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Complex Analysis on Planar Cell Complexes

Rachel Arnold

(ABSTRACT)

This paper is an examination of the theory of discrete complex analysis that arises from the

framework of a planar cell complex. Construction of this theory is largely integration-based.

A combination of two cell complexes, the double and its associated diamond complex, allows

for the development of a discrete Cauchy Integral Formula.
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Introduction

Analytic functions and harmonic functions are the fundamental objects of study in complex

analysis. The Cauchy Integral Formula is arguably the most important result. This theorem

and the classes of analytic and harmonic functions are proof that complex analysis relies

heavily on what are known as geometric differential operators. Analytic functions are the

functions that lie in the kernel of the Cauchy-Riemann operator ∂̄; harmonic functions are

those in the kernel of the Laplace operator ∆; the Cauchy Integral Formula is derived from

Green’s Theorem, and hence from exterior differentiation acting on differential forms.

These geometric operators also play a role in physics, for example in models of electromag-

netism. Consequently, there is interest in the discretization of these operators in order to

do numerical computation [2, 4, 10]. This paper is an exploration of the discrete theory

of complex analysis that arises as a result of the discretization of the Cauchy-Riemann op-

erator. Its foundation is the work of Christian Mercat [8, 9], who further developed ideas

of J. Lelong-Ferrand [7]. The original results in this thesis are identified as original in this

introduction. All results stated without attribution can be found in [8, 9].
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Mercat, motivated by interest in the Ising Model, develops discrete, or combinatorial, ver-

sions of the geometric differential operators important in complex analysis. He follows a

well-established convention in defining discrete differential k-forms as functionals on a vector

space generated by the k-cells of a cell complex. The analogue of the exterior derivative

is dual to the cell complex’s boundary map. This is natural in that standard differential

k-forms evaluate on oriented k-dimensional submanifolds by integration. Furthermore, the

cochain complex dual to the cell complex represents the cell complex’s cohomology, just as

the complex of differential forms and exterior derivatives represents the de Rham cohomology

of a manifold.

Mercat’s innovation is in using the cell complex and its dual cell complex to capture the

analogue of a complex structure. Previously, most discrete or combinatorial analogues of

differential operators have involved operators with a differential topological definition. Mer-

cat’s work suggests the possibility of including more geometric content in discrete, or com-

binatorial, constructions.

In this paper, we begin in Chapter 1 with the underlying foundation of a planar cell decom-

position along with its dual (together they are called the double) and a discrete metric that

assigns each edge (x, x′) a length `(x, x′). We explore the differential k-forms for k = 0, 1, 2.

Differential 0-forms are defined on the vertices, 1-forms on the edges, and 2-forms on the

faces of the double.

Once the framework of our theory is established, we give the definition of a discrete analytic

function based on the discretization of the Cauchy-Riemann equation. We also investigate
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properties of discrete analytic functions and discover that polynomials in z are not necessarily

discrete analytic.

We explore operations on and between k-forms. We define the coboundary on the double to

satisfy Green’s Theorem and also establish the definitions of multiplication between forms,

with the exception of 1-form multiplication. We prove that the coboundary satisfies a product

rule with respect to multiplication of functions, a property to be expected of an analogue of

exterior differentiation.

We provide a derivation of a discrete Hodge star operator, a linear operator which aids us

in deriving a basis for the space of discrete differential 1-forms on the double. Consequently,

we see that the direct sum of the eigenspaces of the Hodge star is equivalent to the space

of 1-forms on the double. This direct sum is known as the Hodge Decomposition. Our

featured result in this section is the development of analogues of dz and dz̄. Local versions of

these analogues form a basis for differential 1-forms and are therefore helpful in representing

an arbitrary 1-form. The fundamental results of the theory are discussed in [8], but the

discussion of the Hodge star operator and the emphasis on and discussion of the analogues

of dz and dz̄ are our own.

Via the Hodge decomposition, we give the definition of a holomorphic 1-form. We show that

contrary to the continuous case, f discrete analytic does not guarantee fdz is holomorphic.

We state and prove some original results about the product of functions and 1-forms, and

we explore properties of a 1-form that are necessary and sufficient for it to be holomorphic.

We give one such property, an original result, in which we use a vertical half-shift of a square
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complex. We find that a 1-form on a square double is holomorphic if and only if a vertical

half-shift has analytic crossings. This result demonstrates an alternative discrete connection

between holomorphic 1-forms and analyticity.

We also address the difficulties in defining a discrete meromorphic function. This discussion

and the observation that the discrete theory is based on the analogue of integration explain

Mercat’s decision to focus on discrete meromorphic 1-forms rather than discrete meromorphic

functions. The definition of discrete meromorphic 1-forms allows us to recover a notion

analogous to the residue of a pole via integration over the boundary of a 2-cell in the double.

The major result in this section is the existence of a meromorphic 1-form with a single pole

at a vertex x. This meromorphic 1-form is the discrete analogue of
dz

z − z0

on the double,

where z0 = x. The power of this result is later utilized in our development of a discrete

Cauchy Integral Formula.

We conclude Chapter 1 with an original attempt at the derivation of a wedge product of

1-forms on the double complex. This wedge product requires 1-forms to be evaluated on

edges that are not part of the double. Hence, it illustrates the restrictive nature of the

double cell complex. While the double complex has great advantages, namely the rendering

of a discrete Cauchy-Riemann equation and a Hodge star operator, its weaknesses beg for

the development of an associated cell complex.

In Chapter 2, we provide an exposition of the diamond complex, a cell complex that is derived

from a double complex, and its associated discrete theory. Each diamond face justifies its

name by having only four vertices. This offers a major advantage over the double, where
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2-cells may have an arbitrary number of vertices.

Our highlighted original discovery in this chapter is the mixed wedge product of 1-forms.

Previously, no wedge product was defined on the double. We are able to define a wedge

product of a diamond 1-form and a double 1-form that yields a double 2-form. With respect

to the mixed wedge product, the coboundary is a derivation. This development allows for

the recovery of an original Cauchy Integral Formula on the double.

In general, we see that the diamond provides a stronger foundation from which to develop

discrete theory. Unlike the double, it allows a wedge product of its 1-forms. We also can

define a wedge product of double 1-forms that yields a 2-form on the diamond. This result

is made useful under the averaging map.

The averaging map is defined to be a mapping from k-forms on the diamond to k-forms on

the double. This mapping is vital in utilizing the strengths of the double and the diamond

simultaneously. It allows us to use both the power of the wedge product on the diamond and

of the Cauchy-Riemann equation and Hodge decomposition on the double. More importantly,

we are able to implement the analogue of
dz

z − z0

in a Cauchy Integral Formula on the

diamond.

The third and final chapter of this paper is an exploration of the Cauchy Integral Formula.

The first section provides a review for the reader of the continuous CIF. We give its proof

to establish the process we will use as our guideline in the proof of a discrete CIF, namely

Green’s Theorem. In Section 3.2, we develop an original result: The Cauchy Integral Formula
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on the double. As in the continuous case, we multiply the discrete analogue of dz
z−z0

by a

function f and apply Green’s Theorem off of the face containing z0 = x. This renders a

formula that formally resembles the continuous CIF. However, in a discussion that follows,

we unmask the major drawback of our formula. It does not simplify to a line-integral

representation of f(x) when f is discrete analytic. The class of functions for which our

formula simplifies in that way is restricted and probably of limited interest.

This seeming failure provides a motivation for the Cauchy Integral Formula on the diamond

that is discussed in [8]. We construct a 1-form on the diamond whose average is a mero-

morphic 1-form on the double with two poles at vertices that form an interior diamond

edge. The construction reveals that we are forced to work with two vertices on the diamond,

instead of the usual Cauchy kernel involving a pole at a single point. Consequently the

formula expressed on the diamond provides an average of two function values, instead of

the value at a single point. However, unlike the Cauchy Integral Formula on the double,

the diamond formula recovers the simplification of the Cauchy Integral Formula when f is

discrete analytic.

And so, we see that a cell decomposition, along with its dual, is not strong enough to recover

important results from the continuous setting. Although the double does provide a good

foundation from which to start, the diamond gives our discrete analytic function theory the

final boost that it needs to successfully “discretize” results in complex analysis. However,

we do note that neither cell complex is sufficient in the absence of the other.

Throughout this paper we discover that our discrete theory has a linear structure, but not
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an algebra structure. For example, products of discrete analytic functions with each other

or with discrete analytic 1-forms may fail to be analytic. In several cases, however, we see

that difficulties arising from the absence of linearity can be overcome by using the guideline

of integration. One such example is the failure to develop a theory of discrete meromorphic

functions. Using integration and motivated by the continuous definition of the residue of a

pole, we are able to define discrete meromorphic 1-forms. In fact, we see that our strongest

results are integration-based, often times in ways that go far beyond the constructions on

which the theory is based.



Chapter 1

Discrete Geometric Analysis

In this chapter, we begin by laying the foundation of the discrete version of complex analysis:

a cell decomposition along with its dual, together called the double complex. We define

complex-valued differential k-forms as follows: functions are defined on the set of vertices,

1-forms on the set of edges, and 2-forms on the set of faces of the double.

The first major construction we describe is the discrete Cauchy-Riemann equation. It is an

analogue of the continuous Cauchy-Riemann equation, i∂f
∂x

= ∂f
∂y

, defined on a crossing of a

dual and regular edge. As in the continuous case, we define a discrete analytic function as

a function for which the Cauchy-Riemann equation holds at each such crossing. However,

under this definition we show that polynomials in z are not necessarily analytic, an initially

troubling aspect of the discrete theory.

We define operations on forms, with the exception of a wedge product of 1-forms, and il-

8
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lustrate the motivation behind the definition of multiplication of 1-forms by functions. We

define the coboundary operator on k-forms via Green’s Theorem and prove that, as an exte-

rior derivative should, it satisfies a product rule with respect to function multiplication. We

also provide a motivation for the discrete Hodge star operator and give the resulting Hodge

decomposition, which plays a significant role in the discrete theory. The Hodge decompo-

sition leads to a basis for discrete 1-forms, of which we provide an original construction.

Furthermore, it provides a foundation on which to define discrete holomorphic and mero-

morphic 1-forms.

We note that an analytic function multiplied with the differential dz is not necessarily such

that fdz is discrete holomorphic. We provide original work in exploring 1-form properties

that are equivalent to holomorphic. We define a vertical half-shift on the square double

complex and prove the result that a 1-form is holomorphic if and only if a vertical half-shift

of this double has analytic crossings.

We provide an original exposition of the difficulties in defining a meromorphic function and

give Mercat’s definition of a meromorphic 1-form, noting integration as a motivating factor.

We state the existence of the discrete analogue of the continuous meromorphic 1-form
dz

z − z0

.

Finally, we conclude this chapter with an original investigation of the difficulty in defining,

for pairs of 1-forms on the double, a wedge product with respect to which the exterior

derivative satisfies a product rule on the product of functions and 1-forms. An obstacle that

we encounter in this examination provides an important motivation for venturing beyond

the double to develop more discrete theory.
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1.1 The Double Defined

The framework upon which we build our discrete theory is a cell decomposition. Thus, we

begin by defining a cell decomposition along with its associated discrete metric, the length

of an edge.

Definition 1.1.1. Let Σ be an oriented surface without boundary. A cell decomposition

Γ of Σ is a partition of Σ into disjoint connected sets, called cells, of three types:

(1) Γ0, a discrete set of points, called vertices.

(2) Γ1, a set of nonintersecting oriented paths running between vertices and called edges.

(3) Γ2, a set of topological discs bounded by a finite number of edges and vertices and called

faces.

Note: Let x, y ∈ Γ0. In this paper we denote the oriented edge from x to y as (x, y) ∈ Γ1.

We use only paths for which a length can be defined. The length of an edge (x, y) ∈ Γ1 is

denoted `(x, y). Throughout the entirety of this paper we focus only on cell decompositions

of the complex plane, although much of the theory discussed can be generalized to Riemann

surfaces. We assume that our edges are straight segments, in which case we may define

`(x, y) = |y − x|. In any case, `(e) = `(−e), where −e denotes the edge denoted by e with

the opposite orientation.

Also, a face with vertices x1, . . . , xn ∈ Γ1 may be denoted (x1, . . . , xn) ∈ Γ2 with boundary

(x1, x2)∪ · · · ∪ (xn−1, xn)∪ (xn, x1). Under this notation, each (xi, xi+1) is assumed to be an

edge in Γ1.
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For each cell decomposition Γ, we may construct a dual cell decomposition Γ∗. Begin

by defining a dual vertex F ∗ ∈ Γ∗
0 inside each face F ∈ Γ2 to be the image of the origin of

the Euclidean plane by some parameterization of the face. Now, each edge e ∈ Γ1 separates

two adjacent faces F1, F2 ∈ Γ2. Its dual edge e∗ ∈ Γ∗
1 is defined to be a chosen simple path

between the vertices F ∗
1 and F ∗

2 in Γ∗
0, lying in the faces F1 and F2, that cuts e ∈ Γ1 once

and transversely and cuts no other edge. We orient e∗ so that the orientation of e followed

by the orientation of e∗ agrees with the orientation of Σ, which in our case is the standard

orientation of the plane. If v ∈ Γ0 has adjacent vertices v1, v2, ..., vn ∈ Γ0, a face v∗ ∈ Γ∗
2

is defined by the 1-cells in its boundary ∂v∗ = ∪n
k=1(v, vk)

∗. We can now state a formal

definition.

Definition 1.1.2. A dual cell decomposition Γ∗ of Γ is a cell decomposition with vertices

Γ∗
0, edges Γ∗

1, and faces Γ∗
2 unique to and determined by Γ as described above.

Definition 1.1.3. The double Λ is the union of the cell decomposition Γ and its dual Γ∗.

Note that Γ is also the dual of Γ∗, Γ = Γ∗∗. In particular, e∗∗ = −e.

Examples of the double Λ are shown in Figure 1.1.

In this paper we work only on the plane, and we assume that Γ and Γ∗ are such that all

edges in Λ are straight segments.

A bounded cell complex in the plane has to have a boundary, near which the duality between

a cell complex and its dual must break down. A bounded double complex is constructed by

starting with a double complex on the entire plane. From Γ2, choose finitely many 2-cells
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Figure 1.1: The Double Λ

and all the cells from Γ0 ∪ Γ1 that are in their closures. (Alternatively, one could make all

of these choices from Γ∗.) For each chosen cell other than the boundary vertices, choose its

dual cell. Also, choose the dual cells in the closure of these chosen dual cells. The collection

of cells chosen above forms what we call a bounded double complex.

Throughout this paper, we frequently refer to the standard orientation of a regular and dual

edge crossing. We give a definition below with the aid of Figure 1.2.

Definition 1.1.4. We say that the crossing of a regular edge (x, x′) ∈ Γ1 with its dual

(y, y′) ∈ Γ∗
1 is of standard orientation if (x, x′) is followed by (y, y′) in the counterclockwise

direction as shown in Figure 1.2.



13

Figure 1.2: The standard orientation of a regular and dual edge crossing in the double

complex

1.2 The Cauchy-Riemann Equation and Analytic Func-

tions

Now that we have developed the structure of our cell decomposition, a natural question is

how to define functions on the double. In particular, how do we define an analogue of an

analytic function?

Let Λ0 denote the set of vertices in Λ, Λ0 = Γ0 ∪ Γ∗
0. A function f is defined on the vertices

of the double. We denote the set of such functions by C0(Λ). An element of C0(Λ) assigns

a complex number to each vertex in Λ0. Function multiplication is pointwise as expected.

Hence, if f, g ∈ C0(Λ) and x ∈ Λ0 then (f · g)(x) = f(x) · g(x). In taking the boundary of

an edge, we give vertices orientations, denoted by signs. Functions f ∈ C0(Λ) are defined

on oriented vertices by the requirement that f(−v) = −f(v).
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Next, to establish the notion of a discrete analytic function, we recall a theorem from the

continuous case.

Theorem 1.2.1. Let f(z) be a continuously differentiable function on a domain D. Then

f(z) is analytic if and only if f(z) satisfies the complex Cauchy-Riemann equation ∂f
∂z̄

= 0.

Recall that if z = x + iy, the Cauchy-Riemann equation above is equivalent to i
∂f

∂x
=

∂f

∂y
.

It is this form that allows us to define an analogous discrete Cauchy-Riemann equation.

Definition 1.2.2. Let (x, x′) ∈ Γ1 and let (y, y′) ∈ Γ∗
1 be the edge dual to (x, x′) with

standard orientation. Then the discrete Cauchy-Riemann equation is

i
f(x′)− f(x)

`(x, x′)
=

f(y′)− f(y)

`(y, y′)
.

Throughout this paper, most examples are given on a double complex of squares, with

each vertex at the center of its dual 2-cell. On such a complex, Λ, we may assume that

`(e) = 1 ∀e ∈ Λ1 for simplification purposes. Thus, in those cases, the discrete C-R equation

reduces to i(f(x′)− (x)) = f(y′)− f(y).

Extending the results of Theorem 1.2.1, to the discrete case we may now define a discrete

analytic function.

Definition 1.2.3. A function f : Λ0 → C is discrete analytic if, for every pair of dual edges

(x, x′) ∈ Γ1 and (y, y′) = (x, x′)∗ ∈ Γ∗
1, it satisfies the discrete Cauchy-Riemann equation.

Despite the fact that we have founded the notion of discrete analyticity on the analogous



15

discrete C-R equation, there is a very key property of continuous analytic functions that is

seemingly absent in the discrete case. This property is described in the following theorem.

Theorem 1.2.4. Suppose that f(z) is analytic for |z− z0| < ρ. Then f(z) is represented by

the power series

f(z) =
∞∑

k=0

f (k)(z0)

k!
(z − z0)

k, |z − z0| < ρ,

where the power series has radius of convergence R ≥ ρ.

The results of this theorem are far-reaching in complex analysis. Thus, a similar result in

the discrete case is desirable.

Proposition 1.2.5. The function f(z) = z is discrete analytic on the double Λ, whenever

Λ is such that every regular edge, dual edge crossing is orthogonal.

Proof. Case. Let Λ be a square cell decomposition with edges of length one parallel to

the coordinate axes. Let (x, x′) ∈ Λ1 and (x, x′)∗ = (y, y′) ∈ Λ∗
1 with standard orientation

(Figure 1.2). Then i(f(x′)− f(x)) = i(x′ − x) = y′ − y = f(y′)− f(y).

General Case. Let Λ be any cell decomposition. Let (x, x′) ∈ Λ1 and (x, x′)∗ = (y, y′) ∈ Λ∗
1

with standard orientation. Then f(x′)− f(x) = x′ − x and f(y′)− f(y) = y′ − y. Further,

|x′ − x|
`(x, x′)

= 1 =
|y′ − y|
`(y, y′)

since `(a, b) = |b − a| by definition. Now, because (x, x′) and (y, y′)

are orthogonal, we have
i(x′ − x)

`(x, x′)
=

y′ − y

`(y, y′)
and the C-R equation is satisfied.
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Thus, for many double complexes the discrete function f(z) = z is analogous to its continuous

analytic counterpart. However, unlike in the continuous case, the function f(z) = zn, n > 2

is not necessarily discrete analytic. A simple example illustrating the failure of the case when

n = 3 is given below.

Example 1.2.6. Define f(z) = z3. Consider the cell decomposition pictured in Figure 1.3.

Then (1, 1 + i) is dual to (1
2

+ i
2
, 3

2
+ i

2
) with

f(1) = 1, f(1 + i) = 2i− 2, f(1
2

+ i
2
) = i

4
− 1

4
, and f(3

2
+ i

2
) = 9

4
+ 13i

4
.

Hence, i[f(3
2

+ i
2
)− f(1

2
+ i

2
)] = 5

2
i− 3 and f(1 + i)− f(1) = 2i− 3.

∴ The discrete C-R equation is not satisfied.

Figure 1.3: The cell complex from Example 1.2.6

When constructing an analytic function on a cell complex on the complex plane we typi-

cally have infinitely many degrees of freedom. For example, on a square complex, we may
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arbitrarily choose the values of a function on a row of regular vertices and an adjacent row

of dual vertices. Then we can solve the system of equations that results from the Cauchy-

Riemann equation row by row. Each vertex value is in a single equation in which it is the

only variable. Thus, we see that the space of discrete analytic function is typically quite

large.

1.3 Differential k-forms

Because much of the theory developed around this discrete cell decomposition is based on

integration, it is necessary to define discrete differential 1-forms and 2-forms.

Definition 1.3.1. A discrete 1-form α ∈ C1(Λ) is a complex-valued function defined on

the set of edges Λ1. Such an α is required to satisfy α(−e) = −α(e).

Definition 1.3.2. A discrete 2-form ω ∈ C2(Λ) is a complex-valued function defined on

the set of faces Λ2. We do not use different orientations on faces F . If we did, we would

require ω(−F ) = −ω(F ).

Note: from the above definitions we see that functions can naturally be called discrete 0-

forms.

Throughout this paper we will use the following notation:

α(e) =

∫
e

α α ∈ C1(Λ), e ∈ Λ1 and ω(F ) =

∫∫
F

ω ω ∈ C2(Λ), F ∈ Λ2.
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As in the continuous case, we can define a coboundary function which maps from Ck(Λ) to

Ck+1(Λ) as follows.

Definition 1.3.3. The coboundary d : Ck(Λ) → Ck+1(Λ) is defined by

∫
(x,x′)

df := f(∂(x, x′)) = f(x′)− f(x) and

∫∫
F

dα :=

∮
∂F

α.

Here ∂F must be oriented so that the outer normal, followed by the direction of ∂F , agrees

with the orientation of F , as in the usual Green’s Theorem.

The definition of the coboundary is modeled after The Fundamental Theorem of Calculus

and Green’s Theorem from the continuous case.

Theorem 1.3.4. (The Fundamental Theorem of Calculus) If F (t) is an antiderivative for

the continuous function f(t), then

∫ b

a

f(t)dt = F (b)− F (a).

Theorem 1.3.5. (Green’s Theorem) Let D ⊆ C be a bounded domain with C1 boundary.

Let α be a 1-form on C1(D̄). Then

∫∫
D

dα =

∮
∂D

α.

where ∂D has induced orientation from D.
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1.4 Operations on the Double Λ

Now that we have established the notion of discrete functions, 1-forms, and 2-forms, we

want to define a discrete multiplication between forms. Let e = (x, x′) ∈ Λ1, F ∈ Λ2, f ∈

C0(Λ), α ∈ C1(Λ), and ω ∈ C2(Λ). Then

∫
e

f · α :=
f(x) + f(x′)

2

∫
e

α and

∫∫
F

f · ω := f(F ∗)

∫∫
F

ω.

Note: The failure to define a wedge product of 1-forms at this point is intentional. We will

see later that it is not easily defined on the double, and we will introduce an alternative cell

complex that does admit a wedge product that is essential to the further development of the

discrete theory.

Our definition of the product of a function and a 1-form is based on our desire for the

coboundary to be a derivation with respect to function multiplication. In other words, for

any edge e = (x, x′) ∈ Λ1 we want d(f · g)(e) = f · dg(e) + g · df(e). This goal forces the

definition of function and 1-form multiplication given above. Before offering a proof of this

claim, we first state two conditions that we require of the product f · α where f ∈ C0(Λ)

and α ∈ C1(Λ).

1. For an edge e = (x, x′) ∈ Λ1, (f · α)(e) depends only on f(x), f(x′), and α(e).

2. f ·α is bilinear in f and α, i.e. ∃u, v, k ∈ C such that (f ·α)(e) = [uf(x)+vf(x′)](kα(e))

∀f ∈ C0(Λ) and ∀α ∈ C1(Λ). Substituting s = uk and t = vk, this condition simplifies

to (f · α)(e) = [sf(x) + tf(x′)]α(e).
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Both of these requirements are natural. The second is simply a result of our desire to

have a vector space of functions with operations that behave similarly to their continuous

counterparts. We are now ready to state our proposition.

Proposition 1.4.1. Assume the conditions above. Let f, g ∈ C0(Λ) and e = (x, x′) ∈ Λ0.

If d(f · g) = f · dg + g · df then s = t =
1

2
.

Proof. For simplicity, let f(x) = a, f(x′) = b, g(x) = c, and g(x′) = d. Then d(f · g) =

f · dg + g · df becomes bd− ac = [sa + tb](d− c) + [sc + td](b− a) ⇒ bd− ac = (s− t)ad−

2sac + 2tbd + (s− t)bc. Consider the case a = d = 1 and b = c = 0. Then the above reduces

to 0 = s − t =⇒ s = t. Consider, also, the case where b = d = 1 and a = c = 0. Then

bd− ac = (s− t)ad− 2sac + 2tbd + (s− t)bc reduces to 1 = 2t =⇒ t =
1

2
. Since both cases

must be satisfied simultaneously, the only possible solution is s = t =
1

2
.

The following proposition shows that (f · α)(e) = [sf(x) + tf(x′)]α(e) where s = t =
1

2
is

indeed a solution that satisfies the product rule for functions.

Proposition 1.4.2. d is a derivation with respect to function multiplication.
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Proof. Suppose f, g ∈ C0(Λ). Let e ∈ Λ1 s.t. e = (x, x′). Then∫
e

d(f · g) = (f · g)(∂(x, x′))

= (f · g)(x′)− (f · g)(x)

= f(x′)g(x′)− f(x)g(x)

=
1

2
[2f(x′)g(x′)− f(x)g(x′) + f(x)g(x′)− f(x′)g(x) + f(x′)g(x)− 2f(x)g(x)

=
f(x) + f(x′)

2
[g(x′)− g(x)] +

g(x) + g(x′)

2
[f(x′)− f(x)]

=

∫
e

f · dg +

∫
e

g · df

Remark 1.4.3. At this time we present no justification for the definition of f · w when

f ∈ C0(Λ) and ω ∈ C2(Λ). As defined the product has the property that (fg)ω = f(gω).

The 1-form case suggests replacing f(F ∗) by the average of f ’s values on vertices in the

boundary of F . The definition given at the beginning of this subsection has some good

properties described in Chapter 2. The alternative definition does not resolve the difficulties

that arise in Subsection 1.8.

1.5 The Hodge Star, the Hodge Decomposition, and a

Basis for C1(Λ)

Now that we have defined discrete differential forms and established the exterior derivative d

on the double Λ, we consider the building blocks of continuous 1-forms: dz and dz̄. We would
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like to develop local analogues of dz and dz̄ on the double, a construction that will work on

general Riemann surfaces as well as on the complex plane. To help us better determine an

appropriate analogy, we recall an operator on continuous 1-forms, the Hodge star.

1.5.1 The Hodge Star and the Hodge Decomposition

In the continuous setting, the Hodge star is defined to be ∗fdx = fdy and ∗fdy = −fdx.

Therefore,

∗df = ∗
(

∂f

∂x
dx +

∂f

∂y
dy

)
=

∂f

∂x
dy − ∂f

∂y
dx.

If we now assume that f is analytic, the Cauchy-Riemann equations yield

∗df = −i
∂f

∂y
dy − i

∂f

∂x
dx = −i

(
∂f

∂x
dx +

∂f

∂y
dy

)
= −idf.

Thus, the continuous Cauchy-Riemann equation may be written ∗df = −idf .

We want our discrete definition of the Hodge star to satisfy the equations ∗dx = dy and

∗dy = −dx. Here we define the discrete 1-forms dx(e) = Re(x′) − Re(y′) and dy(e) =

Im(x′)−Im(x) for an edge e = (x, x′) ∈ Λ1. To motivate the general definition of the discrete

Hodge star operator, we explore the consequences of requiring ∗dx = dy and ∗dy = −dx

on a cell complex in which every edge is either horizontal or vertical. Let Λ be such a cell

complex. We’ll use the notation e ∈ Γ1 for a horizontal edge oriented to the right and the

notation ẽ ∈ Γ1 for a vertical edge oriented upward. Then e∗ is vertical, oriented upward,

and ẽ∗ is horizontal, oriented to the left. We’ll explore this specific case to gain insight into

a generalized Hodge star definition. To simplify notation, we define ρ(e) =
`(e∗)

`(e)
for any
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edge e ∈ Λ1. If we assume that the discrete Hodge star satisfies ∗dx = dy and ∗dy = −dx,

then we have the following.

∗dx(ẽ) = dy(ẽ) = `(ẽ) =
`(ẽ)

`(ẽ∗)
`(ẽ∗) = −ρ(ẽ∗)dx(ẽ∗)

∗dx(e) = dy(e) = 0 = dx(e∗) = −ρ(e∗)dx(e∗)

∗dy(e) = −dx(e) = −`(e) = −ρ(e∗)dy(e∗)

∗dy(ẽ) = −dx(ẽ) = 0 = dy(ẽ) = −ρ(ẽ∗)dy(ẽ∗).

From these equations we see that if our edge e is either horizontal or verical, we arrive at

the same result.

∗dx(e) = −ρ(e∗)dx(e∗)

∗dy(e) = −ρ(e∗)dy(e∗).

Since ∗ is a linear operator, we should also have the following.

∗dz(e) = ∗(dx + idy)(e) = (∗dx + i ∗ dy)(e) = −ρ(e∗)(dx(e∗) + idy(e∗)) = −ρ(e∗)dz(e∗)

Dropping the restriction to dx, dy, and dz on a cell complex in which every edge is parallel

to a coordinate axis, we can define a discrete Hodge star operator on an arbitrary 1-form

α ∈ C1(Λ).

Definition 1.5.1. The discrete Hodge star ∗ : C1(Λ) → C1(Λ) is a linear map defined

by

∫
e

∗α = −ρ(e∗)

∫
e∗

α, e ∈ Λ1,
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where the crossing at e and e∗ has standard orientation, as shown earlier in Figure 1.2.

Recall that in the continuous case, if f is analytic then the Cauchy-Riemann equation ∗df =

−idf is satisfied. The same is true in the discrete setting.

Proposition 1.5.2. Suppose f ∈ C0(Λ) is discrete analytic. Then ∗df = −idf .

Proof. Let e ∈ Λ1 and e∗ its dual. Recall, that by the Cauchy-Riemann equation we have

idf(e)

`(e)
=

df(e∗)

`(e∗)
.

Then

∗df(e) = −ρ(e∗)df(e∗) = −`(e)
df(e∗)

`(e∗)
= −idf(e).

Next, since the Hodge star is linear, we can investigate the eigenspaces of 1-forms it induces.

In the continuous case, an eigenvalue λ of a linear map L is such that Lv = λv, where v

is an eigenvector of λ. If we apply L twice to v, we have L(Lv) = λ2v. Therefore, since ∗

is linear, applying ∗ twice to a 1-form will help us discover the possible eigenvalues of the

discrete Hodge star.

Let α ∈ C1(Λ) and e ∈ Λ1. Then

∗ ∗ α(e) = ∗
(
− ρ(e∗)α(e∗)

)
= −ρ(e∗)(∗α(e∗)) = −ρ(e∗)(−ρ(e)α(−e)) = −α(e)

Any eigenvalue λ of the Hodge star must satisfy λ2 = −1. Consequently, the only possible

eigenvalues are ±i.
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Definition 1.5.3. Let α ∈ C1(Λ). We say α is of type (1,0) (α ∈ C(1,0)(Λ)) if ∗α(e) =

−iα(e) ∀e ∈ Λ1 and α is of type (0,1) (α ∈ C(0,1)(Λ)) if ∗α(e) = iα(e) ∀e ∈ Λ1. This is

called the Hodge decomposition.

In other words, α is of type (1, 0) if α belongs to the −i eigenspace, and α is of type (0, 1)

if α belongs to the +i eigenspace.

Proposition 1.5.4. Let Λ be a cell complex on C. Then dz is of type (1,0) and dz̄ is of

type (0,1).

Proof. First, we’ll show that dz is of type (1,0). Consider an edge e = (x, x′) ∈ Γ1 and its dual

e∗ = (y, y′) ∈ Γ∗
1 as pictured in Figure 1.4. Then dz(e) = x′− x and dz(e∗) = y′− y = i(x′−

x)ρ(e) since the function z is discrete analytic. Therefore −idz(e) = −ρ(e∗)dz(e∗) = ∗dz(e)

and dz is of type (1,0). Now consider dz̄ on the same crossing. Then dz̄(e) = x′ − x and

dz̄(e∗) = y′ − y = i(x′ − x)ρ(e) = −iρ(e)(x′ − x). Hence, idz̄(e) = −ρ(e∗)dz̄(e∗) = ∗dz̄(e)

and dz̄ is of type (0,1).

1.5.2 A Basis for C1(Λ)

The continuous 1-forms dz and dz̄ are also of type (1,0) and (0,1), respectively, under the

continuous Hodge star. Because z is analytic, the Cauchy Riemann equation ∗dz = −idz

holds. We may show dz̄ is type (0,1) directly.

∗dz̄ = ∗(dx− idy) = ∗dx− i ∗ dy = dy + idx = i(dx− idy) = idz̄.
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Figure 1.4: A regular and dual edge crossing.

In the continuous case, dz and dz̄ generate the collection of all differential 1-forms on the

complex plane. In the discrete setting we can show that local analogues of dz and dz̄ form

a basis for the vector space of all discrete differential 1-forms. To do this, we need to show

that the ±i eigenspaces span C1(Λ).

We begin with the specific case where our cell complex is given on the complex plane. With

the continuous case as our guide, we are looking to develop a notation for the discrete 1-forms

dz and dz̄ that will point toward a general definition for our ±i eigenspace representatives

when working of off the plane. We observe that in the discrete case, continuity is not of

concern, and we can therefore introduce a localized definition specific to each regular and

dual edge crossing. Let e = (x, x′) be a regular edge in Γ1, e∗ = (y, y′) its dual, and let

their crossing be of standard orientation. We define the discrete 1-form dz localized at this
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crossing for an arbitrary edge e′ ∈ Λ1 by

dze(e
′) =



dz(e) for e′ = e

dz(e∗) for e′ = e∗

0 otherwise.

As previously shown, dz is of type (1,0) and therefore satisfies ∗dz(e) = −idz(e) at each

crossing. By the definition of the Hodge star, this yields −ρ(e∗)dz(e∗) = −idz(e). Hence,

dz(e∗) = iρ(e)dz(e) and we may rewrite our definition of dze as follows

dze(e
′) =



dz(e) for e′ = e

iρ(e)dz(e) for e′ = e∗

0 otherwise.

A similar process shows that we may define the discrete 1-form dz̄ localized at the crossing

associated with e for an arbitrary edge e′ ∈ Λ1 by

dz̄e(e
′) =



dz̄(e) for d′ = e

−iρ(e)dz̄(e) for e′ = e∗

0 otherwise.

And so, above we see that dze returns a complex constant c = x′−x, and the value returned

on e∗ is found using the Hodge star relationship of a (1,0) 1-form. This observation shows us

that the only essential ingredients in defining a ±i eigenspace representative localized at a

crossing is the relationship of the values of the 1-form (complex constants) on e and e∗ given
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by the definition of the Hodge star. So we can choose two collections K and J of constants

ke and je indexed by edges e ∈ Γ1 and define our eigenspace representatives for the general

case. We will use the notation ζK,e ∈ C(1,0)(Λ) and ζ̄J,e ∈ C(0,1)(Λ) to denote the respective

representatives of the ∓i eigenspaces. For simplification purposes, we’ll suppress K and J

from the notation and define ζe and ζ̄e localized at the crossing of e and e∗ for an arbitrary

edge e′ ∈ Λ1.

ζe(e
′) =



ke for e′ = e

ikeρ(e) for e′ = e∗

0 otherwise

ζ̄e(e
′) =



je for e′ = e

−ijeρ(e) for e′ = e∗

0 otherwise.

Thus, dze and dz̄e are ζe and ζ̄e, respectively, where

K = {ke : ke = x′ − x for e = (x, x′) ∈ Γ1}.

and

J = {je : je = x′ − x for e = (x,′ x) ∈ Γ1}.

Proposition 1.5.5. ζe is of type (1,0) and ζ̄e is of type (0,1).
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Proof. ∗ζe(e
′) = −ρ(e′∗)ζe(e

′∗)

=



−ρ(e∗)ζe(e
∗) for e′ = e

−ρ(−e)ζe(−e) for e′ = e∗

0 otherwise

=



−ρ(e∗)(ikeρ(e)) for e′ = e

−ρ(e)(−ke) for e′ = e∗

0 otherwise

=



−ike for e′ = e

−iρ(e)(ike) for e′ = e∗

0 otherwise

= −iζe(e
′) and ζe is of type (1,0).

∗ζ̄e(e
′) = −ρ(e′∗)ζ̄e(e

′∗)

=



−ρ(e∗)ζ̄e(e
∗) for e′ = e

−ρ(−e)ζ̄e(−e) for e′ = e∗

0 otherwise

=



−ρ(e∗)(−ijeρ(e)) for e′ = e

−ρ(e)(−je) for e′ = e∗

0 otherwise

=



ije for e′ = e

iρ(e)(−ije) for e′ = e∗

0 otherwise

= iζ̄e(e
′) and ζ̄e is of type (0,1).

And so, we have found our ±i eigenspace representatives, respectively ζ̄e and ζe.
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Proposition 1.5.6. For any chosen collections of nonzero constants K and J, indexed by

the elements e of Γ1, the associated collection {ζe : e ∈ Γ1} ∪ {ζ̄e : e ∈ Γ1} is a basis for

C1(Λ).

Proof. By construction, the ζe’s and ζ̄e’s are independent. Therefore, it suffices to show that

they span C1(Λ). Let α ∈ C1(Λ). Because each coefficient matrix
(

ke je

ke −je

)
is nonsingular,

we may choose collections A and B of complex constants ae and be, respectively, indexed by

the edges e ∈ Γ1 such that, for every e, the following system of equations is satisfied.
aeke + beje = α(e)

aeke − beje =
α(e∗)

iρ(e)
.

The solutions are ae =
iα(e) + ρ(e∗)α(e∗)

2ike

and be =
iα(e)− ρ(e∗)α(e∗)

2ije

for e ∈ Γ1.

Claim. α =
∑
e∈Γ1

[
aeζe + beζ̄e

]
.

Case 1. e′ ∈ Γ1.

∑
e∈Γ1

[
aeζe(e

′) + beζ̄e(e
′)
]

= ae′ζe′(e
′) + be′ ζ̄e′(e

′)

= ae′ke′ + be′je′

=

(
iα(e′) + ρ(e′∗)α(e′∗)

2ike′

)
ke′ +

(
iα(e′)− ρ(e′∗)α(e′∗)

2ije′

)
je′

=
iα(e′) + ρ(e′∗)α(e′∗)

2i
+

iα(e′)− ρ(e′∗)α(e′∗)

2i

= α(e′).
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Case 2. e′ ∈ Γ∗
1∑

e∈Γ1

[
aeζe(e

′) + beζ̄e(e
′)
]

= ae′∗ζe′∗(e
′) + be′∗ ζ̄e′∗(e

′)

= ae′∗(iρ(e′∗)ke′) + be′∗(−iρ(e′∗)je′)

=

(
iα(e′∗) + ρ(e′)α(e′)

2ike′

)
(iρ(e′∗)ke′) +

(
iα(e′∗)− ρ(e′)α(e′)

2ije′

)
(−iρ(e′∗)je′)

=
iρ(e′∗)α(e′∗) + α(e′)

2
− iρ(e′∗)α(e′∗)− α(e′)

2

= α(e′).

Hence, every α ∈ C1(Λ) can be written as a linear combination of ζe’s and ζ̄e’s. {ζe} ∪ {ζ̄e}

spans C1(Λ) and is therefore a basis for C1(Λ).

The assertion that {ζe} ∪ {ζ̄e} is a basis of C1(Λ) leads to the conclusion that we may write

the space of discrete differential 1-forms on Λ as a direct sum of ∗’s eigenspaces.

C1(Λ) = C(1,0)(Λ)⊕ C(0,1)(Λ).

The associated projections with this direct sum are as follows:

π(1,0) =
1

2
(Id + i∗) : C1(Λ) → C(1,0)(Λ),

π(0,1) =
1

2
(Id− i∗) : C1(Λ) → C(0,1)(Λ).

Thus, for α ∈ C1(Λ) with α =
∑
e∈Γ1

aeζe + beζ̄e, under these projections we have

π(1,0) ◦ α =
1

2

( ∑
e∈Γ1

aeζe + beζ̄e + i
( ∑

e∈Γ1

ae(−iζe) + be(iζ̄e)
))

=
∑
e∈Γ1

aeζe.
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And similarly,

π(0,1) ◦ α =
∑
e∈Γ1

beζ̄e.

We may conclude that

α ∈ C(1,0)(Λ) ⇐⇒ α =
∑

e∈Γ1
aeζe and α ∈ C(0,1) ⇐⇒ α =

∑
e∈Γ1

beζ̄e.

Recall that in the continuous case, df = ∂f
∂z

dz + ∂
∂z̄

dz̄ where f is a differentiable complex-

valued function. The (1,0) projection of df is simply ∂f
∂z

dz, and the (0,1) projection is ∂
∂z̄

dz̄.

This stems from our earlier result that dz and dz̄ are of type (1,0) and (0,1) respectively. We

may analogously define the (1,0) and (0,1) projections of the coboundary d in the discrete

case.

Definition 1.5.7. Let d : C0(Λ) → C1(Λ) be the coboundary on the double Λ. Then we

define the (1,0) and (0,1) projections of d as follows.

d′ := π(1,0) ◦ d, d′′ := π(0,1) ◦ d

Theorem 1.5.8. Let d : C0(Λ) → C1(Λ) be the coboundary. Then d = d′ + d′′.

Proof. This result is a direct consequence of C1(Λ) = C(1,0)(Λ)⊕C(0,1)(Λ) and the definition

of d′ and d′′.
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The development of ζ and ζ̄ allow us to establish another correspondence between the con-

tinuous and discrete theory. As noted earlier, in the continuous case we have
∂f

∂z̄
= 0 ⇐⇒

∂f

∂z̄
dz̄ = 0 ⇐⇒ i

∂f

∂x
=

∂f

∂y
. The same is true in the discrete case.

Theorem 1.5.9. π(0,1) ◦ df(e) = 0 for every edge e ∈ Λ1 ⇐⇒ f is discrete analytic.

Proof. Let e = (x, x′) ∈ Λ1 be arbitrary with dual edge e∗ = (y, y′). Then π(0,1) ◦ df(e) =

0 ⇐⇒ ∗df(e) = −idf(e) ⇐⇒ −ρ(e∗)df(e∗) = −idf(e) ⇐⇒ −`(x, x′)

`(y, y′)
(f(y′) − f(y)) =

−i(f(x′)− f(x)) ⇐⇒ i(f(x)− f(x′))

`(x, x′)
=

f(y)− f(y′)

`(y, y′)
⇐⇒ f is discrete analytic.

Let ζe = dze. We have already established that a generic 1-form of type (1,0) has the form∑
e∈Γ1

aeζe. What happens if we multiply such a 1-form by a function? Will it still be of type

(1,0)? We know that the answer to this question in the continuous case is yes independent

of our choice of function. However, because function and 1-form multiplication does not

behave as nicely in the discrete case, we must introduce some restrictions on our function

in order to guarantee that its product with a type (1,0) 1-form will remain of that same type.

Proposition 1.5.10. Suppose α = f
∑
e∈Γ1

aeζe where f ∈ C0(Λ). Then α ∈ C(1,0)(Λ) ⇐⇒ f

has equal averages at each crossing of a regular edge and dual edge.
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Proof. Let e′ = (x, x′) and e′∗ = (y, y′). Then

α ∈ C(1,0)(Λ) ⇐⇒ ∗α(e′) = −iα(e′)

⇐⇒ −ρ(e′∗)
f(y) + f(y′)

2

∑
e∈Γ1

aeζe(e
′∗) = −i

f(x) + f(x′)

2

∑
e∈Γ1

aeζe(e
′)

⇐⇒ f(x) + f(x′)

2
=

f(y) + f(y′)

2
,

since

−i
∑
e∈Γ1

aeζe(e
′) = −ρ(e′∗)

∑
e∈Γ1

aeζe(e
′∗) by

∑
e∈Γ1

aeζe of type (1,0).

Proposition 1.5.11. Suppose α = f
∑
e∈Γ1

aeζe where f ∈ C0(Λ). Then α ∈ C(0,1)(Λ) ⇐⇒ f

has averages summing to zero at each regular edge, dual edge crossing.

Proof. Let e′ = (x, x′) and e′∗ = (y, y′). Then

α ∈ C(0,1)(Λ) ⇐⇒ ∗α(e′) = iα(e′)

⇐⇒ −ρ(e′∗)
f(y) + f(y′)

2

∑
e∈Γ1

aeζe(e
′∗) = i

f(x) + f(x′)

2

∑
e∈Γ1

aeζe(e
′)

⇐⇒ f(x) + f(x′)

2
= −f(y) + f(y′)

2
,

since

−i
∑
e∈Γ1

aeζe(e
′) = −ρ(e′∗)

∑
e∈Γ1

aeζe(e
′∗) by

∑
e∈Γ1

aeζe of type (1,0).
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Proposition 1.5.12. Suppose α = f
∑
e∈Γ1

beζ̄e where f ∈ C0(Λ). Then α ∈ C(0,1)(Λ) ⇐⇒ f

has equal averages at each regular edge, dual edge crossing.

Proposition 1.5.13. Suppose α = f
∑
e∈Γ1

beζ̄e where f ∈ C0(Λ). Then α ∈ C(1,0)(Λ) ⇐⇒ f

has averages summing to zero at each regular edge, dual edge crossing.

Proofs similar to those given for function multiplication with a 1-form of type (1,0) show

these last two claims are also true.

1.6 Holomorphic 1-Forms

We have already developed the notion of a discrete analytic function. Now, because the driv-

ing force of the discrete theory is integration, we wish to establish the notion of a holomorphic

discrete 1-form. Recall that in the differentiable case we have, for any function f , fdz is of

type (1,0). Further, fdz is holomorphic ⇐⇒ f is analytic ⇐⇒ ∂f

∂z̄
= 0 ⇐⇒ d(fdz) = 0,

i.e. fdz is closed. It is this continuous property that we use as the motivation for the defi-

nition of a holomorphic discrete 1-form.

Definition 1.6.1. A 1-form α ∈ C1(Λ) is holomorphic if it is closed and of type (1,0).

Thus, if Ω1(Λ) is the space of all holomorphic 1-forms, α ∈ Ω1(Λ) ⇐⇒ dα = 0 and

∗α(e) = −iα(e) ∀e ∈ Λ1.
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Since we have used the equivalence of fdz holomorphic and f analytic as the foundation of

our definition of a holomorphic 1-form, it is interesting to identify the functions f for which

the analogous relationship holds in the discrete setting. To simplify our investigation, assume

that Λ is a cell complex of squares on the complex plane with edges of length one parallel to

the coordinate axes. Consider the type (1,0) 1-form α = f
∑
e∈Γ1

ζe for some f ∈ C0(Λ) with

equal averages at each crossing, so as to guarantee that α is indeed type (1,0). In defining ζe

choose constants so that ζe is equal to the discrete 1-form dze. So α = f
∑
e∈Γ1

dze = fdz. Then

α is holomorphic ⇐⇒ d(fdz) = 0, by definition of a holomorphic 1-form. Since we have yet

to define a working wedge product of 1-forms, applying the product rule to d(fdz) yields no

further information. Instead, let us consider the calculation directly on a given face F ∈ Λ2

with bounding edges (x1, x2), (x2, x3), (x3, x4), and (x4, x1). For simplicity, we’ll refer to the

regular edges as e1, e2, e3, and e4, respectively. Their dual edges are (x′1, x
∗), (x′2, x

∗), (x′3, x
∗),

and (x′4, x
∗), respectively (see Figure 1.5).

Proposition 1.6.2. Under the assumptions given above, suppose α = fdz for f ∈ C0(Λ)

with equal averages at each crossing in Λ. Let F ∈ Λ2 be an arbitrary face shown in Fig-

ure 1.5. Then α is holomorphic ⇐⇒ i
[
f(x′1)− f(x′3)

]
= f(x′2)− f(x′4).

Proof. We need to show that α is closed on each face F ∈ Λ2, i.e. d(fdz)(F ) = 0 for all
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F ∈ Λ2. We have d(fdz)(F ) = 0

⇐⇒ (fdz)(∂F ) = 0

⇐⇒ (fdz)(e1) + (fdz)(e2) + (fdz)(e3) + (fdz)(e4) = 0

⇐⇒ f(x1) + f(x2)

2
(i) +

f(x2) + f(x3)

2
(−1) +

f(x3) + f(x4)

2
(−i) +

f(x4) + f(x1)

2
(1) = 0.

Now, since we have assumed that f has equal averages at each crossing, we may substitute

the dual averages into our equation. Hence, we have

d(fdz)(F ) = 0 ⇐⇒ i
f(x∗) + f(x′1)

2
− f(x∗) + f(x′2)

2
− i

f(x∗) + f(x′3)

2
+

f(x∗) + f(x′4)

2
= 0

⇐⇒ 1

2

[
if(x′1)− f(x′2)− if(x′3) + f(x′4)

]
= 0

⇐⇒ i
[
f(x′1)− f(x′3)

]
= f(x′2)− f(x′4).

This last equality has a strange resemblance of the discrete Cauchy-Riemann equation. If

we were to ignore the vertex x∗ in the center of our face F , then the function values involved

in the similar equation look as if they are derived from a crossing. However, these edges

are all dual and thus it is not the defining crossing necessary to satisfy the Cauchy-Riemann

equation. Nonetheless, we have discovered an interesting result that suggests to a relationship

of holomorphic 1-forms and analytic functions on a broader cell decomposition. Without the

development of a wedge product of discrete 1-forms, it seems that this is the best direct

approach we can offer for now.

Despite our apparent failure to obtain a discrete relationship between holomorphic 1-forms
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Figure 1.5: A face F ∈ Λ2

and analyticity completely analogous to that of the continuous case, the above proposition

offers a suggestion for a different approach in developing such a relationship. Because we

have found a resemblance of the Cauchy-Riemann equation, the result of Proposition 1.6.2

points to the idea that we can possibly recover analyticity by shifting our cell decomposition

around in some way.

Definition 1.6.3. For a square cell complex Λ with horizontal and vertical edges, a vertical

half-shift is a new complex rendered by sliding each horizontal edge e ∈ Γ1 up so that its

new position horizontally bisects the face it originally bounded below (see Figure 1.6).

Let e be an edge in such a complex Λ. After a vertical half-shift of Λ, a vertex will be located

at the midpoint of the original location of e (see Figure 1.6). In fact, every vertex in the

half-shift is a midpoint of an edge in the original complex. Let α be an arbitrary 1-form

in C(1,0)(Λ). Then we may write α =
∑

e∈Γ1
aedze, as shown earlier, where ae is a constant

belonging to the collection A. We define an associated function on the vertices of the vertical

half-shift of Λ as follows. Let x be a vertex in the shifted Λ. Then x is the midpoint of an
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edge e ∈ Λ1. Let f(x) = ae.

Definition 1.6.4. Let Λ be a square cell complex with horizontal and vertical edges of

length one, and let α ∈ C(1,0)(Λ). Then we say that the function f on the set of vertices of

the shifted complex as defined above is the function associated with α under a vertical

half-shift.

Proposition 1.6.5. Let Λ be a square cell decomposition with edges of length one parallel to

the coordinate axes. Let α ∈ C(1,0)(Λ). Then α is holomorphic ⇐⇒ its associated function

under a vertical half-shift is discrete analytic on the shifted complex.

Proof. Let Λ′ denote the complex rendered from a vertical half-shift of Λ. Let α ∈ C(1,0)(Λ).

Then α =
∑

e∈Γ1
aedze where ae is a constant belonging to the collection A. Consider an

arbitrary face F ∈ Λ2 with bounding edges e1, e2, e3, e4 ∈ Λ1. The case F ∈ Γ2 is pictured

in Figure 1.6. Thinking of a similar picture with the roles of Γ and Γ∗ reversed, we can

use the same notation for the case F ∈ Γ∗
2. For simplicity, we’ll denote aei

as ai. Then,

α(e1) = ia1, α(e2) = −a2, α(e3) = −ia3, and α(e4) = a4. For each i, 1 ≤ i ≤ 4, let xi

be the vertex in Λ′
0 located at the midpoint of each respective edge ei in the unshifted Λ.

Then α’s associated function f under this vertical half-shift is such that f(xi) = ai, by

definition. Thus, α is closed on F ⇐⇒ dα(F ) = α(∂F ) = 0 ⇐⇒ ia1 − a2 − ia3 + a4 =

0 ⇐⇒ i(a1 − a3) = a2 − a4 ⇐⇒ i
(
f(x1) − f(x3)

)
= f(x2) − f(x4). When F ∈ Γ2 so

that (x3, x1) is the regular edge and (x4, x2) is the dual edge, this is the Cauchy-Riemann

equation at the crossing of these edges. When F ∈ Γ∗
2, we can multiply the final equation
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Figure 1.6: A vertical half-shift of Λ

by i to get f(x3)− f(x1) = i
(
f(x2)− f(x4)

)
. Because the oriented regular edge (x2, x4) has

oriented dual edge (x3, x1), this is the Cauchy-Riemann equation at this crossing. Because

all crossings of the vertical half-shift lie within a face F ∈ Λ2, this argument shows that α

is holomorphic ⇐⇒ its associated function f under a vertical half-shift is discrete analytic

on the shifted complex.

Thus, we see that Proposition 1.6.2 and Proposition 1.6.5 are related in that both recover

a relationship of holomorphic 1-forms and analytic functions via a change in cell complex.

The former deals with the product fdz and merely suggests changing the complex, while the

latter looks at a general (1,0)-form and specifies the relevant change of complex.
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1.7 Meromorphic 1-Forms

Much of the function theory in complex analysis relies on analyticity. However, many func-

tions fail to have this property. Consequently, analysts have categorized singularities of

functions and developed an alternative way to classify functions. In the continuous case, the

concept of a meromorphic function allows for a plethora of theoretical results to be extended

to a larger class of functions. The significance of this result is far-reaching in complex anal-

ysis. Therefore, creating a definition of a discrete meromorphic function is a worthy goal.

Recall the traditional definition of a meromorphic function.

Definition 1.7.1. A function f(z) is meromorphic on a domain D if f(z) is analytic on

D except possibly at isolated singularities, each of which is a pole. Or alternatively, f(z)

is meromorphic on D with a pole of order N at z0 ⇐⇒ on some neighborhood of z0,

g(z) = (z − z0)
Nf(z) is analytic but (z − z0)

N−1f(z) is not.

Consider the following analogous definition for a discrete meromorphic function.

Definition 1.7.2. A function f ∈ C0(Λ) is discrete meromorphic with a pole of order

N at a vertex z0 ⇐⇒ g(z) = (z − z0)
Nf(z) is discrete analytic and (z − z0)

N−1f(z) is not.

In the continuous case, this definition makes sense because
1

(z − z0)N
is the prototypical

meromorphic function with a pole at z = z0. However, in the discrete setting, f(z) =

1

(z − z0)N
does not behave as expected. Consider the following example.
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Figure 1.7: The square complex Λ with pole at 0.

Example 1.7.3. Let Λ be the square cell complex on C as shown in Figure 1.7. Let f(z) =
1

z
.

In the continuous plane, we know that f is meromorphic with a pole at z = 0 with residue 1.

Also, outside a neighborhood of 0, f is analytic. Since f qualifies as a discrete meromorphic

function, we would expect that α = f(z)dz would be meromorphic on the face F ∈ Λ2 with

0 at its center, and that f would satisfy the Cauchy-Riemann equation at every regular,

dual edge crossing that does not involve an edge contained in the boundary of 0∗. However,

Res0(α) =
1

2πi

∮
∂F

α =
2

π
6= 1. Furthermore, if we consider the regular, dual edge crossing

involving the dual edge (1, 1 + i) it is easily shown that
1

z
fails to satisfy the Cauchy-

Riemann equation at this crossing. Thus, we have seen that f and α behave far differently

than expected.

It is clear from the above example, that the definition given for a discrete meromorphic

function is not a good one. Since
1

(z − z0)N
does not translate its prototypical meromorphic
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properties to the discrete setting, its significance is lost on the double.

We can now see the difficulty in defining a meromorphic function. However, our discrete

function theory would benefit greatly from the ability to recover meromorphic theory. So,

since our guideline for the development of the discrete setting is based on integration, we

turn to the possibility of obtaining meromorphic 1-forms, instead of meromorphic functions.

In the continuous case, a meromorphic 1-form is of the form fdz, where f is a meromorphic

function. Suppose f has a pole of order N at z0. By definition, there exists N such that

(z − z0)
Nf(z) is analytic. Moreover, (z − z0)

Nf(z)dz is closed. Using this knowledge, we

attempt to introduce an analogous discrete definition here.

Definition 1.7.4. A differential 1-form α ∈ C(1,0)(Λ) is discrete meromorphic with a

pole at a vertex x ∈ Λ0 if there exists an analytic g(x) such that g(x)α is closed on the face

x∗ ∈ Λ2.

The motivation behind the definition of meromorphic in the continuous setting is the ne-

cessity to“cancel” the pole through multiplication. However, we have no discrete analogue

of higher order zeros, and the product of discrete functions and 1-forms does not behave

well. Recall that our definition of this multiplication was chosen to force the coboundary d

to be a derivation with respect to function multiplication. Because the definition involves

an averaging of the function against the 1-form evaluated on an edge, it will not satisfy

(fg)α = f(gα). There appears to be no satisfactory way to define meromorphic 1-forms by

“canceling” poles.
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It seems that we need to rely on integration to define meromorphic 1-forms. Given below is

a final and sufficient attempt at a definition.

Definition 1.7.5. A discrete differential 1-form α ∈ C(1,0)(Λ) is meromorphic with a pole

at a vertex x ∈ Λ0 if it is not closed on the face x∗ ∈ Λ2. The pole at x has discrete residue

defined by

Resx(α) :=
1

2πi

∮
∂x∗

α

The definition of the discrete residue of a 1-form is the equivalent version of the continuous

definition of the residue of a function.

Definition 1.7.6. The residue of f(z) at z0 is Resz0(f) =
1

2πi

∮
|z−z0|=r

f(z)dz

This definition allows us to recover the definition of the residue of a pole. It also has a

direct connection with holomorphicity. However, this meromorphic categorization is far

more general than in the continuous case. It states that if a 1-form of type (1,0) is not

closed on a face, then it has a pole in its center. In other words, if a type (1, 0) 1-form is not

holomorphic, it is meromorphic. We know that this is of course not true in the continuous

case. Consider f(z) = e1/z, for example. fdz is type (1, 0), it is not holomorphic, and f is

certainly not meromorphic as it has an essential singularity at 0. Another such example is

zz̄dz. It is of type (1,0), not holomorphic, not meromorphic, and it even has no singularities.

We would like for our discrete interpretation to parallel the continuous case as closely as a

possible. Unfortunately, from the above exposition, it seems that this is the best we can do

for now.
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Despite the drawback of its seeming overgeneralization, the definition of a meromorphic 1-

form does follow the guideline of relying on integration. In fact, this definition ultimately

plays a very important role in the development of the discrete Cauchy Integral Formula,

which we will investigate later in this paper. For now, we would like to develop a discrete

analogue of the prototypical continuous meromorphic 1-form,
dz

z − z0

. To make sense of its

existence, we first state a definition and a result from [9]. Note that vertices are called

neighbors if they are joined by an edge.

Definition 1.7.7. A function f ∈ C0(Λ) is discrete harmonic at a vertex x with neigh-

boring vertices x1, . . . , xn if

(∆f)(x) =
n∑

k=1

ρ(x, xk)(f(x)− f(xk)) = 0.

∆ is the discrete Laplacian.

Recall that ρ(e) = `(e∗)
`(e)

. Note that as in the continuous case, it can be easily checked that

∆f = − ∗ d ∗ df . Furthermore, this definition also has the property that (∆f)(x) = 0 ⇒

f(x) =
1

n

n∑
k=1

f(xk) on a complex in which every edge has the same length.. Therefore, for

such complexes, the value of a harmonic function at a vertex x is the average of its values

at neighboring vertices. This is analogous to the continuous case, where we know that a

harmonic function value at the center of a disk is the average value around the boundary.

Definition 1.7.8. Let Λ be a bounded double complex and let x be a vertex on the interior

of Λ. We say that Λ is boundary accessible with respect to x if for every interior vertex
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v ∈ Λ0\{x} there exists a path of edges that runs from v to a boundary vertex which misses

x and contains no boundary vertex other than its endpoint.

Proposition 1.7.9. (The Dirichlet Problem.) Let Λ be a finite, bounded cell complex that is

boundary accessible with respect to x ∈ Γ0. Let f ∈ C0(Γ) such that f(x) = 1 and f(v) = 0

for all vertices v on the boundary of Γ, ∂Γ. Then there exists a function a ∈ C0(Γ) satisfying

these boundary conditions such that a is harmonic on Γ0\({x} ∪ {v ∈ ∂Γ}).

Note: A similar result is true for Γ∗.

Proof. The set of R-valued functions on Γ is a finite-dimensional vector space with coordi-

nates ui = f(xi) representing the values of the functions at vertices xi ∈ Γ0. Fixing the

values at certain x`’s, namely at the vertices of the boundary and at x, amounts to imposing

conditions u` = c` for a subset L = {` : x` ∈ {x} ∪ ∂Γ} of I = {i : xi ∈ Γ0}. With the

conditions imposed, we have an affine subspace of the vector space. This affine subspace can

be represented in coordinates by uk’s for k ∈ I\L. Let q be the differentiable function

q(~u) =
∑

(xi,xj)∈Λ1

1

2
ρ(xi, xj)(ui − uj)

2

Note here that the orientation of each edge (xi, xj) is irrelevant.

On both sides of this equation, if i, respectively j, is equal to some ` ∈ L we replace ui,

respectively uj, by the real constant c`, in order to restrict our attention to the affine subspace

of functions satisfying the boundary conditions. Hence, q is a function of the variables ui for

i ∈ I\L. In taking the gradient, we use these variables. Note that the kth coordinate of ∇q
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is ∑
xj

ρ(xk, xj)(uk − uj)

where the xj’s are vertices in Λ0 adjacent to xk.

Thus, we see that ∇q(~v) = ~0 ⇐⇒ the function f represented by its values ~v is harmonic.

Hence, to show that a harmonic function exists, it suffices to show that the nonnegative-

valued q has a minimum, because ∇q = ~0 at the minimum.

First, note that for the function whose every value not determined by the Dirichlet conditions

is zero, q assumes the value
∑
xj

1

2
ρ(x, xj), where xj is adjacent to x. Call this value C. We

will exibit a compact subset K of the affine subspace such that q ≥ C +1 on the complement

of the interior of K. This will show that q’s minimum is interior to K, hence providing the

desired critical point for q.

By Λ boundary accessible with respect to x, for each vertex xi ∈ Γ0\
(
{x} ∪ ∂Γ

)
, we may

choose a path of edges that misses x, and that runs from xi to a boundary point, containing

no boundary point other than its endpoint. Let L be the largest number of edges appearing

in any of these paths. Let p be the minimum value that ρ attains on an edge in Γ1. Choose

M ≥
(

2L2(C + 1)

p

)1/2

. Define K by |ui| ≤ M ∀i ∈ I\L. Then K is a compact subset of

the affine subspace. Suppose ~u is not in the interior of K. Then there exists ui such that

|ui| ≥ M . Therefore, there is an edge along the path between xi and the boundary point

used in calculating L, namely (uj, uk), that must be such that |uj − uk| ≥
M

L
. Note that

j or k may be equal to i, and there may be more than one such edge. Then we have the
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following.

q(~u) ≥ 1

2
ρ(xj, xk)

(
M

L

)2

≥ 1

2
ρ(xj, xk)

(
2L2(C + 1)

L2p

)
≥ C + 1.

Thus, q achieves its minimum on the interior of K at some ~v with coordinates vi. The solution

to the Dirichlet problem is the discrete function a such that a(xi) = vi for all xi ∈ Γ0.

We are now ready to prove the existence of a discrete analogue of the continuous meromorphic

1-form
dz

z − z0

on the double complex.

Proposition 1.7.10. Let Λ be a bounded double complex that is boundary accessible with

respect to x ∈ Λ0. Then there exists a meromorphic 1-form µx with a single pole at x with

residue +1.

Proof. WLOG, suppose x ∈ Γ0. Let B denote the boundary of a finite subcollection, or

subcomplex, of faces that contains x∗. Consider the Dirichlet problem where f(v) = 0 for

v ∈ B and f(x) = 1. Then there exists a harmonic function a that solves the discrete

Dirichlet problem with this boundary condition. Let µx = da on Γ1 and µx = −i ∗ da on Γ∗
1.
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Then µx is type (1,0). Furthermore, for all v ∈ Γ0\{x} with neighboring vertices v1, . . . , vn,

∫∫
v∗

dµx = −i

∮
∂v∗
∗da

= −i

n∑
k=1

ρ(v, vk)

∫
(v,vk)

da

= −i
n∑

k=1

ρ(v, vk)[a(vk)− a(v)]

= 0 since a is harmonic.

Hence, µx is closed on Γ∗. Also, µx = da is closed on Γ. This follows directly from the fact

that for a given face F ∈ Γ2, d ◦ da(F ) = da(∂F ) == a(∂(∂F )) = 0 by by properties of the

boundary. To show that dµx is nonzero on x∗ , it suffices to show that da(vi, x) > 0 for each

(vi, x), where vi is a neighboring vertex of x. This is sufficient because µx is type (1,0) and

hence ∮
∂x∗

µx =

∮
∂x∗

−i ∗ da =
n∑

i=1

da(vi, x).

Note that da(vi, x) > 0 ⇐⇒ a(x) − a(vi) > 0 ⇐⇒ a(x) > a(vi) for a neighboring vertex

vi. Therefore, we want to show that a achieves its maximum at the vertex x. Suppose

that a attains its maximum at a vertex v where a is harmonic. Note that v(a) ≥ 1 since

a is the solution to the Dirichlet problem where f(x) = 1. By assumption, every vertex

in Γ0 and the chosen subcomplex is connected to a boundary vertex by a path of edges in

the subcomplex that does not pass through x. By a harmonic at v, all of the neighboring

vertices of v must also have the same value. We may propagate this argument along the path

through the vertices where a is harmonic that leads to a boundary vertex. But, a ≡ 0 on

the boundary and we have assumed a(v) ≥ 1. Contradiction. Hence, a does not achieve its
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maximum at any point at which a is harmonic and therefore at no neighboring vertex of x.

So, a(x) > a(vi) for all neighboring vi and dµx is nonzero on x∗. Therefore, an appropriate

scaling of µx is a meromorphic 1-form with a single pole of residue +1 at x.

As stated before, ux is the analogue of
dz

z − z0

as it has a single pole of residue +1 located

at z0 = x.

Exhibiting an example of such a µx can be messy. Its existence depends on the Dirichlet

problem. Finding such an a depends on solving a system of linear equations representing the

harmonic condition. Therefore, we have the following proposition, which will be useful in an

investigation we pursue later on in this paper. This proposition and the following example

show that it is easier to construct a discrete analogue of a meromorphic 1-form with a pole

at x if one relaxes the assumption that the form be closed away from x∗, and one requires

only that, away from x∗, it be closed on Γ (if the pole is in Γ∗
0) or closed on Γ∗ (if the pole

is in Γ0).

Proposition 1.7.11. Let Λ be a square double. Suppose x ∈ Γ∗
0 (or x ∈ Γ0). There exists a

1-form λx of type (1,0) that is closed on Γ2\{x∗} (or Γ∗
2\{x∗}, respectively), with

∮
x∗

λx 6= 0.

In other words, λx is meromorphic with respect to Γ2 (or Γ∗
2, respectively) with a single pole

at the vertex x of residue +1.

Proof. It suffices to exhibit an example.
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Figure 1.8: The values of the meromorphic 1-form λx in Example 1.7.12.

Example 1.7.12. Let Λ be a complex of squares and x ∈ Λ∗
0. Let λx have values on each edge

in Γ1 as shown in Figure 1.8. λx is zero on all edges bounding faces labeled with a zero.

Assign values to the dual edges e∗ in Γ∗
1 by λx(e

∗) = iρ(e)λx(e). Then, ∗λx(e) = −iλx(e)

and λx is of type (1,0). One can easily check that λx satisfies the necessary conditions of

Proposition 1.7.11.

1.8 Defining a Wedge Product

Previously, we briefly noted the difficulty in defining a wedge product of 1-forms on the

double Λ. We are now ready to explore this claim. Let α ∈ C1(Λ) and f ∈ C0(Λ). We

want the coboundary d to be a derivation with respect to function and 1-form multiplication.
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Figure 1.9: The face F ∈ Λ2 on which the wedge product is evaluated.

Therefore, we must define a wedge product such that the following equation holds.

d(f · α) = f · dα + df ∧ α

Since we have already defined how to evaluate d(f ·α) and f ·dα on a face F ∈ Λ2, this forces

our definition of the wedge product df ∧α. Therefore, if we assume Λ is a cell decomposition

of squares for simplicity, we have, in the notation of Figure 1.9,

df ∧ α(F ) = d(f · α)(F )− f · dα(F )

= (f · α)(∂F )− f(F ∗)α(∂F )

=
f(x1) + f(x2)

2
α(e1) + · · ·+ f(x4) + f(x1)

2
α(e4)− f(F ∗)

[
α(e1) + · · ·+ α(e4)

]
=

f(x1) + f(x2)− 2f(F ∗)

2
α(e1) + · · ·+ f(x4) + f(x1)− 2f(F ∗)

2
α(e4)

=
[f(x1)− f(F ∗)] + [f(x2)− f(F ∗)]

2
α(e1) + · · ·+ [f(x4)− f(F ∗)] + [f(x1)− f(F ∗)]

2
αe4

=
1

2
[df(e′1) + df(e′2)]α(e1) + · · ·+ 1

2
[df(e′4) + df(e′1)]α(e4).

Note that this wedge product elicits a 2-form on our square cell complex. So we see that we

can define the wedge product of the form df ∧ α, but, because e′i 6∈ Λ1, there is no obvious
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way to define β ∧ α for β ∈ C1(Λ) not of the form df . Therefore, it seems that we cannot

generalize the wedge product β ∧ α beyond the specific case when β = df . This hindrance

is because our the product rule requires the 1-form df to be evaluated on edges that are not

in Λ1 (Figure 1.9). Instead, these edges belong to a new cell complex, the diamond ♦, that

can be derived from any double cell decomposition Λ.



Chapter 2

The Diamond ♦

The diamond complex is a new cell complex that is constructed from the double complex.

Each double complex has an associated diamond complex. While the double complex permits

the definition of discrete analytic functions and of a Hodge star operator, it does not admit a

complete theory of exterior multiplication, i.e. of wedge products. In contrast, the diamond

complex allows for the definition of three wedge products: one of 1-forms on the diamond,

one of 1-forms on the double and one of a 1-form on the diamond and a 1-form on the

double. The first two wedge products define a 2-form in the diamond. The last wedge

product, namely the mixed wedge product, is an original construction and yields a 2-form

on the double. The mixed wedge product is the multiplication of 1-forms that we were in

search of in the last section of Chapter 1. It will be of great importance in the development

of an original Cauchy Integral Formula on the double complex in Chapter 3.
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We will also see in the third chapter that a strong form of a discrete Cauchy Integral Formula

arises from the combination of a double complex and its associated diamond complex. The

double complex contributes the Cauchy-Riemann equation, hence analytic functions, and

the Hodge decomposition. The diamond complex provides a wedge product of 1-forms that

satisfies the following property: the wedge product of 1-forms belonging to the same category

in the Hodge decomposition is zero. No one complex provides all of the ingredients for the

strongest form of the discrete Cauchy Integral Formula.

In this chapter, we develop the discrete theory on the diamond. We define diamond k-forms

and their associated operations. We also introduce the averaging map, a way to move from

k-forms on the diamond to k-forms on the double. This map plays a vital role in utilizing

the strengths of each complex in the discrete CIF.

2.1 The Structure of ♦

Each double cell decomposition has an associated diamond complex. We give its construction

in the definition below.

Definition 2.1.1. The diamond ♦ is a cell complex constructed from the double Λ and de-

fined as follows. Let (x, x′) ∈ Λ1 and (y, y′) ∈ Γ∗
1 its dual. Then the edges (x, y), (y, x′), (x′, y′),

and (y′, x) are edges in ♦1 that bound a four-sided polygon, a diamond face in ♦2. Hence,

the vertices of the diamond are ♦0 = Λ0, the edges ♦1 are those derived from each crossing,

and the faces bounded by these edges comprise ♦2 (Figure 2.1).
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Figure 2.1: The diamond ♦

Note: The orientation of the edges in ♦1 constructed from each crossing is flexible. The

orientation given in the definition is merely one possibility.

We may define functions, 1-forms, and 2-forms on the diamond ♦ in the same way that

we have already defined them on the double: f ∈ C0(♦) maps the set of vertices ♦0 to C,

α ∈ C1(♦) maps the set of edges ♦1 to C, and ω ∈ C2(♦) maps the set of faces ♦2 to C. Note

that since ♦0 = Λ0, a discrete function may be evaluated interchangeably on the diamond ♦

and the double Λ.

2.2 The Mixed Wedge Product

Now that we have defined the diamond ♦ and a 1-form α ∈ C1(♦), we may return to our

derivation of the wedge product. If Λ is a complex of squares, f ∈ C0(Λ), and α ∈ C1(Λ),



57

recall that the wedge product

df ∧ α =
1

2
[df(e′1) + df(e′2)]α(e1) + · · ·+ 1

2
[df(e′4) + df(e′1)]α(e4)

is such that d is a derivation with respect to function and 1-form multiplication. Since

e′1, . . . e
′
4 ∈ ♦1, we have df ∈ C1(♦). Consequently, we can define a mixed wedge product of

1-forms, α ∧ β, where α ∈ C1(♦) and β ∈ C1(Λ) as follows.

α ∧ β =
α(e′1) + α(e′2)

2
β(e1) + · · ·+ α(e′4) + α(e′2)

2
β(e4).

Thus, if e ∈ Λ1 is an edge that bounds a face F ∈ Λ2, this wedge product is the sum of

multiplications over each edge e of β(e) and the average of α on two diamond edges inside

the face F . These edges together with e form a half-diamond (Figure 1.9). Although we

have simplified to the case where Λ is a square complex, this wedge product is independent

of the cell structure of the double because every face elicits a diamond structure.

Definition 2.2.1. Let α ∈ C1(♦) and β ∈ C1(Λ). The mixed wedge product of α and

β on a face F ∈ Λ2 with bounding edges e1, . . . , en ∈ Λ1 and containing diamond edges

e′1, . . . , e
′
n ∈ ♦1 is

(α ∧ β)(F ) =
α(e′1) + α(e′2)

2
β(e1) +

α(e′2) + α(e′3)

2
β(e2) + · · ·+ α(e′n) + α(e′1)

2
β(en).

and α ∧ β ∈ C2(Λ).
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By construction, we have the following result.

Proposition 2.2.2. d is a derivation with respect to the mixed wedge product α ∧ β, where

α ∈ C1(♦) and β ∈ C1(Λ), i.e. for f ∈ C0(♦) = C0(Λ) and β ∈ C1(Λ), d(f · α) =

f · dα + df ∧ α.

The mixed wedge product plays an important role in the discrete Cauchy Integral Formula,

which we will discuss further later in this paper.

2.3 Differential k-Forms and Operations on ♦

The diamond ♦ is a very useful cell complex. Since there are no restrictions on the number

of edges that bound any given face in Λ2, working with the double can sometimes be quite

complicated. The diamond gives us a way to simplify our investigation of any cell structure

into a complex of four-sided polygons. In order to work further with the diamond, we must

define a few operations. Let f, g ∈ C0(♦), α, β ∈ C1(♦) and ω ∈ C2(♦). Then we have the

following operations.

(f · g)(x) := f(x) · g(x) for x ∈ ♦0,∫
(x,x′)

f · α :=
f(x) + f(x′)

2

∫
(x,x′)

α for (x, x′) ∈ ♦1,
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∫∫
(x1,x2,x3,x4)

α ∧ β :=
1

4

4∑
k=1

∫
(xk−1,xk)

α

∫
(xk,xk+1)

β −
∫

(xk+1,xk)

α

∫
(xk,xk−1)

β

∫∫
(x1,x2,x3,x4)

f · ω := f(x1)+f(x2)+f(x3)+f(x4)
4

∫∫
(x1,x2,x3,x4)

ω for (x1, x2, x3, x4) ∈ ♦2.

So, we see that the product of functions and the product of a function and a 1-form is defined

the same on the diamond as it is on the double. Also, note that we do not hesitate to define

a wedge product on the diamond. This ability is another, and perhaps the most powerful,

advantage of the diamond over the double. If we define the coboundary d♦ on the diamond

in the same way as the double (see Definition 1.3.3), then we have the following results.

Proposition 2.3.1. d♦ is a derivation with respect to function multiplication.

Proof. The proof is analogous to that of Proposition 1.4.2.

Proposition 2.3.2. d♦ is a derivation with respect to the wedge product α ∧ β for α, β ∈

C1(♦).

Proof. The proof is simply a computation. Let f ∈ C0(♦), α ∈ C1(♦) and F = (x1, x2, x3, x4) ∈

♦2. Assume ei = (xi, xi+1) ∈ ♦2. Then we want to show that d(f ·α)(F ) = (f ·dα+df∧α)(F ).

Using the definitions of these operations, we have

(f · dα + df ∧ α)(F )
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= f(x1)+f(x2)+f(x3)+f(x4)
4

(α(e1) + α(e2) + α(e3) + α(e4))

+ 1
4
[(f(x1)− f(x4))α(e1)− (f(x2)− f(x1))α(e4) + (f(x2)− f(x1))α(e2)

+ (f(x3)− f(x2))α(e1) + (f(x3)− f(x2))α(e3)− (f(x4)− f(x3))α(e4)

− (f(x4)− f(x1))α(e3)]

= f(x1)+f(x2)
2

α(e1) + f(x2)+f(x3)
2

α(e2) + f(x3)+f(x4)
2

α(e3) + f(x4)+f(x1)
2

α(e4)

= d(f · α)(F ) as desired.

2.4 The Averaging Map

We have developed concepts thus far that are valid only on the double Λ. For example, the

Hodge star (Definition 1.5.1) is a relationship between the original complex and the dual

complex. Since the diamond does not contain its dual, on the diamond complex we lose all

of the theory that stems from the Hodge star. On the other hand, the diamond gives us a

simplified way to investigate each double cell complex. It also has the advantage a working

wedge product between two diamond 1-forms. Hence, ideally we want to be able to utilize

freely all of the tools we have on both structures, Λ and ♦. To do so, we construct the

following map from Ck(♦) to Ck(Λ) for k = 0, 1, 2.

Definition 2.4.1. The averaging map A : Ck(♦) → Ck(Λ) for k = 1, 2 is defined as

follows: ∫
(x,x′)

A(α♦) :=
1

2

( ∫
(x,y)

+

∫
(y,x′)

+

∫
(x,y′)

+

∫
(y′,x′)

)
α♦,
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Figure 2.2: Notation in the averaging map.

∫∫
x∗

A(ω♦) :=
1

2

d∑
k=1

∫∫
(xk,yk,x,yk−1)

ω♦.

For k = 0, A(f) := f . See Figure 2.2.

Note: In the definition of A(ω♦), (x, xk) ∈ Λ1 and (yk−1, yk) is its dual in Λ1. y0 is interpreted

as yd.

So the value on an edge of the average map of a 1-form α♦ is simply the average of α♦

evaluated on the two diamond paths that closely approximate the edge in Λ. The average

map of a 2-form ω♦ = dα♦ on a face F ∈ Λ is equivalent to A applied to α♦ on ∂F . Therefore,

this definition respects Green’s Theorem. From Figure 2.2, we see that A(ω♦) evaluated on

a double face x∗ is a sum of evaluations of ω♦ on each diamond face that radiates from the

vertex x∗.

Lemma 2.4.2. The averaging map A is such that dΛA = Ad♦.

Proof. We omit the proof here. However, with the aid of Figure 2.2, one can see that the
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equality holds.

Now that we have a way to move from ♦ to Λ, we define a wedge product of 1-forms,

α, β ∈ C1(Λ) such that α ∧ β ∈ C2(♦) as follows.

∫∫
(x,y,x′,y′)

α ∧ β =
1

2

( ∫
(x,x′)

α

∫
(y,y′)

β +

∫
(y,y′)

α

∫
(x′,x)

β

)
. (2.1)

This wedge product offers a way to utilize properties of 1-forms that we have given on the

double and not on the diamond. For example, 1-forms of type (1,0) and (0,1), as well as

meromorphic 1-forms, only make sense on the double.

Lemma 2.4.3. Let α, β ∈ C(1,0)(Λ) and (x, y, x′, y′) ∈ ♦2. Then

∫∫
(x,y,x′,y′)

α ∧ β = 0.

Proof. Since α and β are both of type (1,0), ∗α = −iα and ∗β = −iβ. Thus, by the definition

of the Hodge star,

∫
(y,y′)

α = iρ(x, x′)

∫
(x,x′)

α and

∫
(y,y′)

β = iρ(x, x′)

∫
(x,x′)

β.

Hence,

2

∫∫
(x,y,x′,y′)

α ∧ β =

∫
(x,x′)

α

∫
(y,y′)

β +

∫
(y,y′)

α

∫
(x′,x)

β

=

( ∫
(x,x′)

α

)(
iρ(x, x′)

∫
(x,x′)

β

)
+

(
iρ(x, x′)

∫
(x,x′)

α

)(
−

∫
(x,x′)

β

)
= iρ(x, x′)

∫
(x,x′)

α

∫
(x,x′)

β − iρ(x, x′)

∫
(x,x′)

α

∫
(x,x′)

β

= 0.
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Lemma 2.4.4. Let α, β ∈ C(0,1)(Λ) and (x, y, x′, y′) ∈ ♦2. Then

∫∫
(x,y,x′,y′)

α ∧ β = 0.

Proof. The proof is similar to the case when α, β ∈ C(1,0)(Λ).

These two results are parallel to the continuous case where dz ∧ dz = 0 and dz̄ ∧ dz̄ = 0.

We can also see that the above wedge product of 1-forms on the double relates nicely to the

wedge product of 1-forms on the diamond.

Lemma 2.4.5. The wedge product in C2(♦) of 1-forms on the double satisfies

A(α♦) ∧ A(β♦) = α♦ ∧ β♦.

Proof. This can be verified straight from the definition of each wedge product and the aver-

aging map of a 1-form on ♦. It is left as an exercise for the reader.

Furthermore, when working on the plane, we may extend the averaging map from a single

face to the entire cell decomposition. For every statement about an “infinite sum,” we assume

that the “sums” are absolutely convergent.

Lemma 2.4.6. Suppose that Λ and ♦ are cell decompositions of the complex plane. Let A

be the averaging map and let ω♦ ∈ C2(♦). Then

∫∫
♦2

ω♦ =

∫∫
Γ2

A(ω♦) =

∫∫
Γ∗2

A(ω♦) =
1

2

∫∫
Λ2

A(ω♦).
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Proof. Let ♦x denote the set of diamond 2-cells that radiate out from the vertex x ∈ Λ0.

∫∫
Γ2

A(ω♦) =
∑
x∈Γ∗0

∫∫
x∗

A(ω♦) =
∑
x∈Γ∗0

(
1

2

∑
F∈♦x

∫∫
F

ω♦

)
=

∑
F∈♦2

∫∫
F

ω♦ =

∫∫
♦2

ω♦.

The middle equality holds because each face in ♦2 radiates from two faces in Γ2. Thus, when

we sum over all x ∈ Γ∗
0, we are simply counting twice the contributiong of each diamond face

in ♦2. A similar process is true for Γ∗
2, and so we also have

∫∫
Γ∗2

A(ω♦) =

∫∫
♦2

ω♦.

Since

∫∫
Λ2

A(ω♦) =

∫∫
Γ2∪Γ∗2

A(ω♦) =

∫∫
Γ2

A(ω♦) +

∫∫
Γ∗2

A(ω♦),

we have the following relationship between 2-forms over the diamond and 2-forms over the

double. ∫∫
♦2

ω♦ =

∫∫
Γ2

A(ω♦) =

∫∫
Γ∗2

A(ω♦) =
1

2

∫∫
Λ2

A(ω♦).

A similar result holds for function and 2-form multiplication.

Lemma 2.4.7. Suppose that Λ and ♦ are cell decompositions of the complex plane. Let

f ∈ C0(♦) and ω♦ ∈ C2(Λ). Then

∫∫
♦2

f · ω♦ =
1

2

∫∫
Λ2

f · A(ω♦).
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Proof. By Lemma 2.4.6, we have the following:

∫∫
♦2

f · ω♦ =
1

2

∫∫
Λ2

A(f · ω♦).

Recall that the averaging map is the identity on functions. Because the product of a function

and a 2-form is defined differently on the double and the diamond, we need to check that

this operation is well defined, i.e.
1

2

∫∫
Λ2

A(f · ω♦) =
1

2

∫∫
Λ2

f · A(ω♦). We’ll investigate

each integral separately and show that they evaluate equivalently. We denote the vertices of

an arbitrary diamond face F by xi for 1 ≤ i ≤ 4.

∫∫
Λ2

A(f · ω♦) =
∑

x∗∈Λ2

∫∫
x∗

A(f · ω♦)

=
∑

x∗∈Λ2

(
1

2

∑
F∈♦x

∫∫
F

f · ω♦

)

=
1

2

∑
x∗∈Λ2

∑
F∈♦x

(
1

4

4∑
i=1

f(xi)

∫∫
F

ω♦

)
.

Each face F ∈ ♦2 appears four times under this sum. This is because F radiates from four

different vertices, two dual vertices and two regular. Therefore, the integral above reduces

to

1

2

∑
F∈♦2

4∑
i=1

f(xi)

∫∫
F

ω♦.
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Now consider the other integral.

∫∫
Λ2

f · A(ω♦) =
∑

x∗∈Λ2

∫∫
x∗

f · A(ω♦)

=
∑

x∗∈Λ2

f(x∗)

∫∫
x∗

A(ω♦)

=
∑

x∗∈Λ2

f(x∗)

(
1

2

∑
F∈♦x

∫∫
F

ω♦

)

=
1

2

∑
F∈♦2

4∑
i=1

f(xi)

∫∫
F

ω♦.

This last equality holds since a given face F ∈ ♦2 appears in the calculation four times, as

indicated earlier. In particular, this is whenever x∗ = xi for 1 ≤ i ≤ 4. Thus, if we group

together all terms involving an integral over a specific F ∈ ♦2, we will have
4∑

i=1

f(xi)

∫∫
F

ω♦.

This is carried out over each F ∈ ♦2, hence our operation is well defined.

∴
∫∫

♦2

f · ω♦ =
1

2

∫∫
Λ2

f · A(ω♦).

In the above Lemmas we gave the condition that Λ and ♦ must be cell decompositions of

the complex plane. This restriction was made because the averaging map poses problems

when it is evaluated on a cell complex with boundary. Diamond faces on the boundary no

longer overlap four faces of the double since not all of those faces are present. Consequently,

we see that Lemma 2.4.7 fails to hold in general if we remove the condition that our cell

decomposition occurs on the entire complex plane. This complication is illustrated in the

example below.
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Figure 2.3: Λ and ♦ of Example 2.4.8.

Example 2.4.8. Let Λ and ♦ be the cell decompositions pictured in Figure 2.3. Note that

each diamond face only overlaps one double face, namely x∗. Suppose ω♦ is an arbitrary

2-form in C2(♦) and f ∈ C0(♦). Then,

∫∫
Λ2

A(f · ω♦) =

∫∫
x∗

A(f · ω♦)

=
1

2

∑
F∈♦x

∫∫
F

f · ω♦

=
1

8

∑
F∈♦x

4∑
i=1

∫∫
F

ω♦.

However,

∫∫
Λ2

f · A(ω♦) =

∫∫
x∗

f · A(ω♦)

= f(x)

(
1

2

∑
F∈♦x

∫∫
F

ω♦

)
.

In general, these two integrals will not be equal.
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The above example shows that when working on a cell decomposition with boundary, we no

longer have the convenient relationship that each diamond face touches four double faces.

Therefore, in general, we lose the result in Lemma 2.4.7 on a bounded collection of diamond

2-cells.



Chapter 3

The Cauchy Integral Formula

We have now developed a working foundation for our discrete function theory. Our under-

standing of the basic workings of differential forms on both the diamond and the double

make it possible to begin our attempt to recover major discrete results analogous to those

in the continuous case. This paper will focus on the development of one result in particular.

Our guideline of integration offers a natural motivation to recover a discrete version of a very

powerful result, the well-known Cauchy Integral Formula (CIF).

In this chapter, we are able to develop a CIF for the double and one for the diamond. The

CIF on the double is an original result which is recovered via Green’s theorem applied to the

product of a function and the meromorphic 1-form in Proposition 1.7.10. The mixed wedge

product, also an original finding, is key in obtaining this result. However, as we will see,

the CIF on the double merely resembles the formal appearance of the continuous Cauchy

69
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Integral Formula. It fails to represent values of discrete analytic functions by line integrals.

This failure is a key motivating factor behind the need to work on the diamond. We give

an original exposition of the construction of the diamond 1-form to which we apply Green’s

Theorem. With a recipe of results from both the diamond and the double, we are able to

develop a CIF on the diamond that behaves analogously to the continuous case when f is

discrete analytic. However, we unfortunately must settle for an integral formula that yields

an average of two function values, instead of the value at a single point.

3.1 The Continuous Cauchy Integral Formula

We state and prove the continuous result here.

Theorem 3.1.1. (Continuous CIF) Let D ⊆ C be a bounded domain with C1 boundary and

z ∈ D. For each function f ∈ C1(D̄),

f(z) =
1

2πi

∮
∂D

f(w)

w − z
dw − 1

2πi

∫∫
D

∂f(w)

∂w̄
· dw̄ ∧ dw

w − z
.

Proof. Let z ∈ D. Let ε > 0 be s.t. D̄(z, ε) ⊆ D. Let Dε = D\D̄(z, ε) (see Figure 3.1).

Apply Green’s Theorem (Theorem 1.3.5) to
f(w)

w − z
on Dε.∮

∂Dε

f(w)

w − z
dw =

∫∫
Dε

∂̄

(
f(w)

w − z
dw

)
=

∫∫
Dε

(
∂f(w)

∂w̄
· 1

w − z
+

∂

∂w̄

( 1

w − z

)
f(w)

)
dw̄ ∧ dw

=

∫∫
Dε

(∂f(w)

∂w̄
· 1

w − z

)
dw̄ ∧ dw.
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Figure 3.1: The region Dε

By the construction of Dε, as ε → 0+,

∫∫
Dε

(∂f(w)

∂w̄
· 1

w − z

)
dw̄ ∧ dw →

∫∫
D

(∂f(w)

∂w̄
· 1

w − z

)
dw̄ ∧ dw.

Now consider w ∈ ∂D(z, ε). Parameterizing yields w = z + εeit and dw = iεeitdt.

∴
∮

∂D(z,ε)

f(w)

w − z
dw =

∫ 2π

0

f(z + εeit)

εeit
· iεeitdt = i

∫ 2π

0

f(z + εeit)dt.

As ε → 0+, i

∫ 2π

0

f(z + εeit)dt → i

∫ 2π

0

f(z) = 2πif(z).

Thus,

∮
∂D

f(w)

w − z
dw −

∮
∂D(z,ε)

f(w)

w − z
dw =

∮
∂Dε

f(w)

w − z
dw =

∫∫
Dε

(∂f(w)

∂w̄
· 1

w − z

)
dw̄ ∧ dw,

and letting ε → 0+ yields

∮
∂D

f(w)

w − z
dw =

∫∫
D

∂f(w)

∂w̄
· dw̄ ∧ dw

w − z
+ 2πif(z).



72

Rearranging gives the desired result.

This theorem has significant consequences. It shows that the value of an analytic function

f on a domain is solely determined by the value of the function on the boundary since f

is analytic ⇐⇒ ∂f(z)

∂z̄
= 0. Furthermore, the well-known Cauchy Integral Formula for

Derivatives (Theorem 3.1.2) shows that we may calculate the value of the derivative of a

function at a point in a domain via the integral formula, and hence via integration. In

addition, it also proves that a complex differentiable function is infinitely differentiable.

Theorem 3.1.2. (CIF for derivatives) Let D ⊆ C be a bounded domain with piecewise

smooth boundary. If f(z) is an analytic function on D that extends smoothly to the boundary

of D, then f(z) has complex derivatives of all orders on D, which are given by

f (m)(z) =
m!

2πi

∮
∂D

f(w)

(w − z)m+1
dw, z ∈ D, m ≥ 0.

3.2 The Cauchy Integral Formula on the Double

The continuous CIF relies on a multiplication of f(w) against the meromorphic 1-form
dw

w − z

with a single pole at z ∈ C, the point at which the formula returns a function value. In order

to develop a similar result in the discrete case, we recall our discrete analogue of
dw

w − z
, the

meromorphic 1-form µx where z = x (Proposition 1.7.10). Let f ∈ C0(Λ) and x ∈ Λ0. Then
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there exists a meromorphic 1-form µx with a single pole at x. As in the continuous case, we

may apply Green’s theorem to

∫∫
Λ

d(f · µx). Consequently, we can develop a discrete CIF

on the double.

First, we introduce notation. Let D be a subset of Λ. We denote the components of D

belonging to the regular, respectively dual, cell decomposition by DΓ, respectively DΓ∗ . So,

for example, a dual edge of D is in DΓ∗1
.

Proposition 3.2.1. (Discrete Double CIF) Let D be a bounded double complex that is bound-

ary accessible with respect to x ∈ DΓ∗0
, a dual vertex on the interior of D. Let µx be a

meromorphic 1-form with a single pole at x of residue +1. For each function f ∈ C0(D),

f(x) =
1

2πi

∮
∂DΓ

f · µx −
1

2πi

∫∫
DΓ

dΛf ∧ µx .

Note: The wedge product here is the mixed wedge product as defined in Definition 2.2.1.

Proof. Let x ∈ DΓ∗0
. Let x∗ ∈ DΓ be the face dual to x. The product rule yields:

dΛ(f · µx) = dΛf ∧ µx + f · dΛµx .

Integrating over DΓ\x∗,

∫∫
DΓ\x∗

dΛ(f · µx) =

∫∫
DΓ\x∗

dΛf ∧ µx +

∫∫
DΓ\x∗

f · dΛµx .

Applying Green’s Theorem,
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∮
∂DΓ

f · µx −
∮

∂x∗
f · µx =

∫∫
DΓ\x∗

dΛf ∧ µx +
∑

y∗∈DΓ\x∗
f(y)

∫∫
y∗

dΛµx .

Since µx is closed off of x∗, the last term disappears and rearranging yields

∮
∂DΓ

f · µx =

∫∫
DΓ\x∗

dΛf ∧ µx +

∮
∂x∗

f · µx . (?)

Now, we may apply Green’s Theorem to the integral over ∂x∗ and use the product rule again

to obtain the following,

∮
∂x∗

f · µx =

∫∫
x∗

dΛ(f · µx)

=

∫∫
x∗

dΛf ∧ µx +

∫∫
x∗

f · dΛµx

=

∫∫
x∗

dΛf ∧ µx + f(x)

∫∫
x∗

dΛµx

=

∫∫
x∗

dΛµx + f(x) · 2πi

Substituting this into (?) we have

∮
∂DΓ

f · µx = 2πi · f(x) +

∫∫
DΓ

dΛf ∧ µx .

Rearranging gives the desired result,

f(x) =
1

2πi

∮
∂DΓ

f · µx −
1

2πi

∫∫
DΓ

dΛf ∧ µx .

Note: An analogous formula holds for x ∈ DΓ0 , with integration over DΓ∗ .
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This derivation of the discrete CIF formally resembles that of the continuous case in its

appearance. Since it was recovered analogously via Green’s theorem, it is logically the most

promising attempt at a working CIF on the double. In the continuous case, if f is analytic,

the integral over D disappears. If our discrete formula is to be a true analogy, we need to

show that our new CIF reduces when f is discrete analytic.

Assume f ∈ C0(Λ) is analytic. By Theorem 1.5.9, the wedge product dΛf ∧ µx = (d′f +

d′′f) ∧ µx reduces to d′f ∧ µx, since d′′f = 0. Therefore, we have now reduced our problem

to the question: Is the mixed wedge product such that the wedge product of (1,0) forms is

zero? In general, this question doesn’t make sense because one of the 1-forms in the wedge

product is only defined on the diamond complex. Recall that the classification of a 1-form as

type (1,0) exists only the double. However, we know that df is defined on both the diamond

and the double. We need to use the defining property of type (1,0) 1-forms, i.e. ∗df = −idf .

This gives us a relationship between df on a regular and a dual edge in the double. But,

we are unable to utilize this relationship in the context of the mixed wedge product because

df is evaluated on diamond edges. Hence, there is no significant information that can be

extracted from the (1,0) property. Unfortunately, this means that we cannot establish the

claim that the mixed wedge product is such that the wedge product of (1,0) forms is zero.

Consequently, we see that f analytic is not sufficient for df ∧ µx = 0. Thus, the analogous

appearance of the discrete CIF is deceiving. It fails to parallel the continuous CIF in how it

reveals analytic function values.

If f discrete analytic is not a sufficient catalyst for the simplification of the CIF on the
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double, then a natural question is: For which functions f is the CIF interesting? In other

words, which functions are such that
∫∫

DΓ
df ∧ µx = 0?

Exploring this question directly via the definition of the mixed wedge product is a messy

calculation that fails to yield significant results. Consequently, we explore the following

example.

Example 3.2.2. Let D be a square double of 9 cells with x∗ the center face, as pictured in

Figure 3.2. Let µx be the meromorphic 1-form with values on Γ1 shown in Figure 3.2. The

values of µx on Γ∗
1 are determined to satisfy ∗µx = −iµx since µx is of type (1,0). Also, µx has

a single pole of residue +1 located at x. We want to determine which functions belong to the

class
{
f ∈ C0(Λ) :

∫∫
DΓ

df ∧ µx = 0
}
. If we consider each face F ∈ D individually, we can

determine a system of equations whose solution is necessary and sufficient for
∫∫

F
df∧µx = 0.

However, this system is too tightly tied to this particular example to yield much insight.

Instead we look for a sufficient condition whose statement is the same on every face. The

condition is expressed as a system of equations that relates the function values of all vertices

associated with F , i.e. the four corners of the cell, x1, x2, x3, x4, and the dual vertex in its

center, x∗. For simplicity, we denote yi = f(xi) for i = 1, 2, 3, 4 and f(x∗) = c. See Figure 3.3

for clarification of this notation.

The values of µx on the edges of the 9 cells of D break down into five cases, shown in

Figure 3.4. The unlabeled sides of the squares shown are assumed to have value 0. Using the

definition of the mixed wedge product, the five cases respectively elicit the following system

of equations.
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

y1 + y2 + y3 + y4 = 4c

y2 + y3 − y4 − y1 = 0

y1 + y2 − y3 − y4 = 0

y2 − y4 = 0

y3 − y1 = 0

The last two equations require our function f to have equal values on the diagonals of a

given face. Consequently, a solution of the system is determined by a solution of

y1 + y2 = 2c.

Therefore, we see that our sufficient condition for membership in the class of functions{
f ∈ C0(Λ) :

∫∫
DΓ

df ∧ µx = 0
}

involves only two degrees of freedom. Such an f can be

found by choosing a random face F and choosing the value of a corner vertex and the dual

vertex. From there, the function values on the remaining vertices of all faces are determined,

and the function is constant on the set of dual vertices.

Example 3.2.2 illustrates the weakness of the CIF on the double. The class of functions

that makes the CIF interesting is small. While the discrete formula resembles that of the

continuous case, all of its power is lost on the double.

However, from the proof of the discrete CIF, we see that µx being closed on DΓ\{x∗} and∫∫
x∗

dµx = 2πi was ultimately what made the result fall out. Therefore, we can loosen the

restriction on our 1-form in the CIF and still maintain the resulting formula.
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Figure 3.2: The meromorphic 1-form µx on the 9-cell D of Example 3.2.2.

Figure 3.3: Notation for the function values on the vertices associated with a face F in D of

Examples 3.2.2 and 3.2.4.
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Figure 3.4: The five cases associated with the value of µx on the edges of a face F in D

Proposition 3.2.3. Let D be a compact subset of Λ2 and x ∈ DΓ∗0
a dual vertex on the

interior of D. Let λx be a 1-form that is closed on DΓ\x∗ with a single pole at x of residue

+1. For each function f ∈ C0(Λ),

f(x) =
1

2πi

∮
∂DΓ

f · λx −
1

2πi

∫∫
DΓ

dΛf ∧ λx .

Proof. The proof of this proposition is identical to that of the CIF on the double.

Example 3.2.4. Let D be the subset of Λ2 and λx be the (1,0) 1-form of Example 1.7.12. As

in Example 3.2.2 the values of λx on each cell break down into cases. This time, however,

there are only three cases. One case is trivial since λx is zero on all sides of the square, and

hence there are no restrictions to our function there. The two nontrivial cases are depicted

in Figure 3.5. As in Example 3.2.2, we are looking for sufficient conditions determining
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functions f belonging to the class
{
f ∈ C0(Λ) :

∫∫
DΓ

df ∧ λx = 0
}
. We’ll again use the

notation illustrated in Figure 3.3. Then the system of equations induced from the restriction∫∫
DΓ

df ∧ λx = 0 from each case is
y1 + y2 = 4c

y1 + y2 − y3 − y4 = 0.

This reduces to 
y1 + y2 = 4c

y3 + y4 = 4c

.

The functions that satisfy this system of equations is broader than the functions of Exam-

ple 3.2.2. Begin with an arbitrary face F . We have three degrees of freedom when assigning

function values to the vertices associated with F . Those three determine the remaining two

vertex values in F . If we next label a face directly below or above F , there is one degree

of freedom for each of those. If we continue to label adjacent faces in the vertical direction,

there is always one degree of freedom. Next, we consider a face horizontally adjacent to F .

The value of the dual vertex at its center is determined. However, we may choose a value

for one of the two remaining unlabeled vertices. Such is the case as we continue to label

adjacent faces in the horizontal direction. Once we have labeled all faces that are positioned

vertically or horizontally in line with F , all other vertices associated with the remaining faces

are determined. Thus, the class of functions
{
f ∈ C0(Λ) :

∫∫
DΓ

df ∧ λx = 0
}

identified by

our sufficient condition associated with this particular λx is much larger than that identified

by our sufficient condition associated with µx in Example 3.2.2.
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Figure 3.5: The two nontrivial cases associated with the value of λx on the edges of a face

F in D

Although we have managed to broaden the collection of functions that make our CIF in-

teresting on the double, these functions are again not as interesting as we would wish. For

example, their values on dual vertices are constants on rows. Unfortunately, the above ex-

amples bear witness to the breakdown of the discrete formula on the double. Because the

mixed wedge product is not guaranteed to satisfy the property that df ∧ µx = 0 when df is

of type (1,0), we lose the ability to simplify the CIF when f is analytic. This difference from

the continuous case is the major drawback of the formula on the double.

3.3 The Cauchy Integral Formula on the Diamond

All hope is not yet lost for recovering a discrete CIF. We have seen already that the diamond

has been a very powerful tool for recovering analogous discrete theory. Now that we have

defined the averaging map A, we have a way to utilize the properties of a meromorphic 1-

form on the double and the strength of the diamond wedge product of two 1-forms in C1(Λ).
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Recall that our major obstacle in the CIF on the double was the failure of the mixed wedge

product of (1,0) forms to equal zero. As we have seen already in Lemma 2.4.3, this is no

longer a problem when working on the diamond complex.

A key tool in developing the CIF is the use of Green’s theorem on a function f multiplied

with a 1-form. The CIF relies on this 1-form having a single pole of residue +1 at the point

for which the formula reveals a function value. However, poles and residues only make sense

on the double. This is no problem, though, since we can move from the diamond to the

double via the averaging map in order to utilize this property. Consequently, we will need to

try to prove the existence of a 1-form νx such that A(νx) = µx, where µx is a meromorphic

1-form with a single pole at x of residue +1.

3.3.1 The Construction of νx,y

In order to construct a νx such that A(νx) = µx, we need to relate the integration of νx over

diamond edges to the integration of µx over edges of the double. Because each diamond

edge contains two vertices, one belonging to Γ0 and the other belonging to Γ∗
0, it is natural

to relate the integration of νx to integration of µx over Γ1 and over Γ∗
1. Therefore, it makes

sense to relate νx evaluated on an edge (x′, y′) ∈ ♦1 to integration of µx over a path from x′

to x and over a path leading to y′. The latter path must traverse edges in Γ∗
1, therefore it

is natural to choose a vertex y ∈ Γ∗
0 adjacent x from which to develop our paths over which

we’ll integrate µx to obtain the value of νx. Therefore, we will instead use the notation νx,y
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to indicate our choice of the adjacent vertex y.

Let us first exhibit a way to define νx,y so that A(νx,y) = µx on the edges associated with a

single diamond face.

So, WLOG assume that x ∈ Γ0 and y ∈ Γ∗
0 such that (x, y) ∈ ♦1. As in the construction

of µx, we need to restrict ourselves to (x, y) belonging to the interior of ♦. Let µx be

the meromorphic 1-form of Proposition 1.7.10 with a single pole at x of residue +1. Let

(x′, y′, x′′, y′′) be a face in ♦2. Define νx,y on the edges of this diamond as follows.

νx,y(x
′, y′) = µx(x

′x) + µx(yy′)

νx,y(y
′, x′′) = µx(y

′y) + µx(xx′) + µx((x
′, x′′))

νx,y(x
′′, y′′) = µx((x

′′, x′)) + µx(x
′x) + µx(yy′) + µx((y

′, y′′))

νx,y(y
′′, x′) = µx((y

′′, y′)) + µx(y
′y) + µx(xx′)

Notation:

x′x denotes a chosen path from x′ to x via the regular edges.

yy′ denotes a chosen path from y to y′ via the dual edges.

We now need to verify that our definition satisfies A(νx,y) = µx on the double edges whose

crossing lies inside the diamond (x′, y′, x′′, y′′).
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∫
(x′,x′′)

A(νx,y) =
1

2

( ∫
(x′,y′)

+

∫
(y′,x′′)

+

∫
(x′,y′′)

+

∫
(y′′,x′′)

)
νx,y

=
1

2

(
µx(x

′x) + µx(yy′) + µx(y
′y) + µx(xx′) + µx((x

′, x′′)) + µx(x
′x)

+ µx(yy′) + µx((y
′, y′′)) + µx((y

′′, y′)) + µx(y
′y) + µx(xx′) + µx((x

′, x′′))

)
=

1

2

(
µx((x

′, x′′)) + µx((x
′, x′′))

)
= µx(x

′, x′′).

∫
(y′,y′′)

A(νx,y) =
1

2

( ∫
(y′,x′′)

+

∫
(x′′,y′′)

+

∫
(y′,x′)

+

∫
(x′,y′′)

)
νx,y

=
1

2

(
µx(y

′y) + µx(xx′) + µx((x
′, x′′)) + µx((x

′′, x′)) + µx(x
′x) + µx(yy′)

+ µx((y
′, y′′)) + µx(y

′y) + µx(xx′) + µx(x
′x) + µx(yy′) + µx((y

′, y′′))

)
=

1

2

(
µx((y

′, y′′)) + µx((y
′, y′′))

)
= µx(y

′, y′′).

Note that the calculations show that
( ∫

(x′,y′)
+

∫
(y′,x′′)

)
νx,y = µx(x

′, x′′) and that similar

equalities hold for the other half-diamonds.

The construction of νx,y on a diamond given above was such that paths to x′′ and y′′ came

into the diamond via x′ and y′, respectively, first. The calculations above depended on

that aspect of the construction. Because each diamond edge is on the boundary of more

than one diamond face, it appears that we may have a problem defining νx,y so that it has

everywhere the property used in those calculations. However, µx is closed off of x∗. Hence,
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Figure 3.6: The two paths from x to x′ and the two paths from y to y′

over many regions, integrals of µx are independent of path. This observation provides most

of the freedom necessary to construction νx,y in the way suggested above so that νx,y has the

properties needed above. One problem still remains. Integrals of µx will not be independent

of path for paths that differ by a path with nonzero winding number around x.

It is not possible to avoid the problems associated with winding number. For example,

suppose that (x′, y′, x′′, y′′) is the first diamond face on which we define νx,y. As we define

νx,y on adjacent diamonds, we make choices of paths that allow us to use independence

of path. As we move clockwise from one diamond to another, our paths travel clockwise,

also. We will eventually come to a diamond containing the edge (x′, y′) (WLOG) that borders

(x′, y′, x′′, y′′). According to our construction, when defining νx,y(x
′, y′) for this last diamond,

we must use paths that differ by a full clockwise circuit from the paths xx′ and yy′ with

which we began.
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Let p1 denote the path from x′ to x′ that represents the difference of the two regular paths

used, and let p2 denote the path from y′ to y′ that represents the difference of the two dual

paths used (See Figure 3.6). On the one hand we have,

νx,y(x
′, y′) = µx(x

′x) + µx(yy′).

and on the other,

νx,y(x
′, y′) = µx(−p1) + µx(x

′x) + µx(yy′) + µx(p2).

In order for our construction of νx,y to be well defined, we must have µx evaluated on the

paths where they differ equal to zero. Therefore,

0 = µx(−p1) + µx(p2)

= µx(regular path winding counterclockwise around the vertex y)

+ µx(dual path winding clockwise around the vertex x)

= 2πi[Resy(µx)−Resx(µx)]

This last equality holds since µx is closed off of x∗, so the integral reduces to the residues.

But, Resx(µx) = 1. This says that Resy(µx) = 1, also. However, recall that our choice of

µx was such that it had a single pole at x. Thus, we see that our choice of µx is incorrect.

However, we also notice that the defining properties of µx did not come into play until the

last step of our construction. Therefore, there should be an easy fix.

Proposition 3.3.1. Let Λ be a bounded double complex that is boundary accessible with

respect to x ∈ Γ0 and with respect to y ∈ Γ∗
0, two adjacent vertices in the diamond complex.
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Then there exists a meromorphic 1-form µx,y ∈ C1(Λ) with only two poles, both of residue

+1, located at x and at y.

Proof. By Proposition 1.7.10 there exist meromorphic 1-forms µx and µy with single poles

of residue +1 at x and y, respectively. Let µx,y = µx + µy. Then µx,y is as desired.

We now have the necessary meromorphic 1-form with which to construct νx,y. Before we

formally state the existence of νx,y, we first make an observation. Recall that in our con-

struction, we excluded the two diamonds that share the edge (x, y). Let R = (abcd) be

the rectangle comprised of these two faces (see Figure 3.7). Although we exclude R from

our construction, we do define νx,y on the boundary of R since those edges are contained in

diamonds outside of R. This leaves one last edge where we must define νx,y, namely (x, y).

However, we never need any information about νx,y(x, y). Therefore, we give the averaging

relationship formally off of R.

Proposition 3.3.2. Let (x, y) be an interior edge of a bounded diamond complex D. Let µx,y

be the meromorphic 1-form in Proposition 3.3.1. Then there exists a diamond 1-form νx,y

such that A(νx,y) = µx,y off of the rectangle R containing the two diamond faces that share

the edge (x, y).

Proof. We’ll give a sketch of the key ideas in recovering such a νx,y. We have already

introduced many of the issues earlier in this section. Start by introducing a diamond-edge

“slit” (terminology as in complex analysis) running from y to x, along (y, x), and then out
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to the boundary of the region. Choose a regular vertex x̃ adjacent to x and a dual vertex ỹ

adjacent to y such that neither x̃ nor ỹ belongs to the slit. In using µx,y to define νx,y, as

indicated earlier in this section, always use paths that travel (x, x̃) to leave x, that travel

(x̃, x) to come to x, and that use (y, ỹ) and (ỹ, y) similarly for paths that contain y.

The “outward” orientation of the slit allows us, at each vertex (other than y) on the slit,

to label the non-slit edges touching the vertex as right edges (in the region swept out in

passing counterclockwise from the slit edge coming into the vertex to the slit edge leaving

the vertex) or left edges (otherwise). We say that a path “does not cross” the slit if whenever

it intersects the slit, it enters and exits on the same side.

This definition provides a way to give a construction of νx,y that avoids the problems caused

by residues. In using paths from x′ to x and from y to y′ to define νx,y(x
′, y′), we restrict

ourselves to paths for which the associated path made by dropping (x̃, x) and (y, ỹ) and

running from ỹ to y′, then running along (y′, x′), and finally, running from x′ to x̃ does not

cross the slit. If (x′, y′) does not lie on the slit, the value of νx,y(x
′, y′) is independent of

the path in this class used to define it because the difference of any two such paths must

have winding number zero around each of the poles x and y. If (x′, y′) lies on the slit, the

difference of two defining paths in our class may have nonzero winding number ±1 around

x, but then it will have a winding number ∓1 around y. Hence, by using paths that do

not cross the slit, we are able to construct a well-defined νx,y satisfying A(νx,y) = µx,y on

D\R.
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Note: νx,y is the discrete analogue of
dz

z − z0

on the diamond, where z0 = (x, y).

Lemma 3.3.3. Let F = (x′, y′, x′′) be a half diamond. Then

∮
∂F

νx,y =

∫
x′,x′′

µx,y.

Proof.

∮
∂F

νx,y =

( ∫
(x′,y′)

+

∫
(y′,x′′)

)
νx,y

= µx,y(x
′x + yy′) + µx,y(y

′y + xx′ + (x′, x′′))

=

∫
x′,x′′

µx,y.

Lemma 3.3.4. νx,y is closed off R.

Proof. Let F = (x′, y′, x′′, y′′) ∈ ♦2. Then,

∫∫
F

dνx,y =

∮
∂F

νx,y

=

( ∫
(x′′,y′′)

+

∫
(y′′,x′)

+

∫
(x′,y′)

+

∫
(y′, x′′)

)
νx,y

=

∫
x′′,x′

µx,y +

∫
(x′,x′′)

µx,y

= 0.

We are now ready to derive a Cauchy Integral Formula on the diamond via Green’s Theorem.
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3.3.2 The Diamond Cauchy Integral Formula

Proposition 3.3.5. (Discrete Diamond CIF) Let D be a compact connected subset of ♦2

defined by the closure of a finite collection of cells in ♦2, and let (x, y) ∈ D1 be an edge

that bounds two interior neighboring diamond 2-cells. Suppose that the underlying bounded

double complex (whose crossings determine D’s 1-cells) satisfies the properties that permit

the definition of the meromorphic 1-form µx,y. Then for each function f ∈ C0(D),

∮
∂D

f · νx,y =

∫∫
D

d′′f ∧ µx,y + 2πi
f(x) + f(y)

2
.

Proof. The edge (x, y) bounds two faces in D. Let R = (abcd) be the rectangle comprised

of these faces (see Figure 3.7).

Figure 3.7: The rectangle R in domain D defined by edge (x, y) ∈ ♦1

On D\R, the product rule yields

d♦(f · νx,y) = d♦f ∧ νx,y + f · d♦νx,y.



91

Note:

d♦f ∧ νx,y = A(d♦f) ∧ A(νx,y) by Lemma 2.4.5

= dΛA(f) ∧ µx,y

= dΛf ∧ µx,y

= (d′f + d′′f) ∧ µx,y

= d′′f ∧ µx,y by Lemma 2.4.3 since µx,y is of type (1, 0).

So,

d♦(f · νx,y) = d′′f ∧ µx,y + f · d♦νx,y.

Integrating this equation over D\R,

∫∫
D\R

d♦(f · νx,y) =

∫∫
D\R

d′′f ∧ µx,y +

∫∫
D\R

f · d♦νx,y.

Applying Green’s Theorem,

∮
∂D

f ·νx,y−
∮

∂R

f ·νx,y =

∫∫
D\R

d′′f∧µx,y +
∑

F∈D\R

f(x1) + f(x2) + f(x3) + f(x4)

4

∫∫
F

d♦νx,y,

where F = (x1, x2, x3, x4).

Note:

∫∫
D\R

d♦νx,y = 0 since νx,y is closed off R by Lemma 3.3.4.

∴
∮

∂D

f · νx,y =

∫∫
D\R

d′′f ∧ µx,y +

∮
∂R

f · νx,y. (?)

Now, consider the integral over ∂R.

Claim.

∮
∂R

f · νx,y =

∫∫
R

d′′f ∧ µ + 2πi
f(x) + f(y)

2
.
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This claim can be verified by calculating each piece separately and making necessary substi-

tutions. Begin by calculating
∮

∂R
f ·νx,y using the definition of the product of a function and a

1-form on the diamond. In the calculation of
∫∫

R
d′′f∧µ, first recall that df∧µx,y = d′′f∧µx,y.

Therefore, we instead calculate
∫∫

R
df ∧µ using the definition of the diamond wedge product

of double 1-forms given in Equation 2.1. We may then write out each evaluation of df on an

edge via the definition of the coboundary. For each evaluation of µx,y on an edge, we substi-

tute an evaluation of νx,y over the half diamond which the double edge closes as permitted

under Lemma 3.3.3. Our choice of half diamond is such that at least one of its edges is in

the boundary of R.

Next, we rewrite 2πif(x)+f(y)
2

using the definition of the +1 residue of µx,y on x∗ and y∗.

Then,

2πi
f(x) + f(y)

2
=

1

2
f(x)

∮
∂x∗

µx,y +
1

2
f(y)

∮
∂y∗

µx,y.

Again, we use Lemma 3.3.3 to substitute for each evaluation of µx,y on an edge of the double.

As in the calculation of the wedge product, our substitution is such that the half diamond

has at least one of its edges in the boundary of R.

Once each piece is written in terms of evaluations of νx,y and multiplications of function

values, the claim is made clear.

Substituting the result of the claim into our original formula (?) yields the discrete CIF,∮
∂D

f · νx,y =

∫∫
D

d′′f ∧ µx,y + 2πi
f(x) + f(y)

2
.
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So, we have managed to recover a CIF on the diamond in an analogous way to the continuous

case via Green’s Theorem. Unfortunately, this formula only reveals an average of function

values instead of a value at a single vertex. It would appear that our attempt to find a CIF

on the double was more successful. But, although the diamond has this one weakness, unlike

our findings on the double, it possesses the strength of the continuous formula in a more

important way. The diamond formula behaves analogously to the continuous case when f is

an analytic function.

Proposition 3.3.6. Let D be a compact connected subset of ♦2 and (x, y) ∈ D1 an edge

that bounds two interior neighbors of D with a non-empty boundary. Suppose f ∈ C0(Λ) is

discrete analytic. Then

∮
∂D♦

f · νx,y = 2πi
f(x) + f(y)

2
.

Proof. By Proposition 3.3.5 (the CIF on the diamond),

∮
∂D♦

f · νx,y =

∫∫
D♦

d′′f ∧ µx,y + 2πi
f(x) + f(y)

2
.

Since f is discrete analytic, d′′f = π(0,1) ◦ df = 0 on all edges in DΛ by Theorem 1.5.9.

Therefore, d′′f ∧ µx,y = 0 on D♦. And so, the CIF on the diamond reduces to

∮
∂D♦

f · νx,y = 2πi
f(x) + f(y)

2
.
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This result solidifies the parallel between the CIF on the diamond and the continuous CIF.

While the CIF on the double reveals a value at a single point, the diamond behaves analo-

gously where it matters most. The Cauchy Integral Formula on the diamond is a stronger

and much more useful result than that of the double.
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