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I. INTRODUCTION 

It has been the practice in the structural design 

ld to control excessive structural responses, e.g., 

deflections and accelerations, by the use of passive damp­

ing devices, such as damping treatments, rubber mountings, 

hanging chain dampers, etc. Recently, more advanced 

mechanisms, such as tuned vibration absorbers, have also 

been frequently used to excellent advantage. 

The advancement in the development of high strength 

materials and in the techniques for structural analysis and 

design has resulted in a trend towards the construction of 

more flexible structures in the future [e.g., Refs. 1-7]. 

Due to the excessive flexibility, however, such structures 

may experience large deflections and accelerations under 

stochastic dynamic loads, such as wind buffeting and earth­

quake, thus intrOducing the problems of safety and comfort 

[e.g., Refs. 2,8J. 

A typical example of flexible structure is the 

suspension bridge which is particularly vulnerable to wind 

gusts. The dramatic collapse of the Tacoma Narrows bridge 

near Seattle, Washington, in 1940 has triggered extensive 

research effort. An excellent literature review on sus­

pension bridges can be found in Reference 9. 

1 
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Under the excitation of strong wind gusts, a flex­

ible suspension bridge may exhibit vibrations with ,large 

amplitudes, and it may become unstable ( utter) when the 

mean wind velocity reaches a critical level, referred to as 

the flutter speed. 

Wind loads have been modeled as stationary 

Gaussian random processes [e.g., Refs. 10,11-14,15,16J, and 

the buffeting of wind sensitive structures, such as bridg­

es, has been investigated by many researchers [e.g., Refs. 

10, 11-14, 17,18J. 

The mechanism of flutter is attributed to "vortex 

type" excitations, which, coupled with the bridge motion, 

generate motion-dependent (self-excited) aerodynamic 

forces. If the resulting aerodynamic forces reinforce the 

motion associated with them, a self-excited oscillation 

(flutter) may develop [e.g., Refs. 9,10,19-26]. 

The most noticeable advancement in suspension 

bridge aerodynamics is the development of analytical and 

experimental techniques pertinent to the stability problem. 

Early work in gust stabilization of bridges has been per­

formed by Steinman [e.g.) Refs. 27-31]. Wind tunnel tests 

which revealed the inadequacy of early bridge specifica­

tions have been conducted at Virginia Polytechnic Institute 

by Maher [e.g., Refs. 32-34J. More recent work by Scanlan, 

uti zing wind tunnel tests on section models, provided 

valuable information on the aeroelastic behavior of many 



3 

types of bridge decks [e.g., Refs. 9,21-26,35,36J. Re­

cently, Beliveau et ale combined the problems of buffeting 

and flutter of suspension bridges in a unified approach 

[e.g., Ref. 10J. 

The traditional methods to reduce excess respon-

ses and to increase reliability and safety of flexible 

structures, such as suspension bridges, usually yield a 

conservat and expensive des An alternative approach 

to circumvent these problems is the use active control 

devices. As a result, feasibility studies of applying 

active control theory to reduce the vibrational levels of 

structures have recently attracted increasing attentions 

[e.g., Refs. 1-5,8,37-44J. 

Unlike the conventional dissipative damping mechan­

isms, the active control devices rely for their performance 

on the availability of an external energy supply. As such, 

the active control is more effective and advantageous than 

the passive control. Active control devices generally con-

sist of a feedback control system that designed to 

sense structural motions 80 as to generate the necessary 

corrective actions. 

The applicat of active control theory to civil 

engineering structures has been discussed by several inves­

tigators [e.g., Refs. 1-5,8,41-45J. Feasibility studies in 

applying active tendon control to slender structures have 

been ~erformed. these both modal analysis and 
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2,45J. 

4 

matrix techniques have been used [e.g., 

In practical applications, the principle active 

control has been applied to certain civil engineering 

structures, such as a communic antenna at Northwest 

Cape, Australia and the John Hancock Center In Chicago, 

Illinois [e.g., Refs. 7,8J. 

It is the purpose of this thes to present a 

feasibility study on the application of active control to 

a particular type of suspens bridge, referred to as the 

two cable-stayed bridge [see figure 1, appendix 3J. The 

effect of active control on the flutter ed and the 

bridge response under severe storm gusts as well as the 

power requirement for the active control devices have been 

investigat 

Cable-stayed dges are ideal for implementing the 

active control devices [Ref. 46J. The existing four sus­

pension cables, which are designed to carry the dead weight, 

are used as active tendons to which the active feedback 

control stems (hydraulic servomechanisms) are attached. 

One sensor ins led at the anchorage of each suspension 

cable in order to sense the motion each anchorage of 

bridge deck. The sensed motions are transmitted as signals 

to serve as input information to the feedback control 

system. The feedback signal is then used to regulate 

motions of hydraulic rams in the servomechanisms, thus 
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ing the necessary restoring forces in the suspension 

cables to counter the motion of the bridge. The control 

mechanism is activated only under severe wind storms to 

ensure the safety and grity of the bridge. 

Under the excitations of wind gusts, bridge 

deck experiences both t and self-excited loads 

which are assumed to be separable [e.g., Ref. 10J. The 

buffet loads, which are independent of the dge 

motion, are stochastic 

horizontal and vertical 

[e.g., Refs. 10-15J. In 

sses expressed in terms of the 

of the wind turbulence 

quasi-steady formulation, self-

excited loads are expressed In terms of current motions 

through the aerodynamic coe ients [e.g., Re . 9,10,21-

26,47,48J. 

Under the actions buffeting and self-excited 

loads as we as the active control forces, the resulting 

coupled differential equations of bridge motions have been 

solved using the modal analys The stabi condition 

and the s sties of st state bridge re have 

been obtained. The res 

active control have been 

bridges with and without 

d. Finally, analytical 

express for the power requirement of the feedback 

active control servomechanisms have been derived. 

It is shown In study that the active control 

not only raises the flutter speed up to any desirable level 

but also reduces significantly the statistical variations 
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of the bridge response, whereas the power requirement for 

e control devices is very small. From the physical stand-

point, these res are not surprlslng. When the rotation 

of the bridge ck increases in the clockwise direction, 

the left suspens cable will release its initial, dead 

wei tension, whereas right suspension cable will 

increase its tension thus producing a counter reaction to 

the bridge rotation. The regulation by the control devices 

to release (or increase) the tension in the suspenslon 

cables does not require large power. 



II. STATEMENT OF THE PROBLEM 

1. Equations of Motion 

A typical two cable-stayed as shown in 

figures 1 and 2a [see appendix 3J lS cons The motion 

of the bridge deck consists of a exural displacement 

W (x,t) and a rotation eex,t) of the midplane about the 

center of gravity, see figure [appendix 3). The horizon-

tal displacement due to force is neglected. With the 

assumption of "strip theory" aerodynamics, the equations 

motion for the bridge deck are [e.g., Re . 9,10,21,22,24, 

1 25,47,49,50): 

d 1+ •• • 
EI ---4W(x,t)+mW(x,t)+CbW(x,t) = Fb(x,t) 

ax 
(x,t)+U(x,t) -e 

in which: 

B = bri deck width 

EI = bending rigidity bridge ck 

GJ = torsional rigidity bridge deck 

m = mass per unit length 

Is = moment of inertia per unit length 

IThe equations motion (1) and (2) without the 
control terms are applicable to the newly designed Sitka 
Harbor Bridge in Alaska [e.g., Ref. 35). 

7 

(1) 

(2) 
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Cb = damping coefficient ln bending 

Ct = damping coefficient torsion 

FbCx,t) = lift force due to buffeting loads 

MbCx,t) = pitching moment to buffeting loads 

F (x,t) = s-e self-excited force 

M (x,t) = s-e sel ed moment 

uex,t) = restoring force suspension cables 

Q(x,t) = restoring moment from suspension cables 

Three types of external forces have been considered 

on the right hand s of equations I and 2. The buffeting 

lng from the wind turbu-

lence are independent of the bridge motion. The self-

excited aerodynamic loads, F e(x,t) and M (x,t), are s- s-e 

functions of bridge motions, and for small angles of 

attack are assumed to be separable from the buffeting 

loads [e.g., Ref. 10]. The restoring forces, UCx,t) and 

Q(x,t), from suspension cables depend on both the motion 

of the bridge and the control devices as will be discussed 

later. 

2. Self-excited and Buffeting Loads 

The self-excited are related to oscilla-

tory instability-flutter of bluff structures. They exhibit 

self-excited characteris and have a memory of hystery-

sis effect [e.g., f. 51]. Because the self-excited 

characteristics, the motion of the structure may become 
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uns Ie. Analytical expressions for the self-excited 

loads have been developed for a classical airfoil [e.g., 

Refs. 48,51,52J. These results, however, may not be 

applicable to the bridge decks because the geometrical 

difference between the airfo and the bridge sections 

[e.g., Refs. 23,26,53J. As a result, semi-empirical 

methods have been developed in which the results from wind­

tunnel tests on the suspension bridge model are used and 

extrapolated to e prototype under similarity considera­

tions. Two methods have been widely used in the literature 

for the representation of the self-exc d loads; 

(a) The indi function approach: This method 

corresponds to the classical flutter approach and appli­

cable to both unsteady and si-steady aerodynamics [e.g., 

Refs. 48,52J. The self-excited loads are expressed in a 

Duhamel integral form, and the critical wind speed at which 

the motion becomes unstable determined by the Sl 

Theodorsen method [e.g., Re . 23,47,48,51,52,53J. 

(b) The aerodynamic cae cient approach: The 

self-excited loads are approximated by those terms involv­

ing the current motion only. Hence this method is a quasi­

steady aerodynamic approach [e.g_, Ref. 26J. In this 

approach, the critical velocity can be determined by use 

of classical stability criteria [e.g., Refs. 9,10,47J. 
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In the present lS, the second approach will 

used to express the self-excited loads, because of sim-

plicity [e.g., Ref. 10]. In terms the aerodynamic co-

efficients, the self-exc force F (x,t) and moment s-e 

Ms (x,t) can -e expressed as functions mean wind 

velocity u, as well as the displacement W(x,t) and the ro-

tation sex,t) of the bridge deck as follows [e.g., Ref Sa 9, 

26,35]: 

Fs_e(x,t) = 1 P u 2 C 2 B l { KH;' e 1f) W C x , t l + KH ~ (2K1f ) B 
sex,t) 

2 1 K - -u u 

+ K2H*3(~1f) 6Cx,tl} e 3) 

Ms_e(x,t) = .:!:. P U 2 C 2 B 2 l { KA;' ( 2 
IT y~ C X , t l + KA~(2:)B 2 1 K - -u u 

+ K2 A~ (2KlT) 
" S(X,t)} (4) 

In which p is the a density, u is the mean wind velocity, 

and K is the reduced frequency given by 

( 5 ) 

where the flutter frequency at which the oscillatory 

motion of the structure occurs with all degrees of freedom 

coupled at this s frequency. 

ter. In equations 3 and 4, the 

w~': will 
f 

determined 

ies Hy(2n/K), H~(2nl 

K), H§(2n/K), Ai(2n/K), A~(2n/K), A§(2n/K) are aerodynamic 

coefficients being functions of the reduced velocity 2n/K. 

They are experimentally determined for each type of bridge 
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deck over a range of reduced velocities [e.g., Ref. 

26] • 

The buffeting loads are related to the vertical 

and horizontal components of the wind turbulence. They 

are stochastic processes defined by their power spectral 

densities [e.g., Refs. 10,11,13-15,54J as will be dis-

cussed later. 

3. Restoring Forces from 
Suspension Cables 

For the two cable-stayed bridge shown in figure 1, 

appendix 3, the restoring forces uex,t) and moments 

Q(x,t) acting on the bridge from the suspension cables are 

point loadings. 

U(x,t) = U(a,t) 5 ex-a)+Ue2-a,t)5 Cx-t+a) 

Q(x,t) = Q(a,t) 8 (x-a)+Q(2-a,t) 6 (x-2+a) 

( 6 ) 

(7) 

in which 2 and a are shown in figure 2a [appendix 3J. The 

restoring forces and moments consist of two terms [see 

appendix IJ, 

2EOAO 
2 [W(a,t)sin¢+uea,t)]sin¢ 
o 

(8) UCa,t) = 

B2 EOAO 
Q(a,t) = - 2 --2--C6ea,t)sin¢+vCa,t)]sin¢ (9) 

o 

In which EO,AO and to are the modulus elasticity, the 

cross-sectional area, and the length of the suspension 

cables, respectively, and ¢ is the angle between the sus-

pension cables and the bridge deck. The quantities 
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U(~-a,t) and Q(~-a,t) appearing In equations 6 and 7 are 

given by equations 8 and 9 with the argument "alf replaced 

tr~_atr. 

On the right hand sides of equations 8 and 9, the 
• 

first term is due to the ffness of the suspension 

cables. second terms, uCa,t) and v(a,t), come from 

the active control devices as will be discussed in the 

following. 

existing suspenslon cables are used as active 

tendons. The devices the active tendon control con-

sidered herein are identical to those discussed in Refs. 2 

and 45. The four suspension cables are connected to 

electrohydraul servomechanisms that will generate 

neces control displacements for each cable, thus ex-

erting control forces to the bridge deck at the po s of 

anchorage [see figure 3, appendix 3J. One transducer is 

installed at the anchorage each cab ,to sense the 

motion at that point. The sensed motion the form of 

electric lS us to regulate the motion of the 

hydraul ram connected to the other end of the cable, thus 

generating the required control forces [see figure 4, 

appendix 3, and appendix 1 for discussion of this control 

schemeJ. 

Note that the simultaneous application of the con-

trol forces with different magnitUdes in four cables at the 

locations x=a and x=~-a, respectively, yield the resulting 
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control forces and moments with respect to the center of 

the cross-section at these locations. For instance, let 

the vertical forces exerted on the bridge at the location 

x=a by the cables on the left and right sides be denoted 

by P~(a,t) and PrCa,t), respectively. Then, the resulting 

total vertical control force is PiCa,t)+PrCa,t) and the 

B total control moment 2[P.R,(a,t)-Pr (a,t)]. The feedback 

voltage, YiCt), from the sensor is proportional to either 

the sensed displacement, velocity, or acceleration [e.g., 

Refs. 2,44,45], for instance, 

y.(t) = P.L.[v(t)] 
l l l 

(10) 

in which vet) is the sens displacement of the bridge 

deck at the anchorage, and Li[-J is a linear operator, 

denoting the displacement sensor Ll[-J, the velocity 

sensor L2[-J, and the acceleration sensor L3[-J as follows: 

L [-] 
1 = 1, L2 [ • J = 

d d 2 
= 

dt 2 
( 

In equation 10, P. is the proportionality constant 
1. 

associated with each sensor. The displacement Set) of the 

hydraulic ram, which 1.S equal to the additional elongation 

of the suspension cable due to active control, is related 

to the feedback voltage y. through the first order differ-
1. 

ential equation [e.g., Refs. 2,45,55,56J, 

) 

IR)y.(t) 
1. 

(12) 



14 

In which Rl is the loop gain, and R lS the feedback galn of 

the servomechanism. 

When such active control devices are used, the 

restoring forces and moments from the suspension cables are 

given by equations 8 and 9, in which the control displace-

ment uCa,t) and the control rotation vCa,t) are given by 

[see appendix 1 for derivation]: 

where 

. 
uCa,t)+R1uCa,t) = R

1
ROiLi [wCa,t)] 

R . = Ol 

P. 
l 

R 

(13) 

(14) 

(15) 

It is obvious from equations 8-9 and equations 13-14 that 

the control forces, UCa,t), and moments, QCa,t), depend 

on the displacement, WCa,t) and the rotation eCa,t) of the 

cross-section at which the suspension cables are attached. 



III. MODAL EXPANSION 

To solve the equations of motion given by equat 

1 and 2, the deflection W(x,t) and the rotation e(x,t) are 

expanded in terms of modes 

W(x,t) = L gKCt)XK(x) 
K (16) 

eex,t) = E fKCt)YK(x) 
K 

ln which XK(x) and YK(x) are the normal modes in bending 

and torsion, and gK(t) (t) are the associated normal 

coordinates. The lacements and rotations are 

also expanded in terms normal modes [see appendix 

2J. 

u(~-a,t) = E h KCt)XK(2-a ) 
K (17) 

Substituting equations 16-17 into equations 13 and 

14, and using the fact normal modes are mutually 

orthogonal and linearly independent, one can show that 

[see appendix 2J, 

(18) 

15 
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. 
qK(t)+R1qK Ct ) = RIRO (19) 

Equations 18 and 19 relate the control normal coordinates, 

hK(t) and qK Ct ), to the normal coordinates, gK Ct ) and 

fKCt), the splacement and rotat of the bridge deck .. 

following equations motion for the bridge 

deck in normal coordinates, gnCt) and fnCt), are obtained 

by Ci) substituting ions 3, 4, 6-9, 16, 17 into equa-

tions 1 and 2, ( ) multiplying the resulting equations by 

Xn(x) and Yn(x), respectively, and integrating over the 

range x, (iii) using the orthogonality conditions for 

normal modes [see appendix 2], 

+ 

+ XK(~-a)Xn(~-a)] - PB2w~ HI Vg gn Ct ) 
n 

F (t) ... n 

(20) 
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+ Y (2-a)Y (2-a)]-pB4w*[A*f (t) K n f 2 n 

M (t) 
-n 

(21) 

In which 

V = L.(~K(X)Xn (x)dx ] '\n gn 

(22) 

V = [(~K(X)Yn(X)dXJ ckn 

GKn = fo\K(X)Xn(X)dX 

(23) 

Gnk 
= ~\K(X)Yn(X) 

F (t) = JC 2
Fb (X,tlXn exldX 

-n 0 
(24) 

M (t) ..... n = J(tb(X,t)Yn(X)dX 
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M = m V n gn 
(25) 

I = IsV f n n 

Cbn = Cb V 
gn 

(26) 

C
tn = CtVf n 

2 -2 2EOAO . 2<1> 2 2 
W = W + 

MnQlO 
Sln [X (a)+X (~-a)J 

gn gn n n 

2 
2 -2 B EOAO . 2<1> 2 2 wf = wf

+ 2In Qf O 
Sln [Y (a)+Y (~-a)J n n n n 

(27) 

J 
Cbn = 

gn 2M W 
n gn 

(28) 

= 

-where 8 Kn is the Kronecker delta. Both wand wf are the 
gn n 

natural frequencies in bending and torsion of the bridge 

deck without suspension cables and they satisfy the follow-

ing equations: 
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8
4 

ex) -2 
E1 

dX
4 X = m W X ex) 

n g n n 

(29) 

GJ d
2 -2 

--2 Y ex) = I W
f 

Y ex) 
dX n s n n 

Both wand wf glven In equations 27 are the 
gn n 

natural frequencies in bending and torsion of the two 

cable-stayed bridge. The difference between ew ,wf ) and 
gn n 

(w ,wf ) is that the latter, equation 27, incorporates the 
gn n 

stiffness provided by the suspension cables. 

Equations 20 and 21 are coupled not only between 

the normal coordinates gKet) and fKet), but also between 

the normal modes of the same type of locations x-a and 

x=i-a. The first coupling comes from the aerodynamic 

coefficients H~, H§ and Ai' whereas the second coupling 

stems from the active control devices. 

For the cable-stayed bridge considered herein, the 

normal modes XK(x) and YK(x) are approximately identical 

and they are assumed to have the following form [e.g., 

Refs. 10,57] 

(30) 

Furthermore, the positions of the anchorage for the sus-

pension cables are chosen at 

a = 9../3 
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which is exactly the case of the newly designed Sitka 

Harbor Bridge in Alaska. 

By virtue of the approximation given ln equation 30 

and the particular choice for na" in equation 31, equations 

20-29 can be simplified considerably as follows [see 

appendix 2 ] : 

f Ct)-H
3

f (t) = 
n n 

F Ct) 
-n 

1'1 
n 

f Ct)+[2J f wf 
• 2 -A

3
Jfn (t) -A2 Jfn Ct)+[Wf n n n n 

2 
B EOAO 

• <1> • 2 n1T • + 
InJl. O 

Sln Sln 3 qnCt)-Algn(t) = 

In which 
mJl. I Jl. 

M M I I s = = 2' = = n n 

pB 2w~t'H~" B3 "<H"< p wo.·· 
HI 

f 1 
H2 

f 2 H = = = m m 3 

B 3 .t·A"· pB
4w'" p w.... 

Al 
f 1 

A2 
f A,t. 

A3 = = = I 2' s s 

M (t) 
-n 
-~ 

3 ~': 2 
pB wf Hot< .. 

m 3 

4 ~': 2 
pB wf A,t. .. 

3 s 

(32) 

(33) 

(34) 

(35) 

It 1S observed that equations 32 and 33 are st 1 

coupled because of the aerodynamic coefficients. It is 

important to notice, however, that gn(t) coordinate 

coupled only with the fnCt) coordinate and vice versa, 
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g (t) is not coupled with n (t) for n#k. This is 

due to the assumption that the normal modes in bending and 

torsion are ical [equation 30]. As a re , each set 

of equations of motion the nth bending and torsional 

modes, i.e., gn(t) and fnCt), can be investigated sepa-

rately. Moreover, is interesting to observe that for 

n=3, we have s ~TI=O and hence the set of equations 

corresponding to third flexural and torsional modes 

becomes uncontrolled [see equations 32 and 33 with n=3]. 

This comes from the fact that the control forces and mo-

ments are applied at the nodal points of the third mode, 

1.e., a=~/3. It should be mentioned that the form of the 

equations of motion, given by equations 30 and 31, for n=l 

ident to that for n=2. In order to demonstrate 

analysis approach presented herein, we shall investigate 

the first set of equations for n=l only, i.e., the first 

mode vibration, re zing that the solution for the second 

mode vibration is of the same form. Hence, we shall drop 

the subscript n in the following discussions of the 

mode vibration. 



IV. FLUTTER ANALYSIS 

One of the important problems in the dynamic analy-

sis of the cable-stayed bridges or the conventional sus-

pension bridges is the determination of the flutter speed; 

i.e., the wind speed at which the bridge becomes aerody-

namically unstable. This problem will investigated In 

the Laplace transform domain for two cable-stayed 

bridge under both active control and no control. 

Taking Laplace transform on both sides of equations 

32 and 33 and assuming zero initial conditions for the 

normal coordinates [e.g., Ref. 45J, one obtains, 

s)/M (36) 

(37) 

in which s is the Laplace transform parameter and the 

quantities with a bar represent the Laplace transforms of 

the corresponding quantities in the time domain (without 

a bar). 

22 
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Laplace transforms hes) and q(s) appearing in 

equations 36 and 37 can be obtained in terms of g(s) and 

f(s) by taking the Laplace transforms on equations 18 and 

19; with the results, 

he s) = 

(38) 

q(s) = 

ions 36 and 37 can be written in a matrix form 

after substitution of equation 38 into them, 

[~ll(S) ~12(S) ] gCs) FC s) 1M -= 

Q21(s) Q22(s) f(s) Me s) II 
..... 

(39) 

in which: 

2 2 (s) 
Qll(s) = s +(2J w"-H1)s+w +r g g g g 

Q12(s) = -CH 2 
) 

(40) 

Q2l(s) = -Als 
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r 4 EOAO 
sin¢sin 2 1T = M -ro 3" g (41) 

r f 
B2 EOAO 

sin¢sin 2 1T = r-ro 3" 

and L. (s) 
~ 

follows from equation 11 as: 

11 (s) = 1 for displacement sensor 

L
2

(S) = s for velocity sensor (42) 

1 3 (s) 2 for acceleration = s sensor 

A block diagram for the closed loop control system 

represented by equations 39-41 is shown in figure 5 

(appendix 3). Equation 39 can readily be solved as follows: 

g(s) = {[Q22(S)r(s)/MJ-CQ12(S)~(s)/IJ} ID(s) 

fCs) = -{CQ21 (s)!(s)/MJ-[Qll (s)~(s)IIJ} ID(s) 

where 

(43) 

(44) 

A linear control system, such as the one given by 

equation 43, is stable if and only if the responses g(s) 

and f(s) are bounded for every bounded inputs F(s) and -
M(s). Since, however, the buffeting loads ~(s) and M(s) 

are assumed to be bounded, the boundness of the responses 

will be determined by the poles of the transfer functions 

careful examination of these transfer functions indicates 

that the poles can be determined by the characteristic 
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equation: 

D( s) = 0 (45) 

in which D(s) is given by equation 44. 

erefore, the actively controlled two Ie-stayed 

bridge considered herein is stable if and only 1 the 

roots of the characteristic equation have real 

parts [e.g., Ref. 58J. 

1. Bridges with Active Control 

By substitution of equations 40 and 44 into equa-

tion 45, the characteristic polynomial for the bridge under 

active control is obtained as: 

(46) 

in which (i=1,2,3,4,5,6) depend on the structural 

characteristics, control parameters, and the type of sensor 

as described in equations 42, 

(a) For acceleration sensor 

a., = Pl+2Rl +D13 ..L 

a 2 = P2+Rl(2Pl+Rl+D13)+D23+D43 

a 3 = P3+Rl(2P2+RlP1..LD23)+D33 
(47) 

a 4 = P4+Rl(2P3+RlP2+D33) 

a 5 = Rl(2P4+RlP3) 

a 6 = R2 P4 1 



26 

(b) For velocity sensor 

a 2 = P2+D12+Rl(2Pl+Rl) 

a 3 = P3+D 22 (2P2+RIPl+D12) 
(48) 

a 4 = P4+D32+D42+Rl(2P3+RlP2+D22) 

as = (2P4+RIP3+D32) 

= R2 
P4 1 

(c) For displacement sensor 

a l = Pl +2Rl 

a 2 = P2+Rl (2P l +Rl ) 

a 3 = P3+Dll+Rl(2P2+RlPl) 

a 4 = P4~D21+Rl(2P3+RlP2+Dll) (49) 

as = D31+Rl(2P4+RlP3+D21) 

a 6 = D41+Rl(RlP4+D31) 

where p. (i=1,2,3,4) are structural characteristics, 
1 

PI = 2Jfwf-A2+2JgWg-Hl 

P2 = W~-A3+W~+(2JgWg-Hl)(2JfWf-A2)-AlH2 
2 2 

P3 = (2Jgwg-Hi(Wf-A3)+(2JfWf-A2)Wg-AIH3 
(50) 

P4 = 
2 2 W
g

(W f -A3 ) 

and D .. (j=1,2,3,4; i=1,2,3) depend on both the structural 
J1 

characteristics and the control parameters 
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Dli = (rg+rf)RlROi 

D2i = [rg (2Jf wf -A2 )+ (2JgWg-Hl)JRlROi 

D3i = [rg(wI-A3)+rfw~JRlROi 
(Sl) 

D4i = rgrfRt R~i 

The stability conditions can be established from 

the characteristic pOlynomial of equation 46 using the 

Routh-Hurwitz criteria [e.g., Refs. S9,60J. By virtue of 

the Routh-Hurwitz criteria, the necessary and sufficient 

conditions for the roots of equation 46 to have negative 

real parts are that (i) each coefficient of the polynomial 

be positive 

a.>O for i=1,2, ... 6 
1 

(S2) 

and (ii) the determinants (test functions), T., be positive 
1 

for i=1,2, ... S i.e. 

where 

a 1 1 

T4 = 
a 3 a 2 

as a 4 

a a 6 

T·>O for i=1,2, ..• S 
1 

1 
tal 

T3 = a
3 

a 5 

0 0 
a l 

a l 1 
a 3 

a 3 a 2 TS = as 

0 
as a 4 

0 

(S3) 

1 a 

a 2 a 1 

a 4 a
3 (S4) 

1 0 0 0 

a 2 a l 1 0 

a 4 a 3 a 2 a l 

a 6 as a 4 a 3 

0 0 a 6 as 

For the active control devices considered in this 

report it is found that the conditions given in equation 52 
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as well as conditions that T.>O i=1,2,3,4 are 
1 

satisfied. Thus, the conditions stability are deter-

mined from the test function T 5 . In flutter analyses, the 

transitory motion, where the structure moves from stable 

oscillation into unstable oscillation, is usual of con-

cern. Such a transitory situation takes whenever the 

test function TS vanishes, i.e. 

(55) 

indicating that there exists at least one purely imaginary 

double root iw~. As a result, the flutter speed u f 1S 

obtained from equation 55. In determining the flutter 

s u f from equation 55, however, several important 

features should be pointed out in the llowing: 

(1) The aerodynamic cae H~: and A·" which 
1 i' 

are responsible instab in an otherwise stable 

bridge, are lons of bridg~ geometry, structural 

propert s, and the oncoming wind velocity u. These aero-

dynamic coeffi s are usually expressed in terms of the 

reduced wind velocity 

2nu (56) 

(2) The aerodynamic coefficients, express in 

terms ermined experimentally from the 

wind tunnel tests on a scale model. Then the nondimen-

sional experimental parameters are extended and applied to 
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the actual full-s bridge. A detailed discussion this 

approach is given, e.g., In Re . 9,21, and 26. 

(3) It obvious equations 47-56 the 

instability condition of equation 55 involves both the 

flutter frequency w1 and the flutter speed which are 

unknown. In some of literature, the flutter frequency 

WI ,is approximated by the fundamental frequency of either 

the torsional or the flexural motion, or is determined 

experimentally on a scale model [e.g., Refs. 10,21]. In 

the present analy s, however, both the flutter speed u f 

and the frequency wi will be determined exactly 

us an iterative procedure as follows: 

(i) A flutter frequency w* between the fundamental 
fl 

frequencies of both the flexural and torsional modes is 

assumed [e.g_, Ref. 31] 

(ii) The corresponding flutter speed u f is then 
1 

determined from the instability condition, Eq. 55, given 

(iii) From the coefficients of the characteristic 

pOlynomial corresponding to the flutter state at u f ' a 
1 

new flutter frequency w~ is determined 
2 

(iv) iterative procedure continued until 

both u f and w~ converge. 

It must be noted here that the iterative procedure 

described above is' very efficient, and both uf and wi con­

verge after 4 to 5 iterations. 
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2. Bridges without Control 

When the active control devices are not implemented, 

the characteris polynomial the bridge can be obtained 

from equations 40, 44, and 45 as 

D(s) = s4+Pls3+P2s2+P3s+P4 = 0 (57) 

in which the coefficients Pl ,P2 , and P4 are given by 

equation 50. Unlike equation 46 which is a sixth degree 

lynomial, equation 57 is a polynomial of fourth degree. 

, by virtue of the Routh-Hurwitz criteria, the 

necessary and sufficient conditions for the bridge to be 

stable are 

p.>O for i=1,2,3,4 
1 

T.>O for i=1,2,3 
1 

(58) 

(59) 

It has been examined in . 9 that the conditions 

p.>o for i=1,2,3,4 and T.>O for 
1 1 

1,2 are normally satis-

fied for bridge decks. Consequently, the stability con-

dition is determined by 

PI 1 0 

T = P3 P2 PI (60) 3 = 0 

0 P4 P3 

It should be mentioned T. glven ln equation 
1 

59 can be obtained from equation 54 by setting all 

control parameters to be zero. Therefore, the lity 

condition for uncontrolled bridge is a special case of 



31 

the bridge under active control, and the corresponding 

flutter speed uf and flutter frequency w1 can be obtained 

easily following the iterative procedure mentioned above. 



v. STATISTICS OF BRIDGE RESPONSE 

Another important problem in the dynamic analysis 

of cable-stayed bridges is the determination bridge re-

sponses under stochastic wind gusts. Cable-stayed bridges 

may not only because of instability, but because 

of excessively large responses, such as displacements or 

stresses. Even if the response is fatigue 

failure may occur owing to repeated applications of gust 

loads. 

The buffeting resulting from the gust winds 

are stat tical in nature. These loads have been modeled 

as stationary Gaussian random processes with zero mean and 

a duration [e.g., . 12]. Consequently, the bridge 

responses, W(x,t) and 6(x,t), are also stationary Gaussian 

random processes with zero mean and a finite duration. In 

this , the statis s of bridge responses, such as 

the standard deviation, at the critical locations will be 

determined. 

1. Power Spectral Density 
Matrix of Response 

Traditionally, buffering loads have been speci-

fiedbyfueirpower spectral densities [e.g., Re • 10,11,13-

15,54]. It is more convenient in the present analysis to 

32 
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carry out the computation the response statistics in the 

frequency domain. Hence, the frequency response matrix of 

the bridge 1 be determined 

The ions of motion the normal coordinates, 

get) and f(t), in the frequency domain can be obtained from 

the Laplace transform domain, equations 39, by replacing s 

by jw as follows: 

[

MQ (j w) 

IQ21(jw) 

gejw) I = 

f( j w) 

(61) 

in which the quantities with the argument jw represent the 

Fourier transforms of the corresponding quantities with the 

argument t. In particular, 

(62) 

where ~(t) and M(t) are given by equation 24, 

2 2 RlROi = -w +(2J w -H )jw+w +r L.(jw) 
g g 1 g g Rl+jw l 

(63) 

Q21(jw) = -jwAl 

2 2 RIROi 
= -w +(2Jfwf-A2)jw+(wf-A3)+ff Rl+jw LiCjw) 



34 

2 -w 

It should be mentioned that the subscript n for 

(64) 

gn(jw), fn(jw), and the other quantities, has been dropped, 

since we are investigating first mode vibration (both 

torsional flexural), i.e., n=l. Furthermore, the equa-

tions of motion for the second modes (both torsional and 

flexural), i.e., n=2, have exactly the same form as those 

of the mode vibration. 

The frequency response matrix for the normal coordin-

ates get) and f(t) follows from equation 61 as: 

(65) 

where 

2 (j w) 
Q12(jw) 

= -
(66) 

H
22

(jw) = 
Q
ll 

(jw) 

and 

(67) 

is obvious from equations 65-67 that each element, 

H .. (jw), of the frequency response matrix is complex. In lJ 

order to facilitate the numerical computations and to 

simplify the solutions the real and the imaginary parts of 

these elements will be separated using the following 
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notations: 

Q11 (jw) - (w) +j (w) 
(68) 

Q22 Cjw ) = Bl(W)+ jS 2(w) 

al(w) = i; l Cw)+r gn
1

Cw) 

a
2

(w) = i;2(w)+r (w) (69) 

,3 Ie w) = rGICw)+r (w) 

8 2 (w) = Q2(w)+ Cw) 

By comparison of s 63, 64, 68, and 69, it 

lS obvious that the elements 

Q2(W) are not functions control parameters, 

~l(w) 
2 2 

~2(w) (2J w -H1)w = w -w = g g g 
(70) 

rGl(w) 
2 2 

S"2 2 (w) (2J f wf -A2 )w = w -w -A = f 3 

while n1(w) and n 2 (w) are functions of active control 

parameters depending on the particular type of sensor given 

for acceleration sensor (71) 
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2 

nlCw) 
R02 Rl W 

= 
R2+w 2 

1 

2 

n
2

(w) 
R02 Rl w 

= 

for velocity sensor (72) 

2 

nl(w) = 
ROlRl 

R2+w 2 
1 for displacement sensor (73) 

It should be emphasized that the separation of the 

functions nl(w) and n 2 (w), which are functions of active 

control parameters, from those functions, such as ~.(w) and 
l 

n.(w), which are independent of the control devices, enables 
l 

one to examine easily the effect of active control on the 

responses. 

By virtue of equations 63, 69-70, ~(jw) appearing 

equation 67 can be written as 

in which 

Dl(w) = al(w)Sl(w)-a2(w)B2(w)+AlH2w2 

D2 (w) = al(w)B2(w)-a2(w)Bl(w)-AlH3w 

Finally the elements H .. (jw) 
lJ 

66 can be separated into real and 

follows: 

(74) 

(75) 

in equation 

parts as 



37 

Hll(jw) 
= 8 1 (w)Dl (w)+B 2-(w)D 2 (w) + j B2 (w)D l (w)-Sl (w).D 2 (w) 

Mlll(jw) I Mlll(jw) I 
(76) 

= H3Dl (w)+wH 2D2 (w) + j wH 2Dl (w)-H 3D2 (w) 

Illl(jw)1 Illl(jw)1
2 

wAI D2 (w) AID1(w)w 
= ----- + j 

Mlll(jw)1 Mlll(jw)1 

(w)+a 2 (w)D2 (w) + j a 2 (w)D1 (w) (w)D 2 (w) 

Illl(jw)j2 rlll(jw)1 2 

Let S(jw) be the power spectral dens 

the normal coordinates [get), f(t)], i.e., 

matrix of 

[

s (w) 
gg 

~ (jw) = 

Sfg(jw) 

(77) 

Then, it follows from equation 61 that ~(jw) is related to 

the power spectral ity matrix ~b(.jw) of the generalized 

buffeting loads, ret) and M(t) associated with the first 

torsional and flexural modes as llows [e.g., Refs. 61,62J; 

"-T 
§.Cjw) = H(jw)Sb(jw)H'" (jw) (78) 

in which the star denotes the complex conjugate and the 

superscript T denotes the transpose of the matrix, and 

(79) 
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2. Buffeting 

As mentioned previously, the buffet loads are 

de by the power spectral density matrix equation 79, 

in which the cross-spectral densities between the lifting 

force and the moment are assumed to be zero [e.g., Ref. 10J, 

1 • e. , 

SFM( jw) = 0 

SMF(jw) = 0 

The power spectral densit 

definition 

lim 
T-+oo 

1 

(80) 

E [F (j w) F:.': (j w) ] 
"" 

(81) 

in which E[ ] represents the ensemble average and T denotes 

the length of time [e.g., Refs. 63,64J. 

Substituting equations 24 and 30 for n=l into 

equation 62 and then into equation 81, one obtains 

(82) 

cross power spectral densities of the lifting force and 

the pitching moment at two points xl and x 2 . 
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According to Refs. 10 and 11, the cross power 

decom-

posed into the product a cross-correlation coefficient 

R(Xl ,X2 ;W) between buffeting loads at two points Xl and 
~ "" 

x 2 and a power spectral density SF(w) [or SM(w)] of the 

buffeting loads at a reference point, 

"" 
SF(xl ,x2 ;w) = SF(w)R(xl ,x2 ;w) 

(83) 
SM(xl ,x2 ;w) = SM(w)R(xl ,x2 ;w) 

where the buffeting loads are assumed to be homogeneous in 

space. 

The cross-correlation coefficient, R(xl ,x2 ;w), can 

reasonably be expressed in the following form [e.g., Refs. 

(84) 

In which Kl is used to define the scale of turbulence and 

assumed to be Kl =7. 

By substitution of equations 83 and 84 into equa-

tion 82, the double integrations can be carried out; with 

the results, 

(w) 

in which 

= SF(w) I Jew) 12 

= 8
M 

( w ) I J ( w) I 2 
(8S) 

(86) 
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where 

A = (87) 

The power spectral dens of the buffeting loads 

"" 
at a point, (w) and SHew), are one-half of their corre-

sponding one-s 

-+ 
SHew) , 

- "" 

power spectral dens ies, 

( 88) 

where SF(w) and SHew) are symmetrical with respect to w=O. 

Both the one-sided power spectral densities, S;Cw) 

'""+ 
and SHew), of the buffeting loads can be expres in terms 

of the horizontal and vert turbulent wind velocity 

fluctuations [e.g., Refs. 10,11,13-15,54], 

s+(w) 
.... + 

-+ -2
1 

12 ~dLy 2 
SW(w) u 

SF Cw ) = 4L Y2(w) + d1jJ I Y 3 ( w) I -2 -2 u u (89) 

-2
1 

! 2 
.... + 

(~~yJy5(w)12 -+ Su(w) SHew) = 4M Y4 (w) + 

u 

In which Land M are the stat lift and static moment, 

dM 
respectively, and d1jJ and d1jJ are the corresponding slopes. 

These quantities are functions of the mean wind velocity u 

and the angle of attack 1jJ, and they can be expressed as 

[e.g., . 10,52]: 

L 
1 -2 aeL 

= 2" pu (2B)[L O+ 1jJ] 

aeM 
(90) 

M 1 pu2( 2B2) [MO + 1jJ] = 2" alj) 
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where LO and MO are the unbalance 1 and moment, 
ae

M respectively, and ~ and ~ are the respective slopes. 

These quantities correspond to zero mean angle of attack, 

and they are determined experimentally for each particular 

bridge cross-section. 

The aerodynamic admittances, I y 2 C w) I through I y 5 (w) I , 
given in equation 89 are essentially the measures of the 

ratios of the aerodynamic forces in fluctuating flows to 

their corresponding quasi-static values. These aerodynamic 

admittances are assumed to be equal with the form [e.g., 

Refs. 10,11J, 

for i=2,3,4,5 (91) 

+ + 
Finally, the one-sided spectra, Su(w) and SWCW), 

appearing in equations 89 are expressed as [e.g., Refs. 10, 

13,15,54J: 

in which 

{ 

2}5/6 
21[8 1 + (2~p) 

6Ku Z 1: 
1 

(92) 
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(p 
z-.', (4p-l) 

(Z~·: ) 
1 

-2 and K is the surface 

coefficient depending on the topographical conditions. 

In equation 92, the reference wind velocity 

at a height of Zi=lO meters, and it is related to the mean 

wind velocity at a height Z* through the power formula 

[e. g ., Ref. 13] 

(93) 

where p is a constant depending also on the topographic 

conditions. 

3. Statistics of Response 

The elements of the power spectral density matrix, 

S(jw), are obtained from equations 65, 77-79, and 80 as 

follows: 

S (w) = ( j w) I 2 SF F C w ) + I H 12 ( j w) I 2 SMM ( w ) gg 

Sgf Cjw ) = HllCjw) 1(jw)SFF(w)+H12{jw)H~2(jw)SMM(w) 

Sfg(jw) = S1~ ( jw) 

SffCw) = IH2l (jw) 12 (w)+IH22(jw)12SMM(w) 

in whichS (w) and S (w) are real, whereas gg 

Sfg(jw) are complex. 

(jw) and 

(94) 
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The spectra of the flexural displacement, wex,t), 

and the rotation, eex,t), denoted by SWWex,w) and See(x,w), 

respectively, can be obtained from equations 16 30 as 

Swwex,w) 

See(x,w) 

= S (w)sin2(~x/~) 
gg 

= S (w)sin2(rrx/~) 
(95) 

in which only the fundamental modes have been considered. 

Since S (w) and Sff(w) are real and symmetric with 

respect to w = 0, the variances of W(x,t) and e(x,t) are, 

respectively, given by 

2 [00 = sin (~X/~) 
o 

2S (w)dw 
gg 

In addition to the variances of the flexural and 

(96) 

torsional motion at the center of the bridge deck given by 

equation 96, the variances of the motion at each side of 

the bridge deck can ·determined as follows: 

Let Zl(x,t) be the total displacement at one side 

of the bridge deck, i.e., 

B zlex,t) = W(x,t)+2 e(x,t) (97) 

Then, expressing zlex,t) in terms of the normal modes and 

retaining the first modes only, one obtains 

(98) 
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The power spectral density of zlex,t) is by de 

tion, 

Sz z (x,w) 
1 1 

(99) 

Taking Fourier transform on equation 98 and subs 

tuting result into equation 99, one can express the 

power density, z (x,w), in terms of the power 
1 1 

spectral densities of the normal coordinates as follows! 

(jW)} ] sin
2

(7TX/R.) 

(100) 

in which Re lSgf(jW)} is the real part Sgf(jw). 

The variance of the displacement Zl(x,t) is 

therefore, 

+ 

The displacement, Z2(x,t), at 

the bridge deck is 

other side of 

(101 

(102) 

In a similar manner, the variance of Z2(x,t) can 

be obtained as 

cr ~ 2 (x) = 2 s in 
2 

( 7TX/ R.1a co [s gg ( w ) + ( B 
2 

/ 4 ) Sf f ( w) 

- BRe lSgf(jW)l JdW (103) 



VI. POWER REQUIREMENT FOR 

ACTIVE CONTROL S 

As 

1S to invest 

previously, purpose of this study 

e the feasibility of lying active control 

devices to se the flutter speed and to reduce the struc-

tural responses in order to improve the of the 

bridge. The additional costs due to installation of 

control devices as well as the energy consumption should be 

balanced economically by the safety improvement and a less 

conservative ign for the bridge. It important to 

determine whether or not the power requirement for a sub­

stantial reduction of bridge motion and a significant in-

crease in speed is within ility of avail-

able control , such as the hydroservomechanism. An 

active control cable-stayed 11 not be feasible 

if the power requirement exceeds the of the practical 

control devices. In this chapter, the power requirement of 

the control s will be estimated analytically. 

The tantaneous power associated with the motion 

of the hydraulic ram connected to one the suspension 

cables is given by: 

(104) 

in which Set) the velocity of the ram, and T(t) is the 

45 
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tension in the suspension cable to which the hydraulic ram 

is subjected. 2 The tension in the cable T(t) consists of 

the tension TO due to the dead weight of the bridge and the 

fluctuation ~T(t) due to the bridge motions [see appendix 1, 

equations 1-1 to 1-3J, 

(105) 

in which 
EOAO 

= -~--- [v(t)sin$+SCt)] 
o 

~T(t) (106) 

where vet) ~s the vertical displacement at the anchorage 

[see appendix 1, equation 1-4J. 

By substitution equations 105 and 106 into 

equation 104, the instantaneous power ~(t) can be expressed 

as 

~(t) 
E A 
o 0 [v(t)S(t)sin~+S(t)S(t)J 
o 

Expressing vet), set) and Set) ~n terms of their 

Fourier transforms, 

vet) = i~ JC:v(jW)ejwtdw 

Set) = i~ JC:S(jW) wtdw 

set) = i~ JC:jws(jW)ejwtdw 

2The minus sign here means that the tension acts 
against the velocity. 

(107) 
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one obtains from equation 107 

TO/ oo jwt 
~(t) = 2n j w sejw)e dw _00 

E A {. /00 /00 'C ) 
+ 0 0 slncp . (.) S.·· ( . ) -J wl-w td d 2 J'J. v JW .. JW l e wl w 

o (2n) -00 -:>:> 

+ 1 2 fool 00 jill 1 S ( jill) S 1, ( jill 1 ) e - j (Ill 1 - Ill) dill 1 dill} 
(2n) -00 _00 

(IDS) 

average instantaneous power can be estimated 

from ion 108 by taking the ensemb average as, 

(109) 

Since the buffeting loads are assumed to sta-

tionary sian random processes with zero mean, the 

bridge es W(x,t) and eex,t) are also stationary 

Gaussian random processes with zero mean. Furthermore, 

set) is to W(x,t) and e(x,t) through a linear 

different equation [see appendix 1, 1-11, 1-12], 

and hence Set) is a stationary Gaussian random process with 

zero mean, 

E[S(jw)] = 0 (110) 

The average power can then be calculated by averag-

ing equation 109 over a long period of time as follows; 
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lim 1 jT/2 
@ = ~(t)dt 

T-+oo T -T/2 

e-j(Wl-W)tdWldWdt} (111) 

where equation 110 has been incorporated. 

Interchanging the order of integration in equation 

111 and carrying out the integration with respect to time, 

one obtains 

in which the relationship 

f 00 -i(w -w) 
e 1 

_00 

has been used. 

(112) 

Finally, integration of equation 112 with respect 

to wI yields: 



4-9 

~ EOAO \lim 1 foo. E[ (0 )S-'"(· )]d 
':I:' = -fJ,.- iT+oo 27fT JW v JW ~. JW W a { _00 

+ ~!! 2 !T L co j wE [ S ( j w ) S l~ ( j w) ] dw \ (113) 

The power spectral density SSS(w) of the random 

process Set) (displacement hydraulic ram) is by defini-

tion, 

tim 1 
SSS(w) = T+oo 27fT E[S(jw)S*(jw)] (114) 

and SSS(w) is an even function of W so that 

(115) 

By virtue of equations 114- and 115, equation 113 

becomes 

(116) 

average power requirement derived in equation 

116 is for the control device connected to one suspension 

cable without specifying a particular one. Let <PiCa), 

~r(a), ~fJ,.(i-a), and <pr(i-a) be the average powers for the 

control devices associated with the left and the right 

suspension cables, re ctively, at x=a and x=i-a. Then, 

in a similar manner, it can be shown that 

(117) 
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EOAO o· 100 

• .-h Nlffi 1 -. E [ ( .) S·'· ( .) ] = -r;- Sln~ T+oo 2nT _oo]W vr a,]w r a,]w dw (118) 

"ft(R..-a) 
EOAO 

sin</> R..im 2;T f: jwE[vR..CR..-a,jw)S~(R..-a,jw)]dw = -r;- T+oo 

(119) 

"<frCR..-a) 
EOAO 

sin</> R..im 2;T £: jwE[v (R..-a,jw)S*(~-a,jw)]dw = -r;- T+oo r r 

(120) 

The integrands of equations 117-120 can be expressed 

in terms of the expected values of WCa,jw), eCa,jw), uCa,jw), 

v(a,jw), etc., by use of equations 1-12 and 1-13 of 

appendix 1 as follows; 

E[vR..(a,jw)SiCa,jw)] = E[W(a,jw)u*(a,jw)+~ W(a,jw)v*(a,jw) 

+ B 6Ca,jw)u*(a,jw) 

2 
+ B 6(a,jw)v*(a,jw)] (121) 

E[v Ca,jw)S*Ca,jw)] = E[WCa,jw)u*Ca,jw)-~2 W(a,jw)v*(a,jw) r r 

B ( .) of( 0) - ~ 6 a,]w u d a,]W 

2 
+ ~ 6Ca,jw)v*(a,jw)] 

E[VR..(£-a,jw)S~(i-a,jw)] = E[W(~-a,jw)u*(~-a,jw) 

+ ~ WC~-a,jw)v*(~-a,jw) 

B 
+ 2 eCt-a,jw)u*(t-a,jw) 

+ ~2 e(t-a,jw)v*(t-a,jw)] 

(122) 

(123) 
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E[v (~-a,jw)S*(~-a,jw)J = E[WC£-a,jw)u*C~-a,jw) 
r r 

- ~ W(£-a,jw)v*(~-a,jw) 

- ~ e(~-a,jw)u*(~-a,jw) 
B2 

+ e(£-a,jw)v*(~-a,jw)J (124) 

Summing equations 117 to 120 and using equations 

121-124, one obtains the total average power as follows: 

1 JC: jwE[W(a,jw)u*(a,jw) 

+ W(i-a,jw)u*(i-a,jw)+ B2 eCa,jw)v*{a,jw) 

+ ~2 e(£-a,jw)v*(£-a,jw)]dw (125) 

The quantities W(a,t), e(a,t), uCa,t), v(a,t), etc., 

have been expanded in terms of the normal modes in equa-

tions 16 17. Taking the Fourier transforms of equations 

16 and 17, and substituting the resulting equations into 

equation 125, one obtains 

in which relations Xk(x) = 

(jw)h*(jw) 
n 

(126) 

ex) = sinknx/£ and a = ~/3 
[Equations 30 and 31J have been used. In equation 126, 

gn{jw), (jw), hnCjw), qnCjw) are the Fourier transforms 

gnCt), f (t), h (t), and g (t), respectively. n n n 

If only the first mode of the flexural and torsion-

a1 vibration is considered, the summation and subscript of 
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equation 126 can be dropped to yield 

4EOAO 2 rr iim 1 foo 
~ = iO sin¢sin 3 T+oo 2rrT _00 jwE[gejw)h*ejw) 

2 
+ B fejw)q*ejw)]dw (127) 

The Fourier transforms hejw) and gejw) can be 

obtained in terms of the Fourier transforms g(jw)and f(jw) 

by substituting s=iw in equations 38; with the results, 

hejw) = 

(128) 

q(jw) = 

[jw]/(Rl+jw) appearing in 

equation 128 can be separated into the real and imaginary 

parts 

In which the real functions nl(w) and n 2 (w) have been 

defined in equations 71-73 for different sensors. 

(129) 

Substituting equations 128 and 129 into equation 

127, and using the quantities given in equation 41, one 

obtains 



<P = Mf {9..im g T-+oo 
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1 JC:j WCn1 (W)-jn2 (W)JE[g(jW)g*(jW)JdW} 

2~T 1: j w[n1 (w) -jn 2 (w) ]E[ f( j w)ff'( jw) ] }dW 

(130) 

in which Sgg(w) and Sff(w) are the power ctral densities 

of the normal coordinates get) and f(t) [see equation 77J 

S (w) .tim 1 E[g(jw)g~t:(jw) ] = 27fT gg T-+oo 

(131) 

Sff(w) 
tim 1 E [f (j w) f~t, (j w) ] = 21TT T-+oo 

It can be observed from equations 71-73 that n
1

(w) 

1S an even function whereas n 2 (w) is an odd function of w. 

Since both Sgg(w) and Sff(w) are even functions of w, the 

integration for each term associated with n
1

(w) 1n equation 

130 is zero. As a result, equation 130 reduces to the 

following; 

(132) 



VII. NUMERICAL EXfu~PLES 

1. Bridge Properties and 
Input Data 

In order to demonstrate the feasibility of applying 

active tendon control devices to the cable-stayed bridges, 

the Sitka Harbor Bridge, Sitka, Alaska, is considered here-

in, referred to as Bridge 1. The stiffness of the same 

bridge is then theoretically reduced to represent a less 

conservative design, referred to as Bridge 2. The analysis 

results of both bridges are compared to illustrate the 

effect of active control on the bridge design. 

(i) Bridge 1: Design information on the Sitka 

Harbor Bridge has been provided by the Fairbank Highway 

Research Station, Department of Transportation, McLean, 

Virginia, as follows: 3 m = 6.859XIO kg/m(143.3 slugs/ft), 

I 4.. 2/ ( 4 f 2/ ) 1 = 12.4517XlO kg·m m 2.8XlO slugs t ft, ~ = 137. 6m s 

(450 ft), B = 11.43m(37.75 ft), Wg = 5.083 rad/sec, wf = 

8.589 rad/sec, J g = 0.01, J f = 0.01, a = ~/3, ¢ = 0.54n, 

11 2 6. 
~O = l06.32m(348.8 ft), EO = 1.S86XIO N/m (23XlO pSl), 

-2 2( . 2). () AO = 1.045XlO m 16.2 ln ,zu = 15. 85m 52 ft , p = 1.25 

kg/m3 (0.002425 slugs/ft 3). 

The experimental data on buffeting loads used in 

Ref. 10 have been used herein for approximation; K = 0.003, 

54 
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oeL oeM 
p = 1/7, LO = 0.0, MO = 0.05, ~ = 1.5, ~ = 0.93, 

l/J = 0°. 

Furthermore, the aerodynamic coefficients used in 

the present example are plotted in figure 6. These coef-

ficients were experimentally determined from wind tunnel 

tests on a model of the Sitka Harbor Bridge for l/J = O~ and 

they have been presented in Ref. 35. The aerodynamic 

coefficients, H~, H§, Ai and A§, were found to be negligible. 

(ii) Bridge 2: The input data described above for 

BridgeT 1 have been maintained, except that the stiffness of 

the bridge has been reduced by reducing both the flexural 

and torsional natural frequencies. The reduced fundamental 

natural frequencies in bending and torsion are given as 

follows: 

Wg = 3.3653 radlsec, wf =5.6863 rad/sec. 

It is mentioned that the ratio wg/w
f 

was kept identical for 

both bridges, i.e., wg/w f = 1.69. 

2. Stability of Bridges 

(i) Bridges without active control: Using the 

aerodynamic coefficients presented in figure 6 along with 

the fact that H~, H§, Ai, and A§ are zero, one can show 

from the stability conditions of equations 58 and 59 that 

instability occurs when 

(133) 
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indicat that the ins tab ity is due to torsional vibra-

on. The flutter state corresponds to the equality sign 

ln equation 133. 

By substitution of s=iw~ and the flutter condition 

given by equation 133 into equation 57, it can be shown that 

the flutter frequency wI is equal to the fundamental tor­

sional frequency, 

w~': = w 
f f 

Then, the critical wind velocity uf at which the 

torsional vibration becomes unstable is determined from the 

flutter condition, equation 133. As a result, the iterative 

procedures discussed in chapter 4 are not necessary in the 

present situation (bridges without active control). 

The results for the two bridges are as follows; 

u f = 69.52 m/sec (155.52 mph), w~ = wf = 8.589 rad/sec for 

Bridge 1, whereas uf = 46.02 m/sec (102.9 mph) wI = wf 

- 5.6863 rad/sec for Bridge 2. 

(ii) Bridges with active control: When the control 

devices are implemented, the flutter speed, uf ' and flutter 

frequency, WI' become functions of the control parameters 

Rl and ROi Ci=1,2,3) as can be observed from equations 47 

through 49. For simplicity, both Rl and ROi are non­

dimensionalized by the torsional frequency w
f 

as follows: 

(134) 
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The critical wind velocities, - , have been calcu-

lated using the stability conditions, equations 52 and 53, 

for the acceleration sensor (equations 49), the velocity 

sensor (equations 50), and the displacement sensor (equa-

tions 51), respectively. The corresponding flutter fre-

quencies, wl' have also been evaluated numerically using 

the iterative procedure described in chapter 4. 

The results for Bridge 1 are plotted in figures 

7-10 [appendix 3] for various values of £ and T (equation 

134). It will be discussed later that the displacement 

sensor is not efficient as compared to the acceleration 

and velocity sensors. Consequently, the results associated 

with the displacement sensor will not be presented. It 

should be mentioned that the case £ = 0 corresponds to 

the stability condition without active control. 

The aerodynamic coefficients are available only 

over certain range of the reduced velocity 2TIu/Bw~ as 

observed from figure 6 [appendix 3] [e.g., Refs. 26 and 

35], i.e., 

2TIU 
Bw* < 10. 

f 

Such a limitation restricts the range over which the flut-

ter speed, uf ' and flutter frequency, w~, can be calculated. 

This is the reason why some curves in figures 9 and 10 

[appendix 3] are not plotted over the full range of T. 
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The res on the flutter speed, u f ' and the 

flutter frequency, wf' for Bridge 2 are plotted in figures 

11-14 [appendix 3] for various s of £ and T. 

It is found from numerical computations that both 

bridges are only if the following conditions for the 

control parameters are satis 

£ > 0 , 

£ > 0 , 

£ > 0 , 

T > 0 for acceleration sensor 

T > 0 for velocity sensor 

T < 0 for displacement sensor 

(135) 

It can be observed from figures 7, 8, 11 and 12 [appendix 3] 

that the flutter speed uf increas as the values the 

control parameters £ and T increase, and in some regions 

the flutter lS raised more than 100%. In , the 

flutter speed u f lncreases tically and approaches 

infinity ( curve becomes vertical) when certain values 

of £ and T are chosen as shown in these figures, e.g., 

£=0.6, T=O.25, or £=0.5, T=O.29, for acceleration sensor 

in Bridge 1 [see figure 7, appendix 3]. As a result, by 

use of the active control with appropriate control 

parameters, the flutter speed can be raised to any desir-

able level for both conservatively (Bridge 1) less con-

servatively (Bridge 2) designed cable-stayed bridges. 

Comparison of figures 7 and 8 with figures 11 and 

12 [appendix 3] indicates that for the same percentage of 

increment in flutter speed, Bridge 2 requires smaller 
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values of control parameter £ than Bridge 1. Accordingly, 

it follows from equations 134 that the loop gain and the 

capacity of the required servomechanism is much smaller for 

Bridge 2 than Bridge 1. As a result, the active control is 

more efficient in rais g the flutter s ed less stiff 

and less conservatively designed cable-stayed bridges. This 

conclusion of practical importance and should be empha-

sized, since the payoff in implementing the active control 

is much higher for a less conservatively designed bridge. 

For the case of acceleration sensor, it can 

observed from figures 9 and 13 [appendix 3J that the flutter 

frequency wI decreases from the fundamental torsional fre­

quency wf as the values of the control parameters £ and T 

increase. However, the shift in the flutter frequency w1 
from wf is very small indicating that the approximation of 

the flutter frequency w1 by the fundamental torsional fre­

quency wf 1S reasonable, when the acceleration is used as 

the edback sensor. For the case of the velocity sensor, 

on the other hand, w1 increases from wf as £ and T increase 

[see figures 10 and 14, appendix 3], and the shift of w1 
from w

f 
is not small for large values of £ and T. 

When a value of the aerodynamic coefficient A~ 

[see figure 6, appendix 3] satis s the stability condi­

tion, equation 55, a higher flutter frequency wI results in 

a higher flutter speed uf as can be observed from equation 
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56. Consequently, the velocity sensor seems to be slightly 

more favorable than the acceleration sensor as far as the 

stability problem is concerned. 

3. Bridge Response and 
Power Requirement 

* In contrast to the flutter speed u f and frequency wf 

the statistics of the bridge motion depend not only on the 

control parameters € and T but also on the mean wind veloc-

ity u. This is because the aerodynamic coefficients HI and 

A2 are functions of the mean wind velocity u. 
The frequency response matrix of the bridge motion 

with active control is computed using equations 69-76, 

whereas the frequency response matrix of the bridge motion 

without active control is obtained from the same equations 

by setting €=T=O. Since AI' H2 and H3 are all zero, it is 

obvious from equation 76 that 

(136) 

Therefore, the cross-power spectral densities of the 

response Sgf(jw) and Sfg(jw) are zero [see equation 94], 

i.e., 

(137) 

The power spectral densities for the fundamental 

modes of the flexural and torsional vibrations, S (w) and gg 

Sff(w), are computed from equation 94. By virtue of 

equation 137, it is obvious from equations 101 and 103 that 
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the variances of the vertical displacements at both sides 

of a bridge station X are identical, denoted by a~(x), i.e., 

222 
0z (x) = 0z ex) = 0z'x) (138) 

1 2 

The variance O~(~/2) of the vertical displacement 

at the center span x = ~/2 computed using equation 101 

along with a numerical integration procedure. Furthermore, 

the average power ~ required for the active control devices 

is computed from equation 132 together with a numerical 

integration procedure. 

Numerical results on standard deviations, 0Z(~/2), 

of the vertical displacement at the center span x = t/2, and 

the average power requirement ~ for certain particular 

values of the control parameters E and T are plotted as 

functions of the mean wind velocity u, in figures 15 and 16 

[appendix 3J for Bridge 1, and in figures 17 and 18 

[appendix 3J for Bridge 2, for the various sensors. In 

figures 15 and 17 [appendix 3J, the standard deviations of 

the bridge response without active control are also dis-

played for the purpose of comparison. 

It is clearly demonstrated in figures 15 and 17 

[appendix 3J that a substant reduction in bridge response 

can be achieved by the active control devices, in particu-

lar, in the region where the mean wind velocity exceeds 

the flutter speed of the uncontrolled bridge. It can be 

easily observed that the displacement sensor is not as 
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e cient as the velocity and acceleration sensors. 

It is further observed from figures 16 and 18 

[appendix 3J that the average power requirement for active 

control is small, and it is within the range of practicality 

(smaller than 10
3 

horsepower) even at the extremely high 

wind veloci s. 

The fact that the active control devices can signif­

icantly suppress the bridge response using only such a small 

average power is another important conclusion obtained in 

the present study. From the physical standpoint, this is 

not surprising at all. As cribed previously, the sus-

pension cables are init ly subjected to large tension TO 

due to the dead weight of the bridge deck. When the rota­

tion e(x,t) of the bridge deck at x=a or £-a occurs in the 

clockwise direction, all the control devices have to do is 

to release part of the initial tension TO in the "Ie "Sus-

pension cable and to increase the additional tension ,in the 

right suspension cable to effectively produce the counter 

reaction (or restoring moment) to the rotation e(x,t). A 

similar situation applies to the ~ertical motion W(x,t). 

To release part of the initial tension in the suspens£on 

cables requires only a very small amount of power.. This is 

a major advant~ge of implementing the active control 

devices to cable-stayed bridges. 

For demonstrative purpose, a particular value of 

mean wind velocity u = 45 m/sec (100.7 mph) has been choseri, 
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which is close to the flutter speed of Bridge 2 but far 

away from the flutter speed of Bridge 1. The uncontrolled 

standard deviation of the displacement at the center span 

position of Bridge 2 is 0z (~/2) = 0.18 m, that is approxi­
o 

mately 8 times larger than that of Bridge 1, 0z (2/2) = 
o 

0.0274 m. The ratios, 0Z(~/2)/aZ (2/2) between the con­
o 

trolled standard deviation of the bridge displacement at 

x=~/2 and the uncontrolled one together with the correspond­

ing average power requirements are plotted for both bridges 

in figures 19-26 [appendix 3] for various values of the 

control parameters 8 and T. 

For Bridge 1 it is observed from figures 19-22 

[appendix 3J that the standard deviation of the bridge 

response can be reduced as much as 50% to 40% (8)0.1 in 

figures 19 and 21 [appendix 3J, and 8>0.75 in figures 20 

and 22 [appendix 3J)with an average power requirement less 

than 10 HP. For Bridge 2, the standard deviation of the 

bridge response can be reduced as much as 82% to 84% 

(£<0.25 in figures 23 and 25 [appendix 3J, and 8>0.4 in 

figures 24 and 26, [appendix 3J)with an average power 

requirement less than 20 HP. Indeed, the power requirement 

for the active control of the cable-stayed bridges dis-

cussed herein is very small for both the conservatively 

and nonconservatively designed bridges. 
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It should be emphasized that a 50% reduction in the 

standard deviation of the bridge response for Bridge 1 is 

probably not necessary, since it has been designed conserv­

atively where the uncontrolled response is safe enough, 

i.e., crZ(~/2) = 0.0274 m. For Bridge 2, however, the SO% 

reduction in bridge response is necessary, since the bridge 

is less stiff and less conservative so that the uncontrolled 

response, crZ(~/2) = O.lS m, may not be safe. Although the 

uncontrolled flutter speed u f = 46.02 m/sec (102.9 mph) for 

Bridge 2 is low, an implementation of the active control 

devices with 20 HP not only reduces 80% of the structural 

response but also raises the flutter speed up to infinity 

(i.e., no flutter problem). As a result, the biggest pay­

o of the active control devices is for application to the 

less stiff, more flexible and less conservatively designed 

cable-stayed bridges. 



VIII. CONCLUSION 

The dynamic analysis of typical two cable-stayed 

bridges implemented by active feedback control systems has 

been formulated. The hydraulic servomechanisms are con­

nected to the existing four suspension cables so that under 

severe wind storm these cables serve also as active tendons. 

The control forces from each tendon (cable) acting on the 

bridge are regulated by the movement of the hydraulic ram 

which in turn is actuated by the feedback measurements of 

the bridge motion from the sensor. 

The bridge is subjected to both buffeting and self­

excited loads as well as the control forces from the tendons 

(cables)e Both the stability condition and the statistics 

of bridge responses under severe storm gusts have been 

examined. Because of the ability of each suspension cable 

(tendon) to release or increase the forces acting on the 

bridge as regulated by the active control devices, both the 

torsional vibration and the flexural vibration of the bridge 

can be suppressed effectively and the flutter wind speed 

can be raised easily with a small amount of power consump­

tion by the control devices. 

The formulation has been applied to the Sitka 

Harbor Bridge in Alaska, as well as a hypothetical bridge 
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with a much smaller stiffness. Numerical results indicate 

that the flutter speed of both bridges can be raised up to 

any desirable level or infinity with a small power require­

ment for the control devices. Furthermore, the root mean 

square response of the bridge displacement can be reduced 

substantially (up to 80% of the uncontrolled one) with a 

small power requirement by the control devices. As a resul~ 

the active feedback control is feasible for practical appli­

cations to cable-stayed bridges. 

Comparison of numerical results further indicates 

that the active feedback control more efficient and 

requires smaller servomechanism capability for less stiff 

(more flexible) and less conservatively designed cable­

stayed bridges. This is consistent with the conclusion 

obtained in Ref. 2 where the active tendon control is more 

effective for more slender and flexible structures. 

The conclusions derived from th study are very 

encouraging. By the implementation of active feedback con­

trol systems, the conservativeness of the bridge design can 

be reduced significantly, while both a small level of 

bridge response under strong wind gusts and an extremely 

high flutter speed can be achieved with a small power 

requirement for the control devices. The potential payoff 

for such an active feedback control may be very significant. 
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APPENDIX 1 

DERIVATION OF RESTORING FORCES AND MOMENTS 

FROM SUSPENSION CABLES WITH ACTIVE CONTROL 

Without external disturbances, such as wind gusts, 

each suspension cable is designed to carry the dead weight 

of the bridge deck, including the weight of the vehicles, 

denoted by TO. Let Zo be the elongation of the suspension 

cable due to TO' Then [see coordinate system in figure 2a] 

E A 
T = ~ Z o to 0 

(1-1) 

Under the excitations of gust loads, the vibration 

of the bridge deck results in the fluctuation of tension in 

the suspension cable, i.e., 

in which 
EOAO 

~T(t) = fiZ(t) 
~O 

where aZ(t) is the fluctuation of the elongation of the 

suspension cable from its static equilibrium value ZO. 

The fluctuation ~Z(t) is contributed by (i) the 

motion of the bridge at the anchorage of the cable, and 

(ii) the active control devices [see figure 3] 

AZ(t) = v(t)sin~+S(t) 
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(1-2) 

(1-3) 

(1-4) 
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in which ~(t) is the vertical displacement of the anchorage, 

~ is the angle between the suspension cable and the bridge 

deck, and Set) is the displacement of the hydraulic ram 

(actuator of the servomechanism). 

The motion of the hydraulic ram, set), is regulated 

by the feedback signal from the sensor installed at the 

anchorage in such a way that the vibration of the bridge can 

be effectively suppressed [see figure 4].1 Since the feed­

back signal is proportional to the motion of the anchorage 

vet), set) is related to vet) through the following equation 

[see equations 10, 12, and 15] 

(1-5) 

where Rl , ROi and Li [-] have been defined in equations 11, 

12, and 15. 

Therefore, the vertical restoring force pet) applied 

to the anchorage by the suspension cable, resulting from 

the bridge vibration and the control devices is [see 

figure 3] 
EOAO 

pet) = -~T(t)sin~ = - -t---[v(t)sin$+S(t)Jsin~ (1-6) 
o 

It follows from equations 1-3 and 1-6 that the 

restoring force, P(t),and the fluctuation of tension in 

the cable 8TCt), is a linear function of the fluctuation, 

IH . "ct f . ere, ~n order to demonstrate the 1 ea 0 actlve 
control, the control servomechanisms are assumed to be 
connected to the suspension cables. This may not be the 
case in an actual design but the principle will remain the 
same .. 
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~ZCt), of the cable length [elongation or contractionJ. 

Since the suspension cable cannot take compresslon, a 

necessary condition for the present analysis to be valid 

is that 

(1-7) 

implying that To~16T(t)l. Equation 1-7 ensures that the 

force in the cable is always tension [see equations 1-1 to 

1-3J. In other words, the force in the suspension cable 

TO-~T(t) during the upward motion of the anchorage should 

always be positive, otherwise the problem becomes nonlinear. 

Now the restoring forces from the four suspension 

cables at the locations x=a and x=~-a can be combined to 

yield the resulting restoring force and moment with respect 

to the cross-section of the bridge deck. The total restor­

ing force U(a,t) and Moment Q(a,t) at x=a are given by: 

(1-8) 

B 
Q(a,t) = 2[P~(a,t)-Pr(a,t)J (1-9) 

in which P~(a,t) and PrCa,t) are the restoring forces, 

respectively, from both the left and the right suspension 

cables at x=a. It follows from equation 1-6 that 

(1-10) 
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in which SiCa,t) and SrCa,t) sfy equation 1-5, i.e. 

Si Ca ,t)+R1Si Ca,t) = RIROiLi[viCa,t)] 

S Ca,t)+R1S Ca,t) = R1RO.L.[V (a,t)] r r ~ ~ r 

(1-11) 

is obvious from 2b that 

B = W(a,t)+2"eCa,t) 

B = W(a,t}-2"eCa,t) 
(1-12) 

The displacement, u(a,t), and rotation, vCa,t), 

of the bridge deck at x=a are related to the splacements 

SiCa,t) and Sr(a,t) of both hydraulic rams associated with 

two suspens~on cables as follows: 

uCa,t) = [S£(a,t)+SrCa,t)]/2 

v(a,t) = [Si(a,t)-Sr(a,t)]/B 

(1-13) 

where uCa,t) and v(a,t) are referred to as the control dis-

placement and rotation, respectively. 

Summing and subtracting equations 1-11, one obtains 

u(a,t)+RluCa,t) = RIROi[WCa,t)] 

vCa,t)+RlvCa,t) = RIROiCe(a,t)] 

where equations 1-12 and 1-13 have been used. 

Cl-14) 

Finally, by substitution of equations 1-10, 1-12, 

1-13, into equations 1-8 and 1-9 the restoring force 

U(a,t) and moment Q(a,t) at x=a can be expressed as 

UCa,t) - - (1-15) 

Q(a,t) = (1-16) 
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obvious from equations 1-14 to 1-16 that the 

restoring force UCa,t) depends on flexural displacement 

W(a,t) alone, whereas the restoring moment Q(a,t) depends 

on the cross-sectional rotation e(a,t). 

Due to the symmetry of two cable-stayed bridge 

with respect to the mid-span, the expressions for UCt-a,t) 

and Q(~-a,t) are identical to equations 1-15 and 1-16, 

respectively, in which the argument "a" is replaced by 

HR._a". 



APPENDIX 2 

MODAL ANALYSIS 

By use of the sical modal approach, the xural 

displacement W(x,t) and rotation a(x,t) are expressed in 

terms of the normal modes as: 

W(x,t) :: ~ gkCt)Xk(x) 

e(x,t) :: ~ fk(t)Yk(x) 

(2-1) 

where gkCt) and fkCt) are the normal coordinates in bending 

and torsion, and Xk(x) and Yk(x) are the associated normal 

modes. The normal modes, Xk(x) and YkCx), should satisfy 

appropriate boundary conditions and the following equations: 

EI 3
4 

-2 ( -4 Xk(x) :: m W
gk 

Xk x) 
ax 

(2-2) 

GJ a2 
Is 

-2 
-2 Yk(x) :: wf Yk(x) 
ax k 

in which Wg and wf are the natural frequencies of the 
k k 

bridge deck without the effect of the suspension cables. 

Substitution of equation 2-1 into equations 13 and 14 

yields 

R1ROi E Li[gkCt)]XkCa) 
k (2-3) 

v(a,t)+R1v(a,t) = R1ROi ~ Li[fk(t)]Yk(a) 
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The functional form on the right hand side of 

equation 2-3 indicates that the control displacement u(a,t) 

and rotation v(a,t) can be expressed in terms of the normal 

modes .. 

Substituting equation 2-4 into equation 2-3 and 

uSlng the property of linear independence of Xk(x) and 

Yk(x), one obtains 

(2-4) 

(2-5) 

It can easily be shown that equations 2-3 to 2-5 

hold when the position x=a is replaced by the position 

x=.Q.-a. 

By substitution of equations 2-1 and 2-4 into 

equations 8 and 9, and then into equations 6 and 7, the 

restoring forces and moments can be expressed in terms of 

the normal modes and normal coordinates as follows: 

2EOAO { 
uex,t) - - .Q,O sin¢ ~ [gk(t)sin¢+hk(t).[Xk(a)&(~-a) 

+ Xk(~-a)o(x-~+a)]} (2-6) 
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Q(x, t) = 

(2-7) 

By virtue of equations 5 and 2-1, the self-excited 

force and moment given in equations 3 and 4 can also be 

expressed in terms of the normal modes and normal coordin-

ates as follows: 

F (x,t) = PB2 kE{Wf* H* g (t)X (x)+Bw*[H* fk(t) s-e 1 k k f 2 

(2-8) 

M (x,t) = PB 3 L{W* A* g (t)X (x)+Bw*[A* fk(t) s-e k f 1 k k f 2 

+ w~ A~ fk(tl]Yk(xl} (2-9) 

Finally, by use of equations 2-1, 2-2, and 2-6 

through 2-9, the equations of motion, equations 1 and 2, 

become 

L: {.. • -2 2EOAO 
[mgk(t)+Cbgk(t)+mw gkCt)]Xk(x)+ 2 sin¢ [gkCt)sin¢ 

k gk 0 

+ hk(t)][xkCa)o(x-a)+xkC2-a)o(x-t+a)]-PB2[w~ Hi gkCt)Xk(x) 

+ Bw~(H~ £k(t)+w~ H~ fk(t))\(Xl]} = Fb(x,tl (2-10) 
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2 

{
.• • -2 B EOAO 

~ [ISfkCt)+Ctfk(t)+ISwfkfk(t)]Yk(X)+ 2~O sin~ [fk(t)sin~ 

+ qk(t)].[Yk(a)oex-a)+Yk(~-a)8ex-~+a)]-PB3[w¥ Ai gk(t)xkex) 

(2-11) 

Multiplying equations 2-10 and 2-11 by Xn(x) and 

Yn(x), respectively, and integrating over the range of x, 

one obtains 

Mngn(t)+Cbngn(t)+MnW!ngn(t)-PB2W~ H~ Vgngn(t) 

2EOAO. { 
+ to s~n~ ~ [gk(t)sin$+hk(t)][Xk(a)Xn(a) 

+ Xk (9.-a)Xn (9.-a)] } _PB3w~ ~ {[H~ fk(t)+w~ H3 fk(t)] Gkn} 

= F (t) 
-n (2-12) 

(2-13) 

In which the following orthogonality conditions of the nor-

mal modes have been used, 

Vf °kh 
n 

(2-14) 
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where 0kn is the Kronecker delta, and 

M 
n 

Jt 
M (t) = Mb(x,t)Y (x)dx 
-n 0 n 

(2-15) 

(2-16) 

(2-17) 

(2-18) 

Equations 2-12 and 2-13 can be written conveniently 

as follows: 

(2-19) 
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+ w~: Ai. f (t) JV 
f 3 n f 

n 

In 

2 
Wg 

2 
wf 

sin2~ E fkCt) [Yk (a)Yn (a)+Yk (2-a)Yn C2-a)] 
ktn 

pB 3Wi~ 
f 

A~'~ 
1 

E gkCt)GnK = M (t) 
k -n 

which it is obvious that 

-2 + 
2EOAO 

sin2~[X2(a)+x2(2-a)] = Wg Mn 20 n n n n 

2 
-2 B EOAO 

sin2$[y 2 Ca)+y2(t-a)] = wf + 21 n 20 n n n n 

(2-20) 

(2-21) 

(2-22) 

(2-23) 

The quantities wand W glven In equations 2-21 
gn fn 

and 2-22 are the natural frequencies in bending and torsion 

of the two cable-stayed bridge, including the effects of 

the s~spension cableso 

,To further simplify the equations of motion, the 

normal modes Xk(x) and Yk(x) for the two cable-stayed bridge 

are assumed to be identical with the following form [e.g., 

Refs. 10,57]: 

. Xk(x) = Yk(x) = sin k~x (2-24) 
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By use of equation 2-24, the quantities V Vf
, 

gn' n 
Gnk , and Gkn given in equations 2-14 and 2-15 reduce to 

£ V = Vf = (2-25) g 2" n n 

(2-26) 

and equations 2-16 through 2-18 become 

M = M 
£ I I I 

1(, = m 2" , = = 2" n n s (2-27) 

Cbn Cb 
£ C

tn 
R. = "2 , = Ct "2 (2-28) 

!:n Ct ) =f~ FbCx,t)sin 
n1T x 

dx -£-

M Ct) -f~ Mb(x,t)sin 
n1TX dx ",n - 0 -£-

(2-29) 

Furthermore, the coupling terms resulting from 

active control appearing in equations 2-19 and 2-20 can be 

written as 

sin 
k1Ta 

sin 
n1Ta + sin 

K1T(£-a) 
sin 

n1T(R.-a) = -£- -r J(, J(, 

sin 
k'ITa 

sin n'ITa [1+(_1)k+l(_1)n+1J = -J(,- -£- (2-30) 

In which the identity 

sink1T(R.-a) = (_l)k+lsin k~a 

has been used. 

Consequently, with the aid of equations 2-24 to 

2-30, equations 2-19 and 2-20 can be simplified as 

follows: 
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g Ct)+[2J W -Hl]g +w2 g (t) n g g n g n n n . n 

l: 
k 

k1Ta n'1Ta 
gkCt)sin --t- sin --2- oCk,n) 

FnCt)/M .... n 

2 
B EOAO o 2 l: f ( ) 0 k'ITa sin n'ITa o(k,n) + s~n cp k t s~n --2- -2-2In20 k;tn 

2 

+ 
B EOAO 

sincp E qk(t)sin k'ITa sin n1Ta o(k,n)-Algn(t) 
2In20 -2- -y-

k 

= M (t)/I ..... n n 

in which the following notations for the aerodynamic 

coefficients and o(k,n) have been used: 

PB2w~Hl' B 3 "'Ao" 
Hl Al 

P wI 1. 
= , = I m s 

B 3 
.to Ho" B4 .f·A··· 

H2 
p wf:2 

A2 
p wf 2 

= = Is ill 

B 3 .f.2Ho'. PB4w~2A3 
H3 

p wf 3 
A3 = = m Is 

o(k,n) = 1+(_1)k+1C_1)n+l 

(2-31) 

(2-32) 

(2-33) 
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For the Sitka Harbor Bridge where the suspension 

cables are attached to the bridge deck at 

a = 'k/3 (2-34) 

it is obvious that for the first three torsional and 

flexural modes, 

sin k~a sin n~a 6(k,n) = 2 sin2 n; (2-35) 

Consequently, the equations of motion, equations 2-31 and 

2-32, can be decoubled by virtue of equation 2-35 as 

follows: 

•• ( ) [2J H ]. 2 () 4EOAO • . 2 n'IT () g t + W - 1 g +w g t + sln$sln -- h t 
n gn gn n gn n Mn R. a 3 n 

F (t) 1M "",n n (2-36) 

(2-37) 

Note that equations 2-36 and 2-37 hold only for the 

first three modes, i.e., n<3. 



APPENDIX 3 

FIGURES 

87 



1 

1 

1 

1 

1 

88 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 



89 

x 

( a) 

(b) 

Fi g u r e 2; S t rue t u r a l Mod e l : (ll) Sid e View with 
Coordinate System (b) Two Degrees of Freedom 
Mode l. 



90 

(J') 

.,.....,. (!J 
--J .. ..a 

"--' tU 
U .,.....,. 

~ .... 
"--' ~ 

a.. 0 

U') 

~ 
QJ 
0.. 
U') 

::J 
V) 

E 
0 
t-

'101.-

U') 

<!J 
U 
t-
o 

\ / La... 

t::'\ 
~ .-.......... 

.:tit. 
L.. t- to) 
0 <J CD -'-' 
U') 0 QJ 
a:: 

CD 
0 M 

"'0 (!J --
'- c.... 

tIl ::J 
C' 

iZ 



Buffeting and 
Aerodynamic + ~ , 
Loads 

.......... -
bO+J 
'1"-' 

'M P-4 .... 
o (J) 
.IJ U 
(I) H 

2'J~ 

Piston 
Displacement 

~ o ..... 
(I) 

c:I 
'QJ Q) 
o..r-I 
(1)..0 
:::s cd 

~ 

Bridge 
Anchorage Displacement 

~ 

Feedback 
~------~~~Transducer 

Trans­
ducer 

Transducer 
Voltage 

Energy Source 

J, ~ 
"f Energy Source 1 

...... ,. 

Actuator ~ 
I" 

Spool 
Dlspl. 

Servo­
Valve 

~ 
I" 

Valve 

Servo­
Amplifier Hh 

Current 

Figure 4: Block Diagram of Control Devices 

to 
i--' 



92 

LH s-H L 
1 2 3r" 

1 -H s 1 .... 
I 1 J" 

~ 9"(s) 
4- ... Gg1(s) " -

- \'>j 
F(s)/M '1'_ 

I G g2 (3) L 
I I'" 

I G
f2

(S) I 
I I" 

M(s)/I -, 7\ Gfl(S) 
f(S) 

+~ \ .. 

~ 
I .. 

.;.-' 

~As-A l 
I 2 31 

r -A S 1 
f I I' 

G
gI 

(s) 
2 2 

Gfl(s) 
2 2 = s +2J w s+w = s +2J fwfs+w f g g g 

Gg2 (s) 
RIROiLi (s) 

Gf2 (s) 
R1ROiLi(S) 

= r R +s = r f g I -,-- R1+S 

Figure 5: Block Diagram of the Coupled Dynamic 
System and Control Devices 



93 

6~--------------------------------~ 

5 

4 

2 

0 
0 2 3 4 5 6 7 8 9 10 

2-ru 
-*-
wf B 

1.0 

0.8 /I 
0.6 

N *« 0.4 

0.2 

0 

-0.21 I I I I I I I I ! 

0 2 3 4 5 6 7 8 9 10 

2-ru 
* wf B 

Figure 6: Aerodynamic Coefficients for the 
Sitka Bridge 



350" ---------------.--.--r---.-----------~----~ 

150 

0 
CD 

//// ~~ 
en .s::, 

~IOO ~ Q. 

E 

I~ __ ... 1 ~~~~~ 

~ 470 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

r 

Figure 7: Criti cal Wind Ve locities for Bridge 1 
(Acceleration Sensor) 

-l::l 

ill 
+" 



350-· ----------------~------------~------------~--~ 

150 

300 

i 250r ///~ -----loo ~ 
l::l I ff / ~ _____________ I 

200 

150 rc= -=1 70 

o 2 3 

T 

Figure 8: Critical Wind Velocities for Bridge 1 
(Velocity Sensor) 

~ 

l:l <.0 
(J1 



8.6ri--------------------------------------------------, 
E::O 

£=0.1 
~ 

8.5 

Co) 

I> 
CI) 

........ 

." 
0 ... 

• - I 
3 8.4 \ \ 'f.>o 

8.3~1 ______ ~ ________ L_ ______ ~ ______ _L------~ ________ L-____ ~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 

r 

Figure g: Flutter Frequencies for Bridge 1 
(Acceleration Sensor) 

0.7 

CD 
Q) 



* ...... 3 

97 

9.5------------------------~----1 

9.0 

8.5 L....-__ "'--_....L-_-'--_-I...-_---'--_---L..._----I----J 

o 2 3 3.75 

T 

Figure 10: Flutter Frequencies for 
Bridge 1 (VeLocity Sensor) 



100 

200 

s:::. 
D-
E .. ..... 

I:::> 

0 
Q) 

)) J / j751~ 

50 

100
0 0.1 0.2 0.3 0.4 

r 

Figure 11: CriticaL Wind Velocities for Bridg~2 
(Acceleration Sensor) 

to 
00 



s::. 
a. 
E .. 
'+-

I::> 

230. --r------~-----

100 

200 

1 I 0/ nJ /1 o· 

~ 
0 
Q) 
CJ) 

///~ ~751~ 
150 1 / / /' ~ ----

50 
E..=o 

100' 2 3 o 
! 

Figure 12: Critical Wind Velocites for Bridge 2 
(Veloc.ity Sensor) 

ill 
<..0 



100 

~.70...--------------------' 

(=0 

(=0.05 

~.6~ 

~.60 

~.5 8 '-_""'-_...i--_ .......... _.....I..-_--'-_--"'-_--i._---J 

o 0.1 0.2 0.3 0.4 

Fi g ure 13: Flutter Freq uen c ie s fe r l 

Bridge 2 (Acceteration Sensor) 



... ..... a 

101 

7.0.-----------------------------~ 

6.5 

6.0 

2 

Figure 14: Flutter Frequencies for 
Bridge 2 (Velocity Sensor) 

3 



100 
21 I 

t 0:: 
w .... 
w 

~ -l C\I 10 ...... 
~ 

I."" 

-2 
10 

40 

WINO SPEED. mph 

125 150 115 200 
I I I 

4. UNCONTROLLED 

I 
I . DISPLACEMENT SENSOR 

2. VELOCITY SENSOR 

3. ACCELERATION SENSOR 

... '-'-'-'-'-'-'-J \ __ .--.-- 2_------.-.-._. -------;--

50 60 10 80 90 

WIND SPEED, M/sec 

Figure 15: Standard Deviation for Bridge 1 

1 . ( e = 0 .1, "Z: = 10 ) 

3.(t=1, 1:'=-15) 

2.(c.=O.5, 1;=8) 

100 

J-t 
0 
tv 



4 
2dO 

4 
10 

a::: 3 
w 10 
;= 
o 
a.. 
w 
en 
a::: 
o 
::t: 

- 2 
It&« 10 

N_ 
.... 

N 

100 125 

WIND SPEE D. mph 

150 175 200 

....-

--.---- ----..,......,. . 

# -

-" ft _ 

~ -';....~ 
---- ~ '?> ~ 

I. DISPLACEMENT SENSOR 

2. VELOCtTY SENSOR 

3. ACCELERATION SENSOR 

10 LI ____________ L-__________ -L ____________ ~ __________ ~ ____________ ~ __________ _J 

40 50 60 70 80 90 100 

WiND SPEED, Mlsec 

Figure 16: Average Power Requirement for Bridge 1 

1. ( E. = OJ, 1" = 1 0 ) 2 .< E = 0.5, t" = 8 ) 

3.(E.=1, 1:=-15) 

f-J' 
o 
w 



50 
21 I 

cr: 
lfJ 
I-
lfJ 
;::I! _I 
....: 10 
N 
...... ..., 
~N 

10- 2 

5x10- 2 

20 

WIND SPEED, mph 

75 100 125 150 
I I I 

4. UNCONTROLLED 

I . DISPLACEMENT SENSOR 

2. VELOCITY SENSOR 

3, ACCELERATION SENSOR ............. ........... 

...--------------_.--' 

30 40 50 60 70 

WIND SPE ED, M/sec 

Figure 17: Standard Devidtion for Bridge 2 

1.(f=0.1. T=10) 2.< c=O.4, L=3.64} 

3.(f=1, 1:=-2.8) 

175 

/ 
/ 

/' 

---
I--' 
0 
+ 

80 



WIND SPEED, mph 

5 50 75 100 125 150 175 
10 

E I 

,. DISPLACEMENT SENSOR / 
2. VELOCITY SENSOR / 

4 
3. ACCELERATION SENSOR / 10 / \ . / 

0:: ./ -z.. // LLt 
;= /" ,." 
0 . .; 

/' .; 
D.. ,. 
LLt 3 /,' ,. 
~ to 

. ,. 
/"" ,. 

~' 
.; 

0 
:::r 

/' ..... 
11-91 

. .; 
/"" .",.. 

"'-
/' ~ 

I::: 2 /' 
~ 10 /' 

/' 
/' 

I 
/ 

/ .' -y 

10 
20 30 40 50 60 70 80 

WIND SPEED. M/sec 

Figure 18: Average Power Requirement for Bridge 2 

1.( £=0..1, r=10) 2.( £=0.4, T=3.64) 

3.(t=1,1.:=-2.8) 

I--' 
0 
en 



106 

1.0,------------------.-, 

0.9 

(\J 

~ 0.8 

E."o.6 ._.-' -'-_'-'-'-' t:lI.o.5 _ --E:. 0.4 ---- - - -----;.0.;--

2 3 4 6 7 

t 

Fi 9 u r e 19: S tan d cl r dOe v i it t ion tor B r 1 d 9 e 1 
(Accelerdtion Sensor) 



107 

0.8 r-rr-r-----.~--------------__, 

0.7 

0.5 

2 4 6 8 10 

Figure 20: Standllrd Deviation for Bridge 1 
(Velocity Sensor) 



108 

I05r---------------------------------~ 

100 

a::: 
LLI 
:= 
0 95 a.. 
LLI 
(j) 

a::: 
0 
:::x: 

It-&t 
N_ 

J::: 
N -

90 

85~~------~--~----~----L---~--~ o 2 4 5 6 7 

Fi gure 21: Average Power Requirement for 
Bridge 1 (Acceleration Sensor) 



109 

95~------------~~--~------------~ 

90 

a: 80 LaJ 
;:: 
0 
a.. 
LaJ 
C/) 

0:: 
0 
:t: .. 

II'6i 
N_ 

t:. 70 
(.\J -

r 

Figure 22:Aver~ge Power Requirement for 
Bridge 1 (Velocity Sensor) 



110 

O.22~~----------------------------, 

0.21 

0.20 

- 0.19 C\J 

~ 
• 

bN 

....... 
0.18 

C\J 

~ -
bN E. =0.2 

0.17 

0.16 

r 

Figure 23: Stand~rd DeviD.tion for Bridge 2 
(Acceler<lt i on Sensor) 



III 

0.35 1T"'1"'r--w-----------------, 

0.3 

N 
....... 
't 

0 

b
N 

......... 

N 
....... 0.2 

'" 
bN 

O.I~~--~--~~--~--~~--~--~-J 
o 2 ·4 6 8 10 

Figure 24:Standard' Deviation for Bridge 2 
(Velo cit y Sen sor) 



112 

230~------------------------------~ 

220 

210 

200 

0:: 
LtJ 
3: 
0 
c.. 190 
LtJ 
Cf) 

0: 
0 
:r: .. 

ItSi 180 
N_ 

ta 
(\J 

170 

160 LILI..--L-__ ~----IL......--.L.._-'----I_--'-_...l...Jir...---I. __ ...JIt.I 

o 2 4 6 8 10 

Figure 25: Average Power Requirement for 
Bridge 2 (Acceleration Sensor) 



113 

220~------------------------------~ 

200 

a::: 
w 
:: 
0 
a.. 
w 
CJ) 
a::: 
0 
:x:: .. 

ItQt 150 
<.'\I-

t::: 
<.'\I -

2 4 6 8 10 

Figure 26: Average Power Requirement for 
Bridge 2 (Velocity Sensor) 



VITA 

The author was born in Patras, Greece, on March 17, 

1949. He attended the University of Patras as an under­

graduate student, where he received his Bachelor's degree 

in Physics in 1973. He was admitted as a graduate student 

at the Institute of Sound and Vibration Research, University 

of Southampton, England, where he received his Master's 

degree in Sound and Vibration in 1974. He subsequently con­

tinued his graduate studies in the Department of Engineering 

Science and Mechanics, Virginia Polytechnic Institute and 

State University, where he was awarded the degree of Doctor 

of Philosophy in 1978. 

Fanis Giannopoulos 

114 



DYNAMIC N~ALYSIS AND ACTIVE CONTROL OF 

TWO CABLE-STAYED BRIDGE 

by 

Fanis Giannopoulos 

(ABSTRACT) 

The feasibility of applying active control theory to 

control both the transient and steady state response of a 

two cable-stayed bridge has been investigated. The bridge 

has been modelled as a two degree freedom system in bend-

lng and torsion, excited by both buffeting and self-excited 

loads. The existing suspension cables have been used as 

active tendons by which the control forces are applied to 

the bridge deck at the points of the anchorage. The control 

force from each suspension cable is actuated through a 

hydraulic-servomechanism which is regulated by the sensed 

motion of the bridge deck at the anchorage of the cable. 

Stability and steady state response analyses have been pre­

sented for both controlled and uncontrolled motion. The 

power requirement for the control devices has been derived. 

Finally, numerical examples have been worked out to demon­

strate the feasibility of the derived theory for two cable­

stayed bridges. 


