
Dynamics of High-Speed Planetary Gears with a Deformable Ring

Chenxin Wang

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

Robert G. Parker, Chair

Rakesh K. Kapania

Pablo Tarazaga

Shuming Sun

Corina Sandu

Sep. 03, 2019

Blacksburg, Virginia

Keywords: Dynamics, Planetary Gears, Deformable Ring, High-Speed

Copyright 2019, Chenxin Wang



Dynamics of High-Speed Planetary Gears with a Deformable Ring

Chenxin Wang

ABSTRACT

This work investigates steady deformations, measured spectra of quasi-static ring de-

formations, natural frequencies, vibration modes, parametric instabilities, and nonlinear

dynamics of high-speed planetary gears with an elastically deformable ring gear and equally-

spaced planets.

An analytical dynamic model is developed with rigid sun, carrier, and planets coupled

to an elastic continuum ring. Coriolis and centripetal acceleration effects resulting from

carrier and ring gear rotation are included. Steady deformations and measured spectra of

the ring deflections are examined with a quasi-static model reduced from the dynamic one.

The steady deformations calculated from the analytical model agree well with those from a

finite element/contact mechanics (FE/CM) model. The spectra of ring deflections measured

by sensors fixed to the rotating ring, space-fixed ground, and the rotating carrier are much

different. Planet mesh phasing significantly affects the measured spectra. Simple rules are

derived to explain the spectra for all three sensor locations for in-phase and out-of-phase

systems. A floating central member eliminates spectral content near certain mesh frequency

harmonics for out-of-phase systems.

Natural frequencies and vibration modes are calculated from the analytical dynamic

model, and they compare well with those from a FE/CM model. Planetary gears have struc-

tured modal properties due to cyclic symmetry, but these modal properties are different for

spinning systems with gyroscopic effects and stationary systems without gyroscopic effects.

Vibration modes for stationary systems are real-valued standing wave modes, while those

for spinning systems are complex-valued traveling wave modes. Stationary planetary gears



have exactly four types of modes: rotational, translational, planet, and purely ring modes.

Each type has distinctive modal properties. Planet modes may not exist or have one or more

subtypes depending on the number of planets. Rotational, translational, and planet modes

persist with gyroscopic effects included, but purely ring modes evolve into rotational or one

subtype of planet modes. Translational and certain subtypes of planet modes are degenerate

with multiplicity two for stationary systems. These modes split into two different subtypes

of translational or planet modes when gyroscopic effects are included.

Parametric instabilities of planetary gears are examined with the analytical dynamic

model subject to time-varying mesh stiffness excitations. With the method of multiple

scales, closed-form expressions for the instability boundaries are derived and verified with

numerical results from Floquet theory. An instability suppression rule is identified with the

modal structure of spinning planetary gears with gyroscopic effects. Each mode is associated

with a phase index such that the gear mesh deflections between different planets have unique

phase relations. The suppression rule depends on only the modal phase index and planet

mesh phasing parameters (gear tooth numbers and the number of planets).

Numerical integration of the analytical model with time-varying mesh stiffnesses and

tooth separation nonlinearity gives dynamic responses, and they compare well with those

from a FE/CM model. Closed-form solutions for primary, subharmonic, superharmonic,

and second harmonic resonances are derived with a perturbation analysis. These analytical

results agree well with the results from numerical integration. The analytical solutions show

suppression of certain resonances as a result of planet mesh phasing. The tooth separation

conditions are analytically determined. The influence of the gyroscopic effects on dynamic

response is examined numerically and analytically.
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GENERAL AUDIENCE ABSTRACT

Planetary gears in aerospace applications have thin ring gears for reducing weight. These

lightweight ring gears deform elastically when transmitting power. At high speed, Coriolis

and centripetal accelerations of planetary gears become significant. This work develops an

analytical planetary gear model that takes account of an elastically deformable ring gear

and speed-dependent gyroscopic (i.e., Coriolis) and centripetal effects. Steady deformations,

measured spectra of quasi-static ring deformations, natural frequencies, vibration modes,

parametric instabilities, and dynamic responses of planetary gears with equally-spaced plan-

ets are investigated with the analytical model.

Steady deformations refer to quasi-static deflections that result from applied torques

and centripetal acceleration effects. These steady deformations vary because of periodically

changing mesh interactions. Such variation leads to cyclic stress that reduces system fatigue

lives. This work evaluates planetary gear steady deformations with the analytical model and

studies the effects of system parameters on the steady deformations.

Ring deflections measured by sensors fixed to the rotating ring gear (e.g., a strain

gauge), space-fixed ground (e.g., a displacement probe), and the rotating carrier have much

different spectra. The planet mesh phasing, which is determined by gear tooth numbers

and the number of planets, significantly influences these spectra. Simple rules are derived

that govern the occurrence of spectral content in all the three measurements. Understanding

these spectra is of practical significance to planetary gear engineers and researchers.

Planetary gears have highly structured modal properties due to cyclic symmetry. Vi-

bration modes are classified into rotational, translational, and planet modes in terms of the



motion of central members (sun and carrier). The central members have only rotation for a

rotational mode, only translation for a translational mode, and no motion for a planet mode.

Translational modes have two subtypes, rotational modes have only one subtype, and planet

modes may not exist or have one or more subtypes depending on the number of planets.

For each subtype of modes, all planets have the same motion with a unique phase relation

between different planets and the elastic ring gear has unique deformations. Understand-

ing this modal structure is important for modal testing and resonant mode identification in

dynamic responses.

Sun-planet and ring-planet mesh interactions change periodically with mesh frequency.

These mesh interactions are modeled as time-varying stiffnesses that parametrically excite

the planetary gear system. Parametric instabilities, in general, occur when the mesh fre-

quency or one of its harmonics is near twice a natural frequency or combinations of two natu-

ral frequencies. Closed-form expressions for parametric instability boundaries that bound the

instability region are determined from the analytical model. Certain parametric instabilities

are suppressed as a result of planet mesh phasing.

Near resonances, vibration can become large enough that meshing teeth lose contact.

The analytical model is extended to include the tooth separation nonlinearity. Closed-form

approximations for dynamic responses near resonances are determined from the analytical

model, and these analytical results compare well with those from numerical simulations of the

analytical model. Tooth separation conditions are analytically determined. The influences

of planet mesh phasing and Coriolis acceleration on dynamic responses near resonances are

investigated numerically and analytically.
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Chapter 1

Introduction

1.1 Motivation

Planetary gears in aerospace applications have thin ring gears for the purpose of weight

savings. These thin ring gears experience significant elastic deformations under large torque

and high speed. Coriolis and centripetal acceleration effects that arise from carrier or ring

rotation become significant at the high speed of aerospace applications. These high-speed

planetary gears with lightweight ring gears have high risk of noise and vibrations. Planetary

gear models that consider both ring gear elastic deformations and high-speed gyroscopic

(i.e., Coriolis) and centripetal effects are rare, let alone the study of vibrational behaviors

of planetary gears with such features. This work aims to develop an analytical model of

planetary gears with an elastic ring and gyroscopic and centripetal effects. We use the model

to study steady deformations, measured spectra of quasi-static ring deformations, natural

frequencies, vibration modes, parametric instabilities, and dynamic responses of planetary

gears.
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Planetary gear deformations compose of steady deformations and vibrations about the

steady deformed configurations. The steady deformations refer to quasi-static deflections

resulting from applied torque excitations and centripetal excitations of carrier-planet or/and

ring rotation. These steady deformations vary with periodically changing mesh interactions.

Cyclic stress resulting from such variation accelerates damage to the system. Although the

vibrations concern engineers and researchers, the steady deformations should get attention

as well because they dominate in non-resonant speed regions where the system is designed

to operate. Planetary gear steady deformations include elastic ring deformations as well as

rigid-body motions of the sun, carrier, and planets.

Some experimental measurements [1–3] of ring deformations demonstrate sidebands

near, but not necessarily at, the mesh frequency harmonics. The occurrence of these side-

bands varies for different planet mesh phasing and depends on whether the sensor is fixed

to the rotating ring, the rotating carrier, or ground. Understanding these sidebands is of

practical significance to planetary gear engineers and researchers.

Vibrations become large when the operating speed approaches resonant speeds. Modal

analysis is essential to understand the resonant behavior. To be specific, modal analysis can

be used to identify which modes are excited for a given resonant peak. Modal analysis also

helps identify critical modes having high sun-planet or ring-planet mesh deflections. These

critical modes have more potential to damage the planetary gear system when excited. An

understanding of planetary gear modal properties is useful for modal test. For example, if

an impulse excitation is orthogonal to a vibration mode, that mode is not going to respond.

Therefore, the impulse test cannot capture the natural frequency of that mode. Modal anal-

ysis is the prerequisite for the study of parametric instabilities and derivation of analytical

solutions for the dynamic responses near resonances. The gyroscopic and centripetal effects

on the modal properties of planetary gears with an elastic ring are unknown.
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The time-varying sun-planet and ring-planet mesh stiffnesses are the source of the vi-

bration. They change periodically with mesh frequency. When the mesh frequency or one of

its harmonics is near twice a natural frequency or combinations of two natural frequencies,

parametric instabilities in general occur. Large parametric instabilities can severely damage

the planetary gear system. Suppression of certain critical parametric instabilities motivates

the study of this behavior. Again, the gyroscopic and centripetal effects on the parametric

instabilities of planetary gears with an elastic ring are unknown.

Planetary gear dynamics are of primary concern in this work. At large resonances,

tooth contact loss can occur. The tooth separation nonlinearity may lead to jump, period

doubling, or chaos. These nonlinear behaviors are more dangerous than a resonance without

tooth contact loss because of tooth impact. The gyroscopic and centripetal effects on the

planetary gear dynamics are rarely touched. Whether these effects are significant or not is

unresolved. This work is going to study the dynamics of planetary gears with gyroscopic

and centripetal effects, and identify their influences on the dynamic responses. This work

also aims to find closed-form solutions for the dynamic responses near resonances. The

analytical solutions permit quick estimates of the influences of system parameters on the

dynamic responses.

1.2 Literature Review

1.2.1 Planetary Gear Modeling

Various planetary gear models have been used for the study of planetary gear dynamics

and vibration. Many papers [4–11] adopted lumped-parameter models where each of the

sun, carrier, planets, and ring is treated as a rigid body. The elastic deformation of each
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member is ignored. Gear contact is modeled as a stiffness connecting two gear bodies.

A finite element/contact mechanics (FE/CM) software developed by Vijayakar [12] allows

elastic deformation of each member and models gear contact with a specialized algorithm

that does not require any external specification of mesh stiffnesses. Many studies have used

the FE/CM approach for planetary gear quasi-static analysis [13], dynamic analysis [14–16],

and load sharing behaviors[17, 18]. Although the FE/CM approach is multi-functional, it

has several limitations. First, it is time-consuming for dynamic simulations of planetary

gears. Second, it neglects gyroscopic and centripetal effects that are significant for high-

speed systems. Third, it does not provide analytical understanding. A few researches [19–

22] have developed lumped-parameter planetary gear models coupled with elastic ring or

carrier. Among them, Abousleiman and Velex [19] presented a hybrid planetary gear model

that combines rigid-body models of the sun, carrier, and planets with a finite element ring

gear. Ref. [20] extended the hybrid model [19] to include a finite element carrier instead

of the rigid one. Instead of using finite element modeling, Wu and Parker [21] employed an

analytical elastic ring model with partial differential equations coupled to rigid sun, carrier,

and planets. This model, however, does not include gyroscopic and centripetal effects. The

elastic ring is inextensional without extensional deformation , shear deformation or rotary

inertia. Each planet connects the elastic ring through a discrete mesh stiffness directly

attached to the ring neutral axis, and a concentrated tooth bending moment resulting from

the mesh force on the elastic ring is ignored.

1.2.2 Planetary Gear Steady Deformations

Planetary gear steady deformations refer to quasi-static deflections of the system. One

aspect of quasi-static study is the load sharing behaviors of planetary gears subject to

manufacturing or assembly errors. Planet load sharing has been studied extensively in
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[13, 17, 18, 23–29]. Approaches to improve load sharing include floating a central mem-

ber, flexible planet pin, and compliant ring gear.

Only a few studies [13, 19, 20] exist on the quasi-static deflections of planetary gears.

Kahraman [13] demonstrated that ring gears with thin rims deflect significantly in a quasi-

static analysis. Abousleiman and Velex [19] presented quasi-static deflections of a lumped-

parameter helical planetary gear model coupled with a finite element ring gear. In an another

study, Abousleiman et.al. [20] extended the model in [19] to include a finite element carrier

and presented quasi-static deflections of an example planetary gear system. They showed

that the carrier elastic deformation is not as significant as the ring elastic deformation.

1.2.3 Planetary Gear Sideband Behavior

A few papers [1–3, 19, 30] have investigated the sidebands near mesh frequency harmon-

ics in measured spectra of ring gear deformations. Abousleiman and Velex [19] demonstrated

the sideband behavior of ring displacements at a finite element node in quasi-static and dy-

namic simulations; no analysis is provided. McFadden and Smith [1] explained that the

sideband behavior is an artefact of vibration measurements at a fixed point on the sta-

tionary ring gear instead of a feature of planetary gear vibrations. The motion of planets

relative to the sensor causes the sideband behavior. They also showed that planet mesh

phasing significantly influences the sideband behavior. McNames [2] predicted the locations

of the dominant sidebands with a continuous-time Fourier series. Inalpolat and Kahraman

[3] investigated sideband behaviors for planetary gears of any planet spacing condition and

any planet phasing condition with theoretical analysis and experimental validations. Zghal

et.al. [30] developed a lumped parameter model of planetary gears in the stationary ring

reference frame to examine the sideband behavior. All of these studies [1–3, 30] focused on
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the spectra of ring deflection at a fixed point for planetary gears with a stationary ring gear.

The spectra of ring deflections for planetary gears where all or any two of the sun gear,

carrier, and ring gear can spin measured by sensors fixed to the rotating ring, the rotating

carrier, or ground have not been fully examined.

1.2.4 Planetary Gear Modal Properties

Planetary gears have highly structured modal properties due to their cyclic symmetry.

Botman [5] identified the modal structure in a study of free vibrations for a three-planet

system, where each of the sun, carrier, planets, and ring has two in-plane translational and

one rotational degrees of freedom. He categorized the vibration modes into axisymmetric

and nonaxisymmetric modes. In the axisymmetric modes, all planets have the same motion

and the other components have only rotational motion, while in the nonaxisymmetric modes,

the planets do not have the same motion and at least some of the other components have

translations. Kahraman[6] classified vibration modes of a four-planet system into in-phase

modes, sequentially-phased modes, and counter-phased modes according to whether they are

excited under the corresponding mesh phasing conditions. For example, the in-phase modes

are excited only under in-phase mesh conditions. Although Botman [5] and Kahraman[6]

identified the modal structure for three-planet or four-planet systems, no general conclusions

were given.

Lin and Parker[9] identified the modal structure for planetary gears with equally-spaced

planets and proved there are exactly three types of modes: rotational, translational, and

planet modes. The rotational modes are the same with the axisymmetric modes in [5] and

in-phase modes in [6], and the translational modes are the same with the nonaxisymmetric

modes in [5] and sequentially-phased modes in [6]. The counter-phased modes in [6] belong
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to planet modes. Planet modes only exist for systems with four or more planets. Each type

of modes has unique properties. For a rotational mode, the central components (the sun,

carrier, and ring) have only rotations, and all planets have the same motions that are in-

phase. In a translational mode, the central components have only translations. In a planet

mode, the central component have no motions, and only the planets vibrate. Ericson and

Parker [31] confirmed this modal structure in experiments. Cooley and Parkers [10] showed

the modal structure persists for planetary gears with gyroscopic effect, but the real-valued

standing wave modes become complex-valued traveling wave modes.

The aforementioned studies [5, 6, 9, 10] focused on lumped-parameter planetary gear

models, where the sun, carrier, planets, and ring are treated as rigid bodies. Wu and Parker

[21] incorporated an elastic ring into a lumped parameter model from [9]. They grouped

vibration modes of the elastic-discrete system into rotational, translational, planet, and

purely ring modes. The discrete motions for the rotational, translational, and planet modes

are similar to those in [9], and the elastic ring has unique deformations associated with each

of the three types of modes. The purely ring modes have only ring deformations, and all the

discrete motions vanish.

There exist studies on modal structures of helical planetary gears or compound planetary

gears. For helical planetary gears, out-of-plane motions need to be taken into account.

Eritenel and Parker [32] derived modal structure for planetary gears with three-dimensional

vibrations. Compound planetary gears are used in applications where large reduction ratios

are demanded. The modal structure for compound planetary gears was studied in [33–35].
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1.2.5 Planetary Gear Parametric Instabilities

The primary source of gear vibration is changing mesh interaction as gear rotates.

This change is modeled as time-varying mesh stiffness that parametrically excites the gear

system. The study of parametric instability not only identifies regular resonances where the

excitation frequency or one of its harmonics coincides with a natural frequency, but also

identifies resonances where the excitation frequency or one of its harmonics is near twice a

natural frequency or combinations of two natural frequencies.

The parametric instabilities for single or two-stage gear pairs have been investigated

in [36–41]. Only a few studies [42–45] have focused on parametric instabilities of planetary

gears. Velex and Flamand [42] simulated dynamic response of a three-planet system with

time-varying mesh stiffness excitations and found substantial influences of mesh stiffnesses on

dynamic tooth loads. Lin and Parker [43] investigated parametric instabilities of planetary

gears from mesh stiffness variations with a purely rotational model and derived closed-form

expressions for instability boundaries. They concluded that certain parametric instabilities

vanish under particular mesh phasing conditions, regardless of any form of mesh stiffness

variations. Parker and Wu [44] determined parametric instability boundaries for planetary

gears with an elastic ring. An instability existence rule that depends on only planet mesh

phasing was derived for any two given modes by using the modal structure defined in [21].

Qiu et.al. [45] investigated planetary gear parametric instabilities with time-varying mesh

stiffnesses modulated by speed fluctuations. Sideband instabilities occur due to speed fluc-

tuations.
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1.2.6 Planetary Gear Dynamics

Gear may lose contact at large resonances. The tooth separation introduces a softening

nonlinearity to the gear system, which has been observed in experiments of spur gear pairs

[46, 47] and planetary gears [48].

Planetary gear dynamics with tooth separation nonlinearity were studied numerically

with numerical simulations or harmonic balance method or analytically with the method of

multiple scales. Ambarisha and Parker [16] simulated nonlinear dynamics of planetary gears

with a lumped-parameter model and a finite element/contact mechanics model. Successful

correlations between the dynamic responses from these two models were achieved. Rich non-

linear behaviors including jumps, period-doubling bifurcations, and chaos occur in their sim-

ulations. Masoumi et.al. [11] demonstrated symmetry breaking induced by chaotic responses

in planetary gears. Li et.al. [49] analyzed the bifurcations and chaos in a two-stage planetary

gear train and demonstrated high damping coefficients suppress chaotic behaviors while high

value of backlash leads to chaotic responses. Sun and Hu [50] studied nonlinear dynamics

of planetary gears with harmonic balance method. Double-sided impact vibration was ob-

served at large resonances. Al-Shyyab and Kahraman [51] used harmonic balance method to

investigate nonlinear dynamics of planetary gears. The solutions from the harmonic balance

method agreed well with those from numerical integration and finite element simulations. In

an another study, Al-Shyyab et.al. [52] extended the model in [51] to multi-stage planetary

gear trains. Guo and Parker [53] investigated dynamics of planetary gears with tooth contact

loss, bearing clearance, and mesh stiffness variations using harmonic balance methods. A

hardening effect caused by the transition from no bearing contact to contact was observed

in the dynamic responses. The hardening effect is significant in wind turbine planetary gear

sets where gravity plays a dominant role over mesh stiffness fluctuations, as shown by Guo

et.al. [54]. Zhu et.al. [55] investigated nonlinear dynamic characteristics of compound plan-
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etary gear sets with harmonic balance method. Time-varying mesh stiffness, transmission

error, and backlash were considered in their model. Bahk and Parker [56] derived closed-

form approximations for the nonlinear dynamics with the method of multiple scales. Their

analytical solutions compared well against the solutions from harmonic balance methods,

numerical integration, and finite element simulations. From the analytical solutions, they

concluded tooth separation occurs even under large torques, which differs from conventional

thinking that large torques suppress contact loss. In an another study, Bahk and Parker

[57] investigated the effects of tooth profile modification on planetary gear dynamics with a

perturbation method. Analytical solutions for the dynamic responses near resonances were

derived such that an optimal tooth profile modification can be quickly identified to minimize

the vibration.

Planetary gears may have manufacturing or assembly errors such as eccentricity, planet

position errors, and tooth profile errors. These errors may drastically alter planetary gear

dynamic loads and deflections. The dynamic behaviors of planetary gears with manufactur-

ing and assembly errors were studied in [8, 58–65]. Elastic components, such as thin ring

gears, affect planetary gear dynamics as well. Dynamic responses of planetary gears with

deformable ring gear or carrier were investigated in [15, 19, 20, 22]. There exist other studies

of planetary gear dynamics that focus on time-varying pressure angles and contact ratios

[66], statistic dynamics of wind turbine planetary gears subject to random excitation [67],

planetary gear dynamics with tooth root crack [68–70], and dynamic load sharing under the

effect of gravity [71].
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1.3 Scope of Investigation

Chapter 2 develops an analytical dynamic model of planetary gears that combines

lumped-parameter models of the sun, carrier, and planets with an elastic continuum ring

having bending, extensional, and shear deformations as well as rotary inertia. Coriolis and

centripetal accelerations resulting from carrier or/and ring rotation are included. Each ring-

planet mesh force acts at a contact point radially away from the neutral axis, creating a

concentrated tooth bending moment on the elastic ring. The equations of motion for the

hybrid elastic-discrete system are cast into a matrix operator form and then discretized

with Galerkin method. Steady deformations are numerically calculated from a quasi-static

model reduced from the dynamic one, and they are compared with those from a finite

element/contact mechanics model for verification. The effects of the ring extensional de-

formations, shear deformations, and the concentrated tooth bending moment on the steady

deformations are evaluated. Spectra of ring deflections measured by sensors fixed to the

rotating ring, the rotating carrier, and ground are examined for in-phase and out-of-phase

systems with the quasi-static model. Simple rules are derived that govern the occurrence of

spectral content in any measured spectra including the three specific cases listed above for

in-phase and out-of-phase systems. Influences of floating a central member on the measured

spectra are demonstrated numerically and examined analytically.

Chapter 3 examines natural frequencies and vibration modes of spinning planetary gears

with equally-spaced planets using the hybrid elastic-discrete model with gyroscopic effects.

Natural frequencies and vibration modes calculated from the analytical model are compared

against those from a finite element/contact mechanics model [12, 72, 73] for verification.

As mentioned in section 1.2.4, Wu and Parker [21] determined modal structure for station-

ary planetary gears without gyroscopic effects. This work compares the modal structure

between stationary and spinning systems with a numerical example. Mathematical justifi-
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cation of the modal structure is presented for spinning systems with gyroscopic effects. A

perturbation analysis details the evolution of vibration modes from stationary to spinning

systems. Influences of the concentrated tooth bending moments, extensional deformation,

shear deformation, and rotary inertia on the natural frequencies are evaluated.

In Chapter 4, parametric instabilities of planetary gears with gyroscopic effects are an-

alyzed with parametric excitations of sun-planet and ring-planet mesh stiffness variations.

The governing equations for the analytical planetary gear model are put in a state-space form

and then cast into modal equations. Closed-form expressions for instability boundaries are

derived from the modal equations with a perturbation analysis. The analytical results are

compared against numerical results from Floquet theory for verification. Using the modal

structure for spinning planetary gears with gyroscopic effects in the analytical instability

boundary expressions leads to an instability suppression rule. This work compares the sup-

pression rule for spinning systems and that for stationary systems derived by Parker and

Wu [44]. Numerical examples illustrate the application of the suppression rule for spinning

systems.

In Chapter 5, dynamic responses of planetary gears with gyroscopic effects are numeri-

cally simulated with the analytical model considering time-varying mesh stiffness excitations

and tooth separation nonlinearity. These results are compared against those from a finite

element/contact mechanics simulation [12, 72, 73] for verification. Linear resonances without

and nonlinear resonances with tooth contact loss in these numerical simulations are analyzed

with knowledge of the modal properties and parametric instabilities. Closed-form expres-

sions for dynamic responses near resonances are derived from the analytical model with the

method of multiple scales. The analytical results are compared against results from numer-

ical simulations of the analytical model for verification. Influences of the gyroscopic effects

and planet mesh phasing on the dynamic responses are studied numerically and analytically.



Chapter 2

Dynamic Modeling and Mesh

Phasing-Based Spectral Analysis of

Quasi-Static Deformations of

Spinning Planetary Gears with a

Deformable Ring

2.1 Introduction

Thin planetary ring gears are desirable in aerospace applications. When transmitting

loads, these ring gears experience elastic deformations that consist of steady deformations

and vibrations about the steady deformed configurations. The steady deformations in this

work refer to quasi-static deflections that arise from transmitted torque and centripetal

13
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acceleration effects rather than from vibration. Such quasi-static deformations are time-

dependent, however, because of the fluctuating tooth mesh stiffnesses, mesh phase relations

between the multiple tooth meshes, and possibly fluctuating torque and speed. Steady

deformations require attention because they lead to cyclic stresses that can cause fatigue.

Vibration that involves inertial effects is likewise damaging, but steady deformations domi-

nate in non-resonant speed regions where the system is designed to operate. Planetary gear

steady deformations include elastic ring deformations as well as motions of the sun, carrier,

and planets, which are regarded as rigid bodies.

In order to investigate the steady deformation, this paper first develops an analytical

planetary gear dynamic model that includes an elastic ring and gyroscopic and centripetal

effects arising from carrier and ring rotation. The elastic ring has bending, extensional,

and shear deformations. The ring-planet mesh load acts at a contact point away from

the ring neutral axis, creating a concentrated tooth bending moment on the ring. The

dynamic model is reduced to a quasi-static one to determine steady deformations, and the

important centripetal accelerations are retained. We compare the steady deformations from

the analytical model to those from a commercial finite element/contact mechanics (FE/CM)

software [12, 72, 73] for verification. Ring tooth bending, extensional, and shear effects on

the steady deformations are evaluated.

Some experimental measurements [1–3] of ring deformations demonstrate sidebands

near, but not necessarily at, the mesh frequency harmonics, while others just show spectral

content at the mesh frequency harmonics. These differing behaviors depend on whether the

sensor is rotating with the ring, with the carrier, or fixed to ground. Planet mesh phasing

plays a critical role. Understanding these different spectra is of practical significance to

planetary gear engineers and researchers. This work demonstrates and explains the differing

spectra for quasi-static ring deformations measured by sensors fixed to a material point on
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the rotating ring, space-fixed ground, or the rotating carrier for in-phase and out-of-phase

planet meshes. Simple rules are derived that govern the occurrence of frequency content

in any measured spectra including the three specific cases listed above for in-phase and

out-of-phase systems.

Steady deformations can be calculated from different planetary gear models, such as

lumped parameter models [4–11], FE/CM models [12, 72, 73], and lumped parameter models

with elastic components [19–22]. Lumped parameter models [4–11] provide a quick estimate

of steady deformations. They need fewer input quantities and can be solved easily. These

models, however, do not consider elastic ring deformations. The FE/CM software developed

by Vijayakar [12] overcomes the limitations of the lumped-parameter models by modeling

each gear as a deformable body with specialized modeling of the tooth contact forces. The

FE/CM approach is suitable for steady deformation analysis of one or a few planetary gear

configurations, but it does not provide analytical understanding, uses proprietary modeling,

and is not suitable for parametric studies that require many parameter variations. A few

papers [19–22] have developed hybrid models that combine lumped-parameter models for

sun and planet deflections with an elastic ring or carrier. Among them, Abousleiman and

Velex [19] presented quasi-static deflections of a lumped-parameter planetary gear coupled

with a finite element ring gear. Ref. [20] extended the elastic-discrete model [19] to include

a finite element carrier. Instead of using a finite element approach, Wu and Parker [21]

incorporated an analytical deformable ring with partial differential equations into a model

with rigid sun, carrier, and planets. The model in [21], however, has limitations: the elastic

ring is inextensional without extensional or shear deformations; the ring-planet mesh load

is applied on the ring neutral axis such that the concentrated tooth bending moment is

ignored; the model is stationary without any rotational effects. The current work removes

these limitations.
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Ring deformations generate unusual sideband behavior near harmonics of mesh fre-

quency that has important implications in practice and for understanding measured spectra.

Abousleiman and Velex [19] showed ring displacements at a finite element node have low-

frequency fluctuations associated with the frequency at which planets pass the node as well

as asymmetric sidebands near mesh frequencies. McFadden and Smith [1] explained the side-

band behavior as an outcome of vibrations excited by planets as they move relative to a point

on the stationary ring. They identified where the sideband frequencies occur using phaser

sums, but did not address sideband amplitudes. McNames [2] employed a continuous-time

Fourier series to study the sideband behavior and predicted that dominant sidebands only

occur at frequencies that are integer multiples of planet pass frequency relative to a point

on the stationary ring. McNames’ analysis gives general representations of the sideband am-

plitudes but does not reveal the ring deformations associated with each sideband, nor does

it reveal sideband amplitudes. Inalpolat and Kahraman [3] analytically and experimentally

investigated sideband behaviors for planetary gears of any planet spacing condition and any

planet phasing condition. All of these studies [1–3] focused on the spectra of ring deflection

at a fixed point for planetary gears with a stationary ring gear. In contrast, the present

work examines epicyclic/planetary gear systems where any two or all of the ring, carrier,

and sun rotate. Furthermore, we explain the differing spectra (including sideband locations,

sideband amplitudes, and ring deformation associated with each sideband) of ring deflection

measured by sensors fixed to any one of: a material point on the rotating ring (e.g., a strain

gauge), space-fixed ground (e.g., a displacement probe), and the rotating carrier. The ana-

lytical predictions apply to systems with a stationary carrier or ring gear by specifying zero

carrier or ring gear speed.
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2.2 Analytical Dynamic Model

2.2.1 Model Description

Figure 2.1 shows the elastic-discrete planetary gear model for motions confined to the

plane. The sun, carrier, and N planets are treated as rigid bodies while the ring is elastically

deformable. Each of the sun, carrier, and planets has three degrees of freedom: two in-plane

translations and one rotation. The supports or bearings for the sun, carrier, and planets are

modeled as linear stiffnesses. The sun-planet and ring-planet tooth mesh interactions are

represented as linear stiffnesses along the line of action. The carrier and ring have speeds Ωc

and Ωr, respectively. Speeds of the sun and planets can be derived from kinematics.
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Figure 2.1: Schematic of a planetary gear model with a deformable ring.

A schematic of the elastic ring is shown in Fig. 2.2. The ring is uniform along the

circumferential direction with neutral axis radius R and cross-sectional area A. The ring
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neutral axis is defined by the circle that passes through the centroid of each ring cross

section. The ring density, Young’s modulus, and shear modulus are ρ, E, and G, respectively.

The elastic ring has a rigid body at its center to accommodate an input or output member

attached to the ring. The circumference of this circular ring rigid body connects to the

ring neutral axis through a uniform elastic foundation with radial (ku) and tangential (kv)

distributed stiffnesses per unit arclength of ring neutral axis. The ring rigid body has one

rotational and two in-plane translational degrees of freedom that are connected to ground

by rotational stiffness kbu and isotropic translational stiffness kb, respectively.

R

Ωr

E1

E2

er
eθ

Ωc

θ

Ring rigid 

body

Elastic 

foundation

xb

yb

ub

kb

kb kbu

u (θ, t)

β(θ, t)

v(θ, t)

Figure 2.2: Schematic of the rotating ring.

The coordinates are illustrated in Fig. 2.1 and Fig. 2.2. The sun, carrier, and ring

rigid body have translations xh, yh, h = s, c, b, with respect to the basis {E1,E2,E3} that is

fixed to the carrier and rotates with speed Ωc. Planet translations are described in the radial

and tangential directions as ζn, ηn, n = 1, 2, · · ·N , as shown in Fig. 2.1. The rotational

displacements uj for j = 1, 2, · · · , N, s, c, b are the rotations in radians times the gear base
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radii Rp and Rs, the center distance Rc for the carrier, and the radius Rb for the ring rigid

body. The circumferential planet locations ψn are measured with respect to the rotating

basis vector E1. Without loss of generality, ψ1 = 0.

The elastic deformations of particles on the ring neutral axis are represented by radial

(u(θ, t)) and tangential (v(θ, t)) deflections, where θ defines a fixed angular position relative

to the rotating basis vector E1 attached to the carrier. The term material point refers to a

particle of the elastic ring. Because the ring has a rotation speed relative to the carrier, and

so also relative to E1, the specific ring particles (or material points) instantaneously located

at a given value of θ (which include all material points on a radial cross section) change with

time. Likewise, the angle θ at which a given material point is located changes with time.

The radial and tangential deflections of the material point that is instantaneously located at

a specified angular position θ with a radial distance r from the ring neutral axis are

U(θ, r, t) = u(θ, t), V (θ, r, t) = v(θ, t) + rβ(θ, t), (2.1)

where β(θ, t) is the cross-sectional rotation angle [74]. This β is introduced to account for the

ring shear deformation. The ring shear angle at the neutral axis is (v−∂u/∂θ)/R−β. When

the shear deformation is neglected, then β = (v − ∂u/∂θ)/R. The extensional deformation

at the neutral axis is u + ∂v/∂θ. When the ring neutral axis is assumed to be inextensible,

the ring radial and tangential deflections satisfy u = −∂v/∂θ. The ring has only inextensible

bending deformation when both of the shear and extensional deformations are neglected. If

not otherwise indicated, the ring radial and tangential deflections refer to those of the ring

neutral axis.



20

2.2.2 Dynamic Model Derivation

To expand its applicability, the following derivation is for a dynamic model that captures

steady deformation and vibrations. Later steady deformation results focus on a quasi-static

model reduced from the more general dynamic one. The equations of motion for the elastic-

discrete system are derived using Hamilton’s principle. Energy expressions for the sun,

carrier, planets, ring rigid body, and sun-planet meshes are shown in Appendix A.1, while

expressions for ring kinetic energy, ring strain energy, strain energy in the elastic foundation,

ring-planet mesh energy, and virtual work are derived below.

Ring Kinetic Energy

The deformed state position of the material point on the ring that is instantaneously

located at a given θ and radial distance r from the neutral axis is

rp = [R + r + u(θ, t)]er + [v(θ, t) + rβ(θ, t)]eθ, (2.2)

where {er, eθ, ez} is a cylindrical basis defined by the coordinate θ (Fig. 2.2), and this basis

rotates with speed Ωc. The velocity of the material point is given by the material time

derivative of the position vector that accounts for the fact that the angle θ at which the

material point is located changes with time because of the relative angular speed (Ωr − Ωc)

of the ring relative to the carrier-fixed {er, eθ, ez} and {E1,E2,E3} bases. The following

examples illustrate material time derivatives:

du/dt = ∂u/∂t+ (∂u/∂θ)(∂θ/∂t) = ∂u/∂t+ (Ωr − Ωc)(∂u/∂θ),

der/dt = ∂er/∂t+ (∂er/∂θ)(∂θ/∂t) = Ωceθ + (Ωr − Ωc)eθ = Ωreθ,

deθ/dt = ∂eθ/∂t+ (∂eθ/∂θ)(∂θ/∂t) = −Ωcer − (Ωr − Ωc)er = −Ωrer.
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The material time derivatives of v(θ, t) and β(θ, t) are similar. For compact notation, ∂u/∂t

and ∂u/∂θ are subsequently replaced by u,t and u,θ, and Ωrc = Ωr − Ωc. Thus, the time

derivative of Eq. (2.2) is

ṙp =[u,t + Ωrcu,θ − Ωr(v + rβ)]er

+ [v,t + rβ,t + Ωrc(v,θ + rβ,θ) + Ωr(R + r + u)]eθ.

(2.3)

The kinetic energy of the elastic ring is

Ke =
1

2

∫ 2π

0

∫
A

ρ(R + r)ṙp · ṙp dAdθ

1

2

∫ 2π

0

{
J0[u

2
,t + v2,t + 2Ωr(v,tu− u,tv) + 2Ωrc(u,tu,θ + v,tv,θ)

+ Ω2
r(v

2 + u2 + 2Ru) + Ω2
rc(u

2
,θ + v2,θ) + 2ΩrcΩr(v,θu− u,θv)]

+ J1[2v,tβ,t − 2Ωru,tβ + 2Ωrc(v,tβ,θ + β,tv,θ) + 2Ωrβ,tu

+ 2Ω2
rvβ + 2Ω2

ru+ 2Ω2
rcv,θβ,θ + 2ΩrΩrc(β,θu− βu,θ)]

+ J2[β
2
,t + 2Ωrcβ,tβ,θ + Ω2

rβ
2 + Ω2

rcβ
2
,θ] +

∫
A

ρΩr(R + r)2/R

[2(v,t + rβ,t) + 2Ωrc(v,θ + rβ,θ) + Ωr(R + r)] dA
}
Rdθ,

(2.4)

J0 =

∫
A

ρ(R + r)/R dA, J1 =

∫
A

ρ(R + r)r/R dA,

J2 =

∫
A

ρ(R + r)r2/R dA,

where J0 is the mass per unit arclength of the ring neutral axis, and J1 and J2 are the first

and second mass moments of inertia about the ring neutral axis per unit arclength of the ring

neutral axis, respectively. J2 is also referred to as rotary inertia [74–76]. Terms associated

with J0, J1, and J2 survive the energy variation δKe to yield terms in the final equations of

motion, while the terms that do not contribute to the equations of motion are collected into
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the last term of Eq. (2.4).

Ring Strain Energy

The extensional and shear strains are [74]

εn = (u+ v,θ + rβ,θ)/(R + r), εs = (u,θ − v +Rβ)/(R + r). (2.5)

A nonlinear extensional strain-displacement relation from Ref. [77] was used in an initial

ring model that did not include shear deformations (i.e., εs = 0). For that model, the

nonlinear terms had negligible effects on the steady deformations of planetary gears for

practical torques and speeds. When shear deformations are considered, introducing the

second-order nonlinear terms (u,θ−v−rβ)2/[2(R+r)2] and (v+rβ−u,θ)(u+v,θ+rβ,θ)/(R+r)2

[74] to the extensional and shear strains, respectively, results in cumbersome ring equations

that we expect to yield similarly negligible differences compared to those obtained using Eq.

(2.5). Therefore, these nonlinear strain terms are neglected.

The stresses and strains are related by σn = Eεn and σs = κGεs, where κ is a shear

correction factor [78] that depends on the geometry of the ring cross section. The strain

energy of the elastic ring is

Ve =
1

2

∫ 2π

0

∫
A

(σnεn + σsεs)(R + r) dAdθ

=
1

2

∫ 2π

0

{
[α1(u+ v,θ)

2 + α2(u+ v,θ)Rβ,θ + kβ(Rβ,θ)
2] + α3(u,θ − v +Rβ)2

}
dθ,

(2.6)

α1 = EI0, α2 = EI1/R, kβ = EI2/R
2, α3 = κGI0,

I0 =

∫
A

1/(R + r) dA, I1 =

∫
A

r/(R + r) dA, I2 =

∫
A

r2/(R + r) dA.
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Strain Energy in the Elastic Foundation

The elastic foundation connects the ring neutral axis to the circumference of the ring

rigid body. The strain energy in the elastic foundation is

Vf =
1

2

∫ 2π

0

[ku(u− xb cos θ − yb sin θ)2

+ kv(v + xb sin θ − yb cos θ −Rub/Rb)
2] Rdθ.

(2.7)

Ring-Planet Mesh Energy

The ring gear tooth contact is shown in Fig. 2.3. The radial distance from the contact

point to the ring neutral axis is denoted as Γ . Although Γ varies over a mesh cycle, the

value of Γ is approximated as a constant equal to the radial distance from the pitch contact

point to the ring neutral axis. The tooth mesh force acting at this contact point, as opposed

to acting directly on the neutral axis as done in [21], creates a concentrated moment on the

ring neutral axis, in addition to the action of the mesh force itself.

Line of 

action
Ring neutral axis

Contact point  

Mesh stiffness

Γ
P1 P2

Figure 2.3: Ring gear tooth contact.

The ring-planet mesh deflection is the relative displacement between the ring and planet
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contact points along the line of action. The expression for the n-th planet is

∆rn =(ζn sinαr − ηn cosαr − un)

+ [−u sinαr + v cosαr − Γβ cosαr]θ=ψn , n = 1, 2, · · · , N,
(2.8)

where αr is the ring-planet pressure angle. The last term represents ring gear tooth bending

mesh deflection, that is, the displacement of the ring contact point P1 relative to the point

P2 along the line of action (Fig. 2.3). The ring-planet mesh energy for the n-th planet is

Vrn =
1

2
krn∆2

rn, n = 1, 2, · · · , N. (2.9)

Virtual Work

The virtual work done by external torques is

δW = (Ts/Rs)δus + (Tc/Rc)δuc + (Tb/Rb)δub, (2.10)

where Th for h = s, c, b represents the torque applied to the sun, carrier, and ring rigid body.

2.2.3 Dimensionless Equations of Motion

Use of the energy and virtual work expressions in Hamilton’s principle leads to ordinary

differential equations for the discrete motions of the sun, carrier, planets, and ring rigid

body as well as three partial differential equations for the ring elastic deformations. These
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equations are non-dimensionalized with the quantities

t̂ = t
√
kζ/(mpR), Ω̂r, Ω̂c = Ωr,Ωc

√
mpR/kζ , k̂i = ki/kζ ,

k̂u = Rku/kζ , k̂v = Rkv/kζ , α̂1 = α1/kζ , α̂2 = α2/kζ ,

α̂3 = α3/kζ , û, v̂ = u, v/R, ζ̂n, η̂n, ûn = ζn, ηn, un/R,

x̂h, ŷh, ûh = xh, yh, uh/R, T̂h = (Th/Rh)/(kζR), Γ̂ = Γ/R,

Ĵ0 = J0/mp, Ĵ1 = J1/(mpR), Ĵ2 = J2/(mpR
2),

m̂ς = mς/(mpR), Îς = Iς/(mpRR
2
h), R̂ς = Rς/R,

(2.11)

where the subscripts are

i = s, su, c, cu, b, bu, ζ, η, rn, sn, β, n = 1, 2, · · · , N,

h = s, c, b, ς = s, c, b, p.

In what follows, the hats on all dimensionless variables are dropped.

The ordinary differential equations for the discrete motions are

Mdq̈ + ΩcGdq̇ + Kdq− Ω2
cCdq + (Km + Kf )w = fd, (2.12a)

q =

[
pTb , pTc , pTs , pT1 , · · · , pTN

]T
, w =

[
u, v, β

]T
, (2.12b)

pn =

[
ζn, ηn, un

]T
, ph =

[
xh, yh, uh

]T
, h = s, c, b. (2.12c)

Md and Kd are non-dimensional mass and stiffness matrices. Gd and Cd are non-dimensional

gyroscopic and centripetal matrices. Details of these four matrices can be found in Appendix

A.2. The vector fd represents torque excitations and a constant vector of centripetal accel-

eration terms acting on the planets from carrier rotation (see Appendix A.2 for detail).
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The stiffness coupling terms where the ring elastic deformations influence the discrete

motions come from the ring-planet meshes as Kmw and the connection of the elastic ring to

the ring rigid body through the elastic foundation as Kfw. The expressions for Kmw and

Kfw are

Kmw =

[
0, 0, 0, (Km1w)T , · · · , (KmNw)T

]T
,

Kmnw = krn∆n

[
sinαr, − cosαr, −1

]T
,

∆n = [−u sinαr + v cosαr − Γβ cosαr]θ=ψn ,

(2.13)

Kfw =

[
(Kfbw)T , 0, 0, 0, · · · , 0

]T
,

Kfbw =


∫ 2π

0
(−kuu cos θ + kvv sin θ) dθ∫ 2π

0
(−kuu sin θ − kvv cos θ) dθ∫ 2π

0
−kvv/Rb dθ

 .
(2.14)

Correspondingly, the equations for the ring elastic deformations incorporate coupling

with the discrete motions, which is evident from the presence of xb, yb, and ∆rn defined in

Eq. (2.8). These equations are

J0u,tt + 2J0(Ωrcu,tθ − Ωrv,t)− 2J1Ωrβ,t + α1(u+ v,θ) + α2β,θ

+ku(u− xb cos θ − yb sin θ)− α3[β,θ − (v,θ − u,θθ)]

−J0(Ω2
ru+ 2ΩrΩrcv,θ − Ω2

rcu,θθ)− 2J1ΩrΩrcβ,θ

+
N∑
n=1

krn∆rn(− sinαr)δ(θ − ψn) = (J0 + J1)Ω
2
r, (2.15a)

J0v,tt + J1β,tt + 2J0(Ωrcv,tθ + Ωru,t) + 2J1Ωrcβ,θt − α2β,θθ

−α1(u,θ + v,θθ) + kv[v + xb sin θ − yb cos θ − ub/Rb]

−α3[β − (v − u,θ)]− J0(Ω2
rv − 2ΩrΩrcu,θ − Ω2

rcv,θθ)
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−J1(Ω2
rβ − Ω2

rcβ,θθ) +
N∑
n=1

krn∆rn(cosαr)δ(θ − ψn) = 0, (2.15b)

J2β,tt + J1v,tt + 2J1(Ωrcv,θt + Ωru,t) + 2J2Ωrcβ,tθ − α2(u,θ + v,θθ)

−β,θθ + α3[β − (v − u,θ)]− J1(Ω2
rv − 2ΩrΩrcu,θ − Ω2

rcv,θθ)

−J2(Ω2
rβ − Ω2

rcβ,θθ) +
N∑
n=1

krn∆rn(−Γ cosαr)δ(θ − ψn) = 0, (2.15c)

where δ(·) is the Dirac delta function. The last term on the left side of Eq. (2.15c) is the

concentrated tooth bending moment mentioned in section 2.2.2.

Terms associated with the relative speed Ωrc appear in Eq. (2.15) because the rotating

ring is modeled in the rotating carrier reference frame. These terms would not appear if

the rotating ring was modeled in its own reference frame, as evident in [74]. In order to

confirm these terms associated with Ωrc, we re-derived the same rotating ring model in the

rotating carrier reference frame by applying the transformation θ = θ̃ + Ωrct to the rotating

ring model in its own reference frame [74], where θ̃ denotes a fixed angular position in the

rotating ring reference frame. In addition, the reverse transformation θ̃ = θ − Ωrct of the

current model (Eq. (2.15)) to the rotating ring model in its own reference frame eliminates

these terms. Such a reference frame transformation has been done in Ref. [79] for an

inextensional ring without shear deformation, which inspires the idea of using the reference

frame transformation to confirm the terms associated with Ωrc.

Focusing on the rotating ring as a component separated from the planetary gear, the

present model derived in the rotating carrier reference frame differs from ring models in the

literature. Refs. [74, 76, 79–83] presented rotating ring models in the rotating ring reference

frame. Some other works [77, 84, 85] formulated rotating ring models in the stationary

reference frame. The differences between the three types of rotating ring models lie in the

speed-dependent gyroscopic and centripetal terms. The current rotating ring model can be
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generalized to a rotating ring model in a reference frame with arbitrary rotation speed Ωa

by simply replacing the carrier speed Ωc with Ωa. If Ωa = Ωr, the current rotating ring

model reduces to a rotating ring model in the rotating ring reference frame. A rotating ring

model in the stationary reference frame results from Ωa = Ωc = 0 in the current rotating

ring model.

The rotating carrier reference frame has advantages over others as the basis for planetary

gears. In any other reference frame, the sun-planet and ring-planet mesh locations are not

fixed; instead, their circumferential locations vary with time. Such a change of mesh locations

leads to time-varying coefficients in the system equations even if the mesh stiffnesses are

constants. Developing the system model in the rotating carrier reference frame avoids this

problem.

The complete elastic-discrete model for a spinning planetary gear consists of Eq. (2.12)

for the discrete motions and Eq. (2.15) for the ring elastic deformations. With the freedom

to independently specify the carrier and ring speeds, the model covers planetary gears of

any combination of fixed and/or rotating carrier, sun, and ring gears. This model applies

for systems with any planet spacing by simply changing the planet position angles ψn, but

this work focuses on equally-spaced systems.

The current model has substantial differences compared to the elastic-discrete model in

[21]. The model in this work connects the elastic ring to a vibrating ring rigid body, which

allows more accurate representation of the total inertia of the ring and any attached input

or output member, rather than connecting the elastic ring directly to ground as in [21].

Ref. [21] presents a stationary model that neglects speed-dependent gyroscopic (Coriolis)

and centripetal effects that result from carrier and/or ring rotation speeds. The elastic

ring in [21] considers only inextensible bending deformation. The present work models

bending, extensional, and shear deformations, and later results show extensional deformation
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is important. Furthermore, the present model includes ring rotary inertia. Ref. [21] neglects

the concentrated moment on the ring at the tooth contact point from the mesh force (Fig.

2.3) and the resulting tooth bending mesh deflection (the last term in Eq. (2.8)) because it

attaches the ring-planet mesh stiffness directly to the ring neutral axis. These features can

be significant for high-speed, lightweight (i.e., thin) gears such as those in aircraft engines.

2.3 Matrix Operator Form and Galerkin Discretization

The coupled partial and ordinary differential equations for the hybrid continuous-discrete

system can be collected into a compact form using extended matrix operators similar to what

was done in [21]. The vector χ contains all motions of the system, both elastic and discrete.

The extended matrix operator form is

Mχ̈+ (ΩrGr + ΩcGc)χ̇+ (K− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc)χ = f , (2.16a)

χ =

w(θ, t)

q(t)

 , Mχ =

Mw
Mdq

 , Grχ =

Grw

0

 , (2.16b)

Gcχ =

Gcw

Gdq

 , Kχ =

 Lw + (Lm + Lf )q

Kdq + (Km + Kf )w

 , Crχ =

Crw
0

 , (2.16c)

Ccχ =

Ccw
Cdq

 , Crcχ =

Crcw
0

 , f =

f
fd

 , (2.16d)

Mw =

[
J0u, J0v + J1β, J2β + J1v

]T
, (2.17a)
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Grw = 2


J0(u,θ − v)− J1β

J0(v,θ + u) + J1β,θ

J2β,θ + J1(u+ v,θ)

 , Gcw = 2


−J0u,θ

−J0v,θ − J1β,θ

−J2β,θ − J1v,θ

 , (2.17b)

Lw =


α1(u+ v,θ) + α2β,θ − α3[β,θ − (v,θ − u,θθ)] + kuu

−α1(u,θ + v,θθ)− α2β,θθ − α3[β − (v − u,θ)] + kvv

−β,θθ − α2(u,θ + v,θθ) + α3[β − (v − u,θ)]


+

N∑
n=1

krn∆nδ(θ − ψn)

[
− sinαr, cosαr, −Γ cosαr

]T
, (2.17c)

Lmq =
N∑
n=1

krn∆̃nδ(θ − ψn)

[
− sinαr, cosαr, −Γ cosαr

]T
, (2.17d)

∆̃n = ζn sinαr − ηn cosαr − un, (2.17e)

Lfq =


ku(−xb cos θ − yb sin θ)

kv(xb sin θ − yb cos θ − ub/Rb)

0

 , (2.17f)

Crw =


J0(u+ 2v,θ − u,θθ) + 2J1β,θ

J0(v − 2u,θ − v,θθ) + J1(β − β,θθ)

J1(v − 2u,θ − v,θθ) + J2(β − β,θθ)

 , (2.17g)

Ccw =


−J0u,θθ,

−J0v,θθ − J1β,θθ,

−J1v,θθ − J2β,θθ

 , Crcw =


J0(−v,θ + u,θθ)− J1β,θ

J0(u,θ + v,θθ) + J1β,θθ

J1(u,θ + v,θθ) + J2β,θθ

 , (2.17h)

f =

[
(J0 + J1)Ω

2
r, 0, 0

]
. (2.17i)

The operators M, K, Cr, Cc, and Crc are self-adjoint with the inner product

〈χ1, χ2〉 =

∫ 2π

0

wT
1w2dθ + qT1 q2, (2.18)
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where the overbar denotes complex conjugate. The gyroscopic operator Gr is skew self-

adjoint with 〈χ1, Grχ2〉 = −〈Grχ1, χ2〉, and so is the gyroscopic operator Gc.

Casting the hybrid model in the operator form of Eq. (2.16) with the inner product

in Eq. (2.18) allows straightforward application of the Galerkin method to discretize the

model. The solution of Eq. (2.16) is approximated with a series of linearly independent

vectors as

χa(θ, t) =

Lb∑
l=0

acl(t)χ1l(θ) +

Lb∑
l=1

asl(t)χ2l(θ) +

Mb∑
m=0

bcm(t)χ3m(θ)

+

Mb∑
m=1

bsm(t)χ4m(θ) +

Pb∑
p=0

ccp(t)χ5p(θ)

+

Pb∑
p=1

csp(t)χ6p(θ) +
3N+9∑
k=1

dk(t)χ7k(θ), (2.19a)

χ1l =



cos lθ

0

0

0


, χ2l =



sin lθ

0

0

0


, χ3m =



0

cosmθ

0

0


,

χ4m =



0

sinmθ

0

0


, χ5p =



0

0

cos pθ

0


, χ6p =



0

0

sin pθ

0


, χ7k =



0

0

0

ek


, (2.19b)

where the vector ek, which has dimension equal to the number of discrete degrees of freedom

(3N + 9), is a unit vector with the k-th element equal to one and all others zero. The

χ1l, · · · ,χ7k in Eq. (2.19b) form a complete set of basis functions, so the approximate

solution χa converges to the true solution χ as Lb, Mb, and Pb approach infinity. All these

basis functions are orthogonal to each other in terms of the inner product in Eq. (2.18). The
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basis functions χ1l, · · · ,χ6p are different nodal diameter (i.e., Fourier series) components

of the total ring deformation. The coefficients (aci, asi), (bci, bsi), and (cci, csi) represent

the magnitude of contribution of the i-th nodal diameter component to the total radial

deformation, tangential deformation, and cross-sectional rotation angle, respectively.

Substitution of the approximate solution χa into Eq. (2.16) gives the residual

ξ(θ, t) = Mχ̈a + (ΩrGr + ΩcGc)χ̇a + (K− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc)χa − f . (2.20)

Requiring the residual to be orthogonal to each basis function in Eq. (2.19b) using the inner

product in Eq. (2.18) (for example, 〈ξ, χ1l〉 = 0 for l = 1, 2, · · · , Lb) gives the matrix

equation

[M]z̈ + (Ωr[Gr] + Ωc[Gc])ż + ([K]− Ω2
r[Cr]− Ω2

c [Cc]− 2ΩrΩc[Crc])z = f̃ , (2.21a)

z = [ac0, · · · , acLb
, as1, · · · , asLb

, bc0, · · · , bcMb
,

bs1, · · · , bsMb
, cc0, · · · , ccPb

, cs1, · · · , csPb
, d1, · · · , d3N+9]

T , (2.21b)

where z has dimension 2Lb + 2Mb + 2Pb + 3N + 12. Once z is determined, the approximate

solution χa can be recovered from Eq. (2.19a).

2.4 Steady Deformations

The planetary gear system deflects into a steady configuration due to applied torques

and centripetal excitations. The discretized governing equations for steady deformations zs

are obtained by eliminating time derivative terms in Eq. (2.21a) to give

([K]− Ω2
r[Cr]− Ω2

c [Cc]− 2ΩrΩc[Crc])zs = f̃ . (2.22)
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Numerically solving Eq. (2.22) and using the resulting zs in Eq. (2.19a) gives the steady

deformation.

2.4.1 Steady Deformation Benchmark Comparisons

This section compares the steady deformations calculated from the analytical model with

those from two-dimensional finite element/contact mechanics (FE/CM) software [12, 72, 73].

Figure 2.4 shows the FE/CM model. The carrier (not shown) is modeled as a rigid body.

For this comparison, the inner surfaces of the sun and planet gears are constrained to remain

circular (in practice, stiff bearings and shafts occupy the gear interiors in Fig. 2.4), while

the outer surface of the ring gear can deform elastically.

Figure 2.4: FE/CM model

In the FE/CM model, it is not possible to specify a ring rigid body that connects to

the ring gear through an elastic foundation as done in the analytical model. Instead, the
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FE/CM software admits rigid-body motions of the ring gear according to the definitions

xr =

∫ 2π

0

2uo(θ) cos θ dθ, yr =

∫ 2π

0

2uo(θ) sin θ dθ,

ur = (Rr/Ro)

∫ 2π

0

vo(θ) dθ,

(2.23)

where ur represents the rigid rotation in radians times the ring gear base radius Rr. uo and

vo denote the radial and tangential deflections of the ring outer surface, and Ro is the radius

of the ring outer surface. The FE/CM model allows that the two translations (xr and yr) are

resisted by translational stiffnesses and the rotation (ur) is resisted by a rotational stiffness,

but the present example constrains these motions to be zero.

The analytical model must be adjusted to facilitate the comparison because of the

above modeling differences. The elastic foundation and ring rigid body are removed. We

define rigid-body motions for the analytical ring in the same way as the FE/CM model

does in Eq. (2.23) and constrain them to be zero. The analytical model has its speed-

dependent centripetal terms in the left side of Eq. (2.22) removed because these terms are

not considered in the quasi-static analysis of the FE/CM model. These adjustments apply

only for this benchmarking section.

The comparison is conducted on a three-planet system with equal planet spacing. The

sun-planet and ring-planet tooth meshes at the three planets are out-of-phase. Table 2.1

shows the parameters for the FE/CM model. The carrier parameters are not shown because

it is stationary and fixed to ground. The sun gear is the input, and the ring gear is the output.

The input torque and speed are 600 N·m and 10,000 rpm, respectively. The analytical model

takes the parameters in Table 2.1 as well as the following parameters. The sun-planet and

ring-planet mesh stiffnesses are listed in Table 2.2. They are calculated from single-pair

sun-planet and ring-planet FE/CM models using an average slope method [86] at the same
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Table 2.1: Parameters of a three-planet FE/CM planetary gear model.

Sun Planets Ring

Number of teeth 29 34 97

Module(mm) 2.868 2.868 2.868

Inner diameter (mm) 60.00 72.00 272.4

Root diameter (mm) 77.14 90.13 284.4

Outer diameter (mm) 89.64 100.9 300.4

Facewidth (mm) 25.40 25.40 25.40

Pressure angle (deg) 24.60 24.60 24.60

Young’s modulus (GPa) 202.1 202.1 202.1

Poisson’s ratio 0.3 0.3 0.3

Translational stiffness (N/m) 10× 106 109 ∞

Rotational stiffness (N/m) 0 0 ∞

Center distance (mm) 90.33

Table 2.2: Sun-planet and ring-planet mesh stiffnesses.

Planet 1 Planet 2 Planet 3

Sun-planet mesh stiffness (N/m) 409.0× 106 425.9× 106 641.6× 106

Ring-planet mesh stiffness (N/m) 769.3× 106 516.9× 106 773.3× 106

mesh cycle instance where the FE/CM planetary gear steady deformations are evaluated.

The ring inner diameter of the analytical model is a tunable parameter that is in between

the ring gear inner and root diameters of the FE/CM model. For the FE/CM model, ring



36

gear deformations are measured along a circle that has the same radius as the analytical ring

neutral axis.

Figure 2.5 and Table 2.3 show steady deformations predicted by the analytical and

FE/CM models. When the ring inner diameter of the analytical model is set to the ring

gear root diameter (i.e., 284.4 mm), the elastic ring deformations (overall magnitudes) as

well as the sun and planet rotations (absolute values) calculated from the analytical model
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Figure 2.5: Ring (a) radial and (b) tangential deflections for the three-planet system in

Table 2.1. The (blue) circles represent the results from the FE/CM model, and the (black)

dotted line and (red) solid line represent the results from the analytical model with ring

inner diameter equal to 284.4 mm and 282.2 mm, respectively.
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Table 2.3: Discrete motions (unit: µm) of the same system used in Fig. 2.5 calculated from

the FE/CM model (first row) and analytical model with ring inner diameter equal to 284.4

mm (second row) and 282.2 mm (third row).

xs ys us ζ1 η1 u1 ζ2 η2 u2 ζ3 η3 u3

−2.58 −1.13 324 0 9.65 −302 0.0215 9.60 −307 −0.0177 9.62 −307

−0.991 0.572 474 0 9.62 −452 0 9.61 −454 0 9.63 −456

−1.29 0.745 327 0 9.62 −305 0 9.60 −307 0 9.64 −308

are larger than those from the FE/CM model. This difference comes from selecting the ring

inner diameter to be the root diameter, which neglects ring stiffness from the teeth. This

stiffness underestimation leads to an increase of steady deformations. By compensating for

the omitted tooth geometry with a smaller ring inner diameter (282.2 mm), the elastic ring

deformations, sun rotation, and planet rotations predicted by the analytical model match

well with those from the FE/CM model, as shown in Fig. 2.5 and Table 2.3. We do not

compare the sun and planet translations between these two models because their values are

small relative to the sun and planet rotations, but the quality of the agreement was similar.

For a three-planet system with equal planet spacing, identical bearing stiffnesses for all

planets, and in-phase tooth meshes, steady deformations are cyclically symmetric: the sun

gear has only rotation, all planets have the same deflections, and the ring elastic deflections

are periodic with N = 3 periods. The steady deformations for the out-of-phase system in

Figure 2.5 and Table 2.3 are not cyclically symmetric due to unequal tooth mesh stiffnesses

among the planets. The deviation from cyclical symmetry, however, is small despite the

significant differences of the sun-planet and ring-planet mesh stiffnesses among the three

planets (Table 2.2). Small differences of the sun-planet and ring-planet mesh loads among

the three planets (not shown) account for this small deviation.
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2.4.2 Steady Deformation Results and Discussion

This section studies steady deformations of a planetary gear with dimensional param-

eters shown in Table 2.4. Torque flows into the planetary gear through the carrier and out

from the ring. The sun is stationary and fixed to ground. The stiffness kcu vanishes. The

ring rigid body is fixed (kb, kbu → ∞) such that it neither translates nor deviates from its

angular orientation determined by its rotation speed. The elastic ring has a rectangular

cross-section with radial thickness H and axial thickness B.

Table 2.4: Dimensional parameters of an example planetary gear system with an elastic ring.

Stiffness (N/m) kc = 1.00×109, kcu = 0, kζ = 200×106, kη = 1.00×109, Rku =
Rkv = 200× 106

Dimensions (mm) Rs = 39.1, Rc = 90.3, R = 147, Γ = 9.55, H = 12.0, B = 25.4

Mass (kg) mc = 5.00, mp = 0.640

Elastic modulus (GPa) E = 202, κG = 59.1

Density (kg/m3) ρ = 7.85× 103

Pressure angle (deg) αs = αr = 24.6

Carrier torque (N·m) Tc = −1500

Speed (rpm) Ωc = −1600, Ωr = −2100

Tooth Bending Effects on Steady Deformations

The tooth bending effect relates to the radial distance (Γ ) from the ring contact point

to the ring neutral axis (Fig. 2.3). Use of Γ = 0 indicates no consideration of tooth bending.

Figure 2.6 shows the elastic ring radial and tangential deflections for an out-of-phase

system with and without tooth bending. In both cases, the maximum radial deflections
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occur at the clockwise sides of the contact points for planet mesh forces acting clockwise

on the ring, while the maximum tangential deflections occur at the counter-clockwise sides.

Neither of the maxima occur at the contact locations. When tooth bending is considered,

the radial and tangential deflections (overall magnitudes) increase due to the concentrated

moment on the ring at the tooth contact point from the mesh force (Fig. 2.3). Figure 2.6

shows a clockwise shift of the ring radial and tangential deflections from the tooth bending

for clockwise mesh forces acting on the ring.

0 2 /3 4 /3 2

Angular Position ( ) 

-100

-50

0

50

100

150

D
im

e
n

s
io

n
le

s
s
 r

in
g

 d
e

fl
e

c
ti
o

n

10
-6

Shift

Figure 2.6: Ring radial (upper) and tangential (lower) deflections for a three-planet out-of-

phase system with nominal value of Γ (dashed line) from Table 2.4 and zero value of Γ (solid

line). The ring-planet contact locations are 0, 2π/3, and 4π/3. Mesh stiffnesses have the

values in Table 2.2, and all other parameters are given in Table 2.4.

The ring deformations in Fig. 2.6 are the superposition of several nodal diameter com-

ponents from a Fourier series, while those in Fig. 2.5 look like nearly pure three nodal

diameter sinusoidal deformations. The elastic foundation causes this difference. When the
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elastic foundation stiffnesses (ku, kv) are reduced to 10% of the values in Fig. 2.6, the ring

deformations look like those in Fig. 2.5. The elastic foundation stiffnesses are determined

by the physical connection of the elastic ring to the ring rigid body or housing. With a

weaker connection, the elastic foundation stiffnesses are smaller, and the ring deformations

look more like single nodal diameter sinusoidal deformations.

The carrier rotation and planet 1 motions of the system with and without tooth bending

are shown in Table 2.5. Introducing tooth bending to the system does not alter the planet

radial deflection much because it is mainly determined by the centripetal acceleration of the

planet center of mass. The carrier rotation, planet tangential deflection, and, especially, the

planet rotation (absolute values) increase due to the tooth bending.

Table 2.5: Dimensionless carrier rotation and planet 1 motions of the same system used in

Fig. 2.6 with and without tooth bending.

uc ζ1 η1 u1

Without tooth bending (×10−6) −132 57.8 −94.8 −11.8

With tooth bending (×10−6) −146 57.6 −109 −25.0

Difference (%) 10.6 −0.346 15.0 112

Tooth bending meaningfully influences the steady deformations, which is evident in Fig.

2.6 and Table 2.5. Additional numerical experiments show that an increase of Γ magnifies

the effect of tooth bending on the steady deformations. For systems with high value of Γ

and a compliant ring, inclusion of tooth bending in the modeling is necessary.
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Ring Extensional and Shear Effects on Steady Deformations

The full elastic ring model considers bending, extension, and shear effects. A simpler

bending-extensional ring model (subsequently called the extensional model) results from

assuming the shear strain εs in Eq. (2.5) vanishes, that is, β = (v − u,θ)/R. Further

imposing the inextensional assumption u = −v,θ leads to a model with only ring bending.

Numerical experiments on an out-of-phase stationary planetary gear system (mesh stiff-

nesses in Table 2.2 and other parameters in Table 2.4) show that the steady deformations

predicted by the three models are close to each other for a range of input torques up to

150,000 N·m, and a range of ring thicknesses (0.05 < H/R < 0.35). For these cases, the ex-

tensional and shear effects on steady deformations are minimal, and the inextensional model

is sufficient.

This result does not apply for the spinning planetary gear system. Results from the

extensional and full ring models have negligible differences for a range of thickness ratios at

either half (Fig. 2.7a) or four (Fig. 2.7b) times the nominal speeds in Table 2.4. Results of the

inextensional model have small but noticeable differences from those of the extensional and

full models at half nominal speed (Fig. 2.7a) and large differences at four times nominal speed

(Fig. 2.7b). The ring speed causes the large differences because the inextensional model

cannot capture the uniform expansion caused by high-speed ring rotation (Eq. (2.17i)).

Increasing the ring thickness ratio stiffens the system, yet the maximum ring radial deflection

increases for higher thickness ratio at high speed (Fig. 2.7b). This occurs because the

centripetal excitation (Eq. (2.17i)) simultaneously increases with the ring thickness through

the inertia quantities J0 and J1.

The results in Fig. 2.7 show that shear effects in the full model yield negligible differences

compared to the extensional model for steady deformations of the present system. The
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impact of shear effects in dynamic vibrations is not yet known.
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Figure 2.7: Maximum ring radial deflection for a three-planet in-phase system with a range

of H/R. The value of H is varied, and R is a constant. The results from the system with

inextensional, extensional, and full ring model are shown at (a) half and (b) four times of

nominal speeds in Table 2.4. Mesh stiffnesses have the values in Table 2.2, and all other

parameters are given in Table 2.4.

.

2.5 Spectral Analysis

The previous section focuses on steady deformations evaluated at one mesh instance.

The quasi-static steady deformations fluctuate over a mesh cycle, however, because the sun-

planet and ring-planet mesh stiffnesses vary periodically at the mesh frequency ωm. These

mesh stiffness variations are shown in Fig. 2.8. All the sun-planet mesh stiffnesses have

the same variations over a mesh cycle, but these variations may be in- or out-of-phase (and
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similarly for the ring-planet meshes).
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Figure 2.8: Dimensional sun-planet (solid line) and ring-planet (dashed line) mesh stiffnesses.

The phase difference between the sun-planet mesh stiffness for the n-th planet (ksn(t))

and that for the first planet (ks1(t)) is represented by γsn such that ksn(t) = ks1(t−2πγsn/ωm).

Similarly, krn(t) = kr1(t− 2πγrn/ωm). Ref. [87] gives

γsn = Zsψn/(2π), γrn = −Zrψn/(2π) (2.24)

for clockwise planet rotation and

γsn = −Zsψn/(2π), γrn = Zrψn/(2π) (2.25)

for counter-clockwise planet rotation, where Zs and Zr are the sun and ring gear tooth

numbers. Ref. [87] presents Eqs. (2.24) and (2.25) under the assumption that one of the

sun, carrier, and ring is fixed. For general cases where all of the sun, carrier, and ring can

rotate, Eq. (2.24) is valid when Ωc > Ωr and Eq. (2.25) is valid when Ωc < Ωr. Here and
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in all subsequent and prior results, Ωc and Ωr are positive in the counter-clockwise direction

and negative otherwise.

The ring-planet mesh phase in Eq. (2.24) for Ωc > Ωr and Eq. (2.25) for Ωc < Ωr is

illustrated as follows. In one complete revolution of a planet gear center around the ring gear,

Zr tooth mesh cycles are completed. In other words, when a planet gear center revolves by an

angle of 2π as seen by an observer fixed to the ring gear, the tooth mesh advances by a phase

of 2πZr/(2π). Accordingly, when a planet gear center revolves by an angle of ψn as seen by

an observer on the ring, the tooth mesh advances a phase of ψnZr/(2π). This establishes the

magnitudes of γrn in Eqs. (2.24) and (2.25). For Ωc > Ωr where the planet centers revolve

counter-clockwise relative to the ring (i.e., the carrier rotates counter-clockwise as seen by

an observer on the ring gear), the ring-planet mesh for the n-th planet has a phase lead of

ψnZr/(2π) relative to that for the first planet. This yields the minus sign for γrn in Eq.

(2.24). For Ωc < Ωr where the carrier rotates clockwise as seen by an observer on the ring

gear, the ring-planet mesh for the n-th planet has a phase lag of ψnZr/(2π) relative to that

for the first planet, so no minus sign appears for γrn in Eq. (2.25). Similar arguments result

in the sun-planet mesh phase in Eq. (2.24) for Ωc > Ωr and Eq. (2.25) for Ωc < Ωr. The

special case Ωc = Ωr represents a trivial transmission system and is not addressed in this

work.

Two mesh phases are identical if their difference is an integer number of mesh cycles. The

relation γsn = γrn holds for equally-spaced systems because of the conditions (Zs +Zr)/N =

integer and ψn = 2π(n − 1)/N . According to Eqs. (2.24) and (2.25), γsn = γrn = 0 when

Zs/N and Zr/N are both integers. In this case, all of the sun-planet (ring-planet) mesh

stiffnesses are in-phase and have the same values at each instant over a mesh cycle. All other

cases are out-of-phase.

Two example three-planet systems are used in the following section with one having in-
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phase tooth meshes and the other having out-of-phase tooth meshes. The in-phase system

has Zs = 30 and Zr = 96. Sun-planet and ring-planet mesh stiffnesses for the first planet

are shown in Fig. 2.8, and all other parameters are given in Table 2.4. The out-of-phase

planetary gear results from simultaneously increasing the sun tooth number and decreasing

the ring tooth number by one relative to the in-phase system (i.e., Zs = 31 and Zr = 95).

All other parameters stay the same.

2.5.1 Spectra of Ring Deformation Measured in Different Refer-

ence Frames

This section focuses on ring deformation measured by sensors in different reference

frames with special attention to the differing frequency content. A sensor attached to the

rotating ring, as shown in Fig. 2.9, measures deflection of the material point to which it is

attached. One example is a strain gauge fixed to the ring. Ring fatigue lives are related to

the deflection or strain at a material point. A sensor fixed in space (on a gearbox housing,

for example) and directed at a spinning ring measures deflections of different material points

as they pass a fixed spatial location with speed Ωr. Finally, a sensor rotating with the

carrier and directed at the ring captures deflections of different material points passing a

carrier-fixed location with speed Ωrc.

Subsequent results examine the spectra of these three possible sensor locations for sys-

tems with in-phase and out-of-phase tooth meshes. To illustrate these spectra, we define

the following frequencies. The frequency at which the planets pass a fixed material point

on the ring is N |Ωrc|, where |Ωrc| is the absolute value of Ωrc. The frequency at which the

planets pass a fixed spatial angular location is N |Ωc|. Low-frequency content is defined as

that involving integer multiples of carrier speed or relative ring-carrier speed; high-frequency
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Figure 2.9: Measuring ring deflection with a sensor rotating with the ring.

content is near multiples of the mesh frequency ωm = Zr|Ωrc|.

Figure 2.10 shows spectra of the ring tangential deflection (from the discretized model

in Eq. (2.22)) measured by sensors in the three different reference frames for the in-phase

system. The measurement in the rotating ring reference frame contains only low-frequency

content at multiples of N |Ωrc|, where N = 3 for the present example. The measurement in

the stationary reference frame has only low-frequency content at multiples of N |Ωc|. Only

a zero-frequency mean value appears when the ring deflection is measured by a sensor fixed

to the rotating carrier. For all three measurements, no high-frequency content occurs. In

particular, spectral lines at harmonics of mesh frequency are absent.

Figure 2.11 shows spectra analogous to Fig. 2.10 but for the out-of-phase system. The

low-frequency spectral content for all three measurements is nearly identical to that of the

in-phase system in Fig. 2.10 except for trivial differences in amplitudes. In the out-of-phase

case, however, high-frequency content occurs for all three measurements. For the measure-

ments in the rotating ring and stationary reference frames, sidebands occur near the first,

second, and fourth mesh frequency harmonics, while the mesh frequency harmonics them-
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Figure 2.10: Spectra of ring tangential deflection measured by sensors fixed to three different

reference frames for the three-planet in-phase system (Zs = 30 and Zr = 96) with Ωr < Ωc <

0. Sun-planet and ring-planet mesh stiffnesses for the first planet are shown in Fig. 2.8, and

all other parameters are in Table 2.4.

selves are suppressed. No spectral content occurs near the third mesh frequency harmonic.

The high-frequency content for the measurement in the rotating carrier reference frame has

only the first, second, and fourth mesh frequency harmonics but with no sidebands near

them; again the third mesh frequency harmonic is absent. To explain the phenomena in

Figs. 2.10 and 2.11, a spectral analysis is conducted subsequently.

The quasi-static ring-planet mesh loads vary periodically at the mesh frequency ωm.

Similar to mesh stiffnesses, all ring-planet mesh loads at the different planets have the same
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Figure 2.11: Spectra of ring tangential deflection measured by sensors fixed to three different

reference frames for the three-planet out-of-phase system (Zs = 31 and Zr = 95) with

Ωr < Ωc < 0. Sun-planet and ring-planet mesh stiffnesses for the first planet are shown in

Fig. 2.8, and all other parameters are in Table 2.4.

variations, but these variations may be in- or out-of-phase depending on the phase difference

γrn, which has the expression in Eq. (2.24) for Ωc > Ωr and the expression in Eq. (2.25)

for Ωc < Ωr. We first focus on the case Ωc > Ωr. The ring-planet mesh load for the n-th

planet reaches the same value as that for the first planet after a time interval of 2πγrn/ωm.

The Fourier representation of the quasi-static ring-planet mesh load for the n-th planet is
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therefore

Frn(t) = Fr1(t− 2πγrn/ωm)

=
∞∑
j=0

Dj cos[jωm(t− 2πγrn/ωm) + φj], n = 1, 2, · · · , N
(2.26)

where φ0 = 0 for the mean mesh load and Dj and φj for j > 0 are the amplitude and

phase angle of the j-th mesh load harmonic for the first planet. The term in the parentheses

accounts for the phase difference between the mesh load for the n-th planet and that for

the first planet. The mean mesh load D0, the mesh load harmonic amplitudes Dj, and the

phases φj (which would in practice be numerically calculated from Fr1(t)) are the same for

each ring-planet pair (i.e., for each n).

For a unit discrete load applied along the line of action at the contact point at the first

planet angular position ψ1 = 0, the tangential deflection of the ring neutral axis is given as

the Fourier series

V1(θ) =
∞∑
i=0

Ci cos(iθ + ϕi), (2.27)

where Ci and ϕi are the amplitude and phase angle of the i-th nodal diameter component.

Because of ring axisymmetry, a unit discrete load applied at ψn results in the same ring

deformation as for a unit discrete load at ψ1 = 0, but with the deformed shape rotated by

ψn, i.e.,

Vn(θ) = V1(θ − ψn) =
∞∑
i=0

Ci cos[i(θ − ψn) + ϕi], n = 1, · · · , N. (2.28)

The total ring tangential deformation is the superposition of deflections from all the
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ring-planet mesh loads, which gives

v(t, θ) =
N∑
n=1

Frn(t)Vn(θ). (2.29)

Substitution of Eqs. (2.26) and (2.28) into Eq. (2.29) and invoking the mesh phase γrn in

Eq. (2.24) for Ωc > Ωr results in

v(t, θ) =
1

2

∞∑
i=0

∞∑
j=0

N∑
n=1

CiDj{ cos[jωmt− iθ + φj − ϕi] cos(jZr + i)ψn

− sin[jωmt− iθ + φj − ϕi] sin(jZr + i)ψn

+ cos[jωmt+ iθ + φj + ϕi] cos(jZr − i)ψn

− sin[jωmt+ iθ + φj + ϕi] sin(jZr − i)ψn}.

(2.30)

Ring radial deformation (u(t, θ)) and cross-sectional rotation angle (β(t, θ)) have this same

form except the numerical values of the Fourier coefficients analogous to Ci and ϕi are

different. Therefore, conclusions regarding spectral content of v(t, θ) in Eq. (2.30) also

apply to u(t, θ) and β(t, θ).

We now analyze Eq. (2.30) for values of θ corresponding to different sensor locations.

Throughout this work, the angular coordinate θ is measured relative to the rotating base

vector E1 fixed to the carrier. Thus, the angular position of a sensor fixed to the ring,

as shown in Fig. 2.9, is given in terms of the speed of the ring relative to the carrier

as θ = Ωrct + θ0. Similarly, the angular position of a sensor fixed in space is given by

θ = −Ωct+ θ0. For a sensor fixed to the carrier, θ = θ0. In all three cases, we choose θ0 = 0

without loss of generality in what follows.

For the ring deflection at a material point (measured by a sensor fixed to the rotating
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ring), substitution of θ = Ωrct into Eq. (2.30) gives

v(t)|ring =
1

2

∞∑
i=0

∞∑
j=0

N∑
n=1

CiDj{ cos[(jωm − iΩrc)t+ φj − ϕi] cos(jZr + i)ψn

− sin[(jωm − iΩrc)t+ φj − ϕi] sin(jZr + i)ψn

+ cos[(jωm + iΩrc)t+ φj + ϕi] cos(jZr − i)ψn

− sin[(jωm + iΩrc)t+ φj + ϕi] sin(jZr − i)ψn},

(2.31)

where Ωrc < 0 because Ωc > Ωr was used to obtain Eq. (2.30). Eq. (2.31) shows that

the deflection at a material point is a superposition of different frequency components that

depend on ωm and Ωrc. Each frequency component is associated with a specific harmonic of

mesh frequency (i.e., j) and a specific nodal diameter i. This nodal diameter can be quickly

identified from Eq. (2.31). For example, a measured frequency component ω = jωm − iΩrc

near the j-th mesh frequency harmonic has the associated nodal diameter i = (ω−jωm)/|Ωrc|.

The amplitudes of the frequency components jωm± iΩrc depend on the product CiDj, where

the meanings of Ci and Dj are evident in Eqs. (2.26) and (2.27). The frequencies at which

the frequency components appear do not depend on Ci and Dj, however, but rather depend

on only ωm and Ωrc.

Most frequency components in Eq. (2.31) are not present and would not be measured

by the sensor because the following identities hold for integer values of l:

N∑
n=1

cos lψn =

 N, l/N = integer

0, l/N 6= integer

 ,
N∑
n=1

sin lψn = 0. (2.32)

According to Eq. (2.32), the frequency component jωm − iΩrc in Eq. (2.31) is present (in

general) if (jZr + i)/N = integer, and the frequency component jωm + iΩrc is present (in

general) if (jZr − i)/N = integer. Other frequency components are suppressed.
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When j = 0 and i 6= 0, jωm + iΩrc as given above is negative. In such cases, the

associated frequency component in the measured spectrum is |jωm+ iΩrc|. This prescription

applies whenever a frequency component has a negative value.

This frequency occurrence rule explains the spectral content for the in-phase system in

Fig. 2.10a and out-of-phase system in Fig. 2.11a. The low-frequency content in Figs. 2.10a

and 2.11a are associated with j = 0. For j = 0, a frequency component i|Ωrc| can occur

only if i is an integer multiple of N = 3. The two sidebands ωm + 5Ωrc and ωm + 2Ωrc on

the left side of the first mesh harmonic (j = 1) for the out-of-phase system (Zr = 95) in

Fig. 2.11a are associated with i = 5 and i = 2, respectively. They satisfy the condition

(jZr − i)/N = integer. The two sidebands ωm − Ωrc and ωm − 4Ωrc on the right side of

the first mesh harmonic are associated with i = 1 and i = 4, respectively. They satisfy the

condition (jZr + i)/N = integer. All other frequency components can be explained similarly.

Substitution of ωm = Zr|Ωrc| and −Ωrc = |Ωrc| into the frequency occurrence rule gives

that the frequency component (jZr + i)|Ωrc| can occur only if (jZr + i)/N = integer, the

frequency component (jZr − i)|Ωrc| can occur only if (jZr − i)/N = integer, and other

frequency components are suppressed. In other words, the frequency components can only

occur at integer multiples of N |Ωrc|. For the special case where Ωr = 0, this rule agrees

with that in Refs. [2, 3] stating the sidebands (or frequency components) only occur at

integer multiples of N |Ωc| for planetary gears with a stationary ring. The present work is

not restricted to a stationary ring.

According to the frequency occurrence rule, sidebands near the j-th mesh frequency

harmonic have the associated nodal diameters

i = |sN ±mod(jZr, N)|, s = 0, 1, 2, · · · , (2.33)
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where mod(A,B) represents A modulo B. Eq. (2.33) gives a rule of which nodal diameters

can be measured for a certain mesh frequency harmonic. For example, the sidebands ωm +

5Ωrc, ωm + 2Ωrc, ωm − Ωrc, and ωm − 4Ωrc near the first mesh frequency harmonic (j = 1)

for the three-planet (N = 3) out-of-phase system (Zr = 95) in Fig. 2.11a are associated

with the nodal diameters 5, 2, 1, and 4, respectively. All of them satisfy Eq. (2.33). The

sideband at ωm − Ωrc has the highest amplitude among the four sidebands, indicating the

ring tangential deflection excited by the first mesh load harmonic is dominated by one nodal

diameter deformation.

Eq. (2.31) reveals that the amplitudes of the frequency components jωm ± iΩrc are

determined by the product CiDj. Tables 2.6 and 2.7 show the amplitudes of Dj and Ci, as

determined from the analytical model in Eq. (2.22). The mean mesh load D0 has the same

value for the in-phase and out-of-phase systems. As a result, amplitudes of the low-frequency

content (j = 0) are identical for the in-phase (Fig. 2.10a) and out-of-phase (Fig. 2.11a)

systems. The spectral line at 6|Ωrc| for the out-of-phase system, although its associated

nodal diameter amplitude C6 is small (Table 2.7), has relatively higher amplitude than the

high-frequency sidebands because the mean mesh load D0 is large compared to Dj for j > 0.

Table 2.6: Dimensionless amplitudes of ring-planet mesh load harmonics for the in-phase

system in Fig. 2.10 and the out-of-phase system in Fig. 2.11. They are determined from the

analytical model in Eq. (2.22).

D0 D1 D2 D3 D4

In phase (×10−6) 103 0 0 0 0

Out-of-phase (×10−6) 103 5.99 2.96 0 1.39

Table 2.6 shows that all mesh load harmonics vanish for the in-phase system, which

eliminates all high-frequency content for the in-phase system in Fig. 2.10a. Because the
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Table 2.7: Dimensionless nodal diameter amplitudes (unit: 10−3) of ring tangential deflection

along the neutral axis for an elastic ring (separated from the planetary gears) subject to a

unit discrete load applied at only one mesh along the line of action. The elastic ring is from

the system used in Fig. 2.10 and 2.11, and its parameters are assumed to have negligible

change for different phasing conditions.

C0 C1 C2 C3 C4 C5 C6

135 177 98.6 62.7 41.5 26.8 16.8

out-of-phase system has zero amplitude for the third mesh load harmonic (i.e., D3 = 0),

sidebands near the third mesh frequency harmonic are absent in Fig. 2.11a. Two sidebands

near the fourth mesh frequency harmonic are observed for the out-of-phase system in Fig.

2.11a. The sideband at 4ωm − Ωrc (associated with C1) has higher amplitude than the

sideband at 4ωm + 2Ωrc (associated with C2) because C1 > C2, as shown in Table 2.7. All

other sideband amplitudes can be explained similarly.

The reason why certain mesh load harmonics for the in-phase and out-of-phase systems

in Table 2.6 vanish is given as follows. Moment balance for the carrier gives

N∑
n=1

Fηn = Tc, (2.34)

where Fηn is the bearing force for the n-th planet in the tangential direction. Force balances

of the planets in the tangential direction yield

Fsn cosαs + Frn cosαr = Fηn, (2.35)

where Fsn is the sun-planet mesh force for the n-th planet. Moment balances at the planets
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give

Fsn = Frn cosαr/ cosαs, n = 1, 2, · · · , N. (2.36)

Substitution of Eqs. (2.35), (2.36), and (2.26) into Eq. (2.34) leads to

2 cosαr

∞∑
j=0

N∑
n=1

Dj[cos(jωmt+ φj) cos jZrψn − sin(jωmt+ φj) sin jZrψn] = Tc. (2.37)

Applying Eq. (2.32) to Eq. (2.37) gives that the net torque components for the j-th mesh

frequency harmonic in Eq. (2.37) vanish for jZr/N 6= integer. The amplitude of the j-th

mesh load harmonic

Dj = 0, for jZr/N = integer and j > 0 (2.38)

to satisfy Eq. (2.37). Therefore, D1 = D2 = D3 = D4 = 0 for the three-planet in-phase

system (Zr = 96) and D3 = 0 for the three-planet out-of-phase system (Zr = 95), as given

in Table 2.6.

For the deflection measured by a sensor fixed in space, θ = −Ωct is substituted into

Eq. (2.30). The result is the same as Eq. (2.31) except Ωrc is replaced by −Ωc, and, after

using Eq. (2.32), gives the following frequency occurrence rule: the frequency component of

jωm−iΩc can occur only if (jZr−i)/N = integer, and the frequency component of jωm+iΩc

can occur only if (jZr + i)/N = integer. Other frequency components are suppressed.

This frequency occurrence rule applies to systems with any value of Ωc under the condition

Ωc > Ωr. This frequency occurrence rule, the amplitudes Dj in Table 2.6, and the amplitudes

Ci in Table 2.7 explain the spectral content of the measurements in the stationary reference

frame for the in-phase system in Fig. 2.10b and out-of-phase system in Fig. 2.11b. These

explanations are similar to those given for Fig. 2.10a and 2.11a.
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For the deflection measured by a sensor fixed to the rotating carrier, substitution of

θ = 0 into Eq. (2.30) gives the expression in Eq. (2.31) but with Ωrc = 0. Consequently,

the measurement will have frequency content only at integer multiples of mesh frequency.

There will be no sidebands near these mesh frequency harmonics. Because the mesh load

harmonics Dj for the in-phase system vanish for j > 0 (Table 2.6), no non-zero frequencies

are present in Fig. 2.10c. The third mesh frequency harmonic does not appear in Fig. 2.11c

for the out-of-phase system because D3 = 0 (Table 2.6).

Sidebands appear in the spectra of the measured deflection in the rotating ring and

stationary reference frames, but do not appear for a sensor in the rotating carrier reference

frame. This phenomenon is shown in Fig. 2.11 and confirmed by the foregoing spectral

analysis. Generalizing the spectral analysis answers the question: If a sensor rotating with

an arbitrary speed Ωa measures ring deflection, what frequency content is possible in the

measurement? Substitution of θ = Ωact, where Ωac = Ωa − Ωc, into Eq. (2.30), and

invoking Eq. (2.32) yields the following generalized frequency occurrence rule: the frequency

component of jωm + iΩac can occur only if (jZr − i)/N = integer; the frequency component

of jωm − iΩac can occur only if (jZr + i)/N = integer; other frequency components are

suppressed. This occurrence rule applies to systems with Ωc > Ωr.

For systems with Ωc < Ωr, substitution of Eq. (2.26), Eq. (2.28), the mesh phase γrn

in Eq. (2.25), and θ = Ωact into Eq. (2.29) gives

v(t) =
1

2

∞∑
i=0

∞∑
j=0

N∑
n=1

CiDj{ cos[(jωm + iΩac)t+ φj + ϕi] cos(jZr + i)ψn

+ sin[(jωm + iΩac)t+ φj + ϕi] sin(jZr + i)ψn

+ cos[(jωm − iΩac)t+ φj − ϕi] cos(jZr − i)ψn

+ sin[(jωm − iΩac)t+ φj − ϕi] sin(jZr − i)ψn}.

(2.39)
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For a sensor rotating with an arbitrary speed Ωa, the measured spectra follow the rule: the

frequency component of jωm − iΩac can occur only if (jZr − i)/N = integer; the frequency

component of jωm+iΩac can occur only if (jZr+i)/N = integer; other frequency components

are suppressed.

The frequency occurrence rules for the frequency components jωm−iΩac and jωm+iΩac

under Ωc > Ωr and Ωc < Ωr are summarized in Table 2.8.

Table 2.8: Summary of the frequency occurrence rules of the frequency components for the

ring deflection measured by a sensor rotating with speed Ωa. The frequencies in the upper

row are the only possible frequency components, and they occur only when the conditions

in the table hold.

jωm − iΩac jωm + iΩac

Systems with Ωc > Ωr (jZr + i)/N = integer (jZr − i)/N = integer

Systems with Ωc < Ωr (jZr − i)/N = integer (jZr + i)/N = integer

2.5.2 Floating Central Members

Central members (sun, carrier, and ring rigid body) have no translations for in-phase

planetary gears. Thus, whether a central member floats (very low or zero translational

bearing/support stiffnesses) or not does not affect ring elastic deformations for in-phase

systems. Considering out-of-phase systems, this section investigates the effects of a floating

central member on the spectral content of measured ring deflection for sensors attached to

the rotating ring, stationary, and rotating carrier reference frames.

Figure 2.12 shows spectra of ring tangential deflection measured by sensors in the three

different reference frames for the same out-of-phase system in Fig. 2.11 but with a floating
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carrier (kc = 0). All the low-frequency spectral lines for the three different measurements
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Figure 2.12: Spectra of ring tangential deflection measured by sensors fixed to three different

reference frames for the same out-of-phase system (Zs = 31 and Zr = 95) used in Fig. 2.11,

but with a floating carrier.

have trivial changes compared with Fig. 2.11, but all the high-frequency spectral lines

disappear. Similar behavior happens for the out-of-phase system with a floating sun or ring.

Force equilibrium balances for a floating carrier give

N∑
n=1

Fsn sin(ψn − αs) +
N∑
n=1

Frn sin(ψn + αr) = 0, (2.40a)

N∑
n=1

Fsn cos(ψn − αs) +
N∑
n=1

Frn cos(ψn + αr) = 0. (2.40b)
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Substitution of Eqs. (2.36) and (2.26) into Eqs. (2.40) and considering the mesh phase γrn

in Eq. (2.24) for Ωc > Ωr gives

1

2

∞∑
j=0

N∑
n=1

Dj{[sin(jωmt+ φj − αs)
cosαr
cosαs

+ sin(jωmt+ φj + αr)] cos(jZr + 1)ψn

+[cos(jωmt+ φj − αs)
cosαr
cosαs

+ cos(jωmt+ φj + αr)] sin(jZr + 1)ψn

−[sin(jωmt+ φj + αs)
cosαr
cosαs

+ sin(jωmt+ φj − αr)] cos(jZr − 1)ψn

+[cos(jωmt+ φj + αs)
cosαr
cosαs

+ cos(jωmt+ φj − αr)] sin(jZr − 1)ψn} = 0,

(2.41a)

1

2

∞∑
j=0

N∑
n=1

Dj{[cos(jωmt+ φj − αs)
cosαr
cosαs

+ cos(jωmt+ φj + αr)] cos(jZr + 1)ψn

−[sin(jωmt+ φj − αs)
cosαr
cosαs

+ sin(jωmt+ φj + αr)] sin(jZr + 1)ψn

+[cos(jωmt+ φj + αs)
cosαr
cosαs

+ cos(jωmt+ φj − αr)] cos(jZr − 1)ψn

−[sin(jωmt+ φj + αs)
cosαr
cosαs

+ sin(jωmt+ φj − αr)] sin(jZr − 1)ψn} = 0.

(2.41b)

Considering Eq. (2.32), the net force components for the j-th mesh frequency harmonic in

Eq. (2.41) vanish for (jZr ± 1)/N 6= integer. For values of j where (jZr ± 1)/N = integer,

the amplitude of the j-th mesh load harmonic Dj must vanish to satisfy Eq. (2.41). The

same conclusion results for the case Ωc < Ωr. Similar analyses for a floating sun or ring lead

to the same conclusion as for a floating carrier.

The foregoing analysis yields D1 = D2 = D4 = 0 for the three-planet system with

Zr = 95. Therefore, the spectral content near and including the first, second, and fourth

mesh frequency harmonics disappear for all three measurements in Fig. 2.12. No spectral

content near the third mesh frequency harmonic could occur no matter whether any of the
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carrier, sun, and ring float or not (Figs. 2.11 and 2.12) because D3 = 0 (Eq. (2.38)).

Because the ring deflection at a material point (measured by a sensor fixed to the

rotating ring) affects ring fatigue life, a floating central member design can reduce fatigue

failure by eliminating some of the high-frequency fluctuations in a quasi-static view.

2.6 Conclusions

This paper investigates steady deformations and measured spectra of spinning planetary

gears with a deformable ring and equally-spaced planets. A dynamic model is derived in the

carrier reference frame with gyroscopic and centripetal effects from carrier and ring rotation.

The elastic ring model includes bending, extensional, and shear deformations. Each ring-

planet mesh force acts at a contact point radially away from the ring neutral axis and thus

imposes a concentrated tooth bending moment on the elastic ring.

Steady deformations are numerically calculated from a quasi-static model reduced from

the dynamic one, and the results match well with those from a finite element/contact me-

chanics model. The concentrated tooth bending moments can significantly influence the

steady deformations depending on the radial distance from the ring contact point to the ring

neutral axis and on ring compliance. Ring extensional effect on steady deformations can be

significant at high-speed ring rotation, while ring shear effect is minimal in this study.

In-phase and out-of-phase systems have much different spectral content for the ring

deflection measured by sensors fixed to one of: a material point on the rotating ring, space-

fixed ground, or the rotating carrier. For all three measurements, an in-phase system has

only low-frequency content associated with the mean value of the ring-planet mesh load.

In contrast, an out-of-phase system has high-frequency spectral lines near multiples of mesh
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frequency in addition to the low-frequency content. For an out-of-phase system, sidebands in

the measured spectra occur near harmonics of the mesh frequency for a sensor fixed to a point

on the rotating ring or fixed to ground. In contrast, spectra of the ring deflection measured by

a sensor fixed to the rotating carrier have only mesh frequency harmonics and no neighboring

sidebands. Simple rules are derived that govern the occurrence of all frequency components

(including low-frequency and high-frequency content) of the ring deflection measured by a

sensor rotating at an arbitrary speed (which includes the three specific cases listed above)

for in-phase and out-of-phase systems.

A floating central member eliminates high-frequency content associated with certain

mesh frequency harmonics for out-of-phase systems, potentially reducing fatigue failure.



Appendix A

A.1 Energy Expressions for the Sun, Carrier, Planets,

Ring Rigid Body, and Sun-Planet Meshes

The kinetic energies for the sun, carrier, and ring rigid body are

Kh =
1

2
mh[(ẋh − Ωcyh)

2 + (ẏh + Ωcxh)
2] +

1

2
(Ih/R

2
h)u̇

2
h, h = s, c, b,

where mh and Ih represent mass and moment of inertia.

The kinetic energy of the n-th planet is

Kn =
1

2
mp{(ζ̇n − Ωcηn)2 + [η̇n + Ωc(Rc + ζn)]2}

+
1

2
(Ip/R

2
p)u̇

2
n, n = 1, 2, · · · , N,

where mp and Ip are planet mass and moment of inertia.

The strain energies in the sun, carrier, and ring rigid body supports/bearings are

Vh =
1

2
[kh(x

2
h + y2h) + khuu

2
h], h = s, c, b.
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The strain energy in each carrier-planet bearing is

Vn =
1

2
[kζ(ζn − xc cosψn − yc sinψn)2

+ kη(ηn + xc sinψn − yc cosψn − uc)2], n = 1, 2, · · · , N.

The sun-planet mesh stiffness strain energy for the n-th planet is

Vsn =
1

2
ksn∆2

sn, n = 1, 2, · · · , N,

∆sn = (−xs sinψsn + ys cosψsn + us) + (−ζn sinαs − ηn cosαs + un),

where αs is the sun-planet pressure angle and ψsn = ψn − αs.

A.2 Nondimensional Matrices and Vectors: Md, Gd, Kd,

Cd, and fd

Md = diag(Mb,Mc,Ms,M1, · · · ,MN)

Mj = diag(mj,mj, Ij), j = s, c, b, 1, · · · , N

Gd = diag(Gb,Gc,Gs,G1, · · · ,GN)

Gj =


0 −2mj 0

2mj 0 0

0 0 0

 , j = s, c, b, 1, · · · , N



64

Kd =



Kb 0 0 0 0 · · · 0∑
Kn
c1 + Kc 0 K1

c2 K2
c2 · · · KN

c2∑
Kn
s1 + Ks K1

s2 K2
s2 · · · KN

s2

K1
pp 0 · · · 0

K2
pp · · · 0

. . .

symmetric KN
pp



Kb = diag
(
kb + π(ku + kv), kb + π(ku + kv), kbu + 2πkv/R

2
b

)
Kh = diag(kh, kh, khu), h = s, c

Kn
pp = Kn

s3 + Kn
c3 + Kn

r3

Kn
c1 =


kζ cos2 ψn + kη sin2 ψn (kζ − kη) sinψn cosψn −kη sinψn

kζ sin2 ψn + kη cos2 ψn kη cosψn

symmetric kη



Kn
c2 =


−kζ cosψn kη sinψn 0

−kζ sinψn −kη cosψn 0

0 −kη 0


Kn
c3 = diag(kζ , kη, 0)

Kn
r3 = krn


sin2 αr − sinαr cosαr − sinαr

cos2 αr cosαr

symmetric 1
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Kn
s1 = ksn


sin2 ψsn − sinψsn cosψsn − sinψsn

cos2 ψsn cosψsn

symmetric 1



Kn
s2 = ksn


sinψsn sinαs sinψsn cosαs − sinψsn

− cosψsn sinαs − cosψsn cosαs cosψsn

− sinαs − cosαs 1



Kn
s3 = ksn


sin2 αs sinαs cosαs − sinαs

cos2 αs − cosαs

symmetric 1


Cd = diag(Cb,Cc,Cs,C1, · · · ,CN)

Cj = diag(mj,mj, 0), j = s, c, b, 1, · · · , N

fd =

[
fTb , fTc , fTs , fT1 , · · · , fTN

]T

fh =

[
0 0 Th

]T
, h = s, c, b

fn =

[
mpΩ

2
cRc 0 0

]T
, n = 1, 2, · · · , N



Chapter 3

Free Vibrations of Spinning

Epicyclic/Planetary Gears with a

Deformable Ring

3.1 Introduction

Throughout this work, the term planetary gear is used even though the model and

analysis allow for arrangements where all or any two of the sun gear, carrier, and ring gear

spin.

Planetary gears in aerospace applications have thin ring gears to reduce weight. These

thin ring gears, as demonstrated in experiments [88–91], deform elastically when transmitting

power. Gyroscopic and centripetal effects that arise from carrier and/or ring gear rotation

become significant at the high speeds of aerospace applications. This work investigates the

natural frequencies and vibration modes of planetary gears with an elastic ring and gyroscopic

66
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(i.e., Coriolis) and centripetal acceleration effects.

Planetary gears have highly structured modal properties due to their cyclic symmetry.

The modal structure was observed first from lumped-parameter models where the sun, car-

rier, planets, and ring are treated as rigid bodies. Botman [5] and Kahraman [6] identified

modal structures for three-planet and four-planet systems, respectively. No general conclu-

sions were derived. Lin and Parker [9] identified the modal structure for planetary gears

with equally-spaced planets and proved there exist exactly three types of modes: rotational,

translational, and planet modes. Planet modes do not occur for three-planet systems. For a

rotational mode, the central components (the sun, carrier, and ring) have only rotations, and

all planets have the same motions that are all in-phase. In a translational mode, the central

components have only translations, and the planets vibrate with a known phase relationship.

In a planet mode, the central components have no motions, and only the planets vibrate,

again with a specified phase relationship but different than that for translational modes.

Ericson and Parker [31] confirmed this modal structure in experiments. Cooley and Parker

[10] proved that the modal structure persists for planetary gears with gyroscopic effects, but

the real-valued modes evolve into complex-valued ones. Shi and Parker [92] derived modal

properties of general cyclically symmetric structures with central components having planar

vibrations, which include planetary gears. Dong and Parker [93] extended that derivation

[92] to cyclically symmetric systems with central components vibrating as three-dimensional

rigid bodies.

The modal properties of planetary gears that have lumped-parameter sun, carrier, and

planets coupled to an elastically deformable ring gear were investigated by Wu and Parker

[21]. They grouped vibration modes of the elastic-discrete system into rotational, transla-

tional, planet, and purely ring modes. The discrete motions for the rotational, translational,

and planet modes are similar to those in [9], and the elastic ring has unique deformations
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associated with each of the three types of modes. The purely ring modes have only ring

deformations, and all the discrete motions vanish. Ref. [21], however, ignored the gyro-

scopic and centripetal effects that make the vibration modes complex-valued. The elastic

ring model has only inextensible bending deformation.

An elastic-discrete planetary gear model developed in Chapter 2 is adopted in this study.

Gyroscopic and centripetal effects are included for all spinning components. The elastic ring

model includes bending, extensional, and shear deformations as well as rotary inertia. Some

studies [21, 80, 94, 95] considered only the inextensible bending deformation for an elastic

ring, and a few studies [77, 82] employed extensional ring models that have bending and

extensional deformations. Fewer studies [74] considered all three deformation components.

For planetary gears with an elastic ring, whether the ring extensional deformation, shear

deformation, and rotary inertia change the modal structure or not is unknown.

The model in Chapter 2 includes a concentrated tooth bending moment on the ring

resulting from the ring-planet mesh forces acting at a contact point radially away from the

ring neutral axis. Most literature [21, 77, 79, 96–98] that modeled gears as elastic rings

ignored this concentrated tooth bending moment by applying the mesh force directly on

the ring neutral axis. The effects of the concentrated tooth bending moment on the modal

structure are unknown.

This work investigates free vibrations of spinning planetary gears with a deformable

ring. The eigenvalue problem of the elastic-discrete model from Chapter 2 is solved for the

natural frequencies and vibration modes. Predictions from the analytical model are compared

against those from a finite element/contact mechanics model [12, 72, 73] for verification.

A numerical example illustrates the modal structure, followed by a generalization of the

structured modal properties to planetary gears with an arbitrary number of equally-spaced

planets. A perturbation analysis illustrates the evolution of vibration modes from stationary
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to spinning planetary gears.

3.2 Model Overview and Eigenvalue Problem

Figure 3.1 shows the elastic-discrete planetary gear model for planar motions from

Chapter 2, which is summarized below. The ring gear is modeled as an elastic ring with

neutral axis radius R, cross-sectional area A, density ρ, Young’s modulus E, shear modulus

G, and shear correction factor κ [78]. The sun, carrier, and N planets are treated as rigid

bodies with masses ms, mc, and mp and moments of inertia Is, Ic, and Ip. The elastic

ring has a rigid body (mass mb and moment of inertia Ib) at its center to accommodate an

input or output member attached to the ring. This ring rigid body is depicted by the large,

shaded circle in Fig. 3.1. The ring rigid body connects to the ring neutral axis through

a uniform elastic foundation with radial (ku) and tangential (kv) distributed stiffnesses per

unit arclength of ring neutral axis.

Each of the central components (sun, carrier, and ring rigid body) has one rotational and

two in-plane translational degrees of freedom that are constrained by rotational and isotropic

translational stiffnesses representing the bearings and supporting structures. All planets are

identical and equally spaced, and each of them has one rotation and two translations, which

are constrained by two radially and tangentially oriented linear stiffnesses that are identical

for all planets. The sun-planet and ring-planet mesh interactions are modeled as linear

stiffnesses along the line of action. Although these mesh stiffnesses change periodically over

a mesh cycle, the free vibration (i.e., eigenvalue) analysis uses the average values of the mesh

stiffnesses over a mesh cycle. These constant mesh stiffnesses ksp and krp are the same for

all planets (but ksp 6= krp). The sun-planet and ring-planet pressure angles are denoted as

αs and αr. Each ring-planet mesh force acts at a contact point with a radial distance Γ
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Figure 3.1: Schematic of a planetary gear model with a deformable ring.

away from the ring neutral axis, creating a concentrated moment on the ring neutral axis,

as shown in Fig. 2.3 in Chapter 2. The carrier and ring have speeds Ωc and Ωr, respectively.

Speeds of the sun and planets can be derived from kinematics. There is no constraint that

any central component be stationary.

The elastic ring has the inertia quantities

J0 =

∫
A

ρ(R + r)/R dA, J1 =

∫
A

ρ(R + r)r/R dA,

J2 =

∫
A

ρ(R + r)r2/R dA

(3.1)
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and stiffness quantities

α1 = EI0, α2 = EI1/R, kβ = EI2/R
2, α3 = κGI0,

I0 =

∫
A

1/(R + r) dA, I1 =

∫
A

r/(R + r) dA, I2 =

∫
A

r2/(R + r) dA,
(3.2)

where r is the radial distance from the ring neutral axis to a material point on the ring.

The deflection of the whole system is represented by the vector χ(θ, t) that combines

the elastic ring deformations u(θ, t), v(θ, t), and β(θ, t) and the discrete motions q(t) of the

sun, carrier, planets, and ring rigid body as

χ =

[
wT qT

]T
, (3.3a)

w =

[
u v β

]T
, q =

[
pTb pTc pTs pT1 . . . pTN

]T
, (3.3b)

ph =

[
xh yh uh

]T
, h = s, c, b, (3.3c)

pn =

[
ζn ηn un

]T
, n = 1, . . . , N. (3.3d)

All the coordinates in χ are described in the rotating carrier reference frame with speed Ωc.

{E1,E2,E3} (Fig. 3.1) defines the carrier-fixed basis. The vector w(θ, t) contains the elastic

ring deformations consisting of the radial (u(θ, t)) and tangential (v(θ, t)) deflections of the

ring neutral axis and its cross-sectional rotation angle (β(θ, t)), where θ defines an angular

position relative to the rotating basis vector E1. A given value of θ defines an angular

orientation in the carrier reference frame but not a specific point on the ring gear; because

the ring rotates relative to the carrier, different points on the ring rotate past an angular

orientation defined by a given value of θ. The translations of the central components are

represented by xh, yh for h = s, c, b in the E1 and E2 directions. Planet translations are

described using radial (ζn) and tangential (ηn) coordinates. The rotational displacements
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uj for j = 1, . . . , N, s, c, b are the rotations in radians times the gear base radii Rp and Rs,

the center distance Rc for the carrier, and the radius Rb for the ring rigid body. The planets

are positioned at ψn with respect to the rotating basis vector E1. Without loss of generality,

the first planet has angular position ψ1 = 0.

Nondimensionalization of the system deflections and parameters follows that in Chapter

2. The dimensionless eigenvalue problem of the elastic-discrete model is written in extended

operator form as

λ2Mχ+ λ(ΩrGr + ΩcGc)χ+ (K− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc)χ = 0, (3.4)

where λ is the eigenvalue; M and K are extended mass and stiffness operators, respectively;

Gr and Gc are extended gyroscopic operators; and, Cr, Cc, and Crc are extended centripetal

operators. All these operators are identical to those in Chapter 2. The operators M, K, Cr,

Cc, and Crc are self-adjoint with the inner product

〈χ1, χ2〉 =

∫ 2π

0

wT
1w2dθ + qT1 q2, (3.5)

where the overbar denotes complex conjugate. The gyroscopic operators Gr and Gc are

skew self-adjoint with the inner product in Eq. (3.5).

The model in Eq. (3.4) differs from the elastic-discrete model in [21]. The current

model has a vibrating ring rigid body that models an additional component connecting

to the elastic ring, while Ref. [21] just connects the elastic ring to ground. Gyroscopic

and centripetal effects are present in Eq. (3.4) for spinning systems, but these effects are

not considered in [21] for stationary systems. The present model considers ring bending

deformation, extensional deformation, shear deformation, and rotary inertia as well as a

concentrated tooth bending moment resulting from each ring-planet mesh force acting at a
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contact point radially away from the ring neutral axis. In contrast, Ref. [21] considers only

inextensible bending deformation and neglects the other features listed above.

Galerkin’s method is used to discretize the eigenvalue problem in Eq. (3.4). The eigen-

mode χ is approximated as a truncated series of basis functions as

χa(θ) =

Lb∑
l=−Lb

alχ1l(θ) +

Mb∑
m=−Mb

bmχ2m(θ) +

Pb∑
p=−Pb

cpχ3p(θ) +
3N+9∑
k=1

dkχ4k(θ), (3.6a)

χ1l =



ejlθ

0

0

0


, χ2m =



0

ejmθ

0

0


, χ3p =



0

0

ejpθ

0


, χ4k =



0

0

0

ek


, (3.6b)

where ek is a unit vector of dimension 3N+9 (i.e., the number of discrete degrees of freedom)

with the k-th element equal to one and all others zero. The ring radial deflection, tangential

deflection, and cross-sectional rotation angle have the complex-valued nodal diameter (i.e.,

Fourier series) expansions

u(θ) =

Lb∑
l=−Lb

ale
jlθ, v(θ) =

Mb∑
m=−Mb

bme
jmθ, β(θ) =

Pb∑
p=−Pb

cpe
jpθ. (3.7)

The discretization error in Eq. (3.6a) approaches zero as the integers Lb, Mb, Pb →∞.

Substitution of Eq. (3.6a) into Eq. (3.4) and requiring that the inner product of the

residual (i.e., the result of the substitution) with each of the basis functions in Eq. (3.6b)

vanishes gives the matrix eigenvalue problem

λ2[M]z + λ(Ωr[Gr] + Ωc[Gc])z + ([K]− Ω2
r[Cr]− Ω2

c [Cc]− 2ΩrΩc[Crc])z = 0, (3.8a)

z = [a−Lb
. . . aLb

b−Mb
. . . bMb

c−Pb
. . . cPb

d1 . . . d3N+9]
T (3.8b)
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where the eigenvector z has dimension 2Lb + 2Mb + 2Pb + 3N + 12. Numerically solving the

discretized eigenvalue problem yields the natural frequencies ωi = Im(λi) (imaginary part of

λi) and eigenvectors zi. Vibration modes are determined by substitution of the corresponding

elements of zi into Eq. (3.6a). The dimensionless natural frequencies ωi are related to the

dimensional natural frequencies ω̃i according to ω̃i = ωi
√
kζ/(mpR).

3.3 Verification of the Free Vibration Model

This section compares natural frequencies and vibration modes calculated from the an-

alytical model with those from two-dimensional finite element/contact mechanics (FE/CM)

software [12, 72, 73]. In general, the sun, carrier, ring, and planets can all deform elastically

in the FE/CM approach, but this work only allows elastic deformation of the ring and re-

stricts the sun, carrier, and planets to have only rigid-body motions. The sun and planet

gears have rigid inner circles at a diameter close to the root diameter with the FE/CM mesh

being used only for the gear teeth and tooth root regions.

Chapter 2 successfully compared steady deformations from the analytical model to those

from the FE/CM model. Because of the difference between the analytical and FE/CM

models, the analytical model was adjusted for that comparison. Steady deformations are

independent of inertia terms. Difference of the inertia terms between these two models is

not discussed in Chapter 2. This work details both the difference in Chapter 2 and that of

inertia terms between these two models.

The FE/CM model does not allow a ring rigid body or an elastic foundation. Instead,

the ring gear can have a lumped mass/moment of inertia attached to it, and motions of the

lumped inertia equal the rigid-body motion components of the elastic ring gear having the
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expressions

xr(t) =

∫ 2π

0

2uo(θ, t) cos θ dθ, yr(t) =

∫ 2π

0

2uo(θ, t) sin θ dθ,

ur(t) = (Rr/Ro)

∫ 2π

0

vo(θ, t) dθ,

(3.9)

where ur represents the rigid rotation in radians times the ring gear base radius Rr. uo and

vo denote the radial and tangential deflections of the FE/CM model’s ring outer surface,

and Ro is the radius of the ring outer surface. The two translations are resisted by isotropic

translational stiffness kr, and the rotation is resisted by a rotational stiffness kru.

To facilitate the comparison of natural frequencies and mode shapes, the analytical

model is adjusted because of the above modeling differences. The elastic foundation is

removed, and motions of the ring rigid body (which resembles the lumped inertia attached

to the FE/CM ring gear as discussed above) equal the rigid-body motions for the analytical

ring that are defined in the same way as the FE/CM model does in Eq. (3.9), i.e., xb = xr,

yb = yr, and ub/Rb = ur/Rr. The support/bearing stiffnesses kb and kbu/Rb of the ring

rigid body equal the stiffnesses kr and kru/Rr for the FE/CM model, respectively. These

adjustments apply only for the present section.

We adopt Eq. (3.9) to compare with the FE/CM software. If the rigid-body motions of

the elastic ring are instead defined as the translations of the center of mass of the ring and

the average rotation of all ring particles, the alternative relations are

xr =

∫ 2π

0

∫
A

ρ(R + r)[u cos θ − (v + rβ) sin θ] dAdθ

/∫ 2π

0

∫
A

ρ(R + r) dAdθ,

yr =

∫ 2π

0

∫
A

ρ(R + r)[u sin θ + (v + rβ) cos θ] dAdθ

/∫ 2π

0

∫
A

ρ(R + r) dAdθ,

ur = Rr

∫ 2π

0

∫
A

ρ(R + r)2(v + rβ) dAdθ

/∫ 2π

0

∫
A

ρ(R + r)3 dAdθ.
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The comparison is conducted on a three-planet system with equal planet spacing. The

sun-planet and ring-planet tooth meshes at the three planets are in-phase. The parameters

of the FE/CM model are shown in Table 3.1. Natural frequencies and vibration modes of

Table 3.1: Parameters of a three-planet FE/CM planetary gear model.

Sun Planets Ring Carrier

Number of teeth 30 33 96 -

Module (mm) 2.868 2.868 2.868 -

Inner diameter (mm) 63.00 69.00 271.4 -

Root diameter (mm) 79.14 86.13 282.4 -

Outer diameter (mm) 91.14 99.13 326.4 -

Facewidth (mm) 25.40 25.40 25.40 -

Pressure angle (deg) 24.60 24.60 24.60 -

Young’s modulus (GPa) 202.1 202.1 202.1 -

Poisson’s ratio 0.3 0.3 0.3 -

Mass (kg) 1 2 15 20

Moment of inertia (kg·m2) 2× 10−3 5× 10−3 160× 10−3 200× 10−3

Translational stiffness (N/m) 50× 103 ζ : 200× 106 200× 106 2× 109

η : 1× 109

Rotational stiffness (N/m) 6.537× 106 0 63.84× 106 612.7× 106

Center distance (mm) 90.33

Note: sun, carrier, and ring translational stiffnesses are specified in X and Y direction, while planet
translational stiffnesses are in radial and tangential directions.

the FE/CM model are obtained from impulse tests, which are conducted at zero speed so
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that the impulse test response is free from the contamination of tooth mesh excitations.

For a stationary planetary gear, four types of modes exist: rotational, translational, planet,

and purely ring modes [21]. Planet modes do not occur for three-planet systems. Two

different impulse tests are conducted, with a torque impulse on the sun gear capturing the

rotational modes of the three-planet system and a force impulse on the sun gear capturing

the translational modes. Purely ring modes are not captured in the impulse tests. LMS

Test.Lab [99] is used to process the impulse responses and generate natural frequencies and

mode shapes.

The analytical model takes the parameters in Table 3.1 as well as the following param-

eters. The sun-planet and ring-planet mesh stiffnesses are 400.6× 106 N/m and 457.4× 106

N/m, respectively. They are calculated from single-pair sun-planet and ring-planet FE/CM

models using a local slope method [86] at the same mesh cycle instance where the FE/CM

planetary gear impulse tests are conducted. The ring inner diameter of the analytical model

is a tunable parameter that is bounded between the ring gear inner and root diameters of

the FE/CM model. Gyroscopic and centripetal effects vanish for the analytical model at

zero speed.

Three different values of the ring inner diameter of the analytical model were considered:

(a) ring gear root diameter, (b) ring gear inner diameter, and (c) mean value of ring gear

root and inner diameters of the FE/CM model. Case (a) gives the best comparison with the

FE/CM model in terms of natural frequencies among the three cases.

Table 3.2 shows natural frequencies from the analytical model of case (a) and the FE/CM

model for the first nineteen modes occurring in the impulse tests. The analytical model

captures the first eighteen modes with errors less than 6%, most of which are less than 1%.

The error of the last mode reaches 10%.



78

Table 3.2: Natural frequencies of the FE/CM model and analytical model (case (a)) with

parameters in Table 3.1.

Frequency index Mode type FE/CM (Hz) Analytical (Hz) Multiplicity Error (%)

1 Rotational 293.3 293.5 1 0.068

2 Translational 386.4 369.0 2 -4.5

3 Translational 586.7 582.9 2 -0.65

4 Rotational 651.2 649.9 1 -0.20

5 Translational 1152 1155 2 0.26

6 Rotational 1202 1144 1 -4.8

7 Rotational 1571 1573 1 0.13

8 Translational 1582 1574 2 -0.51

9 Translational 2175 2118 2 -2.6

10 Rotational 2858 2869 1 0.38

11 Translational 3157 3183 2 0.82

12 Translational 3990 3937 2 -1.3

13 Rotational 4297 4331 1 0.79

14 Translational 4951 4990 2 0.79

15 Rotational 5166 5457 1 5.6

16 Translational 5231 5302 2 1.4

17 Rotational 5776 5930 1 2.7

18 Translational 6038 6211 2 2.9

19 Rotational 6834 7539 1 10
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Figure 3.2 and Figure 3.3 compare a rotational mode (mode 10 in Table 3.2) and a

translational mode (mode 11 in Table 3.2) from the analytical model with the corresponding

modes from the FE/CM model. The analytical predictions match those from the FE/CM

model in both comparisons.

(a) (b)

Figure 3.2: Rotational mode shapes (mode 10 in Table 3.2) from (a) the FE/CM model and

(b) the analytical model. The dotted lines represent undeformed positions.

3.4 Natural Frequencies and Vibration Modes of Gy-

roscopic Planetary Gears

Numerical experiments on the discretized eigenvalue problem in Eq. (3.8a) show that the

gyroscopic effects alter the modal structure of planetary gears with equally-spaced planets.

The vibration modes of stationary planetary gears without gyroscopic effects, presented by

Wu and Parker [21], are real-valued and fall into four categories: rotational, translational,

planet, and purely ring modes. The gyroscopic effects considered in the current model render

the vibration modes as complex-valued quantities, and these modes fall into three categories:
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(a) (b)

Figure 3.3: Translational mode shapes (mode 11 in Table 3.2) from (a) the FE/CM model

and (b) the analytical model. The dotted lines represent undeformed positions.

rotational, translational, and planet modes. Purely ring modes do not appear. In addition

to the gyroscopic effects, the current model includes centripetal effects, ring extensional

and shear effects, effects of ring rotary inertia, and effects of concentrated tooth bending

moments, all of which do not exist in [21]. These effects, however, do not alter the modal

structure.

For stationary planetary gears, the mass (M) and stiffness (K) operators in Eq. (3.4) are

self-adjoint. Thus, all vibration modes are real-valued. When gyroscopic effects are included,

the skew self-adjoint operators Gr and Gc in Eq. (3.4) lead to complex-valued modes [100].

Complex-valued modes are those where different degrees of freedom vibrate out-of-phase

with each other; different points achieve their maximum displacements at different times

over an oscillation at the corresponding natural frequency.

Real-valued modes are standing wave modes. For the response of a single real-valued

mode, the ring radial deflection can be expressed as u(θ, t) = [a0+
∑Lb

l=1(ale
jlθ+c.c.)] cos(ωit+

φi), where a0 is real-valued, ωi is the natural frequency, and φi is the phase angle. The mo-
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tions of different points on the ring are either in-phase or 180 degree out-of-phase. Complex-

valued modes are traveling wave modes [77, 85]. The ring radial deflection for the response

of a single complex-valued mode has the expression u(θ, t) =
∑Lb

l=−Lb
(ale

jlθejωit + c.c.) =∑Lb

l=−Lb
2|al| cos(lθ + ωit + ϕl), where ϕl = tan−1(Im(al)/Re(al)) is the phase of al. In gen-

eral, al 6= ā−l. The positive l nodal diameter component is a backward wave that travels in

the negative θ direction, while the negative l nodal diameter component is a forward wave

that travels in the positive θ direction. The ring deflection is a summation of backward and

forward waves.

An example planetary gear with six equally-spaced planets illustrates the gyroscopically-

altered modal structure. The system parameters are listed in Table 3.3. The carrier is

stationary (i.e., Ωc = 0) while the ring rotates. The elastic ring has a rectangular cross-section

with radial thickness H and axial thickness B. Table 3.4 gives the natural frequencies of the

system without gyroscopic effects (Ωr = 0) for each type of modes appearing in Ref. [21] and

their counterparts of the same system with gyroscopic effects at dimensionless ring speed

Ωr = −0.05, which corresponds to a dimensional speed of −11, 414 rpm. Figure 3.4 shows

representative mode shapes for the system with gyroscopic effects. The following paragraphs

summarize the observations from the numerical experiments on spinning planetary gears with

gyroscopic effects and the modal properties of stationary planetary gears from Ref. [21].

Rotational modes. Because the central components have only rotations for this type

of modes, they are called rotational modes. Rotational modes are, in general, distinct for

spinning systems with gyroscopic effects. All planets have identical motions that are in-

phase, i.e., pn = p1e
j0ψn . The individual components in pn for the planet n, however, are

out-of-phase with each other. The ring deformations contain only sN + 0 nodal diameter

components, where s = 0,±1,±2, . . .. In other words, all coefficients al, bm, and cp vanish

except for l,m, p = sN for integer s. The rotational modes are also called type 0 modes.
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Table 3.3: Dimensional parameters of an example planetary gear with an elastic ring.

Stiffness (N/m) ks = ksu = 100 × 106, kc = kcu = kb = kbu = 1012, kζ = 200 ×
106, kη = 109, Rku = Rkv = 20.0× 106, ksp = krp = 500× 106

Inertia (kg) Is/R
2
s = 0.654, Ip/R

2
p = 0.490, Ic/R

2
c = 4.69, Ib/R

2
b = 9.77

Mass (kg) ms = 0.640, mp = 0.350, mc = 3.00, mb = 3.20

Dimensions (mm) Rb = 64.0, R = 148, Γ = 10.4, H = 12.0, B = 25.4

Elastic modulus (GPa) E = 202, κG = 61.3

Density (kg/m3) ρ = 7.85× 103

Pressure angle (deg) αs = αr = 24.6

Rotational modes for stationary systems have the same properties with those for spin-

ning systems except that stationary systems have real-valued rotational modes while spinning

systems have complex-valued ones.

Translational modes. For this type of modes, the central components have only

translations. Translational modes for spinning systems with gyroscopic effects are distinct.

These gyroscopic translational modes are classified into two subtypes with one designated

as type 1 modes and the other called type N − 1 modes. For a type 1 mode, the two

translations of the central components are related by yh = jxh (h = s, c, b), the planet

motions are related by pn = p1e
jψn for n = 1, 2, . . . , N , and the ring deformations have only

sN + 1 nodal diameter components, where s = 0,±1,±2, . . .. In contrast, a type N − 1

translational mode has yh = −jxh, pn = p1e
−jψn , and only sN − 1 nodal diameter ring

deformations.

Translational modes for spinning systems differ significantly from those for stationary

systems. Translational modes for stationary systems are degenerate with multiplicity two.

The two translations of the central components in a single translational mode have no special
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Table 3.4: Dimensionless natural frequencies of a planetary gear with six equally-spaced

planets. The system parameters are listed in Table 3.3. Example natural frequencies are

shown for different mode types at Ωr = 0, and the counterpart natural frequencies at Ωr =

−0.05 follow those at Ωr = 0 in each row.

Ωr = 0 Ωr = −0.05

Mode type Natural frequency Mode type Natural frequency

Rotational ω18 = 1.04 Rotational ω18 = 0.996

Translational
ω8 = 0.716 Translational ω7 = 0.613

ω9 = 0.716 Translational ω10 = 0.755

Degenerate planet
ω10 = 0.718 Planet ω8 = 0.633

ω11 = 0.718 Planet ω12 = 0.807

Distinct planet ω7 = 0.638 Planet ω9 = 0.676

Type 0 purely ring ω21 = 1.32 Rotational ω20 = 1.23

Type 3 purely ring ω4 = 0.413 Planet ω4 = 0.363

relations. Translational modes cannot be further classified into different subtypes. The

motion of each planet in two orthogonal (with respect to M) degenerate modes is related to

the motion of the first planet by a rotation matrix [21]. The ring deformations contain only

sN ± 1 nodal diameter components, where s = 0,±1,±2, . . ..

Planet modes. No central components vibrate in a planet mode. Planet modes exist

only for systems with N > 3 planets. All planet modes, in general, are distinct for spinning

systems with gyroscopic effects. The gyroscopic planet modes are classified into (N − 3)

subtypes. Each subtype is associated with an integer d ∈ {2, 3, . . . , N − 2} and called a type
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(a) Rotational mode, ω18 = 0.996
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(c) Planet mode, ω8 = 0.633

Figure 3.4: Real part (left), imaginary part (middle), and ring radial nodal diameter ampli-

tudes al from Eq. (3.7) (right) of vibration modes for a six-planet system with parameters

in Table 3.3 at non-dimensional speed Ωr = −0.05. The dotted lines represent undeformed

positions. The ring rigid body is not shown. The ring radial nodal diameter amplitudes

are normalized by their maximum value. The ring tangential deflection and cross-sectional

rotation angle (not shown) have the same non-trivial nodal diameter components but with

different amplitudes.



85

d mode. For that subtype, the elastic ring deformations contain only sN + d nodal diameter

components, where s = 0,±1,±2, . . ., and planet motions are related by pn = p1e
jdψn for

n = 1, 2, . . . , N .

Substantial difference exists between planet modes for spinning and stationary systems.

Planet modes in stationary systems are classified into two sub-categories according to the

degeneracy of their natural frequencies. Degenerate planet modes appear in systems with

five or more planets, and their multiplicity is two, while distinct planet modes exist only for

systems with an even number of planets. For all planet modes, the motion of each planet

is a scalar multiple of any other planet’s motion. Each of the degenerate planet modes is

associated with a particular integer d ∈ {2, 3, . . . , int((N −1)/2)}. For that particular d, the

ring deformations contain only sN ±d nodal diameter components, where s = 0,±1,±2, . . ..

All distinct planet modes are associated with an integer N/2 for even N , and the ring

deformations contain only sN +N/2 nodal diameter components, where s = 0,±1,±2, . . ..

Purely ring modes. For this type of modes, all discrete motions vanish and only

the elastic ring vibrates. Purely ring modes do not occur in spinning systems, but exist in

stationary systems. Purely ring modes are distinct. The real-valued elastic ring deformations

contain only a single complex conjugate pair of nodal diameter components, i.e.,

u(θ) = age
jgθ + c.c., v(θ) = bge

jgθ + c.c., β(θ) = cge
jgθ + c.c.. (3.10)

The purely ring modes have two subtypes. In one subtype (type 0), g = sN for s = 1, 2, . . ..

In the other subtype (type N/2), g = sN + N/2 for s = 0, 1, 2, . . .. The latter ones occur

only for systems with an even number of planets. Table 3.4 shows that the type 0 purely

ring modes evolve into rotational modes and the type N/2 purely ring modes evolve into

planet modes when gyroscopic effects are introduced. Section 3.6.2 details this evolution of
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purely ring modes.

3.5 Generalization of Modal Properties to Planetary

Gears with Arbitrary Number of Equally-Spaced

Planets

The gyroscopic rotational, translational, and planet modes result from the cyclic sym-

metry of planetary gears. Shi and Parker [92] proved the modal structure for general lumped-

parameter cyclically symmetric systems with central components having planar vibrations.

That derivation was extended to central components with general rigid-body motions [93].

This work applies their proof to planetary gears with an elastic ring.

Figure 3.5 shows decompositions of a planetary gear into substructures and central

components. The elastic ring is divided into N identical sectors such that the n-th sector

has the domain Dn = {θ|θ0 + ψn ≤ θ < θ0 + ψn+1}. Without loss of generality, θ0 = 0.

Each ring sector, its connecting planet, and the ring-planet mesh stiffness connecting them

compose of a substructure (Fig. 3.5b). The first substructure is the one that has the first

planet and ring sector in it. The sun, carrier, and ring rigid body are central components.

Substructures connect to the central components through sun-planet mesh stiffnesses for the

sun, carrier-planet bearing stiffnesses for the carrier, and elastic foundation stiffnesses for

the ring rigid body.

To use the proof in [92], all ring sectors are identically discretized with an arbitrary

discretization method (Fig. 3.5). An example uniform finite difference discretization of the
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Figure 3.5: Planetary gears as a cyclically symmetric structure with central components in

(a). The substructure, central components, and coupling between them are illustrated in

(b-d), respectively.
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first and second derivatives of u(θ) with respect to θ is given as

∂u

∂θ
=
u(θi+1)− u(θi)

∆θ
,

∂2u

∂θ2
=
u(θi+1)− 2u(θi) + u(θi−1)

∆θ2
, (3.11)

where ∆θ is the step size. The finite difference discretization of the first and second deriva-

tives of v(θ) and β(θ) with respect to θ is similar. For compact notation, u(θi) is subsequently

replaced by ui.

The eigenvalue problem of discretized equations for the elastic ring together with equa-

tions for the sun, carrier, ring rigid body, and planets, is represented as

λ2[M]∗φ+ λ[G]∗φ+ ([K]∗ − [C]∗)φ = 0 (3.12a)

[M]∗ =

 [Mc] [Mcs]

[Mcs]
T [Ms]

 , [G]∗ =

 [Gc] [Gcs]

−[Gcs]
T [Gs]

 ,
[K]∗ =

 [Kc] [Kcs]

[Kcs]
T [Ks]

 , [C]∗ =

 [Cc] [Ccs]

[Ccs]
T [Cs]

 . (3.12b)

The mass matrix [M]∗ and stiffness matrix [K]∗ correspond to the mass operator M and

stiffness operator K in Eq. (3.4), and the gyroscopic matrix [G]∗ and centripetal matrix

[C]∗ correspond to the gyroscopic operator ΩrGr + ΩcGc and centripetal operator Ω2
rCr +

Ω2
cCc + 2ΩrΩcCrc. The subscripts c and s indicate that the submatrices associate with the

central components, substructures or both of them. The eigenvector φ associated with the

eigenvalue λ is

φ =

[
φTc φTs

]T
, (3.13a)

φc =

[
pTs pTc pTb

]T
, ph =

[
xh yh uh

]
, h = s, c, b, (3.13b)
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φs =

[
φT1 φT2 . . . φTN

]T
,

φn =

[
pTn (ϕ

(1)
n )T (ϕ

(2)
n )T . . . (ϕ

(M)
n )T

]T
, n = 1, 2, . . . , N,

pn =

[
ζn ηn un

]T
, ϕ(m)

n =

[
u
(m)
n v

(m)
n β

(m)
n

]T
, m = 1, 2, . . . ,M, (3.13c)

where M is the total number of discretized points in each ring sector. The vector ϕ
(m)
n

includes radial deflection (u
(m)
n ), tangential deflection (v

(m)
n ), and cross-sectional rotational

angle (β
(m)
n ) at the m-th discretized point in the n-th ring sector.

A compact form of Eq. (3.12) is

A∗φ = 0, (3.14a)

A∗ =

Ac Acs

Asc As

 = λ2[M]∗ + λ[G]∗ + ([K]∗ − [C]∗). (3.14b)

We now demonstrate the submatrices Ac, As, and Acs in Eq. (3.14) have the structure

considered in [92].

The matrix Ac is only associated with the translations and rotations of the sun, carrier,

and ring rigid body. No discretized ring deflections are involved. Therefore, the property of

Ac discussed in [92] holds here.

The substructure system (which includes the discretized ring and all the planets) is

cyclically symmetric. The matrix As has the same block circulant structure as that in [92].

The matrix Acs can be expressed as

Acs =

[
A

(1)
cs A

(2)
cs . . . A

(N)
cs

]
, (3.15)
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where each 9× 3(M + 1)-dimensional matrix A
(n)
cs captures the coupling between the central

components and n-th substructure. The submatrix A
(n)
cs has the form

A(n)
cs =


B

(n)
sp B

(n)
s1 . . . B

(n)
sM

B
(n)
cp B

(n)
c1 . . . B

(n)
cM

B
(n)
bp B

(n)
b1 . . . B

(n)
bM

 , (3.16)

where B
(n)
hp and B

(n)
hm for h = s, c, b represent the coupling of each central component (the

sun, carrier, and ring rigid body) with the n-th planet and the m-th discretized point in the

n-th ring sector. We now show the following property in [92]

A(n)
cs = diag(Rn,Rn, . . . ,Rn)A(1)

cs , (3.17a)

Rn =


cosψn − sinψn 0

sinψn cosψn 0

0 0 1

 (3.17b)

still holds here.

Ref. [92] presented the following property

B
(n)
hp = RnB

(1)
hp , h = s, c, b. (3.18)

The sun and carrier do not directly interact with the elastic ring, indicating B
(n)
sm = B

(n)
cm = 0

for m = 1, 2, . . . N . The matrix B
(n)
bm is expressed as

B
(n)
bm = λ2M

(n)
bm + λG

(n)
bm + (K

(n)
bm −C

(n)
bm) (3.19)

where M
(n)
bm = G

(n)
bm = C

(n)
bm = 0 because the motion of the ring rigid body does not couple
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the elastic ring deformation in the mass, gyroscopic, and centripetal operators in Eq. (3.4).

The matrix K
(n)
bm has the expression

K
(n)
bm =


−ku cos θ

(n)
m kv sin θ

(n)
m 0

−ku sin θ
(n)
m −kv cos θ

(n)
m 0

0 −kv/Rb 0

 . (3.20)

This matrix satisfies K
(n)
bm = RnK

(1)
bm with θ

(n)
m = θ

(1)
m +ψn. Therefore, the property of Acs in

Eq. (3.17) holds.

The matrices Ac, As, and Acs have the same properties as those in [92]. The vibra-

tion mode structure for general lumped-parameter cyclically symmetric systems with central

components derived in [92] applies, therefore. According to Ref. [92], rotational modes with

type (or phase index [92]) d = 0, translational modes with type d = 1 and d = N − 1,

and substructure (planet) modes with type d = 2, 3, . . . , N − 2 result for the planetary gear

system. For each phase index d, the substructure degrees of freedom have the form

φs =

[
ejdψ1φ̂Ts︸ ︷︷ ︸

φ1

ejdψ2φ̂Ts︸ ︷︷ ︸
φ2

. . . ejdψN φ̂Ts︸ ︷︷ ︸
φN

]T
, (3.21)

where φn is a vector of the degrees of freedom for the n-th substructure, φ̂s has dimension

equal to the number of degrees of freedom for a single substructure, and φ̂s = φ1 due to

ψn = 2π(n− 1)/N .

Therefore, the radial deflection at θ + ψn in the n-th ring sector relates to that at θ in

the first sector according to

u(θ + ψn) = ejdψnu(θ). (3.22)
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Use of Eq. (3.7) gives

u(θ) =

Lb∑
l=−Lb

ale
jlθ, u(θ + ψn) =

Lb∑
l=−Lb

ale
jlθejlψn . (3.23)

Substitution of Eq. (3.23) into Eq. (3.22) yields

al = 0, for l 6= sN + d, (3.24)

where s = 0,±1,±2, . . .. Thus, for type d gyroscopic modes, the ring radial deflection u(θ)

has only sN + d nodal diameter components. The same conclusion results for the ring

tangential deflection v(θ) and cross-sectional rotation angle β(θ). A modal combination of

the discrete motions of the sun, carrier, ring rigid body, and planets (resulting from the

proof in Ref. [92]) and the elastic ring deformations for each phase index d gives the modal

structure for the gyroscopic elastic-discrete system. A summary of the modal structure is

given in Table 3.5.

The distinctive modal properties can be used for mode identification in dynamic re-

sponses. For example, if a resonant mode for a five-planet system has dominant four nodal

diameter ring deformation (i.e., e±j4θ), this mode is a translational mode with phase index

d = 1 or d = 4. Zero amplitudes of the rotations for the central components are expected.

3.6 Evolution of Vibration Modes due to Gyroscopic

Effects

Purely ring modes of stationary planetary gears disappear when gyroscopic effects are

introduced. Degenerate translational and planet natural frequencies (multiplicity two) of
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Table 3.5: Modal structure of gyroscopic planetary gears with an elastic ring and N equally-

spaced planets. The subscripts h = s, c, b and n = 1, 2, . . . , N , and the deflection for the first

planet p1 = [ζ1 η1 u1]
T . All the modal deflection quantities are in general complex-valued.

Mode type Phase index Modal representation

Rotational 0
w =

∞∑
s=−∞

[
asN bsN csN

]T
ejsNθ,

ph =

[
0 0 uh

]T
, pn = p1

Translational

1
w =

∞∑
s=−∞

[
asN+1 bsN+1 csN+1

]T
ej(sN+1)θ

ph =

[
xh jxh 0

]T
, pn = ejψnp1

N − 1
w =

∞∑
s=−∞

[
asN−1 bsN−1 csN−1

]T
ej(sN−1)θ

ph =

[
xh −jxh 0

]T
, pn = e−jψnp1

Planet d ∈ {2, . . . , N − 2}
w =

∞∑
s=−∞

[
asN+d bsN+d csN+d

]T
ej(sN+d)θ

ph =

[
0 0 0

]T
, pn = ejdψnp1

stationary planetary gears split due to the gyroscopic effects (Fig. 3.6). The degenerate

translational modes for stationary systems have only one type that is associated with both

phase indices 1 and N − 1, while the gyroscopic translational modes have two different

subtypes with each of phase index 1 or N−1, not both of them. Whether a pair of degenerate
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Figure 3.6: Eigenvalue loci of a six-planet system with parameters in Table 3.3 for varying

ring speed. The dashed, dotted, and solid lines represent rotational, translational, and planet

natural frequencies, respectively.

translational modes splits into two modes of the same subtype or different subtypes is unclear.

The same question arises for the splitting of the degenerate planet modes. This section

discusses the evolution of these distinct modes and degenerate modes with multiplicity two

using eigenvalue perturbation approaches from Ref. [101, 102].
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3.6.1 Perturbation Analysis

Considering evolution from zero to non-zero speeds, we let Ωc = εΩ̂c and Ωr = εΩ̂r,

where ε is a small parameter and Ω̂c and Ω̂r are O(1). Eq. (3.4) becomes

λ2Mχ+ ελGχ+ Kχ− ε2Cχ = 0, (3.25)

G = Ω̂rGr + Ω̂cGc, C = Ω̂2
rCr + Ω̂2

cCc + 2Ω̂rΩ̂cCrc.

The eigenvalues and eigenvectors of Eq. (3.25) are expressed as

λi = λ̂i + εµi +O(ε2), χi = χ
(0)
i + εχ

(1)
i +O(ε2), i = 1, 2, . . . . (3.26)

Solving Eq. (3.8) with Ωr = Ωc = 0 (i.e., ε = 0) gives the eigenvalue λ̂i and real-valued

eigenvector χ
(0)
i . We normalize χ

(0)
i with 〈χ(0)

i , Mχ
(0)
i 〉 = 1.

Following the perturbation approach in [101, 102], the first-order eigenvalue and eigen-

vector perturbation (µi, χ
(1)
i ) for a pair of distinct eigenvalue and eigenvector (λ̂i, χ

(0)
i ) is

given as

µi = −1

2
〈χ(0)

i , Gχ
(0)
i 〉 (3.27a)

χ
(1)
i =

∑
k 6=i

νkiχ
(0)
k , (3.27b)

νki =
λ̂i

λ̂2k − λ̂2i
〈χ(0)

k , Gχ
(0)
i 〉, k 6= i. (3.27c)

For a degenerate eigenvalue λ̂i = λ̂i+1 with multiplicity two, the unperturbed eigenvec-

tors χ
(0)
i and χ

(0)
i+1 are linear combinations of any set of linearly independent eigenvectors χ

(0)
il

(l = 1, 2) associated with this degenerate value. In addition to the normalization mentioned
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above, these χ
(0)
il are made orthogonal with respect to M such that 〈χ(0)

i1 ,Mχ
(0)
i2 〉 = 0. Using

the perturbation approach for degenerate eigenvalues in [101, 102] gives the first order eigen-

value perturbations µi and µi+1 , the unperturbed eigenvectors χ
(0)
i and χ

(0)
i+1 , and the first

order eigenvector perturbations χ
(1)
i and χ

(1)
i+1 associated with this degenerate eigenvalue λ̂i.

They are

µi = j
1

2
〈χ(0)

i1 , Gχ
(0)
i2 〉, µi+1 = −j 1

2
〈χ(0)

i1 , Gχ
(0)
i2 〉, (3.28a)

χ
(0)
i =

√
2

2
(χ

(0)
i1 − jχ

(0)
i2 ), χ

(0)
i+1 =

√
2

2
(χ

(0)
i1 + jχ

(0)
i2 ), (3.28b)

χ(1)
m = vm +

i+1∑
k=i 6=m

νkmχ
(0)
k , m = i, i+ 1, (3.28c)

vm =
∑

k 6=i,i+1

νkmχ
(0)
k , m = i, i+ 1, (3.28d)

νkm =
λ̂m

λ̂2k − λ̂2m
〈χ(0)

k , Gχ(0)
m 〉, m = i, i+ 1, k 6= i, i+ 1, (3.28e)

νkm =
−λ̂m

〈
χ

(0)
k , Gvm

〉
+
〈
χ

(0)
k , Cχ

(0)
m

〉
4λ̂mµm

, m, k = i, i+ 1, m 6= k. (3.28f)

We now analytically evaluate Eqs. (3.27) and (3.28) to determine the evolution of dis-

tinct and degenerate modes when gyroscopic effects are introduced. This evaluation requires

general representations of rotational, translational, planet, and purely ring modes for sta-

tionary planetary gears without gyroscopic effects from Ref. [21]. For distinct modes (i.e.,

rotational, distinct planet, and purely ring modes), these representations serve as general

forms of the unperturbed eigenvectors χ
(0)
i . For degenerate modes (i.e., translational and

degenerate planet modes), use of Eq. (3.28b) together with the representations from [21]

leads to general forms of the unperturbed eigenvectors χ
(0)
i and χ

(0)
i+1.

For the unperturbed distinct eigenvectors, rotational modes have phase index 0, distinct

planet modes (which exist for even number of planets N) have phase index N/2, and, purely
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ring modes are associated with either phase index 0 or N/2 for even N . For the unperturbed

eigenvectors for a pair of degenerate translational modes, one is of phase index 1 and the

other is of phase index N − 1. Similarly, one of the unperturbed eigenvectors for a pair of

degenerate planet modes is associated with phase index d ∈ {2, 3, . . . , int((N − 1)/2)} and

the other is associated with phase index N − d.

Each unperturbed eigenvector is associated with a phase index d ∈ {0, 1, 2 . . . , N − 1}.

The coefficients νki in Eq. (3.27c) for distinct mode perturbation vanish when χ
(0)
k and χ

(0)
i

have different phase indices. Similarly, the coefficients νkm in Eqs. (3.28e) and (3.28f) for

degenerate mode perturbation vanish when χ
(0)
k and χ

(0)
m have different phase indices.

3.6.2 Evolution of Purely Ring Modes

The evolution of purely ring modes from the stationary to spinning systems follows Eq.

(3.27) because they are distinct modes. Purely ring modes of phase index 0 and those of

phase index N/2 evolve differently.

For a purely ring mode χ
(0)
i with phase index 0, the coefficients νki in Eq. (3.27c)

vanish for χ
(0)
k being any of a translational, planet, or purely ring mode of phase index N/2.

Nontrivial νki is possible only for χ
(0)
k being a rotational mode or another purely ring mode of

phase index 0. Therefore, the linear combination in Eq. (3.27b) that defines the eigenvector

perturbation χ
(1)
i contains only contributions from rotational and purely ring modes of phase

index 0. The perturbed eigenvector χi, as a linear combination of the unperturbed purely

ring mode χ
(0)
i with phase index 0 and the eigenvector perturbation χ

(1)
i , has the structure

of rotational modes in Table 3.5. Therefore, this purely ring mode of phase index 0 evolves

into a rotational mode. Figure 3.7 shows an example of this evolution.

For a purely ring mode χ
(0)
i with phase index N/2 (N even), the coefficients νki can be
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(a) (b)

Figure 3.7: (a) Purely ring mode with natural frequency ω21 at Ωr = 0 (without gyroscopic

effect) in Table 3.4. (b) Real part of rotational mode with natural frequency ω20 at Ωr =

−0.05 (with gyroscopic effect) in Table 3.4. The dotted lines represent undeformed positions.

The ring rigid body is not shown. For visualization, the discrete deflections are amplified 20

times relative to the elastic ring deflections in both (a) and (b).

non-trivial only for χ
(0)
k being a distinct planet mode or another purely ring mode of phase

index N/2. The eigenvector perturbation χ
(1)
i in Eq. (3.27b) contains only contributions

from distinct planet or purely ring modes of phase index N/2. The linear combination of the

unperturbed purely ring mode χ
(0)
i with phase index N/2 and the eigenvector perturbation

χ
(1)
i in Eq. (3.26) yields the perturbed eigenvector χi that has the structure of a planet

mode with phase index N/2 in Table 3.5. Thus, this purely ring mode become a planet

mode with phase index N/2 when gyroscopic effects are introduced. Figure 3.8 illustrates

this evolution.

Physically, purely ring modes, in which the ring has fixed nodes at all ring-planet mesh

locations [21], cannot exist in the gyroscopic system. Vibration modes of gyroscopic systems

are traveling waves [77, 85], in which purely ring modes with fixed nodes cannot stand.
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(a) (b)

Figure 3.8: (a) Purely ring mode with natural frequency ω4 at Ωr = 0 (without gyroscopic

effect) in Table 3.4. (b) Real part of planet mode with natural frequency ω4 at Ωr = −0.05

(with gyroscopic effect) in Table 3.4. The dotted lines represent undeformed positions. The

ring rigid body is not shown. For visualization, the discrete deflections are amplified 20

times relative to the elastic ring deflections in both (a) and (b).

3.6.3 Evolution of Degenerate Modes

Translational modes and planet modes with phase index other than N/2 are degenerate

with multiplicity two for stationary systems. The evolution of these degenerate modes follows

Eqs. (3.28c) – (3.28f). This section discusses first the evolution of a pair of translational

modes and then the evolution of a pair of planet modes.

For a pair of degenerate translational modes χ
(0)
i (phase index 1) and χ

(0)
i+1 (phase index

N −1), only translational modes of phase index 1 contribute to the eigenvector perturbation

χ
(1)
i and only translational modes of phase index N − 1 contribute to χ

(1)
i+1 because the

coefficients νkm in Eqs. (3.28e) and (3.28f) vanish when χ
(0)
k and χ

(0)
m have different phase

indices. The linear combination of χ
(0)
i and χ

(1)
i in Eq. (3.26) gives the perturbed eigenvector

χi having phase index 1. According to the modal structure in Table 3.5, χi is a translational
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mode of phase index 1. Similarly, the linear combination of χ
(0)
i+1 and χ

(1)
i+1 in Eq. (3.26)

results in a translational mode χi+1 of phase index N − 1. Figure 3.6 shows a pair of

degenerate translational modes splits into two gyroscopic translational modes with one of

type 1 (i.e., phase index 1) and the other of type 5 for a six-planet (N = 6) system.

A similar analysis as for the degenerate translational mode evolution works for the

evolution of degenerate planet modes. For a pair of degenerate planet modes, the unper-

turbed eigenvectors χ
(0)
i and χ

(0)
i+1 are of phase indices d and N − d respectively, where

d ∈ {2, 3, . . . , int((N − 1)/2)}. The unperturbed eigenvector χ
(0)
i evolves into a planet mode

χi of phase index d, and χ
(0)
i+1 evolves into a planet mode χi+1 of phase index N − d. Figure

3.6 demonstrates a pair of degenerate planet modes splits into two gyroscopic planet modes

with one of type 2 and the other of type 4 for a six-planet (N = 6) system.

3.7 Conclusions

This paper investigates the natural frequencies and vibration modes of spinning plane-

tary gears with equally-spaced planets and a deformable ring. An analytical model is used

with the sun, carrier, and planets modeled as rigid bodies coupled to an elastic ring hav-

ing bending deformation, extensional deformation, shear deformation, rotary inertia, and a

concentrated tooth bending moment resulting from each ring-planet mesh force acting at a

contact point radially away from the ring neutral axis. Gyroscopic and centripetal effects

from carrier and ring rotation are included. Any of the sun, carrier, or ring can be stationary,

or all three can spin. Natural frequencies and vibration modes are numerically calculated

from the analytical model, and the results agree well with those from a finite element/contact

mechanics model.

The centripetal effects, ring extensional and shear effects, effects of ring rotary inertia,
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and effects of concentrated tooth bending moments do not alter the modal structure of

planetary gears defined in [21], but the gyroscopic effects do. Vibration modes for stationary

systems without gyroscopic effects are real-valued standing wave modes, while those for

spinning systems are complex-valued traveling wave modes. There exist only four types of

modes for stationary systems, i.e., rotational, translational, planet, and purely ring modes,

while only three types of modes exist for spinning systems: rotational, translational, and

planet modes. Planet modes only exist for systems with four or more planets no matter the

systems are stationary or spinning.

Rotational modes for stationary and spinning systems are similar except that rotational

modes for stationary systems are real-valued while those for spinning systems are complex-

valued. Translational modes for stationary systems are degenerate with multiplicity two and

cannot be classified into different subtypes. In contrast, translational modes for spinning

systems are distinct in general and can be classified into two different subtypes. Both

distinct and degenerate (multiplicity two) planet modes can exist for stationary systems.

The distinct planet modes exist only for systems with even number of planets and they have

only one type. The degenerate planet modes exist only for systems with five or more planets

and they can have different subtypes depending on the number of planets. Planet modes for

spinning systems are distinct in general and different subtypes can exist depending on the

number of planets.

For spinning systems, each type/subtype of modes are associated with a phase index.

The elastic ring deformation has unique nodal diameter components associated with each

phase index. The planet deflections have unique phase relationships between different planets

for each phase index.

Purely ring modes, present in stationary planetary gears, evolve into rotational or one

subtype of planet modes when gyroscopic effects are introduced. Degenerate translational
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or planet modes with multiplicity two for stationary planetary gears split into two different

subtypes of translational or planet modes, respectively.



Chapter 4

Parametric Instability of Spinning

Planetary Gears with a Deformable

Ring

4.1 Introduction

The primary source of gear vibration is changing mesh interaction as gear rotates. This

change is modeled as time-varying mesh stiffness that parametrically excites the gear system.

Parametric instabilities, in general, occur when the excitation frequency or one of its

harmonics is near twice a natural frequency or combinations of two natural frequencies.

Not every pair of modes can cause parametric instabilities in planetary gears, however.

Lin and Parker [43] revealed that certain parametric instabilities vanish under particular

mesh phasing conditions regardless of any form of mesh stiffness variations when analyzing

parametric instabilities of lumped-parameter planetary gears with a purely rotational model.

103
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Parker and Wu [44] derived an instability existence rule for any two modes (which can be

the same) in their study of parametric instabilities of planetary gears with an elastic ring.

The instability existence rule depends only on mesh phasing parameters (i.e., sun/ring tooth

number and number of planets) and the mode types defined in [21] for stationary planetary

gears with a deformable ring. Both of these two studies [43, 44] used stationary models

without gyroscopic (i.e., Coriolis) and centripetal effects that arise from carrier and/or ring

gear rotation.

This work investigates parametric instabilities of spinning planetary gears with an elas-

tic ring and equally-spaced planets. We adopt the elastic-discrete model from Chapter 2

that includes gyroscopic and centripetal effects from carrier and ring rotation. By using the

method of multiple scales and the structured modal properties defined in Chapter 3 for spin-

ning planetary gears with an elastic ring, closed-form expressions for instability boundaries

are derived, and an instability existence rule is revealed.

4.2 Mathematical Formulation

Details of the model in Fig. 4.1 including dimensional parameters and variables, non-

dimensionalization, and equations of motion are given in Chapter 2 and adopted here. The

elastic ring has radial (u(θ, t)) and tangential (v(θ, t)) deformation of the ring neutral axis

and cross-sectional rotation angle (β(θ, t)). These ring deformations are collected into a

vector as w = [u v β]T .

The deflection of the whole system is represented by the extended vector

χ(θ, t) = [w(θ, t)T , q(t)] (4.1)
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with the vector q(t) given as

q = [ xb yb ub︸ ︷︷ ︸
pb

xc yc uc︸ ︷︷ ︸
pc

xs ys us︸ ︷︷ ︸
ps

ζ1 η1 u1︸ ︷︷ ︸
p1

. . . ζN ηN uN︸ ︷︷ ︸
pN

]T ,

where pl for l = b, c, s, 1, . . . , N represent discrete motions of the ring rigid body (which is

depicted by the largest circle in Fig. 4.1), carrier, sun, and planets. Refer to Chapter 2

for more details of this ring rigid body. The carrier and ring gear have speeds Ωc and Ωr,

respectively. Speeds of the sun and planets can be derived from kinematics. The N planets

are identical and equally spaced. Without loss of generality, the first planet is positioned

at ψ1 = 0 relative to the rotating basis vector E1 fixed to the carrier (Fig. 4.1). The n-th

planet has an angular position of ψn = 2π(n− 1)/N , therefore.

The sun-planet and ring-planet mesh stiffnesses change periodically with mesh frequency

ωm. They parametrically excite the planetary gear system. Dimensionless sun-planet and

ring-planet mesh stiffnesses for the n-th planet are represented as

ksn(t) = ksp + k1n(t), krn(t) = krp + k2n(t), (4.2)

where ksp, krp are mean values and k1n(t), k2n(t) are mesh stiffness variations with zero

means. Fourier series representations of k1n(t), k2n(t) are

k1n(t) = 2µksp

∞∑
L=1

[C(L)
sn e

jLωmt + c.c.] (4.3a)

k2n(t) = 2εkrp

∞∑
L=1

[C(L)
rn e

jLωmt + c.c.] (4.3b)

where 2µksp and 2εkrp are peak-to-peak values of k1n(t) and k2n(t). The complex-valued

Fourier coefficients C
(L)
sn and C

(L)
rn are the L-th harmonics of the sun-planet and ring-planet
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Figure 4.1: Schematic of a planetary gear model with a deformable ring.

mesh stiffnesses for the n-th planet normalized by the peak-to-peak values, respectively. The

term c.c. represents the complex conjugate of its preceding term.

The sun-planet and ring-planet mesh stiffnesses between planets differ only by a time

translation, that is,

ksn(t) = ks1(t− γsnTm), krn(t) = kr1(t− γrnTm), (4.4)

where Tm = 2π/ωm denotes mesh period and γsn (γrn) is the mesh phase between the n-th
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and first sun-planet (ring-planet) meshes. In Chapter 2, we show

γsn = Zsψn/(2π), γrn = −Zrψn/(2π) (4.5)

for counter-clockwise rotation of the carrier relative to the ring gear (i.e., Ωc > Ωr) and

γsn = −Zsψn/(2π), γrn = Zrψn/(2π) (4.6)

for clockwise rotation of the carrier relative to the ring gear (i.e., Ωc < Ωr), where Zs and

Zr are the sun and ring gear tooth numbers. The relation γsn = γrn holds for equally-spaced

systems [87]. With the phase relations in Eq. (4.4), the Fourier coefficients C
(L)
sn , C

(L)
rn

between different planets are related by

C(L)
sn = C

(L)
s1 e

−j2πLγrn , C(L)
rn = C

(L)
r1 e

−j2πLγrn . (4.7)

The ratios of the amplitudes of sun-planet and ring-planet mesh stiffness variations

to their mean values are µ and ε. We assume µ is of the same order as ε, i.e., µ = gε,

where g = O(1). To facilitate the following perturbation analysis, ε is assumed to be small.

This assumption is verified by comparing the analytical perturbation results with numerical

results.

The dimensionless equation of motion for the time-varying planetary gear system from

Chapter 2 is

Mχ̈+ (ΩrGr + ΩcGc)χ̇+ (K(t)− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc)χ = 0, (4.8)

where M is extended mass operator; Gr and Gc are extended gyroscopic operators; K(t) is
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extended stiffness operator; and, Cr, Cc, and Crc are extended centripetal operators. The

operators M, Gr, Gc, Cr, Cc, and Crc are identical to those in Chapter 2. The operator

K(t) is the same with K in Chapter 2 with ksn, krn replaced by the time-varying sun-planet

and ring-planet mesh stiffnesses (ksn(t), krn(t)). The operators M, K(t), Cr, Cc, and Crc

are self-adjoint with the inner product

〈χ1, χ2〉 =

∫ 2π

0

wT
1w2dθ + qT1 q2, (4.9)

where the overbar denotes complex conjugate. The gyroscopic operator Gr and Gc are skew

self-adjoint with respect to Eq. (4.9).

Separation of the stiffness operator K(t) into time-varying and time-invariant parts gives

K(t) = K0 + 2ε
∞∑
L=1

[(K(L)
sp + K(L)

rp )ejLωmt + c.c.], (4.10)

where K0 is the same with K(t) with ksn(t), krn(t) replaced by the mean values of sun-planet

and ring-planet mesh stiffnesses (ksp, krp). The Fourier coefficient operators K
(L)
sp and K

(L)
rp

have the same form as K(t) with substitutions that all stiffnesses other than mesh stiffnesses

are zero and that sun-planet and ring-planet mesh stiffnesses for the n-th planet in K(t) are

substituted by gkspC
(L)
s1 e

−j2πLγrn and krpC
(L)
r1 e

−j2πLγrn .

Natural frequencies and vibration modes of the unperturbed time-invariant system are

necessary for the parametric instability analysis. The eigenvalue problem for the unperturbed

(ε→ 0) system of Eq. (4.8) is

λ2kMχk + λk(ΩrGr + ΩcGc)χk + (K0 − Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc)χk = 0, (4.11)

where λk and χk(θ) are the eigenvalue and eigenfunction of the k-th mode. The gyroscopic
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system gives purely imaginary eigenvalues (i.e. λk = jωk) and complex-valued modes χk(θ)

when operating at speeds below the first critical speed [100]. The eigenvalue problem in Eq.

(4.11) is solved in Chapter 3.

Substitution of Eq. (4.10) into Eq. (4.8) and putting the resulting equation into state

space form give

Aφ̇+ Bφ+ 2εD(t)φ = 0, φ =

[
χ̇T χT

]T
, (4.12a)

A =

M 0

0 K0 − Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc

 , (4.12b)

B =

 ΩrGr + ΩcGc K− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc

−(K− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc) 0

 , (4.12c)

D(t) =

0
∑∞

L=1[(K
(L)
sp + K

(L)
rp )ejLωmt + c.c.]

0 0

 . (4.12d)

An inner product defined in the state space is

(a, b) = 〈a1, b1〉+ 〈a2, b2〉, (4.13)

where a =

[
aT1 aT2

]T
and b =

[
bT1 bT2

]T
are two elements in the state space, and ai and

bi (i = 1, 2) are extended vectors having the same form of χ in Eq. (4.1). The state space

formulation in Eq. (4.12) gives the advantage that the eigenfunctions φk(θ) of the state

space eigenvalue problem

jωkAφk + Bφk = 0, φk =

[
jωkχ

T
k χk

T

]T
, k = 1, 2, · · · (4.14)
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are orthogonal with respect to A and B such that

(
φl, Aφk

)
= δlk,

(
φl, Bφk

)
= −jωlδlk, (4.15)

where δlk is the Kronecker delta.

The state space formulation in Eq. (4.12) and the eigenfunction orthogonality in Eq.

(4.15) facilitate a perturbation analysis that yields closed-form expressions for parametric

instability boundaries. The derivation is not shown because it is similar to that in Ref. [103].

Parametric instabilities occur when a mesh frequency harmonic is close to the sum of

two natural frequencies, that is,

Lωm = ωl + ωk + εσ, L = 1, 2, . . . , (4.16)

where σ = O(1) is a real-valued detuning parameter and l and k can be the same. When a

mesh frequency harmonic is close to the difference of two natural frequencies, i.e., Lωm =

ωl − ωk + εσ, it can be shown that difference type parametric instabilities cannot occur.

Following the perturbation approach in Ref. [103], we derive instability boundaries for

the two modes φl and φk as

ωm =
ωl + ωk
L

±
4ε
√
ωlωk
L

∣∣∣D(lk)
L

∣∣∣, (4.17a)

D
(lk)
L =

N∑
n=1

(
gkspC

(L)
s1 ∆̄(l)

sn∆̄(k)
sn + krpC

(L)
r1 ∆̄(l)

rn∆̄(k)
rn

)
e−j2πLγrn , (4.17b)

where ∆
(l)
sn and ∆

(l)
rn are the sun-planet and ring-planet mesh deflections for the n-th planet

for the mode χl, and ∆
(k)
sn and ∆

(k)
rn are for the mode χk. These mesh deflections for a given
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mode χk are given as

∆(k)
sn =(−x(k)s sinψsn + y(k)s cosψsn + u(k)s )

+ (−ζ(k)n sinαs − η(k)n cosαs + u(k)n ), (4.18a)

∆(k)
rn =[−u(k) sinαr + v(k) cosαr − Γβ(k) cosαr]θ=ψn

+ (ζ(k)n sinαr − η(k)n cosαr − u(k)n ), (4.18b)

where αs and αr are the sun-planet and ring-planet pressure angle and ψsn = ψn − αs. Γ

is the radial distance from the ring contact point to the ring neutral axis (see Fig. 2.3 in

Chapter 2).

Eq. (4.17a) gives the upper and lower boundaries of mesh frequencies for the parametric

instability between the modes χl and χk induced by the L-th harmonic. The mesh frequency

bandwidth between the two boundaries is

∆ωm =
8ε
√
ωlωk
L

∣∣∣ N∑
n=1

(
gkspC

(L)
s1 ∆̄(l)

sn∆̄(k)
sn + krpC

(L)
r1 ∆̄(l)

rn∆̄(k)
rn

)
e−j2πLγrn

∣∣∣ (4.19)

Eq. (4.19) shows the instability bandwidth depends on the natural frequencies, mesh stiff-

ness Fourier coefficients, mesh phase, and modal gear mesh deflections. We now simplify

Eq. (4.19) by studying the modal gear mesh deflections with the modal properties of the

gyroscopic planetary gear system in Chapter 3.

4.3 Modal Properties and Gear Mesh Deflections

Chapter 3 shows the gyroscopic system has only three types of modes: rotational,

translational, and planet modes. Planet modes exist only for systems with N > 3 planets.
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Each mode is associated with an integer or phase index d ∈ {0, 1, 2, . . . , N−1}. A rotational

mode has phase index 0; a translational mode is associated with phase index 1 or N − 1;

and, a planet mode is of phase index d ∈ {2, 3, . . . , N − 2}. We will show the gear mesh

deflections for a mode χk satisfy

∆(k)
sn = ejTkψn∆

(k)
s1 , ∆(k)

rn = ejTkψn∆
(k)
r1 , (4.20)

where Tk is its phase index.

A rotational mode (phase index 0) has the form

χk =

[
wT
rot qTrot

]T
, (4.21a)

wrot =
∞∑

s=−∞

[
a
(k)
sN b

(k)
sN c

(k)
sN

]T
ejsNθ, (4.21b)

qrot =

[
0 0 u

(k)
b 0 0 u

(k)
c 0 0 u

(k)
s ζ

(k)
1 η

(k)
1 u

(k)
1 . . . ζ

(k)
1 η

(k)
1 u

(k)
1

]T
. (4.21c)

According to Eqs. (4.21b) and (4.21c), the central components (sun, carrier, and ring rigid

body) have only rotation, all planets have identical motions, and the elastic ring deformations

contain only sN nodal diameter components. Substitution of Eqs. (4.21b) and (4.21c) into

Eqs. (4.18a) and (4.18b) yields

∆(k)
sn = ∆

(k)
s1 =u(k)s − ζ

(k)
1 sinαs − η(k)1 cosαs + u

(k)
1 , (4.22a)

∆(k)
rn = ∆

(k)
r1 =

∞∑
s=−∞

(−a(k)sN sinαr + b
(k)
sN cosαr − Γc

(k)
sN cosαr)

+ (ζ
(k)
1 sinαr − η(k)1 cosαr − u(k)1 ). (4.22b)

Therefore, Eqs. (4.22a) and (4.22b) satisfy Eq. (4.20) with Tk = 0.
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For a translational mode χk = [wT
trn,1 qTtrn,1]

T of phase index 1, the elastic ring de-

formations wtrn,1 contain only sN + 1 nodal diameter components, the central components

have deflections ph = [x
(k)
h jx

(k)
h 0] for h = s, c, b, and the motions for the n-th planet relate

to those for the first planet as pn = p1e
jψn . These properties ensure the sun-planet and

ring-planet mesh deflections satisfy Eq. (4.20) with Tk = 1. In contrast, a translational

mode χl of phase index N − 1 has ph = [x
(l)
h − jx(l)h 0], pn = p1e

−jψn , and only sN − 1

nodal diameter ring deformation. The mesh deflections for this mode satisfy Eq. (4.20) with

Tl = N − 1.

A planet mode of phase index d ∈ {2, 3, . . . , N − 2} has the structure

χk =

[
wT
plt qTplt

]T
, (4.23a)

wplt =
∞∑

s=−∞

[
a
(k)
sN+d b

(k)
sN+d c

(k)
sN+d

]T
ej(sN+d)θ, (4.23b)

qplt =

[
0 0 0 ejdψ1pT1 · · · ejdψNpT1

]T
. (4.23c)

Substitution of Eqs. (4.23b) and (4.23c) into Eqs. (4.18a) and (4.18b) gives

∆(k)
sn = ejdψn∆

(k)
s1 =(−ζ(k)1 sinαs − η(k)1 cosαs + u

(k)
1 )ejdψn , (4.24a)

∆(k)
rn = ejdψn∆

(k)
r1 =

[ ∞∑
s=−∞

(−a(k)sN+d sinαr + b
(k)
sN+d cosαr − Γc

(k)
sN+d cosαr)

+ (ζ
(k)
1 sinαr − η(k)1 cosαr − u(k)1 )

]
ejdψn . (4.24b)

The sun-planet and ring-planet mesh deflections in Eqs. (4.24a) and (4.24b) satisfy Eq.

(4.20) with Tk = d.



114

4.4 Parametric Instabilities

The mesh phase γrn affects the instability bandwidth, as shown in Eq. (4.19). This γrn

has different expressions in Eqs. (4.5) and (4.6) for Ωc > Ωr and Ωc < Ωr, respectively. We

proceed with Ωc > Ωr, and discuss the other case later.

Substitution of Eq. (4.20) into Eq. (4.19) and simultaneously invoking γrn in Eq. (4.5)

for Ωc > Ωr lead to

∆ωm =
8ε
√
ωlωk
L

∣∣∣(gkspC(L)
s1 ∆̄

(l)
s1 ∆̄

(k)
s1 + krpC

(L)
r1 ∆̄

(l)
r1∆̄

(k)
r1

) N∑
n=1

e−j(Tl+Tk−LZr)ψn

∣∣∣. (4.25)

The parametric instability between the modes χl and χk for the L-th harmonic may not

occur because the following identities hold for integer values of m:

N∑
n=1

ejmψn =

 N, m/N = integer

0, m/N 6= integer

 . (4.26)

According to Eq. (4.26), the instability bandwidth ∆ωm vanishes when

(Tl + Tk − LZr)/N 6= integer, (4.27)

which indicates a suppression of the parametric instability between the mode χl and χk for

the L-th mesh harmonic.

The suppression rule in Eq. (4.27) applies to both in-phase (Zs, Zr/N = integer) and

out-of-phase (Zs, Zr/N 6= integer) planetary gears. For in-phase systems, the suppression

rule in Eq. (4.27) reduces to (Tl + Tk)/N 6= integer, independent of the harmonic number

L. Parametric instabilities can only occur between two rotational modes, between two

translational modes with one of phase index 1 and the other of phase index N − 1, and
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between two planet modes with one of phase index d and the other of phase index N − d,

where d ∈ {2, 3, · · · , N − 2}. Parametric instabilities between two modes of different types

(for example, a rotational mode and a translational mode) are not possible. For out-of-phase

planetary gears, there is no simple reduction of Eq. (4.27). The suppression rule depends

on which mesh frequency harmonic L drives the parametric instability.

When (Tl + Tk − LZr)/N = integer, the instability bandwidth in Eq. (4.25) are

∆ωm =
8ε
√
ωlωk
L

∣∣∣N(gkspC(L)
s1 ∆̄

(l)
s1 ∆̄

(k)
s1 + krpC

(L)
r1 ∆̄

(l)
r1∆̄

(k)
r1

)∣∣∣. (4.28)

The mesh stiffness Fourier coefficients C
(L)
s1 and C

(L)
r1 and the gear mesh deflections ∆

(l)
s1 , ∆

(l)
r1 ,

∆
(k)
s1 , and ∆

(k)
r1 are in general complex-valued quantities. Both the amplitudes and phases of

these complex-valued quantities affect the instability bandwidth.

For systems with Ωc < Ωr, substitution of Eq. (4.20) and the mesh phase γrn in Eq.

(4.6) into Eq. (4.19) yields

∆ωm =
8ε
√
ωlωk
L

∣∣∣(gkspC(L)
s1 ∆̄

(l)
s1 ∆̄

(k)
s1 + krpC

(L)
r1 ∆̄

(l)
r1∆̄

(k)
r1

) N∑
n=1

e−j(Tl+Tk+LZr)ψn

∣∣∣. (4.29)

The parametric instabilities between the mode χl and χk for the L-th mesh harmonic are

suppressed when

(Tl + Tk + LZr)/N 6= integer. (4.30)

A summary of the parametric instability suppression rules for systems with Ωc > Ωr

and Ωc < Ωr is given in Table 4.1.



116

Table 4.1: Summary of the suppression conditions for parametric instabilities between two

modes χl (phase index Tl) and χk (phase index Tk) for the L-th harmonic.

Systems with Ωc > Ωr Systems with Ωc < Ωr

(Tl + Tk − LZr)/N 6= integer (Tl + Tk + LZr)/N 6= integer

4.5 Comparison of Instability Suppression Rules for

Stationary and Spinning Systems

Parker and Wu [44] derived an instability suppression rule for stationary planetary gears

without gyroscopic effects. Their derivation depends on the modal structure for stationary

planetary gears defined in [21]. Four types of modes exist for stationary planetary gears:

rotational, translational, planet, and purely ring modes. Purely ring modes cannot cause

parametric instabilities because they have trivial mesh deflections [44]. Each mode χk (purely

ring modes excluded) is associated with an integer Tk ∈ {0, 1, . . . , int(N/2)} such that its

mesh deflections for the n-th planet satisfy [44]

∆
(k)
jn = c

(k)
j1 cosTkψn + c

(k)
j2 sinTkψn, j = s, r, (4.31)

where c
(k)
j1 and c

(k)
j2 are coefficients independent of the planet index n. Mesh deflections of

this form are called type Tk deflections. These type Tk mesh deflections are associated with

phase indices Tk and N − Tk if Tk 6= 0 and only Tk otherwise. A rotational mode has type

0 mesh deflections (phase index 0), a translational mode has type 1 (phase indices 1 and

N − 1), and a planet mode has type d (phase indices d and N − d), where d is an integer

from {2, 3, . . . , int(N/2)}.

The suppression rule for stationary planetary gears [44] gives that parametric instabili-
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ties between two modes χl and χk for the L-th harmonic are suppressed when

(Tl ± Tk ± LZr)/N 6= integer. (4.32)

This instability suppression rule in Eq. (4.32) are different from those for spinning systems

with either Ωc > Ωr or Ωc < Ωr in Table 4.1 because of different modal structures for sta-

tionary and spinning systems. The following two examples illustrate the differences between

the instability suppression rules for stationary and spinning systems.

The first example is an in-phase system where Zs, Zr/N = integer. The suppression rule

in Eq. (4.32) predicts that only two rotational, translational, or planet modes having the

same type of mesh deflections can cause a parametric instability. In contrast, the suppression

rules in Table 4.1 for systems with either Ωc > Ωr or Ωc < Ωr (they are the same for in-

phase systems) give that parametric instabilities between two translational or planet modes

having the same phase index (except for planet modes with phase index N/2 for even N)

are suppressed.

The second example is a six-planet (N = 6) system with out-of-phase tooth meshes. The

sun and ring tooth numbers are Zs = 6ns−2 and Zr = 6nr +2 respectively, where ns and nr

are integers. According to Eq. (4.32), parametric instabilities for the first harmonic (L = 1)

can occur between one rotational mode and one planet mode having type 2 mesh deflections

(phase indices 2 and 4), two translational modes (phase indices 1 and 5), one translational

mode (phase indices 1 and 5) and one planet mode having type 3 mesh deflections (phase

index 3), and two planet modes both having type 2 mesh deflections (phase indices 2 and 4).

The suppression rule for systems with Ωc > Ωr in Table 4.1 predicts existence of instabilities

for the first harmonic (L = 1) between one rotational mode and one planet mode having

phase index 2, two translational modes both having phase index 1, one planet mode of phase
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index 3 and one translational mode of phase index 5, and two planet modes both having

phase index 4. According to the suppression rule for systems with Ωc < Ωr in Table 4.1,

the instabilities for the first harmonic (L = 1) between one rotational mode and one planet

mode having phase index 4, two translational modes both having phase index 5, one planet

mode of phase index 3 and one translational mode of phase index 1, and two planet modes

both having phase index 2 can exist.

4.6 Results

This section investigates the parametric instabilities of a planetary gear with dimensional

parameters in Table 4.2. The carrier is stationary (i.e., Ωc = 0), and the ring gear rotates.

The periodically changing sun-planet and ring-planet mesh stiffnesses are calculated from a

single pair of sun-planet/ring-planet finite element/contact mechanics models [12] using a

local slope method [86]. Figure 4.2 shows these sun-planet and ring-planet mesh stiffnesses

within one mesh cycle.

Table 4.2: Dimensional parameters of an example planetary gear with an elastic ring.

Stiffness (N/m) kc = kcu = 106, ks = ksu = kb = kbu = 1012, kζ = 200×106, kη =
109, Rku = Rkv = 20.0× 106

Inertia (kg) Is/R
2
s = 0.654, Ip/R

2
p = 0.490, Ic/R

2
c = 4.69, Ib/R

2
b = 9.77

Mass (kg) ms = 0.640, mp = 0.350, mc = 3.00, mb = 3.20

Dimensions (mm) Rb = 64.0, R = 148, Γ = 10.4, H = 14.0, B = 25.4

Elastic modulus (GPa) E = 202, κG = 61.3

Density (kg/m3) ρ = 7.85× 103

Pressure angle (deg) αs = αr = 24.6
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Figure 4.2: Dimensional sun-planet (solid line) and ring-planet (dashed line) mesh stiffnesses.

Two five-planet systems with different planet phasing conditions in Table 4.3 are con-

sidered. Case I has in-phase tooth meshes because Zs, Zr/N = integer, and Case II has

out-of-phase tooth meshes. The two systems have the same parameters in Table 4.2 and

mesh stiffness variations for the first planet in Fig. 4.2. In other words, the two systems are

identical except for a small change of gear tooth numbers.

Table 4.3: Selection of different planet phasing conditions (i.e., different gear tooth numbers)

to examine the parametric instability suppression rules in Table 4.1.

Case I Case II

Zs = 40, Zr = 80 Zs = 39, Zr = 81

Figure 4.3 shows the natural frequencies ω19 ∼ ω24 for the five-planet system in Table

4.2 over a range of negative ring speeds. The negative ring speeds means clockwise rotation

of the ring. In this case, Ωc > Ωr because Ωc = 0. The maximum dimensionless ring speed

Ωr = −0.05 in Fig. 4.3 corresponds to a dimensional speed of −11, 414 rpm. The natural

frequencies are calculated from the eigenvalue problem in Eq. (4.11) using the average sun-
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planet (ksp) and ring-planet (krp) mesh stiffnesses in Fig. 4.2. Table 4.4 shows the phase

indices for the natural frequencies ω19 ∼ ω24.

0 0.01 0.02 0.03 0.04 0.05

1.2

1.4

1.6

1.8

Figure 4.3: Dimensionless natural frequencies of a five-planet system in Table 4.2 for a range

of ring speeds. The sun-planet and ring-planet mesh stiffnesses take the mean values in

Fig. 4.2. The dashed (ω19, ω22), dotted (ω20, ω21), and solid lines (ω23, ω24) represent natural

frequencies of rotational, translational, and planet modes, respectively.

A pair of degenerate translational or planet modes (multiplicity two) splits into two

translational or planet modes with one of phase index d ∈ {1, 2, . . . , int((N − 1)/2)} and the

other of phase index N−d from stationary to spinning planetary gears, as shown in Chapter

3. The frequency splitting phenomenon is demonstrated in Fig. 4.3 as the degenerate

translational mode frequencies ω20 and ω21 and planet mode frequencies ω23 and ω24 split

at non-zero ring speed. The phase indices for the split natural frequencies ω20 and ω21 are

different and similarly for ω23 and ω24 (Table 4.4).
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Table 4.4: Phase indices for the natural frequencies ω19 ∼ ω24 in Fig. 4.3. The system has

speed Ωc > Ωr.

Natural frequency ω19 ω20 ω21 ω22 ω23 ω24

Phase index 0 4 1 0 3 2

Figure 4.4 shows the instability region boundaries from the analytical solution in Eq.

(4.17a) and numerical solutions from Floquet theory for Case I. For a range of peak-to-peak

amplitudes of the mesh stiffnesses (i.e., ε), the analytical and numerical predictions match

well. When the mesh frequency ωm lies within an instability region, responses for this linear
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(b)

Figure 4.4: Instability regions for Case I at dimensionless ring speed Ωr = −0.05. The solid

lines are perturbation solutions from Eq. (4.17a), and the asterisks are numerical solutions

from Floquet theory. (a) L = 1, (b) L = 2.

undamped system will go unbounded. In practice, damping and nonlinearities would bound
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the responses as resonant vibrations.

For this in-phase system (i.e., Case I), single mode parametric instabilities occur only

for rotational modes, such as 2ω19 and 2ω22 for the first harmonic (L = 1) and ω19 and ω22 for

the second harmonic (L = 2). The parametric instabilities for a single translational or planet

modes are suppressed. For example, the instability regions for 2ω20 and 2ω23 are absent in

Fig. 4.4a. This occurs because only the rotational modes χk with phase index Tk = 0 satisfy

2Tk/5 = integer. For an in-phase system having an even number of planets, single mode

parametric instability can occur for planet modes χk having phase index Tk = N/2 as well

because 2Tk = N . This result is different from the instability suppression rule for stationary

planetary gears in Eq. (4.32) that gives parametric instabilities can occur for a single mode

for in-phase systems no matter this mode is a rotational, translational, or planet mode.

Figure 4.4 shows combination parametric instabilities for two split translational (ω20, ω21)

or planet (ω23, ω24) modes for both the first and second harmonics. For in-phase systems,

a pair of split modes interact with each other to cause a parametric instability because the

sum of their phase index equals the number of planets N . Single one of them cannot cause

parametric instabilities because twice of their phase index cannot equal integer multiples of

N .

Figure 4.5 shows the instability regions analogous to Fig. 4.4 but for Case II. This

out-of-phase system has sun and ring tooth numbers Zs = 39 and Zr = 81, respectively.

The instability suppression rule for Ωc > Ωr in Table 4.1 gives that parametric instabilities

between two modes χl and χk can occur only if their phase indices satisfy (Tl+Tk+81L)/N =

integer. This suppression rule and the phase indices for the natural frequencies ω19 ∼ ω24 in

Table 4.4 explain the occurrence of parametric instabilities in Fig. 4.5a for L = 1 and Fig.

4.5b for L = 2.
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Figure 4.5: Instability regions for Case II at dimensionless ring speed Ωr = −0.05. The solid

lines are perturbation solutions from Eq. (4.17a), and the asterisks are numerical solutions

from Floquet theory. (a) L = 1, (b) L = 2.

For an out-of-phase system, combination instabilities between a pair of split modes χl

and χk are suppressed for the L-th harmonic with L/N 6= integer because the condition

(Tl + Tk + LZr)/N 6= integer holds. Absence of the parametric instabilities ω20 + ω21 and

ω23 +ω24 in Fig. 4.5a and (ω20 +ω21)/2 and (ω23 +ω24)/2 in Fig. 4.5b confirms the foregoing

statement.

Single mode parametric instabilities for the mode χk for the L-th harmonic can occur

when (2Tk − LZr)/N = integer according to the instability suppression rule for Ωc > Ωr

in Table 4.1. These parametric instabilities are not possible for L = 1 even N and odd Zr

because (2Tk − Zr)/N 6= integer for any integer Tk. Single mode parametric instabilities for

L = 2 always exist for modes having phase index mod(Zr, N) or mod(Zr +N/2, N) for even
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N , where mod(A,B) represents A modulo B. Parametric instabilities of ω19 and ω22 in Fig.

4.4b for the in-phase system of Case I and ω21 in Fig. 4.5b for the out-of-phase system of

Case II agree with the foregoing prediction.

According to the instability suppression rule for Ωc > Ωr in Table 4.1, only one of

a pair of split modes χl and χk can interact with a mode χa (which can be the same

with χl or χk) to cause parametric instabilities for the L-th harmonic because their phase

indices cannot satisfy the conditions Tl + Tk = N , (Tl + Ta − LZr)/N = integer, and

(Tk + Ta − LZr)/N = integer simultaneously. This applies for both in-phase and out-of-

phase systems. For example, the parametric instabilities for ω20 + ω21 occur in Fig. 4.4a,

but 2ω20 or 2ω21 are suppressed for the in-phase system of Case I, where ω20 and ω21 are a

pair of splitting frequencies (Fig. 4.3). Similarly, instabilities occur for ω19 +ω21 but not for

ω19 + ω20 in Fig. 4.5a for the out-of-phase system of Case II.

Figure 4.4 and Figure 4.5 show completely different behaviors of parametric instabilities

for Case I and II although these two systems are nearly identical with minimal difference

of gear tooth numbers (Table 4.3). This provides a way to suppress some large-bandwidth

parametric instabilities occurring at operating speeds by slightly changing the gear tooth

numbers with the natural frequencies and mesh frequency minimally changed.

The parametric instabilities for Case I in Fig. 4.4 and Case II in Fig. 4.5 follow the

suppression rule for systems with Ωc > Ωr in Table 4.1. If the planetary gear system reverses

rotation but with all other parameters unchanged, the parametric instabilities for Case I and

II stay the same with those in Fig. 4.4 and Fig. 4.5. The natural frequency loci for the

reversed rotation are identical to those in Fig. 4.3, except that a translational or planet mode

natural frequency that has phase index d becomes a translational or planet mode natural

frequency with phase index N − d for the reversed rotation (Table 4.5). Because of Ωc < Ωr

for the reversed rotation, the suppression rule for systems with Ωc < Ωr in Table 4.1 applies.
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Table 4.5: Phase indices for the natural frequencies ω19 ∼ ω24 in Fig. 4.3 with reversed

rotation of the system (i.e., Ωc < Ωr).

Natural frequency ω19 ω20 ω21 ω22 ω23 ω24

Phase index 0 1 4 0 2 3

4.7 Conclusions

This paper investigates parametric instabilities of spinning planetary gears with a de-

formable ring and equally-spaced planets. Closed-form expressions for instability boundaries

are derived with the method of multiple scales. Instability suppression rules are identified

with the structured modal properties for spinning planetary gears with gyroscopic effects.

The instability suppression rules for counter-clockwise and clockwise rotation of the

carrier relative to the ring gear are different. Both of them differ from the instability sup-

pression rule for stationary planetary gears. Each mode is associated with a phase index.

For counter-clockwise rotation of the carrier relative to the ring gear, parametric instabilities

between two modes χl andχk for the L-th harmonic are suppressed when their phase indices

satisfy (Tl +Tk−LZr)/N 6= integer. For clockwise rotation of the carrier relative to the ring

gear, the parametric instabilities are suppressed when (Tl + Tk + LZr)/N 6= integer.

A pair of degenerate translational or planet modes (multiplicity two) splits into two

translational or planet modes having different phase indices from stationary to spinning

planetary gears. For in-phase systems, instabilities can occur for combinations of a pair of

split modes, but single one of them cannot cause parametric instabilities. For out-of-phase

systems, combination instabilities between a pair of splitting modes are not possible for the

L-th harmonic unless L/N = integer. For both in-phase and out-phase systems, only one in

a pair of split modes can interact with a mode (which can be the same with one of the split
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modes) to cause parametric instabilities for a given harmonic.

For in-phase systems, single mode parametric instabilities are possible only for rotational

modes or planet modes having phase index N/2 (N even) for any harmonic. For out-of-

phase systems, single mode parametric instabilities for the first harmonic are not possible

for even number of planets and odd number of ring gear teeth. Single mode parametric

instabilities for the second harmonic can occur only for modes having phase index mod(Zr, N)

or mod(Zr +N/2, N) for even N .

Planetary gears with different planet phasing conditions (which depend on sun and

ring tooth numbers and the number of planets) can have significantly different behaviors

of parametric instabilities. Slightly changing the gear tooth numbers can suppress certain

parametric instabilities with minimal change in the natural frequencies and mode shapes.



Chapter 5

Nonlinear Dynamics of Spinning

Planetary Gears with a Deformable

Ring

5.1 Introduction

Planetary gears are widely used in aerospace systems due to their compactness, high

power density, and large transmission ratio. Their vibrations lead to larger dynamic tooth

mesh and bearing loads than the quasi-static ones, influencing fatigue lives of gears and

bearings negatively. The periodically changing sun-planet and ring-planet mesh stiffnesses

are the vibration source. Near resonances where a harmonic of the time-varying mesh stiff-

nesses coincides with a natural frequency or twice a natural frequency, vibrations can become

large enough that gear teeth that are normally in contact separate. Tooth contact loss is

a strong nonlinearity that can induce jump, period-doubling, and chaos in the dynamic re-

sponse. Such nonlinear behaviors have been demonstrated in experiments and finite element

127
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simulations [16, 48].

Most literature [11, 16, 49–52, 55–57] studied the nonlinear dynamics of planetary gears

using lumped parameter models where the sun, carrier, planets, and ring gear are treated

as rigid bodies. The elastic deformations of each component including the thin ring gear

are ignored. A few studies [15, 19, 20, 22] considered elastic ring or carrier in the dynamic

simulations of planetary gears, but nonlinear behaviors due to gear tooth contact loss are

not investigated in these studies.

Coriolis and centripetal acceleration effects arise from carrier or ring rotation. They alter

natural frequencies and vibration modes of planetary gears [10]. Real-valued standing-wave

modes become complex-valued traveling-wave modes due to the gyroscopic (i.e., Coriolis)

effects. Degenerate natural frequencies split for planetary gears with an elastic ring, as

shown in Chapter 3. At high speed, divergence and flutter instabilities can occur [104]. The

gyroscopic and centripetal effects on the nonlinear dynamics of planetary gears are rarely

touched, however. Most literature [11, 15, 16, 19, 49–52, 55–57] ignored them without any

justification. Whether these effects have meaningful influences on the nonlinear dynamics of

planetary gears or not needs investigation.

Planet mesh phasing plays an important role in planetary gear dynamics. A few papers

[6, 105–110] have used the planet mesh phasing to suppress translational and rotational vi-

brations of central members (the sun gear, carrier, and ring gear). Among them, Parker [110]

identified mesh phasing rules to suppress certain harmonics of translational and rotational

vibration modes [9]. Ambarisha and Parker [111] extended the mesh phasing rules in [110]

to suppress certain harmonics of planet mode responses [9]. Planet mesh phasing can also

suppress parametric instabilities [43, 44]. The above studies [6, 43, 44, 105–111], however,

did not consider the gyroscopic effects.
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Numerical simulations and harmonic balance method with arclength continuation are

two common approaches to solve the nonlinear dynamics of planetary gears. Ambarisha and

Parker [16] simulated nonlinear dynamics of planetary gears with an analytical model and

successfully correlated them to those from a finite element/contact mechanics model. Jumps,

period-doubling bifurcations, and chaotic behaviors occur in their simulations. Masoumi

et.al. [11] demonstrated symmetry breaking induced by chaotic response in their simulations.

Li et.al. [49] numerically simulated the nonlinear dynamics of a two-stage planetary gear

train. Numerical simulations give only stable solutions, while harmonic balance method

with arclength continuation yields both stable and unstable solutions. Sun and Hu [50]

studied nonlinear dynamics of planetary gears with single-term harmonic balance method.

Al-Shyyab and Kahraman [51] investigated nonlinear dynamics of planetary gears using

multi-term harmonic balance method. The harmonic balance solutions agreed with those

from numerical integration and finite element simulations. Ref. [52] extended the model

and solution method in [51] to multi-stage planetary gear trains. Zhu et.al. [55] investigated

nonlinear dynamic characteristics of compound planetary gear sets with single-term harmonic

balance method. Neither of numerical simulations or harmonic balance method gives closed-

form solutions that explicitly show parameter dependence of the nonlinear dynamic response.

Bahk and Parker [56] derived closed-form approximations for the nonlinear dynamics of

planetary gears with the method of multiple scales. Their analytical solutions compared

well against the solutions from harmonic balance methods, numerical integration, and finite

element simulations. From the analytical solutions, they concluded tooth separation occurs

even under large torques, which differs from conventional thinking that large torques suppress

contact loss. In a different study, Bahk and Parker [57] investigated the effects of tooth profile

modification on the nonlinear dynamics of planetary gears with analytical solutions.

This work investigates nonlinear dynamics of spinning planetary gears with a deformable
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ring and equally-spaced planets using the dynamic model from Chapter 2. Speed-dependent

gyroscopic and centripetal effects are included. The sun-planet and ring-planet meshes in-

clude time-varying mesh stiffnesses and tooth separation nonlinearity. Numerical integration

of the model gives the dynamic response. We compare the dynamic response to those from a

commercial finite element/contact mechanics (FE/CM) software [12, 72, 73] for verification.

Use of the method of multiple scales yields closed-form approximations for the frequency re-

sponse functions near resonances. The analytical results are compared against results from

numerical integration for verification. Influences of the planet mesh phasing and gyroscopic

effects on the dynamics are studied numerically and analytically.

5.2 Modeling of Planetary Gear Dynamics

The two-dimensional planetary gear model developed in Chapter 2, extended to include

tooth separation nonlinearity, is adopted here. Figure 5.1 shows the hybrid elastic-discrete

model that includes an elastic ring, rigid bodies of the sun, carrier, and planets, and a circular

rigid body (which is depicted by the largest circle in Fig. 5.1) that connects the elastic ring

through a uniform elastic foundation. The gear mesh is modeled as a periodically changing

stiffness in the line of action. The tooth separation nonlinearity is included such that the

mesh stiffness acts only when compressed and exerts no force when the mesh separates. All

other stiffnesses in Fig. 5.1 are linear. All components can rotate. The carrier and ring have

speeds Ωc and Ωr, respectively. The sun and planet speeds can be derived from kinematics.

The dimensional equation of motion for a planetary gear with N planets from Chapter

2 is

Mχ̈+ (ΩrGr + ΩcGc)χ̇+ [K(χ, t)− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc]χ = f , (5.1a)
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Figure 5.1: Schematic of a planetary gear model with a deformable ring.

χ =

[
w(θ, t)T q(t)T

]T
, (5.1b)

w =

[
u v β

]T
, (5.1c)

q =

[
xb yb ub︸ ︷︷ ︸

pb

xc yc uc︸ ︷︷ ︸
pc

xs ys us︸ ︷︷ ︸
ps

ζ1 η1 u1︸ ︷︷ ︸
p1

. . . ζN ηN uN︸ ︷︷ ︸
pN

]T
, (5.1d)

The extended vector χ includes both elastic (w(θ, t)) and discrete (q(t)) motions. These

coordinates are described in the rotating carrier reference frame with speed Ωc. xh, yh for h =

s, c, b represent the translations of the sun, carrier, and ring rigid body in the E1 and E2

directions, where {E1,E2,E3} (Fig. 5.1) is a carrier-fixed basis. ζn, ηn are the radial and

tangential deflections for the n-th planet at an angular position ψn with respect to the



132

rotating basis vector E1. Without loss of generality, ψ1 = 0. uj for j = 1, 2, · · · , N, s, c, b

are the rotational deflections (rotation in radians times the gear base radii Rp and Rs, the

center distance Rc for the carrier, and the radius Rb for the ring rigid body). The elastic

ring deformations w(θ, t) include the radial (u(θ, t)) and tangential (v(θ, t)) deflections of the

ring neutral axis and its cross-sectional rotation angle (β(θ, t)), where θ defines an angular

position relative to the carrier-fixed basis vector E1.

The extended mass (M), gyroscopic (Gr and Gc), and centripetal (Cr, Cc, and Crc)

operators and also the forcing vector f in Eq. (5.1a) are identical to those in Chapter

2 except that Chapter 2 presented them in dimensionless form. The extended stiffness

operator K(χ, t) is the same with the dimensional form of K in Chapter 2 with ksn, krn in

K substituted by the nonlinear, time-varying mesh stiffnesses

ksn(χ, t) = ksn(t)H(∆sn) =


ksn(t), ∆sn > 0,

0, ∆sn ≤ 0,

krn(χ, t) = krn(t)H(∆rn) =


krn(t), ∆rn > 0,

0, ∆rn ≤ 0,

∆sn = (−xs sinψsn + ys cosψsn + us) + (−ζn sinαs − ηn cosαs + un),

∆rn = (ζn sinαr − ηn cosαr − un)

+ [−u sinαr + v cosαr − Γβ cosαr]θ=ψn , n = 1, 2, . . . , N,

(5.2)

where αs and αr are the sun-planet and ring-planet pressure angle, ψsn = ψn − αs, and Γ

is the radial distance from the ring contact point to the ring neutral axis (See Fig. 2.3 in

Chapter 2).

The nonlinear stiffness operator K(χ, t) in Eq. (5.1) is separated into linear time-
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invariant and nonlinear time-varying parts as

K(χ, t) = K0 +
N∑
n=1

[
ksn(t)KsnH(∆sn) + krn(t)KrnH(∆rn)

]
, (5.3)

where K0 is the same with K(χ, t) with vanishing sun-planet and ring-planet mesh stiff-

nesses for all planets. The linear mesh stiffness operator Ksn (Krn) has the same form with

K(χ, t) with all stiffnesses other than ksn(t)H(∆sn) (krn(t)H(∆rn)) vanishing and the mesh

stiffnesses ksn(t)H(∆sn) (krn(t)H(∆rn)) replaced by one.

The mesh stiffnesses ksn(t) and krn(t) vary periodically with mesh frequency ωm. Fourier

representations of the mesh stiffnesses are

ksn(t) = ksp +
∞∑
L=1

[k(L)sn e
jLωmt + c.c.], (5.4a)

krn(t) = krp +
∞∑
L=1

[k(L)rn e
jLωmt + c.c.], (5.4b)

where c.c. denotes the complex conjugate of the preceding term. Chapter 4 shows the Fourier

coefficients k
(L)
sn and k

(L)
rn are related to k

(L)
s1 and k

(L)
r1 by

k(L)sn = k
(L)
s1 e

−j2πLγsn , k(L)rn = k
(L)
r1 e

−j2πLγrn , (5.5)

where γsn and γrn are the mesh phases between sun-planet and ring-planet meshes for the

n-th planet and those for the first planet, respectively. For equally-spaced planets, Chapter

2 gives

γsn = γrn = Zsψn/(2π) = −Zrψn/(2π) (5.6)

for counter-clockwise rotation of the carrier relative to the ring gear (i.e., Ωc > Ωr), where

Zs and Zr are the sun and ring gear tooth numbers. The signs of γsn and γrn are reversed
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for systems with clockwise rotation of the carrier relative to the ring gear (i.e., Ωc < Ωr).

The eigenvalue problem of Eq. (5.1) with linear time-invariant mesh stiffnesses ksp and

krp is

λ2iMχi + λi(ΩrGr + ΩcGc)χi + (K− Ω2
rCr − Ω2

cCc − 2ΩrΩcCrc)χi = 0, (5.7a)

K = K0 +
N∑
n=1

kspKsn +
N∑
n=1

krpKrn. (5.7b)

where the eigenvalue λi = jωi is purely imaginary and the vibration mode χi(θ) is complex-

valued when the gyroscopic system operates at speeds below the first critical speed [100].

When the gyroscopic effects are neglected, χi(θ) is real-valued. The inner product of two

arbitrary extended vectors χ1 = [wT
1 qT1 ]T and χ2 = [wT

2 qT2 ]T is defined as

〈χ1, χ2〉 =

∫ 2π

0

wT
1w2dθ + qT1 q2, (5.8)

where the overbar denotes complex conjugate. The linear operators M, K, Cr, Cc, and Crc

are self-adjoint and Gr and Gc are skew self-adjoint with respect to the inner product in Eq.

(5.8).

The discretization method from Chapter 2 is adopted here to discretize Eq. (5.1a) to

give

[M]z̈ + (Ωr[Gr] + Ωc[Gc])ż + ([K](z, t)− Ω2
r[Cr]− Ω2

c [Cc]− 2ΩrΩc[Crc])z = f̃ , (5.9)

where z is the discretized coordinates. The discretized matrices [M], [Gr], [Gc], [K](z, t),

[Cr], [Cc], and [Crc] and vector f̃ correspond to the extended operators M, Gr, Gc, K(χ, t),

Cr, Cc, and Crc and vector f in Eq. (5.1a), respectively. The corresponding discretized
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eigenvalue problem of Eq. (5.9) is

λ2i [M]zi + λi(Ωr[Gr] + Ωc[Gc])zi + ([K]− Ω2
r[Cr]− Ω2

c [Cc]− 2ΩrΩc[Crc])zi = 0, (5.10)

where the discretized matrix [K] corresponds to the extended operator K in Eq. (5.7b).

A damping matrix [D] is introduced to the discretized model in Eq. (5.9) with [D] =

[Ψ]−Tdiag(2νiωi)[Ψ]−1, where [Ψ] is the orthonormalized modal matrix with respect to [M]

from the eigenvalue problem in Eq. (5.10) without gyroscopic and centripetal terms and νi

is the modal damping ratio. The final equation including damping for numerical simulation

is

[M]z̈ + (Ωr[Gr] + Ωc[Gc] + [D])ż + ([K](z, t)−Ω2
r[Cr]−Ω2

c [Cc]− 2ΩrΩc[Crc])z = f̃ . (5.11)

5.3 Nonlinear Dynamics Benchmarking Comparisons

The analytical model has been successfully compared to a finite element/contact me-

chanics (FE/CM) model [12, 72, 73] on natural frequencies and vibration modes in Chapter 3.

Because of the differences between the analytical and FE/CM models, the analytical model

was adjusted for that comparison. This work makes the same adjustment of the analytical

model to compare the nonlinear dynamics from the analytical and FE/CM models. For this

comparison, the gyroscopic and centripetal terms in Eq. (5.11) are eliminated because these

terms are not considered in the dynamic analysis of the FE/CM model.

The comparison is conducted on the same three-planet in-phase system with equal planet

spacing used in Chapter 3. Refer to Table 3.1 in Chapter 3 for detailed system parameters.

The input and output members are the sun and ring gears, respectively. The carrier is
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stationary. The input torque on the sun is 300 N·m. The time-varying sun-planet (ksn(t))

and ring-planet (krn(t)) mesh stiffnesses for the analytical model are calculated from single-

pair sun-planet and ring-planet FE/CM models using a local slope method [86]. Figure 5.2

shows the mesh stiffnesses for the first planet over one mesh cycle. Because the present

example has in-phase tooth meshes, all of the sun-planet (ring-planet) mesh stiffnesses have

the same values at each instant over a mesh cycle.
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Figure 5.2: Dimensional sun-planet (solid line) and ring-planet (dashed line) mesh stiffnesses.

Non-gyroscopic planetary gears with equally-spaced planets and a deformable ring in

general have four sets of natural frequencies and vibration modes: rotational, translational,

planet, and purely ring modes [21]. Planet modes exist only for systems with N > 3 planets.

The first thirty-one natural frequencies for the present three-planet example system, grouped

into rotational, translational, and purely ring modes, are shown in Table 5.1. These natural

frequencies are calculated from the analytical discretized eigenvalue problem in Eq. (5.10)

without gyroscopic and centripetal terms, and they match those from the FE/CM model

except that the two purely ring mode natural frequencies ω13, ω30 are not captured from
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Table 5.1: Natural frequencies of the example system from Chapter 3.

Mode types Natural frequencies (Hz)

Rotational ω1 = 293.8, ω6 = 650.6, ω7 = 1156, ω10 = 1574, ω16 = 2981, ω21 =
4543, ω24 = 5522, ω29 = 6705, ω31 = 7827

Translational ω2, ω3 = 370.4, ω4, ω5 = 582.9, ω8, ω9 = 1160, ω11, ω12 =
1595, ω14, ω15 = 2173, ω17, ω18 = 3216, ω19 = ω20 = 4071, ω22, ω23 =
5013, ω25, ω26 = 5918, ω27, ω28 = 6554

Purely ring ω13 = 1636, ω30 = 6858

impulse tests of the FE/CM model. Higher natural frequencies are not concerned in the

nonlinear dynamics comparison because they are hardly excited.

The FE/CM model uses Rayleigh damping [D]fe = αfe[M]fe + βfe[K]fe for the finite

element mesh and 3 × 3 viscous damping matrix for bearings. For the present example,

the damping matrix for each bearing has only diagonal components. Table 5.2 shows the

damping values for the FE/CM model. Processing the impulse responses of the FE/CM

Table 5.2: Bearing damping and Rayleigh damping for the FE/CM model.

Bearing damping Translational (N·s/m) Rotational (N·m·s)

Sun-ground 1 5

Carrier-ground 8 50

Ring-ground 5 20

Planet-carrier radial: 2 5

tangential: 8

Rayleigh damping αfe = 479 s, βfe = 1.2× 10−7 s−1



138

model with LMS Test.Lab [99] gives modal damping ratios associated with each of the

rotational and translational natural frequencies in Table 5.1. These modal damping ratios

were used in the analytical model. Modal damping ratios for the two purely ring natural

frequencies are arbitrarily chosen. They do not affect the dynamic response of the non-

gyroscopic planetary gear much because these two purely ring modes are hardly excited by

the mesh excitations in the analytical model. Table 5.3 shows the modal damping ratios for

all the natural frequencies in Table 5.1.

Table 5.3: Modal damping ratios for the analytical model.

Rotational ν1 = 25.7%, ν6 = 6.93%, ν7 = 3.72%, ν10 = 5.00%, ν16 = 5.50%, ν21 =
3.60%, ν24 = 0.990%, ν29 = 3.75%, ν31 = 1.30%

Translational ν2, ν3 = 18.2%, ν4, ν5 = 6.55%, ν8, ν9 = 3.62%, ν11, ν12 = 5.44%, ν14, ν15 =
3.63%, ν17, ν18 = 3.61%, ν19, ν20 = 3.05%, ν22, ν23 = 0.980%, ν25, ν26 =
3.44%, ν27, ν28 = 1.03%

Purely ring ν13 = 5.48%, ν30 = 1.30%

Figure 5.3 shows the rms (mean-removed) values of steady-state planet 1 tangential

deflection from the FE/CM model and numerical integration (NI) of the analytical discretized

model in Eq. (5.11). The results from NI agree well with those from the FE/CM model.

The spectra of the planet 1 tangential deflection for decreasing speed sweeps from FE/CM

and NI in Fig. 5.4a and 5.4b show agreements between these two solutions at each mesh

frequency harmonic.

A nonlinear jump occurs at the resonance of 2ωm ≈ ω29 = 6705 Hz. Bending of the

rms resonance curve to the left indicates softening nonlinearity induced by tooth contact

loss. The rms response jumps up for increasing mesh frequency and jumps down at a lower

frequency for decreasing mesh frequency. Multiple steady-state solutions are possible in

between the jump up and jump down frequencies. A resonance at ωm ≈ ω16 = 2981 Hz
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Figure 5.3: Steady state rms values (mean removed) of planet 1 tangential deflection for

increasing and decreasing speed sweeps for the example system from Chapter 3. ( )

FE/CM model; ( ) analytical model.

coincides with the jump zone (Fig. 5.3). Because of the contribution of the resonance of

ω16, the rms curve reaches a peak before jumping up and down for increasing and decreasing

mesh frequency, respectively. Another jump occurs at the resonances of 2ωm ≈ ω31 = 7827

Hz for the FE/CM solution. The mesh frequency range between the jump up and jump down

frequencies is small. At the jump down frequency, the system experiences quasi periodic-3Tm

vibrations (Fig. 5.4a), where Tm = 2π/ωm is the mesh period. The analytical model predicts

sharp amplitude change for this resonance instead.

Tooth separation starts from 3400 Hz and 3975 Hz (indicated by the open circles in Fig.
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Figure 5.4: Waterfall spectra of planet 1 tangential deflection for decreasing speeds in (a)

FE/CM and (b) analytical models for the same system used in Fig. 5.3.

5.3) and continues for decreasing mesh frequency until the amplitude jumps down. Figure

5.5 and Figure 5.6 show the mesh forces at the mesh frequencies 3200 Hz and 3900 Hz for

the two zones of tooth separation, respectively. At ωm = 3200 Hz, the sun-planet 1 mesh
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loses contact while the ring-planet 1 mesh does not. In contrast, the ring-planet 1 mesh

loses contact while the sun-planet 1 mesh keeps in contact at ωm = 3900 Hz. This difference

is related to the resonant modes at the two mesh frequencies. The resonant mode ω29 (not

shown) at 3200 Hz has much higher sun-planet 1 mesh force than ring-planet 1 mesh force,

while the ring-planet 1 mesh force is much higher for the resonant mode ω31 (not shown) at

3900 Hz. The mesh forces for the analytical and FE/CM models in Fig. 5.5 and Fig. 5.6

match well with each other.
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Figure 5.5: Steady state (a) sun-planet 1 and (b) ring-planet 1 mesh loads at mesh frequency

3200 Hz for the same system used in Fig. 5.3. The solid and dashed lines represent results

from the FE/CM and analytical models, respectively.

Figure 5.4 shows the resonances of ω16 and ω21 excited by the first harmonic of mesh

frequency, ω24 and ω29 by the second harmonic, and ω31 by the second and third harmonics.

All of these excited modes are rotational modes. No resonances of the translational modes

(for example, ω17 and ω18) occur. This agrees with the mesh phasing rule in [110, 111] that

gives only rotational modes are excited by all harmonics of mesh frequency for an in-phase

system with period-Tm vibrations.



142

0 1 2 3

Mesh cycle

0

1000

2000

3000

4000
S

u
n

-p
la

n
e

t 
1

 m
e

s
h

 f
o

rc
e

 (
N

)

(a)

0 1 2 3

Mesh cycle

0

2000

4000

6000

R
in

g
-p

la
n

e
t 

1
 m

e
s
h

 f
o

rc
e

 (
N

)

(b)

Figure 5.6: Steady state (a) sun-planet 1 and (b) ring-planet 1 mesh loads at mesh frequency

3900 Hz for the same system used in Fig. 5.3. The solid and dashed lines represent results

from the FE/CM and analytical models, respectively.

5.4 Analytical Solutions for Nonlinear Dynamics near

Resonances

Numerical simulations provide limited understanding of the nonlinear dynamics. For

example, one may not be able to find the answer from numerical results to the question why

tooth separation occurs for certain resonances but does not for some others. Conclusions

derived from numerical simulations of several cases may not generalize well to other cases.

Refs. [56, 112] derived analytical solutions for the dynamics of idler gears and planetary gears

using the method of multiple scales. These analytical solutions reveal how system parameters

(for example, mesh stiffness variations) affect the nonlinear dynamics. Lumped-parameter

models without speed-dependent gyroscopic effects are used in these two studies [56, 112],

however. This work derives closed-form approximations for the dynamics of planetary gears

with an elastic ring and gyroscopic and centripetal effects using multiple scale perturbation
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method.

We define two small parameters ε = |k(1)r1 |/krp and µ = |k(1)s1 |/ksp with µ = gε, where

g = O(1). Use of ε and µ in Eq. (5.4) yields

ksn(t) = ksp + µksp

∞∑
L=1

[C(L)
sn e

jLωmt + c.c.], (5.12a)

krn(t) = krp + εkrp

∞∑
L=1

[C(L)
rn e

jLωmt + c.c.], (5.12b)

C(L)
sn = k(L)sn /|k

(1)
s1 |, C(L)

rn = k(L)rn /|k
(1)
r1 |. (5.12c)

The time of tooth separation is small, i.e., O(ε), compared to one mesh period, as shown

in Fig. 5.5 and Fig. 5.6. As a result, the tooth separation functions can be expressed as

H(∆sn) = 1 + µhsn, H(∆rn) = 1 + εhrn. (5.13)

Substitution of Eq. (5.3) into Eq. (5.1a) and invoking Eqs. (5.12) and (5.13) give

Mχ̈+ Gχ̇+

[
K0 +

N∑
n=1

ksp(1 + µQ̂sn)Ksn(1 + µhsn)

+
N∑
n=1

krp(1 + εQ̂rn)Krn(1 + εhrn)−C

]
χ = f , (5.14a)

G = (ΩrGr + ΩcGc), C = Ω2
rCr + Ω2

cCc + 2ΩrΩcCrc, (5.14b)

Q̂sn =
∞∑
L=1

[C(L)
sn e

jLωmt + c.c.], Q̂rn =
∞∑
L=1

[C(L)
rn e

jLωmt + c.c.]. (5.14c)

The state space form of Eq. (5.14a) is

Aφ̇+ Bφ+ ε

N∑
n=1

[
gkspQsnEsn + krpQrnErn

]
φ+O(ε2) = f̂ , (5.15a)
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φ =

[
χ̇T χT

]T
, (5.15b)

A =

M 0

0 K−C

 , B =

 G K−C

−(K−C) 0

 , (5.15c)

Esn =

0 Ksn

0 0

 , Ern =

0 Krn

0 0

 , (5.15d)

f̂ =

[
fT 0

]T
, (5.15e)

Qsn = Q̂sn + hsn, Qrn = Q̂rn + hrn. (5.15f)

We define the inner product of two elements a =

[
aT1 aT2

]T
and b =

[
bT1 bT2

]T
in the

state space as

(a, b) = 〈a1, b1〉+ 〈a2, b2〉, (5.16)

where ai and bi (i = 1, 2) have the same form of χ in Eq. (5.1b) and 〈·, ·〉 is the configuration

space inner product defined in Eq. (5.8). The eigenvalue problem of Eq. (5.15a) considering

linear time-invariant mesh stiffnesses is

λiAφi + Bφi = 0, φi =

[
λiχ

T
i χTi

]T
. (5.17)

The eigenfunctions φi(θ) are orthogonal with respect to A and B such that

(
φl, Aφi

)
= δli,

(
φl, Bφi

)
= −jωiδli, (5.18)

where δli is the Kronecker delta.



145

The solution of Eq. (5.15a) is expanded in modal coordinates as

φ(θ, t) =
∞∑
i=1

[ai(t)φi(θ) + āi(t)φ̄i(θ)]. (5.19)

Substitution of Eq. (5.19) into Eq. (5.15a), taking the inner product of the resulting equation

with the eigenfunctions φl(θ), and invoking the orthogonality conditions in Eq. (5.18) give

ȧl + ερlal − jωlal + ε
∞∑
i=1

N∑
n=1

{
gkspQsn

[(
φl, Esnφi

)
ai +

(
φl, Esnφ̄i

)
āi
]

+krpQrn

[(
φl, Ernφi

)
ai +

(
φl, Ernφ̄i

)
āi
]}

= fl, l = 1, 2, . . . , (5.20a)

fl =
(
φl, f̂

)
, (5.20b)

where modal damping ερl = 2νlωl is introduced.

By introducing the multiple time scales tn = εnt, we expand the modal coordinates in

an asymptotic power series of ε as

al(t; ε) = al0(t0, t1) + εal1(t0, t1) +O(ε2), l = 1, 2, . . . . (5.21)

Substitution of Eq. (5.21) into Eq. (5.20a), using d/dt→ ∂/∂t0 + ε∂/∂t1, and collecting like

powers of ε give

∂al0
∂t0
− jωlal0 = fl, (5.22a)

∂al1
∂t0
− jωlal1 = −∂al0

∂t1
− ρlal0 −

∞∑
i=1

N∑
n=1

{
gkspQsn

[(
φl, Esnφi

)
ai0

+
(
φl, Esnφ̄i

)
āi0
]

+ krpQrn

[(
φl, Ernφi

)
ai0 +

(
φl, Ernφ̄i

)
āi0
]}
. (5.22b)

Substitution of Eq. (5.15d) into
(
φl, Esnφi

)
,
(
φl, Esnφ̄i

)
,
(
φl, Ernφi

)
, and

(
φl, Ernφ̄i

)
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and expansion of these four quantities give

(
φl, Esnφi

)
= −jωl∆̄[l]

sn∆[i]
sn,

(
φl, Esnφ̄i

)
= −jωl∆̄[l]

sn∆̄[i]
sn, (5.23a)(

φl, Ernφi
)

= −jωl∆̄[l]
rn∆[i]

rn,
(
φl, Ernφ̄i

)
= −jωl∆̄[l]

rn∆̄[i]
rn, (5.23b)

∆[l]
sn = (−x[l]s sinψsn + y[l]s cosψsn + u[l]s )

+(−ζ [l]n sinαs − η[l]n cosαs + u[l]n ), (5.23c)

∆[l]
rn = (ζ [l]n sinαr − η[l]n cosαr − u[l]n )

+[−u[l] sinαr + v[l] cosαr − Γβ[l] cosαr]θ=ψn , (5.23d)

where ∆
[l]
sn and ∆

[l]
rn are the n-th sun-planet and ring-planet mesh deflections for the mode

χl. Chapter 4 shows these modal mesh deflections satisfy

∆[l]
sn = ejTlψn∆

[l]
s1, ∆[l]

rn = ejTlψn∆
[l]
r1, (5.24)

where Tl ∈ {0, 1, 2, . . . , N − 1} is an integer or phase index associated with the mode χl.

Planetary gears with gyroscopic effects have three types of modes: rotational, translational,

and planet modes. Planet modes only exist for systems with N > 3 planets. All rotational

modes have phase index 0. A translational mode is associated with phase index 1 or N − 1

(not both), and a planet mode has phase index d ∈ {2, . . . , N − 2}.

We assume that a single mode dominates the response near resonances. The response

is nearly harmonic [16, 113, 114] and has the form

χ = χ̂+ [alχle
jωt + c.c.], (5.25)

where ω ≈ ωl is the response frequency. For primary resonances, the response frequency

equals the mesh frequency, i.e., ω = ωm. For subharmonic, superharmonic, and second
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harmonic resonances, ω = ωm/2, ω = 2ωm, and ω = 2ωm, respectively. The limitations of

the assumption of single mode dominance are discussed later.

5.4.1 Primary Resonance

Primary resonance occurs when the mesh frequency is close to a natural frequency, i.e.,

ωm = ωk + εσ, where σ is a detuning parameter. The solution of Eq. (5.22a) is

al0 = Al(t1)e
jωlt0 + jfl/ωl, l = 1, 2, . . . . (5.26)

Substitution of Eq. (5.26) into Eq. (5.22b) and vanishing the secular terms on the right

hand side of the resulting equation lead to

∂Al/∂t1 + ρAl +
N∑
n=1

[
gksphsn

(
φl, Esnφl

)
+ +krphrn

(
φl, Ernφl

)]
Al = 0 (5.27)

for l 6= k. According to Ref. [56], the steady state solution of Eq. (5.27) is Al = 0. The

solution for l = k in Eq. (5.26) is

ak0 = Ak(t1)e
j(ωm−εσ)t0 + jfk/ωk = Bk(t1)e

jωmt0 + jfk/ωk, (5.28)

where Bk(t1) = Ak(t1)e
−jσt1 . Therefore, the leading order solution is periodic with mesh

frequency. Substitution of Ak(t1) = 1/2dk(t1)e
jφk(t1) into Eq. (5.28) yields

ak0 = 1/2dk(t1)e
j(ωmt0−γk(t1)) + jfk/ωk, (5.29)

where γk(t1) = σt1 − φk(t1).
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The sun-planet and ring-planet mesh deflections are

∆sn = ∆sn,0 + 1/2dk(∆
[k]
sne

j(ωmt0−γk) + c.c.)

= ∆sn,0 + dk|∆[k]
sn| cos(ωmt0 − γk + θ[k]sn), (5.30a)

∆rn = ∆rn,0 + 1/2dk(∆
[k]
rne

j(ωmt0−γk) + c.c.)

= ∆rn,0 + dk|∆[k]
rn| cos(ωmt0 − γk + θ[k]rn), (5.30b)

∆sn,0 =
∞∑
i=1

(jfi/ωi)∆
[i]
sn + c.c., ∆rn,0 =

∞∑
i=1

(jfi/ωi)∆
[i]
rn + c.c., (5.30c)

where θ
[k]
sn and θ

[k]
rn are the phase angles of the complex-valued modal mesh deflections ∆

[k]
sn and

∆
[k]
rn, respectively. In general, ∆

[k]
sn 6= ∆

[k]
rn for complex-valued gyroscopic modes. Therefore,

the sun-planet and ring-planet mesh deflections for a single planet are out-of-phase. This

differs from the case for non-gyroscopic planetary gears where the sun-planet and ring-planet

mesh deflections for a single planet are either in-phase or 180 degree out-of-phase.

Figure 5.7 depicts the relationship between the tooth separation function H(∆jn) and

the corresponding mesh deflection ∆jn, where j = s, r. They are in-phase with each other.

Fourier expansions of the tooth separation functions are

H(∆sn) = 1 + µ
{
h(0)sn +

∞∑
q=1

[h(q)sn e
jq(ωmt0−γk+θ

[k]
sn) + c.c.]

}
, (5.31a)

H(∆rn) = 1 + ε
{
h(0)rn +

∞∑
q=1

[h(q)rn e
jq(ωmt0−γk+θ

[k]
rn) + c.c.]

}
, (5.31b)

The time of separation during one period of response is denoted by ξjn/ωm. The Fourier

coefficients in Eq. (5.31) in terms of ξjn are

h(0)sn = − ξsn
2πµ

, h(0)rn = − ξrn
2πε

, (5.32a)
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Figure 5.7: Tooth separation function and mesh deflection.

h(q)sn =
sin q(π − ξsn/2)

qπµ
, h(q)rn =

sin q(π − ξrn/2)

qπε
, q = 1, 2, . . . . (5.32b)

Substitution of Eqs. (5.26) and (5.31) into the k-th modal equation of Eq. (5.22b) and

use of ωm = ωk + εσ yield the solvability condition

∂Ak
∂t1

+ ρkAk +
N∑
n=1

krpC
(2)
rn e

j2σt1
(
φk, Ernφ̄k

)
Āk

+
∞∑
i=1

N∑
n=1

krpC
(1)
rn e

jσt1
[(
φk, Ernφi

)
(j
fi
ωi

) +
(
φk, Ernφ̄i

)
(−j f̄i

ωi
)
]

+
∞∑
i=1

N∑
n=1

krph
(1)
rn e

j(σt1−ϕrn)
[(
φk, Ernφi

)
(j
fi
ωi

) +
(
φk, Ernφ̄i

)
(−j f̄i

ωi
)
]

+
N∑
n=1

krp
[
h(0)rn
(
φk, Ernφk

)
Ak + h(2)sn e

j2(σt1−ϕrn)
(
φk, Ernφ̄k

)
Āk
]

+ (r → s) = 0,

(5.33)
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where r → s denotes corresponding terms for the sun-planet mesh with krp replaced by

gksp. Substitution of Ak(t1) = 1/2dk(t1)e
jφk(t1) into Eq. (5.33), separation of the resulting

equation into real and imaginary parts, considering only the first mesh stiffness harmonic

terms, and invoking Eqs. (5.23) and (5.30c) give

∂dk
∂t1

= −ρkdk − 2ωk|R̂3| sin(γk + ψ), (5.34a)

dk
∂γk
∂t1

= σdk − 2ωkR̂1 − 2ωkR̂2dk − 2ωk|R̂3| cos(γk + ψ), (5.34b)

R̂1 =
N∑
n=1

krph
(1)
rn |∆[k]

rn|∆rn,0 + (r → s), (5.34c)

R̂2 =
N∑
n=1

krp
2

(h(0)rn + h(2)rn )|∆[k]
rn|2 + (r → s), (5.34d)

R̂3 =
N∑
n=1

krpC
(1)
rn ∆̄[k]

rn∆rn,0 + (r → s), (5.34e)

where ψ is the phase angle of R̂3. We discuss the error of neglecting the second and higher

mesh stiffness harmonic later.

For steady state periodic response, ∂dk/∂t1 = ∂γk/∂t1 = 0 in Eqs. (5.34a) and (5.34b)

yields the frequency response function

ωm = ωk +
2ωk
dk

[
R1 +R2dk ±

√
|R3|2 − (νkdk)2

]
, (5.35a)

R1 =
N∑
n=1

[
|k(1)s1 |h(1)sn |∆[k]

sn|∆sn,0 + |k(1)r1 |h(1)rn |∆[k]
rn|∆rn,0

]
, (5.35b)

R2 =
N∑
n=1

1

2

[
|k(1)s1 |(h(0)sn + h(2)sn )|∆[k]

sn|2 + |k(1)r1 |(h(0)rn + h(2)rn )|∆[k]
rn|2
]
, (5.35c)

R3 =
N∑
n=1

[
k(1)sn ∆̄[k]

sn∆sn,0 + k(1)rn ∆̄[k]
rn∆rn,0

]
. (5.35d)
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The steady state phase γk is

γk = tan−1

[
ρkdk

2ωkR̂1 + 2ωkR̂2dk − σdk

]
− ψ. (5.36)

Requiring ∆sn = ∆rn = 0 in Eq. (5.30) leads to the tooth separation angle

ξjn = 2 cos−1

[
∆jn,0

dk|∆[k]
jn|

]
, j = s, r. (5.37)

The quantities ∆sn,0 and ∆rn,0 in Eq. (5.30c) are identical for different planets (i.e., different

n) because the modal external force fi 6= 0 only for modes with phase index Ti = 0 and

modes of this type have identical mesh deflections for each planet (Eq. (5.24)). According

to Eq. (5.24), the amplitudes of the mesh deflections for an arbitrary mode χk are identical

for each planet, i.e., |∆[k]
jn| = |∆[k]

j1 | for j = s, r. Therefore, the tooth separation angles ξjn

in Eq. (5.37) are independent of the planet index n. With ξjn = ξj1, the tooth separation

Fourier coefficients h
(q)
jn in Eq. (5.32) for j = s, r and q = 0, 1, 2, . . . are identical for different

n.

Following the above discussions and using Eq. (5.5) with the mesh phase in Eq. (5.6)

for Ωc > Ωr and Eq. (5.24), the Rl in Eq. (5.35) are

R1 = N
[
|k(1)s1 |h

(1)
s1 |∆

[k]
s1 |∆s1,0 + |k(1)r1 |h

(1)
r1 |∆

[k]
r1 |∆r1,0

]
, (5.38a)

R2 =
N

2

[
|k(1)s1 |(h

(0)
s1 + h

(2)
s1 )|∆[k]

s1 |2 + |k(1)r1 |(h
(0)
r1 + h

(2)
r1 )|∆[k]

r1 |2
]
, (5.38b)

R3 =
[
k
(1)
s1 ∆̄

[k]
s1∆s1,0 + k

(1)
r1 ∆̄

[k]
r1∆r1,0

] N∑
n=1

ej(Zr−Tk)ψn . (5.38c)
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Because the identity

N∑
n=1

ejmψn =

 N, m/N = integer

0, m/N 6= integer

 (5.39)

holds for integer value of m, R3 vanishes for (Zr − Tk)/N 6= integer. From Eq. (5.35), the

peak resonant amplitude for the k-th mode is

dpeakk = |R3|/νk. (5.40)

Because R3 = 0 for the mode χk with its phase index satisfying (Zr − Tk)/N 6= integer, no

resonance occurs for the mode χk.

Eq. (5.38) applies to systems with Ωc > Ωr. For systems with Ωc < Ωr, use of −γrn

from Eq. (5.6) as the mesh phase in Eq. (5.35) leads to the same R1 and R2 as those in Eq.

(5.38) but a different R3 as

R3 =
[
k
(1)
s1 ∆̄

[k]
s1∆s1,0 + k

(1)
r1 ∆̄

[k]
r1∆r1,0

] N∑
n=1

e−j(Zr+Tk)ψn . (5.41)

From Eq. (5.41), the primary resonance of the mode χk is suppressed if its phase index

satisfies (Zr + Tk)/N 6= integer.

If (Zr−Tk)/N = integer for systems with Ωc > Ωr or (Zr +Tk)/N = integer for systems

with Ωc < Ωr, the term R3 has the expression

R3 = N
[
k
(1)
s1 ∆̄

[k]
s1∆s1,0 + k

(1)
r1 ∆̄

[k]
r1∆r1,0

]
. (5.42)

According to Eqs. (5.40) and (5.42), the peak amplitude depends only on known quantities
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and is immediately calculable. From Eq. (5.35), the peak frequency is

ωpeak
m = ωk +

2ωk
|R3|

(νkR1 +R2|R3|). (5.43)

To calculate this quantity, we determine the tooth separation angle ξjn using Eq. (5.37) and

calculate tooth separation Fourier coefficients h
(q)
jn for q = 0, 1, 2 using Eq. (5.32) so that R1

and R2 can be computed.

The condition ξjn = 0 marks the onset of contact loss for sun-planet (j = s) and

ring-planet (j = r) meshes. The amplitudes for the contact loss initiation points are

dk,j =
∆j1,0

|∆[k]
j1 |
, j = s, r. (5.44)

The corresponding frequencies that bound the range of contact loss are determined from Eq.

(5.35) as

ωm,j = ωk ±
2ωk
dk,j

√
|R3|2 − (νkdk,j)2, j = s, r. (5.45)

Whether contact loss occurs or not depends on the peak and contact loss initiation

point amplitudes. When dpeakk > max(dk,s, dk,r), contact loss occurs for both sun-planet and

ring-planet meshes. When dpeakk ≤ max(dk,s, dk,r) and dpeakk > min(dk,s, dk,r), only one of the

two meshes that has lower contact loss initiation point amplitude experience contact loss.

Otherwise, no contact loss occurs.

Stability of the analytical solution in Eq. (5.35) is determined by the eigenvalues of Eqs.

(5.34a) and (5.34b) linearized about an equilibrium.
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5.4.2 Subharmonic Resonance

Subharmonic resonance with period-2Tm motion occurs when the mesh frequency is

close to twice a natural frequency, i.e., ωm = 2ωk + εσ. A similar procedure as for primary

resonance gives the frequency response relation for subharmonic resonance as

ωm = 2ωk + 4ωk

[
R1

dk
+R2 ±

√
|R3|2 − ν2k

]
, (5.46a)

R1 = N
[
|k(1)s1 |h

(1)
s1 |∆

[k]
s1 |∆s1,0 + |k(1)r1 |h

(1)
r1 |∆

[k]
r1 |∆r1,0

]
, (5.46b)

R2 =
N

2

[
|k(1)s1 |(h

(0)
s1 + h

(2)
s1 )|∆[k]

s1 |2 + |k(1)r1 |(h
(0)
r1 + h

(2)
r1 )|∆[k]

r1 |2
]
, (5.46c)

R3 =
1

2

[
k
(1)
s1 ∆̄

[k]
s1 ∆̄

[k]
s1 + k

(1)
r1 ∆̄

[k]
r1 ∆̄

[k]
r1

] N∑
n=1

ej(Zr−2Tk)ψn . (5.46d)

According to Eq. (5.39), R3 = 0 for modes χk with phase index satisfying (Zr − 2Tk)/N 6=

integer, and, therefore, subharmonic resonance does not occur. Otherwise,

R3 =
N

2

[
k
(1)
s1 ∆̄

[k]
s1 ∆̄

[k]
s1 + k

(1)
r1 ∆̄

[k]
r1 ∆̄

[k]
r1

]
. (5.47)

If the absolute value of R3 is smaller than the modal damping ratio νk, subharmonic res-

onance is suppressed by the damping. Otherwise, subharmonic resonance occurs. Because

R3 depends on only the number of planets, mesh stiffness variations, and modal deflections,

the occurrence of subharmonic resonance can be quickly identified.

The mesh phase γrn in Eq. (5.6) for Ωc > Ωr is used in the derivation of Eq. (5.46).

For systems with Ωc < Ωr, the term R3 in Eq. (5.46) becomes

R3 =
1

2

[
k
(1)
s1 ∆̄

[k]
s1 ∆̄

[k]
s1 + k

(1)
r1 ∆̄

[k]
r1 ∆̄

[k]
r1

] N∑
n=1

e−j(Zr+2Tk)ψn , (5.48)
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while other terms in Eq. (5.46) stay the same. Eq. (5.48) yields the suppression of the

subharmonic resonance for the mode χk with phase index satisfying (Zr +2Tk)/N 6= integer.

5.4.3 Second Harmonic Excitation and Superharmonic Resonances

When twice the mesh frequency is near a natural frequency ωm = ωk/2 + εσ, second

harmonic excitation and superharmonic resonances can occur. The former one (i.e., second

harmonic excitation resonance) is similar to the primary resonance case except the second

harmonic of the mesh stiffnesses is the excitation, and the latter one (i.e., superharmonic res-

onance) results from the first harmonic of the mesh stiffnesses. It is difficult to identify their

separate contributions to the dynamic response from numerical results. This work inves-

tigates the second harmonic excitation and nonlinear superharmonic resonances separately

using perturbation analysis instead.

Using a similar procedure as for primary resonance but considering the second harmonic

of mesh stiffnesses gives the frequency response function for second harmonic excitation

resonance as

ωm =
ωk
2

+
ωk
dk

[
R1 +R2dk ±

√
|R3|2 − (νkdk)2

]
, (5.49a)

R1 = N
[
|k(1)s1 |h

(1)
s1 |∆

[k]
s1 |∆s1,0 + |k(1)r1 |h

(1)
r1 |∆

[k]
r1 |∆r1,0

]
, (5.49b)

R2 =
N

2

[
|k(1)s1 |(h

(0)
s1 + h

(2)
s1 )|∆[k]

s1 |2 + |k(1)r1 |(h
(0)
r1 + h

(2)
r1 )|∆[k]

r1 |2
]
, (5.49c)

R3 =
[
k
(2)
s1 ∆̄

[k]
s1∆s1,0 + k

(2)
r1 ∆̄

[k]
r1∆r1,0

] N∑
n=1

ej(2Zr−Tk)ψn . (5.49d)

According to Eq. (5.39), the second harmonic excitation resonance is suppressed when

(2Zr − Tk)/N 6= integer.

The analytical solution in Eq. (5.49) applies to systems with Ωc > Ωr. For systems with
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Ωc < Ωr, the analytical solution is the same with that in Eq. (5.49) except that R3 becomes

R3 =
[
k
(2)
s1 ∆̄

[k]
s1∆s1,0 + k

(2)
r1 ∆̄

[k]
r1∆r1,0

] N∑
n=1

e−j(2Zr+Tk)ψn . (5.50)

From this equation, the second harmonic excitation resonance of the mode χk is suppressed

when its phase index satisfies (2Zr + Tk)/N 6= integer.

For the superharmonic resonance, substitution of ωm = ωk/2 + εσ into Eq. (5.22b) but

only including the first harmonic of mesh stiffnesses yields Ak(t1) = 0. Therefore, the leading

order solution of Eq. (5.22a) is

al0 = jfl/ωl, l = 1, 2, . . . . (5.51)

With substitution of Eq. (5.51) into Eq. (5.22b), the solution of Eq. (5.22b) for systems

with Ωc > Ωr is

al1 = Pl(t1)e
jωlt0 +

ρlfl
ω2
l

+ (Sl1e
jωmt)

N∑
n=1

ej(Zr−Tl)ψn

+(Sl2e
−jωmt)

N∑
n=1

e−j(Zr+Tl)ψn , l = 1, 2, . . . (5.52a)

Sl1 =
ωl

ωm − ωl

[
gkspC

(1)
s1 ∆̄

[l]
s1∆s1,0 + krpC

(1)
r1 ∆̄

[l]
r1∆r1,0

]
, (5.52b)

Sl2 =
−ωl

ωm + ωl

[
gkspC̄

(1)
s1 ∆̄

[l]
s1∆s1,0 + krpC̄

(1)
r1 ∆̄

[l]
r1∆r1,0

]
. (5.52c)

From Eq. (5.39), Sl1 and Sl2 contribute to the first order solution al1 only for (Zr−Tl)/N =

integer and (Zr + Tl)/N = integer, respectively. The equation for the second order pertur-
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bation is necessary for the perturbation analysis and it gives

∂al2
∂t0
− jωlal2 = −∂al1

∂t1
− ∂al0

∂t2
− ρlal1

−
∞∑
i=1

N∑
n=1

{
gkspQsn

[(
φl, Esnφi

)
ai1 +

(
φl, Esnφ̄i

)
āi1
]

+krpQrn

[(
φl, Ernφi

)
ai1 +

(
φl, Ernφ̄i

)
āi1
]}

−
∞∑
i=1

N∑
n=1

{
g2kspQ̂snhsn

[(
φl, Esnφi

)
ai0 +

(
φl, Esnφ̄i

)
āi0
]

+krpQ̂rnhrn
[(
φl, Ernφi

)
ai0 +

(
φl, Ernφ̄i

)
āi0
]}
,

l = 1, 2, . . . .

(5.53)

With substitution of Eqs. (5.51) and (5.52) into Eq. (5.53) for l = k, the solvability condition

for the resulting equation with ωm = ωk/2 + εσ yields the frequency response function for

superharmonic resonance for systems with Ωc > Ωr as

ωm =
ωk
2

+
ωk
dk

[
R1dk ±

√
|R2|2 − (νkdk)2

]
, (5.54a)

R1 =
N

2

[
|k(1)s1 |(h

(0)
s1 + h

(2)
s1 )|∆[k]

s1 |2 + |k(1)r1 |(h
(0)
r1 + h

(2)
r1 )|∆[k]

r1 |2
]
, (5.54b)

R2 =
∞∑
i=1

[
(k

(1)
s1 ∆̄

[k]
s1∆

[i]
s1 + k

(1)
r1 ∆̄

[k]
r1∆

[i]
r1)Si1

N∑
n=1

ej(Zr−Tk+Ti)ψn

N∑
n=1

ej(Zr−Ti)ψn

+(k
(1)
s1 ∆̄

[k]
s1 ∆̄

[i]
s1 + k

(1)
r1 ∆̄

[k]
r1 ∆̄

[i]
r1)S̄i2

N∑
n=1

ej(Zr−Tk−Ti)ψn

N∑
n=1

ej(Zr+Ti)ψn

]
. (5.54c)

According to Eq. (5.39), the contribution from Si1 to R2 can be nontrivial only for (Zr −

Ti)/N = integer and (Zr − Tk + Ti)/N = integer, and S̄i2 can contribute to R2 only for

(Zr + Ti)/N = integer and (Zr − Tk − Ti)/N = integer. In other words, R2 can be nontrivial

only for (2Zr − Tk)/N = integer, and the contribution from Si1 and S̄i2 to R2 can be

nontrivial only for (Zr − Ti)/N = integer and (Zr + Ti)/N = integer, respectively. For the
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case (2Zr − Tk)/N 6= integer, R2 = 0 and the superharmonic resonance is suppressed. This

suppression rule applies to systems with Ωc > Ωr.

For systems with Ωc < Ωr, superharmonic resonance is suppressed for the mode χk with

phase index satisfying (2Zr + Tk)/N 6= integer. The derivation for this suppression rule is

similar to that for systems with Ωc > Ωr discussed above.

5.5 Results and Discussions

This section discusses the results from the analytical frequency response functions de-

rived in the previous section and numerical simulations with a five-planet planetary gear in

Table 5.4. The sun and ring gears are the input and output, respectively. The carrier is

stationary and fixed to ground. The ring rigid body is fixed such that it cannot deviate from

the position determined by its kinematics. Planet bearing stiffnesses kζ , kη are infinitely high

such that planets cannot translate. The input torque on the sun gear is 500 N·m.

Table 5.4: Dimensional parameters of an example planetary gear with an elastic ring.

Stiffness (N/m) ks = ksu = 0, Rku = Rkv = 10.0 × 106, ksp = 529 × 106, krp =
647× 106

Inertia (kg) Is/R
2
s = 0.654, Ip/R

2
p = 0.490

Mass (kg) ms = 0.640

Dimensions (mm) R = 150, Γ = 12.4, H = 18.0, B = 25.4

Elastic modulus (GPa) E = 202, κG = 62.4

Density (kg/m3) ρ = 7.85× 103

Pressure angle (deg) αs = αr = 24.6

Two different planet phasing conditions are considered. One has in-phase tooth meshes
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with sun and ring tooth numbers Zs = 30 and Zr = 100, and the other has out-of-phase

tooth meshes with Zs = 29 and Zr = 101. These two cases have identical parameters in

Table 5.4 and identical mesh stiffness variations for the first planet in Fig. 5.2. The Fourier

coefficients of these mesh stiffness variations are given in Table 5.5.

Table 5.5: Fourier coefficients of sun-planet and ring-planet mesh stiffnesses in Fig. 5.2.

Harmonics, L kLs1 (106 N/m) kLr1 (106 N/m)

1 -64.2 +j15.3 -85.1+j36.8

2 23.0 -j10.4 16.8-j11.9

3 7.99-j7.57 7.64 -j23.2

4 -9.97+j14.6 -0.146+j11.9

5 0.675 -j0.148 4.86+j11.9

Figure 5.8 shows the natural frequencies ω11 ∼ ω22 for the five-planet in-phase system

over a range of mesh frequencies. They are calculated from the discretized eigenvalue problem

in Eq. (5.10). The natural frequencies for the out-of-phase system are slightly different from

those in Fig. 5.8, and this small difference is neglected in the following study. Table 5.6 shows

the phase indices for the natural frequencies ω11 ∼ ω22 for the system with counter-clockwise

rotation of the carrier relative to the ring gear (i.e., Ωc > Ωr). If not otherwise indicated,

the carrier rotates counter-clockwise relative to the ring gear in the following results.

Table 5.6: Phase indices for the natural frequencies ω11 ∼ ω22 in Fig. 5.8. The system has

counter-clockwise rotation of the carrier relative to the ring gear (i.e., Ωc > Ωr).

ω11 ω12 ω13 ω14 ω15 ω16 ω17 ω18 ω19 ω20 ω21 ω22

1 4 2 3 0 4 1 0 0 4 1 0
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Figure 5.8: Natural frequencies of a five-planet system in Table 5.4 for a range of mesh

frequencies. The dashed, dotted, and solid lines represent natural frequencies of rotational,

translational, and planet modes, respectively.

5.5.1 Comparison of numerical and analytical results

Figure 5.9 shows the primary resonance of mode ω18 from numerical integration (NI)

with the first and full mesh stiffness harmonics and multiple scale perturbation for the in-

phase system. The mode ω18 has damping ratio ν18 = 2.40%, and all other modes are

suppressed by high damping. The results from NI with the first harmonic have slight dif-

ference from those from NI with full harmonics, justifying the truncation of mesh stiffness

harmonics to the first order in the perturbation analysis. The analytical solutions from per-

turbation agree well with those from NI with the first harmonic except for large amplitudes

where tooth contact loss is so significant that the first order perturbation is not sufficient.
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Figure 5.9: RMS of sun rotation for the primary resonance of mode ω18 from numerical inte-

gration (NI) with full and the first mesh stiffness harmonics and the analytical approximation

in Eq. (5.35) for the in-phase system. The dashed line represents unstable solutions.

Extending to higher order perturbation might increase the accuracy of the analytical solu-

tions but with increased complexity. The sun-planet meshes lose contact, and the ring-planet

meshes do not. The analytical and numerical solutions agree on this point.

The subharmonic resonance of mode ω18 from NI and perturbation is shown in Fig. 5.10

for the in-phase system. The modal damping ratios are the same with those for Fig. 5.9. For

increasing mesh frequency, the numerical result follows the period-Tm solution branch, jumps

up at 9700 Hz, follows the period-2Tm solution branch, and jumps down to the period-Tm

solution at 10100 Hz. For decreasing mesh frequency, the numerical result jumps up at 10200

Hz, follows the period-2Tm solution branch, and jumps down to the period-Tm solution at

the peak frequency. The analytical solution successfully captures the vertical jumping up
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Figure 5.10: RMS of sun rotation for the subharmonic resonance of mode ω18 from NI and the

analytical approximation in Eq. (5.46) for the in-phase system. The dashed line represents

unstable solutions.

and down branches for increasing mesh frequency. For decreasing mesh frequency, the jump

up and stable period-2Tm solution branches are successfully identified by perturbation, but

it does not capture the jumping down branch at the peak frequency. The analytical solution

yields open solution branches because of absence of the amplitude dk in the square root

in Eq. (5.46). The mesh frequency interval bounded by the two vertical branches from

perturbation is the parametric instability region for the corresponding linear system. From

Eq. (5.46), this instability interval is

∆ωm = 8ωk

√
|R3|2 − ν2k . (5.55)
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Eq. (5.55) shows an increase of damping can narrow the instability region and even eliminate

it.

Figure 5.11a and Figure 5.11b show the second harmonic excitation and superharmonic

resonances of mode ω18 from NI and perturbation for the in-phase system. The damping ratio

for this mode is 2%. Only the second harmonic of mesh stiffnesses is considered for the NI

solution in Fig. 5.11a, while only the first harmonic is included in Fig. 5.11b. This separates

the contributions from different sources to the resonance. The response components at twice

mesh frequency from NI are compared to the analytical solutions from perturbation in Fig.

5.11a and Fig. 5.11b. The analytical solutions agree well with the numerical ones for both

the second harmonic excitation and superharmonic resonances. The larger amplitude of the

second harmonic excitation resonance relative to the superharmonic resonance indicates the

second harmonic excitation contributes more to the resonance at twice mesh frequency.
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Figure 5.11: RMS of sun rotation for (a) second harmonic excitation and (b) superharmonic

resonance of mode ω18 from NI and perturbation for the in-phase system.
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5.5.2 Mesh Phasing Effect

Figure 5.12a and Figure 5.12b show the dynamic response in the mesh frequency range

6000 ∼ 8000 Hz from NI and perturbation for the in-phase and out-of-phase systems, re-

spectively. The natural frequencies ω20 ∼ ω22 fall into this frequency range, as shown in Fig.

5.8. The damping ratios for these three modes are ν20 = ν21 = 0.5%, and ν22 = 1%. All

other modes are suppressed by high damping. Figure 5.8 shows the natural frequencies ω21
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Figure 5.12: RMS of ring radial deflection at θ = 0 for the (a) in-phase and (b) out-of-phase

systems from NI and perturbation.

and ω22 are close to each other. If resonance occurred for both ω21 and ω22 simultaneously,

the assumption that one mode dominates the response near a resonance was not valid and

the analytical solutions would not work.

The numerical results in Fig. 5.12a show that resonance occurs only for the rotational

mode ω22 for the in-phase system. For the out-of-phase system in Fig. 5.12b, only the
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translational mode ω21 with phase index 1 causes a resonance. As a result, the assumption

that one mode dominates the response near a resonance holds. The agreements between the

analytical and numerical results in both Fig. 5.12a and Fig. 5.12b confirm this point.

From the analytical solution in Section 5.4.1, a primary resonance occurs only for the

mode χk with phase index satisfying (Zr − Tk)/N = integer. For the in-phase system,

only rotational modes with phase index 0 can cause resonances. Therefore, the resonances

for the translational modes ω20 and ω21 are suppressed in Fig. 5.12a. For the five-planet

(N = 5) out-of-phase system with Zr = 101, resonance occurs only for translational modes

with phase index 1. This explains the resonance only for the mode ω21 in Fig. 5.12b. This

mesh phasing effect leads to suppression of certain modes, making the assumption that one

mode dominates the response near a resonance still valid for the case where multiple natural

frequencies are close to a primary resonant frequency but have different phase indices.

The above discussion is limited to primary resonances. In general, the assumption that

one mode dominates the response is not valid when multiple modes are excited to resonances

simultaneously. For example, a primary resonance of one mode coincides with a subharmonic

resonance of another different mode. Neither the analytical solutions for primary resonances

in Eq. (5.35) nor those for subharmonic resonances in Eq. (5.46) work for this case. If

one of the two resonances (for example, the primary resonance) is suppressed by the mesh

phasing effect, the assumption that one mode dominates the response holds and the analytical

solutions in Eq. (5.46) works for this case.

The results for the in-phase system in Fig. 5.12a and out-of-phase system in Fig.

5.12b follow the suppression conditions for systems with Ωc > Ωr. If the planetary gear

system reverses rotation but keeps all other parameters unchanged, the dynamic response

for the in-phase and out-of-phase systems stay the same with those in Fig. 5.12a and Fig.

5.12b. The natural frequency loci for the reversed rotation are identical to those in Fig.
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5.8, except that a translational or planet mode natural frequency that has phase index d

becomes a translational or planet mode natural frequency with phase index N − d for the

reversed rotation (Table 5.7). Because of Ωc < Ωr for the reversed rotation, the suppression

conditions for systems with Ωc < Ωr apply.

Table 5.7: Phase indices for the natural frequencies ω11 ∼ ω22 in Fig. 5.8. The system has

clockwise rotation of the carrier relative to the ring gear (i.e., Ωc < Ωr).

ω11 ω12 ω13 ω14 ω15 ω16 ω17 ω18 ω19 ω20 ω21 ω22

4 1 3 2 0 1 4 0 0 1 4 0

5.5.3 Gyroscopic Effects

Figure 5.13 shows the dynamic response near ω15 from NI for the in-phase system with

and without gyroscopic effects. The damping ratio for the mode ω15 is 0.65%. Resonance

occurs for the system with gyroscopic effects but is suppressed for the case without gyroscopic

effects. The mode ω15 for the non-gyroscopic system is a purely ring mode where sun-planet

and ring-planet mesh deflections vanish [21]. Therefore, the term R3 = 0 in Eq. (5.35),

leading to the suppression of the resonance of mode ω15 for the non-gyroscopic case. Non-

gyroscopic systems with odd number of planets (for example, the current five-planet system)

have only one type of purely ring modes that are associated with phase index 0 [21]. A

purely ring mode of this type (for example, the mode ω15) evolves into a rotational mode

when gyroscopic effects are introduced, as shown in Chapter 3. The nontrivial sun-planet

and ring-planet modal mesh deflections lead to non-zero R3 for the rotational mode ω15.

Thus, resonance of mode ω15 occurs for the system with gyroscopic effects.

For non-gyroscopic systems with even number of planets (i.e., even N), a different



167

3800 4000 4200 4400 4600

0

1

2

3

4

5

6

Figure 5.13: RMS of ring radial deflection at θ = π/5 for the primary resonance of mode

ω15 from NI for the in-phase system with (solid line) and without (dashed line) gyroscopic

effect.

type of purely ring modes with phase index N/2 exist in addition to those of phase index

0 [21]. Chapter 3 shows a purely ring mode of phase index N/2 becomes a planet mode

having phase index N/2 when gyroscopic effects are introduced. This planet mode for the

gyroscopic system can be excited, while the corresponding purely ring mode is suppressed

for the non-gyroscopic system.

Figure 5.14 shows the influence of the gyroscopic effects on the resonance of the trans-

lational modes ω20, ω21. The damping ratios for these two modes are ν20 = ν21 = 0.5%, and

all other modes are suppressed by high damping. The modes ω20, ω21 are degenerate for the

case without gyroscopic effects, as shown in Fig. 5.8 at zero mesh frequency where the speed-

dependent gyroscopic effect vanishes. Therefore, only one resonant peak occurs for this pair

of degenerate modes in Fig. 5.14. When the gyroscopic effects are introduced, the degener-

ate modes ω20, ω21 split (Fig. 5.8). The mode ω21 causes the resonance in Fig. 5.14, but no
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resonance occurs near ω20. As shown in Table 5.6, the two modes ω20 and ω21 have phase

indices T20 = 4 and T21 = 1, respectively. Because (Zr − T20)/N = (101 − 4)/5 6= integer,

the term R3 in Eq. (5.38c) vanishes for ω20. Thus, no resonance occurs near ω20. The reso-

nance near ω21 occurs because (Zr − T21)/N = (101 − 1)/5 = integer. The peak amplitude

for the case with gyroscopic effects is smaller than that without gyroscopic effects in Fig.

5.14. From Eqs. (5.38c) and (5.40), the gyroscopic effects alter the peak amplitude through

changing modal mesh deflections. For the case in Fig. 5.14, the modal mesh deflections for

the gyroscopic system results in smaller amplitude of R3 than those for the non-gyroscopic

system.
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Figure 5.14: RMS of ring radial deflection at θ = π/5 for the dynamic response near ω20, ω21

from NI for the out-of-phase system with (solid line) and without (dashed line) gyroscopic

effect.

Chapter 3 gives a pair of degenerate planet modes with multiplicity two splits into two

planet modes having different phase indices when gyroscopic effects are introduced. For

example, the planet modes ω13 and ω14 in Fig. 5.8 are degenerate at zero mesh frequency
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and split for non-zero mesh frequency. The mode ω13 has phase index 2, and ω14 has phase

index 3 (Table 5.6). Similar to the translational mode resonance for ω20 and ω21, only one of

the modes ω13 and ω14 can cause resonance because the conditions (Zr − T13)/N = integer

and (Zr − T14)/N = integer cannot hold simultaneously.

5.6 Conclusions

This paper investigates nonlinear dynamics of planetary gears with an elastically de-

formable ring and equally-spaced planets. An analytical model with rigid sun, carrier, and

planets coupled to an elastic ring is used. The model includes gyroscopic and centripetal

effects from carrier and ring gear rotation. The sun-planet and ring-planet mesh interac-

tions are modeled as time-varying stiffnesses with tooth separation nonlinearity. Numerical

integration of the model gives the dynamic responses and they agree well with those from a

finite element/contact mechanics model.

With the assumption that one mode dominates the response near resonances, the

method of multiple scales yields closed-form solutions for primary, subharmonic, superhar-

monic, and second harmonic resonances. The analytical solutions are verified against the

solutions from numerical integration. These analytical solutions explicitly show the param-

eter dependence of the dynamic responses. The main conclusions are :

• Planet mesh phasing, determined by the sun and ring gear tooth numbers (Zs and Zr)

and the number of planets N , plays an important role in the occurrence of resonances.

For systems with counter-clockwise rotation of the carrier relative to the ring gear,

primary resonance can occur only for modes with phase index Tk satisfying (Zr −

Tk)/N = integer; subharmonic resonance can occur only for modes satisfying (Zr −
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2Tk)/N = integer; and, superharmonic and second harmonic excitation resonances can

occur only for modes satisfying (2Zr − Tk)/N = integer. In contrast, systems with

clockwise rotation of the carrier relative to the ring gear can have primary resonance

only for modes satisfying (Zr+Tk)/N = integer, subharmonic resonance only for modes

satisfying (Zr + 2Tk)/N = integer, and superharmonic and second harmonic excitation

resonances only for modes satisfying (2Zr + Tk)/N = integer.

• The assumption that one mode dominates the response is in general not valid when

multiple modes are excited to resonances simultaneously. The mesh phasing effect can

suppresses certain resonances, making this assumption and the analytical solutions still

valid.

• Different from non-gyroscopic planetary gears where the sun-planet and ring-planet

mesh deflections for a single planet are either in-phase or 180 degree out-of-phase,

those for gyroscopic planetary gears are in general out-of-phase. Purely ring modes

for non-gyroscopic systems are not excited. When gyroscopic effects are included,

these modes become rotational or planet modes and can cause resonances. Degenerate

translational or planet modes with multiplicity two for non-gyroscopic systems split

with gyroscopic effects introduced. Only one of the split modes can cause primary

resonances. The gyroscopic effects alter the resonant amplitudes through changing

modal mesh deflections.



Chapter 6

Future Recommendations

6.1 Mesh Phasing Rule for the Dynamics of Planetary

Gears with a Deformable Ring Gear

Numerical experiments show the elastic ring has only certain nodal diameter (ND)

deformation for a specified harmonic of periodic responses with mesh frequency ωm. Take a

five-planet (N = 5) system with sun and ring tooth numbers Zs = 28, Zr = 92 for example.

When its carrier rotates counter-clockwise relative to its ring gear (i.e. Ωc > Ωr), the system

has only sN + 2 ND (i.e., ej(sN+2)θ) ring deformation for the first mesh frequency harmonic

(i.e., ejωmt), sN + 4 ND for the second harmonic, and sN + 1 ND for the third harmonic,

where s = 0,±1,±2 . . .. If the five-planet system reverses its rotation (i.e., its carrier rotates

clockwise relative to its ring gear), the ring deformation contains only sN+3 ND components

for the first harmonic, sN+1 ND for the second harmonic, sN+4 ND for the third harmonic.

The modal structure defined in Chapter 3 gives that a mode with phase index d ∈

{0, 1, . . . , N − 1} contain only sN + d ND ring deformation. Therefore, the five-planet

171
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system has only modes with phase index d = 2 excited for the first harmonic, d = 4 for

the second harmonic, and d = 1 for the third harmonic when Ωc > Ωr. In contrast, the

five-planet system has only modes with phase index d = 3 excited for the first harmonic,

d = 1 for the second harmonic, and d = 4 for the third harmonic when Ωc < Ωr.

The excited ring deformation and modes for any harmonic and any planet mesh phas-

ing are summarized in Table 6.1. These rules are observed from numerical simulations.

Mathematical justification is necessary.

Table 6.1: Summary of the rules of the excited ring deformation and modes by the l-th mesh

frequency harmonic.

Systems with Ωc > Ωr Systems with Ωc < Ωr

Excited ND ring deformation sN + mod(lZr, N) sN + mod(lZs, N)

Phase index of excited modes mod(lZr, N) mod(lZs, N)

6.2 Three Dimensional Vibrations of Helical Planetary

Gears with a Deformable Ring Gear

The analytical model in this work only considers in-plane vibration for each component

in a planetary gear system. This model applies to spur planetary gears. For helical planetary

gears, both in-plane and out-of-plane motions are significant. The sun, carrier, and planets

should be modeled as rigid bodies with each having six degrees of freedom: two in-plane

translations, one in-plane rotation, one axial translation, and two tilting motions. The elastic

ring gear should have radial, tangential, axial, in-plane bending, out-of-plane bending, and

twisting deflections (Fig. 6.1). The mesh interaction can be modeled as a stiffness normal
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to the tooth profile.

Twisting

Out-of-plane 

bending

In-plane bending

axial deflectionradial deflection
tangential 

deflection

Figure 6.1: Schematic of an elastic ring with three dimensional motions.

Because of cyclic symmetry, helical planetary gears are expected to have structured

modal properties like spur planetary gears do. Vibration modes can be classified into different

types, but the modal properties for each type need to be investigated. In particular, how out-

of-plane motions couple with in-plane motions for each type of modes is unknown. Parametric

instabilities of helical planetary gears can be investigated with the three dimensional model.

An instability suppression rule is expected to exist. Dynamic responses can be numerically

simulated, and analytical solutions for dynamic responses near resonances can be derived.

6.3 Nonlinear Dynamics of Compound Planetary Gears

with a Deformable Ring Gear

The current work deals with single-stage planetary gears where sun-planet and ring-

planet meshes have the same frequency. For a compound planetary gear in Fig. 6.2, the
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mesh frequency of the sun and stage-1 planet differs from that of the ring and stage-2 planet.

Both frequencies parametrically excite the compound planetary gear system.

Sun

Stage-1 

planet

Stage-2 

planet

Ring

Carrier

Figure 6.2: Schematic of a compound planetary gear with two stages of planets.

The current analytical model can be extended to include parametric excitations and

tooth separation nonlinearity of sun-planet and ring-planet meshes with different mesh fre-

quencies for compound planetary gears. Nonlinear dynamic responses can be simulated with

numerical integration of the analytical model. Analytical solutions for dynamic responses

near resonances can be derived with the method of multiple scales. How the two stages

of mesh excitations interact with each other under resonant conditions needs investigation.

The ratio of the two mesh frequencies may significantly influence the two stage mesh interac-

tions. When this ratio is not an integer or its reciprocal, only one stage of mesh excitations

is expected to drive a resonance. In contrast, the two stages of mesh excitations may jointly

drive a resonance for the case where this ratio is an integer or its reciprocal. How planet

mesh phasing influences the dynamic responses is unknown.
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