Medial Surface Transformations for
Rapid Approximation of Casting Solidification

by
Scott A. Houser
Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

IN
MECHANICAL ENGINEERING

APPROVED:

Dr. Jan Helge Bohn, Chairman

HlBonl LA MMLST]

Dr. Michael P. Deisenroth Dr. Arvid Myklebust

July 1996
Blacksburg, Virginia

Medial Surface Transformations for
Rapid Approximation of Casting Solidification

by
Scott A. Houser
Jan Helge Bghn, Chairman

Department of Mechanical Engineering

ABSTRACT

This thesis demonstrates the feasibility of using a medial surface transformation as a tool
to rapidly approximate the solidification patterns of convex faceted solid models of
castings. The medial surface transformation is used to automate the greatest included
sphere approach to solidification pattern approximation. The experimental software of
this thesis extracts the medial surface transformation from a convex faceted model by
computing the model;s Voronoi diagram and uses it to identify casting hot spots and
cooling patterns. Comparison with a finite difference method (FDM) solution showed that
the locations and shapes of hot spots predicted by FDM converge to the shapes and

locations predicted by the experimental software.

Acknowledgments

I would like to recognize and thank the following people for their contributions to this

thesis:

Dr. Jan Helge Bohn, my thesis advisor, for his technical expertise and direction.

e My committee members, Dr. Arvid Myklebust and Dr. Michael Deisenroth, for taking
time from their busy schedules in order to facilitate my efforts during both the academic
year and summer sessions.

e Shawn Fitzgerald, for working with me on the early drafts of my thesis and for
providing support and encouragement.

e Emmanuel Sabourin, for providing me with some technical advice on marching
algorithms.

e The Virginia Tech CAD Laboratory and Darrell Early for providing the hardware and
technical support needed to develop the software used in this thesis.

I would also like to acknowledge the Mechanical Engineering Department at the
Virginia Polytechnic Institute and State University for providing me with teaching
assistantships, and the Naval Surface Warfare Center, Dahlgren Division for providing
research assistantship funding under contract N60921-89-D-A239, Order 0045.

Finally, I would like to thank my father for getting me interested in mathematics
and science at an early age, my mother for teaching me enthusiasm and positive thinking,
and my brother for teaching me that new challenges should be faced with relentless,
maximal effort. I would like to thank them all for providing me the love and support that
has been instrumental in granting me the successes I have attained professionally,

academically, and personally.

Table Of Contents

NSy I 22\ O3 R
ACKNOWLEDGMENTS ...ttt eeeee e e e e s snnenn e e e e ee s seeens
TABLE OF CONTENTScoerccccccccteeeeceeseseeeeeeeeeeeeeeseseeeeees e s eseeenennes
LIST OF FIGURES ..ottt eceee v tae e e e e e ee s e e s e e aasnaaaae s
LIST OF TABLES ...ttt eeeeee e e ee e s e
CHAPTER ONE Thesis Introduction and Problem Statement
L IR 11 (oo 11 Tex ([o SRR
1.2 Formal Problem Statementccoveeeeieeeeeeeeeeeeeee e,
1.3 Solution OVEIVIEWcccooeiiiiieeeeeeeeeeeee s
1.4 Thesis Organization.cooceceeiiieeeeieieree e e
CHAPTER TWO Mathematical and Heat Transfer Background....................
2.1 Mathematical Backgroundc.cooeeememeeiiriieerececeeeeerecc e e ee e
2.1.1 The Voronoi Diagramceeeeeeeeeeeeirineeeanineeeeeeneseeeeeenennenes
2.1.2 The Medial Axis Transformationcccccceceeieeiiieeiiecenennnnnn.
2.1.3 GEOMELriC ENMIIEScoueeeeeeeeeeeeiieeciicceeeeraeeeeeseeeeeeenaenaaenes
2.1.3.1 Basic Geometric Definitionscceeuuceeeiieineeiuiiieeenennes
2.1.3.2 Data Structure Implementations of Basic Geometric
0] (11X
2.1.4 Geometry-Based Algorithms and Procedures
2.1.4.1 Plane/Plane Intersectionsoouueeeeeevevreveernuernennnnnnn.
2.1.4.2 Line Segment/Plane Intersectionsccccceevuvruenenn...
2.1.4.3 Intersection Marching Algorithms: Polyhedron / Halfspace
INTErSECHONSeeeeeeeeeeeeeeecee et e e et ese e e e ee e
2.2 Heat Transfer Backgroundeuuueiiieiiriiniiciiceinnineccerecceeeceneeeeeene
2.2.1 The Explicit Finite Difference Methodevveeerevieeeennnn.
2.2.2 Chvorinov’s RUIEccccooeeeeiieeieeeeeeeeeeett e erre e e

v

2.2.3 Relating Chvorinov’s Rule to the Voronoi Diagram Based

Greatest Included Sphere Methodcooeeeeeeeeevevevennennes 33
CHAPTER THREE Literature ReVIeWccocoiiiiiiiiiiieiieeieeeeeeeeeeee 35
3.1 Solidification Modeling ReViewcooouviiiimmiiecccccrcerecne e, 36
3.2 Voronoi Diagrams And Medial Axis Transformationsc........... 45
3.2.1 Medial Axis Transformations: Methods of Construction 46
3.2.2 Voronoi Diagrams: Methods of Construction 50
3.2.3 Applications of Voronoi Diagrams and MATScccueeeeeeeenn. 52
3.2.4 Potential Application of Voronoi Diagrams and MATs to Metal
L0F= 1 (1 o LR R USSP PP 56
3.3 Automated Rigging DeSignccueieiiieiiviireiiecieree e 57
3.4 ObSErvationscccoccevciieiieieeeecceccceeee e 59
CHAPTER FOUR Methodscooiiiiiiiiiiiiinteeee e 62
4.1 Voronoi Diagram Generationccccoeeevieeerircccieee e 62
4.1.1 .STL Model Loading and Supplementationc........ 65
4.1.2 Construction of Initial Voronoi Territoriescceueeeeeeeeennnnes 65
4.1.3 Bisecting Plane Matrix Generation and Processing 66
4.1.3.1 Bisecting Plane Generationcceevreeeeeereecersscnnennen. 68
4.1.3.2 Bisecting Plane Peak Point ChecKingccccccvvuuereun.. 69
4.1.3.3 Closest Plane Definition and Distant Plane Removal 71
4.1.3.4 Removal of Planes with Equivalent Vertex Distances 73
4.1.4 Territory/Bisecting Plane Intersectionsccccccceveececccennnannes 76
4.1.5 Exception and Error Handlingcccccuveiineiineiienreninineceeennss 77
0 I IO (=Yg To =T 4 o To LRt 78
4.2 Description of EXperimentscocceevvivmereeniieeeennseeececceneeeeeeen 79
4.2.1 Experiment 1: The Suitability and Correctness of The Voronoi
Diagram Generation Algorithmccccccceevveeiiieeieeenenneinnnns 80
4.2.2 Experiment 2: 2D Comparison of Geometry and FDM 86
4.2.3 Experiment 3: 3D Comparison of FDM and the Greatest
Included Sphere Methodccoouvurevieieiccccceceee e, 88
4.2.4 Experiment 4: Execution Time Investigations 90
CHAPTER S RESUILScooeiiiiiiiiieeeeeee ettt 92

5.1 Experiment 1: The Suitability and Correctness of The Voronoi

Diagram Generation Algorithmccccoiieieiiiiiee e, 93
5.1.1 Validation of the AIQOrithimcoeeeeiviiieieieiiieeeeeeeeeeeeeeee, 94
5.1.2 Effect of Input Geometry Upon Program Output 99
5.1.3 Degenerate Voronoi Entitiesccccceeecevueeeeecvcnneeeeeeeccinnnn.n. 100
5.1.4 Sensitivity of Program Output to the Number of Faces 104
5.1.5 Concluding RemMarksuuueeeeeeeeeeeeciieeeeeeeeeeeeeeeeeeeeeeens 107
5.2 Experiment 2: 2D Comparison of Geometry and FDM 108
5.3 Experiment 3: 3D Comparison of FDM and the Greatest
Included Sphere Methodooooiiiiiiiiiiiee e M
5.3.1 TNE CYlINAEE ...t 113
5.3.2 TRE BIICK ... 114
5.33TRE PIALE ... 116
534 The WEAQEcoooeeeeeeeeeeeeeeete e 118
5.4 Experiment 4. Execution Time Investigationsccceevvnnnrinnen... 119
5.4.1 Execution Time Comparison Between the Explicit Finite
Difference Method and the Experimental Voronoi
Diagram Generatorcccuuuuuueuueueeeneniriiriiisiaeaseeaaeasanaens 120
5.4.2 Average Case Algorithm Complexitycccccccvveeeeiriinnencenn. 125
CHAPTER SIX CONCIUSIONScoiiiiiiiiiieiiiiiiie e e eciieeeeeeeeee e e cee e e ea e ens 126
6.1 Conclusions: Feasibility ISSUEScccooiiiiiiiiece e, 127
6.2 Potential Advantages of the Voronoi Diagram Based Greatest
Included Sphere Methodcooiriiiiiiiiii e 129
6.3 Obstacles Inherent in Using the Voronoi Diagram of a Faceted Solid
MO I ... e er e s 131
6.4 Suggestions for Further Study ..o, 132
REFERENGCES ...ttt e e et e e e e e e e 134
LY 7 PP PPPRPPPOOPP 140

Vi

FIGURE 1.1:

FIGURE 1.2:

FIGURE 1.3:

FIGURE 1.4:

FIGURE 2.1:
FIGURE 2.2:

FIGURE 2.3:

FIGURE 2.4:

FIGURE 2.5:

FIGURE 4.1:

FIGURE 4.2:

FIGURE 4.3:

FIGURE 4.4:
FIGURE 4.5:

FIGURE 4.6:

FIGURE 4.7:

List of Figures

Casting cross-section with greatest included
CirCle ShOWN ... e e

Semi - infinite solid undergoing cooling with a uniform
temperature boundary condition.coveeiiiiiiiiiiiiiniin.

48-facet solid model of awedge.c..ooeeevemiiiiiicciiiieieeeen.

Partial cross-section of a casting undergoing uniform cooling.

..

Medial segments of various entities of a polygon
Winged edge data structure.cooveeeeirriiieieccereeeeereee.

Bisecting plane of planes P, and P,. Its normal vector is
found by adding niand Na. ...ocoeeeeeiiiiiiiie e

Construction of midplane for parallel planes P, and Pa.
Intersection marching algorithmccccccciiiiiiiiiiiiiiinnn.
High level flowchart of Voronoi diagram generation.

Variables and declared constants used for
pseudocode SUbroutings.ooocvvveeiiiirrieeicee e e

Floating point error leads to instability in
plane/polyhedron intersections [Sugihara94j.

Pseudocode for bisecting plane generation.
Peak point checking pseudocode.ccccevvveviiecciiiieceeneennn.

Closest planes of a facet's bisecting plane list,
based upon projected vertex distances.ccoeeeeeeriiinennes

Pseudocode for closest plane finding subroutine.

vil

4

5

17

22

24

25

28

64

67

68

70

7

72

FIGURE 4.8: Planes which share 1-3 vertex distances.c..cccccoevvuereeeneeee. 74

FIGURE 4.9: Pseudocode for distant and identical plane elimination. 75
FIGURE 4.10:12-facet, 2 X 2 X 3 DICK. ..cccvreuueeeeeeeiieien e 81
FIGURE 4.11: 12-facet model of a wedge.ccooveririireiieeireen, 82
FIGURE 4.12: 24-facet model of a brick cut by several cutting plane. 82
FIGURE 4.13: 104-facet model of a sphere.cccovveeeeeiiiiirireeceeeeeeeee, 83
FIGURE 4.14: 12-facetmodelofad4 x1 x3 plate.coeueeeeeerrrrieeeneenenns 83
FIGURE 4.15: 68-facet model of a cylinder.ccccovemmiriiiieiieeceicces 84
FIGURE 4.16: 188-facet model of a half cylinder.ccccceerriiennnnnnneens 84
FIGURE 4.17: 56-facet model of a cut cylinder.ccccoevveveveiiereeenrenenenn. 85
FIGURE 5.1: Comparison of exact and calculated Voronoi diagrams of

= I o] -) (= YRR 95
FIGURE 5.2;: Comparison of exact and calculated Voronoi diagrams of

ADFACK. ..o 95
FIGURE 5.3: Voronoi diagrams for cylinders.cccceoreoiiiiiiiiiiiinicnnnnne 101
FIGURE 5.4. Voronoi diagram of a 140-facet polyhedron made to

uniformly approximate the curvature of a cylinder. 103
FIGURE 5.5: Voronoi diagrams for spheres.cccceveviecciiviivenneeneeceeeenn. 104
FIGURE 5.6: Close-up view of non-convex region of a cut cylinder. 105
FIGURE 5.7: Program output for half-cylinder models.ouueeneeee..e. 107
FIGURE 5.8: Relative temperature profile of a square cross-section. - 110

FIGURE 5.9: Map of Voronoi vertex comparison with 8 nearest FDM
nodes (for the cylinder). ..., 113

FIGURE 5.10: Comparison of Voronoi vertex relative temperature values

viil

FIGURE 5.11:

FIGURE 5.12:

FIGURE 5.13:

FIGURE 5.14:

with 8 nearest FDM nodes for the 12-facet brick. 115

Comparison of relative temperature difference between
Voronoi vertices and 8 nearest FDM nodes for the
12-facet plate.oeveeeeeeriiiiei e 117

Comparison of relative temperature difference between
Voronoi vertices and 8 nearest FDM nodes for the
12-facet wedge.covvreimiiiieieeeee e 118

FDM grids which approximate the circular cross-section. 123

Growth rate of Voronoi diagram generators execution time due to
increase in facet quantity of input model.ccccceeeeeee. 125

List of Tables

TABLE 5.1: Voronoi Vertex Data forthe 4 x 1 x 3 Plate.ccccunnneeen 97
TABLE 5.2: Voronoi Vertex Data for the 2 x 2 x 3 Brickc.cccoveuurieincenene. 98
TABLE 5.3: Execution Times for the Experimental Voronoi Diagram

LCT=T 1= 7= (o] ST 120
TABLE 5.4: Execution Times for the Explicit Finite Difference Method. 121

Chapter One

Thesis Introduction and Problem Statement

1.1 Introduction

A poorly designed rigging system can produce cold shuts, inclusion defects, gross
shrinkage, and porosity in a casting. Shrinkage and porosity defects occur as a direct
result of poor directional solidification. Accordingly, foundrymen continuously seek to
improve the modeling of the solidification behavior of cast metals, and have developed a
host of computer applications for this purpose. These programs include 2D and 3D finite
difference or finite element heat transfer programs, which often incorporate fluid flow
analysis, to provide a detailed picture of the cooling behavior of castings. These
applications are often expensive to purchase, time consuming to run, and require extensive
training to operate effectively. Therefore, while these applications can produce precise
results, they are less than ideal for the foundry engineer seeking quick design iterations in
order to optimize the rigging configuration.

Before design verification with a finite element/finite difference code, a quick,
computerized check that expends very little CPU time, executes on a PC, and provides a
reasonably reliable evaluation of the design would facilitate rapid design iterations.

Several such programs exist, especially for 2D models. Most use Chvorinov’s rule, which

relates the casting modulus to its cooling time, in order to provide a useful prediction of
the part’s solidification behavior. This method is greatly aided by the use of feature based
design, since a feature’s data structure can incorporate the analysis information. However,
a solid model generated using a different design application may not have the required
feature library, which would force a remodeling of the part, or force the analysis program
to segment the model into a compilation of features which approximate the geometry.
Another method involves using a greatest included sphere procedure to determine
the solidification ﬁme of a part: it assumes that the larger the sphere included in a given
section of a casting, the longer the time required to fully solidify that section. This
procedure developed from the greatest included circle method, which is a 2D, hand-
performed technique. The foundryman uses a circle template and a 2D print of the casting
in order to detel;mine the largest circles he can fit into the casting design at various
locations on its geometry [ICI68]. These critical locations include thick regions of the
casting and its paths for make up metal flow during solidification. The greatest included
circle method assumes that the center of any included circle will take longer to solidify
than any other point in the circle. Furthermore, the relative time required to solidify any
given included circle is assumed to be directly related to the size of its radius. Therefore,
the large, isolated circle of Figure 1.1 indicates that its center will freeze after the centers
of the two circles that flank it. Since the two flanking circles are located in the paths of
the only two sources of makeup metal for the thick center region, the greatest iﬁcluded

circle predicts that shrinkage will result for this geometry.

Figure 1.1: Casting cross-section with greatest included circle shown. The isolated large circle in the
middle indicates that shrinkage could result do to a lack of feed metal during the cooling
process.

By extending the greatest included circle method to three dimensions and
automating the method, a computer program can evaluate the solidification behavior of a
non-feature based solid model. However, unlike the foundryman, a computer cannot use
personal experience to identify the regions of concern for a given casting geometry. In
other words, the computer cannot readily recognize thick and thin regions of castings,
since these terms are qualitative. The medial surface transformation, otherwise known as
a medial axis transformation (MAT) of a three dimensional object, resolves this problem by
providing a mathematical method for identifying regions of concern in a casting solid
model. The medial axis transformation is defined as the set of the centers of all the locally
maximal included circles in a two dimensional object [Preparata77]. The medial surface
transformation is therefore the set of the centers of all the locally maximal included

spheres within a three dimensional object. The following paragraphs explain how the

medial surface transformation of a casting solid model can be used to approximate its
solidification pattern. They also introduce the Voronoi diagram, which is used to
construct the medial surface transformation.

In order to understand the intuitive relationship between the medial surface
transformation and a casting’s solidification pattern, one may consider a semi-infinite solid
slab undergoing cooling via conduction [Figure 1.2]. The cooling front in this simple one-
dimensional case is a line parallel to the edge of the slab boundary and proceeds in a
direction normal to the boundary. This concept extends to three dimensions as follows:
the boundaries of an object undergoing cooling are approximated by planar boundary
elements, called facets [Figure 1.3]. Since each facet separates the hot object from its cool
surroundings, a cooling wave front initiates from each facet and extends into the object in

directions normal to its facet of origin.

Semi - infinite solid interior (hot)

Cooling wavefronts

Semi - infinite solid exterior (cool)

Figure 1.2: Semi - infinite solid undergoing cooling with a uniform temperature boundary condition.

Figure 1.3: 48-facet solid model of a wedge.

The greatest included sphere method assumes that the heat transfer model
described above adequately approximates the actual cooling process. Curves and surfaces
formed by the intersection of any two cooling wave fronts comprise the set of points
which are an equivalent distance to at least two of the model’s facets. Since the medial
surface transformation of the faceted model also comprises of this same set of points, it
can be used to find the hot spot of the model by determining which of these points is
furthest away from its closest facets.

The Voronoi diagram presents a straightforward method for calculating the
location of these wave front intersections [Figure 1.4]. Dobkin describes the Voronoi
diagram as defining “for each site the region of space for which it is the closest site”
[Dobkin92]. A site can be any geometric entity from which a distance can be measured to

any arbitrary point in the space. With respect to this thesis, the site is defined as a planar

facet of a casting model. The Voronoi diagram is useful because the medial surface
transformation of a polyhedral object is a subset of the Voronoi diagram of that object. In
the case of convex solids, the Voronoi diagram of the interior of the solid is equivalent to
the solid’s medial surface transformation. Since this thesis restricts itself to convex
geometries, the terms Voronoi diagram and medial surface transformation will be used
interchangeably throughout this thesis in order to describe the medial surface
transformation. In particular, the name Voronoi diagram will be used to describe the

actual transformation as implemented in the thesis code.

Voronoi diagram edges. Points on
these edges cool faster than interior

a— Point of global maximum
points equidistant to edges. &

) distance from surface.
(b Local hot spot.

Boundary of casting cross-section.

Figure 1.4: Partial cross-section of a casting undergoing uniform cooling. The bisecting lines above
are a subset of the Voronoi diagram of the three boundary edges shown. Points along the
Voronoi edges will cool faster than those points not on the diagram; however, the cooling
pattern will converge to the globally maximal point at the intersection of the two Voronoi
edges. Therefore, this point is a hot spot.

The Voronoi diagram provides an added benefit: it is an excellent starting point for

comprehensive finite element analysis. It is the dual of the Delaunay tetrahedralization and

may therefore be used to generate a well-conditioned finite element mesh of the casting.
The mesh’s good conditioning arises from two properties of Delaunay tetrahedralizations.
By definition, Delaunay tetrahedralizations maximize the minimal angle for all tetrahedrons
m the mesh [Dobkin92], which minimizes element distortion. In addition, their
relationship to Voronoi diagrams ensures that they are optimally oriented with respect to
the flow of heat within the casting.

The medial surface transformation of an object also provides an added benefit: it is
well suited for implementation as an input data set for automated casting design
applications. The transform provides a compressed, unique representation of an object,
from which the original object’s geometry can be retrieved [Sudhalkar93]. Therefore, the
medial surface transformation of a casting can provide a quantitative approximation of its
cooling pattern embedded in a data set which compactly and completely describes the
casting geometry.

Voronoi diagrams and medial axis/surface transformations (MATs) are well
understood and extensively utilized geometric entities; their applications range from oil
well reservoir modeling and analysis [Palagi93] to fractal generation [Shirriff93]. From
the above discussion, it is clear that they also present a straightforward means of
automating the greatest included sphere method for approximating casting solidification.
This thesis investigates whether such an automated greatest included sphere method can
rapidly approximate solidification patterns while still providing acceptable accuracy for

performing design iterations.

1.2 Formal Problem Statement

This thesis seeks to demonstrate the feasibility of using a medial surface transformation
to implement a rapid, automated greatest included sphere method for approximating the
solidification pattern of faceted models of castings. To maximize the application’s
availability, it accepts CAD models described in the .STL file format, which is the rapid
prototyping industry s de facto standard CAD model file format [Bohn93]. From this file
format, the Voronoi diagram, which is equivalent to the medial surface transformation in
the case of convex faceted models, will be computed. The generation of the Voronoi
diagram, and the construction of the MAT from the Voronoi diagram, for general faceted

models is left for further research.

1.3 Solution Overview

The experiment of using a Voronoi diagram/MAT based approach for rapid solidification
modeling approximation consists of three separate stages. First, the computer constructs
the Voronoi diagram of a faceted solid model. Then, a rendering program provides for
post processing and visualizing the Voronoi diagram. Finally, an additional program
verifies the solidification pattern predicted by the Voronoi diagram through comparing
data points on the Voronoi diagram with corresponding nodes from an explicit FDM

model of identical geometry.

The Voronoi diagram generation algorithm computes the Voronoi diagram of a
faceted solid model by partitioning the interior points of the model according to which
facet they are nearest. For a convex faceted model, a single plane partitions the interior
points which are closest to one of any pair of the model’s facets. If these partitioning
planes, or bisecting planes, are found between a given facet and each of the other facets in
the model, then the set of points which are strictly closest to that facet can be identified by
intersecting the set of the facet’s bisecting planes. The algorithm performs this operation
for each facet in the model. It first creates a polyhedron from the facet and the
intersection of three of its bisecting planes. Then, it sequentially intersects each of the
remaining bisecting planes with the polyhedron. These sequential intersections trim away
more and more of the original polyhedron, until the polyhedron that remains contains only
those points which are strictly closest to the facet. This process is repeated for each facet
in the solid model, until the entire solid model interior is partitioned.

The interior points of the solid model are partitioned by planar faces, which are
bounded by linear edges, which are in turn bounded by their endpoints, or vertices. A
rendering program shows the relative distances of each of these entities to the solid model
surface by computing the relative distance to each vertex on the Voronoi diagram, and
rendering the faces, edges, and vertices using a color scheme based upon a linear
interpolation of the vertices’ relative distances. The vertices which are a maximum
relative distance away from the model surface are rendered in pure red; those which

coincide with the model surface are rendered in pure yellow. Intermediate vertices have a

corresponding shade of orange. The colors of the edges and faces are rendered by linearly
interpolating the colors of each of their vertices in order to determine the appropriate
color for each interior point. The hot spot of the casting appears as a pure red point,
edge, or face.

Once the Voronoi diagram is generated and the relative distances of its vertices are
used to approximate the solidification pattern, the solidification pattern is verified through
a comparison between the relative distances of the Voronoi vertices and the. relative
temperatures of nodes of an explicit finite difference method (FDM) model of the casting.

Additionally, implementation issues such as robustness and run time are investigated.

1.4 Thesis Organization

This thesis consists of six chapters, including this introductory chapter. Chapter Two
provides the mathematical background required to understand Voronoi diagrams and how
they are generated for 3D convex faceted solid models. It also describes the heat transfer
concepts required to understand the finite difference method used to demonstrate the
feasibility of using Voronoi diagrams and MATs in solidification modeling. Chapter Three
provides a literature review which discusses Voronoi diagrams, MATs, and their
engineering applications, reviews current solidification modeling approaches, and
discusses the issues involved in creating automated foundry design applications. Chapter
Four discusses the programming and experimental methods used to create and test the

Voronoi diagram model. Chapter Five provides the experimental results associated with

10

generating the Voronoi diagram, compares it with an explicit FDM model, and discusses
its computational and algorithmic complexity. Chapter Six reviews the major conclusions

of this investigation and offers suggestions for further study.

11

Chapter Two

Mathematical and Heat Transfer Background

This chapter provides the information required to understand the algorithms used to
construct the Voronoi diagram of a convex faceted solid model and the heat transfer
techniques used to verify that the Voronoi diagram can accurately model cooling patterns
in castings. The mathematics portion of this chapter defines the geometric entities used in
this thesis and their corresponding data structures, and describes some basic algorithms
required to generate a Voronoi diagram of a convex polyhedron. The heat transfer portion
of this chapter discusses the physical concepts required to understand the cooling process

this project models, and the limitations inherent in the model.

2.1 Mathematical Background

This section concerns the required geometry and data structures required to implement a
Voronoi diagram generation algorithm. The first two subsections define the Voronoi
diagram, the medial axis transformation, and their generalizations. The third subsection
defines the geometric entities used as a basis to construct the Voronoi diagram of a convex

faceted solid model, along with their program specific data structures. The final

12

subsection discusses the basic algorithms required to transform a convex, faceted model

into a Voronoi diagram of planar faces.

2.1.1 The Voronoi Diagram

The classical Voronoi diagram partitions a plane into regions which contain all the points
closest to specified points, which are called generators or sites. Its applications range
from optimizing neural networks to choosing the best location for a fast food restaurant
based upon the locations of existing fast food restaurants [O’Rourke94]. Voronoi
diagrams can be understood by considering a forest fire analogy. If a number of lightning
bolts ignite several trees in a forest simultaneously, the individual fires spread from their
origins in all directions, consuming all of the available trees in their path. When the flames
of two separate fire fronts meet, no more trees remain to burn, so the fronts extinguish
each other. The lines where each fire front meets another form a Voronoi diagram of the
forest. Each lightning-struck tree is a site.

O’Rourke [O’Rourke94] defines the Voronoi diagram and Voronoi territory
mathematically as follows: a set of sites, P = {p,,. . ., p» } is chosen in the 2D Euclidean
plane. The Voronoi territory, V(p,), of the site p; is defined as the partitioning of the plane
which contains all points which are at least as close to p; as to any other site. O’Rourke

expresses this definition of a Voronoi territory mathematically as

V(pi)={x:épi—XESf{pj—x,,erﬁi}. @2.1)

13

The Voronoi diagram is the set of all points which do not belong to a single,
unique Voronoi region. This set corresponds to the union of the edges of all Voronoi
regions. Voronoi territories are also known as Voronoi regions, Voronoi polygons, etc.
This thesis refers to these entitites as Voronoi territories throughout.

Preparata and Shamos [Preparata85] take a halfplane approach to the definition of
the Voronoi diagram. Taking the same set of sites P as that described above, they define

H(p,p)) as the halfplane of p; and p; which is formed by the perpendicular bisector of line
segment p,p,. A halfplane is a line which divides a plane into two distinct subplanes. A

Voronoi territory can then be expressed mathematically as

V(p)=NH(p;,p;)Vi#j. (2.2)
Note that this territory is the boundary which partitions the points whose nearest site is p;,
not the locus of points itself as O’Rourke [O’Rourke94] defines. In other words, the
Voronoi diagram can be considered to be the union of the set of its territories, or the union
of the boundaries of those territories, as is convenient.

Preparata and Shamos [Preparata85] also discuss generalized planar Voronoi
diagrams. To generalize the Voronoi diagram of a set of sites P, each site is defined as a
cluster of two or more points rather than a single point. For example, the Voronoi
territory of a pair of points is the locus of points in the plane which are closer to that pair
of points than to any other pair of points. Voronoi diagrams can also be generalized to
higher dimensions; rather than restricting P to two dimensions, the set of points can exist

in a Euclidean space of any dimension [Dobkin92]. In the case of three dimensions, the

14

Voronoi diagram generalizes to 2D boundaries, called faces, which describe a set of 3D
territories.

The Voronoi diagram of a convex, triangular faceted, solid model represents a
subset of 3D generalization. Each site is a triangular facet, which is a continuous subplane
of points, and the diagram itself is 3D. By restricting the sites to triangular facets, and by
considering only the subset of the Voronoi diagram that lies within the boundaries of the
solid model, the resultant Voronoi diagram is the union of the territory boundaries
generated for every facet. These territories are all convex polyhedrons, and their
boundaries are all planar faces. Construction of the Voronoi diagram therefore simplifies
to an iterative series of plane/polyhedron intersections.

The Voronoi diagram provides an intermediate data structure from which the
medial axis transformation may be easily derived. Generally, the complete medial axis
transformation is a subset of the Voronoi diagram. In the specific case of convex faceted
models, the medial surface transformation (which is a 3D generalization of a medial axis
transformation), is equivalent to the Voronoi diagram on the interior of the model [Lee82].
This equivalency allows the medial surface to be found by using the straightforward
approach above to calculate the Voronoi diagram, and then using the Voronoi diagram as
the medial surface of the model. The following subsection provides an overview of the
basic medial axis transformation of a polygon, and then discusses how it can be

generalized to handle faceted solid models.

15

2.1.2 The Medial Axis Transformation

The medial axis transformation (MAT) of a polygon is closely related to the Voronoi
diagram of a planar set of points. Just as the Voronoi diagram may be visualized using a
forest fire analogy, the MAT can be visualized using a prairie fire analogy [Blum67]. If an
isolated prairie field is set ablaze at all points along its boundary, the fire front will proceed
towards the interior of the field, consuming all of the grass in its path. Whenever two
opposing fire fronts meet, they will extinguish each other. The lines or curves at which
these fire fronts meet form the medial axis of the field's polygonal boundary. Thus, a MAT
is a subset of the generalized Voronoi diagram in which the sites are the edges of a
polygon [O’Rourke94].

A medial axis transformation of an arbitrary simple polygon, G, is a set of points
internal to G which have more than one closest point on the boundary of G [Preparata77].
If the polygon is convex, the MAT will comprise entirely of line segments; if the polygon is
non-convex, the MAT will comprise of both line segments and parabolic segments. Linear
medial axis segments arise from bisecting the convex angles formed between each convex
pair of edges in the polygon. Parabolic segments arise from mapping the points which are
closest to both a reflex vertex of a polygon and a facing edge of the polygon [Figure 2.1a-

cl.

16

. \/
*
.
-
L)
“ -
-a - ot
-~ -« *
‘0-. ""-... “vonsunnar*”
(3 T,
£y
-
*
.
-
—————————

(a): Medial axis segment of (b): Medial axis segment of (¢): (Parabolic) medial
adjacent edges. non-adjacent edges. axis segment of a
reflex vertex and
an edge.

Figure 2.1: Medial segments of various entities of a polygon.

As mentioned in Section 2.1.1, Lee [Lee82] points out that the medial axis of a
simple polygon is a subset of the generalized Voronoi diagram of the polygon.
Specifically, the medial axis segments can be extracted from the Voronoi diagram of the
polygon by removing the Voronoi edges which are incident with each reflex vertex. Since
a convex polygon has no reflex edges, the medial axis is equivalent to subset of the
polygon's Voronoi diagram which lies within the polygon’s interior.

The medial axis transformation of a polygon can be generalized for polyhedrons by
first computing the generalized Voronoi diagram of the polyhedron, and then extracting
the MAT from the Voronoi diagram. General polyhedral solids may have a variety of
reflex edge and reflex vertex configurations, such as saddle points, peak points and peak
edges. The resulting non-planar faces which form boundaries for the Voronoi territories of
these entities are more complex to compute. Therefore, this thesis restricts itself to

convex polyhedrons in an attempt to focus on the feasibility of using the Voronoi diagram,

17

which is equivalent to the MAT for convex polyhedrons, in approximating solidification in
castings.

With convexity enforced, the straightforward computation of the generalized
Voronoi diagram of a 3D convex faceted solid model can be used directly to compute the
generalized MAT of a 3D convex faceted solid model. This interchangability means that
although the greatest included spheres solidification modeling method arises from the
definition of the medial surface transformation, all of the special properties of the Voronoi
diagram may also be applied to the casting model if desired. For example, as mentioned in
Chapter One, the Voronoi diagram can be used for optimal finite element mesh generation.
Although the strict equivalence between these two data structures is lost for general solid
models, they remain closely enough related that one may trivially be constructed from

another.

2.1.3 Geometric Entities

This section reviews the basic geometric entities required to understand the construction
of Voronoi diagrams for convex faceted solid models and provides a description of the
data structures used to represent these entities in the program developed for this thesis.
These entities include the polyhedron and its boundary elements, the faceted solid model,

and the Voronoi territory and its components.

18

2.1.3.1 Basic Geometric and Topologic Definitions

Polyhedron A solid, three dimensional entity which can be defined in one of two ways:
either as a region of space whose boundary comprises a finite number of faces, any pair of
which are either disjoint or meet at edges and vertices (topologic definition)
[O’Rourke94], or as a region of space which is bounded by simply connected, intersecting
facets (geometric definition). This thesis uses both definitions. The appropriate definition
for a given situation can be determined from context.

Point A zero dimensional geometric entity which defines a location in space.

Vertex A zero dimensional topological entity [O’Rourke94].

Line segment A one dimensional geometric entity which consists of the set of points
located between two endpoints.

Edge A one dimensional topological entity which connects two adjacent vertices
[O’Rourke94].

Facet A simple closed two dimensional geometric entity, or polygon. In this thesis, it
consists of three edges and a directed normal which defines the material side of the facet.
Face A two dimensional polygon on the boundary of a polyhedron [O’Rourke94]. The
face of a polyhedron is in turn bounded by a closed set of edges, which connect a chain of
vertices around the border of the face.

Halfspace A set of points on or to one side of a plane [O’Rourke94]. A half space can
be defined by a single point on its boundary plane and a directed vector normal ‘to the

boundary plane of the halfspace. A polyhedron may be represented as an intersection of

19

four or more halfspaces whose planar boundaries coincide with the faces of the
polyhedron, and whose direction vectors point to the exterior of the polyhedron.

Bisecting Plane This entity is specific to the program used in this thesis: it is a
halfspace whose bounding plane exactly partitions the intersection of a pair of halfspaces
into two equally sized subspaces. It is called a bisecting plane because its normal bisects
the angle between the normals of the bounding halfspaces. Since bisecting planes are
themselves halfspaces, they have a directed normal which identifies one of the two
subspace partitions as positive, and one as negative. If the pair of intersecting halfspaces
are faces of a polyhedron, the bisecting plane defines which portion of the polygon's

interior is closer to one face than the other.

2.1.3.2 Data Structure Implementations of Basic Geometric Entities

The program used to calculate the Voronoi diagram and medial surface transformation of a
.STL solid model implements two basic data structures: a faceted solid model, and the
Voronoi territory belonging to each of its facets. Both of these data structures represent
polyhedral solids, which are each customized as necessary.

Faceted Solid Model. The model is an array of facets. These facets are records

which consist of the following data: an array of pointers to each of its three vertices, a
pointer to its normal vector, an array of pointers to each of its three adjacent facets, a
double precision plane constant, and an integer enumerating the territory type. The facet

can be manipulated as a halfspace by evaluating

20

Ax+By+Cz=D 2.3)
where A4, B, and C represent the coefficients of the directed normal, and D is the facet's
plane constant. By convention, the normal points toward the exterior of the solid. The
territory type enumeration specifies the structure of the initial Voronoi territory formed by
using the facet and its three adjacent facets as sites. When these four sites are coplanar,
the facet's territory is a triangular prism; otherwise, the facet's territory is a tetrahedron, or
~ pyramid, whose apex is the point of intersection between the three bisecting planes created
between the facet and each of its three adjacent facets. The program creates these four
site initial Voronoi territories as a first step in defining the completed Voronoi diagram.

Voronoi_Territory. Like the faceted solid model, the Voronoi territory is a
supplemented list of its faces. The face list is doubly linked and circular, which maximizes
programming flexibility. Each territory also references its parent facet, and references a
list of one or three peak points. The peak points are either the set of three points created
for a prism type initial territory, or a single point corresponding to the apex of a pyramid
type initial territory. For this thesis, the geometric entity used as a site to generate the
Voronoi territory is a triangular facet of the faceted solid model.

Territory Face. The territory face is another supplemented list of its boundary

elements; in this case, a doubly linked, circular list of its edges. It contains a reference to a
normal vector, a double precision plane constant, and an integer visit flag. Like a facet, a
territory face can also be manipulated as a halfspace by using its normal and plane constant

in Equation 2.3. Since Voronoi territory construction is an iterative series of

21

plane/polyhedron intersections, the visit flag is used to show whether a face has been
visited by the intersection marching algorithm during the current intersection. The
marching algorithm is described in the following section and in Chapter Four.

Territory Edge. The edge provides the connectivity information required to
navigate a Voronoi territory. As implemented, its data structure closely resembles the
winged-edge data structure [O'Rourke95], which is a classic structure for representing
polyhedra. A winged edge consists of references to two vertices, a left and right side, the
faces lying to its left and right, and to the four edges which are adjacent to one of the

edges vertices and one of its faces [Figure 2.2].

Left Face
EdgeL1 Edgel.2
Head Vertex Edge Tail Vertex
EdgeR2 EdgeR1
Right Face

Figure 2.2: Winged edge data structure.

This thesis implements an edge data structure which references a head vertex, a tail
vertex, a parent face, an adjacent face, the next and previous edges on the parent face's
boundary, and a twin edge, which is a duplicate edge whose parent face is the edge’s
adjacent face. The orientation of each edge is implied by the position of its head and tail

vertices, and by the next and previous edges in the face's list.

22

2.1.4 Geometry-Based Algorithms and Procedures

This section discusses the basic geometric and topological concepts required to complete
the construction of the Voronoi diagram. Plane/plane intersections comprise the first topic
of discussion; they are required for computing the halfspace equations for Voronoi faces.
Line segment/plane intersections, which are required for computing the vertices that define
a Voronoi face’s boundaries, comprise the second topic. Intersection marching algorithms

comprise the third.

2.1.4.1 Plane/plane intersections

The bisecting plane between a pair of facets is created by intersecting the halfspaces of
two facets. Since a halfspace is defined by a normal vector and a point, one of each must
be calculated for each bisecting plane.

The normal vector of the bisecting plane is found by performing a vector addition
upon the unit normal vectors of the intersecting facets [Figure 2.3]. The resultant vector
is the bisecting plane normal because it lies in the same plane as the two original normals
and bisects their included angle. The latter fact is true since the dot product between the
normal, n,, of intersecting plane, P;, and the resultant vector equals the dot product of the
normal, n,, of intersecting plane, P;, and the resultant vector:

n -(ny+ny))=ny-ny+n-ny=1l+ny-n
1 1 2 1771 1772 1°7%2 (24)
nz-(n1+n2)=n2-n2+n2-n1=1+n2-n1

23

Bisecting Plane

Figure 2.3: Bisecting plane of planes P, and P,. Its normal vector is found by adding n, and n,.

Once the bisecting plane normal is found, its halfspace is fully defined by ensuring
that it passes through a point common to both of the original facet halfspaces. This point
can be found by intersecting P; and P;:

Alx + Bly + CIZ = Dl
A2x + Bzy + C22 = D2

2.5)
where n, = [4,,B,,C,], n, = [A4,,B,,C;], and D, and D are plane constants for P, and P;.
This system of equations defines the intersection of the planes P; and P,. The system
yields a line of intersection. A point along this line can be found by setting by either x, y,
or z to zero.

Bisecting planes must also be defined for pairs of opposite facing parallel faces, for
example the opposite faces of a cube. The bisecting plane in this case is the midplane of
the pair. The normal of the midplane is defined by assigning it the common normal of the
parallel faces. The point used to complete the midplane’s definition is found by

arithmetically averaging the coordinates of any point on P; with any point on P, [Figure

24].

24

Pz nzT

/. (X2,Y2.22)

/
4

n;or n4 S

/

—»

/// (xav:y avrzav)

s/

P an /
(be’l:ZI)

Figure 2.4: Construction of midplane for parallel planes P, and P;.

2.1.4.2 Line segment/plane intersections

In order to insert a new Voronoi face into a territory during its construction, the new
face’s plane must be intersected with the existing territory. The points used to define the
edge vertices of the new face are calculated by intersecting the line segments which define
the edges of the existing Voronoi faces with the plane upon which the new face lies.

The process consists of two steps: 1) identify an intersecting line segment, and 2)
calculate the point of intersection between the line segment and the plane. Intersecting
line segments are found by substituting the coordinates of each of its endpoints into the
equation of the halfspace upon which the new face lies. Because the halfspace has a
defined orientation, the results of these substitutions will have opposite signs whenever the
line segment’s two endpoints fall on opposite sides of the halfspace. Once an intersecting

line segment is identified, the point of intersection is found by computing the parametric

25

distance from one of the endpoints to the plane, along the line segment’s direction vector.

The parametric distance, ¢, is defined as:

x—x0=y—yo=z—zo (26)

where P = (x,,Y,,2,) is an endpoint, and V' = [V, V, V] the line segment’s direction vector.
Given the halfspace equation of the new face, # becomes

n-P
n-v

t=D -

2.7)

where D is the halfspace plane constant and » is the halfspace normal. Once ¢ is found, the

intersection point is solved for using Equation 2.6.

2.1.4.3 Intersection Marching Algorithms: Polyhedron/Halfspace Intersections
An intersection marching algorithm is used to construct the Voronoi territory of a facet by
incrementally updating the facet’s initial Voronoi territory through the intersection of the
territory with the facet’s bisecting planes [Figure 2.5a). The intersection marching
algorithm exploits the topology of the polyhedron in order to minimize the computations
required for polyhedron/halfspace intersections, ensures that the topology of the resulting
polyhedron is preserved, and guarantees that the polyhedron remains closed and
connected.

The algorithm begins by naively searching the faces of the polyhedron for an edge
whose corresponding line segment intersects the halfspace, and finds its corresponding

point of intersection [Figure 2:5b]. Once the initial edge is found, the algorithm uses

26

edge/edge connectivity to march through the initial face’s edges to find a second edge
whose corresponding line segment intersects the halfspace, and computes its point of
intersection. Once a second edge is found, the new face’s first edge is created by creating
vertices which correspond to the two points of intersection, and connecting those vertices
[Figure 2.5¢c]. The new edge is inserted into the new face’s edge list, and the algorithm
proceeds from the current face to the adjacent face of the second edge [Figure 2.5d]. The
marching algorithm finds the second intersecting edge on the second face. This process
continues until the initial edge is rediscovered; the new face’s final edge is created by
connecting the second vertex of the previous edge in its list with the first vertex of the
initial edge [Figure 2.5e]. Once the algorithm returns to the initial edge, it closes the new
face’s edge list, and inserts the new face into the territory’s face list. Its adjacent faces are

trimmed accordingly [Figure 2.5f].

27

Expecied location

and geometry of
1
newfree el Bisecting plase
7
< et >
T~ i T
STl 70 Voronoi territory
‘ T\/ , (under construction).
, \ ‘/
—
~ i
.
~

a. Intersection of a bisecting plane and an
under construction Voronoi territory.

€. Algorithm marches around the current face’s
edge list until second intersecting edge is
found. A new edge is created and added to
the new face’s edge list.

e. Algorithm repeats until the original edge is
found. The new face is now closed.

b. First step: an initial edge is found, and a
point of intersection between the edge’s line
segment and the bisecting plane is
calculated.

d. The march proceeds from the first face to the
back face, and then around the back face
until an intersecting edge is found. A second
edge is created and added to the new face.

f. Once the new face is complete, it is
incorporated into the territory face list.

Figure 2.5: Intersection marching algorithm.

Traversing the polyhedron in this manner forces the new face to have a fully closed
boundary of edges. Should any error occur during the intersection march, the algorithm
can abort the march since the new face is constructed as an independent entity. This
enhances the robustness of the algorithm. Additionally, by keeping a history of the new
face’s creation, the intersecting faces of the polyhedron are efficiently trimmed, and their
connectivity with the new face is guaranteed. Faces whose facets do not intersect the new
face’s halfspace are guaranteed to lie either above or below the new face; therefore, once
the march is completed, an existing face which lies completely outside the new boundary
of the polyhedron can be detected by inserting a single vertex of that face into the new

face’s halfspace equation.

2.2 Heat Transfer Background

This section provides the basic heat transfer knowledge required to compare the greatest
included sphere method with an explicit finite difference method for approximating heat
transfer in a casting. The first subsection discusses the explicit finite difference method,
which will be used as the benchmark for comparison with the Voronoi diagram based
implementation of the greatest included sphere method of solidification modeling. The
second subsection discusses Chvorinov’s Rule, a classic, time tested geometric method for
modeling casting solidification, and compares and contrasts Chvorinov’s rule with the

greatest included sphere method. The third subsection lists the assumptions and

29

limitations applicable to using Voronoi diagrams to automate the greatest included sphere

method.

2.2.1 The Explicit Finite Difference Method

The finite difference method (FDM) is an iterative numerical method for solving transient
and steady state problems in heat transfer. The method approximates the geometry of the
object undergoing heat transfer by applying a grid of regular elements to the object. Once
this grid is established, nodes are created which approximate the volume of each object as
a concentrated point location. The user specifies the initial heat transfer conditions of
each node, a set of material heat transfer properties, boundary conditions for the model,
and the location of heat sources and sinks. Once these preprocessing steps are completed,
the finite difference algorithm computes the temperature at a given node by performing an
energy balance which considers the heat transfer between that node and each of its
surrounding neighbors [Kreith80].

Two basic forms of the finite difference method exist. Both involve using a regular
grid to approximate the geometry and heat transfer characteristics of the model. The
explicit finite difference method uses the temperatures of all the nodes at a current time
step to compute the node temperatures at the next time step. Each node equation contains
only one unknown, namely the temperature of that node during the next time step.. The
implicit method involves solving the future temperatures of all the nodes simultaneously.

The major advantage of the explicit method is that it is simple to formulate, and requires

30

less computational time per iteration. The major advantage of the implicit method is that
it is stable, regardless of the time step chosen. Thus, it is more robust than the explicit
method, which become unstable for excessively large time steps. The choice of which
technique to use depends upon the geometry and boundary conditions for the model to be
solved. Combinations of the two methods may provide the best approach to some
problems [Kreith80]. This thesis uses the explicit finite difference method to generate
comparison models for the greatest included sphere method.

The three dimensional energy balance used to describe the heat transfer of a given

brick node 0 can be expressed in the following equation:

6 t t+At ot
Z -1 pVCTO_Ati (2.8)

l
where k represents the conductance of the element material, A; represents the area of the
element’s shared face with element i, T represents a node temperature, pV represents the
element mass, ¢ represents the specific heat of the element, Ax; represents the distance
between node 0 and node i, and At represents the time step [Kreith80]. When cubic nodes

are used, the equation can be reduced and solved for the new 7, as follows:
Ty =T + O Toum — 6T;) 2.9)

where C is a general constant lumping the time step, geometry and heat transfer terms
together, and T, represents the sum of the temperatures of the neighboring six finite

difference nodes.

31

2.2.2 Chvorinov’s Rule

Chvorinov’s rule relates the solidification time of a solid to its geometry [Chvorinov40]. It
is one of the oldest and most time tested of the geometric methods used to understand
casting solidification [Upadhya93][DeKalb87][Neises87]. The rule states that, within the
limitations discussed below, the time required to solidify a casting of a given solid
geometry is proportional to the square of the casting’s modulus, or volume to surface area

ratio:

2
2
tr=Cl— 2.10
4 C(A (2.10)
In this equation, # indicates the casting’s final solidification time, C represents a constant

of proportionality, and % represents the casting’s modulus.

The above equation only works accurately for low eutectic range metals, is valid
only without superheating, and is inaccurate for complex geometries [DeKalb87]. Low
eutectic range metals are metals whose phase transformations do not require a significant
amount of energy. This limitation is necessary, since the geometric relationship only
applies provided that the cooling front proceeds at a more or less constant pace from the
surface to the interior of the casting. The prohibition on superheating ensures that the
metal has an essentially uniform initial temperature. The accuracy of Chvorinov’s Rule
decreases as the geometric complexity increases due to the fact that certain geometric
configurations, for example internal corners, lead to areas of concentrated heat transfer.

This concept is analogous to stress concentrations arising from cracks in material under

32

tension. Chvorinov’s rule has been modified at the University of Wisconsin-Madison to
allow general 2D cross-sections and long eutectic range alloys [DeKalb87][Neises87].
Their method also predicts localized heat transfer deviations due to internal and external

corners.

2.2.3 Relating Chvorinov’s Rule to the Voronoi Diagram Based Greatest
Included Sphere Method

The greatest included sphere heuristic is similar in spirit to Chvorinov’s rule. Both rely
upon uniform cooling conditions at the boundaries, both assume a uniform initial
temperature of the molten metal, and both relate geometry to solidification time. The
greatest included sphere heuristic relates the radius of a sphere to the solidification time at
the sphere’s center. Chvorinov’s rule states that a spherical casting’s total solidification
time is related to the sphere’s modulus, which is in fact its radius.

Despite similar assumed conditions and a similar reliance upon geometry, however,
Chvorinov’s rule and the greatest included sphere method do not provide the same
information. Chvorinov’s rule provides a good estimate of total solidification time of a
casting, but gives no information on local solidification times. The greatest included
sphere method provides a rough, relative estimate of the solidification times between
several points within a casting. Even though the radius of a sphere is also its casting
modulus, the effective modulus of the greatest included sphere at an arbitrary point-within

a casting is dependent upon the casting’s surface geometry. Therefore, no explicit physical

33

relationship exists between the two methods. Lastly, Chvorinov’s rule supplies exact

solidification times for specific metals, while the greatest included sphere method only

requires knowledge of the casting geometry.

Despite the differences betweeﬂ the Wo methods, several specific limitations of a
Voronoi diagram implementation of the greatest included sphere method become apparent
by comparing it with Chvorinov’s rule:

1. Without subsequent modification, the Voronoi diagram will only produce good
results for low eutectic range metals.

2. The Voronoi diagram will produce errors with respect to FDM/FEM models away
from the boundaries of the Voronoi territories. This is because the diagram
assumes that at least two cooling surfaces contribute significantly to the cooling of
a given point. A point well inside of territory boundaries is dominated by only one
cooling surface; therefore, it will cool at a significantly slower rate than a point on
the Voronoi diagram whose distances to two or more casting surfaces are
equivalent.

Since the greatest included sphere method relies upon symmetry to predict felative

solidification times, it shares with Chvorinov’s rule the assumption that all boundary

conditions are uniform, and the at the interior’s initial temperature is also uniform.

34

Chapter Three

Literature Review

This chapter discusses three major topics: current methods of solidification modeling for
casting processes, Voronoi diagrams and medial axis transforms (MATs), and automated
casting design systems. The solidification modeling subsection introduces the concepts
behind solidification modeling methods, provides descriptions of both precise and
approximate solidification modeling which are currently in use or under investigation, and
lists the major commercial applications currently available. The discussion of medial axis
transforms and Voronoi diagrams explains the methods used in their construction, outlines
various types of transforms, and comments on the complexity of the algorithms used to
generate them. It also describes existing applications for their use, and explains their
potential application to solidification modeling and automated casting design. The
automated casting design discussion explains the resistance of the foundry industry
towards design automation software and describes the techniques used to create such

software.

35

3.1 Solidification Modeling Review

Kannan et al. [Kannan90] state that the current thrust of solidification modeling research
lies in the refinement of heat transfer and fluid flow techniques towards the goal of solving
microstructural modeling problems. The present state of the art, which takes the form of
3D finite element and finite difference codes, fully coupled with a computational fluid
dynamics simulation of the mold filling process, comes close to achieving this goal.
However, it cannot completely address the microstructural formation of heterogeneous
materials because of difficulties in modeling the random distribution of secondary
inclusions in these materials. Ghosh et al. [Ghosh94][Ghosh95a][Ghosh95b], in
combining Voronoi polygons and finite elements, achieve some success in modeling
heterogeneous materials, but since much remains unknown about the process of nucleation
in these materials, some level of uncertainty exists in their model. Brown and Spittle
[Brown93] point out that while finite element and finite difference analysis methods can
offer powerful solutions to solidification problems, they must have a physical model of the
solidification process upon which to base their analysis. The physics of microstructural
solidification is not well understood. In addition, the generation of accurate finite element
and finite difference solutions may take prohibitive amounts of computational time.

While microstructural solidification is an important process to understand when
optimizing casting material parameters, most casting applications require only an
understanding of macrostructural solidification patterns in order to produce sound

castings. Ideally, the engineer uses a fast, approximate method as an aid in making

36

preliminary refinements to a design, followed by a full finite element or finite difference
analysis to verify the design and optimize the material parameters. This review provides a
survey of the methods used in performing solidification analysis on castings, starting with
comprehensive finite element codes and concluding with rapid, approximate solidification
modelers employing geometry based techniques. Since much research has already been
performed and marketed,‘ a summary of current commercial foundry packages is included.

Kannan et al. [Kannan90] list four methods of solidification simulation in their
literature review: the integral profile method (IPM), the boundary element method
(BEM), the finite difference method (FDM), and the finite element method (FEM). IPM
uses a truncated power series approximation of a geometry’s temperature profile to solve
a heat transfer differential equation; this older method relies on the assumption of
temperature independent thermophysical properties and is therefore rarely used. BEM
discretizes the boundary of the geometry into elements, and then uses the inverse form of
Galerkin’s weighted residual method to solve an integral equation for each element. FDM
converts the geometry into a regular grid of cells, and then uses iterative heat transfer
equations to arrive at a solution. FEM reduces the geometry into polygons or polyhedra
and uses the weak form of Galerkin’s weighted residual method to process the model. Of
these methods, FEM and FDM are by far the most widely used.

Of the solidification simulations available, FEM provides the most comprehensive
geometric modeling capability of the physical processes involved. FEM thermal analysis

can incorporate fully coupled fluid flow analysis in order to investigate the effects of

37

solidification during and after mold filling. It has two advantages over FDM: it can

consider heterogeneous materials [Kannan90] and it provides greater flexibility in |
modeling arbitrary geometries. However, FEM requires extensive computing power and

knowledge of material properties in order to fully realize its potential. This review does

not discuss FEM in depth, but rather shows a sufficient number of examples of

solidification simulation via FEM in order to provide an understanding of its capabilities

and limitations.

Tu et al. [Tu93] employ a typical, state of the art finite element application to
investigate investment casting processes. It uses ProCAST (UES, Inc.), a fully coupled
mold filling and thermal analysis code, to process a 35000 node, 25000 element model.
The code accepts inputs quantifying the molten metal temperature, the mold preheat
temperature, the metal inlet temperature and velocity, the metal and mold material
properties, the effect of the insulation blanket and contact conductance between the mold
and the metal, and radiation heat transfer boundary conditions. Output includes isochron
plots, which show the time taken for a given location to freeze, temperature distribution
vs. time plots, and plots showing the tendency for microporosity based upon one of two
prediction criteria. Although it provides extensive information about the process, the
extent of the preprocessing and analysis time required makes this approach unsuitable for
conceptual design iterations.

Beffel et al. [Beffel89] also use finite element analysis to study an investment

casting process. They use PATRAN/ANSYS to analyze a 9000 node, 5000 element model

38

of investment cast turbine blade mold clusters. The application produces isochrons, grain
size plots, cooling curves, and a plot of the tendency of an airfoil to undergo hot cracking
relative to its length. Their work reveals the scope of information available from a typical
FEM-based solidification simulator. It also reveals a need for considerable computing
time; typical analysis runs lasted overnight on an FPS M-64/60 computer. While
computing power has advanced considerably since the time of their report in 1989, it
remains obvious that time is a distinct disadvantage in using FEM for rapid -design
iterations.

Kannan et al. [Kannan90] have developed a 2D finite element application called
CADCAST, which combines mesh generation, material databasing, analysis, post
processing and output plotting in a single, five module software package. The limitation to
two dimensions indicates the willingness of the foundry industry to forego the accuracy of
3D codes in order to produce quicker solutions on less powerful computers.

While more limited in geometric modeling capabilities, the finite difference method
can match the FEM in accuracy, and can effectively treat 3D casting models. The
American Foundrymen Society has pursued research in FDM since the late 1960s
[Pehlke88]. This research has resulted in two commercially available solidification
simulators, the 2D AFSolid package and the 3D AFS Solidification System [Estrin94].
Their built in mold and material databases provide a crucial advantage, since FDM, like
FEM, relies upon the quality of its materials property data, heat transfer coefficients, and

its physical model of solidification in order to produce quality results [Brown93]. Each

39

FDM model may require complete reworking in order to accommodate the analysis of a
new alloy.

Brown and Spittle [Brown93] avoid materials issues and realize an order of
magnitude speed improvement over conventional FDM analysis with cellular automaton
software. The procedure is described as similar to a time-stepping, dimensionless finite
difference approach: it uses a 3D grid of finite difference cells and iterates temperature
changes in each cell as a function of the cell’s 6 nearest neighbors. It can treat chills, risers
and cores accurately by representing them as separate boundary conditions, and it can
predict macroshrinkage and macrofreezing patterns. Because it requires no specific
information on the metal or mold type, it cannot directly predict freezing times. This
drawback is inconsequential, however, to a foundry engineer interested in quickly locating
regions in the casting requiring risers in order to prevent shrinkage defects.

Hill et al. [Hill91] also use a cellular method to arrive at a quick, approximate
solidification time plot. They impose a uniform grid over the casting and perform a
volume calculation which determines whether each cell is fully, partially, or not at all
located within the boundaries of the casting. Then, they perform a weighted summation
upon each grid point to determine its mass distribution. In this manner, the centers of the
thickest sections, corresponding to the areas expected to solidify last, are identified along
with the natural heat and feed metal flow paths into and out of those regions. The

information gleaned from this analysis provides a rigging design expert system with a basis

40

for design of risers and gating; the expert system can use the data from this analysis to
quickly visualize the thick regions of a casting in the same way as a casting engineer does.

Of the geometry-based solidification modelers available, modulus-based methods
based on Chvorinov’s rule dominate. Chvorinov’s rule relates the casting modulus, given
by the ratio of the casting’s volume to its surface area, to the time taken to freeze the
casting [Upadhya93][Chvorinov40]. The mathematical expression for Chvorinov’s rule is
Equation 2.10. In this expression, C is a constant based on metal and mold material and
temperature parameters. Chvorinov’s rule was developed for short solidification range
steels, but also applies to pure metals and low solidification range alloys, like those of
aluminum and copper [DeKalb87]. Upadhya and Paul [Upadhya94] state that most
applications utilizing Chvorinov’s rule use some form of feature-based modeling or
sectioning of a solid model in order to break a full casting geometry into simple
components. While some of these applications are capable of performing 3D calculations,
most only apply to 2D simplifications of 3D models. Computer programs employing this
technique range in sophistication from those that require the user to perform sectioning by
hand to those that compute a continuous distribution of modulus from a grid of points
within a solid model.

Pei et al. [Pei87] present an application which forces the user to perform most of
the work in processing a solid model for modulus calculations. The model is broken up by
hand into basic shapes, such as spheres, cuboids, cylinders and frustums of cones. Where

one shape connects to another, the overlapping surface area is recorded by hand as being

41

round, cuboid, or cylindrical. With this information, the computer calculates section
moduli for each component, and uses the numbers generated to compute riser dimensions.

Sirilertworakul et al. [Sirilertworakul93] section a casting geometry automatically
using an AutoCad AME (release information not provided) function that sections a solid
model and records the section’s perimeter length and cross-sectional area. Since the
sections are constrained to have uniform thickness, the modulus of each section can be
calculated from these two parameters. Using this method, the program calculates the local
modulus at several locations in the casting, and outputs either a color map showing the
variation in modulus or a black and white grid of the casting which lists the local modulus
of each grid square. Its main advantage is that it accurately predicts localized differences
n cooling rates for internal and external corners.

Nieses et al. [Neises87] also compute the section moduli of 2D sections by using a
generalized equation based upon an area/perimeter value for section modulus, similar to
that used by Sirilertworakul et al. [Sirilertworakul93]. Nieses et al. also use a point
modulus calculation which depends upon both the distance of a point to each edge of a
section and a view factor for each edge with respect to that point. The view factor of an
arbitrary internal point is related to the angle included between line segments drawn from
that point to each of the vertices of a given edge.

DeKalb et al. [DeKalb87] combine this generalized section modulus formula with a
considerable amount of experimental data to create an extension of Chvorinov’s rule that

accurately models long solidification range and eutectic alloys, such as high alloy steels,

42

carbon steels, cast irons, aluminum alloys and copper alloys. Their application, called
SWIFT, provides 41 different equations used to fit Chvorinov’s rule to specific metals.
This code can also calculate the start and end of the mushy zone of a long solidification
range alloy at a given time. At the time of their report, SWIFT only applied to 2D models;
however, the principle of section modulus calculations is extendible to 3D.

Upadhya and Paul [Upadhya93] use a distributed point modulus calculation to
calculate the local sectioﬁ modulus of points in a finite difference mesh of a casting. The
equation they use relates the modulus of a point to the summation of all the distances from
that point to the mold boundary along a specified number of directions.

Many of the above solidification modeling concepts have been incorporated into
commercial packages, among them SWIFT, MAVIS (cellular automaton), and ProCAST.
Estrin [Estrin94] reviews 17 solidification packages from 13 companies, lists the required
hardware platforms to run them, and describes the method they use to perform
solidification simulations. Most of these applications can be run on PCs, and many
operate on multiple platforms. There are ten FEM packages, of which seven have some
fluid flow analysis capability. One is a combined FEM/FDM package, two are 3D FDM
packages, and one is a 2D FDM package. All of the applications listed have either 3D
capability or a companion package with 3D capability. Only one package, SWIFT,
provides an exclusively geometry based modeler; two other applications, MAVIS/DIANA
and RaPiDCAST, have both a quick geometry based modeler and a full FEM or FDM

modeler.

43

Sandia National Laboratories’ FASTCAST package may also soon become
commercially available [Sandia92]. It provides multidimensional, nonlinear heat
conduction analysis and radiative heat transfer analysis for investment casting simulation.

A Voronoi diagram based solidification modeling tool contributes to the existing
body of casting solidification simulation applications by providing a fast approach to 3D
solidification modeling which avoids the expense of full FEM/FDM applications. A
greatest included sphere method based upon the Voronoi diagram is in philosophy most
like Hill et al.’s [Hill91] mass distribution method. Both methods ignore localized
boundary conditions such as chills and cores, rely exclusively upon the casting geometry
to identify the thick portions of a casting, and provide information which can be used by a
design automation expert system.

Although the accuracy of the Voronoi diagram based modeling method is not
expected to be precise, its accuracy can be enhanced with a minimal speed increase by
using a SWIFT style calculation on a gridded Voronoi diagram. The diagram requires
gridding for this purpose because SWIFT is an iterative process which recalculates the
local modulus of grid points based upon the solidification of the model up to a given time.
A Voronoi diagram grid would be more sparse than the full FDM grid used by SWIFT, yet
contain the locations of critical interest for heat transfer simulation. By combining these
two ideas, the potential exists to achieve the accuracy of SWIFT with on a greatly
reduced, yet much more physically significant, set of points than those created by ﬁaively

gridding the full solid model.

3.2 Voronoi Diagrams and Medial Axis Transformations

An alternate definition of the 2D medial axis transformation (MAT, or skeleton) of an
object is that it is the locus of the centers of all maximal disks in a 2D object [Rolland92].
Therefore, it provides the motivation for automating the greatest included circle method.
The MAT generalizes in 3D to the locus of all maximal spheres in a 3D object, which
provides the motivation for using the Voronoi diagram to model solidification by
extending the greatest included circle method into an automated greatest included sphere
method.

The medial axis transformation was first conceived as a tool used in pattern
recognition and computational geometry to compactly represent and compute the
geometric properties of digitized patterns in a grid [Preparata77]. Typically, computations
are completed by discretizing the total area of the image into subareas of suitably small
size, such as that of a picture element, and treating those subareas as a single point.
However, exact algorithms exist for polygons. The following subsections will describe the
methods used in MAT and Voronoi diagram computation and comment on their
complexity, discuss the types of Voronoi diagrams and their potential applications, and
relate this discussion to the application of MATs and Voronoi diagrams to solidification

modeling and automated casting design.

45

3.2.1 Medial Axis/Surface Transformations: Methods of Construction

Preparata [Preparata77] outlines methods for computing the MAT of simple convex and
non-convex polygons, in O(nlogn) and O(n’) time, respectively, where n is the number of
sides of the polygon. An additional O(n) operations can find the largest included circle of
a polygon. The algorithms use edge removal to recursively reduce the polygon into fewer
and fewer sided polygons until only a triangle remains, for which the medial axis is trivial.
The algorithm then constructs the full medial axis transformation by combining the binary
tree data structure which holds the edges of the medial axes of these recursively generated
triangles.

Thinning algorithms are commonly used to generate MATSs of images which are
discretized into pixels or voxels. The image is stripped of points on its boundary which do
not meet specific criteria [Rolland92]. This process uncovers new boundary points, which
are iteratively removed until no points are left that are not part of the medial axis/surface.
Rolland et al. [Rolland92] use this procedure to find the medial axis for 3D solids;
Hjalmarrson et al. [Hjalmarrson94] use a thinning algorithm to determine the moldability
of an injection-molded part design.

Samet [Samet83] uses a quadtree data structure and a checkerboard distance
transform in order to successively subdivide the image into successively smaller subregions
until those subregions have a single gray scale value. By subdividing the image in this
manner, Samet’s algorithm not only computes the MAT of a 2D gray scale image

efficiently, it also provides a well organized data structure for retrieving the original

46

image. This method is a particular example of finding local distance maxima based on a
discrete distance mapping of the image, which is, according to Rolland et al. [Rolland92]
along with thinning one of the two most significant strategies for obtaining a discrete
medial axis transformation. The definition of the medial axis may be generalized beyond
the Euclidean distance metric to include any convenient distance metric, such as
checkerboard distance which Samet employs.

Lee [Lee82] computes the medial axis for a simple polygon in O(nlogn) time by
recursively splitting its edge list into successively smaller lists, computing the Voronoi
diagram of the edge lists at the bottom level of recursion, and then constructing the full
Voronoi diagram of the polygon by combining the partial Voronoi diagrams recursively.
Lee notes that the MAT of a polygonized image is a subset of the Voronoi diagram, in
which the Voronoi diagram edges that share verticeé with exterior edges are removed.
This concept extends to 3D faceted solid models: the medial surface is a subset of the 3D
Voronoi diagram in which the faces of Voronoi polyhedrons which share an edge with the
exterior facets are removed. The medial surface of a convex faceted solid model, which
has no exterior facets by definition, is therefore equivalent to its Voronoi diagram.

Ogniewicz and Ilg [Ogniewicz92] also use a Voronoi diagram in order to construct
a medial axis; they compute a robust medial axis, which they call a Voronoi Medial Axis
(VMA) by computing a Voronoi diagram of the boundary points of a polygon. Once this
is done, a regularization of the diagram, based on one of three residual functions, réduces

its sensitivity to perturbations among the boundary points.

47

O’Rourke and Badler [O’Rourke79] use a method similar to a medial axis
transform for fitting spheres to various surface points inside a volume. This O(n’) method
checks to see that no points on the image surface are located internal to the sphere being
generated, and shrinks the sphere accordingly should this condition prove false. These
spheres form a set of largest included spheres for the model. The medial axis of the 3D
model, which is the set of centers of all largest included spheres, can be approximated as a
polyline connecting the centers of O’Rourke and Badler’s spheres.

As Samet [Samet83] shows, other distance metrics, such as checkerboard or city
block distances, can be used to determine the points of locally maximum distance to the
edge of an image. In addition to using non-Euclidian distance in medial axis transforms,
the distances can be weighted in order to provide a more generalized format of the MAT
when convenient. Peleg and Rosenfeld [Peleg81] list four such generalizations. First, the
SPAN technique approximates the MAT using maximal homogeneous disks which possess
a unique center, radius and average gray scale value. Second, the GRAYMAT produces a
medial axis using a gray weighted distance formula: the shortest distance between two
points is the lowest gray weighted length of any path between them. Third, the
GRADMAT produces a score based on the gradient magnitudes between all pairs of
points with a point P at their midpoint, and assigns the score to point P. Finally, Peleg and
Rosenfeld introduce the MMMAT, which uses iterated local min and max operations on a
binary image. The method is similar to iteratively shrinking and expanding a binary digital

image based on an appropriate neighborhood for the distance metric used. These

48

generalized transforms apply to pattern recognition of gray scale images: the weighting of
the MAT allows information about the shading the image to be stored within the MAT’s
data structure, along with information about the image’s external geometry.

The analytical medial axis transformation of a 3D object proves to be difficult to
calculate and implement. Sudhalkar et al. [Sudhalkar93] compute a skeleton of
polyhedron which they claim shares the desirable properties of the MAT. Their skeleton
exhibits dimensional reduction, which means that a 3D object forms a skeleton of 2D
faces; it has homotopic equivalence, which means that the number of holes in the object is
equal to the number of holes in the skeleton; and it is invertible, which means that the
shape of the object can be retrieved using the information provided in the skeleton alone.
Invertibility implies that each object has one unique skeleton. The skeleton is computed
by faceting a solid model, voxelizing the model, and checking each voxel to determine
whether it lies on the skeleton of the object. However, since it uses a non-Euclidean
distance norm in this determination, it may differ significantly from the actual medial axis
[Sherbrooke95].

Sherbrooke et al. [Sherbrooke95] use a recursive algorithm and an entity
classification scheme to develop a method of calculating the Voronoi diagram of a 3D
polyhedron without the need for voxelizing or otherwise discretizing the volume; it
appears to be the only algorithm which does not require discretization of the solid model.
The algorithm begins by finding a junction point of the medial axis and traces each medial

axis edge, which they call a seam, until another junction point is found. The process then

49

repeats recursively until the medial axis is entirely traced. The tracing scheme uses a
differential equation to incrementally advance along each seam.

Sherbrooke, et al.’s algorithm applies to convex and non-convex polyhedrons with
simply connected faces; holes are also allowed. This makes the algorithm a significant
advancement of the current state of the art in 3D medial axis transformations. = The
method is in many ways more general than the method proposed in this thesis, and appears
more robust. However, coplanar faces are not allowed, which means that this algorithm
cannot directly handle standard .STL files as input. Given that coplanar faces are easy to
detect and combine, a modified version of this code would provide an excellent way of
extending the work of ‘this thesis to treat general, simply connected faceted casting

models.

3.2.2 Voronoi Diagrams: Methods of Construction

Incremental construction is a widely used method for producing a Voronoi diagram of a
set of points [Sugihara92] [Choset94]. In this method, the Voronoi diagram is constructed
for two arbitrary sites selected from among the set of sites. Additional sites are added one
at a time, and the Voronoi territories are modified to reflect the inclusion of these new
sites. This method can reduce the overall number of operations required for a naive, O(n’)
construction approach, since the insertion of a new site inside an existing territory requires

only that the existing territory and its adjacent territories be updated.

50

Growth algorithms provide another relatively simple approach to Voronoi diagram
generation. Morris and Smyrl [Morris89] grow circles about randomly positioned points
in order to generate a Voronoi diagram. The circles grow from their respective centers
until they are large enough to intersect with another circle. No circle is allowed to
impinge upon the area of another circle; hence as the circles continue to grow, they will
deform to produce straight line boundaries between contacting circles. These lines
become Voronoi polygon edges. This algorithm works well for applications that can be
modeled as statistically random sets of point sites, such as galvanic surfaces or
heterogeneous materials [Ghosh94] [Ghosh95a] [Ghosh95b] [Morris89].

Voronoi diagrams of point sets are well understood. Many efficient, robust
algorithms have been developed for them. Sugihara and Iri [Sugihara92] use the
incremental approach to generate a robust Voronoi diagram in single precision arithmetic
by ensuring that the calculated Voronoi diagram shares the same topological structure as
the true Voronoi diagram. Simply put, the exact equations of intersections of the bisecting
lines which form the Voronoi edges are not of concern; rather, the edges generated are
constrained to intersect the same edges that the exact edges are expected to intersect.
With this topological approach, Sugihara and Iri were able to successfully produce a
Voronoi diagram for 2D sets with one million generator points.

Algorithms also exist which compute generalized Voronoi diagrams. Due to the
additional issues involved in extending the diagram to treat generalized sites and non-

planar spaces, however, this work is less extensive than research on classic Voronoi

51

diagrams. However, a few algorithms have been implemented. For instance, Sugihara
[Sugihara93] approximates generalized 2D Voronoi diagrams by representing the sets of
objects as a collection of points, generating the ordinary Voronoi diagram for those points,
and removing Voronoi edges that border Voronoi polygons between points on the same
object.

Stifter [Stifter91] presents an axiomatic approach for providing an exact
description of a generalized Voronoi diagram of 3D surfaces. Although the approach
applies only to restricted sets of 3D surfaces, it is sufficiently general to handle sets of 3D
faceted solid models. Unfortunately, no algorithms have been implemented to compute

the Voronoi diagram using this approach.

3.2.3 Applications of Voronoi Diagrams and MATs

Voronoi diagrams and medial axis transformations are both intuitive and abundant in
nature. When a child draws his first picture of his family, he will almost always represent
his parents, siblings and himself as stick figures. Because these stick figures are simplified
medial axis transformations of the human body, it becomes clear that the skeletonization of
a figure is a concept so easy to grasp that it serves as one of the first visualization tools we
use to understand our world. Evidence of natural processes which create skeletonized
structures can be seen in the cracked earth of a parched field [Lam92], or in the ripple

interference patterns formed by throwing a handful of pebbles into a pond.

52

Upon considering a toddler’s stick figures, it becomes easy to understand why the
first academic interest in MATs and Voronoi diagrams arose in the fields of pattern
recognition and machine vision. Due to their tendency to appear in many different fields,
however, the interest in these constructs has generated research in such diverse subjects as
fractal generation, medical imaging, robot path planning, and oil well modeling. This
discussion will survey a variety of applications in these and other fields.

Image representation and pattern recognition are the primary fields of application
for MATs and Voronoi diagrams. Researchers in these fields have investigated MATs and
Voronoi diagrams for over thirty years. Samet’s [Samet83] work on QMATS, Preparata’s
[Preparata77] work on simple convex and simple non-convex polygon MATs, Rolland
et al.’s [Rolland92] work on 3D thinning, and Peleg and Rosenfeld’s [Peleg81] work on
gray scale MATSs seek to use the MAT to store the geometric information about an image
or an object in a compressed format.

MATs and Voronoi diagram applications to pattern recognition naturally extend to
computer vision systems for autonomous robots and vehicles. Krozel and Andrisani
[Krozel90] use a 2D Voronoi graph interspersed with Delaunay regions to represent a
mountainous flight path for an autonomous military aircraft. The result is a graph of
possible flight paths which always maximally avoid every obstacle. An algorithm can then
automatically minimize the path distance from the initial entry point on the graph to the

target point.

53

Autonomous and stationary robot path planning uses Voronoi diagrams to
minimize path length while avoiding collisions with workspace obstacles. Choset and
Burdick [Choset94] develop a Generalized Voronoi Graph, which is a 1D retract of a 2D
bounded space. This retract uses the principle that a Voronoi edge drawn between two
obstacles maximizes the relative distance between each of those obstacles in order to
generate path planning for a robot in a static environment. Stifter’s [Stifter91] 1D retract
of a robot’s workspace solves the Findpath Problem, which states that, for a sphere inside
a bounded space, a collision free path to any point within that space can be found on a
Voronoi diagram of that space, provided such a path exists.

In addition to industrial robotics, Voronoi diagrams apply to other manufacturing
processes, such as sintering, NC machining, and thermoplastic molding. Tei-Ohkawa et al.
[Tei-Ohkawa94] use the Voronoi diagram to study the atomic packing geometries of the
crystalline structure of sintered materials. Takata and Tsai [Takata94] use Voronoi
diagrams to optimize the tool path of NC machines performing pocket machining
operations. Hjalmarrson, et al. [Hjalmarrson94] find the medial axis of an injection mold
design in order to generate a well-defined mesh for injection molding finite element
analysis. Lee and Lee [Lee95] also apply the medial axis to mesh generation for injection
molding analysis. This computation comprises of voxelizing a faceted solid model and
checking each voxel individually to see if it includes a portion of the bisecting surface of

one or more planes of facets.

54

The possible applications for Voronoi diagrams in FEA include not only injection
molding analysis, but also computational fluid dynamics studies, heterogeneous materials
analysis, and, as explained above, evaluation of the manufacturability of cast parts.
Tar;iguchi and Kobayashi [Taniguchi91] develop an unstructured grid based on the
Voronoi diagram for analyzing the fluid flow around solid bodies via the finite volume
method. The Voronoi diagram provides an easier means of generating a finite volume grid
which conforms optimally to the shape of the solid. Ghosh et al. [Ghosh94] [Ghosh95a]
[Ghosh95b] developed a 2D finite element called the Voronoi Cell Finite Element which
models a heterogeneous material with secondary material inclusions located at the point
sites of Voronoi territory shaped elements. This finite element method produces the same
accuracy as conventional FEM, but with much fewer elements. Cruz and Patera [Cruz95]
also investigate heterogeneous materials using Voronoi diagrams. Based on a Voronoi
diagram representation which also models secondary inclusions at point sites, they
formulate finite element supercells. A parallel finite element code analyzes these
supercells.

In addition to the above fields, which have generated large bodies of research,
Voronoi diagrams and MATs have application to an eclectic and extensive array of
research subjects. Medical imaging, a specific subset of pattern recognition, employ MATs
for reproducing solid objects based on tomographic surface data [O’Rourke79], in analysis
of white blood cells and chromosomes, X-ray image analysis, and the study of coronary

arteries [Lam92]. Petroleum engineers have used Voronoi diagrams to accurately model

55

fhe characteristics of multiple-well oil reservoirs [Palagi94]. Materials science researchers
have used them to model galvanic cells in order to simulate the galvanic corrosion on a
given surface [Morris89] and to model pore size distribution in the sintering process [De
Jonghe89]. Electrical engineers have used them, along with Delaunay graphs, to provide
an upper and lower bound to the discretization error associated with MOSFET devices
[Tanimoto92]. Computer scientists have used them to optimize neural net design
[Bose93]. Mathematicians have used them as a vehicle to generate fractal patterns

[Shirriff93].

3.2.4 Potential Application of Voronoi Diagrams and MATs to Metal
Casting

Although the research into MATs and Voronoi diagrams is extensive, the foundry industry
has not yet published work describing the application of these concepts to either
solidification modeling or to automated design of rigging systems. This is no doubt due to
the fact that no commercially reliable software has been formulated which computes the
analytical MAT of general 3D solids. Once this obstacle is overcome, however, a MAT
based solidification modeling application should provide several advantages. The model
itself should be fast to compute, since it is a non-iterative process. Voronoi diagrams are
not exactly equivalent to the MAT for general solids, but would be trivial to compute

given the MAT. The Voronoi diagram’s application to FEM mesh generators make them

56

attractive to the foundry industry even if the greatest included sphere method itself would

prove to rough an approximation for casting applications.

3.3 Automated Rigging Design

The purpose of performing a solidification simulation upon a given casting is to aid in
determining the size and location of risers required to make the casting sound. Risers
provide a source of make up metal to the casting, which prevents porosity due to
contraction during cooling and solidification. However, riser design cannot be performed
without also considering the mold parting planes, the gating, and the runner system.
Ideally, the casting design process should be entirely automated. With such an automated
system, the foundry would accept a solid model of the part to be cast and generate the
final rigging system via computer. This section shows, however, that in almost all cases a
completely automated system would be impractical to create and use, and would likely
prompt formidable resistance from experienced foundry engineers. The reasons for
foundry resistance is also included in this section: foundry engineers rely on experience
and rules of thumb as much or more than on quantifiable analysis. They use foundry
specific design rules, which, because they may address different design considerations,
may contradict other rules. After introducing these problems, the following paragraphs
will briefly overview casting design expert systems, which comprise a major research focus

for automating the design process.

57

In order for a computerized rigging design application to be successful, it cannot
merely be technically correct; it must also overcome the suspicions and traditions found in
the foundries that use it. A good example concerns the issue of gating design. Wukovich
and Metevelis [Wukovich89] emphasize this difficulty when they point out that gating is
“still regarded as an art or religion rather than a science.” They further state that, despite
fifty years of collected data on gating, it remains a poorly understood foundry process.
This poor understanding arises as much from experience-based personal preferences than
from a lack of quality scientific data. For example, Jordan et al. [Jordan88] call
pressurized gating systems ‘suspect’ due to their tendency to allow gases to come out of
solution while Karsay [Karsay72] contends that pressurized gating systems should be used
in most situations to prevent dross carryover. With such contradictions, generating sound,
explicit rules for automated rigging design becomes extremely difficult, if not impossible.

While the industry maintains a skeptical eye on automated design systems, some
progress has been completed, especially in the use of knowledge-based expert systems.
Expert systems are well suited to resolving the difficulties mentioned above, since they
accommodate experience-based design criteria, and can tolerate uncertainty in both design
rules and data [Durkin94]. Upadhya and Paul [Upadhya93] have developed a FORTRAN
language knowledge-based system which determines a parting plane, performs a point
modulus solidification simulation, and uses the output of that simulation to position and
dimension risers, gates, sprues and runners. Zhang et al. [Zhang94] use an AutoCad

geometry-based solidification modeler to automatically design feeders. Hill et al. [Hill91]

58

describe an expert system for sand casting called EXCAST, which, although not
specifically designed for automated gating and risering, makes rigging design problems
apparent to the user. Kotschi [Kotschi89] provides examples of algorithms required for
automated rigging design, particularly parting plane determination, and automatic core
design. The above systems use rapid solidification modelers to provide input data to their
automated design programs [Pehlke88] [Zhang94] [Hill91]. Hill’s input format may also
be separately rendered as a solid image which resembles a finite element analysis model of

a casting.

3.4 Observations

From the discussion of Voronoi diagrams and medial axis transformations, it is clear that
these geometric constructs have a wide range of engineering applications. A major
impediment to using these constructs is that the development of robust, efficient
algorithms for computing them is non-trivial. However, this field is an extensive, mature
research area; therefore, it is reasonable to expect that these algorithms will eventually
become commercially available. Once available, these algorithms will have several
potential applications in the foundry industry.

A Voronoi diagram or MAT of a casting model can provide two advantages to an
automated rigging design expert system developer: 1) they represent a con_1pact,
computer-friendly representation of an object’s full geometry, and 2) the data required to

approximate the solidification pattern is incorporated into the geometric representation.

59

In effect, the Voronoi diagram provides a means for a computer to interpret the geometry
of a solid model in the same way that a human expert would, without the need for the
computer to have human-like sensory input capacity. Since expert systems must interpret
input data in order to make decisions, they are limited by the ability of the computer to
collect that input data [Durkin94].

The practicality of fully automated rigging design systems to the foundry industry
remains unclear. Different components of the same rigging design may have contradictory
design rules [Hill91], and certainly competing foundries will differ on their choices of
design rules. Therefore, and over-ambitious automated design system may be difficult to
market. Despite this uncertainty, however, it remains clear that Voronoi diagrams can
provide an immediate aid to engineers by helping them to better visualize and analyze the
casting solidification process.

The purpose of this thesis is to explore the feasibility of using a Voronoi diagram,
without further processing, in order to rapidly approximate solidification patterns in
castings. This chapter shows several applications which indicate that rapid solidification
approximation is a significant area of interest to foundrymen. The Voronoi diagram also
has potential for use in foundry applications which are not primarily concerned with rapid
solidification modeling, but rather with accurate finite element analysis. For example, this
review shows two applications where Voronoi diagrams were used to generate new finite

elements which provide improvements in accuracy and computation time

60

[Ghosh94][Ghosh95a][Ghosh95b][Cruz95], and one application which uses a Voronoi

diagram-based grid for optimizing mesh shape and alignment [Taniguchi91].

61

Chapter Four

Methods

This chapter considers two main topics: the methods used to generate the Voronoi
diagram of convex faceted solid models, and the methods used to investigate the feasibility
of applying the Voronoi diagram to casting solidification modeling. The Voronoi diagram
generation algorithm described in Section 4.1 combines the intersection marching
algorithm described in Chapter Two with a bisecting plane preprocessing sequence in
order to generate individual Voronoi territories for each facet in the model. The
experiments described in Section 4.2 consider the quality of the generation algorithm, the
use of geometry to approximate solidification for basic 2D and 3D geometries, and the

algorithmic complexity of the automated greatest included sphere method.

4.1 Voronoi Diagram Generation

This thesis combines a naive O(n’) intersection algorithm with an O(n’) preprocessing
sequence in order to generate a Voronoi diagram of a convex faceted model.
Preprocessing‘ is necessary to enhance the robustness of the intersection algorithm. The

procedure starts by loading the original .STL model, supplementing it with topological

62

information, and assigning it to an appropriate data structure. It then completes a
preprocessing sequence which consists of: 1) constructing initial Voronoi territories of
each .STL facet, based on its three adjacent facets; 2) generating, in matrix form, a list of
bisecting planes between each facet and every other facet in the model; and 3) eliminating
all bisecting planes of each facet’s list which can be identified as non-members of the
facet’s final Voronoi territory. Once the model is preprocessed, a marching algorithm
computes the final Voronoi territory of each facet and writes the information required to
render each territory to an output file. A separate graphical user interface program
renders the .STL model and its Voronoi diagram. This section discusses each of the high-
level steps of this procedure in greater detail in order to understand the concepts and
methods involved in their completion.

This section will include a C-like pseudocode in order to provide a clearer
understanding of the algorithms used. Predefined constants are represented in capital
letters, variables are represented in italics, program commands are represented in bold,
function names are represented in bold italics, and conditional statements are represented
as natural language phrases in plain text. The pseudocode borrows the C++ “//” symbol to
denote a single line comment. Figure 4.2 provides the definitions of important variables

and constants used in the pseudocode. Others will be introduced as needed.

63

@ ¢ | Checks bisecting Eliminates distan Eliminates 1
:| planes using planes using identical planes | .
LoadsModeIFtle —’ territory pea’k closest plans: T—*land distant p}anesl ;
 into Program Data i| points. O@m). criteria. O(n”). by comparing | -
: Structure : : 4,1.3.2 4,133 planes with :
; : equivalent vengx :
i JAccepts .STL file| : . Bisecting Plane Filtering Sequence dlSEI;C?Sé 40(")|
i | asinput. 4.1.1. | ! : -1-d- :
l et et e en aereaereareeraiaa s sieaseneiresomrarnn st m et ianaaannastnrann |
ey | Have all bisecting
: p:::::;;giéft In tersectiqn Marching
Transfers input : : territory? };:(l,gonthr(r;':ztnd .
format to faceted | : 4.14. gram Cuipu
solid model data | : : 1
structure. 4.1.1. | : : Intersects
: : : No bisecting plane
: and territory.
i | Proceeds to next 4.14.
: facet. 4.1.4. Yes
iInitializes Territoriesg ;
! and Bisecting Plane | ; Have all final Removes culled
Lists § Voronoi territory faces.
; territories been 414,
i | Createsinitial | : : generated? 4.1.4.
: Voronoi : :
: |territories. 4.1.2.] 5 (Creates output for|
: I No rendering. 4.1.6.
Generates ' :
bisecting planes.
4.1.3.1

Figure 4.1: High level flowchart of Voronoi diagram generation.

constant NUM_FACS (n) // Number of facets in the solid model.
constant NUM_VERTS 3 // Number of vertices per facet.
facet facet[NUM_FACS] /I Array of model’s facets.

facet bs{NUM_FACS][NUM FACS] // Bisecting plane lists for each facet.
/! bs[l] [m] holds the bisecting plane
// between facet / and m, whose normal is
/! properly oriented for intersection with
// facet Is territory.

territory zerr{NUM_FACS] /! Array holding each facet’s Voronoi
// territory.

Figure 4.2: Variables and declared constants used for pseudocode subroutines.

4.1.1 .STL Model Loading and Supplementation

The solid model described in the .STL file format is built using any CAD system with both
solid modeling and rapid prototyping output capabilities. The application then accepts the
model data using a function developed by Behn [Behn93] which applies topology to the
model and repairs it in the event that it is not properly closed. The program transfers
information from this input structure to the .STL model data structure discussed in

Chapter Two.

4.1.2 Construction of Initial Voronoi Territories

The program constructs initial Voronoi territories of each facet for two reasons: 1) to
provide a closed, connected polygon which can be incrementally intersected by planes
using the marching algorithm discussed in Chapter Two, and 2) to minimize the size of the
solution space for each territory immediately, thus minimizing the number of intersections
required to generate the completed territory. The initial territory of a given facet is
computed by using only that facet and its three adjacent facets as sites.

As discussed in Chapter Two, the Voronoi territory formed by intersecting the
three bisecting planes of a gi§cn facet and each of its adjacent facets may take on one of
two forms. Whenever all four facets are coplanar, the territory has a prism shape;
otherwise, the territory has a pyramid shape. A prism is formed by extruding the facet

through an arbitrary distance. Pyramids are constructed by binding the common

65

intersection point of the three bisecting planes and creating the territory faces and edges
from that point and each of the facet vertices. Prisms and pyramids are essentially the

same structure: a prism is a territory whose apex is an infinite distance from its base.

4.1.3 Bisecting Plane Matrix Generation and Processing

The algorithm incrementally updates each facet ;s initial territory by intersecting it with the
bisecting planes created between that facet and all other facets in the model. If computers
were able to complete these intersections in infinite precision arithmetic, each bisecting
plane could be naively intersected with its corresponding facet territories, regardless of
their orientation. However, floating point errors can cause instability in the intersection of
planes and polyhedrons [Figure 4.3]. This instability may cause the algorithm to fail
[Sugihara94]. Therefore, each facet’s bisecting plane list is filtered relative to the
projected distances from each facet vertex to each plane. For most geometries, this vertex
distance filtering process removes almost all of the bisecting planes of a territory which
will not define a portion of the final territory’s boundary prior to performing any

intersection operations.

66

| | Intersecting
! Plane

Polyhedron 1 : !

Figure 4.3: Floating point error leads to instability in plane/polyhedron intersections [Sugihara94].
An intersection which should produce one plane cut of a polyhedron may produce two,
more than two, or no plane cuts whenever the cutting plane is nearly coincident with a
face of the polyhedron.

The following subsections describe each step of the bisecting plane generation and
filtering procedure in detail. This procedures starts by creating a bisecting plane list for
each facet of the solid model. Then, it check the peak points of each facet’s initial Voronoi
territory with the bisecting planes in its list and removes those bisecting planes which do
not intersect the initial territory. Then, the procedure calculates the distance from each
cutting plane to each vertex in the facet, as projected along the facet’s normal vector.
These distances, called vertex distances for convenience, are then used as a criteria to
identify and discard bisecting planes which will not be a part of the final Voronoi territory.
The filtering procedure is O(n’) in complexity, since the elimination of bisecting planes
which have one or more equivalent vertex distances with a closer or equivalent bisecting

plane is an O(n’) step. However, this is the third step of the procedure, and the other two

67

steps are O(n’) [Figure 4.1]. Therefore, in the average case, many of the planes are
removed during the two O(#’) steps, which tend to reduce the size of n during the om’)

step.

4.1.3.1 Bisecting Plane Generation

The filtering procedure begins by generating all of the definable cutting planes associated
with each facet, and then progresses through a series of successively restrictive checks
based upon the bisecting plane vertex distances. No bisecting planes are created between
pairs of adjacent facets, and no bisecting planes are created between coplanar facets. The
first condition eliminates redundancy, since the bisecting planes of adjacent facets are
created and incorporated into their corresponding facet territories during initial territory
construction. The second condition is necessary, since no defined bisecting plane exists
between coplanar facets. The pseudocode for this section of the program is shown in

Figure 4.4.

// Double loop: each facet is paired with each subsequent facet in the model.
for /=0 to NUM_FACS-1 {
for m =1+1 to NUM_FACS {

if (facet[I] and facet/m] are neither adjacent nor coplanar) {

bs[l][m] = make_bisecting plane_between (facet[l] facet[m]);

bs(m][1] = copy_of (bs[l][m]);
bs[m][l].normal = reverse_direction_of normal_for (bs/m][l]);

}

}
} // End of double loop.

Figure 4.4: Pseudocode for bisecting plane generation. (O(n’) complexity)

68

A bisecting plane list is generated for each facet in the solid model using this
double looped subroutine. If the pair of facets produce a legitimate bisecting plane, then
the three lines inside the if statement first generate a bisecting'plane between the pair
which is properly oriented for intersection with facet/1]’s Voronoi territory, and includes it
in facet[I]’s bisecting plane list. Then, the bisecting plane is copied into facet/m]’s list,
and its normal direction is reversed to properly orient it for intersection with facet/m]’s
Voronoi territory. At the completion of this subroutine, each facet has a bisecting plane
list which comprises of all the possible faces of the facet’s final Voronoi territory. Each
bisecting plane list requires filtering to remove planes which will not contain faces of the

facet’s final Voronoi territory.

4.1.3.2 Bisecting Plane Peak Point Checking

Regular geometries, such as cubes and spheres, have a medial surface that degenerates to
a single point: the centroid of the object. The Voronoi diagram of a uniformly faceted
sphere in infinite precision arithmetic comprises of a set of pyramids whose common apex
point is the center of the sphere. Since these pyramids are formed during initial Voronoi
territory construction, no further intersections should be necessary to arrive at the final
Voronoi territories. However, unless prevented, the program will naively attempt to
perform O(n’) intersections between the facet bisecting planes and the facet territories,

which will all degenerate to a single point.

69

These unnecessary intersections are prevented by inserting the peak point of each
initial territory into the plane equation of each bisecting plane; only those planes which fall
between the territory peak point and its corresponding facet are kept; the rest are
discarded, since they cannot intersect the territory. Additionally, the peak point is
perturbed towards the material side of the bisecting plane by an amount proportional to its
distance from the facet [Figure 4.5]. This prevents the incorporation of small area faces
into the final territory. Small area faces pose two problems: 1) they do not significantly
change the territory's bounded volume, but do add to the complexity of its representation;
and 2) due to floating point errors, these planes are more likely to cause errors during the
intersecting of subsequent planes with the territory.

// Specific variables and constants required:

real peak_distance // Distance from facet its territory peak.

constant SCALE // check_peak fn will use the peak distance,

// scaled by this factor, to perturb the peak point.
boolean check_peak_resuit

// Peak point checking requires a full double loop in order to check each bisecting plane.
for (/ =0 to NUM_FACS) {
for (m =0 to NUM_FACS) {

if (bp[l][m] exists) {
// Calculates the distance from the peak point to the facet.
peak_distance = get_dist_from_point_to_plane_ by vector
(terr(l] peak, facet[l], facet[l].normal);
// Checks the distance from the bisecting plane to the peak point, after perturbing the
// peak point by a distance proportional to peak distance.
check_peak_result = check_peak (terr(l].peak, bp[l][m], peak_distance*SCALE);
if (check_peak_result = REMOVE BP) { remove_bisecting plane (bp[l][m]) };

}
} // End of double loop.

Figure 4.5: Peak point checking pseudocode. (O(n’) complexity)

70

At the completion of this step of bisecting plane processing, all bisecting planes
which do not intersect their initial Voronoi territory are discarded. The remaining
bisecting planes require further filtering in order to identify those which will not be part of

the final Voronoi territory.

4.1.3.3 Closest Plane Definition and Distant Plane Removal

The remainder of the filtering procedure initiates by identifying a closest bisecting plane to
each facet. The closest plane is defined as the first plane in a facet’s bisecting plane list
whose set of vertex distances is not strictly greater than the set of facet distances of any
other plane in the list. This means that every other plane in the list will either duplicate the
closest plane, intersect the closest plane, or lie above the closest plane with respect to the
facet, at every point in the space defined by projecting the facet through the entire list of

bisecting planes [Figure 4.6].

Projection

Closest
Planes

Figure 4.6: Closest planes of a facet’s bisecting plane list, based upon projected vertex distances. One
closest plane is chosen for each facet list; several may exist.

71

The closest plane is found by checking each bisecting plane in a facet’s list in
order; the three vertex distances of each new entry in the list are compared with the
corresponding distances of the closest plane found from the previous entries in the list. If
all three of the current closest plane’s projected vertex distances are greater than those of
a subsequent plane in the list, then the subsequent plane becomes the closest plane. This

process continues until each plane in the set has been checked [Figure 4.7].

/I Specific variables and constants required

facet closest_plane[NUM_FACS] // Creates one closest plane for each
// bisecting plane list.

boolean found one // ' When the first closest plane in the
// list is found.

// Finding the closest bisecting plane in each list requires a double loop.
for (/ = 0 to NUM_FACS) {

found _one = NO;

for (m = 0 to NUM_FACS) {

// Lets the first bisecting plane it finds be the closest plane.
if (bp[l][m] exists and found one = NO) {

closest_plane[l] = bp[l][m];

found_one = YES;
}
// Switches closest plane whenever all of the current bisecting plane’s vertex distances
// indicate that it is closer to the facet than the current closest plane.
if (found_one = YES and bp[l][m] exists) {

for (v =0 to NUM_VERTS) {

if (the distance from bp/[l][m] to facet vertex v >= the distance from
closest_plane[l] to v) { points_above = points_above +1; }

}

if (points_above = 0) { closest_plane[l] = bp[l][m]; }
}

}
} // End of double loop.

Figure 4.7: Pseudocode for closest plane finding subroutine. (O(n’) complexity)

72

Once the closest plane is selected, all distant planes, which are planes whose set of
vertex distances are strictly greater than the corresponding vertex distances of the closest
plane, are easily identified and eliminated. After distant planes are eliminated, the
remaining planes in each list all intersect the closest plane of their list somewhere inside

the three projection lines of Figure 4.6.

4.1.3.4 Removal of Planes with Equivalent Vertex Distances

Dis'tant plane elimination, in combination with peak point checking, removes a large

portion of bisecting planes in most geometries. All bisecting planes whose projected

distance to the facet is strictly greater than that of the closest bisecting plane at every point

within the projection lines of Figure 4.6 are removed. However, when one or more of the

corresponding vertex distances of a given pair of bisecting planes are equivalent, the

possibility exists that one of these planes may also be eliminated from consideration.

Three possible scenarios exist [Figure 4.8]:

1. A bisecting plane shares one vertex distance with another, but is otherwise a greater
distance from the facet.

2. A bisecting plane shares two vertex distances with another, and thus the two share a
common edge somewhere inside the projection lines of Figure 4.8.

3. Two bisecting planes share all three vertex distances with each other. The p@cs are

therefore identical and one can be eliminated.

73

Case 1. The plane
is further distant
from the facet than
plane A at all
points save one.

S Y, WS

Case 2. The plane Plane A

shares a commo
edge with the :

closest plane, but : I
is otherwise |

further distant

from the facet than Facet
the plane A.

Figure 4.8: Planes which share 1-3 vertex distances.

This portion of the filtering sequence is O(n’), since each of the possible
members of the n bisecting lists are compared with each other in order to identify all pairs
of planes which have one or more equivalent vertex distances. However, the first two
steps of this sequence eliminate many of the n possible bisecting planes in each list. In
other words, if m is the number of planes surviving the first two steps of the filtering
sequence, it is reasonable to expect that m<<n. The pseudocode for this step is shown in

Figure 4.9.

74

// This step requires a triple loop.
for (/ =0 to NUM_FACS) {
for (m=0to NUM_FACS-1) {
for (n = m +1 to NUM_FACS) {

if (bp/[l][m] and bp([l][n] exist) {
if (bp[1]{m] and bp[l] [n] share one equivalent vertex distance) {
if (bp[l][m]’s other two vertex distances are greater than those of bp/l][n]’s)
remove_bisecting_plane (bp[l][m]);
if (bp[1][n]’s other two vertex distances are greater than those of bp[I][m]’s)
remove_bisecting plane (bp/[l][n]);
}
} // Removes case 1 distant planes.

if (bp/1][m] and bp[l][n] exist) {
if (bp[lj{m] and bp[i][n] share two equivalent vertex distances) {
if (bp[1][m]’s other vertex distance is greater than that of bp/I][n]’s)
remove_bisecting_plane (bp[l][m]);
if (bp[1][n]’s other two vertex distance is greater than that of bp[l][m]’s)
remove_bisecting_plane (bp[l][n]);

}
} // Removes case 2 distant planes.

if (bp[1][m] and bp[l][n] exist) {
if (bp/1][m] and bp[l] [n] share three equivalent vertex distances)
remove_bisecting plane (bp[l][n]);
} // Removes case 3 (identical) planes.

}

}
} // End of triple loop.

Figure 4.9: Pseudocode for distant and identical plane removal. (O(n’) complexity)

At the end of this final step in the bisecting plane processing procedure, all planes
which can be removed by considering the projected distances from each bisecting plane to
its corresponding facet distances are removed. This processing procedure does not
guarantee that all of the bisecting planes which remain in each facet’s will contain a face of

the facet’s final Voronoi territory; this is because the three bisecting planes which form the

75

sides of the initial Voronoi territories are not considered. However, a large majority of the

bisecting planes which do not contribute to the final Voronoi territory are removed.

4.1.4 Territory/Bisecting Plane Intersections

A marching algorithm has been designed which intersects each bisecting plane remaining
in the matrix with its corresponding initial territory, if in fact an intersection exists. The
marching algorithm ensures robust intersections and enforces topology within the territory
in most cases. One notable exception includes bisecting planes which intersect the facet at
one of its vertices. This exception is resolved by perturbing the point of intersection and
redefining the bisecting plane such that it has the same normal, but includes the perturbed
point. The marching algorithm is both faster and more reliable than techniques which
naively intersect every existing territory edge with a bisecting plane, and reconstruct the
territory edge by edge. Such naive methods do not guarantee that the territory will remain
closed or that connectivity will be preserved.

After performing any necessary bisecting plane perturbation, the algorithm
attempts to find an initial territory edge which intersects the bisecting plane. If none is
found, the plane is discarded and the next bisecting plane becomes the current plane.
Otherwise, the marching algorithm proceeds as described in Chapter Two and in Figure
2.5.

As the marching algorithm visits a territory face, whether it be to perform an

intersection operation or unsuccessfully search for an initial intersecting edge, it records

76

whether that face intersects with, lies above, or lies below the current bisecting plane.
Those faces which lie completely above the new face are no longer a part of the territory
and are therefore discarded. Those faces which are not visited during the march can only
be completely above or below the new face, since any adjacent faces are visited and
trimmed during the march. The program inserts one vertex of each unvisited face into the
new face’s plane equation to determine whether it is above or below the new face, and

discards the unvisited face if it is above the new face.

4.1.5 Exception and Error Handling

In order to improve the robustness of the program, the initial territory construction
procedure and the marching algorithm have been supplemented with error éhecking code
which detects and corrects three known problems. During initial territory construction,
adjacent facets which are almost coplanar, but do not meet the requirements for producing
a prism type territory, may produce an apex point which falls on the wrong side of the
current facet. A main cause of this problem is that faceted solid models of analytically
convex solids may not, in fact, be truly convex themselves. This problem is detected and
solved by inserting a newly calculated apex into the base facet’s halfspace equation. If the
apex is on the incorrect side of the facet, it is reflected onto the facet’s correct side, using
the facet itself as the plane of reflection. The resulting initial territory acceptably

approximates the expected shape of the exact initial territory.

77

The marching algorithm may unsuccessfully terminate due to one of two
situations: once a first intersecting edge is found for a face, a next edge may not be found;
or, the initial edge may never be found, and the program will loop endlessly in search of it.
Both situations arise when a face intersects the bisecting plane very near to one of its
vertices. In the first situation, no second edge is found at all; in the second situation, a
second edge is found, but as the march progresses through adjacent faces, it misses the
original face because it passes by the initial edge on the other side of the intersecting
vertex. Both situations are fixed by interrupting the march, discarding the face under
construction, and progressing to the next bisecting plane. The endless loop problem could
be fixed by checking for the first occurrence of a duplicate intersection point in the new
face’s edge list, and trimming its edge list accordingly. This particular solution was not
mplemented since the error generally occurs only for intersections yielding small area
faces. The omission of these faces does not significantly effect the accuracy of the

resulting Voronoi territory.

4.1.6 Rendering

The completed Voronoi diagram is transferred into a text file which serves as input to a
C++/OpenGL graphical user interface. The interface renders the .STL model as a‘ blue
wireframe image, and renders the Voronoi diagram as a solid 3D composite surface. Each
face of the Voronoi diagram corresponds to a Voronoi territory face; the GUI assigns a

color to each vertex of each face based upon its relative parametric distance from its

78

corresponding facet. The vertex whose distance is a maximum value away from its
corresponding facet is assigned a pure red color, while those vertices which coincide with
facet vertices are assigned a pure yellow color. The colors of all other vertices are
interpolated between yellow and red, based upon their relative distance to the parent facet.

The user has the option of viewing either the full Voronoi diagram of the model or
the ‘medial surface’ of the model, which is redefined solely for the purpose of visualization
as the full Voronoi diagram, minus faces which are adjacent to the original facets. The
modified medial surface allows the user to view only those areas most likely to be heat
centers within the solid model being rendered. The GUI provides a full range of model
transformations, but otherwise provides the minimum capability required for visualization

and comparison with a finite difference model of the casting geometry.

4.2 Description of Experiments

The Voronoi diagram, in order to be an appropriate tool for casting solidification modeling
and design modification, must meet the following criteria: 1) It must be intuitive to
visualize; 2) It must predict casting hot spots with good accuracy and speed, and 3) It
must generally describe the overall solidification pattern of the model. Since the greatest
included sphere method is itself crude, its Voronoi diagram implementation may in fact be
crude. However, it will not miss any relevant features, such as local maxima and minima

in the temperature profile, nor will it predict any such features which do not exist in the

79

FDM model. For example, the Voronoi diagram will not predict two isolated hot spots in
a model for which a finite difference method predicts only one hot spot.
To evaluate these criteria, the following experiments were performed:

1. The program was run on several simple, yet potentially problematic .STL
formatted geometries to see how well the output matched the expected shape of
the Voronoi diagram.

2. A 2D geometry criteria for predicting relative temperature was compared with
relative temperature as predicted by FDM for a square cross-section.

3. Voronoi diagram models of four 3D geometries were compared with FDM models
of identical geometry in order to determine how well the Voronoi diagram matches
the solidification pattern as predicted by FDM.

4. Several timed runs were performed upon three selected models using both the
Voronoi diagram generator and the FDM simulator in order to better understand
the average complexity of the algorithm and to provide a basis for program time
comparison.

The following subsections describe each of these four experiments list in greater detail.

4.2.1 Experiment 1: The Suitability and Correctness of The Voronoi
Diagram Generation Algorithm

This first experiment examined the following factors affecting the validity of the Voronoi

diagram generator output: the effect of varying input geometry, the effect of varying the

80

.STL facet quantities, and the effect of changing the approach of the .STL file generation
in order to preserve convexity and make more regular facets. Voronoi diagrams of eight
convex models were generated for this experiment. The basic shapes for these models
were: a2 x 2 x 3 brick, a 45° wedge created from the brick, a block cut by several plane
cuts, a 4 x 1 x 3 plate, a sphere, a cylinder, a half cylinder, and a cylinder cut by several
plane cuts. Each of these objects were generated using the .STL file format generator of

SDRC I-DEAS Masters Series 2.0 [Figures 4.10-17].

Figure 4.10: 12-facet, 2 x 2 x 3 brick.

81

Figure 4.11: 12-facet model of a wedge.

Figure 4.12: 24-facet model of a brick cut by several cutting planes.

82

Figure 4.13: 104-facet model of a sphere. Note the non-convex regions.

Figure 4.14: 12-facet model of a 4 x 1 x 3 plate.

83

Figure 4.16: 188-facet model of a half cylinder.

84

Non-convex region:
due to .STL model
generator limitations.

Figure 4.17: 56-facet model of a cut cylinder.

Mathematical verification of the Voronoi diagrams generated from faceted models
is non-trivial, since their topologies may differ greatly from those of their analytical model
counterparts. For instance, analytical cylinders are convex, symmetric, and have two
planar faces and one curved face. Faceted cylinders need not be convex or symmetric, and
consist of any number of planar faces which approximate the three faces of the analytical

model. Visual inspection was therefore the primary tool used to verify the experimental

85

program’s correctnes and suitability for use in solidification modeling, aided by

comparisons with the analytical values expected where practical.

4.2.2 Experiment 2: 2D Comparison of Geometry and FDM

The purpose of this comparison was to provide a basic understanding of the capabilities
and limitations inherent in using geometry to approximate the temperature of a casting
cross-section undergoing cooling. Common heat transfer knowledge [Kreith80] dictates
that geometry cannot be used to accurately predict temperature at an arbitrary point within
a casting. Should an accurate analysis be required, analytic equations must be used
whenever practicable, otherwise, FEM or FDM must be used. However, it is also
common knowledge [Kreith80] that symmetry can be exploited to simplify a heat transfer
problem, as well as to make basic predictions about its behavior. For example, assuming
symmetric boundary conditions, it can be shown that the heat flux normal to a line of
symmetry will be zero. Similarly, assuming symmetric boundary conditions, the center of
a sphere undergoing cooling can also be shown to be the location of its highest relative
temperature. Since the idea of using Voronoi diagrams to model solidification in a casting
involves exploiting symmetry in order to provide a more accurate prediction of the relative
temperature at selected locations, it is necessary to compare a finite difference analysis of
a 2D square cross-section with a general geometry based criteria and to discern which
locations within the cross-section show the best correlation between geometry and

analysis.

86

The geometry criterion used to predict the temperature profile is related to the
greatest included circle assumption, which states that the relative time needed to cool a
given point within a casting corresponds to the radius of the greatest included circle drawn
using that point as its center. For a 2D cross-section, this assumption can be expressed

mathematically as:

T (, J @)

Ve T

T . .
where 7 represent the temperature relative to the maximum temperature of any

max

. . r .
location in the cross-section, and ——represents the distance to the boundary of the cross-

rmax

section relative to the maximum distance from the boundary of the cross section in either

the x or y directions. In the case of a square, r, =r

s .
Vom = 5 where s is the length of a

side of the square.

The relative temperature as predicted by this relative distance criteria is computed
at each node of a 21 x 21 square grid FDM model, and compared with the calculated
relative temperature of each node. Since the center of the square corresponds to both the

location of the highest temperature for a symmetric cooling condition and to the location

where ——is a maximum, it is obvious that the difference between relative temperature

rmax

and relative distance is O at the center. Since the Voronoi diagram of a square's four edges

87

is the union of its two diagonals, it is also obvious that the center of a square is on its
Voronoi diagram. From this, it follows that the Voronoi diagram successfully shows the
hot spot of a square cross-section. The remaining questions become: 1) does the rest of
the points Voronoi diagram provide a better agreement between relative distance and
relative temperature than at other locations, and 2) is it mathematically valid to

approximate the expected cooling pattern of a casting using geometry?

4.2.3 Experiment 3: 3D Comparison of FDM and the Greatest Included
Sphere Method

This investigation considered whether the Voronoi diagram geometry can be used to
predict the location of hot spots for actual 3D geometries. Unlike the center of the
square cross-section above, 3D convex geometries do not always produce a single point
hot spot under symmetric cooling conditions; often, the hot spot has a linear or planar
geometry. The Voronoi diagram, if successful, should correctly visualize these cases and
provide close agreement between the relative distance to the surface of the model and the
relative temperature of the model as predicted by FDM in order to be a useful modeling
tool. The Voronoi diagram should also show good overall agreement between the relative
temperature predicted at its vertices and the relative temperature predicted by the nearest
nodes of an FDM model of identical geometry. Additionally, the cooling pattern indicated
by the Voronoi diagram must be a mathematically valid approximation of the FDM cooling

pattern.

88

Since the vertices of the Voronoi diagram are the only entities which allow for
explicit calculation of relative distance to the surface of the model, the relative distance of
each vertex was compared with the relative temperature of its eight nearest nodes in the
corresponding FDM model. The value of each individual node is weighted by computing
a weighted average of the difference between the relative distance of the Voronoi vertex

and each of the eight nodes, as follows:

4.2)

ro.))
where —— is the relative distance from the vertex to the nearest surface of the model,

rmax

T
T—’ is the relative temperature of node i, which is one of the 8 neighboring nodes of the

max
vertex, and d; is the distance from node i to the vertex. Using this formula, the smaller the
distance between a node and the Voronoi vertex, the larger the weight is applied to the
difference in relative temperature between the two. This criteria is more conservative than
considering only the difference between the Voronoi vertex and its single closest neighbor,
since steep cooling gradients may cause widely differing temperature values between the

eight nodes.

89

4.2.4 Experiment 4: Execution Time Investigations

The Voronoi diagram should ideally provide a fast approximation of the cooling pattern
predicted by FDM or FEM, and provide good accuracy in close proximity to the casting's
hot spots. This investigation compared the time to calculate the Voronoi diagram of
several selected geometries with the time to calculate a temperature profile via the explicit
FDM method used in the above investigations. Five grid densities were used to model the
brick, wedge and cylinder shown in Experiment 1 [Figures 4.10-12]. The execution time
of these models were compared with the time required to generate a Voronoi diagram for
models of identical geometry. A second test shows how the algorithm varies with the
number of facets by computing the Voronoi diagrams of ten half cylinder models
containing 28, 60, 76, 84, 108, 116, 140, 188, 212, and 260 facets, respectively.

As discussed in section 4.1.3, the Voronoi diagram generation algorithm uses a
O(n’) bisecting plane preprocessing routine and an O(°) intersection algorithm, where n is
the number of triangular facets. This makes the overall complexity of the algorithm O(n’).
Finite element analysis and implicit finite difference methods for solving transient heat
transfer problems are also O(n3 '), where n is the number of nodes or elements; however,
these methods are also iterative. Therefore, a separate O(n’) operation is required at each
time step. The explicit finite difference method is an O(n) method, where » is the number
of nodes. However, it too is an iterative method which is not guaranteed to produce
stable results. As n becomes large, the time step must become smaller in order to provide

an answer that correctly converges, often resulting in a prohibitive number of time steps.

90

This potential instability also leads to loss of generality, which make explicit finite
difference codes impractical for general use.

The questions explored therefore include: 1) do the execution times of the
Voronoi diagram models above compare reasonably with the FDM models, or is sparse
grid FDM a clearly superior approach to rapid solidification modeling, and 2) how does
the Voronoi diagram generator execution time vary with facet quantity on an average

basis?

91

Chapter Five

Results

This chapter considers four major topics in completing the goal of exploring the feasibility
of a Voronoi diagram based automated greatest included sphere method for casting
solidification modeling. First, the Voronoi diagram generation algorithm is investigated in
order to establish the level of confidence in its suitability and correctness. Second, the
validity of the assumption that geometry alone may be used to model casting solidification
is investigated. This is accomplished by comparing a 2D MAT of a square geometry with
a uniform finite difference grid and determining the difference between the temperature
distributions predicted by both methods. Then, the question of the validity using geometry
to model casting solidification was tested for 3D geometries. Four 3D models were used
to compare the relative temperature distributions predicted by the Voronoi diagram based
greatest included sphere method and by explicit FDM. The final investigation addresses
run time and complexity issues. Several runs of Voronoi diagram models were compared
with FDM models of varying grid density in order to provide a basis of comparison of

their respective run times. Also, the Voronoi diagram generator computed diagrams for

92

several half cylinder geometries of variable facet quantities in order to determine the
average case complexity of the algorithm.

This chapter discusses the results of the four experiments listed above in greater
detail. Section 5.1 provides the results of the suitability and correctness checks on the
Voronoi diagram generator. Specifically, it tests the validity of the algorithm using basic
test geometries, and investigates the algorithm’s sensitivity to the number and quality of
the facets used to model the input geometries. Section 5.2 shows the results of the 2D
comparison between the greatest included sphere method and FDM. Section 5.3 provides
these same results for the 3D comparison. Section 5.4 compares the execution time of the
Voronoi diagram generator against that of the explicit FDM program. It also provides
execution time vs. facet quantity data in order to demonstrate that the Voronoi diagram

generator has an average case n’ behavior, where n is the number of facets.

5.1 Experiment 1: The Suitability and Correctness of The Voronoi
Diagram Generation Algorithm

The first step in applying any algorithm to a specific problem is to demonstrate that the
algorithm correctly produces Voronoi diagrams of solid models. Experiment 1 evaluates
the suitability of the Voronoi diagram generation code used in this thesis for convex
faceted solid models by looking at the algorithm’s correctness, and by considering its
sensitivity to various input geometry issues. Experiment 1 considered the following input

geometry issues: varying the overall shape of the model, varying the quantities of facets

93

used to generate the model, and manually improving the faceting automatically provided
by the .STL file generator. Since the Voronoi diagram becomes more complex to calculate
as the quantity of facets increases, it was numerically verified for a few simple shapes and
visually verified for more complex shapes.

This section contains five basic subsections. The first subsection reports upon the
validity of the algorithm itself. The second introduces the effects expected from the
geometry issues discussed above. The third and fourth report upon the effects of input
geometry that can be experimentally changed, namely degenerate Voronoi diagram entities
and the quantity of facets in the input model. The final subsection provides concluding

remarks on geometry related issues in Voronoi diagram generation.

5.1.1 Validation of the Algorithm

The basic input shapes used to generate the test Voronoi diagrams appear in
Chapter Four in Figures 4.10-17. Given that no other available software exists as a
standard for computing the Voronoi diagram of convex models, it became apparent that
comprehensive verification of the algorithm could not take place: hand calculation is
impractical for all but the most simple of geometries, such as the brick and the plate. The
Voronoi diagrams of these geometries were hand calculated for comparison with the
program. In addition, a 48-facet wedge model was manually constructed in order to
compare the normals of its Voronoi faces with those of the identically dimensioned 12-

facet wedge.

94

The plate and brick are both right parallelepipeds, so their Voronoi diagrams are
relatively simple to compute. The plate has nine Voronoi faces, one of which lies on its
midplane [Figure 5.1]. The brick is a right parallelepiped with equivalent width and
height. Therefore, its midplane Voronoi face degenerates into its major medial axis

[Figure 5.2].

Figure 5.1a: Exact Voronoi diagram of a Figure 5.1b: Voronoi diagram of a 12-facet
4 x 1 x 3 plate. model of the plate. The facets
have been removed for clarity.

y y
2 X

=

Figure 5.2a: Exact Voronoi diagram of a Figure 5.2b: Voronoi diagram of a 12-facet
3 x 2 x 2 brick. model of the brick. The facets
have been removed for clarity.

95

The program output of Figures 5.1b and 5.2b show additional Voronoi edges than
those in the exact Voronoi diagram of Figures 5.1a and 5.2a. These additional lines occur
because the exact Voronoi diagrams of the parallelipipeds are constructed using their 6
rectangular faces as sites, while the Voronoi diagrams of the faceted models are
constructed using their 12 triangular facets as sites. The 12 facets include more than the
minimal information required to model the parallelipipeds. As a result, some of the faces
in the exact Voronoi diagrams are represented as multiple coplanar faces in the faceted
model.

In order for the Voronoi diagram to be valid, the program must correctly compute
the endpoints of each territory edge of the exact Voronoi diagram, along with the normal
vectors of each of its territory faces. Additional Voronoi vertices may exist due to
faceting the model, provided they lie on a Voronoi face. Additional face normals may not
exist. If we ignore as trivial the Voronoi vertices which are coincident with the faceted
solid model vertices, then the Voronoi diagram of the 4 x 1 x 3 plate has the expected and

program output vertices which are as shown in Table 5.1.

96

Table 5.1: Voronoi Vertex Data for the 4 x 1 x 3 Plate

Expected Voronoi Vertices Program Qutput Voronoi Vertices

X y z X y z
0.6 0.6 0.6 0.60079 0.60079 0.60079
3.6 0.6 0.6 3.60079 0.60079 0.60079
0.6 0.6 2.6 0.60079 0.60079 2.60150
3.6 0.6 2.6 3.60079 0.60079 2.60079

Additional Vertices:

y z
3.43412 0.60079 0.60079
0.60114 0.60044 1.60185
3.43507 0.60079 0.60079
3.60044 0.60114 1.59973
2.09938 0.60114 2.60044
2.10220 0.60044 0.60114

Each of the four expected vertices correspond to vertices of the midplane Voronoi
face shown in Figure 5.1a. The actual coordinates of the plate are offset by .1 in x, y, and
z. Note that no units exist, because the Voronoi diagram is computed without regard to
absolute scale. All of the additional vertices coincide with edges of the midplane Voronoi
face, and are therefore acceptable. They arise because the plate model has 12 facets for
sites, while the exact Voronoi diagram of the plate contains only 6 sites, namely the plate’s
six faces. The brick’s vertex data appears in Table 5.2. The expected vertices are the
endpoints of the brick’s major medial axis. The additional vertex of the program output is

also coincident to its major medial axis.

97

Table 5.2: Voronoi Vertex Data for the 2 x 2 x 3 Brick

Expected Voronoi Vertices Program Output Voronoi Vertices
X y z X y z
1.1 1.1 1.1 1.10008 1.10079 1.10079
1.1 1.1 2.1 1.10150 1.10079 2.10079

Additional Vertices:

X y z
1.10079 1.10079 1.60079

The vertices of both the brick and the plate are off by as much as 0.00150 due to
the perturbation. These differences are therefore expected. Comparison between the
exact the Voronoi face normal vectors and the corresponding program output normal
vectors shows that all expected normals are represented in program output, no unexpected
normals are represented, and the agreement between the exact normal values and the
program output are within that expected due to floating point error. Therefore, the
program computes valid Voronoi diagrams for these two geometries.

As a further validation check, the 12-facet wedge of Figure 4.11 was manually
subdivided into the 48-facet wedge shown in Figure 1.3. The two identically dimensioned
models should have the same Voronoi face normals, despite the difference in numbers of
facets. A comparison of the program output for both models showed that the 12-facet
wedge had 16 Voronoi face normals. The 48-facet wedge shared these normals, but had
an additional 3 normals in its output. The additional three normals were due to the 48-

facet wedge’s coplanar facets; prism type Voronoi faces exist for the 48-facet wedge, but

98

not for the 12-facet wedge. Therefore, the Voronoi diagram of both models remain

consistent with each other.

5.1.2 Effect of Input Geometry Upon Program Output
The quality of the Voronoi diagram generated for a given triangular faceted solid model
may suffer for several reasons. Voronoi diagrams provide a generalized map of symmetry
of an object. Surfaces of symmetry often degenerate into edges of symmetry; similarly,
edges of symmetry often degenerate into points of symmetry. When these exceptions
arise, any number of territories may share the same edge or point as a boundary entity,
leading to problematic intersection operations during construction. Also, poorly
generated .STL models may lead to difficulties: the symmetry and convexity of the
original model may not be preserved. Without faithfully preserving symmetry, the
algorithm will not be able to accurately model the degenerate cases described above. For
example, due to a non-uniform approximation of the curvature of a cylinder, its axis of
symmetry, which is part of an exact cylinder’s Voronoi diagram, may be approximated by a
grouping of several Voronoi edges when the cylinder is faceted. Without preserving
convexity, the underlying assumption of a convex model is violated, which will produce
localized inaccuracies in the Voronoi diagram at the very least.

The next two subsections investigate degenerate Voronoi entities and varying the

quantity of facets in the input solid model. It is necessary to approach the geometry issues

99

discussed above by considering these two topics, since the automated .STL data

generation greatly affects quality of the results.

5.1.3 Degenerate Voronoi Entities
The experimental Voronoi diagram generator has a limited ability to handle degenerate
geometries, such as the 3 x 2 x 2 brick [Figure 5.2] and the 48-facet wedge [Figure 1.3].
Both have degenerate geometries due to bisecting planes between pairs of opposite facing
facets. These bisecting planes coincide with the major medial axis of the brick, and
coincide with several Voronoi vertices of the wedge. Peak point checking properly
eliminates these bisecting planes from their facets’ respective lists prior to intersection.
Despite success with these six-face polyhedrons, the program failed to produce
accurate Voronoi diagrams of the cylindrical and spherical models. The Voronoi diagram
of an exact sphere is simply its center point. The expected Voronoi diagram of an exact
cylinder looks essentially like that of the brick [Figure 5.2a]: replace the two four-faced
pyramids connected at their peaks in the brick’s Voronoi diagram with two 45° cones.
The general axisymmetry of the sphere and the singular axisymmetry of the cylinder,
however, make these diagrams problematic to compute with floating point arithmetic.
Unlike the brick, however, these degenerate geometries cannot be neatly treated by peak
point checking, since the facets of each model do not exactly represent the curvature of

their exact geometries.

100

Figure 5.3 shows the program output of two cylinders. For clarity, the Voronoi
diagram faces with edges coincident to the facets of these geometries have been removed
from the illustrations. For the 20-facet cylinder, this leaves a V-shaped patch of planes
whose common edge closely approximates the axis of symmetry, as is expected. The 68-
facet cylinder shows considerable error along its axis of symmetry, however. What should
be a single Voronoi edge is a multitude of non-adjacent, parallel edges in the vicinity of the
actual axis of symmetry. Some of the cone-shaped portion of the Voronoi diagram is also
visible, and appears essentially correct in shape. Thus, these diagrams may still be used by
foundry engineers to visualize hot spots; however, they require significant additional

refinement in order to be suitable for use as an input for automated design systems.

Faceted model
removed for clarity.

a. b.

Figure 5.3: Voronoi diagrams for @) 20-facet and b) 68-facet cylinders. Faces with edges adjacent to
facet edges have been removed for clarity.

101

The poor quality of the cylindrical models arise in part from poor automated .STL
solid model construction. While it is true that the .STL files can only approximate the
cylindrical surface to within the maximum user-specified absolute facet deviation, the
resulting facets lose both the symmetry and the uniformity of curvature present in the CSG
cylinder used to generate the .STL files. Indeed, convex, curved surfaces may not
produce truly convex faceted models. Since the experimental Voronoi diagram generator
assumes a convex input model, this problem may lead to errors during Voronoi territory
construction which cause local inaccuracies in the output Voronoi diagram.

To demonstrate the difficulties inherent in poorly faceted .STL input models, a 36-
sided extruded polygon was used to approximate a cylinder of the same radius and length
as the CSG cylinders fed into the .STL file generator to produce the cylinders of Figure
5.3. Creating this polyhedral approximation of the cylinder prior to input into the .STL
file generator essentially tricks the it into producing optimal facets, since it is capable of
exactly representing the 36 planar faces which approximate wall of the cylinder with 72
facets. The resultant 140-facet .STL file produced a much higher quality Voronoi diagram
than any of the cylinders above [Figure 5.4]. Further refinement of .STL models based

upon the exact CSG cylinder caused program crashes for facet quantities above 68.

102

N X
Ny, R
Y ITHGOES

15220
{ L L L
m’; s

I
=~ =4

Figure 5.4: Voronoi diagram of a 140-facet polyhedron made to uniformly approximate the curvature
of a cylinder. The cylinder facets and Voronoi faces coincident with the facets have been
removed for visual clarity. Due to the optimal faceting of this polyhedron, the conic
portions of the diagram are much better formed and its major medial axis is almost exactly
approximated.

The general symmetry of the spherical models make them\even more susceptible to
the problems encountered with the cylindrical models. The 48-facet sphere [Figure 5.5a]
shows several small planes around its center. This is only a rough approximation of the
single point that is expected for an exact Voronoi diagram of an exact sphere, but it
provides a reasonable approximation for visualization purposes. The 104-facet sphere,
however, is a loose grouping of planes roughly centered about its meridional axis and does
not facilitate visual interpretation [Figure 5.5b]. The problems arising from these models
can also be traced to the .STL facet generator. Because of the non-uniformity in these
models, the Voronoi diagram created for these models varies significantly from the

Voronoi diagram of the exact geometries.

103

%

a. b.

Figure 5.5: Voronoi diagrams for a) 48-facet and b) 104-facet spheres. Faces with edges adjacent to
facet edges have been removed for clarity.

5.1.4 Sensitivity of Program Output to the Number of Facets

The .STL file generator used automatically varies the number of facets based upon a user-
defined facet deviation value. For models consisting entirely of planar surfaces, like the
plates, bricks, and wedges shown, a fixed number of facets can exactly represent the part
surface. Therefore, the .STL file generated for these models will contain a fixed, minimal
number of facets, regardless of user input. However, curved convex surfaces may cause a
loss of model convexity and symmetry during faceting. As a result, the errors inherent in
models containing curved surfaces tend to magnify as the facet quantity increases, causing

the quality of the Voronoi diagram output to degrade. However, when the representation

104

of the curved surfaces do improve with additional facets, the resulting Voronoi diagram
also improves.

The 104-facet sphere [Figures 5.5b and 4.12] and the 56-facet cut cylinder
[Figures 5.6 and 4.16] each have localized non-convex regions which affect the output of
their Voronoi diagrams. The sphere’s diagram is basically unusable. However, the cut
cylinder still provides some information since the Voronoi territories are not topologically
related. The independent representation of individual territories makes knitting the
Voronoi diagram into a single, topologically consistent entity difficult. However, it

isolates the effect of calculational errors to single territories rather than to the full model.

Figure 5.6: Close-up view of non-convex region of the cut cylinder. This shows the limitation of the
.STL file generator in modeling geometries with high curvature.

The experimental program generated Voronoi diagrams for 20-, 36-, 52-, and 68-
facet cylinders and ten differently faceted half cylinders in order to determine the effects of

increasing the facets on output. The cylinders [Figures 5.3a-b] seemed insensitive to facet

105

refinement. The half cylinders, however, showed good initial accuracy and slight, but
noticeable improvement with additional facets [Figures 5.7a-d]. The higher quality of the
output is due mainly to the fact that the exact Voronoi diagram does not contain
degenerate entities, and that the .STL file generator generally preserves the convexity of
the original model.

The additional lines which appear in the 188- and 212-facet models do not appear
to be correct because they do not lie on one of the five major surface patches of the
Voronoi diagram of the half cylinder CSG model which the facets approximate. However,
these planes do belong to the faceted models’ Voronoi diagrams. Recall that faceted
model Voronoi diagrams contain additional information because single analytic surfaces
are represented with multiple faces. The trick used to remove the Voronoi faces which do
not closely approximate the CSG model’s Voronoi diagram, namely to remove all Voronoi
faces with a vertex whose point’s distance to any facet is lower than some threshold, does

not guarantee that the faces left will all lie on the CSG model’s Voronoi diagram.

106

C. 188-facet half cylinder Voronoi diagram. d. 212-facet half cylinder Voronoi diagram.

Figure 5.7: Program output for half cylinder models. There exist five major surface patches: the
medial surface between the cylindrical surface and the base, the two fan shaped medial
surfaces between the cylindrical surface and each of the endcaps, and the two planar
medial surfaces between the base and the endcaps.

5.1.5 Concluding Remarks

The experimental Voronoi diagram generator can correctly compute a valid Voronoi
diagram for convex .STL model files. However, curved geometries, particularly spheres
and cylinders, are problematic for three reasons: 1) their curvatures are poorly
approximated by the .STL file generator, and 2) their exact Voronoi diagrams contain
degenerate features which complicate a large percentage of the intersection operations
used to generate the faceted Voronoi diagrams. True polyhedral models, such as bricks,
or even the 38-face polyhedral cylinder of Figure 5.4, are not adversely affected by

degenerate Voronoi entities, since their overall number of facets remain low, and those

107

facets exactly model their surface geometries. Degenerate Voronoi diagrams represent the
perhaps the most difficult obstacle to overcome in generating a robust, exact Voronoi
diagram for general polyhedrons. Currently, degeneracy detection and treatment remains
a research issue even for discretized and semi-discretized approaches to 3D Voronoi
diagrams and medial axis transforms [Sudhalkar93][Sherbrooke95].

Despite the limitations of the program, it is capable of generating at least visually
acceptable Voronoi diagrams of most convex geometries. This makes it acceptable for
demonstrating the feasibility of applying the Voronoi diagram to casting solidification

modeling.

5.2 Experiment 2: 2D Comparison of Geometry and The Finite
Difference Method

The use of geometry to estimate relative temperatures in a model, even a model with
uniform boundary conditions and initial temperatures, has obvious limitations. Areas of
local heat transfer concentration make using a geometry criterion, such as the greatest
included sphere method, inaccurate for general locations inside the model. However,
geometry does provide a general understanding of heat flow, and therefore of relative
temperature distribution, in heat transfer models. Often this rough understanding is
sufficient for initial design iterations for castings.

The FDM model constructed for comparison with a geometry based relative

temperature prediction uses a 21 x 21 finite difference grid with a uniform initial

108

temperature of 1200° and a boundary temperature of 800°. These temperatures and their
units are arbitrary, since the rules used to felate temperature to geometry are
dimensionless. If dimensions applied, then the comparison would lose generality. In
addition, the constant in the finite difference equation [Equation 2.9] does not require
explicit values. The values used for C were arbitrarily selected to be consistent with those
of a generic steel. In order to ensure that the complete model was undergoing cooling at
the time of program termination, the FDM model was terminated when the maximum
relative temperature of the model cooled to 1150°.

Figures 5.8a-c show maps of the relative temperature distribution of the cross-
section as calculated by the greatest included circle method, the finite difference method,
and the difference in relative temperatures as predicted by both methods. These maps
show that the greatest included circle method overpredicts the cooling at every location
within the cross-section. The differences in temperature (residuals) are most significant at
as the distance from the Voronoi diagram of the model increases. The global maximum
magnitude for the residuals is 0.288 at the four points shown in Figure 5.8c. This value
corresponds to an underprediction of the FDM temperature by 100.9° on the 350° full
range using geometry. The maximum residual magnitude at any point along the diagonals,
the union of which forms the Voronoi diagram of the square, is 0.160, which corresponds
to a 56.1° underprediction. The center node of the square, which corresponds to the
model’s hot spot, is correctly identified by the greatest included circle method as the

location of maximum temperature; its residual value is 0.000. The average residual

109

magnitude for the whole cross-section is 0.173 (60.5°), while the average magnitude for
the Voronoi diagram is 0.085 (30.8°). This shows that, although the Voronoi diagram still
provides only a rough estimation of relative temperature, its accuracy is much better than

that obtainable for a general point.

) Max. Absolute Min. Absolute
Ton — [o Residual) Residual A
L [
—
[
i A
[
R |
Ji | |
/
a. b. C.

Figure 5.8: a) Expected relative temperature profile using a greatest included circle based linear
interpolation between center point (7/Tp, = 1) and edges (T/Tp: = 0). b) Calculated
relative temperature profile using explicit FDM. 7/T,,, = 1 at center. ¢) Contour plot of
difference between the two methods. Difference is 0 at center and near corners;
difference is a maximum at the four peak points located between the center and each of
the edges’ midpoints.

The reason for the greater accuracy along the Voronoi diagram is that a greatest
included circle implies an equal heat transfer contribution from at least two of the cooling
surfaces of the model. Ideally, the heat transfer conditions are equivalent at each point on
the circle’s circumference. The nodes displaying the maximum difference in relative

temperature fall on the squares midlines since the heat transfer at those nodes are

dominated by their nearest edge to a larger extent than all other nodes in the model. As a

110

result, they cool slower than those nodes near the diagonals, which have at least two
significant cooling edges.

The side by side comparison shows several differences between the two models.
First, the FDM model contours are pinched at the corners. This indicates additional
cooling due to the local increase in heat transfer surface. Second, the variable band
thickness of the FDM contours (the thickness increases to a maximum between the third
and fourth isotherm lines, then decreases towards the center) and the pattern of the
residuals indicate a non-linear relationship between temperature and distance to the
nearest edge. However, although the linear approximation ignores the local corner affects
and the non-linear behavior of the cooling pattern, it consistently describes the behavior of
the FDM temperature distribution: the temperature strictly increases on every linear path
from the edge to the center of the square. This shows that while the approximation of
temperature by the greatest included circle method is often poor, it can be used locally to

determine relative time to cool to a given temperature.

5.3 Experiment 3: 3D Comparison of FDM and the Greatest Included
Sphere Method

As the last subsection shows, when the symmetry of a casting geometry is completely
understood, the capability of using geometry to approximate a temperature distribution
can be greatly enhanced. However, although the overall pattern predicted by this method

is consistent with actual cooling pattern as predicted by FDM, its general agreement, even

111

on the Voronoi diagram, is rough. The accuracy provided over the full Voronoi diagram
can be expected to provide a reasonable approximation for visualization purposes.
However, the most important benefit of using the Voronoi diagram in a 3D casting is to
determine where the general symmetry of the object converges to a single point (the
sphere of Figure 5.5a), a line (the brick of Figure 5.2), or a plane (the plate of Figure 5.1).
This point or set of points correspond to the hot spot of the model, since the distance from
the closest casting surface is at a maximum there. Since the location and size of this hot
spot is often not obvious, the capability of automatically finding and retrieving it is a
valuable asset to casting engineers.

Experiment 3 explored two major issues: 1) the ability of Voronoi diagram to
model the cooling pattern of a brick, plate, wedge and cylinder using explicit FDM as a
comparison tool, and 2) the accuracy of the Voronoi diagram at the hot épot of the
casting.

As described in Chapter Four, the Voronoi vertices of each geometry were
compared with the nearest eight nodes of an identically shaped FDM model. Those
vertices within a relative distance of 0.1 of the model surface were discarded, since
uniform temperature boundary conditions produce unrealistically low calculated
temperatures in the immediate proximity of the surface. In order to visually render the
results of the comparison, the 8 nearest nodes of each Voronoi vertex were represented as
a cube whose color is proportional to the magnitude of its residual. The closer the value

gets to zero, the lighter the color of the cube. Negative residuals are represented in green,

112

and positive residuals are represented in red. Since more than one vertex may appear in
the same cube, each cube can be viewed individually using the GUI which generated the

figures in this section.

5.3.1 The Cylinder

The 36-facet cylinder’s extremely rough Voronoi diagram [Figure 5.3] seems to
indicate that its usefulness in predicting relative temperature is limited. It is true that the
largest magnitude of the relative temperature residual between the diagram and the FDM
model is 0.191, which indicates a large disagreement in predicted relative temperatures
between the two methods at that location. However, the two models generally provide
much better agreement. Of the 67 Voronoi vertices on the interior of the cylinder, 64 had
residual magnitudes of .1 or less [Figure 5.9]. Additionally, all nine vertices located on or
close to the axis of symmetry of the cylinder show residual values ranging from -0.0160 to

0.0327, with the minimum magnitude residual being 0.000320.

Figure 5.9: Map of Voronoi vertex comparison with 8 nearest FDM nodes. The grid box
containing each vertex is shaded with a color representing the residual.

113

This range of residuals show an important difference between single point hot
spots and linear hot spots like those of this cylinder. The Voronoi diagram greatest
included sphere method tends to overpredict the relative temperature at the endpoints of
the hot spot. This is because, even though the distance from the surface is the same for
these points as for other points in the hot spot, a larger percentage of the surface will be
closer to the endpoints than to the midpoint of the hot spot. This effect is analogous to
the localized effects of internal corners. Therefore, the temperature is expected to be
cooler at the endpoints, and hottest at the midpoint, of a linear hot spot. Since the
greatest included sphere method predicts that all of the points in the hot spot cool
uniformly, it will exactly predict the relative temperature at the midpoint, and overpredict
the temperature at all other locations in the hot spot.

The three points which produced the largest negative residuals arise from locally
poor approximations of the cylinder’s curvature due to poorly formed faceting. As a
result, territories which theoretically should have edges or points coincident with the

cylinder’s hot spot do not come near the hot spot in practice.

5.3.2 The Brick

The brick shares with the cylinder a linear shaped hot spot. Unlike the cylinder, however,
the brick can be represented exactly by its 12 .STL facets. This means the Voronoi

diagram will be uncluttered and accurate. As a result, its interior vertices should provide a

114

good indication of how well an accurate Voronoi diagram can model cooling patterns in a
casting.

Since the brick has only 12 facets, it has much less interior Voronoi vertices than
the cylinder: 3 as opposed to 67 [Figures 5.9 and 5.10]. The center point, which
corresponds to the centroid of the brick, arises from fortuitous faceting. The two other
points, however, will always be present for this geometry regardless of the faceting used.
They are the endpoints of the linear hot spot of the brick. The relative temperatures
predicted at these two points are therefore more indicative of the overall accuracy of the
Voronoi diagram. As expected, each endpoint has exactly the same residual value, 0.0288
between the Voronoi diagram and the FDM model. The positive value of the residual
indicates that the Voronoi diagram overpredicts the temperature as compared to FDM, as
expected for locations on the hot spot. Since the midpoint happens to coincide with the

midpoint of the brick’s hot spot, the residual for that point is exactly 0.

Figure 5.10: Comparison of Voronoi vertex relative temperature values with 8 nearest FDM nodes for
the 12-facet brick. The three points fall on the major medial axis of the block, which is
also its hot spot.

13 5

5.3.3 The Plate

The Voronoi diagram does not predict the exact value of the temperature of a linear hot
spot, since the endpoints of the hot spot will cool faster than the midpoint. The same
concept applies to planar hot spots; the true location of the hottest temperature will be at
the centroid of the plane. Therefore, it is possible that the same end effects which bring
down the calculated temperatures of the brick’s hot spot endpoints can cause a significant
difference in temperature distributed over a large medial plane, such as that of the plate of
Figure 5.1. In fact, the expected temperature profile of the square hot spot of the plate
should look about the same as that of the square cross-section of Figure 5.8b. However,
the difference between the maximum and minimum temperatures of the hot spot should be
much less than the difference between the maximum and minimum temperatures of the
entire plate. Therefore, the Voronoi diagram should still provide a good approximation of
the temperature across the entire surface of the hot spot.

Figure 5.11 shows this assumption to be valid. The plate has 12 Voronoi vertices,
all of which lie upon the outline of the planar medial face shown in Figure 5.1a. Of these
12 points, only the four corners are independent of the faceting of the model, and are
therefore the only points that should be considered when judging the quality of data
provided by the Voronoi diagram vertices. Each corner shows a residual of 0.126, which
is high compared to the other models, but still much smaller than the full relative

temperature range of 1.0. The large temperature gradients between each of the 8 nearest

116

FDM nodes is high for each of the corner vertices, which magnifies the difference between
the two methods. Once again, the values of each of the corner points exactly match,
which shows that the symmetry of the Voronoi diagram corresponds to the symmetry of

the FDM temperature distribution.

Figure 5.11: Comparison of relative temperature difference between Voronoi vertices and 8 nearest
FDM node neighbors for the 12-facet plate. The agreement between these two methods is
good despite the temperature profile of the large planar hot spot.

Since the symmetry of the plate forces essentially the same temperature profile
between its square hot spot and the square cross-section of Figure 5.8b, the exact location
of the maximum temperature can be found by constructing the Voronoi diagram of the
planar hot spot. Once the planar hot spot is identified, its full Voronoi diagram can be
computed in O(nlogn) time [Preparata77]. Similarly, the exact location of maximum

temperature in a linear hot spot may be trivially determined by calculating its midpoint.

i

5.3.4 The Wedge

The wedge model of Figure 5.12 demonstrates how the Voronoi diagram of an object may
change radically with a relatively minor change in geometry. Although the wedge is
similar to the brick, its Voronoi diagram differs greatly from that of the brick [Figure
5.12a, 5.2]. Its hot spot corresponds to the bottom edge of the small trapezoidal plane in
Figure 5.12a; the endpoints of this edge appear as the light pink cubes of Figure 5.12b.
The short length of the hot spot relative to the dimensions of the cube means that the
temperature variation across the hot spot will be small. Therefore, the endpoints of the
hot spot are very close to the overall maximum temperature of the model. The residuals
of these endpoints are 0.00948 and 0.00954, respectively, which shows very close
agreement between the two methods. Unlike the previous two Voronoi diagrams, these
numbers are not in exact agreement because the faceting of the model is not symmetric.

The residuals of the other 6 Voronoi vertices were all less than 0.065 in magnitude.

Residuals

a. b.

Figure 5.12: a) Voronoi diagram for the wedge of Figure 5.11, with its 6 faces used as sites. The
faces are dashed to provide visual clarity.
b) Relative temperature comparison between Voronoi vertices and 8 nearest FDM
nodes. The two pink boxes contain the vertices which coincide with hot spot endpoints.

118

5.4 Experiment 4: Execution Time Investigations

As mentioned in Chapter Four, the experimental Voronoi diagram generator is an O(n’)
algorithm with an O(n’) preprocessing procedure, so overall the algorithm is expected to
perform faster than the iterative O(n’) algorithms used for transient heat transfer finite
element analysis and implicit finite difference analysis. Since the explicit FDM method
used for this thesis is O(kn), where k is the number of time steps and » is the number of
nodes, the Voronoi diagram generator should perform much slower than the explicit FDM
method as both the number of .STL facets and FDM nodes get large. However, since the
approach is intended for initial conceptual design, there should be very little reason for
intricately faceted models. The remainder of this section shall consider two major issues:
1) the execution time differences between the Voronoi diagram generator aﬁd the explicit
FDM program for the wedge, brick and cylinder models, and 2) how the Voronoi diagram
generator works on an average case basis. An IBM RS/6000 model 350 workstation with
64 Mb RAM executed the timed program runs used to evaluate these issues.

The following subsection reports the results of timed runs of the brick, cylinder,
and wedge models using both the experimental Voronoi diagram generator and the FDM
program using dense models. This information is useful to provide an order of magnitude
comparison. The complexity of the Voronoi diagram algorithm is compared to that of

explicit FDM, implicit FDM, and FEA. The second subsection shows the results of

119

performing timed runs on 10 half cylinder models of variable facet quantities in order to

establish the average case complexity of the algorithm.

5.4.1 Execution Time Comparison Between the Explicit Finite
Difference Method and The Experimental Voronoi Diagram
Generator

This experiment compares the execution times of the Voronoi diagram generator and the
explicit FDM code for three basic geometries: the 12-facet brick, the 12-facet wedge, and
the 68-facet cylinder. The average execution times for each of these models were 16.6ms,
16.0ms, and 635ms, respectively [Table 5.3]. The brick and the wedge come from 6-sided
constructive solid geometry models, and are therefore represented exactly by 12 facets.
The 68-facet cylinder was the most densely faceted cylinder successfully run through the
code. Therefore, it gives the largest available time to compare with the cylindrical FDM

models.

Table 5.3: Execution Times For The Experimental Voronoi Diagram Generator

Model Facets Execution Time (s)
Brick 12 0.0166
Wedge 12 0.0160
Cylinder 68 0.635

Five Explicit FDM models of each of these geometries were also executed and

timed [Table 5.4]. The time step size of remained the same throughout the test runs and

120

each run terminated at the same maximum node temperature in order to isolate the effect

of changing the node quantities upon geometry.

Table 5.4: Execution Times For The Explicit Finite Difference Method

Model Nodes Iterations Execution Time (s)
Brick 96 74 0.18
; 768 271 4.89
i 2592 259 15.84
6144 251 39.02
12000 247 75.68
| Wedge 72 190 0.60
1 576 271 6.47
1944 242 17.13
4608 213 34.63
9000 192 56.43
' Cylinder 60 147 0.30
‘ 624 233 4.61
E 2016 214 13.90
4992 218 37.28

i 9480 209 69.04

Comparing the results shown in Tables 5.3 and 5.4 is non-trivial. The Voronoi
diagram based analysis uses a few strategically well placed vertices upon which
computations are made. The FDM analysis, on the other hand, relies upon a dense grid of
nodes in order to achieve sufficiently accurate results. A direct comparison of these two
methods would require a specific maximum accuracy criterion for the FDM analysis as
compared to an accepted standard. Only with a specific accuracy criterion in place can an
FDM grid be optimized for execution time. Despite this difficulty in comparing execution

times, several observations can be made by studying the analysis of the three models.

121

The first observation is that in general, both methods involve a trade-off between
execution time and accuracy in modeling the part geometry. The main difference is that
FDM relies upon its the density of its internal nodes to accurately resolve the temperature
distribution in the model’s interior. The Voronoi diagram, on the other hand, is computed
in an exact form from the faceted solid model. Its resolution therefore does not depend
upon the number of facets in the model. For instance, if the facets of a given solid model
were increased by subdividing each facet in a coarser version of the model, as was the case
with the 12-facet and 48-facet wedges of Experiment 1, their Voronoi diagrams would
remain consistent. Therefore, once a faceted model is deemed an acceptable
approximation of the original casting geometry, no further refinement is needed. An FDM
model, on the other hand, may still need extensive additional internal node refinement
beyond that required to that accurately approximate the surface geometry of the casting in
order to produce an accurate result.

This difference between the two methods is further evident when studying the
brick model. As expected for a valid discretized modeling method, the solutions of each
of the five FDM models converge towards the exact expected temperature distribution of
the model. As a result, the shape and location hot spot predicted by the solutions
converges towards that of the hot spot predicted by the Voronoi diagram of the 12-facet
brick. Since the surface area of the brick is approximated exactly by its 12 facets, the

Voronoi diagram generated those facets is very accurate as well.

122

A second observation is that the type of FDM nodes chosen by a given application
may not be suitable for accurately approximating complex geometries. For example, even
the 9480-node FDM model does not represent the shape of an exact cylinder better than
the 68-facet cylinder [Figure 5.13]. Because the FDM application used for this thesis is
limited to cubic nodes, the curved surface of the cylinder is difficult to approximate with a
small number of nodes. As discussed in Chapter Three, FDM is restricted to regular grids
of nodes, which makes it less flexible at handling complex geometries than other
solidification modeling methods. Therefore, we can often expect that a faceted solid
model will require much less facets to accurately represent a casting than the number of
nodes in a comparably accurate finite difference grid, with a corresponding savings in

execution time.

i

i

a. b. c. d. e. f.
Figure 5.13: 2D cross-sections of 3D FDM grids which approximate the circular cross-section of a
cylinder for the @) 60-node, b) 624-node, ¢) 2016-node, d) 4992-node, and €) 9480-

node models. f) The endcap of the 68-node faceted cylinder model compares favorably
with the 9480-node model in accuracy.

Finally, the speed of the FDM method also depends upon the size of the time step
used. Since it is an iterative method, the speed of the solution may be improved by

increasing the time step, at the expense of accuracy. For rapid, approximate solidification,

123

larger time steps may be acceptable; however, whenever the choice of the time step size is
left to the user, the possibility exists that the step size selected may lead to an unstable
result. In this case, the solution must be rerun at a lower step size. As the model becomes
more densely gridded, the step size must be lowered accordingly in order to ensure a
stable solution. As a result, the O(n) explicit FDM algorithm may become slower than an
O(’) implicit FDM algorithm due to the need for an excessive amount of iterations to
complete a solution. Therefore, as n becomes large, the execution time of the non-
iterative O(n’) Voronoi diagram algorithm should still compare reasonably to the explicit
FDM method, despite its greater complexity.

In conclusion, the execution times of the two methods do not allow for a specific
statement to be made about which has the superior speed. Explicit FDM has the
advantage in algorithm complexity. However, modeling issues tend to mitigate this
advantage, if not eliminate it. Since the purpose of this thesis is to explore the feasibility
of using a Voronoi diagram based model to rapidly approximate solidification modeling, it
is not necessary to show that it has superior speed. It is only necessary to show that its
speed is not inferior enough to eliminate the method from consideration as a rapid
solidification modeler. The results shown in Tables 5.3 and 5.4 indicate that the method

has the potential to provide rapid execution times.

124

5.4.2 Average Case Algorithm Complexity

The Voronoi diagram generator’s bisecting plane preprocessing stage has one O(n’) step,
which makes the overall algorithm O(n’). However, as discussed in Chapter Four, these
steps are subsequent to two O(n’) steps which act to reduce the overall size of n by
discarding undesirable bisecting planes. As a result, the overall complexity of the program
is expected to be better than O(n’) for the average case.

The estimated complexity was verified by computing the Voronoi diagram of ten
half cylinder models of varying facet quantities [Figure 5.14]. The logarithmic plot of the
execution times shows a slope of approximately 2.20, which suggests an average
complexity of O(n”?°) rather than the theoretical O(n’). Additionally, the logarithmic plot
of the execution times shows a slope of approximately 2, which is expected for a quadratic

relationship between execution time and facet quantity.

Log-Log Plot of Execution Time vs. Facet Quantity for
Half Cylinder Models

100000
10000 —
Average ; /7. & /.
Execution / ° /
Time (ms) . ! /e /
1000 - / /
‘ r ¥
. /I ®
i / 4
100 — v 'J
10—
1
1 10 100 1000 10000 100000
Facet Quantity

Figure 5.14: Growth rate of Voronoi diagram generator’s average execution time due to increase in
facet quantity of input model. A curve fit of the data indicates an average complexity of
Om*?°). The dotted lines have a linear slope of 2.0.

125

Chapter Six

Conclusions

This thesis considers the feasibility of using a medial surface transformation to provide a

rapid approximation of the solidification patterns of castings. In order to demonstrate

feasibility, three issues must be addressed.

1.

The medial surface transformation’s predicted temperature distribution must be
consistent with a well established solidification modeling method. Although an
accurate approximation is ideal, consistency is the most important issue when
considering the potential for acceptance of this approach.

Since speed is an issue, the execution time required to generate the Voronoi
diagram must be comparable to an alternative rapid modeling approach. Also, the
application must be easy to create input for and use: programs which are fast, but
require extensive manual effort in the preprocessing stage, defeat the purpose of
using a rapid solidification modeler for multiple design iterations.

The medial surface transformation of a general faceted model must be feasible to

generate. Since this thesis does not undertake this particular problem, it must be

126

reasonable to assume that this problem is solvable, and that there is an active

interest in solving it.

This thesis shows that the medial surface transformation is, in fact, a useful data structure
to apply to casting solidification modeling. Its predicted relative temperature solution
remains consistent with explicit FDM solutions for several test geometries. Its speed is
equal to or superior to sparse FDM solutions for these same geometries, and the
preprocessing issues are easier for the user to resolve for the medial surface
transformation code than for the explicit FDM code. Finally, although the Voronoi
diagram generator used in this thesis is experimental and only computes Voronoi diagrams
for convex faceted solid models, the literature review shows that current research will
eventually produce a robust Voronoi diagram for general faceted solid models.

The remainder of this chapter is organized into four sections. The first section
discusses the information found in this research which allow the conclusion that the medial
surface transformation provides a feasible approach to rapid approximations of
solidification patterns in castings. The second subsection discusses the potential
advantages to taking such an approach, and the third subsection outlines the obstacles to

be overcome. The fourth and final section provides suggestions for further research.
6.1 Conclusions: Feasibility Issues

The medial surface transformation models the solidification pattern in castings with

adequate accuracy, and predicts a pattern which is consistent with that of an FDM model.

127

The 2D comparison of the Voronoi diagram and FDM predicted temperature profiles of a
square showed that geometry alone can be used to provide a rough estimation of the
relative temperatures in a casting. Additionally, it showed that the Voronoi diagram
provides a more accurate prediction: on average, test points on the Voronoi diagram
showed slightly over twice as good an agreement with FDM than test points which did not
lie on the Voronoi diagram. 3D test models showed that the Voronoi diagram can be used
to accurately locate and dimension point, edge, and plane type hot spots in convex
geometries. A study of the predicted solidification patterns of FDM models of
successively denser meshes converged towards the hot spots predicted by the Voronoi
diagram greatest included sphere method, which further adds confidence in the validity of
the approach.

The experimental Voronoi diagram generation algorithm also has the potential to
rapidly model solidification patterns. Its theoretical O(n’) complexity is comparable to the
iterative O(n’) complexity of implicit FDM and FEA. Its experimentally measured O(n**’)
complexity is indeed better than the complexity of implicit FDM and FEA. Explicit FDM
is an iterative O(kn) algorithm, which makes it asymptotically faster than the Voronoi
diagram algorithm. However, as n gets large, the time step size of the explicit FDM
method required to produce a stable result often becomes small enough to merit using the
implicit method.

Timed runs of brick, cylinder and wedge models showed that the Voronoi diagram

produced completed models in a comparable time to sparse explicit FDM. Since the use

128

of sparse gridding in finite difference analysis itself constitutes an established rapid
solidification modeling approach, the Voronoi diagram provides a reasonable approach to

rapid solidification modeling from an execution standpoint.

6.2 Potential Advantages of the Voronoi Diagram Based Greatest
Included Spheres Method.

The Voronoi diagram can be produced from geometries represented in a .STL file format,
which means that solid model preprocessing can be reduced to a simple file translation
inside the CAD system used to create the model. Since time spent preprocessing the
model can be as or more important a consideration as algorithm speed when establishing a
rapid modeling approach, the advantage of simple preprocessing on any number of
commercial CAD systems is an important benefit of this approach. Additionally, a faceted
solid model can exactly represent a polyhedral solid model in a fixed number of facets,
which means that any purely geometry based model, such as the Voronoi diagram, can be
produced without discretization errors for polyhedral models. If the models have curved
surfaces, the triangular facets of a faceted solid model provide much more flexibility than
the regular volume elements of an FDM grid to model the surfaces accurately. Figure 5.11
shows how this flexibility can lead to accurate models with much lower element quantities:
68 triangular facets provide just as much or more accuracy in modeling a cylindrical

geometry than a 9480-element FDM grid.

129

Just as the geometry of the faceted solid model provides an advantage over FDM
grids on the surface of the model, the geometry of the Voronoi diagram provides an
advantage over FDM grids on the solid model interior. The Voronoi diagram of a faceted
solid model is an exact geometric structure. Therefore, once a model has been created
with acceptable surface accuracy using triangular facets, no additional refinement is
needed to provide resolution to the predicted solidification pattern. Regularly gridded
FDM models must consider both the required resolution of the temperature distribution
and the surface accuracy of the model. Since point, edge and plane hot spots always lie on
Voronoi vertices, edges, and faces, respectively, the Voronoi diagram exactly outlines the
location and geometry of the hot spots. Additionally, since the geometry based approach
is geometry based and non-iterative, instabilities do no arise due to an excessive time step
size. The Voronoi diagram provides a unique skeletal representation which can be used to
exactly reproduce the faceted solid model. FDM grids can only reproduce a
corresponding solid model to within the resolution of the grid. Finally, the Voronoi
diagram of a faceted model can have at most n’ faces, where n is the number of facets.
The actual number of Voronoi faces can be shown to be closer to a multiple of » faces. As
a result, the Voronoi diagram representation should require a much smaller data set than a

dense FDM grid.

130

6.3 Obstacles Inherent in Using the Voronoi Diagram of a Faceted Solid
Model

Existing research has not produced algorithms for computing the exact Voronoi diagrams
of general faceted polyhedra at this time. However, Voronoi diagrams are an extensive
area of ongoing research in computational geometry, so it is reasonable to assume that the
major issues concerning faceted solid model Voronoi diagram construction will be
resolved shortly. This thesis identifies two such major issues: robust intersections and
sensitivity to surface geometry. These issues become apparent when considering spherical
geometries. By approximating a convex, symmetric and exact sphere with a non-convex,
nearly symmetric, nearly regular faceted approximation of a sphere, the Voronoi diagram
produced by this approximated model could lose symmetry and show intersection errors
due to floating point inaccuracy. As a result, a Voronoi diagram which should consist of a
single point in the center of the sphere could consist of a set of planes loosely grouped
around its center [Figure 5.5]. Chapter Three gives. evidence that both issues are being
addressed. Sugihara [Sugihara94] has performed work on robust intersections of
halfspaces, Ogniewicz and Ilg [Ogniewicz92] use residual functions to reduce the
sensitivity of medial axis transformations to boundary geometry, and Sherbrooke et al.
[Sherbrooke95] use an incremental advancement of a differential equation to reduce the
sensitivity of their algorithm to surface geometry.

Problems concerning sensitivity to surface geometry are compounded by the use of

the .STL file format. While this format allows the Voronoi diagram generator to accept

131

files from a large number of commercial CAD systems, it does not maintain the original
topology of the solid models developed on these packages. Therefore, as was the case
with the SDRC I-DEAS Masters Series 2.0 .STL file generator used for this thesis,
symmetry and convexity were not always preserved. Since the purpose of using the .STL
file format is to allow for multiple sources of CAD models, the sensitivity issue cannot be
resolved by enhancing a single .STL file generator to preserve topological characteristics.
Instead, in order for robust Voronoi diagrams to be generated from .STL formatted input,
the generation algorithm must be improved to reduce the Voronoi diagram’s sensitivity to

convexity and symmetry.

6.4 Suggestions for Further Study

Since the medial surface transformation has been established as a useful rapid solidification
modeling tool, the first continuing research item that presents itself is the development of a
robust, rapid application for calculating the Voronoi diagram for a general polyhedral
model, and extracting the medial surface from the Voronoi diagram. The major obstacles
to this task, as discussed in Section 6.3, are current research issues. Once a quality data
structure and algorithm is implemented for this task, the application can be integrated into
existing or new automated casting design applications. Specifically, the data structure can
be used as an input for casting design expert systems, or as an input to a finite element

mesh generator. Additionally, the Voronoi diagram can be gridded itself in order to

132

produce the potential for discretized solutions on a smaller, yet more physically significant
set of nodes.

In order to create a commercial level application which uses Voronoi diagrams for
casting design, it must be combined with a more extensive analysis method. This is
because, although the greatest included sphere method provides a basic approximation of
solidification patterns, and accurately locates casting hot spots, it cannot offer the
capability to handle non-uniform boundary conditions, mold filling considerations,
placement of chills and insulation, and other part specific design issues. However, these
issues can be resolved by a system that use the medial surface transformation first as a
basis for rapid design decisions, and then as a basis for more detailed analysis and design
decisions. Because the medial surface transformation is a purely geometric data structure
from which heat transfer information can be directly extracted, the design automation
approach can either accept the geometric information presented in the data structure and
combine it with rules in a knowledge-based engineering approach or refine the geometry in
order to make a mesh for a comprehensive heat transfer analysis approach. Because the
medial surface transformation’s completely and concisely represents a model’s geometry in
a compact manner, and because it provides a straightforward means of extracting the
features of the geometry which most significantly effect heat transfer, the medial surface

provides a good tool for use in automated casting design regardless of the approach.

133

[Beffel89]

[Blum67]

[Behn93]

[Brown93]

[Bose93]

[Choset94]

[Cruz95]

[Chvorinov40]

[De Jonghe89]

[DeKalb87]

References

Beffel M.J., Yu, K.O., Robinson, M., and Schneider, K.R.,
“Computer Simulation of Investment Casting Processes,” Journal
of Metallurgy, vol. 41, no. 2, February 1989, pp. 27-30.

Blum, H., “A Method for Extracting New Descriptors of Shape”,
Proceedings of the Symposium on Models for the Perception of
Speech and Visual Form, W. Whaten-Dunn, ed., MIT Press,
Cambridge, Massachusetts, pp. 362-380.

Behn, J.H., Automatic CAD Model Repair, Ph.D. thesis, Rensselaer
Polytechnic Institute, Troy, New York, August 1993.

Brown, S.G., and Spittle, J.A, “A Rapid Alternative to
Solidification Modeling,” Modern Casting, vol. 83, no. 12,
December 1993, pp. 24-25.

Bose, N.K., and Garga, A.K., “Neural Network Design Using
Voronoi Diagrams,” IEEE Transactions on Neural Networks, vol. 4
no. 5, September 1993, pp. 778-787.

Choset, H., and Burdick, J., “Sensor Based Planning and
Nonsmooth Analysis,” Proceedings, IEEE Conference on Robotics
and Automation, pt. 4, 1994, pp. 3034-3041.

Cruz, M.E., and Patera, A.T., “A Parallel Monte-Carlo Finite
Element Procedure for the Analysis of Multicomponent Random
Media,” International Journal for Numerical Methods in
Engineering, vol. 38, 1995, pp. 1087-1121.

Chvorinov, N., “Theory of Solidification of Castings,”Geissere,i
vol. 27, no. 10, May 1940, pp. 177-186.

De Jonghe, L.C., Chu, M.-Y., and Lin, M.K.F. “Pore Size
Distribution, Grain Growth, and the Sintering Stress,” Journal of
Materials Science, vol. 24, 1989, pp. 4403-4408.

DeKalb, S.W., Heine, R.W., and Uicker, J.J., “Geometric Modeling

of Progressive Solidification and Casting Alloy Macrostructure,”
AFS Transactions, v. 95, 1987, pp. 281-294.

134

[Dobkin92]

[Durkin94]

[Estrin94]

[Ghosh94]

[Ghosh95a]

[Ghosh95b]

[Hill91]

[Hjalmarrson94]

[ICI68]

[Jordan88]

[Kannan90]

Dobkin, D.P., “Computational Geometry and Computer Graphics,”
Proceedings of the IEEE, vol. 80, no. 9, September 1992,
pp- 1400-1411.

Durkin, J., Expert System Design and Development, Prentice Hall,
Inc., Englewood Cliffs, New Jersey, 1994.

Estrin, L., “A Deeper Look at Solidification Software,” Modern
Casting, vol. 84, no. 7, July 1994, pp. 20-23.

Ghosh, S., and Mallett, R.L., “Voronoi Cell Finite Elements,”
Computers and Structures, vol. 50, no. 1, 1994, pp. 33-46.

Ghosh S., Lee, K., and Moorthy, S., “Multiple Scale Analysis of
Heterogeneous Elastic Structures Using Homogenization Theory
and Voronoi Cell Finite Element Method,” International Journal
of Solids and Structures, vol. 32, no. 1, 1995, pp. 27-62.

Ghosh, S., and Li, Y., “Voronoi Cell Finite Element Model Based
on Micropolar Theory of Thermoelasticity for Heterogeneous
Maternials,” International Journal for Numerical Methods in
Engineering, vol. 38, 1995, pp. 1361-1398.

Hill, J.L., Piwonka, T.S., Berry, J.T., and Guleyopoglu, S., “Gating
Design, Expert Systems, and Personal Computers... A Combination
Worth Watching,” Incast, vol. 4, no. 11, November 1991, pp. 8-12.

Hjalmarrson, H., Sudhalkar, A., Giirs6z, L., and Prinz, F,
“Automated Model Building for Moldability Analysis,” Design
Engineering Division, vol. 74, ASME, 1994. pp.71-85.

The Investment Casting Handbook, G.X. Diamond, ed., Investment
Casting Institute, Chicago, Illinois, 1968.

Jordan, C., Hill, JL. and Piwonka, T.S., “Computer Designed
Gating Systems: Promises and Problems,” AFS Transactions,
vol. 96, 1988, pp. 603-610.

Kannan, K.S, Mahusudana, K., Venkataramani, R., Ganesh, N., and

Prabhakar, O., “Modeling of Solidification Processes,” Indian
Journal of Technology, vol. 28, June-August 1990, pp. 460-474.

135

[Karsay72]

[Kotschi89]

[Kreith80]

[Krozel90]

[Lam92]

[Lee82]

[Morris89]

[Nieses87]

[Ogniewicz92]

[O’Rourke79]

Karsay, S., Gating and Risering of Ductile Iron Castings, Ferrous
Foundry Consulting Co., New York, New York, 1972.

Kotschi, R.M., “The Missing Algorithms to Fully Computerize
Gating, Risering, and CAM Tooling Manufacture, Part 1,” AFS
Transactions, vol. 97, 1989, pp. 689-694.

Kreith, F., and Black, W.Z., Basic Heat Transfer, Harper and Row,
New York, New York, 1980.

Krozel, J., and Andrisani D., “Navigation Path Planning for
Autonomous Aircraft: Voronoi Diagram Approach,” Journal of
Guidance, Control and Dynamics, vol. 13, no. 6, November/
December 1990, pp. 1152-1154.

Lam, L., Lee, S.-W.,, and Suen, C.Y., “Thinning Methodologies-- A
Comprehensive Survey,” Transactions of Pattern Analysis and
Machine Intelligence, vol. PAMI-14, no. 9, September 1992,

pp- 869-885.

Lee, D.T., “Medial Axis Transformation of a Planar Shape,”
Transactions of Pattern Analysis and Machine Intelligence,
vol. PAMI-4, no. 4, July 1982, pp. 363-369.

Morris, R., and Smyrl, W., “Galvanic Interactions on Random
Heterogeneous Surfaces,” Journal of the Electrochemical Society,
vol. 136, no.11, November 1989, pp. 3237-3248.

Nieses, S.J., Uicker, J.J., and Heine, R.W., “Geometric Modeling of
Directional Solidification Based on Section Modulus,” AFS
Transactions, vol. 95, 1987, pp. 25-30.

Ogniewicz, R., and Ilg, M., “Voronoi Skeletons: Theory and
Applications,” Proceedings, 1992 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, June
1992, pp. 63-69.

O’Rourke, J., and Badler, N., “Decomposition of Three
Dimensional Objects into Spheres,” Transactions of Pattern
Analysis and Machine Intelligence, vol. PAMI-1 no. 4, July 1979,
pp- 295-305.

136

[O’Rourke94]

[Palagio4]

[Pei87]

[Pehlke88]

[Peleg81]

[Preparata77]

[Preparata85]

[Rolland92]

[Samet83]

[Sandia92]

[Sherbrooke95]

O’Rourke, J., Computational Geometry in C, Cambridge
University Press, New York, New York, 1994.

Palagi, C.L., and Aziz, K., “Modeling Vertical and Horizontal Wells
with Voronoi Grid,” SPE Reservoir Engineering, vol. 9 no. 1,
February 1994, pp. 15-21.

Pei, Q.X., Bai, T.S., and Liu, P.C., “Riserless Design of Ductile
Iron Castings by Computer Program,” AFS Transactions, vol. 95,
1987, pp. 443-450.

Pehlke, R.D., “Heat Flow Analyses for Solidification and Cooling-
State of the Art,” Modeling of Casting and Welding Processes IV,
A'F. Gamei and G.J. Abbaschian, eds., TMS 1988, pp. 3-13.

Peleg, S., and Rosenfeld, A., “A Min-Max Medial Axis
Transformation,” Transactions of Pattern Analysis and Machine
Intelligence, vol. PAMI-3 no. 2, March 1981, pp. 208-10.

Preparata, F.P., “The Medial Axis of a Simple Polygon,”
Proceedings, 6th Symposium on the Mathematical Foundations of
Computer Science, September 15-17, 1977, pp. 443-450.

Preparata, F.P., and Shamos, M.l, Computational Geometry,
Springer-Verlag, New York, New York, 1985.

Rolland, F., Chassery, J.-M., and Montanvert, A., “3D Medial
Surfaces and Skeletons,” Visual Form: Analysis and Recognition,
C. Arcelli, L.P. Cordella, and G.S. di Baja, eds., Plenum Press, New
York, New York, 1992, pp. 443-450.

Samet, H., “A Quadtree Medial Axis Transform,” Communications
of the ACM, vol. 26, no. 9, September 1983, pp. 680-693.

“Sandia Laboratories FASTCAST Program Being Developed to
Assist in All Phases of Investment Casting Design and Production,”
Incast, vol. 5 no. 11, November 1992, pp. 8-11.

Sherbrooke, E.C., Patrikalakis, N.M., and Brisson, E.,
“Computation of the Medial Axis Transform of 3D Polyhedra,”
Proceedings, 3rd Symposium on Solid Modeling and Applications,
Salt Lake City, Utah, May 17-19, 1995, pp. 187-199.

137

[Shirriff93]

[Sirilertworakul93]

[Stifter91]

[Sudhalkar93]

[Sugihara92]

[Sugihara93]

[Sugihara94]

[Takata94]

[Taniguchi91]

[Tanimoto92]

[Tei-Ohkawa94]

Shirriff, K., “Generating Fractals from Voronoi Diagrams,”
Computers and Graphics, vol. 17, no. 2, 1993, pp. 165-167.

Sirilertworakul, N., Webster, P.D., and Dean, T.A., “Computer
Prediction of Location of Heat Centres in Castings,” Material
Science and Technology, vol. 9 no. 10, October 1993, pp. 923-928.

Stifter, S., “An Axiomatic Approach to Voronoi Diagrams in 3-D,”
Journal of Computer and System Sciences, vol. 43 no. 2, October
1991, pp. 361-379.

Sudhalkar, A., Giirs6z, L., and Prinz, F., “Continuous Skeletons of
Discrete Objects,” Proceedings, 2nd Symposium on Solid Modeling
and Applications, Montreal Canada, May 13-15. pp. 85-94.

Sugihara, K.,and Iri, M., “Construction of the Voronoi Diagram for
‘One Million’ Generators in Single Precision Arithmetic,”
Proceedings of the IEEE, 1992, pp. 1471-1484.

Sugihara, K., “Approximation of Generalized Voronoi Diagrams by
Ordinary Voronoi Diagrams,” CVGIP: Graphical Models and
Image Processing, vol. 55 no. 6, 1993, pp. 522-531.

Sugihara, K., “A Robust and Consistent Algorithm for Intersecting
Convex Polyhedra,” Eurographics 94, M. D=zhlen and L.
Kjelldahl, eds., Oslo, Norway, September 12-16, 1994, pp. 45-54.

Takata, S., and Tsai, M.-D., “Model Based NC Programming for
End Milling Operations,” PED v.68-2, Manufacturing Science and
Engineering, vol. 2, ASME 1994, pp. 809-818.

Taniguchi, N., and Kobayashi, T., “Finite Volume Method on the
Unstructured Grid System,” Computers and Fluids, vol. 19 no. 3/4,
1991, pp. 287-295.

H. Tanimoto and N. Shigyo, ‘“Discretization Error in MOSFET
Device Simulation,” IEEE Transactions on Computer Aided
Design, vol. 11 no. 7, July 1992, pp. 921-925.

Tei-Ohkawa, T., Edagawa, K., Takeuchi, S., and Masuda-Jindo, K.,

“Atomic Packing Geometries and Lattice Properties of a Model
Decagonal Phase,” Materials Science and Engineering A:

138

[Tu93]

[Upadhya93]

[Upadhya94]

[Wukovich89]

[Zhang94]

Structural Materials, Properties, Microstructure, and Processing,
vol. 181-182, pt. 2, May 15, 1994, pp. 833-836.

Tu, J.S., Olinger, D.M., and Hines, A.M., “Computer Aided
Development of an Investment Casting Process,” Journal of
Metallurgy, vol. 45 no. 10, October 1993, pp. 29-32.

Upadhya, G., and Paul, A.J., ‘“Rational Design of Gating and
Risering For Castings: A New Approach Using Knowledge Base
and Geometric Analysis,” AFS Transactions, vol. 101, 1993,
pp. 919-925.

Upadhya, G., and Paul, A.J.,, “Solidification Modeling: A
Phenomonenological Review,” AFS Transactions, vol. 102, 1994,
pp- 69-80.

Wukovich, N., and Metevelis, G., “Gating: The Foundryman’s
Dilemma, or Fifty Years and Still Asking ‘How?,” AFS
Transactions, vol. 97, 1989, pp. 285-302.

Zhang, H.G., Webster, P.D., and Dean, T.A., “Computer Aided

Design of Feeders for Castings,” Journal of Engineering
Manufacture, Part B, vol. B4, 1994, pp. 279-87.

139

Vita

Scott Houser was born in Steven’s Point, Wisconsin on January 25, 1969. He moved with
his family to State College, Pennsylvania, and then on to Westminster, Maryland, where he
attended Westminster High School. He obtained a Bachelor of Science degree at Cornell
University’s Sibley School ot Mechanical and Aerospace Engineering, and interned at
Dresser Rand, Inc., Painted Post, New York as an undergraduate. Following graduation
from Cornell, Scott worked for over two years for Westinghouse’s Bettis Atomic Power
Laboratory division. While working for Bettis, he graduated from the Naval Nuclear
Power School in Orlando, Florida, and qualified as an instructor and Engineering Officer
of the Watch on a prototype reactor at the Nuclear Power Training Unit of the Charleston
Naval Weapons Station, Charleston, SC.

An interest in engineering design and concurrent engineering prompted Scott’s
return to academia. He elected to attend the Virginia Polytechnic Institute and State
University in Blacksburg, Virginia, where his research interests included computer aided
engineering and computational geometry. He is currently employed with Phoenix
Integration, headquartered in the Virginia Tech Corporate Research Center in Blacksburg

Virginia, as a mechanical and software engineer.

A

Scott A. Houser

140

