William Feagin

A Thesis Submitted for PartialFulfillment for the Degree ofBACITMER OT GCITMOR
1n
CHT:ICAI TMGTNQING

Approved:

In charge of Major work

Head of hior jopartment

Tean of Fingineering Division
Virginia Polytechnic Institute
Yay 13. 1939

TABLE OF CNATTNTS

Fage
I. Introduction. 1 1
II. Teview of Eiterature 2
III. Txperimental 5
A. Iurpose of Study 5
3. Flan of Investigntion. 5
C. "aterials 6
D. Arparatus 7
T. "ethod of Proce?ure 11
F. Tabulater Tota and Tesults 12
IV. Diacussion 15
V. Conclusions 13
VT. Sumanry 20
VII. IAtomture Cited 21
VITi. Acknowledgements 2
Tebles
Table I 14
Table II 15

I. INTRODUCTION

The United States is second only to Kanchuria in the production of soybeans. One of the most striking developments in the inited states in reoent times is the papid rise of the production of soybeans from three million buahela in 1907 to nearly forty million bushels in 1920. This large yield necessitated outlets other than as stook foed and so attracted the attention of the oil mills, which by 1929 begen to be a mijor factor in the production of the crop. In 1926 2,500,000 pounds of soybean 011 were produced, but in 1935 the orop of 011 was $200,000,000$ pounds. There are many uses of the oil, mainly as foodstuffs as a butter substitute, cookins oil, lard substitute, salad oil, and as a medicinal oil. The chief difficulty in the use of this oil lies in the fact that it becomes rancid soon after production.

This problem deals with the elimination of the various components of the soybean oil, causing the rancidity, by use of the supercentrifuge.

II. REVTEM OF IITGRATURE

Boybean oil is very easily refined and deodorized, but on storage it rapidly turns ranoid. goquiring a flavor described ns grassy. Lewkowitach ascribes the rancidity to the formation of free fatty acids in the presence of moisture, with enzymes acting as accelerators for the reaction. In crude oil the free fatty acids range around 0.5%, indioating considerable natural protection against hydrolysis in the sound beans. Fatty acids are catalysta for the auto-oxidation of glycerides, greater molecular weight giving grenter effect. The composition of the oil is as follows:

GLYOTRT TETS
PRR CBNT
Linolenic 2.3
Linoleic 51.5

Oleic 33.4

Falmitic 6.8

Stearic 4.4

Arachicic 0.7

Lignoceric 0.1

Ungaponifiable 0.6

Nearly 90% of the fatty acids present are unsaturated with an 1odine number of about 134.

The refining of the oil is usually carried out in five steps: noutralization, washing, bleaching, winterization, and deodorization. The only part of this process with which we are concerned though is the neutralization. Neutralization, as used here, applies to the separation of the soap stock fron the neutral oil, the somp atock including free fatty soide, lye, and nearly all lipoids present. In the ordinary process this separation is osrried out by first emuleifying the oil at 700 F with $10-140 \mathrm{Be}$. sodium hydroxide, and then on continued hest to around 160° F, the soap olots form and separate out after bettling for 18-20 hours. This process is also carried out in a continuous method by the use of first amall beater and then neutralization by use of a high apeed centrifugal machine. The oil in elther case should be entirely free of lipoids after neutralization, the abscence being shown by the "Heatbreak" test, which consists of freedom of soap stock In the form of floc when a sample of the oil is heated to $600^{\circ} \mathrm{r} .(2)$.

The use of the centrifuge is also carried on in

$$
-4-
$$

the removal of phospholipins from the 011. Phospholipins are substituted fats in which one molecule of fatty acid is replaced by a molecula nf phosphoric acid united with a nitrogen bese. Two of these phospholipins - lecithin and cephalin are found in soybenn oil and are renoved commercially by treating with gteam and then centrifuging. The same result 1s al 日o nocomplised by emulsification with water and centrifuging, which also gives n gond grade of non-break 011 and crude phospholipins. (4).
TIT.
A. furpase of Study

The purpose of this atudy whe to determine the of foot of centrifughe upon soybean oil as to leanenime of maciasty and inomovement of toste ant cuallty.
B. Plan of Pnvestigation

1. Socure samplas of soybean oll.
2. mulsify samples and run tirougt centrifoge, perying the opeed ons the gize of ring dam ueed.
3. Sbserve and record the rollowing data on ench sample:
A. Tpeor
b. Cize of rine dnu uned
c. Thme of run
d. Alze of onmtie
θ. imome of oil recovered
f. Appearance of 011 imediately after recovery
4. Appearance of oil after settilnz for several days
h. Odor
5. Taste
6. Yake "Heat-break" te日t on each sample of oil recovered

> C. Materials

1. Goybean 0il - The oil used was pressed from beans of the TOMO (glycine hispia) variety, introduced from Tokio, Japan, 1901. Plants stout, erect, maturing in about 145 doys; pubescence ray; flowers both purple and white, 70 to 75 days to flower, pods eray 40 to 50 mm long, 10 to 12 mm pide, 5 to 7 mn thick, $2-3$ seeded, shattering little; seed olive yellow, 7 to 8 mm long, 6 to 7 mm wide, 5 to 6 mm thick; hilum pale; germ yellow; oil 18.4 per cent; about 134,000 to the bushel. (3).
2.

Zater - The water used for emulalification was ordinary tap water.

D. Anparatus

The supercentrifuge used was construoted by the Sharples Specisity Company, Type-41-23-8C-34, Serial Number 3814312, liaximur bowl speed of 50,000 revolutions per minute. The machine was set up as shown in flgure 1. The bowl. 9 , has a total weleht of 3.13 pounde, and an inner length of eight inches. The bowl has an outalde diameter of 1.375 inches snd as inside diameter of 1.75 inches. The bowl rotatas around 1 ts center of gravity and is suspended from the turbine 25 by menns of a flexible spindle 18 . This sumpension of the bowl ensbles the machine to run with a minimum of power and n minimum of wear. The bowl, when turning at a speed of 40,000 revolutions per minute, generates a separating force of over forty-two thousand times the force of gravity.

The centrifuge is so designed that it rasy be operated to separate solids from liyuids, or to separate liquids of different specific gravity. The method of operntion is determined by the alze of ring dam 7 used. The ring dam is amell brase washer which controls the mount of 11 quid ollowed
to enter the unper cover 22 . The outaide diameter of the ring dams is 1.4375 inches, but the diameter of the inner hole varies from 0.75 to 1.0 inches. The heavy liyuid ebcapes into the upper cover while the lighter liquid escapes into the lower cover 23 . The liquid to be centrifuged is fed to the bowl from a elses funnel, connectod by n rubber hose to the feed nozzle. The funnel is so arranged that a herd of about two feet is maintained by the liquid to be fed in. Three sizes of feed nozzies were aveilable, and used according to the rate of flow desired into the bowl.

A smell glass bottle, holding about one quart, was provided for use in enulsifying the oil, and other apropinte veseala were provided to collect samples.

DEPARTMENT OF CHEMICAL ENGINEERING VIRGINIA POLYTECHNIC INSTITUTE BLACKSBURG VIRGINIA
Scale: No scale Date:APRII 28,1939

ASSEMBL Y DRAWING SUPERCENTRIFUGE
-10

Figure 1
of

SUPGRCNWTRT THIG

> E. Method of Procedure

Q1. - The oil was already pressed from tio beans, and had acquired a rancid odor and grassy taste. Samples of the oil were measured, and emulsified by ehoing with water.

Centrifuge - The centrifuge was started and the speed gradually increased zentil the desired speed was attained. The roed nozzie was then inserted, and mater fed into the bowl until water began to esoape fron the upper spout. The emulsion was then slowly poured into the funnel, with continued shaking so thot the 011 and water would not separate. The ilquids comine off at the upper and Inwer spouts were onught in vessels until no more oll rould cone from the lower spout. The machine was then cut off nad allowed to come to rest, and the ilyuid remeining In the bowl cought in a vessel as the bosl stopped rototing. Tamples were then taken of the precipitate In the bowl. and the taste and odor of the oll noted ar" Fecorded. The machine was then cleaned from 011 for the next run.

Gompling - Smples of the ofl recovered from the lower spout were then put uncer the "Hest-break" teat br heating to 6000π in the electric oven. Other amplaf of the oll were then taiten and the roove procedure repentod at varying opeods nnd with different alzes of ring dama in pince. Samples of the oil obteined under the verious onditions were placed in 10 ce somple bottles and the bottles atored for future testa n to odor, taste, nad color.

F. Tabulated Data and Rebults

Table 1 shows the effect of apeed and changes In aize of ring damg on the quality and quantity of oll recovered.

Table II shows a comparison of the oil recovered under the various conditiona.

A sample of oil reoovered by use of the if $7 / 2$ ring dam was rerun through the centrifuge. The separation on the second run mas very poor as most of the oll was reoovered, but the reoovered oil contained a great deal of flocculent precipitate.
Table I
BFPECT OF SPEGAD AND CHANGBS IN RTMG DANS ON QUALITY AND QUANPTMY OP OTT RPCOVRPRD

Table \# II
Comparison of Separations

IV. MTGMORTOK

Irecipitate. The cloudinesa in the oil Imnedintely after recovery was nostly due to entrapped air, caueht ruring the rapid whirling of the oil in the bowl. This cloudiness disanpenred after several days of settling, and a slith flocculent precipitate sppenred in each of the ssmples. This precipitate geemed to be of the same noture an tint recovered in the bowl, and therefore probably 18 a anall portion of the sonp stock that had been precipltated yet unremoved during the rarid mosage of the oll through the bowl. The color of the ofl ofter setline was someWrat lighter than the color of the ortoinal oll. mor. The ador of the ofl was much 1 mproved by centrifugine, although the trate of the oil did not seem to differ erently from the original taste. The precipitate in the bowl in each cose had n very rencid odor.

21ze of patch. A centrifuge of this type can not be used on a continuous basis as the bowl fills
completely with the precipitated soap stock and prevents further feeding. The quality of the oil 1s also very poor and the removal of the goap stock is very slisht as the bowl becones full. The centrifuge can be used very sntisfoctorily though on a batch basia with the size of the bowl as the limiting factor.

Tine Dem Size. The ring dom, /f $71 / 2$, seomed to be the correct one to use for thic acparation os a erenter percentage of the oil is recoverad, and the precipitate in the bowl was entirely free from oil, and less precipitation in somples of this separation than in the others. It does not seem profitrole to min the seperated oil through the centrifuge again as a very ponr separation was obtained, si though there seemed to be quite a bit of sorp stock in the oil recovered. llowever, doubt that all of the material precipitated in the aample wes sonp stock wns caused by the fact that samplas of the nil geve only a very sllent precipitate under the "Heat-break" test. The odor and taste of the 011 seemed to be no better after the second run than before. Therefore, it seems that no benefits are obtained by running the ofl twice
through the centrifuge.
Speed. Variations in speed below maximum seem to have little effect upon the separation except that the higher speeds seem to precipitate the soap stock better end more quickly in the bowl.

Feeding. The gmalest nozzie wis used to feed the emulaion to the bowl, as a better geparation seemed to be effeoted when the oll was fed in more slowly. Some dificulty was experienced though as the nnzaig tonded to clog at times.

v. gnveristovis

The resulta of this investigntion ind tonte

that:

1. The beat separation of soap atoci from the soybean oll 1 is obtained by use of the $\# 71 / 2$ rine dem.
2. The best separation of sorp stock from the soybean oil is obtained at maximum speed.
3. The rancid odor of the soybean oil is oliminated to a large extent by the centrifugation of the oil.
4. The maximum yield of soybean oil 1s obtained by separation with the " $71 / 2$ ring dam.
5. The grassy taste of the soybern oil is only slightly improved by centrifugation.
6. The color of the soybean oll is only alightly ohanged by centrifugation.
7. No additional beneflts are obtained by
-19-
passing the soybean oil through the centrifuge a second tine.
8. A centrifuge of this type can not be run on a continuous basis, when a separation of this type is being carried out.
9. It is definitely onncluded, sfter centrifugation that most of the rancicity in soybern 011 had been removed and that the 011 was muoh more edible than fomerly.

VI. GImmARY

Smples of soybean oll were oentrifuged in a Sharples supercentrifuge at apeeds varying from 15,000 to 45,000 revolutions per minuts and with ring dam aizes of 47 to $\% 9$ in use in order to detemnine the effect of centrifuging upon the rancidity, odor, color, and taste of the 211.

It was found that most of the rancielty could be removed, the toste 1 mproved alightly, the color only slightiy changed, and the odor of the noybern 011 improved very much. In genersl, the fuality of the oil was mode much more iesirabie although thirtyfive per cent of the oil wes lost during the prodess as soap etock.

VII. LITERATURE CITED

1. Anonymous. U. S. Dept. of Agriculture. "Yearbook of Agriculture." 1156-1160 (1937)
2. Durkee, M. M. Soybean 0 il in the Food Industry. Ind. Eng. Chem. 8,898-902 (1936)
3. Kesterson, J. W. Benefication of Soybeans for Edible Purposes. Unpublished Thesis. Library, Virginia Polytechnic Institute, Blacksburg, Virginia (1938)
4. Kraybill, F. Soybean Chemistry. Proceedings of the Second Dearborn Conference. The Chemical Foundation. 654 Madison Ave. New York. 260-263 (1936)
5. Riegel, E. R. "Industrial Chemistry." p. 518. Reinhold Publishing Corporation., New York. (1937)
6. Swineford, G. S. The Benefication of Soybean $0 i l$ by Solvent Methods. Unpublished Thesis. Library, Virginia Polytechnic Institute Blacksburg, Virginia. (1937)

VIII. ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Dr. F. C. Vilbrandt for his suggestion of the problem, and to the Chemical Engineering Department for their help during the research.

William D. Feagin
May 24, 1939

