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Simplifications in the x-ray line-shape analysis 
T. Adler and C. R. Houska 

Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia 24061 
(Received 9 October 1978; accepted for publication 5 December 1978) 

It is shown that a Fourier series associated with the Warren-Averbach line-shape 
analysis can be fitted with only five parameters to a pair of peaks. These interrelate the 
Fourier coefficients and thereby provide a simplified series which has been applied to the 
study of a Mo film on a Si crystal. The parameters include the average particle size, 
the first neighbor rms strain, a term which gives the variation in rms strain with cell 
separation, and two instrumental broadening coefficients. Although considerable 
simplification is possible, equivalent information can be obtained as compared with the 
original analysis and the "hook effect" is eliminated in the fitted coefficients. 

PACS numbers: 61.70. - r, 61.80.Cb 

INTRODUCTION 

The interpretation of x-ray line profiles from either 
films deposited onto substrates or films reacted with their 
substrate presents special difficulties that are not usually 
present in homogeneous single-phase materials. If accurate 
line profiles are obtainable, which can be separated from 
adjacent peaks, the Warren-Averbach analysis l offers a pow­
erful approach in determining the residual nonuniform 
strain and particle-size contributions to the broadening. 
Very few assumptions are required with this approach. Un­
fortunately, in film studies, overlapping profiles are the rule 
rather than the exception. Therefore, it is not certain wheth­
er meaningful results can be obtained using an elaborate line­
shape analysis. For example, a profile which requires 20-50 
Fourier coefficients contains the same number of adjustable 
parameters. Errors in the profile could generate consider­
able error in these coefficients especially those associated 
with the slowly varying tail portion of a peak. Sufficient data 
are now available to reveal that the number of required pa­
rameters can be reduced to as few as five for a pair of peaks. 
This is possible because simple relationships can be found 
between the particle size and strain coefficients within the 
Fourier series representation of the profile. Analytical forms 
are available from quantitative microscopy that allow the 
particle-size coefficient to be further simplified, while accu­
rate rms strain data follow a simple functional dependence 
with the separation between cells when corrected for the 
"hook effect." Although considerable simplification is possi­
ble, information equivalent to the original analysis can still 
be obtained. These simplifications are discussed and an ex­
ample is given for Mo deposited onto a Si crystal. The au­
thors believe that this simplified Fourier approach will be of 
considerable value in studies where overlapping line profiles 
occur. The affect of stacking faults usually modifies the par­
ticle-size term. This has been treated elsewhere2

•
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both strains and small particle size is given by the Fourier 
series l 
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FIG. I. Examplesofthe validity of <c..)Jll = inl'<E'l)'11 where In<c..)'11 and 
r In< d )1 n i are taken from data having a minimum influence of overlapping 
lines. That is, the stronger 1 10 and 220 were used for bee, the 111 and 222 
for fcc, while all measurable reflections were used for isotropic W. X­
niobium (I 10); + -tantalum (I 10); O-vanadium (1 10); O~hromium 
(110); __ shot peened 1018 steel (I 10); O-a-brass filings (111); A-thor­
iated tungsten filings; ~old-worked Mo (110); O-Mo (110) annealed at 
415 ·C; V-Mo (110) annealed at 660·C. 
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TABLE I. Values of rand <Ei>1/2 for various materials and crystal directions. 

Material Ref. hkl 

Thoriated tungsten 
(filings) 1 110 

10 18 steel (shot peened) 9 110 
Molybdenum (filings) 7 110 
Molybdenum (filings) 
annealed at 415 'C 7 110 

Molybdenum (filings) 
annealed at 660 'C 7 110 

a-brass (65-35) 
(filings) 6 111 

a-brass (65-35) 
(filings annealed 
at 225 'c) 6 111 

Niobium (filings) 8 110 
Vanadium (filings) 8 110 
Chromium (filings) 8 110 
Tantalum (filings) 8 110 

where h3 is a variable in reciprocal space given by h3 
= 2(d> sinO lA., (d> is the average interplanar spacing for 

the (00 1) planes, 0 is the angle of incidence, and A. the wave­
length. Other terms in Eq. (1) include a constant K, N is the 
number of diffracting cells, andFis the structure factor. The 
coefficients are given as a product of a particle size term, A ~, 
and a distortion coefficient which is given by 

(2) 

Nonuniform strain is contained in Eq. (2), while a uniform 
strain may be identified by comparing (d> with the corre­
sponding value from a standard which is strain free. This is 
determined simply from the relative peak shift as in a residu­
al stress analysis. 4 Most often the peak profile is symmetrical 
after a correction is made for instrumental broadening and 
only a cosine series is required. A discussion ofthe instru­
mental broadening is given later. 

The In( €f> versus Inn was plotted in order to simplify 
the analysis from one containing a large number of apparent­
ly unrelated experimental Fourier coefficientsH to only a 
few parameters. In each case, the plot was a straight line with 
no systematic departures (see Fig. 1). When departures are 
apparent, the Fourier coefficients contained a hook effect at 
small n due to the difficulty in allowing for slowly varying 
background. The linearity of a In-In plot suggests that all 
data follow the simple relation 

(~>112 = Inl r(Ef)II2. (3) 

For cold-worked samples r ranges from - 0.38 to - 0.61 
(see Table I) which appears to be a surprisingly restricted 
spread about an average value of - 0.46. A value of - ! was 
previously reported in an earlier work by Rothman and Co­
hen using fewer data points. 3 The Appendix includes a devel­
opment by MeringlO which is not well known. In this case, a 
value of - ! is also obtained which does not depend on the 
strain distribution provided they are independent for succes­
sive cells in a column. The parameters r and <~)1/2 can be of 
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<d> r <Ei>112 

2.238 - 0.380 0.00885 
2.027 - 0.460 0.00937 
2.225 - 0.559 0.0201 

2.225 - 0.524 0.0123 

2.225 - 0.481 0.00803 

2.\30 - 0.515 0.01819 

2.\30 - 0.508 0.01165 
2.334 - 0.376 0.0155 
2.149 - 0.325 0.0119 
2.040 - 0.360 0.0107 
2.335 - 0.606 0.0264 

Average: - 0.463 

considerable interest in relating the line-shape results to the 
distribution of defects. 

In developing Eq. (1), the product (d >Zn is used to 
describe the displacement of cells separated by a distance 
(d )n. Both distances are along a direction perpendicular to 
the diffracting planes. The quantity Zn is in units of (d> and 
is related to strain by En = Zn/n. For n = 1, EI = ZI' Rewrit­
ing Eq. (3) on this basis and squaring gives 

(Z~> = InI2(r+ 1)(Zi>. (4) 

It would be appropriate to comment on the exponential 
form of Eq. (2) since this may be obtained in two ways. As 
the exponent becomes small, this approximation becomes 
more exact irregardless of the distribution. The form is rigor­
ous when the strain En or displacements Zn are given by a 
Gaussian distribution at each value of n. The fact that this 
exponent is very often greater than unity for / = 2 and that 
InA ~ versus /2 is linear except for the largest values of nand / 
would indicate that the strain closely follows a Gaussian 
distribution. When the data are sufficiently complete and 
accurate the distribution can be shown to be closely Gaus­
sian. 5.11 .12 Equations (3) and (4) provide a relationship for the 
variation in variance with distance if the Gaussian form is 
adopted, i.e., 

P(Zn) = (21T(;~»1/2 exp [ - +Cz~;112)1 (5) 

There has been no evidence in support of another distribu­
tion for cold-worked metals. However, evidence does exist 
that the distribution is closely Gaussian even for neutron­
irradiated materials. 

One can attain various limiting profile shapes by the 
proper selection ofr. These are listed in Table II.lfr = 1, all 
relative displacements (Z ~> are equal to (Z i> allowing a 
common term to be factored from the Fourier series. This 
behaves like a temperature term by scaling the sum of a series 
containing only particle-size coefficients. The sum with only 
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TABLE II. Relationships between nonuniform strain, displacement, strain 
Fourier coefficient, and r. 

r <~> <Z~> A~ Comments 

-I n"<Ei> nO<Z~> (A f)n' Sharp profile 
modified by 
thermallike scaling 
factor 

-~ Inl-I<Ei> Inll<Z~> (A f)lnl Cauchy-like 
profile 

0 nO<Ei> n'<Z~> (A f)n' Gaussian profile 

particle-size coefficients reduces to the well-known particle 
function in diffraction theory. 

If one takes r = 0, each column of cells undergoes either 
uniform positive or negative strain with En = EI for each pair 
of cells. This type oflong-range strain could exist if a distri­
bution of column strain occurs due to fluctuation in the den­
sity of embedded atoms. In this case, the Fourier coefficients 
are assumed to be also of a Gaussian form giving 

A ~ = exp( - 2rr 2<Z i>n2/2) (2a) 

which can be obtained from the Fourier transform of a Gaus­
sian profile. 

The entry in Table II with r = -! reduces to the form 
treated by Mering. 1O Here the Fourier coefficients are given 
by 

A ~ = exp( - 2rr 2<Zi>J2lnl), (2b) 

where A f = exp( - 2rr2<Z i)J2). Coefficients of the form 
given in Eq. (2b) are readily summed to give a Cauchy-like 
profile having a slowly decreasing tail that may not com­
pletely go to zero. 

Since cold-worked samples average to about 
r = - 0.46, one would expect the pure strain profile due to 
nonuniform strains to be very close to a Cauchy shape. How­
ever, additional reshaping will result from small particle size 
and instrumental broadening. 

Particle size 

The particle-size Fourier coefficient is given by 

A ~ = _1_1 00 

(j - In J)P (j) d}, 
NJ j~ Inl 

(6) 

where N3 is the average number of unit cells per column and 
P (J) d} is the fraction of columns having lengths between} 
and} + d} cells. Equation (6) makes use of a continuous re­
presentation of the column-length distribution in terms of 
the integral giving the total number of nth neighbors contrib­
uting to a reflection. The line-shape analysis provides only 
N3 or N3<d ) = <L ) and no more particle-size information 
since the data are not sufficiently accurate to obtain the dis­
tribution p(J)' 

Quantitative microscopy studies provide the line inter-
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cepts directly from a lineal analysis of the grains. This can be 
related to the column-length distribution which is contained 
in the x-ray Fourier coefficient. The actual distribution of 
lengths depends upon the grain shape and distribution. 
Length distributions have already been related to simple 
shapes, Il i.e., to plates and spheres. One distinction should be 
made between microscopy and x-ray diffraction at this 
point. In microscopy, only the distribution of grains are un­
der examination; however, in the present problem the coher­
ent size is of importance and this is limited by both subboun­
daries and grain boundaries. The x-ray particle size is also 
sometimes taken as an average spacing between disloca­
tions. I It will be assumed that the average subgrain shape is 
related to the overall statistical distribution of dislocations 
and is spherical. With this assumption, the distribution of 
lengths intercepted by spheres is given by 

(7) 

with the fraction of sphere diameters between D and D + dD 
given by P(D) dD. In thiscase,D is expressed in unitsof<d). 
To minimize the total number of parameters, only a single 
sphere of average diameter will be considered such that 
P «D» = I and P (D) = 0 for D=I=<D ). For a single sphere 
the distribution of column lengths is given by 

P(j) = 8}/9N~ (8a) 

and 

P(j)= 0 for}>!..N,. (8b) 
2 

This linear distribution is illustrated together with a possible 
experimental distribution I. having the same average NJ in 
Fig. 2. Introducing Eqs. (8a) and (8b) into Eq. (6) gives the 
following equations: 

t 
z 
w 
::) 
a 
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FIG. 2. Column-length distribution from spheres of one size and spheres 
with a log-normal distribution of diameters. 
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The first two terms would result from columns of a single 
height N 3, while the cubic term allows for the distribution of 
columns associated with a sphere. From the relation 1 

d2A~ 1 
- = -P(lnl) (10) 

dn 2 N3 
one can obtain the original distribution of column heights by 
differentiating only the cubic term. 

Instrumental broadening 
The instrumental broadening may be included by tak­

ing the product of particle-size and strain coefficients and 
mUltiplying this by the instrumental broadening coeffi­
cients, A ~. If a high-resolution diffractometer is used with a 
monochromator capable of eliminating the K(1., component 
of the K(1. doublet, this correction can be included by intro­
ducing only one additional parameter. The form of the in­
strumental broadening curve has been found to be Cauchy­
likelS (see instrumental curve in Fig. 3). Under these condi­
tions, a Cauchy function can be fitted to an annealed sample 
giving only instrumental broadening. The Fourier series re­
presentation of the Cauchy function is 

(lla) 

" 
or in terms of the more usual normalized analytical form 

The Fourier coefficient is related to 0 by 

A 1= exp( - 211"0), 

(lIb) 

(12) 

where 0 can be determined from the semi-half-width accord­
ing to h ~ - I = a and h ~ - I is the deviation in reciprocal 
space that causes the Cauchy to be reduced to one-half its 
maximum. If the instrumental function is fitted by two half 
Cauchy functions with the parameters a. and 0_, then 
0= !(a. + 0_). A small shift will also be present [¢ Inl 
= - tanh(21TAolnl), with Aa = !(o. - a_)] which can be 

neglected for a high-resolution diffractometer. 

Introducing particle size, strain, and the Cauchy instru­
mental coefficient into Eq. (I) gives 

KNF2( (3~N, 
P'(28) = -. -2 - 1 + 2 L (A I)"A ~(A f)"q 

S10 8 ,,= I 

(la) 

where q = 2(r + 1). 

Line profile for a fUm 

The authors found that a single Gaussian strain distri­
bution does not adequately describe the state of strain in 
sputtered Mo films. A least-squares fit of an as-prepared Mo 
film as well as two others gave r~ - i which is intermediate 
between the cold-worked value of - ! and zero for the uni-

3285 J. AppL Phys., Vol. 50, No.5, May 1979 

form strain. Consequently r = -! does not relate directly 
to a known strain distribution. An equally good fit can be 
obtained by modifying Eq. (la) to include two strain distri­
butions. One distribution is associated with pure cold-work 
strain (r = - !), while the other describes variations in the 
uniform column strain (r = 0). The combined distribution of 
strain is given by the following integral: 

PR(Z,,) = f: = PD(Z ~)PU(Zn - Z~) dZ~. (13) 

The integral can generally be taken to infinite limits because 
of the rapid convergence of the distribution functions over 
the region ± !<d). If one assumes the distribution of uni­
form column strain to be Gaussian about the average, the 
introduction of dislocations from cold working causes an 
additional smearing of the strain distribution and an r value 
between -! and O. Variations in the uniform column strain 
could occur as a result of statistical variations of embedded 
ions during the sputtering process. 

The Gaussian distribution P R (Z N) which results from 
the convolution of two pure Gaussian distributions allows a 
simple calculation of the resultant Fourier coefficient. By 
using this function 

( 
I Z~ ) 

PR(Zn) = Po exp - 2 n2«ZiD)ln + <ziu» (14) 

and 

where Po is a normalization factor, € ID and € I U are first 
neighbor nonuniform strains arising from cold working and 
variations in the uniform column strain, respectively. Equa­
tion (15) can be written equally in terms of strain or displace­
ment since €1 = Zn In. The sum of exponential terms very 
conveniently reduces the strain Fourier coefficient to an 
equivalent product of coefficients 

A D - (A u)n'(A O\lnl 
IF- I I' 

with 

and 

This definition of A f is physically more realistic in studies of 
deformed films and does not require an interpretation of r 
values other than -! and O. 

The quantities <Eiu )112 and <EiD)1I2 are defined as first 
neighbor strains. This interpretation should be made only 
with considerable caution since accurate measurements of 
strain from peak profiles are reported only over a range from 
about ten cell heights to about N 3• It is likely that the tail 
portions of the various profiles are so slowly varying that 
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FIG. 3. Least-squares fit of 110 and 220 profiles obtained from a I.S-l1m Mo 
film on a (Ill )-oriented single crystal. The points represent the experimen­
tal curve with instrumental broadening. The sharp Cauchy-like instrumen­
tal functions from annealed Mo powder with Cu K", radiation are also 
illustrated. 

diffuse scattering measurements would be required to obtain 
a sufficiently accurate representation for near-neighbor 
strains. Most often this would be obscured by overlapping 
profiles. Consequently, the first neighbor rms strains are 
characteristic of intermediate distances up to the average 
particle size and are valid for extrapolating the strain over 
this range. These parameters should be of value for inter­
comparing the state of nonuniform strain between different 
films under a range of conditions provided these limitations 
are kept in mind. 

APPLICATION OF SIMPLIFIED THEORY 

Data were collected from a 1.5-llm deposit ofMo on a 
Ill-oriented Si crystal. The 110 and 220 provided a pair of 
reflections which allow particle size and strain coefficients to 
be separated. 1 The K u, component of the Ku doublet was 
eliminated using a Jogodzinski high-resolution quartz inci­
dent beam monochromator, a fine focus x-ray tube, and 
0.05-mm receiver slit. A well-annealed power of Mo was 
used to determine the Cauchy coefficient A 1 according to 
Eq. (12). 

A linear background correction could be made for the 
(110) peak; however, this was not possible for the (220). The 
(220) is located on the tail portion of the strong Si (333) 
reflection, making the background somewhat nonlinear. It 

3286 J. Appl. Phys., Vol. 50, No.5, May 1979 

was found that a suitable correction could be made by fitting 
the overlap region with a Pearson VII function. 16 In fitting 
Eq. (Ia) to the experimental peaks [Figs. l(a) and l(b)], a 
nonlinear least-squares curve-fitting program was used. The 
quantities Nh < E7), q, <d ), and the peak height were varied in 
the computer analysis with the fits illustrated in Fig. 3. The 
computer program used is a modified version ofIBM SHARE 

program No. 3094. In order to verify that the curve-fitting 
program converges under typical conditions, Eq. (la) was 
synthesize with r - 0.5 and a range of A f as well as NJ values 
were used. In all cases, the program converged to the exact 
parameters originally used to synthesized the Fourier series. 

The computer program gave the following results for a 
sputtered Mo film having an average substrate temperature 
of 350 °C: <L) = N3<d) = 215 A, <Ef)'/2 = 0.012, and 
r = - 0.27. This can be compared with results obtained 
from Mo filings 7 and the same set of (110) planes. These were 
reported as <L ) = 260 A, < Ef)'12 = 0.0201, and r = - 0.56. 
A comparison between the two data sets indicates that the 
average particle size is close but a little smaller in the Mo 
film. Also, <cf)'/2 and r are about twice as large for the cold­
worked powder. The smaller r value which is characteristic 
of the film causes the strain to fall off more slowly. Even 
though the first neighbor strain is smaller for the film, the 
long-range nonuniform strain is greater in the film because 
of the smaller value of r. The variation in these quantities 
with annealing time is discussed in greater detail elsewhere. 17 
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APPENDIX 

The strain Fourier coefficient in the most general form 
is given by <exp( - 2rriZn I). Mering'Ohas assumed forspac­
ing disorder problems that the individual first neighbor dis­
placements are independent. If one selects the mth cell of a 
column as an origin, the displacement of the nth neighbor is 
given by the sum individual terms 

(AI) 

Substituting into the Fourier coefficient and averaging over 
all nth neighbors in the sample 

<exp( - 2rriZnl)m 

= <exp( - 2rriZm + 1/) <exp( - 2rriZm + i)", 

(A2) 

If each term of the product is independent, then each is the 
same because they are determined by the same unspecified 
first neighbor distribution function. This gives 

<exp( - 2rriZnl) = <exp( - 2rriZ,/)lnl (A3) 

and by expanding the first neighbor coefficient assuming 
2rriZJ<I gives 

<exp( - 2rriZJ» = 1 -1<2rriZ I /)2 + (l/4!)<2rrZ,1 )4. 
(A4) 

T. Adler and C.R. Houska 3286 
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The odd terms are normally dropped because of symmetry 
about the origin at each distance (d )n. Ifterms higher than 
the second can be ignored 

(exp( - 21TlZJ) = exp( - 2r(~>f2) =A f. (A5) 

The Fourier series representing strain broadening is given by 

(A6) 
n 

which can be summed to give a Cauchy-like function. 

The expanded form of the coefficient as given in Eq. 
(A5) is valid for the first two orders of a strain-particle-size 
analysis even for the largest values of (~> given in Table I. In 
this development, r = -! (see Table II). However, this is a 
consequence of the independence between first neighbor dis­
placements rather than the variation of the displacements 
with distance. It is not likely that the average value of 
r = - 0.46 found with cold-worked samples is due to inde­
pendent displacements. Instead, it should be due to correlat­
ed atomic displacements resulting from the strain fields of 
dislocations. 
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