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Abstraect,

In this paper we show how to reduce the resultant dipole system developed by Gabor, Hodgkin,
and Nelson to a single quadratic equation. This system was developed to determine the resultant
dipole of the heart from measurements on the body surface. Reducing the system to a quadratic
equation eliminates previous difficulties in numerically solving the system.

Introduction.

In [1] a system of eight nonlinear equations in eight unknowns is derived for the determination
of the magnitudes, directions, and locations of two independent dipoles in a two-dimensional con-
ducting region from boundary potential measurements, (The paper [2] also addresses this problem.)
We show that this system reduces to a single quadratic equation in one variable, and therefore it
is easy to solve. This reduction is significant because the original eight equation formulation is
difficult to solve, even by sophisticated numerical techniques [3].

The system in [1] can be written:

atb=3 M, (1)

ctd= Y M, (2)

latub—ve—wd=3 A (3)

ve+whbttet+ud=3 B (4)

a(t* — %) — 2ctv + b(w? — w?) — 2duyw = > C (5)

e(t® — v°) + 2ate + d(u® — w?) 4 2buw = >D (6)

at(t* ~ 3v%) + co(v? ~ 3t%) + bu(u? —~ 3w?) + dw(w?® — W) =F {7
ct(t? — 30%) - av(v? — 3t%) + du(u® — 3w?) — bu(w® - 3u”y = O F, (8)

where equations (1)-(8) above correspond to equations (1)—(8) of [1], respectively. See Table 1.
The notation we use is from [3], where the numerical solution of this system is discussed.
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Methods.
We use the approach of “reduction” as discussed i [4], Chapter 7. In this case simple algebra
suffices to reduce the system.

Results.
We show that all the solutions of the system consisting of equations (1)~(8) can be obtained
from the solutions of the quadratic equation

kl.ﬁ:z — bk L (k2k5 - k3) =0, (9)

where the constants ki through ks are given in Table 2. Here 7 is viewed as a complex unknown
number. Thus we will obtain two (complex) solutions to (9) unless &y = 0.
For each solution z to (9), we generate the four complex numbers

Y4 = 2z, (10)
Y3 = —ys + ks, (11)
Y2 = (k2 — krys) /(s — Y3 ), (12)
Y=~y + k. (13)

(The cases ky = 0, ¥y3 = y4, and kiks = k2 are degenerate.)

Thus, we will have two sets of (yl,yg,y3,y4), unless ky = 0 or y = Yo of kiks = k2. Then,
except for the degenerate cases mentioned, all of the solutions to the system of equations (1)~(8)
are obtained by the formulas

@ = Re(y), t = Re(ys),
¢ = Im(y), v = Im(ys),
b= RE(yg), U= Re(y4):

d=1Im(y),  w=TIm(y,),
where “Re” and “Im” denote the real and imaginary parts.
The reduction proceeds in two steps:
STEP 1. Define a new system of four equations (with complex coefficients) in the four unknowns

h=a+ e,
Y2 = b+ di,
Ys =1+ v,
Y1 = v+ wi,

where ¢ denotes the complex number /=1, by adding to equations (1), (3), (5), and (7) 4
times equations (2), (4}, (6), and (8), respectively. The result is the system

Nt =k, (14)
VY3 + Yays = ks, (15)
Y193 F 12yl = ks, (16)
V198 + 1yl = ky. (17)

STEP 2. Reduce the system consisting of equations (14)(17) to equation (9) (with z = Ys) via
successive substitutions as follows: Equation (14) yields ( 13). Then equations (13) and (15)
yield {12). Now equations (12), (13), and (16) yield

kaya + kays — kyysyy = k. (18)

Combining (12), (13), (17), and (18) we get (11). (Equation (18) allows us to replace YaYa
by a linear relation in 43 and 94.) Then, substituting (10) and (11) into (18}, we get (9).
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Table 1. Correspondence of notation between equations ( 1)~(8) of this paper and equations (1)—(8)

of [1].
This Paper Reference [1]
a My
b Mo
e My
d My,
¢ Xy
u Xo
v Y
w Yy
M, kfVdy
> M, EfVde
DA kfV(zdy—ydn)
B k[ V(zde +ydy)
Y C FIVE -y dy—2 [ Vay do]
3D k[fV(xz—yz)dm+2fmedy]

»E E[fV(e® - 3zy*)dy + [ V(g3 - 3z%y) dz|

>F E{[V(2® - 32y%) do = V(P - 322y dy|

Discussion.
Frequently, a nonlinear system that is difficult to solve numerically can be reduced algebraicalty
to a form more amenable to solution (as discussed in [4], Chapter 7). The dipole system (1)-(8)
has been reduced by this approach to a single quadratic equation. Systems whose physical origin
is similar might be successfully reduced via the same procedure.
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