T01 0.0984"     8 hits 
  T02 0.0433"     8 hits 
  T03 0.0400"   104 hits 
  T04 0.0362"    16 hits 
  T05 0.0240"    12 hits 
  T06 0.0236"    92 hits 
  T07 0.0197"   176 hits 
  T08 0.1300"     8 hits 
 
Output Files : 
   merged.placement.txt 
   merged.bottomsilkscreen.ger 
   merged.topsilkscreen.ger 
   merged.bottomsoldermask.ger 
   merged.toplayer.ger 
   merged.topsoldermask.ger 
   merged.boardoutline.ger 
   merged.bottomlayer.ger 
   merged.drills.xln 
   merged.toollist.drl 
-------------------------------------------------------------------------------- 

 
Figure D.2: Screen of Best Permutation

To output the current best permutation to gerber files. You should see message similar to

Figure D.2.

6. To view the merged panels, use

make gerbv1 -- for 2 layer boards

or,

make gerbv2 -- for 4 layer boards
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to load the current panel into the gerber viewer.

7. Finally, zip up these output files, and upload them to Advanced Circuits freedom checker

to make sure there are no potential layout problems. The link to the dfm checker is here:

http://www.freedfm.com/!freedfmstep1.asp

D.3 Capacitance Estimation

The capacitance for a microstrip PCB can be estimated [30] [31] as shown in Figure D.3

using Equation D.1, where C is the capacitance in pF per foot, er is the relative dielectic

constant, w is the width, h is the height, and t is the thickness.

C =
7.76× 10−12(er + 1.41)

ln[(5.98h)/(0.8w + t)]
(D.1)

For flat ribbon cable, capacitance can be estimated at 46 pF per meter [32].

For the I/O pin of each Tier 1 node, the capacitance is 10 pF per node [20].
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Capacitance versus Line Width and Dielectric Thickness for Microstrip Lines
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Figure D.3: Microstrip Capacitance of PCB
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