Fate and Transport of Pathogen Indicators from Pasturelands

Michelle L. Soupir

Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Biological Systems Engineering

Saied Mostaghimi Theo A. Dillaha, III Daniel L. Gallagher Charles Hagedorn, III Nancy G. Love

December 10, 2007 Blacksburg, Virginia

Keywords: *E. coli*, enterococci, pastureland, microbial partitioning, die-off, water quality, nutrients

Copyright 2008, Michelle L. Soupir

Fate and Transport of Pathogen Indicators from Pasturelands

Michelle L. Soupir

Abstract

The U.S. EPA has identified pathogen indicators as a leading cause of impairments in rivers and streams in the U.S. Elevated levels of bacteria in streams draining the agricultural watersheds cause concern because they indicate the potential presence of pathogenic organisms. Limited understanding of how bacteria survive in the environment and are released from fecal matter and transported along overland flow pathways results in high uncertainty in the design and selection of appropriate best management practices (BMPs) and in the bacterial fate and transport models used to identify sources of pathogens.

The overall goal of this study was to improve understanding of the fate and transport mechanisms of two pathogen indicators, *E. coli* and enterococci, from grazed pasturelands. This goal was addressed by monitoring pathogen indicator concentrations in fresh fecal deposits for an extended period of time. Transport mechanisms of pathogen indicators were examined by developing a method to partition between the attached and unattached phases and then applying this method to analyze runoff samples collected from small box plots and large transport plots. The box plot experiments examined the partitioning of pathogen indicators in runoff from three different soil types while the transport plot experiments examined pasturelands.

A variety of techniques have been previously used to assess bacterial attachment to particulates including filtration, fractional filtration and centrifugation. In addition, a variety of chemical and physical dispersion techniques are employed to release attached and bioflocculated cells from particulates. This research developed and validated an easy-to-replicate laboratory procedure for separation of unattached from attached *E. coli* with the ability to identify particle sizes to which indicators preferentially attach. Testing of physical and chemical dispersion techniques identified a hand shaker treatment for 10 minutes followed by dilutions in 1,000 mg L^{-1} of

Tween-85 as increasing total *E. coli* concentrations by 31% (*P* value = 0.0028) and enterococci concentrations by 17% (*P* value = 0.3425) when compared to a control. Separation of the unattached and attached fractions was achieved by fractional filtration followed by centrifugation. Samples receiving the filtration and centrifugation treatments did not produce statistically different *E. coli* (*P* value = 0.97) or enterococci (*P* value = 0.83) concentrations when compared to a control, indicating that damage was not inflicted upon the cells during the separation procedure.

In-field monitoring of *E. coli* and enterococci re-growth and decay patterns in cowpats applied to pasturelands was conducted during the spring, summer, fall and winter seasons. First order approximations were used to determine die-off rate coefficients and decimal reduction times (*D*-values). Higher order approximations and weather parameters were evaluated by multiple regression analysis to identify environmental parameters impacting in-field *E. coli* and enterococci decay. First order kinetics approximated *E. coli* and enterococci decay rates with regression coefficients ranging from 0.70 to 0.90. Die-off rate constants were greatest in cowpats applied to pasture during late winter and monitored into summer months for *E. coli* (k = 0.0995 d⁻¹) and applied to the field during the summer and monitored until December for enterococci (k = 0.0978 d⁻¹). Decay rates were lowest in cowpats applied to the pasture during the fall and monitored over the winter (k = 0.0581 d⁻¹ for *E. coli* and k = 0.0557 d⁻¹ for enterococci). Higher order approximations and the addition of weather variables improved regression coefficients (R²) to values ranging from 0.81 to 0.97. Statistically significant variables used in the models for predicting bacterial decay included temperature, solar radiation, rainfall and relative humidity.

Attachment of *E. coli* and enterococci to particulates present in runoff from highly erodible soils was evaluated through the application of rainfall to small box plots containing different soil types. Partitioning varied by indicator and by soil type. In general, enterococci had a higher percent attached to the silty loam (49%) and silty clay loam (43%) soils while *E. coli* had a higher percent attached to the loamy fine sand soils (43%). At least 50% of all attached *E. coli* and enterococci were associated with sediment and organic particles ranging from $8 - 62 \mu m$ in diameter.

Much lower attachment rates were observed from runoff samples collected at the edge-of-thefield, regardless of pastureland management strategy. On average, 4.8% of *E. coli* and 13% of enterococci were attached to particulates in runoff from well-managed pasturelands. A second transport plot study found that on average only 0.06% of *E. coli* PC and 0.98% of enterococci were attached to particulates in runoff from well-managed pasturelands, but percent attachment increased slightly in runoff from poorly-managed pasture with 2.8% of *E. coli* and 1.23% of enterococci attached to particulates. Equations to predict *E. coli* and enterococci loading rates in the attached and unattached forms as a function of total suspended solids (TSS), phosphorous and organic carbon loading rates appeared to be a promising tool for improving prediction of bacterial loading rates from grazed pasturelands (\mathbb{R}^2 values ranged from 0.61 to 0.99).

This study provides field-based seasonal die-off rate coefficients and higher order approximations to improve predictions of indicator re-growth and decay patterns. The transport studies provide partitioning coefficients that can be implemented into NPS models to improve predictions of bacterial concentrations in surface waters and regression equations to predict bacterial partitioning and loading based on TSS and nutrient data. Best management practices to reduce bacterial loadings to the edge-of-the-field from pasturelands (regardless of management strategy) should focus on retention of pathogen indicators moving through overland flow pathways in the unattached state. Settling of particulates prior to release of runoff to surface waters might be an appropriate method of reducing bacterial loadings by as much as 50% from highly erodible soils.

Grant Information

Funds for this research were provided by the U.S. Department of Agriculture - Cooperative State Research, Education, and Extension Service Food and Agricultural Sciences National Needs Graduate Fellowship Grants Program; Virginia Tech Graduate School; National Science Foundation ADVANCE Grant No. SBE-0244916; EPA Science to Achieve Results Fellowship No. 91677501-0; the PEO Scholars Award; the Soil and Water Conservation Society Kenneth E. Grant Research Scholarship; the American Water Resources Association Richard A. Herbert Memorial Education Scholarship; the Virginia Lakes and Watersheds Association Leo Bourassa Scholarship; the Waste Policy Institute Graduate Fellowship; the Cunningham Fellowship, and the Virginia Water Resources Research Center William R. Walker Graduate Research Fellowship.

Dedication

I would like to dedicate this work to my husband, Steven Soupir, for his steady encouragement.

Acknowledgements

I would like to thank my advisor, Saied Mostaghimi, for all of his support and guidance throughout my M.S. and Ph.D. programs. I would also like to thank my committee members Theo Dillaha, Dan Gallagher, Charles Hagedorn, and Nancy Love for their input and support.

I cannot not imagine the many hours of field work, building field plots, and assembling the rainfall simulator without the assistance of Laura Teany and Jae-Pil Cho. Laura was open to different ideas and always willing to lend a helping hand. Jae-Pil worked harder than anyone I have ever met and was especially competent with (and excited by) power tools. Many thanks also to Laura for allowing me to borrow her cow and her neighbor Floyd Childress III for helping us capture the escaped (and scared) mom and calf. Julie Jordan spent countless hours analyzing my bacteria and nutrient samples and provided company in the lab into the wee hours of the morning. Many thanks also to Mike Brosius from the CSES department for use of the soil boxes and Jody Smiley from the CEE department for organic carbon analysis. Aaron Bowman, Marissa Duff, Whitney Thomas, Kelsey Ross, and Henry Lehmann provided valuable assistance with my field work, rainfall simulations, collecting and analyzing weekly cowpat samples and downloading weather data. Jianying Lou assisted with experimental design and statistical analysis of all aspects of this project. I would like to extend appreciation to all the graduate students who assisted in sample collection during the rainfall simulations.

Lastly, I would like to acknowledge Tom and Nancy Peterie and Glen and Anne Soupir for their understanding while we lived so far from home. I also want to thank my husband, Steve, for the many hours he spent watering grass, hauling manure, building field plots, collecting cowpat samples, packing soil boxes and filtering bacteria samples. He provided a helping hand, a listening ear and a shoulder to lean on during times when it seemed that I would be a graduate student forever. My boys, Steve, Andrew and Will, have given me the motivation to succeed and a reason to come home at night. My family has been a blessing beyond belief and I am thankful above all for their love and support.

vii

Table of Contents

LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS AND SYMBOLS	XVII
CHAPTER 1. INTRODUCTION	1
1.1. INTRODUCTION	
1.2 GOALS AND OBJECTIVES	2
1.3 Study Design	4
CHAPTER 2. REVIEW OF PATHOGEN INDICATOR FATE AND TRANSPORT	5
2.1. AN OVERVIEW OF BACTERIAL FATE AND TRANSPORT MODELING PROCESSES	5
2.1.1. Die-off	6
2.1.2. Transport to Surface Waters	8
2.2. BACTERIAL DISPERSION, SEPARATION AND ENUMERATION TECHNIQUES	9
2.2.1. Separation Techniques	9
2.2.2. Dispersion Techniques	12
2.2.3. Enumeration Techniques	14
2.3. BACTERIAL DIE-OFF FROM AGRICULTURAL SOURCES	
2.3.1. Environmental Factors Influencing Bacterial Survival	
2.3.2. First-order Decay Rates	
2.4. BACTERIAL ATTACHMENT TO PARTICULATES	
2.4.1. Cellular Properties Influencing Attachment	
2.4.2. External Factors Influencing Attachment	
2.4.3. Laboratory-Basea Partitioning Studies	
2.5. BACTERIAL TRANSPORT AND PARTITIONING DURING KUNOFF EVENTS	
2.5.1. Bacterial Transport Into Surjace Waters from Agricultural Sources	
2.5.2. Furthloning of Feed Ducleria in Agricultural Kunoff	
2.5.5. Furthlohing of Fecul bucieria in Orban Kunojj	
2.0. 50 MMART	
CHAPTER 3. A METHOD TO PARTITION BETWEEN ATTACHED AND UNATTACHE	ED E. COLI AND
ENTEROCOCCI IN KUNOFF FROM AGRICULTURAL LANDS	
3.1. INTRODUCTION	
3.2. MATERIALS AND METHODS	
3.2.1. Sample Collection	
3.2.2. Comparison of Dispersion Treatments	
3.2.3. Development of Separation Technique	
3.2.4. Data Analysis	
3.3. RESULTS AND DISCUSSION	
3.3.1. Comparison of Dispersion Techniques	35
3.3.2. Dispersion Technique Validation	
3.3.3. Separation Technique Validation	
3.4. SUMMARY AND CONCLUSIONS	41
CHAPTER 4. DIE-OFF OF E. COLI AND ENTEROCOCCI IN DAIRY COWPATS	44
4.1. INTRODUCTION	44
4.2. MATERIALS AND METHODS	
4.3. RESULTS AND DISCUSSION	
4.3.1. Seasonal Bacterial Re-growth and Die-off Trends	
4.3.2. First-order Approximations	53
4.3.3. Multiple Regression Analysis to Approximate Seasonal Die-off Patterns	

4.4. SUMMARY AND CONCLUSIONS	61
CHAPTER 5. ATTACHMENT OF BACTERIAL INDICATORS TO PARTICULATES IN FROM THREE VIRGINIA SOILS	RUNOFF63
5.1 INTRODUCTION	63
5.2 MATERIALS AND METHODS	
5.2.1 Racterial Partitioning and Enumeration	
5.2.2. Nutrient Analysis	
5.2.3. Calculations and Statistical Analysis	69
5.3. Results and Discussion	69
5.3.1. Impact of Soil Type on Attachment	
5.3.2. Bacterial Attachment Related to TSS and Nutrient Transport	
5.3.3. Multiple Regression Analysis	74
5.3.4. Preferential Attachment to Particulates	
5.4. SUMMARY AND CONCLUSIONS	80
CHAPTER 6. E. COLI AND ENTEROCOCCI ATTACHMENT TO PARTICLES AND LO IN PASTURELAND RUNOFF	ADING RATES
	02
0.1. INTRODUCTION	83
6.2.1 Ractorial Partitioning and Enumeration	
6.2.1. Ducter full 1 drittioning and Enumeration	
6.2.2. Calculations and Statistical Analysis	,
6.3 RESULTS AND DISCUSSION	
6.3.1 Bacterial Partitioning Related to Flow Regime	
6.3.2. Bacterial Attachment and TSS Concentrations	
6.3.3. Bacterial Attachment and Nutrient Partitioning	
6.3.4. Bacterial and Nutrient Loading Rates	
6.3.5. Regression Equations for Predicting Partitioning Ratios and Loading Curves	
6.3.6. Preferential Attachment to Particulates	
6.4. SUMMARY AND CONCLUSIONS	102
CHAPTER 7. E. COLI AND ENTEROCOCCI ATTACHMENT TO PARTICLES DURING FROM HIGH AND LOW VEGETATIVE COVER PASTURELAND	G RUNOFF 104
	104
7.2 MATERIALS AND METHODS	105
7.2.1 Racterial Partitioning and Enumeration	107
7.2.2. Nutrient Analysis	108
7.2.3. Calculations and Statistical Analysis	
7.3. RESULTS AND DISCUSSION	
7.3.1. Bacterial Partitioning Related to Flow Regime and Vegetative Cover	
7.3.2. Bacterial Attachment and TSS Concentrations	
7.3.3. Bacterial Attachment and Nutrient Concentrations	
7.3.4. Bacterial and Nutrient Loading Rates	
7.3.5. Preferential Attachment to Particulates	119
7.4. SUMMARY AND CONCLUSIONS	120
CHAPTER 8. SUMMARY AND CONCLUSIONS	122
8.1. OBJECTIVE 1: METHOD DEVELOPMENT	
8.2. OBJECTIVE 2: DIE-OFF STUDY	123
8.3. OBJECTIVE 3: BOX PLOT STUDY	
8.4. OBJECTIVE 4: TRANSPORT PLOT STUDY	127
8.5. Implications of the Study	130
8.6. LIMITATIONS OF THE STUDY AND FUTURE RESEARCH RECOMMENDATIONS	131
CHAPTER 9. REFERENCES	

APPENDIX A. ADDITIONAL DATA FOR DISPERSION AND SEPARATION TECHNIQUE DEVELOPMENT	145
APPENDIX B. DIE-OFF MONITORING DATA	149
APPENDIX C. SUPPLEMENTAL STATISTICAL DATA FOR DIE-OFF ANALYSIS	163
APPENDIX D. BOX PLOT STUDY DATA	190
APPENDIX E. SUPPLEMENTAL STATISTICAL DATA FOR BOX-PLOT STUDY	196
E.1. MULTIPLE REGRESSION ANALYSIS DETAILS FOR BOX PLOT STUDY E.2. BACTERIAL ATTACHMENT BETWEEN SOILS FOR EACH PARTICLE SIZE	196
APPENDIX F. TRANSPORT PLOT STUDY DATA: WELL MANGED PASTURELAND	201
APPENDIX G. SUPPLEMENTAL STATISTICAL DATA FOR TRANSPORT PLOT STUDY: WELL MANAGED PASTURELAND	204
G.1. BACTERIAL PARTITIONING RELATED TO FLOW REGIME G.2. MULTIPLE REGRESSION ANALYSIS DETAILS FOR TRANSPORT PLOT STUDY	204
APPENDIX H. TRANSPORT PLOT STUDY DATA: COMPARISON OF WELL-MANAGED AND POORLY-MANAGED PASTURELAND	248
APPENDIX I. SUPPLEMENTAL STATISTICAL DATA FOR TRANSPORT PLOT STUDY: COMPARISON OF WELL-MANAGED AND POORLY-MANAGED PASTURELAND	252
I.1. BACTERIAL TC AND PC RELATED TO FLOW REGIME AND VEGETATIVE COVER I.2. TSS AND NUTRIENT TC AND PC RELATED TO FLOW REGIME AND VEGETATIVE COVER 1.3. MULTIPLE REGRESSION ANALYSIS DETAILS FOR TRANSPORT PLOT STUDY	252 261 290

List of Tables

Table 2.1.	<i>E. coli</i> die-off and first order decay rates in freshly excreted dairy cow manure 19
Table 3.1.	Comparison of combined physical and chemical dispersion treatments on runoff
	samples collected below a dairy fecal deposit on pastureland (n=5)
Table 3.2.	Comparison of E. coli and enterococci concentrations enumerated by multiple screen
	filtration and centrifugation pre-treatment followed by dispersion and membrane
	filtration and total E. coli and enterococci concentrations enumerated by dispersion
	and membrane filtration (control)
Table 4.1.	Sampling dates and average and high weather variables recorded during the four
	sampling periods
Table 4.2.	Original source manure properties
Table 4.3.	E. coli and enterococci seasonal decimal reduction times (D-values) and die-off rate
	coefficients
Table 4.4.	Best estimates of seasonal E. coli and enterococci die-off by higher order
	approximation and including weather parameters
Table 5.1.	Soil properties
Table 5.2.	Bacteria and nutrient partitioning coefficients (PC), particulate associated fractions
	(PAF) and total concentrations (TC) present in runoff from bare soils dominated by
	three different particle sizes and with a single cowpat
Table 5.3.	Regression equations to predict <i>E. coli</i> and enterococci partitioning coefficients (PC)
	and total concentrations (TC) in runoff from three Virginia soils
Table 5.4.	Particle sizes to which <i>E. coli</i> and enterococci preferentially attach in runoff samples
	collected from bare soil box plots
Table 5.5.	P values showing statistically significant differences between E. coli and enterococci
	associated with sediments retained by the three particle size categories, >500 µm, 63 -
	499 μm, and 8 - 62 μm (for each soil type)
Table 6.1.	Average E. coli, enterococci, total suspended solids, and nutrient flow-weighted
	concentrations and loads
Table 6.2.	Pearson correlation coefficients identify statistically significant relationships between
	nutrient parameters and bacterial partitioning
Table 6.3.	Pearson correlation coefficients identify statistically significant relationships between
	bacteria and nutrient partitioning loads
Table 6.4.	Particle sizes to which E. coli and enterococci preferentially attach in samples
	collected during an overland flow event
Table 7.1.	Average E. coli, enterococci, total suspended solids, and nutrient flow-weighted
	concentrations (FWC)110
Table 7.2.	Regression equations to predict <i>E. coli</i> partitioning coefficients (PC) in runoff from
	plots with high and low vegetative cover
Table 7.3.	Regression equations to predict <i>E. coli</i> and enterococci loading rates (attached and
	unattached) in runoff from high and low vegetation plots
Table 7.4.	Particle sizes to which E. coli and enterococci preferentially attach in samples
	collected during an overland flow event
Table A.1	. Preliminary comparison of chemical dispersion treatments applied to runoff samples
	collected from a dairy cowpat on pastureland
Table A.2	. Preliminary comparison of physical dispersion treatments applied to runoff samples
	collected from a dairy cowpat on pastureland

Table B.1. Weather Data and Indicator Concentrations Collected during Die-off Monitoring	149
Table D.1. Box Plot Study Bacteria, TSS, and Nutrient Results	190
Table D.2. Box Plot study preferential attachment to particulates	194
Table E.1. Bacterial attachment between soils for each particle size	200
Table F.1. Transport Plot Study Bacteria, TSS, and Nutrient Results	201
Table F.2. Transport plot study preferential attachment to particulates	203
Table H.1. Transport Plot Study Bacteria, TSS, and Nutrient Results	248
Table H.2. Transport plot study preferential attachment to particulates	250

List of Figures

Figure 2.1.	Fate and transport of pathogens
Figure 3.1.	Mini-Sieve Microsieve Set used to separate particles in runoff into 63 and 500 µm
Figure 3.2	Cells receiving no dispersion treatment (a): cells treated with a hand shaker for 10
1 iguie 5.2.	min (b); cells treated with a hand shaker for 10 min and diluted in 1,000 ppm
Figure 11	$ \begin{array}{l} \text{Solution} \\ Soluti$
Figure 4.1.	Besidual plate for E coli during the apring season for A) first order decay and P)
	higher order approximations combined with weather variables
Figure 4.3.	Example of predicted and observed <i>E. coli</i> and enterococci decay. Predicted values are calculated using the equations presented in Table 3 for <i>E. coli</i> and enterococci decay beginning during the fall monitoring period
Figure 5.1.	Application of a standard cowpat to portable box plots packed with three different Virginia soils
Figure 5.2.	Tlaloc 3000 portable rainfall simulator was used to apply rain to the box plots and samples were collected from the base of the plots 10, 20, and 30 minutes after the onset of runoff
Figure 6.1.	Portable rainfall simulator was used to apply rain to the transport plots and samples were collected from the base of the plots every 10 minutes after the onset of runoff.
Figure 6.2.	Partitioning coefficients (a) and particulate associated fractions (b) of <i>E. coli</i> , enterococci, phosphorus, organic phosphorus, and organic carbon in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph. 91
Figure 6.3.	Bacterial and nutrient concentrations in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph for (a) <i>E. coli</i> , (b) enterococci, (c) total phosphorus, (d) total organic phosphorus, (e) total carbon, and (f) total suspended solids
Figure 6.4.	<i>E. coli</i> and enterococci loading rates from a single plot (plot 2) treated with cowpats
C	during an overland flow event
Figure 7.1.	Poorly-managed and well-managed pasturelands received cowpat applications 106
Figure 7.2.	Partitioning coefficients of a) <i>E. coli</i> , enterococci, and b) phosphorus, organic phosphorus, and organic carbon in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph from high and low vegetation plots. 111
Figure 7.3.	Bacterial total concentrations in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph for <i>E. coli</i> and enterocci from pasturelands with 100 and 50% vegetative cover
Figure 7.4.	<i>E. coli</i> , enterococci, phosphorous, organic carbon, and TSS loading rates from plots with high and low vegetative cover treated with cowpats during an overland flow event
Figure A.1.	Growth curve of <i>E. coli</i> DH2 1030 in Tryptic Soy nutrient broth
Figure A.2.	<i>E. coli</i> DH2 1030 concentrations were reduced by filtering cells through 8 μm and 3 μm filters, when compared to a control
Figure A.3.	<i>E. coli</i> DH2 1030 cells captured on the 8 μ m and 3 μ m filters when 10 mL of 10 ⁵ E. coli cfu mL ⁻¹

Figure A.4.	<i>E. coli</i> DH2 1030 concentrations collected from the stationary phase of the growth curve before and after a 10 minute centrifugation treatment at $1,200 \times g$ (4700 rpm) and 4°C (n=12)
Figure C.1.	Residual plots predicted ln <i>E. coli</i> during the fall season for first-order decay model.
Figure C.2.	Residual plots predicted ln <i>E. coli</i> during the spring season for first-order decay model
Figure C.3.	Residual plots predicted ln <i>E. coli</i> during the summer season for first-order decay model
Figure C.4.	Residual plots predicted ln <i>E. coli</i> during the winter season for first-order decay model
Figure C.5.	Residual plots predicted ln enterococci during the fall season for first-order decay model
Figure C.6.	Residual plots predicted ln enterococci during the spring season for first-order decay model
Figure C.7.	Residual plots predicted ln enterococci during the summer season for first-order decay model
Figure C.8.	Residual plots predicted ln enterococci during the winter season for first-order decay model
Figure C.9.	Residual plots predicted ln <i>E. coli</i> during the fall, spring and summer seasons for first stage, time range 0 to 6.5 days
Figure C.10	. Residual plots predicted ln E. coli during the fall, spring and summer seasons for first stage, beginning at 6.5 days
Figure C.11	. Residual plots predicted ln <i>E. coli</i> during the fall, spring and summer seasons combined first and second stage
Figure C.12	. Residual plots predicted ln <i>E. coli</i> during the fall season for higher order approximation
Figure C.13	. Residual plots predicted ln <i>E. coli</i> during the spring season for higher order approximation
Figure C.14	. Residual plots predicted ln <i>E. coli</i> during the summer season for higher order approximation
Figure C.15	. Residual plots predicted ln <i>E. coli</i> during the winter season for higher order approximation
Figure C.16	. Residual plots predicted ln enterococci during the fall season for higher order approximation
Figure C.17	. Residual plots predicted ln enterococci during the spring season for higher order approximation
Figure C.18	. Residual plots predicted ln enterococci during the summer season for higher order approximation 180
Figure C.19	. Residual plots predicted ln enterococci during the winter season for higher order approximation
Figure C.20	. Residual plots predicted ln <i>E. coli</i> during the spring season for higher order approximation with weather variables
Figure C.21	. Residual plots predicted ln <i>E. coli</i> during the summer season for higher order approximation with weather variables. 183

Figure C.22. Residual plots predicted ln <i>E. coli</i> during the winter season for higher order
approximation with weather variables
Figure C.23. Residual plots predicted ln enterococci during the spring season for higher order
approximation with weather variables
Figure C.24. Residual plots predicted ln enterococci during the summer season for higher order
approximation with weather variables
Figure C.25. Residual plots predicted ln enterococci during the winter season for higher order
approximation with weather variables
Figure C.26. Predicted and observed <i>E. coli</i> and enterococci decay. Predicted values are
calculated using the equations presented in Table 4.4 for <i>E. coli</i> and enterococci
decay beginning during the spring monitoring period
Figure C.27. Predicted and observed <i>E. coli</i> and enterococci decay. Predicted values are
calculated using the equations presented in Table 4.4 for <i>E. coli</i> and enterococci
decay beginning during the summer monitoring period
Figure C.28. Predicted and observed <i>E. coli</i> and enterococci decay. Predicted values are
calculated using the equations presented in Table 4.4 for <i>E. coli</i> and enterococci
decay beginning during the winter monitoring period
Figure E.1. Residual plots of predicted <i>E. coli</i> partitioning coefficient concentration for all three
soil types
Figure E.2. Residual plots of predicted enterococci partitioning coefficient concentration for all
three soil types
Figure E.3. Residual plots of predicted ln <i>E. coli</i> total concentration for all three soil types 198
Figure E 4 Residual plots of predicted in enterococci total concentration concentration for all
three soil types 199
Figure G 1 Residual plots of predicted ln <i>E</i> coli unattached loading rates in runoff from well
managed nastureland 242
Figure G 2 Residual plots of predicted ln <i>E</i> coli attached loading rates in runoff from well
managed nastureland 243
Figure G.3 Residual plots of predicted in enterococci unattached loading rates in runoff from
well managed nastureland 244
Figure G.4 Residual plots of predicted in enterococci attached loading rates in runoff from well
managed nastureland 245
Figure G 5 Residual plots of predicted ln <i>F</i> coli loading ratio in runoff from well managed
nactureland 226
Figure G.6. Residual plots of predicted in enterococci loading ratio in runoff from well managed
nactureland 247
Figure I.1 Residual plots of predicted $\ln E_{coli}$ partitioning coefficient in runoff from well
managed and noorly managed nastureland 200
Figure L2 Residual plots of predicted in enterococci partitioning coefficient in runoff from well
managed and noorly managed pastureland 201
Figure I.3 Residual plots of predicted <i>E</i> coli total concentration in runoff from well managed
and noorly managed pastureland 202
Figure I.4. Residual plots of predicted enterocooci total concentration in runoff from wall
managed and noorly managed nasturaland 202
Figure I.5 Residual plots of predicted <i>F</i> coli unattached loading rates in runoff from well
managed and neerly managed negturaland
managed and poorty managed pastdicially

Figure I.6.	Residual plots of predicted E. coli attached loading rates in runoff from well	
	managed and poorly managed pastureland.	295
Figure I.7.	Residual plots of predicted enterococci unattached loading rates in runoff from we	11
	managed and poorly managed pastureland.	296
Figure I.8.	Residual plots of predicted enterococci attached loading rates in runoff from well	
	managed and poorly managed pastureland	297

List of Abbreviations and Symbols

θ	temperature correction coefficient
μ_1	first order die-off rate constants (day^{-1}) at the first stage of decay
μ_2	first order die-off rate constants (day ⁻¹) at the second stage of decay
υ	flow velocity (cm h^{-1})
BMP	Best Management Practice
С	bacteria concentration in solution (cfu mL ^{-1} or cfu cm ^{-3})
CFU	colony forming unit
DOC	dissolved organic carbon
DOP	dissolved organic phosphorus
D-value	Decimal Reduction Time
ЕРА	Environmental Protection Agency
<i>k</i>	first order die-off rate constant (day ⁻¹)
k_{T2}	
k_{T1}	die-off rate measured at T_1
K _d	linear partitioning coefficient
MPN	most probable number
<i>N</i>	number of bacteria at time <i>t</i>
N_o	initial number of indicator bacteria
NPS	Nonpoint Source
NS	Not significant
PAF	particulate associated fraction
PC	partitioning coefficient
PDA	previous day average
PDH	previous day high
PDT	previous daily total
PWA	previous week average
PWH	previous week high
PWT	previous weekly total
q	bacterial flux per unit cross-sectional area (cfu cm ⁻¹ h ⁻¹)
R ²	coefficient of determination
RH	
S	attached bacteria density (cfu g ⁻)
SOC	suspended organic carbon
SOP	suspended organic phosphorus
SR	
SWA1	Soll water Assessment 1001
<i>t</i>	time rakes the first stars of deeper and (day)
$I_1 \dots I_{T}$	time when the first stage of decay ends (day)
I_1	turneratures (°C)
<i>I</i> ₂	tatal concentration
IU TDD	total discolved at each and a second at a
10r TMDI	
TWIDL	I otal Maximum Daily Load
TOD	total organic carbon
10P	total organic phosphorus

ТР	total phosphorus
TSP	total suspended phosphorous
TSS	
VBNC	Viable But Non-culturable

Chapter 1. Introduction

1.1. Introduction

The U.S. EPA (2005b) has identified bacteria as a leading cause of impairments in rivers and streams in the U.S. Bacteria pollution in agricultural watersheds originates from many different sources including agricultural practices such as allowing cattle to have direct access to streams; human sources such as leaking septic systems; or wildlife sources such as migratory birds. Although many different sources may exist within a watershed, agricultural practices have been cited as the primary contributor to bacteria impairments in rivers and streams (U.S. EPA, 2003). Elevated levels of bacteria in agricultural watersheds cause concern because they indicate the potential presence of pathogenic organisms. The three most common bacteria indicators in the United States include fecal coliforms, E. coli and enterococci. Although fecal coliform have been traditionally used to detect the presence of pathogens in surface waters, E. coli and enterococci. are thought to have a higher degree of association with outbreaks of gastrointestional illness (U.S. EPA, 1986). More than 150 pathogens found in livestock manure may be transmitted to humans, including *Campylobacter spp.*, *Salmonella spp.*, *Listeria* monocytogenes, Escherichia coli O157:H7, Cryptosporidium parvum and Giardia lamblia. Each of these organisms has a relatively low infectious dose in humans, which increases the potential for disease transmission (U.S. EPA, 2003).

In an attempt to reduce pollutant loading to the nation's water bodies, Total Maximum Daily Loads (TMDL) are being developed to assess water quality problems, identify pollution sources, and determine pollution reductions needed to restore and protect rivers, streams and lakes. A TMDL is a calculation of the maximum amount of a pollutant that can be discharged to a water body, while still meeting the water quality standards, and an allocation of that amount to the pollutant's sources (U.S. EPA, 2007a). TMDL development is mandated under section 303(d) of the 1972 Clean Water. The most recent estimate of public and private costs associated with TMDL development and implementation over the next 15 years are approximately \$1.0 billion for development of TMDL plans, \$255 million for additional monitoring to support TMDLs, and \$13.5 to \$64.5 billion for TMDL implementation (U.S. EPA, 2002a).

Because of the high costs associated with the development and implementation of TMDLs, it is essential that TMDLs be developed using sound scientific methods to accurately reflect the pollutant loadings from the potential sources within a watershed. Currently, Nonpoint Source (NPS) pollution models are most frequently used to determine the maximum allowable loading rates of bacteria from the identified sources. Most current NPS models completely ignore bacterial subsurface transport (Jamieson et al., 2004) and typically simulate bacterial transport to surface waters as a dissolved or unattached pollutant (Paul et al., 2004). Only the Soil and Water Assesement Tool (SWAT) model attempts to partition between the dissolved and sorbed phases, but sufficient data on bacterial partitioning are currently not available (Jamieson et al., 2004). Previous studies have determined that fecal bacteria preferentially attached to particulate matter (Auer and Niehaus, 1993; Henry, 2004; Ling et al., 2002) and as a result their survival time may increase (Burton et al., 1987; Gerba and McLeod, 1976). In addition, first order decay equations that are most often used to express bacterial die-off do not account for external environmental influences on the fate of bacteria applied to the land as a result of different agricultural practices.

Many researchers have identified shortcomings in the existing methods used to model bacterial fate and transport. Representing bacteria as a dissolved pollutant does not accurately reflect the transport processes that occur in agricultural watersheds and first order decay equations do not account for external environmental influences on the fate of bacteria. However, before bacteria modeling can be improved, in-field studies of bacteria fate and transport and the related associations with environmental factors, particulate matter and water quality indicators are needed.

1.2 Goals and Objectives

The overall goal of this study was to improve understanding of the fate and transport mechanisms of two pathogen indicators, *E. coli* and enterococci, from grazed pasturelands. This in-field study of bacteria decay and transport mechanisms and the related associations with weather variables, flow, particulates, and water quality indicators will provide much needed information to improve TMDLs and Best Management Practice (BMPs) effectiveness. Many NPS models already partition between nutrient phases; thus, identifying possible correlations

between bacterial and nutrient partitioning might improve predictive capabilities of bacterial transport models by modification of existing nutrient overland transport process algorithms. In addition, if attachment is a significant edge-of-field transport factor, design and selection of management practices could be improved to encourage settling of particulates and the attached fecal indicators for reduction of pathogen transport to surface waters.

The specific objectives of this study were to:

1. Evaluate various laboratory procedures for dispersing and separating *E. coli* and enterococci into attached and unattached phases and to identify particle size ranges to which *E. coli* and enterococci preferentially attach

Hypothesis: Sonification is the best method of recovering attached bacteria from sediments

2. Assess *E. coli* and enterococci re-growth and decay patterns in cowpats applied to pasturelands

Hypothesis: First order decay does not adequately describe die-off rates for *E. coli* or enterococci.

3. Quantify partitioning of *E. coli* and enterococci between the attached and unattached phase in runoff from three bare Virginia soils.

Hypothesis: *E. coli* and enterococci partitioning during runoff events is related to the dissolved phosphorus/suspended phosphorus ratio and the majority of cells are associated with particles retained by the 8 µm filter.

4. Quantify partitioning of *E. coli* and enterococci between the attached and unattached phase from different pastureland management scenarios during overland flow.

Hypothesis: *E. coli* and enterococci partitioning during runoff events is related to the dissolved phosphorus/suspended phosphorus ratio and the majority of cells are associated with particles retained by the 8 μ m filter.

1.3 Study Design

This study was designed to first identify an easy-to-replicate method to disperse and separate particulate-attached and bioflocculated cells and identify particle sizes to which indicators preferentially associate. Three field studies were conducted to assess in-field bacterial survival and transport mechanisms. The influence of environmental parameters on bacterial decay patterns were evaluated by long-term monitoring of cowpats applied to pastureland during four seasons. Overland transport mechanisms from different pastureland management scenarios were examined through the use of small box plots containing three Virginia soils and large transport plots on a single soil type representing transport at the edge-of-the-field. Partitioning coefficients from the different management scenarios were then compared and the ability to predict bacterial partitioning and total bacterial concentrations based on water quality indicators were examined. The methodology, results, and discussion for each of the objectives are presented in separate chapters.

Chapter 2. Review of Pathogen Indicator Fate and Transport

Many factors must be considered as we strive to improve understanding of bacterial fate and transport mechanisms. Bacterial die-off is typically assumed to follow first-order decay patterns, neglecting the potential for re-growth and the impact of the external environment. The attachment of fecal bacteria to sediment and organic particulates during overland flow processes is often not considered because very little is known about the partitioning between the attached and unattached phases. Varied laboratory techniques have been utilized to separate fecal indicators between phases, possibly explaining the mixed results between previous laboratory and field-based studies. In addition, previous studies have yet to examine indicator partitioning at the edge-of-the-field or to identify the particulate sizes to which indicators preferentially attach. By improving understanding of bacterial fate and transport mechanisms, predictive capabilities of NPS models used in the development of TMDLs can be improved along with the design and placement of management practices to mitigate bacterial transport to surface waters.

Terminology to describe the attached and unattached fractions varies among studies (Characklis et al., 2005; Jeng et al., 2005; Krometis et al., 2007) and the selected terminology is often a function of the method used to separate cells into the attached and unattached fractions. The terminology adapted here is attached and unattached as used in various publications by Muirhead et al. (2005; 2006a; 2006c; 2006b). Attached cells are identified as those associated with particulates (sediments or organic particles) or bioflocculated to the point that they are pulled from suspension during a centrifuge treatment; however, Muirhead et al. (2005; 2006a; 2006c; 2006b) previously identified *E. coli* present in runoff from a fresh fecal source as being primarily transported as individual cells and not bioflocculated. Unattached cells are referred to as remaining in suspension, suspended, free, planktonic, dissolved or buoyant in other studies discussed in this chapter. Attached cells are also referred to by other authors as being sorbed, associated with particles or the settable fraction.

2.1. An Overview of Bacterial Fate and Transport Modeling Processes

A process-based approach to modeling microbial fate and transport in a watershed includes release from manure, overland transport, infiltration into the soil, in-stream transport, vadose

zone and groundwater transport, and die-off and re-growth throughout the storage and transport processes (Benham et al., 2006) as illustrated in Figure 2.1. This study specifically focuses on two components: the in-field bacterial die-off and potential re-growth patterns over time, following excretion, and the phase in which fecal indicators are transported to surface waters during overland flow. The following chapter discusses each of these processes starting with the current methods used to model pathogen indicator fate and transport. Previously utilized dispersion, separation and enumeration techniques are reviewed along with factors impacting indicator decay and transport processes.

Figure 2.1. Fate and transport of pathogens. Adapted from Haydon and Deletic (2006).

2.1.1. Die-off

The three commonly observed patterns of indicator bacteria die-off are first order decay, bacteria growth followed by first-order decay; and first order decay with variable die-off rates (Crane and Moore, 1986; Mancini, 1978). Since very little is actually known about the individual influences and interactions between the many parameters affecting die-off, first order decay is most often used to express bacterial die-off. Chick's Law (Crane and Moore, 1986; Moore et al., 1988), presented as Equation 2.1, is the first order decay equation most often used to express bacterial

die-off in stored manure, soil, land applied manure, streams and groundwater (DeGuise et al., 1999; Pachepsky et al., 2006; Wang et al., 2004):

$$N = N_o \exp^{-kt}$$
[2.1]

where N= number of bacteria at time t; N_o = initial number of indicator bacteria; k = first order die-off rate constant (day⁻¹); and t = elapsed time (day). The first order die-off rate constant k can be modified is a function of temperature and can be described using the Arrhenius equation as follows:

$$k_{T_2} = k_{T_1} \,\theta \exp(T_2 - T_1)$$
[2.2]

where k_{T2} = die-off rate adjusted to T_2 , T_1 and T_2 are temperatures (°C), k_{T1} = die-off rate measured at T_1 , and θ = temperature correction coefficient.

Mubiru et al. (2000) found that a first-order decay model with a two-stage function better represented the longevity of *E. coli* inoculated in soils and Zhai et al. (1995) found that a two-staged exponential decay model better described mortality rates of fecal coliforms in poultry waste. The two-staged die-off model was presented in Crane and Moore (1986):

$$N = \begin{cases} N_0 \exp(-\mu_1 t), & t < t_1 \\ N_0 \exp(-\mu_1 t_1) \exp[-\mu_2 (t - t_1)], & t \ge t_1 \end{cases}$$
[2.3]

where N= number of bacteria at time t; N_o = initial number of indicator bacteria; μ_1 and μ_2 are first order die-off rate constants (day⁻¹) at the first and second stage of decay; and t_1 is the time when the first stage of decay ends (day).

Modifications have been made to Chick's Law to adjust for some of the environmental factors including temperature, soil moisture content, solar radiation, and pH (Mancini, 1978; Polprasert et al., 1983; Reddy et al., 1981). It is unclear whether the equations developed under laboratory

conditions are representative of field conditions. In addition, existing equations have yet to represent after-growth that might occur following excretion or land application of waste (Conner and Kotrola, 1995; Crane et al., 1980; VanDonsel et al., 1967; Wang et al., 1996; Wang et al., 2004). New or improved equations are needed to better capture the bacterial growth and die-off dynamics for extended periods of time (Wang et al., 2004).

2.1.2. Transport to Surface Waters

Many researchers and practitioners recognize the shortcomings in the existing methods used to model bacterial transport (Jamieson et al., 2004; Paul et al., 2004). Interactions between overland indicator transport and sediments vary among different models. The widely used HSPF (Hydrological Simulation Program – FORTRAN) model (Bicknell et al., 1997), as typically implemented for microbial transport, ignores microbial transport associated with sediment and simulates the convective transport of planktonic bacteria (Pachepsky et al., 2006). A model described by Haydon and Deletic (2006) assumed that pathogens are transported by overland flow because most adsorb to particulates <16 μ m in size. Other models have described pathogen transport as being sorbed to sediment and particulates during overland flow (Fraser et al., 1998) while the SWAT (Soil and Water Assessment Tool) model allows for partitioning between microbes associated with sediment and transported along with overland flow (Pachepsky et al., 2006).

Partitioning of fecal bacteria into the attached and unattached phases occurs during initial release from manure, overland and subsurface transport, and stream and bed transport (Benham et al., 2006). A linear partitioning relationship is typically assumed:

$$S = K_d C$$
 [2.4]

where S is the attached bacteria density (cfu g^{-1}), C is the unattached bacteria concentration in solution (cfu mL⁻¹) and K_d is the linear partitioning coefficient.

An advective algorithm is used to simulate bacterial mass flux in the unattached state along overland transport pathways:

$$q = \nu C \tag{2.5}$$

where q is bacterial flux per unit cross-sectional area (cfu cm⁻² h⁻¹), υ is flow velocity (cm h⁻¹) and C is bacteria concentration (cfu cm⁻³) (Benham et al., 2006).

Representing bacterial transport during overland flow as either a dissolved or sorbed pollutant might not accurately reflect the transport processes that occur in agricultural watersheds. Use of a partitioning coefficient to separate between attached and unattached phases should improve predictions of in-stream microbial concentrations, but data on bacteria partitioning are currently limited or not available (Jamieson et al., 2004).

2.2. Bacterial Dispersion, Separation and Enumeration Techniques

There is currently no standardized technique for separating attached and unattached bacteria in soil or water samples. The separation techniques most commonly presented in the literature are filtration, fractional filtration and centrifugation. Frequently chemical or physical dispersion techniques are employed to separate attached and bioflocculated bacteria following filtration or to increase enumeration in a control. The advantages and disadvantages of each method have been previously identified and many researchers have obtained their best results by using a combination of these dispersion and separation techniques. The recovery of stressed cells from environmental samples is discussed; however, membrane filtration followed by plating is the standard technique to enumerate *E. coli* and enterococci.

2.2.1. Separation Techniques

Filtration: Filtration has been identified as one method of separating unattached from bioflocculated and attached bacteria. Typically, cells passing through the filter or screens are assumed to be in the unattached or free state. However, during the filtration process it is possible that bacteria retained by the filter are bioflocculated (and not actually associated with sediment or particulates) or that free bacteria could attach to the filter. Both of these scenarios result in free bacteria being incorrectly classified as sorbed (Henry, 2004). Despite these potential drawbacks, filtration has been used in multiple studies to separate bacterial fractions. Previous

researchers have defined unattached *E. coli* as those able to pass through an 8 μ m screen (Henry, 2004; Mahler et al., 2000; Qualls et al., 1983). Since a typical *E. coli* cell is 1 × 3 μ m (Madigan et al., 2000), the filtration method assumes that only unattached bacteria or those attached to very small particles are able to pass through the 8 μ m filter. Smaller, stressed bacteria that are clumped together could also pass through. Mahler et al. (2000) validated the use of an 8 μ m filter to partition between phases by passing a known suspension of *E. coli* through the 8 μ m filter. The authors successfully recovered 99% of the unattached *E. coli*, demonstrating that only a small proportion of the free cells were retained would have been incorrectly classified as attached. Henry (2004) partitioned water samples into two sub-samples, passing one sample through an 8 μ m filter where bacteria passing through the filter were classified as planktonic (unattached). The total count from the second sample was obtained following dispersion treatment. The attached bacteria fractions were determined by calculating the difference between the total *E. coli* concentrations and the *E. coli* passing through the 8 μ m filter.

Multiple screen or fractional filtration has been used to identify the bacteria attached to different particles sizes. Fractional filtration of urban stormwater was performed by Schillinger and Gannon (1985) to separate sediment particle sizes. Screen sizes of 52 µm, 30 µm, 10 µm, and 5 μ m mesh openings were selected. The smallest size of 5 μ m was selected because particles smaller than 5 µm have a negligible settling velocity in natural systems. The filtration system was disinfected with boiling distilled water and then prefiltered stormwater was used to preload the columns with liquid. Between 2 and 8 mg of stormwater solids were filtered to prevent clogging the screens. Downward air pressure was applied to remove any remaining liquids. Screens were then removed aseptically and inserted into a tube with 10 mL of sterile 0.02% polysorbate 80. The tubes with screens were shaken vigorously 100 times to disperse the particle-attached bacteria. Microscopic observations determined that the screens were able to retain particles in the correct size category while allowing unattached cells to pass through the screen system. Auer and Niehaus (1993) used a similar method on sediment particles collected from Onondaga Creek during storm events. The authors selected Nitex nylon mesh screens of 102, 53, 20, 10, 6, and 1 µm followed by a 0.45 µm membrane filter. The screens and filter were removed and placed in a bottle with phosphate buffered water and 5 drops of Tween 85. The

bottles were shaken for 5 minutes to separate cells from the screen, sediments and to suspend the cells prior to enumeration.

<u>Centrifugation</u>: Centrifugation is another method frequently used by researchers to determine partitioning between unattached and particulate attached bacteria. The percent attached is typically determined by subtracting the total count from the concentrations remaining in the supernatant following centrifugation. The attached portion could be enumerated by resuspending the sediment/bacteria pellet and applying dispersion techniques; however, Henry (2004) noted that during centrifugation, the super concentrating or increased cell-particle or particle-particle "collisions" of the soil and bacteria aggregates may alter the attachment properties and strengthen the existing bonds. Characklis et al. (2005) stated that using centrifugation to separate microbial fractions assumes that microbial sorption is not affected during the process. Henry (2004) also noted that free bacteria can be similar in size to clay particles, so determining proper centrifuge settings to separate sediments from nonattached bacteria can be difficult.

Characklis et al. (2005) evaluated partitioning between suspended and settleable particles using a procedure calibrated with standard particle suspensions. Surrogate particles were selected based on their settling properties. Latex particles (10 μ m mean diameter, 1.05 g/cm³) represented free phase microbes and organic particles while glass beads (5-50 μ m diameter, 2.5 g/cm³) represented inorganic particles. Centrifugation of the surrogate particles at 1164 g (2000 rpm) for 10 min with a break of 4 at 4°C removed 97% of the glass beads larger than 5 μ m while 80% of the latex particles remained in suspension. The authors felt this centrifugation procedure reasonably separated particles and microbes into settleable and suspended fractions and that the procedure's affect on microbial sorption would be minimal because of the dilute concentration of the samples.

Several other studies have also applied centrifugation procedures to separate microbial fractions, but few details are provided on how the centrifugation settings were determined. Huysman and Verstraete (1993) used centrifugation to determine attachment of *E. coli* to montmorillonite and kaolinite. A 0.1 g clay mixture was added to a known concentration of *E. coli* cells that had been cultivated to the exponential phase. The mixture was first vortexed vigorously for 30 s and then

mixed slowly on a rotary shaker for one hour to promote sorption. Next, the tubes were centrifuged for 30 s at 120 g. Following centrifugation, the bacteria in the supernatant were enumerated by plate counting. The difference between the original concentration and the concentration in the supernatant was assumed to be the attached concentration. Adhesion to the clay particles was nearly complete after 15 - 20 minutes of mixing. Lago (2005) also used centrifugation to evaluate the effects of strain and water quality on attachment of E. coli to sediments. E. coli cells were grown to log phase, washed twice in the incubation medium, and resuspended in 10 mL at a concentration of about 10⁷ mL⁻¹. Sediment was added to the solution and mixed for 20 minutes at room temperature. The free and attached bacteria were separated by centrifugation at 4700 rpm for 15 seconds. The bacteria in the supernatant were enumerated by plate counting and the difference between the original concentration and the concentration in the supernatant was assumed to be the attached portion. Schillinger and Gannon (1985) used the same procedure but centrifuged samples for 3 minutes in a bench-top centrifuge at the Number 2 setting to separate attached from unattached bacteria while Sayler et al. (1975) centrifuged samples collected from the Chesapeake Bay at a relative centrifugal force of 2,100 g for 15 minutes. Muirhead et al. (2005) separated between phases by injecting a Nycodenz solution below the suspension and then centrifuging the samples.

2.2.2. Dispersion Techniques

Dispersion techniques, such as sonification or chemical surfactants, disrupt the attachment of bacteria to surfaces. Davies et al. (1995) used sonification to disperse bacteria present in bottom sediments. Samples were collected and 10 g of sediments were mixed thoroughly with 90 mL of sterile deionized water. These samples were sonicated at 100W for 30 seconds using a Braun Labsonic U ultrasonic probe (19 mm diameter). Samples were allowed to settle for 10 minutes before the bacteria in the supernatant were enumerated by membrane filtration.

Craig et al. (2002) evaluated different separation techniques and found that the binding properties between the bacteria and sediment depend upon the size and composition of the particle. The authors reported that treatment by sonication bath for 10 minutes was the most effective separation technique. For better recovery from silt/clay sediments, the authors recommend treating the sample twice. McDaniel and Capone (1985) compared homogenization,

sonication and two chemical treatments for separating sorbed bacteria from particles collected from intertidal mud flat of a north temperate salt marsh. The study found homogenization and sonication to be the best methods, cautioning that each sediment type responded differently to each enumeration procedure. Sonication at 20 kHz and 900 W was the best method of extracting sediments and also reduced variance when compared to the other methods. The authors were unable to define trends between the effectiveness of any of the techniques and sediment size, organic content, porosity or salinity.

Epstein et al. (1997) combined *in situ* radioisotope labeling of sediment bacteria, bacteria dislodging by ultrasonic treatments, and enumeration using fluorescent staining to determine bacteria enumeration in sandy sediments. This protocol accounted for between 88 to 98% of all bacteria present in sediments. The optimum time for sonication was between 80 to 160 s. Previously Epstein and Rossel (1995) determined that the ultrasonic cell disruptor performed better than a commercial blender or an ultrasonic cleaner. Samples were diluted and incubated for 15 minutes in a surfactant such as sodium pyrophosphate or Tween 80 to aid in dislodging the bacteria from sediments. The solution then received a sonic treatment for 180 s at 109 μ m amplitude. The solution was washed with autoclaved sea water, the sediment was allowed to settled, and the supernatant was collected. Samples were stained and enumerated by epifluorescent illumination.

Yoon and Rosson (1990) treated turbid seawater samples with Tween 80 surfactant prior to sonification to improve enumeration of bacteria attached to sediments. Tween 80 concentrations were varied (0, 2.5, 5, 10, 25, 50, and 100 mg/L) and it was determined that the optimum concentration of Tween 80 was 10 mg/L. Tween concentrations greater than 25 mg L⁻¹ increased bacteria die-off while sonification (10 W for 30 s using a half-wave step 1.3 cm diameter titanium probe) alone was only able to disperse between 42 to 72% of the attached bacteria.

Each method of separating microorganisms from particles has advantages and disadvantages. Filtration techniques separate unattached from particulate-attached organisms, but higher percentages of organisms could be incorrectly classified as attached due to clogging of the filter or bioflocculation of microbes. Centrifuging can separate suspended from settleable particles (and thus microorganisms), possibly providing a more realistic picture of microbe mobility within the water column. However, the centrifugation procedure increases interactions between cells and particles, possibly increasing or strengthening attachment during centrifugation (and therefore increasing percent attached). Previous dispersion studies have found optimal removal of bacteria from particles using different methods and the performance of each technique appear to be dependent upon sediment type. Thus a comparative study is recommended to compare previously employed chemical and physical dispersion techniques prior to applying these techniques to manure, sediment or water samples.

2.2.3. Enumeration Techniques

There are many conflicting ideas about the state in which bacteria survive in natural waters, as well as many problems with the methods used to enumerate the various forms in which these bacteria exist. Microscopic observations of cells in natural environments frequently exceed those which can be recovered and cultured, often by orders of magnitude (Mukamolova et al., 2003). Bacterial growth is usually presented as a sequence of events including i) initial stationary, ii) lag or growth acceleration, iii) logarithmic growth, iv) negative growth acceleration, v) stationary, vi) accelerated death, and vii) logarithmic death phases (Roszak and Colwell, 1987a). Over the past 20 years, studies have identified an extended steady state phase, but the definition and method of identifying this state are still unclear, as are the potential virulent properties that cells in this state might maintain. Roszak and Colwell (1987b) identified this extended steady state phase as viable but non-culturable (VBNC). They described the VBNC stage as one where bacterial cells are intact and alive when tested for criteria such as enzyme activity, photosynthesis, respiration, and energy charge, but do not undergo cell division on routinely employed bacteriological media.

The bacteriological water quality criteria were developed by the U.S. EPA using estimates of bacterial indicator counts and the resulting gastrointestional illness rates (USEPA, 1986). These criteria were established based on results from epidemiological surveys conducted following marine and freshwater bathing. Surveys were conducted following weekend swimming events and participants showing illness symptoms were interviewed. Illness symptoms were classified as gastrointestional, respiratory, eye, ear and nose, and other (including fever or backaches);

however, gastrointestional illnesses were always observed at the most polluted beaches, while other illnesses did not seem to be associated. The EPA tested multiple indicators of water quality so they could develop a statistical relationship between the water quality indicators and the swimming associated illnesses. Bacterial indicators E. coli and enterococci were enumerated using two membrane filtration methods developed for the EPA study, mE agar for enterococci and mTEC agar for E. coli. Modification to the original agars have been recommended to reduce analysis time and improve analytical quality (USEPA, 2000). The revised method for enterococci (mE Agar) uses a single medium, reduces analysis time from 48 to 24 hours, and improves analytical quality. The modified mTEC method for analysis of E. coli concentrations is now a single step method that only requires the use of one medium. After water samples are filtered through a membrane, the membrane is placed on the modified mTEC agar and incubated at 35±0.5°C for 2 hours to resuscitate the stressed or injured organisms and then incubated at 44.5±0.2°C for 22 hours (USEPA, 2000). Francy and Darner (2000) compared methods for enumerating E. coli in recreational waters. The study compared the Colilert method (a most probable number method) to the modified mTEC, and MI membrane filtration methods. These were compared to the mTEC method, which requires a two step procedure. No statistically significant differences were found between the mTEC method and MI methods, but they were found between the modified mTEC or Colilert methods and the mTEC method. The modified mTEC method recovered statistically fewer E. coli than the mTEC method.

Although there is much concern about the existence of the VBNC state that fecal bacterial indicators may take on when exposed to environmental stresses, the presence of these cells was accounted for during the development of the EPA criteria. Water quality criteria are based on epidemiological studies, which use statistics based on traditional culture enumeration of bacteria, implicitly including VBNC bacteria. By using culture methods, it is assumed that cells in the VBNC state will be implicitly accounted for by comparison to water quality criteria.

2.3. Bacterial Die-off from Agricultural Sources

Studies examining the decay patterns of pathogens and pathogen indicators have been conducted under controlled laboratory conditions and in monitored field plots, exposing microorganisms to a wide variety of environmental conditions. The fit of these die-off patterns to a first-order

model is typically examined along with the potential fit to two-staged, first-order models. Environmental factors, most frequently moisture content and temperature, are often examined for their impact on decay rates. This section presents a summary of previous laboratory and fieldbased die-off studies; the environmental factors impacting decay; and first order decay coefficients for conditions comparable to those that will be obtained in this study.

2.3.1. Environmental Factors Influencing Bacterial Survival

Prior to the development of improved equations to model bacterial survival in the environment, data are needed to clearly link environmental factors with bacterial survival in animal waste. Pathogens and organisms with the capabilities to form spores can survive free-living in the soil for years, but most pathogens encounter conditions that prevent normal cell functions once they leave the host. Crane et al. (1983) summarized the variables that affect the survival of enteric organisms in the environment: physical and chemical properties of the soil including pH, porosity, organic matter content, texture and particle size distribution, elemental composition, temperature, moisture content, absorption and filtration properties, and availability of nutrients; atmospheric conditions including sunlight, humidity, precipitation, and temperature; biological interaction of organisms including competition from indigenous microflora, antibiotics, and toxic substances; and the waste application method including the technique, frequency, and density of the organisms in the waste material. It is also known that some potential pathogens are free-living in the soil and may be nourished by animal wastes (Ellis and McCalla, 1978).

While many variables are thought to influence bacteria survival, temperature and moisture content of the soil or manure are thought to be key factors affecting die-off rates. Wang et al. (2004) found that temperature (but not moisture content) had a significant effect on indicator bacteria die-off in dairy cow manure. Wang et al. (1996) found that *E. coli* O157:H7 inoculated in fresh dairy cow manure survived for 63 to 70 days when incubated at 5°C with a high (74%) moisture content compared to survival times ranging from 42 to 59 days at incubation temperatures of 22°C and 37°C with lower (10% at the end of the study) moisture content. Howell et al. (1995) found that fecal coiform mortality rates decreased as the sediment particle size became finer and as temperature decreased. The study did not find evidence of interaction between temperature and particle size in determining fecal bacteria persistence. Mubiru et al.

(2000) attributed differences in *E. coli* survival inoculated in two soils to differences in available water in the soil matrix. Most rapid die-off of *E. coli* O157:H7 and *Salmonella typhimurium* were observed at 37°C when compared with 4 and 20°C (Himathongkham et al., 1999). *E. coli* O157:H7 inoculated in feces in the laboratory survived best when incubated at temperatures below 23°C but also survived for shorter periods of time than manure exposed to the external environment, emphasizing the difficulty in applying laboratory results to field conditions (Kudva et al., 1998).

Van Donsel et al. (1967) studied the effects of seasonal variation on the survival of FC and FS in soil. The survival of fecal coliform and fecal streptococcus was studied for several years at shaded and exposed outdoor soil plots. The 90% reduction for fecal coliform occurred after 3.3 days in the summer and 13.4 days in the autumn, while the FS 90% reduction times ranged from 2.7 days in summer to 20.1 days in the winter. Taylor and Burrows (1971) found that *E. coli* survived 7 to 8 days and *Salmonella dublin* persisted up to 18 days on growing pastures. Cutting the pastures reduced the bacterial survival time on the grasses, most likely through its effect on drying rates and increased exposure to solar radiation. Manure storage may reduce bacterial survival by allowing die-off to occur before it is applied to the soil and also allows manure to be spread under optimum climatic conditions. Waste spread on frozen soils may not infiltrate into the soil and bacterial survival may be prolonged due to the low temperatures (Moore et al., 1988). A study by Crane et al. (1983) showed a trend toward minimal bacterial losses from applied liquid waste systems and greatest losses for solid spread methods, but the differences were not significant (Crane et al., 1983, unpublished data).

Several studies have detected bacterial re-growth following land application of waste. Crane et al. (1980) applied poultry manure to bare soil plots in a controlled environment. The manure was applied at approximately 36.5 and 164 t/ha on Norfolk loamy fine sand from the coastal plains and Davidson clay loam from the Piedmont region. Die-off of fecal coliform was rapid immediately following the manure application until day seven. The first seven days were followed by a period of re-growth lasting five days and then the organism concentrations remained constant. Although the re-growth could not be attributed to a single factor, the high soil moisture content and the mild unfluctuating temperature most likely contributed to the re-

growth. VanDonsel et al. (1967) noticed after-growth of both tracer fecal coliforms and nonfecal coliforms. The re-growth was thought to be stimulated by nutrients remaining from the broth inoculum used to apply a cultured fecal coliform to the field plots. During nonfreezing conditions, an increase in the nonfecal coliforms appeared most often after a rainfall. The increase seemed to be related to the temperature conditions following the rain rather than the amount of rain. The study concluded that very warm weather following a rain could cause up to 100-fold increase in the soil coliforms. Laboratory studies have also found increased concentrations of fecal coliforms and *E. coli* in manures up to a week following excretion (Conner and Kotrola, 1995; Wang et al., 1996; Wang et al., 2004).

2.3.2. First-order Decay Rates

Several researchers have concluded that first-order decay adequately describes die-off kinetics of fecal indicators from agricultural sources (Crane and Moore, 1986; Himathongkham et al., 1999; Oliver et al., 2006), however, most die-off studies have been conducted under laboratory conditions making it difficult to compare these laboratory-based findings to the field-based findings presented in this study. Table 2.1 presents a summary of *E. coli* first order decay rates in freshly excreted dairy cow manure developed from both lab and field-based studies.
Table 2.1. E. coli die-off and first order decay rates in freshly excreted dairy cow manure.

Description of study		organism	Environmental variables	Length of study	Die-off rate, k (days ⁻¹)	Reference
Die-off in freshly excreted dairy cow manure	lab-based	E. coli	three moisture contents (30%, 55%, and 83%) and three temperatures (4°C, 27°C, and 41°C)	ranged from 35 to 103 days	0.11 d ⁻¹ at 4°C 0.20 d ⁻¹ at 27°C 0.32 d ⁻¹ at 41°C	Wang et al., 2004
Die-off in the top layer of fresh dairy manure assessed separately from the middle and bottom layers, inoculated with E. coli O157:H7	lab-based	<i>E. coli</i> O157:H7	variable moisture and temperatures	ranged from 27 to 60 days	$\frac{Top \ layer}{0.111 \ d^{-1} \ at \ 4^{\circ}C \ (75\% \ RH), \ 0.046 \ d^{-1} \ at \ 20^{\circ}C \ (50\% \ RH) \ and \ 0.112 \ d^{-1} \ at \ 37^{\circ}C \ (30\% \ RH) \ \underline{Middle \ and \ bottom \ layer} \ 0.054 \ d^{-1} \ at \ 4^{\circ}C, \ 0.074 \ d^{-1} \ at \ 20^{\circ}C, \ and \ 0.279 \ d^{-1} \ at \ 37^{\circ}C \ d^{-1} $	Himathongkham et al., 1999
Die-off in freshly deposited cattle feces (steers)	lab-based	E. coli	incubated at 15°C, 25% and 50% moisture	111 days	0.054 d ⁻¹ (25% moisture) and 0.058 d ⁻¹ (50% moisture)	Oliver et al., 2006
Monitored bacterial die-off in milker, heifer and beef cowpats on grazed pastureland	field-based	<i>E. coli</i> and fecal coliform	Two seasonal studies, deposition in late April and mid-July		<i>April deposition</i> : 0.01593 d ⁻¹ <i>July deposition</i> : 0.02332 d ⁻¹	Mostaghimi et al., 1999

Two-staged first order functions have been found to improve indicator decay patterns. Mubiru et al. (2000) inoculated *E. coli* O157:H7 and nonpathogenic *E. coli* strains in two soil types and enumerated concentrations weekly for an 8-week period. The decay rate constants for a first order approximation ranged from 0.09 d^{-1} to 0.17 d^{-1} , varying slightly by strain and soil type, with high regression coefficients ranging from 0.89 to 0.93. A two-staged first order function improved the fit and the initial mortality rates were much higher 0.15 d⁻¹ to 0.25 d⁻¹ than the second stage 0.05 d⁻¹ to 0.08 d⁻¹. Mortality rates of fecal coliforms and fecal streptococci have also been adequately described by a two-stage exponential decay model (Zhai et al., 1995).

E. coli die-off rate coefficients developed under laboratory conditions at constant temperatures are generally higher than the field-based seasonal die-off rate coefficients (Table 2.1). If water quality models continue to use first-order decay to predict in-field bacterial concentrations, die-off rate coefficients should be developed in the field for utilization in these models. In addition, higher order approximations and inclusion of weather variables might more accurately represent in-field bacterial decay.

2.4. Bacterial Attachment to Particulates

Previous research has identified cellular properties (such as hydrophobicity of the cell and the electrostatic nature of the cell envelope) and external factors (beyond availability of attachment sites) that could increase fecal bacteria attachment to sediment and organic matter particles. Laboratory-based partitioning studies attempt to isolate the influences of individual parameters and identify the cellular properties or external factors responsible for bacterial attachment.

2.4.1. Cellular Properties Influencing Attachment

Bacteria adsorption to particles has been identified as either weak adsorption, due to van der Waals forces, which counteract repulsive forces (Jamieson et al., 2004), or strong adsorption due to cellular appendages such as fimbriae or pili (Henry, 2004) or adhesive polysaccharides and glycoprotein excreted by the cell (Madigan et al., 2000). Different strains of the same species may exhibit distinctive physiological properties depending upon the growth curve stage and environment surrounding the cell. A study by Dawson et al. (1981) found that cells in the early log, late log, and stationary phases exhibited few attachment properties. However, under starvation conditions, cells decreased in size and exhibited adhesive properties. Nearly all

ecosystems are oligotrophic, limiting in either the bioavailability of organic matter or nutrients (Morita, 1997). In oligotrophic environments, bacteria adhere to surfaces in an effort to obtain nutrients and increase survival (Morita, 1997). The exposed cell surface of the attached cells is decreased and the attached portion of the cell does not participate in substrate uptake. In addition to surface attachment, bacteria also bioflocculate or attach to one another and form aggregates. Bioflocculation of cells is genetically controlled and is thought to only be expressed in specific environments, usually when substrates are depleted and bacteria are stressed for nutrients (Morita, 1997).

To understand the growth of a particular organism, cells are placed in a flask containing nutrient broth and environmental conditions are controlled. The distinct phases that are observed during a growth curve include the lag phase, the exponential or log phase, the stationary phase, and the death phase (Maier et al., 2000). The lag phase occurs during the physiological adaptation of the cells to the culture conditions and is observed until the cells reach a population of approximately 10^6 cells mL⁻¹. During the exponential phase, the rate of increase of cells in the culture is proportional to the number of cells present at any time. As cells deplete the carbon and nutrient sources they enter into the stationary phase where growth is balanced by an equal number of dying cells. While no net growth occurs during this stage, a slight increase in the growth curve might occur due to the use of lysed cells as a carbon and nutrient source. During this period the cells detect the lack of substrate and begin to undergo metabolic and physiologic changes such as activation of dormant genes or suppression of active genes. Cells adapt individually to the low nutrient environment and use highly variable methods of survival; therefore, the population as a whole is very heterogeneous during stationary phase (Jones, 1997). As components necessary for growth become more and more limited, cells enter into the death phase where a net loss of culturable cells occurs, often at an exponential rate (Maier et al., 2000).

The outer surfaces of bacterial cells are normally negatively charged and are attracted to positively charged particles in the soil. However, electrical forces also do not appear to be fully responsible for attachment. Stenstrom (1989) found that adhesion of *Salmonella typhimurium* to mineral particles correlated with the hydrophobicity of the cell surface. A positive charge on the surface of bacteria contributed to the adhesion potential while, a negative charge on the bacterial

surface and changes in the pH (4 to 9) did not significantly change the adhesion process. Benthic cyanobacteria, which adhere to solid surfaces and bottom sediments were found to be hydrophobic while planktonic cyanobacteria were all found to be hydrophilic (Fattom and Shilo, 1984). These cellular properties indicate the potential for preferential attachment of cells to particulates (particularly those in the stressed state) during transport to surface waters.

2.4.2. External Factors Influencing Attachment

Factors external to the cell that have been found to influence cell sorption to particulate matter include ionic strength and pH of the carrying solution and size of the particulate matter. Jewett et al. (1995) studied the influence of ionic strength and pH on the retention of *Pseudomonas fluorescens* P17 in silica media. Changes in the pH (5.5 to 7.0) of the carrying solution and surface charge did not influence sorption. However, sorption was increased by increasing the ionic strength (2×10^{-2} , 5×10^{-4} , and 2×10^{-5} M) of the carrying solution. Fontes et al. (1991) evaluated the mineral grain size, ionic strength of an artificial groundwater solution (AGW), and cell size on the movement of microorganisms through porous media. Retention was highest for AGW of lower ionic strength (0.00089 m), larger cells (0.75 by 1.8 µm rods) and fine grained sand (0.33 mm). Grain size was determined to be more important than cell size and ionic strength in controlling the transport of bacteria. Mitchell and Chamberlin (1978) found that clays tend to adsorb coliforms more than silts or sands.

Equilibrium batch experiments examining the effect of dairy manure on *E. coli* attachment to soils found increasing manure content resulted in decreased *E. coli* attachment (Guber et al., 2005a). Other studies found that removal of dissolved organic carbon from a bacterial suspension increased attachment (Scholl and Harvey, 1992), and bacteria adsorption on quartz and iron-quartz particles was decreased by the addition of organic matter (Johnson and Logan, 1996). Guber et al. (2005b) hypothesized that the decreased bacterial attachment to particulates in the presence of manures could be caused by a variety of factors including competition between bacteria and dissolved organic matter for attachment sites on soil, modification of soil mineral surfaces by soluble manure constituents, or modification of bacterial surfaces by dissolved organic matter.

2.4.3. Laboratory-Based Partitioning Studies

Rather than collect environmental samples, some researchers have conducted experiments on a single strain of bacteria and grown cells to a certain stage on the growth curve or concentration prior to determining partitioning between unattached and attached phases. This technique might produce more consistent results since attachment can depend upon both the stage of the growth curve (Dawson et al., 1981) and different strains might exhibit different attachment properties when exposed to a low-nutrient environment. Although results obtained using these methods might be more reproducible, it is questionable whether findings from these studies will be be applicable to the natural environment. The sorption of a single strain of bovine E. coli to a sterile, homogeneous soil comprised of greater than 80% sand was evaluated by Henry (2004). Approximately 78% of the E. coli was found to be associated or attached to the sediment particles when attachment was defined as E. coli unable to pass through an 8 µm filter. Ling et al. (2002) evaluated strong and weak adsorption of E. coli onto two different soil types (14% and 35% clay content). Wild strains of *E. coli* were isolated from pasture runoff and grown to a desired concentration. Adsorption was determined by separating the E. coli from the soil particles using differential centrifugation. Weak adsorption was determined by centrifuging the mixture and separating the supernatant from the soil. Soils with 35% clay sorbed 99.2% of E. coli while soils with 14% clay content sorbed 24.5% of E. coli. Strong adsorption was determined by adding 0.85% NaCl in distilled water and shaking for 5 minutes before centrifugation at a higher g-force for a longer period of time. Soils with 35% clay sorbed 96.1% of E. coli while soils with 14% clay content sorbed 38.1% of E. coli. Results indicated that percent adsorption of *E. coli* was significantly higher in soils with a higher clay content. Soils with higher clay contents were recommended to receive higher application rates of waste as a method to reduce bacteria concentrations in runoff.

Oliver et al. (2007a) conducted batch sorption experiments with a clay loam soil to determine the particle size fractions to which *E. coli* preferentially attach (2 – 3 μ m, 4 - 15 μ m, and 16 - 30 μ m). Thirty five percent of introduced *E. coli* cells were associated with soil particulates >2 μ m diameter and 14% were associated with the 4-15 μ m size fraction while the 16-30 μ m fraction of soil particles contained the highest concentration of *E. coli* per unit area. *E. coli* association with different soil particle size fractions will impact delivery to surface waters. The

fraction that remains unattached or associated with $\leq 2 \mu m$ diameter particles are likely to remain suspended in the water column and avoid removal mechanisms of many management practices such as vegetated filter strips while the attached fraction are more likely to settle (Oliver et al., 2007a).

2.5. Bacterial Transport and Partitioning during Runoff Events

Runoff from pastureland and cropland receiving applications of animal manure has been well documented to be a source of fecal contamination of surface waters (Crowther et al., 2002; Edwards et al., 1994; Edwards et al., 2000; Khaleel et al., 1979b; Schepers et al., 1980; Schepers and Doran, 1980; Soupir, 2003; Tian et al., 2002). There is a long history of rainfall/runoff studies conducted to determine the concentrations of fecal indicators in runoff from agricultural lands. Indicator organisms present in soils along with pathogens may contaminate surface waters, through movement with surface runoff (either as sorbed to sediment and organic particles or in the unattached state) and groundwater, through downward leaching with infiltrating water (Reddy et al., 1981). However, pathogenic organisms are largely retained at or near the soil surface (Faust, 1982; Gerba et al., 1975), thus increasing the potential for pollution of surface runoff waters. This large body of literature has not produced sufficient understanding of the transport properties of fecal bacteria. Often environmental factors have not been linked to dieoff, infiltration into the soil has not been monitored, and partitioning between unattached and attached forms has not been considered. It is unclear if cells sorbed to soil particles offer resistance to transport by overland flow or if they are transported along with eroding soil particles. In addition, many of the studies have only evaluated concentrations of fecal coliforms while indicators such as E. coli and enterococci are now preferred by the EPA as those more likely to detect the presence of pathogenic organisms (U.S. EPA, 1986).

2.5.1. Bacterial Transport into Surface Waters from Agricultural Sources

Previous research has linked the transport of bacteria in surface runoff from agricultural lands to rainfall duration, intensity, and frequency (Patni et al., 1985); method of manure application (Janzen et al., 1974; Moore et al., 1982; Soupir, 2003); fecal deposit age (Kress and Gifford, 1984; Thelin and Gifford, 1983); and sorption of cells to soil particles (Walker et al., 1990). Low amounts of manure can enhance the quality of the soil by improving the soil aggregate size and its water holding capacity. However, when applied at higher rates, the large contribution of

monovalent ions from incorporated manure increased soil erodibility (Mazurak et al., 1975) and thus the amount of bacteria detached by overland flow (Khaleel et al., 1979a). Mazurak et al. (1975) disked plots to a depth of 10 cm. Soil detachment from manured plots (application rate of 415 t ha⁻¹ yr⁻¹) was 89 mg/cm³ while soil detachment from non-manured plots was 55 mg/cm³. Increased soil erosion due to land application of waste may increase transport potential of fecal bacteria sorbed to sediment particles.

Doran and Linn (1979) compared fecal coliform (FC) concentrations in runoff from a grazed cow-calf pasture and an ungrazed pasture in eastern Nebraska. The FC counts were 5 to 10 times higher in the runoff from grazed pasture. The FC counts in runoff from both the grazed and ungrazed pastures exceeded the water quality standard of 200 CFU/100 mL more than 90% of the time. Similar results were found in a study by Doran et al. (1981) on a 106 ac (43-ha) fenced pasture located in south central Nebraska that compared a grazed area to a control area with restricted cattle access. The grazing increased FC counts between 5 and 10-fold from the control area. The FC counts in both the grazed pasture and ungrazed control areas exceeded both primary and partial body contact more than 90 percent of the time. Greater wildlife activity was noted on the smaller, better-protected control area, possibly accounting for high fecal coliform levels in runoff. Schepers and Doran (1980) continued the research for an additional year, removing all cattle from the grazed pasture. After removing the cattle, the fecal coliform levels in the runoff from both the grazed and control pastures were similar. However, the average FC counts from both the previously grazed and ungrazed areas continued to exceed the recommended water quality standards of 200 CFU 100 mL⁻¹. This study concluded that a large background contribution existed from wildlife. The high bacterial concentrations in runoff from grazed pastures where the cattle had been removed may also be due to the build up of stable populations in the soil (Faust, 1982). In a review of the influence of dairy waste management systems and their influence on FC concentrations in runoff, Moore et al. (1982) concluded that background indicator bacterial concentrations in runoff most likely range from 10³ to 10⁵ organisms/100 mL, even with the implementation of best management practices.

Thelin and Gifford (1983) developed standard cowpies to study FC release patterns. Release refers to the availability of fecal bacteria from field manure sources prior to reductions from

overland transport processes. The standard cowpies were tested against naturally occurring fecal deposits for peak release concentrations. The peak release regression from the naturally occurring fecal deposits was not significantly different than the regression for the standard cowpies, so the authors concluded that the standard cowpies did not change the release patterns. Fecal deposits 5 days old or less released FC concentrations into the water on the order of millions per 100 mL. Fecal deposits that had not been rained on for up to 30 days released FC concentrations on the order of 40,000 per 100 mL (Thelin and Gifford, 1983). Kress and Gifford (1984) found that even 100-day old cowpies are still potential sources of FC contamination. The peak concentration from a 100-day-old deposit was 4,200 FC per 100 mL in runoff, using the most probably number (MPN) method. Approximately 1,000 100-day old fecal deposits were found to release FC concentrations equal to a single 2-day old fecal deposit. Hafez et al. (1969) found that fecal deposits from cattle were not uniformly distributed throughout a pasture. In certain areas, such as water troughs, gates, fence lines, and bedding areas, cowpie concentrations may be much higher. Cattle allowed to roam freely on pastureland will defecate an average of 12 times per day (Kress and Gifford, 1984).

Despite the large number of field scale studies attempting to explain the concentrations of fecal bacteria in runoff from agricultural lands, little information about the factors influencing microbial transport have been provided (Jamieson et al., 2004). This is demonstrated by the lack of progress made in reducing bacteria loadings from agricultural lands. High levels of fecal bacteria indicators or pathogens are currently the leading cause of impairments of rivers and streams in the United States (U.S. EPA, 2007b) with agricultural practices being the primary source of these impairments (U.S. EPA, 2003). These field studies have simply emphasized the fact that fecal bacteria applied to the land are present in surface runoff, and they have identified the need to fully understand hydrologic characteristics and other factors that affect the fate and transport of fecal bacteria in a watershed (Jamieson et al., 2004).

2.5.2. Partitioning of Fecal Bacteria in Agricultural Runoff

Muirhead et al. (2005) studied the transport state of *E. coli* cells by placing cowpats and fecalmaterial–soil mixtures on a metal tray 250 mm long and 200 mm wide, and runoff was created by placing a rainfall simulator nozzle 250 cm above the soil. On average only 8% of *E. coli* cells attached to sediment particles and most cells were not bioflocculated (attached to one another to form aggregates), but instead transported in runoff as single cells. Experimental field plots that were 1m wide and 5m long were used to investigate the removal of *E. coli* from overland flow under saturation-excess runoff conditions (Muirhead et al., 2006a). Retention of bacteria on grassed and cultivated plots receiving dairy cow slurry applications at different flow rates were compared. The majority of *E. coli* were able to pass through a 20 μ m filter (80%) and only 9% of *E. coli* were attached to large (dense) soil particles. The authors concluded that *E. coli* were primarily transported as particles of neutral buoyancy that remained suspended during overland flow thus explaining poor removal of bacteria from the plot studies (<50%).

2.5.3. Partitioning of Fecal Bacteria in Urban Runoff

While little information is available on the partitioning of fecal bacteria in runoff from agricultural lands, researchers have begun to assess the percent attached during urban runoff events. Jeng et al. (2005) studied the sorption of E. coli, fecal coliform and enterococci with estuarine sediment and stormwater particles in urban stormwater runoff using screen filtration. Researchers found that E. coli and fecal coliform attached to suspended particles over a broad range of diameters while enterococci attached primarily to particles between 10 and 30 µm in diameter. The authors attributed *E. coli* association with a broader range of particle sizes because of the motility and rod shape of the *E. coli* makes them more able to attach to different angles or faces of the particles (edge-to-edge or face-to-edge associations). Schillinger and Gannon (1985) and Auer and Niehaus (1993) also used a screen filtration method to determine the sediment sizes to which fecal coliforms were sorbed in urban stormwater. Schillinger and Gannon (1985) found that between 10 and 15% of the sorbed bacteria were retained by each screen size, but most of the bacteria were associated with particles retained on 52 µm and 30 µm screens (Schillinger and Gannon, 1985). Sheer stress on the bacteria due to the smaller screen sizes may have reduced the attachment to the smaller particles sizes. Auer and Niehaus (1993) found that fecal coliforms were primarily sorbed to particle classes $0.45 - 1 \mu m$ and $6 - 10 \mu m$ during storm overflow events. On average 90.5% of the fecal coliform bacteria were found to be sorbed to particle sizes ranging from $0.45 - 10 \,\mu\text{m}$ and 9.5% were sorbed to particles sizes greater than 10 µm.

Characklis et al. (2005) used centrifugation to separate settleable particles and associated microbes from particles that would remain suspended in the water column, primarily organic material and free phase organisms. Samples were collected from three urban locations near Chapel Hill, North Carolina. The study found that 20 - 35% of fecal coliforms, *E. coli*, and enterococci were associated with settleable particles during normal flow conditions and 30 - 55% during storm events. Krometis et al. (2007) examined attachment of fecal coliforms, *E. coli* and enterococci to settable particles throughout three separate storm events. Higher concentrations of settable particles and microbes were observed during the earliest stages of storm hydrograph and on average 40% of fecal coliforms, *E. coli* and enterococci were associated with settable particles during storm events. In samples collected from the Neuse River Estuary in eastern North Carolina an average 38% of *E. coli* and enterococci were associated with settable particles (Fries et al., 2006).

2.6. Summary

Previous studies have produced mixed results as to whether enteric bacteria in soil and aquatic systems are present in the unattached state or sediment and particulate-attached. Interactions between bacteria and particulates influence survival on the soil surface and transport characteristics during overland flow events; thus, it is necessary to incorporate these relationships into NPS models. To advance current NPS modeling efforts, improved information is needed on the fate of *E. coli* and enterococci on agricultural lands and transport of *E. coli* and enterococci to surface waters. Best management practices (BMPs) are implemented to reduce the transport of pollutants to surface waters. Identification of the particulates to which bacteria preferentially attach would further aid in the design and selection of BMPs in watersheds impaired by fecal bacteria. Improved relationships to describe in-field die-off patterns and development of coefficients to describe partitioning between unattached and attached phases during overland flow can be used to improve in-stream predictions of indicator bacteria concentrations by NPS models.

Chapter 3. A Method to Partition between Attached and Unattached *E. coli* and Enterococci in Runoff from Agricultural Lands

3.1. Introduction

The three most common pathogen indicators in the United States include fecal coliform, *E. coli* and enterococci. Although fecal coliform have been traditionally used to detect the presence of pathogens in surface waters, *E. coli* and enterococci are thought to have a higher degree of association with outbreaks of gastrointestional illness (U.S. EPA, 1986) and *E. coli* is typically the indicator preferred in fresh water systems. In an attempt to reduce pollutant loading to the nation's water bodies, total maximum daily loads (TMDLs) are being developed to assess water quality problems, identify pollution sources, and determine pollutant reductions needed to restore and protect rivers, streams and lakes. A TMDL is a calculation of the maximum amount of a pollutant that can be discharged to a water body, while still meeting the water quality standards, and an allocation of that amount to the pollutant's sources (U.S. EPA, 2007a). Nonpoint source (NPS) pollution models are most frequently used to assess bacterial transport to surface waters and most models typically simulate bacterial partitioning are not available (Jamieson et al., 2004).

Previous studies have determined that fecal bacteria preferentially attach to particulate matter (Auer and Niehaus, 1993; Henry, 2004; Ling et al., 2002) and as a result their survival time may be increased (Burton et al., 1987; Gerba and McLeod, 1976). *E. coli* attachment to particulates ranges from 20% to 35% during stream base flow conditions and 30% to 55% during storm events; while enterococci attachment to particulates ranges from 20% to 35% during stream base flow conditions and 8% to 55% during storm events (Characklis et al., 2005; Jeng et al., 2005). *E. coli* attachment to particulates averaged 8% when cowpats were placed on trays beneath a rainfall simulator (Muirhead et al., 2005). The variety of techniques used to assess partitioning between the unattached and attached phases could lead to differences in results and thus partitioning coefficients implemented into NPS models.

Most frequently, a separation technique such as filtration, fractional filtration or centrifugation is used to separate the unattached from the attached cells (Auer and Niehaus, 1993; Characklis et al., 2005; Fries et al., 2006; Henry, 2004; Jeng et al., 2005; Muirhead et al., 2005; Schillinger and Gannon, 1985) The unattached and total fractions are enumerated and the attached fraction is assumed to be the difference between the two. Chemical or physical dispersion techniques are often employed to separate sorbed bacteria from sediments to assess the total concentration. Dispersing the indicator organisms from sediments and organic particles allows each bacterium to form a separate colony; therefore achieving a better approximation of the total number of both unattached cells and those associated with particulates. Many studies have examined impacts of dispersion techniques on total bacteria or fecal coliforms (Craig et al., 2002; Epstein and Rossel, 1995; McDaniel and Capone, 1985; Trevors and Cook, 1992; Yoon and Rosson, 1990) and some researchers have obtained optimal results by using a combination of dispersion techniques (Yoon and Rosson, 1990). These previous studies have not examined the effects of different dispersion techniques on mixed environmental strains of *E. coli* and enterococci present in runoff samples.

Filtration is one technique used to separate unattached from attached bacteria. Typically, bacteria passing through the filter are assumed to be unattached, previously defined as cells able to pass through an 8 µm screen (Henry, 2004; Mahler et al., 2000; Qualls et al., 1983). Since a typical *E. coli* cell is $1 \times 3 \mu m$ (Madigan et al., 2000) in size, the filtration method assumes that free bacteria, those sorbed to very small particles, or even bioflocculated clumps are able to pass through the 8 µm filter. Mahler et al. (2000) validated this method by passing a known suspension of E. coli through the 8 µm filter. The authors successfully recovered 99% of the unattached E. coli, demonstrating that only a small proportion of the free cells that were retained would have been incorrectly classified as attached. Fractional filtration has been used to identify the bacteria attached to different particles sizes (Auer and Niehaus, 1993; Jeng et al., 2005; Schillinger and Gannon, 1985). Fractional filtration of urban stormwater was performed by Schillinger and Gannon (1985) and Auer and Niehaus (1993) to separate sediment particle sizes; however both studies also assumed that all cells retained by screens were associated with particulates of that size. It is possible that bioflocculated or unattached bacteria could attach to the filters (Henry, 2004) or particulates could clog filters, retaining free cells and resulting in incorrect classification.

Centrifugation is another method frequently used by researchers to determine partitioning between unattached and sediment sorbed bacteria (Characklis et al., 2005; Dumontet et al., 1996; Huysman and Verstraete, 1993; Muirhead et al., 2005; Sayler et al., 1975; Schillinger and Gannon, 1985). The percent attached is typically determined by subtracting the total count from the concentrations remaining in the supernatant following centrifugation. Use of centrifugation to separate microbial fractions assumes that microbial sorption to particulates is not affected even though interactions between cells and particles are increased during the process (Characklis et al., 2005). In addition, unattached bacteria can be similar in size to clay particles, so determining proper centrifuge settings to separate sediments from nonattached bacteria can be difficult (Henry, 2004). Previous research has not identified a separation technique that will also identify particle sizes to which *E. coli* preferentially attach without the assumption that all unattached cells are able to pass through filtration devices (Henry, 2004; Jeng et al., 2005; Mahler et al., 2000).

A method to disperse and separate unattached from attached forms of environmental *E. coli* and enterococci present in runoff is needed to improve consistency between research results which will ultimately improve bacterial transport modeling. The goal of this study was to develop an easy-to-replicate laboratory procedure for separation of unattached from attached *E. coli* and enterococci which will also identify particle sizes to which *E. coli* and enterococci preferentially attach. The first objective was to compare previously employed methods for dispersing attached *E. coli* and enterococci from sediments and suspended particles and we hypothesized that sonification would be the best method of recovering attached bacteria from sediments. The second objective was to validate a sequence of previously employed methods for separation of unattached and attached *E. coli* and enterococci.

3.2. Materials and Methods

3.2.1. Sample Collection

A single, fresh cowpat was collected from the confined stalls at the Virginia Tech Dairy Farm. A cowpat fecal source was selected because previous research results indicated higher concentrations of indicator organisms and total suspended solids (TSS) in runoff from

pastureland plots treated with cowpats when compared to poultry litter and liquid dairy manure (Soupir et al., 2006b). The fresh cowpat was transported immediately to the Virginia Tech Prices Fork Research Farm and was placed on sloped pastureland of Grosclose silt loam soils (Creggar et al., 1985) with particle size distribution of 38% sand, 54% silt and 8% clay. Bare soils were selected to ensure sufficient transport of both sediment and organic particulates. High concentrations of particulates increased availability of bacterial attachment sites and likelihood of *E. coli* and enterococci attachment. Water from a local well was applied to the cowpat and the surrounding soils using a hand application watering can. Water was briefly applied over the cowpat to fill a 140 mL sterile bottle. High concentrations of organic matter from the cowpat and sediments were observed in the runoff samples. Cowpat runoff samples were used to compare the effectiveness of physical and chemical dispersion techniques and to develop the separation technique.

3.2.2. Comparison of Dispersion Treatments

A comparative study was conducted to identify the best method of dispersing environmental strains of *E. coli* and enterococci from sediment and organic matter particles present in runoff samples. Chemical and physical dispersion techniques were tested separately in preliminary studies before the optimal techniques were combined to evaluate if a combination of methods would further increase enumeration.

Based on findings from previous studies, selected chemical dispersion treatments included Tween-80 (Yoon and Rosson, 1990) and Tween-85 (Auer and Niehaus, 1993; Henry, 2004) at concentrations of 10, 100, 1,000, and 10,000 mg L⁻¹ and 0.1% (w/v) sodium pyrophosphate (NaPP) combined with 1% (v/v) glycerol, 1% (v/v) peptone, and deionized water (Trevors and Cook, 1992). Runoff samples were diluted in the chemical solutions and enumerated on Modified mTEC agar (U.S. EPA, 2000) using membrane filtration procedures (Clesceri et al., 1998). The control samples were diluted in phosphate buffer solution (HACH Company, Loveland, CO) and enumerated by membrane filtration. All samples were vortexed for approximately two seconds to ensure mixing prior to membrane filtration. Three physical dispersion treatments: hand shaker (Wrist Action Shaker, Burrell Corporation, Pittsburg, PA) treatment for 10 min, ultrasonic bath (Fisher Scientific, 50/60 Hz, 55W) treatment for 30 sec, 2 min, 6 min and 10 min, and a one minute vortex (Touch Mixer Model 231, Fisher Scientific, Pittsburg, PA) were also compared. After the runoff samples were collected, a 1 mL control subsample was extracted and diluted in phosphate buffer solution (HACH Company, Loveland, CO) and enumerated by membrane filtration (Clesceri et al., 1998). The remaining sample was treated with a dispersion technique prior to dilution and membrane filtration.

3.2.3. Development of Separation Technique

Multiple screen filtration separated suspended solids into particle sizes while centrifugation was used to separate attached from unattached cells. A Mini-Sieve Microsieve Set (Bel-Art Products, Pequannock, NJ, Figure 3.1) containing a number 35 mesh screen was used to retain particles larger than coarse sand (>500 µm) and a number 230 mesh screen was used to retain medium, fine and very fine sand (63 - 500 µm). An 8 µm filter (Poretics, Polycarbonate, GE Water and Processes Technologies) was used to retain fine, medium, and coarse silt particles (Gordon et al., 2002; Henry, 2004; Mahler et al., 2000; Qualls et al., 1983) and a 3 µm filter (Nuclepore Track – Etch Membrane Filtration Products, Whatman) was used to retain clay and very fine silt particles. Gravity flow was augmented with vacuum application. Following filtration, the mesh screens and filters were aseptically removed, placed in phosphate buffered solution, and gently rinsed to remove sediments from the filters. Preliminary studies found that >98% of particulates are removed from the filter during this process (Soupir, M., unpublished data). Samples were then centrifuged at 4,700 rpm for 15 seconds to separate unattached cells from suspended particles (Lago, 2005). The supernatant and filtrate passing through the 3 µm filter were enumerated for E. coli concentrations on modified mTEC agar using membrane filtration (Clesceri et al., 1998) to assess the unattached bacterial concentrations. The sediment and organic particles associated with each screen size were re-suspended in phosphate buffered water, treated with the optimal dispersion technique and enumerated by membrane filtration to assess the total bacterial concentration retained by each screen size. Total and unattached concentrations were converted to a mass basis based on filtration volumes and the difference between the total and unattached masses was assumed to be the attached portion. The attached portion associated with each screen size was divided by the total suspended solids associated

with each screen size to obtain the cfu (colony forming units) per gram of particulates and identify the particle sizes to which *E. coli* and enterococci preferentially attach.

Figure 3.1. Mini-Sieve Microsieve Set used to separate particles in runoff into 63 and 500 µm particle size categories.

Two separate studies were conducted to validate the separation technique. Suspended *E. coli* DH2 1030 collected from the stationary phase of the growth curve was centrifuged to ensure that unattached cells remained in suspension. Secondly, samples collected in duplicate at the base of the large cowpat-treated field plots described in Chapter 6 were enumerated for *E. coli* and enterococci concentrations by treatment with the dispersion technique followed by membrane filtration (control samples) and compared to *E. coli* and enterococci concentrations that were pre-treated by screen filtration and centrifugation followed by dispersion technique treatment and membrane filtration.

3.2.4. Data Analysis

The experimental design for the comparison of dispersion techniques was a randomized block design with preliminary comparisons of either chemical or physical treatments conducted in triplicate to identify the treatments most likely to disperse attached cells and increase *E. coli* and enterococci counts. Five replicates were used when the best chemical and physical dispersion

techniques were combined. Percent increase or decrease from the control was calculated by subtracting the control average concentration from the treatment average concentration and then dividing by the control average concentration. Experimental data were log-transformed and analyzed using the Mixed procedure of SAS (SAS Institute, 2004) and least square means were compared using Tukey's pairwise comparison (Ott and Longnecker, 2001). Statistical differences between total *E. coli* and enterococci pre-treated with screen filtration and centrifugation and total *E. coli* and enterococci analyzed by the dispersion technique and membrane filtration were determined by Analysis of variance (ANOVA) and a probability level of ≤ 0.05 was considered significant.

3.3. Results and Discussion

3.3.1. Comparison of Dispersion Techniques

A comparative study was conducted to identify the best method of dispersing wild strains of *E*. *coli* and enterococci from sediment and organic matter particles present in runoff from pasturelands. Previous researchers found a great deal of variation in the methods that result in greatest recovery of viable bacteria. While some methods increase enumeration, care must be taken when exposing the bacteria to either chemical or physical dispersion treatments so that the cells are not damaged, resulting in reduced enumeration.

A preliminary comparison of Tween-80, Tween-85 and sodium pyrophosphate solutions (Table A.1) indicated that the 1,000 mg L⁻¹ Tween 85 solution increased *E. coli* concentrations by 36% and enterococci concentrations by 21% when compared to the control; however, this increase was not statistically significant. All other Tween treatments resulted in a decrease in *E. coli* concentrations that ranged from -3 to -34%. All other Tween 85 treatments decreased enterococci concentrations by -4 to -64% when compared to the control but Tween 80 concentrations had a varied response on enterococci concentrations, ranging from -20 to 60%, when compared to the control. Yoon and Rosson (1990) found that a specific concentration of Tween 80 resulted in greatest recovery of bacteria; however, the study did not specifically enumerate recovery of *E. coli*. They treated turbid seawater samples with Tween 80 concentrations ranging from 0 to 100 mg L⁻¹ to improve enumeration of bacteria attached to sediments. Recovery was optimal in samples treated with the 10 mg L⁻¹ concentration and

concentrations greater than 25 mg L⁻¹ increased bacterial die-off. While Trevors and Cook (1992) found that sodium pyrophosphate increased enumeration of total aerobic colony forming units, in this study each treatment significantly (*P* value < 0.001) reduced *E. coli* concentrations by an average of 73% and enterococci concentrations by 1% when compared to the control. Sodium pyrophosphate might be effective in increasing counts of total aerobic bacteria; however, we found that it was not an effective dispersant when specifically enumerating wild strains of *E. coli*.

Others have found that chemical treatments have little or no effect on the dispersion of bacteria (Craig et al., 2002; Epstein and Rossel, 1995); therefore, physical dispersion techniques were also investigated. A preliminary comparison of physical dispersion techniques (Table A.2) revealed that the ultrasonic bath treatment resulted in up to 320% increase in *E. coli* and enterococci concentrations (*P* values < 0.0001) when compared to the control. Ten minutes of hand shaking also increased *E. coli* concentrations by 150% (*P* value = 0.0018) and enterococci concentrations by 33% (NS) while a one minute vortex treatment decreased *E. coli* counts by 33% and enterococci counts by 6%, but this decrease was not statistically significant.

The ultrasonic bath and hand shaker techniques were then combined with 1,000 mg L⁻¹ dilutions of Tween 85 solution to evaluate if a combination of techniques would further increase cell recovery (Table 3.1). Contrary to findings from the preliminary studies, the physical treatments did not always increase enumeration of *E. coli*. The ultrasonic treatments differed in *E. coli* concentrations from the control by -19% to 2%; although none of the differences were statistically significant. It is possible that the cells were stressed prior to treatment with the ultrasonic bath and thus damaged by the treatments. The 10-minute hand shaker treatment increased *E. coli* concentrations by 24% and enterococci concentrations by 12% when compared to the control. Diluting samples treated with the hand shaker in the 1,000 mg L⁻¹ concentration of Tween 85 resulted in a 45% (*P* value = 0.0028) increase in *E. coli* concentrations and a 21% increase in enterococci concentrations (NS). The 10-minute hand shaker treatment followed by dilutions in 1,000 mg L⁻¹ Tween 85 was identified as the optimal treatment because this treatment provided the most consistent results for both indicators during both the preliminary study and when physical and chemical techniques were combined. The lower percentage of

increase in recovery of all samples may indicate that fewer *E. coli* and enterococci were bioflocculated or attached to sediment particles during the second sample collection. A previous study found that *E. coli* cells were released from cowpats and transported as single cells (Muirhead et al., 2005), possibly explaining the reduced effectiveness of all dispersion techniques. McDaniel and Capone (1985) suggested that response to dispersion techniques may be dependent upon the soil type and it might be necessary to test different techniques for each soil prior to use.

$ \begin{array}{ c c c c } & & & & & & & & & & & & & & & & & & &$		Е. с	coli	enterococci		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dispersion treatments (n=5)	Concentration cfu mL ⁻¹ (std dev)	Average % change from	Concentration cfu mL ⁻¹ (std dev)	Average % change from	
Control 2.44×10^{-1} 1.76×10^{-1} Ultrasonic bath treatment 30 sec 2.5×10^4 2% 1.38×10^3 -22% Ultrasonic bath treatment 30 sec 2.56×10^4 2% 1.53×10^3 -13% Dilutions in 1,000 mg L ⁻¹ Tween 85 (2302) 5% 1.53×10^3 -13% Control 5.9×10^4 Same as previous control (7517) control Ultrasonic bath treatment 2 min 6.2×10^4 -19% 1.88×10^3 7% Ultrasonic bath treatment 2 min 6.2×10^4 5% 1.72×10^3 -2% Ultrasonic bath treatment 2 min 6.2×10^4 5% 1.78×10^3 7% Ultrasonic bath treatment 6 min 6.5×10^4 1.78×10^3 1% 24% 1.78×10^3 1% Ultrasonic bath treatment 6 min 6.56×10^4 11% 1.66×10^3 -6% 12% 1.98×10^3 13% Ultrasonic bath treatment 10 min 5.04×10^4 -15% 1.98×10^3 13% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.88×10^3 7% 1.72×10^3 1	Dispersion treatments (II–3)	(stu ucv)	control	(stu ut v)	control	
Ultrasonic bath treatment 30 sec (5639) (764) Ultrasonic bath treatment 30 sec 2.5×10^4 2% 1.38×10^3 Dilutions in 1,000 mg L ⁻¹ Tween 85 (2302) (378) -13% Control 5.9×10^4 Same as previous (7517) controlUltrasonic bath treatment 2 min 4.78×10^4 -19% 1.88×10^3 7% Ultrasonic bath treatment 2 min 6.2×10^4 5% 1.72×10^3 -29% Ultrasonic bath treatment 2 min 6.2×10^4 5% 1.78×10^3 -2% Ultrasonic bath treatment 2 min 6.2×10^4 5% 1.78×10^3 -2% Ultrasonic bath treatment 6 min (11662) 5% 1.78×10^3 -2% Ultrasonic bath treatment 6 min 6.56×10^4 11% 1.66×10^3 -6% Ultrasonic bath treatment 6 min 6.56×10^4 11% 1.68×10^3 -6% Ultrasonic bath treatment 10 min 5.04×10^4 -15% 1.98×10^3 13% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.88×10^3 7% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.88×10^3 7% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.72×10^3 25% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.22×10^3 12% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.22×10^3 12% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.22×10^3 12% Ultras	Control	2.44×10 ⁺		1./6×10°		
Ultrasonic bath treatment 30 sec 2.5×10^{4} (8746) 2% 1.38×10^{2} (356) -22% Ultrasonic bath treatment 30 sec 2.56×10^{4} (2302) 5% 1.53×10^{3} (378) -13% Dilutions in 1,000 mg L ⁻¹ Tween 85 (2302) 5% 1.53×10^{3} (378) -13% Control 5.9×10^{4} (7517)Same as previous control 7% Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.2×10^{4} (11662) 5% 1.72×10^{3} (249)Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.5×10^{4} (11662) 1.72×10^{3} (249) -2% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.56×10^{4} (10109) 1.78×10^{3} (249) 1% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.56×10^{4} (5367) 1.98×10^{3} (241) -6% Ultrasonic bath treatment 10 min 		(5639)		(764)		
Ultrasonic bath treatment 30 sec Dilutions in 1,000 mg L ⁻¹ Tween 85 (8746) (2302) (356) (378) -13% (378) Control 5.9×10^4 (7517) Same as previous controlUltrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 4.78×10^4 (7085) -19% (286) 7% (286) Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.2×10^4 (11662) 5% 1.72×10^3 (249) -2% (249) Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.56×10^4 (5367) 1.78×10^3 (249) 1% (241) Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.269 (5367) 1.5% (438) 1.3% (249) Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 7.085 (9100) 1.98×10^3 (259) 13% (259) Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 7.085 (7085) 1.72×10^3 (259) 7% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Ultrasonic bath treatment 30 sec	2.5×10 ⁺	2%	1.38×10 ⁵	-22%	
Ultrasonic bath treatment 30 sec $2.56\times10^{\circ}$ 5% 1.53×10^{3} -13% Dilutions in 1,000 mg L ⁻¹ Tween 85(2302) 5% (378) -13% Control 5.9×10^{4} previouscontrolUltrasonic bath treatment 2 min 4.78×10^{4} -19% 1.88×10^{3} 7% Ultrasonic bath treatment 2 min 6.2×10^{4} 5% 1.72×10^{3} -2% Ultrasonic bath treatment 2 min 6.2×10^{4} 5% 1.78×10^{3} -2% Ultrasonic bath treatment 6 min 6.2×10^{4} 5% 1.78×10^{3} -2% Ultrasonic bath treatment 6 min 6.56×10^{4} 1.78×10^{3} 1% Ultrasonic bath treatment 6 min 6.56×10^{4} 11% 1.66×10^{3} -6% Ultrasonic bath treatment 10 min 5.04×10^{4} -15% 1.98×10^{3} 13% Ultrasonic bath treatment 10 min 6.12×10^{4} 4% 1.88×10^{3} 7% Ultrasonic bath treatment 10 min 6.12×10^{4} 4% 1.88×10^{3} 7% Ultrasonic bath treatment 10 min 6.12×10^{4} 4% 1.25% 7% Dilutions in 1,000 mg L ⁻¹ Tween 85 (7085) (259) 7% Control 9.32×10^{4} 24% 1.92×10^{3} 12% Hand Shaker 10 minutes 9.32×10^{4} 24% 1.92×10^{3} 12%		(8/46)		(356)		
Dilutions in 1,000 mg L-1 Tween 85(2302)Crow(378)CrowControl 5.9×10^4 Same as previous controlUltrasonic bath treatment 2 min 4.78×10^4 (7085) -19% 1.88×10^3 (286) 7% Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L-1 Tween 85 6.2×10^4 (11662) 5% 1.72×10^3 (249) -2% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L-1 Tween 85 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L-1 Tween 85 6.269 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L-1 Tween 85 5.04×10^4 (5367) 1.98×10^3 (259) 13% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L-1 Tween 85 70% (229) 1.72×10^3 (239) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 7% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Ultrasonic bath treatment 30 sec	2.56×10 ⁴	5%	1.53×10^{3}	-13%	
Control 5.9×10^4 (7517)Same as previous controlUltrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 4.78×10^4 (7085) -19% 1.88×10^3 (286) 7% (286)Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.2×10^4 (11662) 5% 1.72×10^3 (249) -2% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.269 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.04×10^4 (5367) -15% 1.88×10^3 (259) 7% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 7.04×10^4 (7085) 1.72×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Dilutions in 1,000 mg L ⁻¹ Tween 85	(2302)	0,0	(378)	10,0	
Control 757.10^{-1} previous controlUltrasonic bath treatment 2 min 4.78×10^4 (7085) -19% 1.88×10^3 (286) 7% Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.2×10^4 (11662) 5% 1.72×10^3 (249) -2% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.269 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 7085 4% 1.72×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%		5.9×10^4		Same as		
Ultrasonic bath treatment 2 min 4.78×10^4 (7085) -19% 1.88×10^3 (286) 7% Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.2×10^4 (11662) 5% 1.72×10^3 (249) -2% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.56×10^4 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 7085 4% 1.88×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 7% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Control	(7517)		previous		
Ultrasonic bath treatment 2 min 4.78×10^4 (7085) -19% 1.88×10^3 (286) 7% Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.2×10^4 (11662) 5% 1.72×10^3 (249) -2% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.56×10^4 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 7.54×10^4 (9100) 1.72×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%		(7517)		control		
Outsour council 2 min (7085) (177) (286) 770 Ultrasonic bath treatment 2 min 6.2×10^4 5% 1.72×10^3 -2% Ultrasonic bath treatment 6 min 5.72×10^4 -3% 1.78×10^3 1% Ultrasonic bath treatment 6 min 6.56×10^4 11% 1.66×10^3 -6% Ultrasonic bath treatment 6 min 6.56×10^4 11% 1.66×10^3 -6% Ultrasonic bath treatment 10 min 5.04×10^4 -15% 1.98×10^3 13% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.88×10^3 7% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.72×10^3 7% Dilutions in 1,000 mg L ⁻¹ Tween 85 (7085) 4% 1.22×10^3 24% Hand Shaker 10 minutes 9.32×10^4 24% 1.92×10^3 12%	Illtrasonic bath treatment 2 min	4.78×10^{4}	-10%	1.88×10^{3}	7%	
Ultrasonic bath treatment 2 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.2×10^4 (11662) 5% 1.72×10^3 (249) -2% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.56×10^4 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.12×10^4 (7085) 4% 1.88×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Oltrasonie bath treatment 2 min	(7085)	-1770	(286)	//0	
Dilutions in 1,000 mg L^{-1} Tween 85(11662) 370 (249) -270 Ultrasonic bath treatment 6 min 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min 6.56×10^4 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min 6.12×10^4 (5367) -15% 1.88×10^3 (259) 7% Ultrasonic bath treatment 10 min 6.12×10^4 (5367) 4% 1.72×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Ultrasonic bath treatment 2 min	6.2×10^4	50/	1.72×10^{3}	20/	
Ultrasonic bath treatment 6 min 5.72×10^4 (10109) -3% 1.78×10^3 (249) 1% Ultrasonic bath treatment 6 min 6.56×10^4 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min 6.12×10^4 (5367) -15% 1.88×10^3 (259) 7% Ultrasonic bath treatment 10 min 6.12×10^4 (5367) 4% 1.88×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Dilutions in 1,000 mg L ⁻¹ Tween 85	(11662)	570	(249)	-2/0	
Outrasonic bath treatment 6 min (10109) $^{-5\%}$ (249) 1% Ultrasonic bath treatment 6 min 6.56×10^4 11% 1.66×10^3 -6% Dilutions in 1,000 mg L ⁻¹ Tween 85 (6269) 11% 1.98×10^3 13% Ultrasonic bath treatment 10 min 5.04×10^4 -15% 1.98×10^3 13% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.88×10^3 7% Dilutions in 1,000 mg L ⁻¹ Tween 85 (7085) 4% 1.72×10^3 7% Control 7.54×10^4 1.72×10^3 (239) Hand Shaker 10 minutes 9.32×10^4 24% 1.92×10^3 12%	Illussonia both treatment (min	5.72×10^4	20/	1.78×10^{3}	10/	
Ultrasonic bath treatment 6 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.56×10^4 (6269) 11% 1.66×10^3 (241) -6% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.12×10^4 (7085) 4% 1.88×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Offrasonic bath freatment o min	(10109)	-3%	(249)	1 70	
Dilutions in 1,000 mg L ⁻¹ Tween 85(6269) 11% (241) -6% Ultrasonic bath treatment 10 min 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min 6.12×10^4 (7085) 4% 1.88×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 12% Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Ultrasonic bath treatment 6 min	6.56×10^4	110/	1.66×10^{3}	(0/	
Ultrasonic bath treatment 10 min 5.04×10^4 (5367) -15% 1.98×10^3 (438) 13% Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.12×10^4 (7085) 4% 1.88×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239) 1.92×10^3 (239)Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356) 12%	Dilutions in 1,000 mg L ⁻¹ Tween 85	(6269)	11%	(241)	-6%	
Offrasonic bath treatment 10 min (5367) -15% (438) 13% Ultrasonic bath treatment 10 min 6.12×10^4 4% 1.88×10^3 7% Dilutions in 1,000 mg L ⁻¹ Tween 85 (7085) 4% 1.72×10^3 7% Control 7.54×10^4 1.72×10^3 (239) Hand Shaker 10 minutes 9.32×10^4 24% 1.92×10^3 12%		5.04×10^4	1.50/	1.98×10^{3}	120/	
Ultrasonic bath treatment 10 min Dilutions in 1,000 mg L ⁻¹ Tween 85 6.12×10^4 (7085) 4% 1.88×10^3 (259) 7% Control 7.54×10^4 (9100) 1.72×10^3 (239)Hand Shaker 10 minutes 9.32×10^4 (9628) 24% 1.92×10^3 (356)	Ultrasonic bath treatment 10 min	(5367)	-15%	(438)	13%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ultrasonic bath treatment 10 min	6.12×10^4	40 /	1.88×10^{3}		
Control 7.54×10^4 1.72×10^3 (9100)(239)Hand Shaker 10 minutes 9.32×10^4 24% (9628)(356)12%	Dilutions in 1,000 mg L^{-1} Tween 85	(7085)	4%	(259)	/%	
Control(9100)(239)Hand Shaker 10 minutes 9.32×10^4 24% 1.92×10^3 (9628) 24% (356) 12%		7.54×10^4		1.72×10^{3}		
Hand Shaker 10 minutes 9.32×10^4 24% 1.92×10^3 12% (9628) 12%	Control	(9100)		(239)		
Hand Shaker 10 minutes (9628) 24% (356) 12%		9.32×10^4		1.92×10^{3}		
(5020) (550)	Hand Shaker 10 minutes	(9628)	24%	(356)	12%	
Hand Shaker 10 minutes $10.9 \times 10^{4*}$ 2.08×10^{3}	Hand Shaker 10 minutes	$10.9 \times 10^{4*}$		2.08×10^{3}		
Dilutions in 1 000 mg L^{-1} Tween 85 (10756) 45% (482) 21%	Dilutions in 1 000 mg L^{-1} Tween 85	(10756)	45%	(482)	21%	

Table 3.1. Comparison of combined physical and chemical dispersion treatments on runoff samples collected below a dairy fecal deposit on pastureland (n=5).

¹A negative value indicates a decrease in cells when compared to the control

*Indicates statistical significance when compared to the control treatment according to Tukey's pairwise comparison

3.3.2. Dispersion Technique Validation

A runoff sample was microscopically inspected to validate the selected dispersion technique.

Samples were diluted in phosphate buffered water, stained with fluorochrome (acridine orange),

and viewed using the epifluorescence microscopic method as described by Clesceri et al. (1998). Samples were stained prior to any dispersion treatment (Figure 3.2a), after receiving the hand shaker treatment (Figure 3.2b), and after receiving the Tween-85 treatment (Figure 3.2c). Removal of bacteria from sediment and organic particles by the dispersion technique was confirmed by examining the samples prior to and after each treatment. The presence of dispersed cells, reduced clumping, and fewer cells attached to sediment or organic matter particles following the dispersion treatment validated this technique.

Figure 3.2. Cells receiving no dispersion treatment (a); cells treated with a hand shaker for 10 min (b); cells treated with a hand shaker for 10 min and diluted in 1,000 ppm Tween 85 (c).

3.3.3. Separation Technique Validation

Multiple screen filtration has been used previously to identify particle sizes to which bacteria are associated; however, centrifugation is more frequently used to separate unattached from attached

cells. We propose combining these two techniques to eliminate concerns associated with filtration techniques. While filtration using a single screen size of 8 µm has been identified previously as a viable method to separate attached and unattached bacteria (Gordon et al., 2002; Henry, 2004; Mahler et al., 2000; Qualls et al., 1983), the presence of sediments and organic particles in runoff from agricultural lands make it very likely that sediments could clog the filters, retaining unattached and bioflocculated cells.

To determine recovery of E. coli in filtrate passing through 8 and 3 µm filters, E. coli DH2 1030 was collected from the stationary phase of the growth curve (Figure A.1). E. coli cells were diluted in phosphate buffered water to approximately 10⁵ cfu mL⁻¹ and 10 mL of suspended cells were filtered through the 8 and 3 µm filters. The initial concentration and the concentration in the filtrate were enumerated by membrane filtration. Eighty-eight percent of cells passed through the 8 µm filter while only 3% of the cells present in the control passed through the 3 µm filter (Figures A.2 and A.3). This significant reduction indicated that an alternative method would be necessary to account for unattached cells retained on the filter surface or trapped by sediments and organic particles. Therefore, rinsing the screens and filters with phosphate buffered water and then centrifuging the solution to separate attached from unattached cells combined the benefits of fractional filtration, by identifying particle sizes to which cells attach, with the more commonly accepted practice of centrifugation. To validate the selected centrifugation technique, approximately 10⁵ cfu mL⁻¹ E. coli DH2 1030 was centrifuged at 4,700 rpm for 15 seconds to separate unattached cells from suspended particles (Lago, 2005). No reduction of unattached concentrations was observed (n=12, Figure A.4). While centrifugation could increase interactions between cells and particles, possibly strengthening existing bonds, we assumed that the application of the dispersion technique prior to enumeration of the total concentration should disperse any increased attachment that results from centrifugation.

Application of the separation technique to runoff samples collected at the base of 18.3-m long field plots (described in Chapter 6) provided an opportunity to conduct a mass balance and examine the technique for potential loss of cells during the filtration and centrifugation process. Field plots were constructed at the Virginia Tech Prices Fork research farm on the Grosclose silt loam soils examined in the dispersion portion of this study. Additional details about plot construction, rainfall simulation and sample collection are presented in Chapter 6. A total of 68 samples were collected at the base of the plots, two samples collected at each sampling interval were used for the two different sets of analysis. The first was analyzed for total *E. coli* concentrations by treatment with the hand shaker for ten minutes followed by membrane filtration and is referred to as the control in Table 3.2. The second was analyzed for unattached and attached concentrations by the screen filtration and centrifugation procedure followed by treatment with the hand shaker for ten minutes and enumeration by membrane filtration. The number of attached and unattached *E. coli* associated with each screen size and the number of *E. coli* present in the filtrate were summed to determine the total for the separation technique. Results from both analyses were converted to concentrations and are presented in Table 3.2.

Table 3.2.	Comparison of <i>E. coli</i> and enterococci concentrations enumerated by multiple
	screen filtration and centrifugation pre-treatment followed by dispersion and
	membrane filtration and total <i>E. coli</i> and enterococci concentrations
	enumerated by dispersion and membrane filtration (control)

	v 1			
	E. coli Mean	Percent of total E. coli	Enterococci Mean	Percent of total
	Concentration	associated with screen	Concentration	enterococci associated
	cfu 100 mL ⁻¹	sizes and filtrate	cfu 100 mL ⁻¹	with screen sizes and
	(STD)		(STD)	filtrate
Screen size 500 µm	$2.91 \times 10^3 (5.16 \times 10^3)$	0.26%	$1.158 \times 10^3 (1.44 \times 10^3)$	0.42%
Screen size 63 µm	$2.49 \times 10^{3} (1.87 \times 10^{3})$	0.23%	$1.846 \times 10^3 (2.24 \times 10^3)$	0.67%
Screen size 8 µm	3.54×10^4 (7.28×10 ⁴)	3.20%	$1.4833 \times 10^4 (2.18 \times 10^4)$	5.35%
Screen size 3 µm	6.37×10^4 (1.17×10 ⁵)	5.78%	$4.0647 \times 10^4 (4.77 \times 10^4)$	14.67%
Filtrate	$9.99 \times 10^5 (3.46 \times 10^6)$	90.53%	2.18521×10 ⁵ (7.04×10 ⁵)	78.89%
Total separation technique	$1.10 \times 10^{6} (3.48 \times 10^{6}) a^{1}$		2.76493×10 ⁵ (7.24×10 ⁵)	
Control	8.47×10^5 (9.12×10 ⁵) a		3.79207×10 ⁵ (8.47×10 ⁵)	

¹Means followed by the same letter do not differ at the 5% level of significance according to Tukey's pairwise comparison.

Interestingly, the combination of screen filtration and centrifugation, followed by treatment with the hand shaker and membrane filtration, resulted in a 22% increase in average *E. coli* sample concentration and a 37% decrease in average enterococci sample concentration per 100 mL when compared to the average concentration in the control. It should be noted that Tween 85 was not added to samples following treatment with the hand shaker for this portion of the study because the large number of samples and unknown *E. coli* and enterococci concentrations (and thus required dilution levels) make it likely that re-plating would be necessary and the impact of longer term exposure of Tween 85 on *E. coli* and enterococci viability is unknown. Serial dilutions were conducted using a phosphate buffer solution to preserve cells and minimize the

impacts of die-off between sample collection and membrane filtration. All samples were enumerated within five days of sample collection. Analysis by ANOVA determined that no statistically significant differences existed between the control and summed (total) separation technique values (P value = 0.97 for E. *coli* and P value = 0.83 for enterococci). We had hypothesized that screen filtration and centrifugation procedures could possibly damage the cells and decrease total concentrations when compared to the samples only treated with the hand shaker as observed by the enterococci populations. One possible reason for the differences in E. *coli* and enterococci concentrations when compared to the controls could be compounded sample variability as a result of summing the bacteria associated with each screen size. The exclusion of Tween 85 from the dispersion technique would not have impacted these results because Tween was not used in analysis of either the samples treated with the separation technique or the control. Regardless, the combination of screen filtration and centrifugation did not decrease concentrations of culturable E. coli and the means between the technique and the control did not differ statistically for either indicator. Ninety one percent of all *E. coli* cells and 79% of all enterococci cells passed through all screens in the fractional filtration device while the 3 µm screen retained the highest percentage of cells, 5.8% and 14.7% for E. coli and enterococci, respectively. These results indicate the E. coli and enterococci in runoff from the simulated pasture plots were primarily transported in the unattached state or associated with particulates less than 3 µm in size.

3.4. Summary and Conclusions

It has been widely reported that *E. coli* and enterococci preferentially attach to sediment and organic particles; however, most NPS models used to assess microbial transport assume that pathogen indicators are transported to surface water bodies in the unattached state. An improved understanding of bacterial transport mechanisms is necessary to correctly identify sources of fecal bacteria within a watershed and implement best management practices for reduction of pathogenic organisms. While many factors can be attributed to cellular attachment, there is currently no consistency among techniques used to separate unattached and attached *E. coli* and enterococci in runoff or surface water samples.

The goal of this study was to develop an easy-to-replicate laboratory procedure for separation of unattached from attached *E. coli* and enterococci and to identify particle sizes to which *E. coli* and enterococci preferentially attach. This was accomplished by comparing previously employed methods for dispersing attached *E. coli* and enterococci from sediments and suspended particles and by validating a sequence of previously employed methods for separation of unattached and attached *E. coli* and enterococci. The hypothesis that sonification would be the best method of recovering attached bacteria from sediments was not true. Physical and chemical dispersion techniques were evaluated and a combined treatment with a hand shaker for 10 minutes followed by dilutions in 1,000 mg L⁻¹ of Tween-85 significantly increased total *E. coli* concentrations by 45% (*P* value = 0.0028) and also increased enterococci concentrations by 21% (NS) when compared to a control. To separate unattached from attached fractions two commonly used techniques, fractional filtration and centrifugation, were combined and validated. Centrifugation of suspended, unattached *E. coli* DH2 1030 did not reduce suspended concentrations when compared to a control (*P* value = 0.97).

This method is useful to determine partitioning coefficients for NPS models and identify the particle sizes to which *E. coli* and enterococci preferentially attach. The combination of these procedures resulted in an easy-to-replicate technique that could be applied to runoff and stormwater samples. The dispersion method was applied to cowpat samples monitored seasonally to determine die-off (Chapter 4) and both the dispersion and separation methods were applied to runoff samples collected at the base of small box plots (Chapter 5) and large transport plots (Chapters 6 and 7). This method was developed using samples with high sediment and organic matter concentrations and thus is applicable to runoff samples collected from a variety of agricultural landuses including feedlots, poor pastureland or well-managed pastureland as is demonstrated in other chapters of this dissertation. While the focus of this study is on runoff from agricultural landuses, it is possible that this method could also be applied to non-agricultural runoff samples such as urban stormwater samples.

While this method appears promising, future research is recommended to ensure that the identified dispersion technique is optimal for samples dominated by different particle sizes.

Runoff or stormwater samples with lower bacterial concentrations than used in this study might be difficult to assess using this method due to the level of dilution necessary to rinse particulates from screens. This method could be improved upon by including additional screen sizes to the screen filtration technique which would identify a finer distribution of *E. coli* and enterococci preferential attachment from different landuses.

Chapter 4. Die-off of *E. coli* and Enterococci in Dairy Cowpats 4.1. Introduction

Runoff from grazed pasturelands has been well documented as a source of fecal contamination of surface waters (Doran and Linn, 1979; Doran et al., 1981; Moore et al., 1982; Soupir et al., 2006b). Animal manure applied to agricultural lands is a potential source of pathogenic organisms as over 150 human pathogens have been found in livestock manure (USEPA, 2003). During runoff events pathogenic organisms can be transported to surface waters, leading to potential waterborne disease outbreaks. *E. coli* and enterococci are the two bacterial indicator organisms thought to have a higher degree of association with outbreaks of gastrointestional illness (U.S. EPA, 1986) and are, therefore, currently the two recommended bacterial indicator organisms (U.S. EPA, 1998; U.S. EPA, 2002b). Vinten et al. (2002) and Mubiru et al. (2000) determined that the *E. coli* O157:H7 die-off rate was the same as or faster than total *E. coli*, indicating that evaluation of total *E. coli* die-off should be representative of this particular pathogenic strain.

Total Maximum Daily Load (TMDL) plans, which are heavily dependent on modeling the fate and transport of bacterial indicators, are implemented to remediate waters impaired by fecal bacteria. Accurate predictions of bacterial concentrations in sources within a watershed, such as fecal deposits or land applied manure, are necessary for simulation of in-stream concentrations. Muirhead et al. (2005) found that a statistically significant linear relationship existed between the mean number of *E. coli* cells in cowpats and the mean number of *E. coli* cells in runoff, emphasizing the need to better model indicator concentrations in fecal sources to improve predictions of pathogen indicators transported to surface waters.

The three commonly observed patterns of indicator bacteria die-off are first order decay, bacteria growth followed by first-order decay; and first order decay with variable die-off rates (Crane and Moore, 1986; Mancini, 1978). Since little is actually known about the individual influences and interactions between the many parameters affecting die-off, first order decay is most often used to express bacterial die-off (Crane and Moore, 1986; DeGuise et al., 1999; Moore et al., 1988; Wang et al., 2004):

$$N_t = N_o \exp\left(-kt\right) \tag{4.1}$$

where N_t = number of bacteria at time t; N_o = number of bacteria at time 0; k = first order die-off rate constant (day⁻¹); and t = elapsed time (day).

Pathogens and organisms with the capabilities to form spores can survive free-living in the soil for years, but most pathogens encounter conditions that prevent normal cell functions once they leave the host. Crane et al. (1983) summarized the variables that affect the survival of enteric organisms: physical and chemical properties of the soil including pH, porosity, organic matter content, texture and particle size distribution, elemental composition, temperature, moisture content, absorption and filtration properties, and availability of nutrients; atmospheric conditions including sunlight, humidity, precipitation, and temperature; biological interaction of organisms including competition from indigenous microflora, antibiotics, and toxic substances; the application method including the technique and frequency; and density of the organisms in the waste material. It is also known that some potential pathogens are free-living in the soil and may be nourished by animal wastes (Ellis and McCalla, 1978).

While many variables are thought to influence bacteria survival, temperature and moisture content of the soil or manure are considered to be key factors related to die-off. Wang et al. (2004) found that temperature (but not moisture content) had a significant effect on indicator bacteria die-off in dairy cow manure. *E. coli* O157:H7 inoculated in dairy manure survived for 63 to 70 days when incubated at 5°C with a high (74%) moisture content, compared to 49 to 56 days when incubated at 22°C and 42 to 49 days when incubated at 37°C with lower (10% at the end of the study) moisture content (Wang et al., 1996). Mubiru et al. (2000) attributed variations in *E. coli* survival inoculated in two soils to differences in available water in the soil matrix. Most rapid die-off of *E. coli* O157:H7 and *Salmonella typhimurium* were observed at 37°C when compared with 4 and 20°C in manure (Himathongkham et al., 1999). *E. coli* O157:H7 inoculated in feces in the laboratory survived best when incubated at temperatures below 23°C but also survived for shorter periods of time than manure exposed to the external environment, emphasizing the difficulty in applying laboratory results to field conditions (Kudva et al., 1998).

Several studies have detected bacterial re-growth following land application of waste. Crane et al. (1980) applied poultry manure to bare soil plots in a controlled environment. The manure was applied at approximately 36.5 and 164 t/ha on Norfolk loamy fine sand from the coastal plains and Davidson clay loam from the Piedmont region. Die-off of fecal coliforms was rapid immediately following the manure application until day seven. The first seven days were followed by a period of re-growth lasting five days and then the organism concentrations remained constant. Although the re-growth could not be attributed to a single factor, the high soil moisture content and the mild unfluctuating temperature most likely contributed to the re-growth. Laboratory studies have also found increased concentrations of fecal coliforms and *E. coli* in manures for up to a week following excretion (Conner and Kotrola, 1995; Wang et al., 1996; Wang et al., 2004).

Shortcomings have been identified with the first order decay equations frequently used to model bacterial die-off, and the need is expressed for development of new equations to better predict the bacterial growth and die-off dynamics for extended periods of time (Wang et al., 2004). We hypothesized that the first order decay equations most frequently used to predict in-field bacterial decay do not adequately describe *E. coli* or enterococci die-off in seasonally monitored cowpats. To test this hypothesis, we monitored *E. coli* and enterococci re-growth and decay patterns in cowpats applied to pasturelands. The first objective was to compare seasonal variations in decay patterns using the decimal reduction times (*D*-values) and first order decay coefficients. The second objective was to evaluate higher order approximations and weather parameters by multiple regression analysis to identify parameters impacting in-field decay and to identify an alternative technique to improve modeling of *E. coli* and enterococci fate.

4.2. Materials and Methods

Freshly excreted dairy cow feces were collected from four to seven animals at the Virginia Tech dairy facility over a 24 hour period. Freshly excreted feces were transported in barrels to the Virginia Tech Prices Fork Farm. Standard cowpats (Thelin and Gifford, 1983) were formed by mixing the feces in a cement mixer for fifteen minutes. The homogenized manure was placed in molds with a diameter of 20.3 cm (8 in) and a depth of 2.54 cm (1 in) until a weight of 0.9 kg

(2.0 lbs) was reached. Approximately 100 cowpats were formed and applied to a mowed hay field which has not previously been grazed. The number of cowpats applied to the field plot varied slightly with each seasonal application based on the availability of freshly excreted feces. Cowpats were applied to the field in a randomly distributed pattern but the distance between pats was less than two to three feet with total plot areas of less than 93m² (1,000 ft²). During the growing season, grass was mowed when it began to shelter the cowpats to prevent accelerated degradation by the presence of vegetation. Vegetation appeared to accelerate degredation of the cowpats by breaking apart the fecal material.

Cowpats were applied to four separate field plots with no history of previous manure application during the spring, summer, fall and winter seasons (Table 4.1). While many of the sampling periods extended past a single season, each sampling period is referenced by the season in which sample collection began throughout the remainder of the chapter. The Biological Systems Engineering's weather station (Belfort Instrument) and the local weather station in Blacksburg, VA (NOAA, 2006) were used to collect environmental parameters including rainfall, temperature, solar radiation and relative humidity. Table 4.1 summarizes sampling dates and weather parameters recorded during the sampling periods. Raw data including indicator concentrations, manure moisture content, temperature, solar radiation, relative humidity, and rainfall are available in Appendix B.

 Table 4.1. Sampling dates and average and high weather variables recorded during the four sampling periods.

Season Sample collection dates		Sampling Nun period san	Number of sampling	temperature (°C)		solar radiation (MJ)		relative humidity (%)	rainfall (cm)
		(days)	events –	high	average	high	average	average	total
Spring	April 20 – August 30	133	22	32.8	19.1	3.24	1.16	77.3	21.7
Summer	June 28 – December 13	175	25	32.8	13.6	3.07	1.04	78.8	19.3
Fall	September 21 – April 5	196	24	27.2	6.22	3.24	0.84	67.5	23.0
Winter	February 13 – July 2	135	20	31.1	12.7	3.36	1.14	65.3	18.1

Samples from cowpats were collected three to five times within the first ten days following application to the field and then weekly thereafter. More frequent sample collection during the first ten days following application was conducted to ensure observation of any re-growth patterns. Five cowpats were randomly selected for sampling during each sampling event and manure was collected from both the outer crust and moist interior of the cowpat to obtain a

representative sample of the whole cowpat. Cowpats were not re-sampled unless a portion of the cowpat remained intact and appeared undisturbed. Sampling continued until *E. coli* and enterococci concentrations were near or below the detection limit of 10^2 cfu g⁻¹ wet manure based on the minimum dilutions necessary to achieve enumeration or until cowpats could no longer be located in the field. Preservation of the cowpats in the field was greatly dependent upon the season and corresponding weather conditions. Cowpats applied to the field during the spring were monitored for 133 days, summer cowpats were monitored for 175 days, and fall and winter cowpats were monitored for 196 days and 135 days, respectively (Table 4.1).

Cowpat samples were analyzed for *E. coli* and enterococci concentrations. Fecal material was diluted in phosphate buffer solution (Hach Company, Loveland, CO) at a 1:10 mass ratio. Prior to enumeration, all samples were dispersed by treatment with a hand shaker for 10 minutes (Wrist Action Shaker, Burrell Corporation, Pittsburg, PA) and serial dilutions were performed in 1,000 mg L⁻¹ dilutions of Tween 85 solution. The dispersion treatment improved enumeration by separating particulate-attached and bioflocculated cells prior to enumeration. This method was previously developed and validated and more detail is available in Chapter 3. *E. coli* and enterococci concentrations were enumerated on modified mTEC and mE agar (U.S. EPA, 2000) by membrane filtration (Clesceri et al., 1998). Manure moisture content was determined gravimetrically. At least 5 g of manure were weighted (PG 5002-5 Delta Range, Mettler Toledo, Columbus, OH) and then dried (1350 F Forced Air Oven, VWR Scientific, West Chester, PA) at 103 - 105 °C until equilibrium was reached. Samples were cooled to room temperature in a dessicator and re-weighted. Initial source manure bacterial concentrations and moisture contents are presented in Table 4.2.

Table 4.2.	Original source	manure properti	es (n=5).
Season	Moisture content (%)	$\begin{array}{c} E. \ coli\\ (cfu \ g^{-1} \ dry \ wt.) \end{array}$	enterococci (cfu g ⁻¹ dry wt.)
Spring	82.4	4.19×10^{6}	2.54×10^{8}
Summer	81.6	5.01×10^{6}	7.54×10^{8}
Fall	84.8	5.06×10^{7}	4.84×10^{6}
Winter	85.0	9.85×10^{6}	5.88×10^{7}

Statistical analysis of data was performed using the Statistical Analysis System (SAS Institute, 2004). *E. coli* and enterococci concentrations in the cowpats over time were normalized by

natural log transformation and linear regression was performed to determine if seasonal bacterial decay would fit a first order approximation. Dummy variables were used to develop a full model representing bacterial decay during all seasons and an F-test was used to determine differences between first order decay rates. Differences between initial experimentally determined bacterial concentrations and the statistically determined intercept were also determined by an F-test. Decimal reduction times (D-values), the time required for a 10-fold reduction in population density (Madigan et al., 2000), were calculated from the linear slope of the seasonal die-off curves. D-values could be directly implemented into field scale models to help identify bacterial transport mitigation strategies (Oliver et al., 2006). Higher order decay models were evaluated and environmental factors were incorporated into the decay models by multiple regression analysis to further improve the coefficient of determination and distribution of residual plots. Attempts were made to model E. coli and enterococci die-off with two sets of independent variables. Set 1 included average and maximum weather parameters during the time period since the previous sample collection date: time (d), maximum temperature (°C), average temperature (°C), maximum solar radiation (MJ), average solar radiation (MJ), average relative humidity (%), and total rainfall (cm). Set 2 included average and maximum weather variables during the day previous to the sample collection date: time (d), maximum temperature (°C), average temperature (°C), maximum solar radiation (MJ), average solar radiation (MJ), average humidity (%), and total rainfall (cm). Multiple regression analysis was conducted using the REG procedure in SAS and the final criteria to be included in the final model were selected based on the C_p statistic (Ott and Longnecker, 2001). A t-test was used to determine statistically significant slopes and intercepts.

4.3. Results and Discussion

Initial source bacterial concentrations for *E. coli* and enterococci averaged 1.78×10^7 cfu g⁻¹ dry manure (SD = 2.67×10^7 cfu g⁻¹ dry manure) and 2.97×10^8 cfu g⁻¹ dry manure (SD = 3.35×10^8 cfu g⁻¹ dry manure), respectively. Average *E. coli* concentrations were similar among the four seasonal studies but enterococci concentrations in fresh fecal deposits were slightly higher during spring and summer studies (Figure 4.1) with summer concentrations being a magnitude of about 2logs greater than fall concentrations (Table 4.1). Previous studies have reported similar bacterial levels in fresh dairy manure and have also noted variability in fecal indicator

concentrations among fresh manure samples. Wang et al. (2004) found that *E. coli* concentrations in fresh dairy manure averaged 7.08×10^6 cfu g⁻¹ dry manure while Muirhead et al. (2005) reported *E. coli* concentrations in fresh dairy cow fecal material ranged from 10^5 to 10^7 g⁻¹ dry manure. Slightly higher initial concentrations of *E. coli* and enterococci observed in this study, compared with the values reported by some other investigators could be partially due to the dispersion treatment (hand shaker for 10 minutes followed by serial dilution in Tween-85 1000 mg L⁻¹) used to release cells from organic particulates and disperse bioflocculated cells. Separation of clumped cells through use of a dispersion treatment allows for greater formation of individual colonies during the membrane filtrations procedure, thus resulting in a higher number of colony forming units (cfu).

4.3.1. Seasonal Bacterial Re-growth and Die-off Trends

Cowpats were applied to field plots and monitored for *E. coli* and enterococci concentrations within 24-hours following excretion. Monitoring continued until the lower detection limit of 10^2 cfu g⁻¹ wet manure was reached or the cowpats had disintegrated to the point that they could no longer be located in the field. Figure 4.1 presents re-growth and die-off trends for *E. coli* and enterococci in cowpats applied to the field during spring, summer, fall and winter seasons. Bacterial concentrations in Figure 4.1 are presented in a dry weight basis to remove the impacts of moisture content and rainfall on decay rates.

Figure 4.1. Seasonal die-off patterns of *E. coli* (A) and enterococci (B)

A fresh fecal cowpat provides an optimal environment (high moisture content, abundance of nutrients) for *E. coli* and enterococci growth and survival so it was not unexpected when both

indicators exhibited re-growth immediately or within the first few days after their land application. Re-growth appeared to vary by both indicator and season. E. coli concentrations peaked at days 7, 7, and 4 during spring, summer and fall sampling periods, respectively while enterococci peaked at days 13 and 4 during spring and fall sampling periods, respectively. Regrowth was not observed in enterococci concentrations monitored during the summer sampling period. Mixed results were observed from winter sampling periods as both indicators exhibited initial die-off. E. coli concentrations experienced about a 2log decrease following deposition; concentrations increased starting on day 12 with a peak of 5.73×10^7 cfu g⁻¹ dry wt occurring on day 34. followed by a second 2log decrease and re-growth pattern with a secondary peak of 4.43×10^6 cfu g⁻¹ dry wt (not exceeding initial freshly excreted *E. coli* concentrations) on day 58. Enterococci concentrations experienced a slight decrease between days zero and seven to $1.29 \times \times 10^7$ cfu g⁻¹ dry wt followed by re-growth until day 17 to 2.91×10^7 cfu g⁻¹ dry wt, followed by gradual decay. Re-growth is rarely accounted for in bacterial fate and transport modeling (Benham et al., 2006; Jamieson et al., 2004; Pachepsky et al., 2006; Tian et al., 2002), but it has been frequently observed in laboratory and field studies. Many researchers have observed a regrowth period of just a few days (Conner and Kotrola, 1995; Himathongkham et al., 1999; Thelin and Gifford, 1983; Wang et al., 1996; Wang et al., 2004) but increased concentrations of fecal coliforms in poultry manure applied to bare plots have been observed for up to 12 days (Crane et al., 1980). In situations where heavy rainfall occurs shortly after the application of manure to the agricultural lands, the re-growth can play a major role in determining the concentration of bacteria in runoff.

Cowpats applied to the field in the spring (April) and winter (February) seasons were monitored for the shortest period of time, 133 and 135 days, respectively, while cowpats applied to the field in the fall (September) were monitored for nearly 200 days (Table 1). During the fall sampling period, the lowest average temperatures (6.22 °C) and solar radiation (0.84 MJ) values were observed. Cool temperatures seemed to preserve both the fecal cowpat in the field and bacterial concentrations as exhibited by the longer monitoring period. Highest average temperatures (19.1 °C) and average solar radiation values (1.16 MJ) were observed during the spring sampling period, while the maximum solar radiation reading (3.24 MJ) occurred during the winter

monitoring season (which continued into July). Quickest decay of the cowpats occurred during warm temperatures when vegetation and insects hastened the disappearance of the fecal deposits.

While collection of all seasonal cowpat samples ceased after a maximum of 200 days, *E. coli* and enterococci (in levels below the detection limit or in cowpats that could no longer be visually located) were still present in the field and could still contribute loadings to surface waters during runoff events. Kress and Gifford (1984) found that 100-day-old cowpats released fecal coliform concentrations of 4,200 cfu 100 mL⁻¹ and others have concluded that cowpats could remain a source of fecal contamination even long after removal of cattle from grazed pasturelands (Howell et al., 1995; Jawson et al., 1982). End-of-study concentrations of *E. coli* ranged from 81 to 2.8×10^2 cfu g⁻¹ dry wt. manure and enterococci concentrations ranged from 8.5×10^2 to 8.9×10^5 cfu g⁻¹ dry wt. manure. Therefore, while this study examined fecal bacteria concentrations in cowpats for an extended period of time, it is possible that degraded cowpats or cowpats with bacterial concentrations below the lower detection limit might still remain a source of fecal contamination et al. It is also possible that bacteria accumulate in the soil surrounding the cowpats and act as an additional source of fecal contamination of surface waters; however, the soils surrounding the cowpats were not sampled for this study.

4.3.2. First-order Approximations

Visual observation of die-off trends over time indicates that first order decay would not sufficiently estimate bacterial concentrations (Figure 4.1) but because this approach is commonly used by researchers, the fit of first order models was examined. The bacterial concentrations during each season were fit as a function of time by linear regression (SAS Institute, 2004) to estimate *E. coli* and enterococci die-off rate constants, and results are presented in Table 4.3. Additional model details and residual plots are available in Appendix C. First-order models do not capture re-growth, thus in some cases the statistically determined intercept overestimated the experimental initial bacterial concentration in manure during the seasons when re-growth was observed (Figure 4.1). Using these equations to estimate decay could result in lower than observed bacterial concentrations because the re-growth period is neglected. While the observed re-growth period challenges the fit of first-order decay models, the values obtained for the

coefficient of determination would lead many to classify the fit of the first order model as adequate (R^2 values range from 0.70 to 0.90).

	D-values (day)	k (day ⁻¹)	R ²	P-values ³	
E. coli ¹		· - ·			
Spring	33	$0.0748 b^2$	0.70	<.0001	
Summer	29	0.0788 b	0.84	<.0001	
Fall	40	0.0581 c	0.76	<.0001	
Winter	26	0.0995 a	0.74	0.0799	
enterococci ¹					
Spring	32	$0.0759 a^2$	0.71	0.1745	
Summer	24	0.0978 b	0.89	<.0001	
Fall	41	0.0557 a	0.81	0.0957	
Winter	27	0.0951 b	0.90	0.4946	

Table 4.3.	E. coli and enterococci seasonal decimal reduction times (D-values) and die-of	f
	rate coefficients.	

¹Dry weight basis

 2 k-values for each indicator followed by the same letter do not differ at the 5% level of significance.

 3 P-values ≤ 0.05 indicate statistically significant differences between initial experimentally determined bacterial concentrations and the statistically determined intercept

Comparison of *D*-values and die-off rate constants could assist in evaluating the seasonal impacts on *E. coli* and enterococci decay. The *E. coli* and enterococci *D*-values were very similar with a 10-fold reduction in both populations occurring within five days of each other. This indicates that similar on-farm management strategies to reduce indicator populations should apply to both *E. coli* and enterococci. *D*-values were greatest during the fall sampling period for both indicators but lowest during the winter sampling period for *E. coli* and the summer sampling period for enterococci. While the winter sampling period began during low-temperature conditions (February), sample collection ceased during the warmest part of the year (July), which could be partially responsible for the higher die-off rate coefficients observed during the winter monitoring period. Die-off rate constants were highest during the winter monitoring period for *E. coli* and summer monitoring period for enterococci; however, enterococci decay rates did not differ statistically during the winter and summer monitoring periods. Lowest decay rates were not statistically different between the spring and fall monitoring periods.
Pasture was mowed periodically during the growing season which likely reduced the bacterial survival time, most likely through its effect on drying rates and increased exposure to solar radiation (Taylor and Burrows, 1971). Van Donsel et al. (1967) found much higher reduction times of indicator organisms when *E. coli* and *Streptococcus faecalis* cells were cultured and then poured onto outdoor soil plots. The 90% reduction times (*D*-values) varied seasonally, ranging from 3.3 days in summer to 13.4 days in fall, while the *Streptococcus faecalis* 90% reduction times ranged from 2.7 days in summer to 20.1 days in the winter (VanDonsel et al., 1967). The protective environment provided by fecal cowpats in this study greatly extends survival of indicator organisms exposed to the external environment when compared to previous studies.

Several researchers have found first-order decay to adequately describe die-off kinetics of fecal indicators from agricultural sources (Crane and Moore, 1986; Himathongkham et al., 1999; Oliver et al., 2006), however, most die-off studies have been conducted under laboratory conditions making it difficult to compare these laboratory-based findings to the field-based findings presented in this article. In a laboratory investigation, Wang et al.(2004) found that first order die-off rate coefficients sufficiently described E. coli decay in freshly excreted dairy cow manure maintained at three moisture contents and three temperatures, but only after day three and for the following three week period. Die-off rate coefficients increased as temperature increased with values averaging 0.11 d⁻¹ at 4°C, 0.20 d⁻¹ at 27°C, and 0.32 d⁻¹ at 41°C. E. coli die-off rate coefficients in freshly deposited cattle feces (steers) incubated at 15°C averaged 0.054 d⁻¹ (25% moisture) and 0.058 d⁻¹ (50% moisture) over a 111 day sampling period (Oliver et al., 2006). *E. coli* O157:H7 decay rates were 0.111 d⁻¹ at 4°C (75% RH), 0.046 d⁻¹ at 20°C (50% RH) and 0.112 d⁻¹ at 37°C (30% RH) in the top layer of fresh dairy manure and 0.054 d⁻¹, 0.074 d⁻¹, and 0.279 d⁻¹ at 4, 20, and 37°C, respectively, in the middle and bottom layers of fresh dairy manure (Himathongkham et al., 1999). In another laboratory investigation, Mubiru et al. (2000) inoculated E. coli O157:H7 and nonpathogenic E. coli strains in two soil types and enumerated concentrations weekly for an 8 week period. The decay rate constants for a first order approximation ranged from 0.09 d^{-1} to 0.17 d^{-1} , varying slightly by strain and soil type, with high regression coefficients ranging from 0.89 to 0.93. A two-staged first order function improved the fit and the initial mortality rates was much higher $0.15 d^{-1}$ to $0.25 d^{-1}$ than the

second stage $0.05 d^{-1}$ to $0.08 d^{-1}$. Mortality rates of fecal coliforms and fecal streptococci have also been adequately described by a two-stage exponential decay model (Zhai et al., 1995).

E. coli die-off rate coefficients developed under laboratory conditions at constant temperatures from freshly excreted dairy manures are generally higher (Wang et al., 2004) than the field-based seasonal die-off rate coefficients presented here. *E. coli* die-off rate coefficients observed during the fall sampling period are most comparable with results from the Oliver et al. (2006) study conducted on freshly excreted steer feces; however, average temperature conditions of 6.22°C (Table 4.1) differ from the 15°C incubation temperature in the laboratory study. Mostaghimi et al. (1999) monitored *E. coli* and fecal coliform concentrations in lactating, heifer and beef cowpats deposited onto grazed pastureland in late April and mid-July and determined seasonal impacts to have a greater influence over bacterial decay than cattle species. If water quality models continue to use first-order decay to predict in-field bacterial concentrations, in-field die-off rate coefficients should be developed for utilization in these models.

4.3.3. Multiple Regression Analysis to Approximate Seasonal Die-off Patterns

Multiple regression analysis was conducted to find the best approximation of die-off in dairy cowpats. Higher order and two-staged approximations were first examined before addition of weather and moisture parameters to obtain best-fit models. Difficulties in approximating indicator decay rates based on two-staged decay included estimating the break point between the end of re-growth and the beginning of decay. As shown in Figure 4.1, re-growth typically only occurred within the first seven days following excretion except during the winter monitoring period; however, a fit of the re-growth period produced poor regression coefficients ($R^2 = 0.36$ for the first stage of *E. coli* in studies beginning in spring, summer and fall, Appendix C) Because of the difficulties in establishing break points for two-staged decay and availability of insufficient data to adequately determine this break point in predictive models, higher order approximations were examined. Higher order approximations excluding weather parameters resulted in increased regression coefficients (R^2 ranging from 0.74 to 0.95 for enterococci, Appendix C) and improved distribution about zero in residual plots. An F-test was used to examine if statistically significant differences existed between the statistically determined intercept and the initial bacterial concentrations in cowpats

with mixed results. Enterococci initial concentrations did not differ from the intercept (*p values* ranged from 0.1471 to 0.4946) except for the spring monitoring period (*p value* = 0.008) and *E. coli* initial concentrations were statistically different for studies beginning in the fall (*p value* = 0.0090) and winter (p value = <0.0001). While regression coefficients from first-order decay models were deemed reasonable (Table 4.3), examination of residual plots indicated that higher order approximations and the inclusion of weather data were both necessary to eliminate the trends present in residual plots and improve predictive equations. Figure 4.2 presents residual plots for *E. coli* during the spring for a) first-order decay model and the b) higher order approximation model including weather variables.

Figure 4.2. Residual plots for E. coli during the spring season for A) first-order decay and B) higher order approximations combined with weather variables.

Crane and Moore (1986) summarized past investigations of bacterial die-off and identified relationships between environmental and physical parameters to bacterial survival as the greatest need for future research. They acknowledged that variability in reported die-off rate coefficients was likely due to the impact of environmental factors on bacterial decay but also concluded that a first-order model accurately described bacterial die-off when considering all conditions. The authors were unsuccessful in correlating environmental parameters and die-off rate coefficients because many environmental factors increase decay only under extreme conditions (non-linear relationships) and oftentimes investigators do not measure certain parameters that might be responsible for variability in die-off rates.

This study monitored a range of environmental parameters in an attempt to more clearly identify which factors influence bacterial decay. Although these parameters are specific to a single field

study, they provide information on which weather variables should be considered when modeling decay of bacterial indicators in NPS models. Higher order approximations including weather variables are presented in Table 4.4 and Figure 4.3 presents an example of the predicted and observed E. coli and enterococci decay during the fall season. Predicted values were calculated using the equations presented in Table 4.4 for E. coli and enterococci decay beginning during the fall monitoring period. Residual plots associated with each model and the predicted and observed E. coli and enterococci decay figures for the remaining seasons are available in Appendix C. The two weather parameters consistently identified as significantly improving predictions of E. coli and enterococci decay by increasing regression coefficients and distribution about zero of residual plots were temperature and solar radiation. The impact of temperature on bacterial decay has been previously well documented and solar radiation has also been identified as an important factor associated with bacterial decay (Crane et al., 1983; Taylor and Burrows, 1971). Inclusion of weather parameters improved either the regression coefficient or residual plot distribution in all models except for the E. coli and enterococci die-off during studies beginning in the fall. It is likely that cooler temperatures and lower solar radiation recorded during the fall and winter months were not extreme enough to contribute significantly to bacterial decay.

Seasonal Die-off Models: E. coli												
ln <i>E. coli</i> (dry wt) die-off: Spring			ln <i>E. coli</i> (dry wt) die-off: Summer			ln <i>E. c</i>	ln <i>E. coli</i> (dry wt) die-off: Fall			ln <i>E. coli</i> (dry wt) die-off: Winter		
]	$R^2 = 0.8116$		R	$x^2 = 0.9091$			$R^2 = 0.9125$		$R^2 = 0.8266$			
Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	
Intercept	4.459	0.2077	Intercept	28.85	<.0001	Intercept	18.22	<.0001	Intercept	19.48	<.0001	
Time	0.3933	<.0001	Time	-0.3232	<.0001	Time	-0.2226	<.0001	Time	0.4735	0.0006	
Time ²	-0.01793	<.0001	Time ²	3.13×10 ⁻³	0.0007	Time ²	1.53×10 ⁻²	<.0001	Time ²	-7.08×10^{-3}	<.0001	
Time	2.016×10^{-4}	<.0001	Time'	-9.78×10 ⁻⁶	0.0078	Time	-3.72×10 ⁻⁶	<.0001	Time'	2.796×10-5	<.0001	
Time ⁴	-7.075×10-7	<.0001	Temp PWA	0.6495	<.0001				Temp PWA	-0.2412	0.0013	
Temp PDH	-0.4917	0.0194	SR PWA	-5.918	0.0004				SR PWH	-4.991	0.0263	
Temp PDA	0.6652	0.0035	RH PWA	-0.1888	<.0001				rainfall PWT	0.2848	0.0264	
SR PDA	4.546	0.0013	rainfall PWT	0.2999	0.0229							
RH PDA	0.09619	0.0092										
				Season	al Die-off	Models: enter	ococci					
In enteroc	occi (dry wt) d	ie-off:	ln enteroco	cci (dry wt) di	ie-off:	ln entero	cocci (dry wt) di	e-off:	ln enteroco	cci (dry wt) di	ie-off:	
	Spring		Summer $\mathbf{D}^2 = 0.0050$			Fall D ² - 0.00(2			n	Winter		
	$R^2 = 0.8296$		K	c = 0.9656			$R^2 = 0.9062$		K	c = 0.9042		
Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	
Intercept	3.405	0.3096	Intercept	20.071	<.0001	Intercept	15.375	<.0001	Intercept	17.785	<.0001	
Time	0.243	0.0011	Time	-0.320	<.0001	Time	0.266	0.0021	Time	-0.0957	<.0001	
Time ²	-9.55×10 ⁻³	0.0002	Sq_time	2.99×10 ⁻³	<.0001	Time ²	-0.0175	<.0001	rainfall PDT	0.161	0.0577	
Time ³	1.006×10 ⁻⁴	0.0004	Cu_time	-1.056×10 ⁻⁵	<.0001	Time ³	3.197×10 ⁻⁴	0.0002				
Time ⁴	-3.393×10 ⁻⁷	0.0009	Temp PDH	0.139	0.0004	Time ⁴	-2.71×10 ⁻⁶	0.0007				
Temp PDH	0.709	<.0001	SR PDA	-1.892	<.0001	Time ⁵	1.099E-8	0.0020				
Temp PDA	-0.860	<.0001				Time ⁶	-1.719×10 ⁻¹¹	0.0041				
SR PDH	1.120	0.0183										
RH PDA	0.108	0.0009										

 Table 4.4. Best estimates of seasonal *E. coli* and enterococci die-off by higher order approximation and including weather parameters.

RH, relative humidity; SR, solar radiation; PWA, previous week average; PWH, previous week high; PDT, previous daily total; PWT, previous weekly total; PDA, previous day average; PDH, previous day high

The impact of moisture content on the die-off of *E. coli* and enterococci is unclear in the literature. Some studies have found that low moisture content will promote die-off (Entry et al., 2000; Sjogren, 1994; Wang et al., 2004) while others have found little or no effect (Oliver et al., 2006; Ritchie et al., 2003; Vinten et al., 2002). In this study, moisture content of the manure was not included in the dry-weight-based decay models because it is a parameter necessary to calculate bacterial concentrations in dry-weight manures. However, two factors impacting moisture content, rainfall and relative humidity, were both included as statistically significant model parameters in most of the presented models, indirectly indicating that moisture is a factor in bacterial decay. Moisture content was included as a variable in separately developed wet-based manure die-off models (Soupir, unpublished data) and was identified as a significant parameter for inclusion in *E. coli* spring, summer and fall models (*p*-value = 0.0173) and enterococci spring, summer, fall and winter models (*p*-value = 0.026). Kress and Gifford (1984) reported that declines in peak fecal coliform counts occurred after a second rainfall simulation, suggesting that bacteria available for transport were washed from the feces during the first simulation. While this study sampled the entire cowpat, it is likely that the decrease in fecal indicators present in the surface crust of the cowpat following rainfall events was reflected in the total bacterial count.

This research presents a different method to capture the re-growth and die-off dynamics of *E. coli* and enterococci over an extended period of time. While a field-based study makes it difficult to assess the direct impact of individual environmental factors on bacterial decay, inclusion of temperature and solar radiation parameters consistently improved predictive capabilities of bacterial decay models during all monitoring periods except fall which covered the period of September to April. Moisture also indirectly seemed to impact bacterial decay through the inclusion of relative humidity or rainfall in most models. Clearly, higher order approximations and the inclusion of weather variables improves predictions of bacterial decay when compared to first order approximations; however, caution is advised prior to direct implementation of these procedures into NPS models unless similar field conditions are being simulated. Cowpats examined in this study were undisturbed and rotational or continuous grazing systems will often allow for repeated grazing and thus trampling of the cowpats before previous deposits disappear, likely increasing decay rates through additional environmental exposure. Additional field-based monitoring of bacterial decay and weather parameters is necessary to represent the many different fecal sources present within a watershed and to further monitor the impacts of seasonal and weather parameters over time.

4.4. Summary and Conclusions

Standard cowpats were formed and applied to mowed hayfields during spring, summer, fall and winter seasons to test the hypothesis that first order decay equations most frequently used to predict in-field bacterial decay do not adequately describe *E. coli* or enterococci die-off in seasonally monitored cowpats. First order approximations were used to determine die-off rate coefficients and decimal reduction times (*D*- values). Seasonal variations in decay patterns were assessed. Higher order approximations and weather parameters were evaluated by multiple regression analysis to identify environmental parameters impacting in-field *E. coli* and enterococci decay.

Populations of *E. coli* and enterococci both exhibited re-growth, which seemed to differ by both indicator and season, immediately or within the first few days after field application. In general, cool temperatures preserved bacterial concentrations while increased decay occurred during warm

temperatures when vegetation and insects hastened the disappearance of the fecal deposits. First order kinetics approximated *E. coli* and enterococci decay rates with regression coefficients ranging from 0.70 to 0.90; however, when indicators exhibited re-growth patterns, the first order approximations overestimated initial concentrations present in freshly excreted manures. Die-off rate constants were greatest in cowpats applied to pasture during late winter and monitored into summer months for *E. coli* (k = 0.0995 d⁻¹) and applied to the field during the summer and monitored until December for enterococci (k = 0.0978 d⁻¹). Decay rates were lowest in cowpats applied to the pasture during the fall and monitored over the winter (k = 0.0581 d⁻¹ for *E. coli* and k = 0.0557 d⁻¹ for enterococci). *E. coli* and enterococci *D*-values were very similar with a 10-fold reduction in both populations occurring within five days of each other. The *D*-values were greatest during the fall monitoring period (40 and 41 days for *E. coli* and enterococci, respectively).

Higher order approximations and addition of weather variables improved regression coefficients to values ranging from 0.81 to 0.97 and improved distribution of residual plots for both indicators was noted. The addition of weather variables improved predictability of regression equations for all seasonal studies except the fall monitoring period. It is possible that the weather conditions that occurred during the fall monitoring period were not extreme enough to contribute significantly to bacterial decay. Statistically significant variables included in the models predicting bacterial decay during the spring, summer and winter monitoring periods were temperature, solar radiation, rainfall and relative humidity.

Die-off rate coefficients previously reported in the literature are generally higher than the field-based seasonal die-off rate coefficients presented here. New die-off rate coefficients should be developed in the field for implementation in decay models if first-order decay models continue to be used to predict in-field bacterial concentrations. Comparable *E. coli* and enterococci seasonal *D*-values suggest that similar on-farm management strategies should reduce both *E. coli* and enterococci indicator populations. This study recommends higher order approximations and the inclusion of weather variables to better capture re-growth and die-off trends over extended periods of time.

Chapter 5. Attachment of Bacterial Indicators to Particulates in Runoff from Three Virginia soils

5.1. Introduction

Limited understanding of how microbes are released from fecal matter and transported along overland flow pathways results in high uncertainty in bacterial fate and transport models (Collins and Rutherford, 2004). Specifically, little is known about microbial partitioning between the freely suspended and particulate attached phases (Oliver et al., 2007b) and data on the partitioning between these two phases are not yet available (Benham et al., 2006; Collins and Rutherford, 2004; Jamieson et al., 2004). The limited research conducted on partitioning of fecal bacteria indicates that cells are transported primarily in the unattached state. Muirhead et al. (2005) studied the transport state of E. coli cells by placing cowpats and fecal-material-soil mixtures on a metal tray 250 mm long and 200 mm wide, and runoff was created by placing a rainfall simulator nozzle 250 cm above the soil. On average only 8% of E. coli cells attached to sediment particles and most cells were not bioflocculated (attached to one another to form aggregates), but instead transported in runoff as single cells. In-stream stormwater partitioning studies have determined that on average, between 20 to 35% of microorganisms are attached to sediments (Characklis et al., 2005; Jeng et al., 2005; Krometis et al., 2007). Re-suspension of bottom sediments as a source of attached bacteria (Jamieson et al., 2003) might distinguish results between stormwater partitioning studies and overland flow partitioning studies; however, suspension of sediment and bacteria from the soil surface is likely a source of attached bacteria during overland flow.

Low attachment of *E. coli* to particulates in runoff from lands receiving fecal deposits might be explained by the presence of organic matter and carbon in the fecal material or by limitations in the availability of attachment sites. Guber et al. (2007) found that the presence of manure colloids decreased attachment of fecal coliforms to clay, silt, and organic coated sand particles when compared to particulate attachment in the absence of manure particulates. Similarly, equilibrium batch experiments examining the effect of dairy manure on *E. coli* attachment to soils found increasing manure content from 0 to 40 g L⁻¹ resulted in decreased attachment (Guber et al., 2005a). Guber et al. (2005b) hypothesized that the decreased bacterial attachment to particulates in the presence of manures could be caused by a variety of factors including competition between bacteria

and dissolved organic matter for attachment sites on soil, modification of soil mineral surfaces by soluble manure constituents, or modification of bacterial surfaces by dissolved organic matter.

Relationships between bacterial attachment and suspended sediments have been primarily observed in samples collected in streams, lakes and estuaries. Characklis et al. (2005) identified potential relationships between in-stream fecal coliform partitioning and particle number concentrations and Fries et al. (2006) found that concentrations of E. coli and enterococci increased along with particulates in suspension following storm events. Goulder (1977) evaluated the attached and unattached bacteria in an estuary with high concentrations of suspended sediment. He found that bacteria and the concentration of suspended solids were highly correlated; implying that attached bacteria concentrations might be controlled by the suspended solids concentrations. However, there were many particles on which no bacteria were attached, so there did not seem to be a shortage of attachment sites. Greater than 80% of fecal indicator organism were found to be associated with suspended sediments at two separate locations in the Chesapeake Bay as determined by centrifugation (Sayler et al., 1975). However, correlation between the suspended sediment concentrations and the bacteria associated with particulate matter was not observed. An et al. (2002) found that E. coli concentrations increased with depth at Lake Texoma due to the association of bacteria with sediments. A direct relationship was found between E. coli concentrations and gasoline sold at a marina, indicating recreational boating activity was responsible for the resuspension of sediments and thus the associated E. coli. Attachment of fecal bacteria to sediments allows for increased survival and potential for waterborne disease outbreak. Howell et al. (1996) found that sediment type significantly affected fecal coliform mortality, with significantly lower mortality rates in clay-sized sediments than in coarser sediments.

High amounts of sediment transport is common from grazed and trampled streambanks and thus the abundance of readily available attachment sites could result in high association of pathogen indicators with particulates. This study examines the state of *E. coli* and enterococci transport from three bare soil types receiving cowpat treatments. Relationships between bacterial partitioning and total suspended solids (TSS) phosphorous and carbon transport were examined and particles sizes to which cells preferentially associated were identified by fractional filtration and centrifugation methods. We hypothesized that the *E. coli* and enterococci partitioning would be related to the

64

dissolved/suspended phosphorus ratio and that the majority of cells would be associated with particles retained by the 8 µm filter.

5.2. Materials and Methods

Small, portable box plots were used to measure *E. coli* and enterococci attachment to particulates in runoff from three bare Virginia soils. Fifteen boxes were packed with soils collected from the Ap horizon. Five boxes were packed with Grosclose silt loam (Creggar et al., 1985); five boxes were packed with Levy silty clay loam (Reber et al., 1981); and the remaining five boxes were packed with Eunola loamy fine sand (Reber et al., 1981). Soils were compacted by hand tamping at saturation and leveled at least 24-hrs prior to each rainfall simulation. Box plots were left un-vegetated to create a condition where large volume of runoff and erosion are produced. Each box plot was 100-cm \times 20-cm \times 7.5-cm (SERA-17, 2005) in size and was placed on an approximate 8-percent slope. Soil samples were dried, sieved (2 mm) and stored prior to their analysis. Soils were analyzed for Mehlich -1 P by an inductively coupled plasma atomic emission spectrometer; organic matter was analyzed using a modified Walkley-Black method; pH was determined using a 1:1 soil to distilled water ratio and solid state pH meter and cation exchange capacity was estimated by summation (Mullins and Heckendorn, 2005).

					Particl	e Size Dis	tribution
Soil	Mehlich-1 P	Organic Matter	pH (1:1 water)	Cation Exchange Capacity	Sand	Silt	Clay
	mg kg ⁻¹	%		meq 100 g ⁻¹		%	
Eunola loamy fine sand	18	0.7	6.78	1.6	81.5	7	11.5
Grosclose silt loam	7	2.6	5.77	6.1	28.8	51.2	20
Levy silty clay loam	3	2.0	4.65	4.8	60.8	12.8	26.4

Fresh dairy cattle fecal deposits were collected at the Virginia Tech dairy facility and a single standard cowpat (Thelin and Gifford, 1983) was applied to each of the plots. Standard cowpats were formed by mixing the manure in a cement mixer for fifteen minutes. The homogenized manure was placed in molds with a diameter of 20.3 cm (8 in) and a depth of 2.54 cm (1 in) until a weight of 0.9 kg (2.0 lbs) was reached and applied to the central section of the plots. Manure samples were analyzed by the Clemson Agricultural Service Laboratory. Water soluble P, (2.06 g kg⁻¹),was determined by the method proposed by Sharpley and Moyer (2000). The pH, (5.6), was measured

potentiometrically in a 1:2 manure/water slurry (Peters et al., 2003). Average moisture content of fresh manure samples was 83.1%. *E. coli* and enterococci concentrations in fresh fecal material averaged 1.56×10^7 cfu g⁻¹ and 1.72×10^6 cfu g⁻¹, respectively.

Figure 5.1. Application of a standard cowpat to portable box plots packed with three different Virginia soils.

A Tlaloc 3000 portable rainfall simulator, based on the design of Miller (1987), with a ½50WSQ Tee Jet nozzle (Spraying Systems Co., Wheaton, IL) was used to apply rain to the box plots. The nozzle was placed in the center of the simulator and a pressure regulator was used to establish a water flow rate of 210 mL/s at the nozzle. Rainfall intensity averaged 9.0 cm hr⁻¹. Rainfall simulations were first conducted within 24 hours of the manure application to represent a condition where rainfall occurs soon after manure application (run 1). Simulated rain was applied until 30 minutes after the initiation of runoff (SERA-17, 2005). Grab samples were collected 10, 20, and 30 minutes after the start of runoff. Following collection of the 30 minute sample, the rainfall simulations (run 2) was conducted about 80 days after the first set of simulations to examine bacteria and nutrient release patterns from aged fecal deposits.

Figure 5.2. Tlaloc 3000 portable rainfall simulator was used to apply rain to the box plots and samples were collected from the base of the plots 10, 20, and 30 minutes after the onset of runoff.

5.2.1. Bacterial Partitioning and Enumeration

Collected samples were transported to the laboratory immediately following the end of the rainfall simulation and analyzed for *E. coli* and enterococci. Partitioning of pathogen indicators between attached and unattached phases was achieved by fractional filtration followed by centrifugation (Chapter 3). Fractional filtration has been used previously to identify particle sizes to which bacteria are attached (Auer and Niehaus, 1993; Schillinger and Gannon, 1985), and a filter pore size of 8 µm has been identified as a viable method to separate attached and free bacteria (Gordon et al., 2002; Henry, 2004; Mahler et al., 2000; Qualls et al., 1983). The presence of sediments and organic particles in runoff from agricultural lands makes it very likely that the filters could clog and retain free cells, resulting in a higher fraction of cells being classified as attached. To assess the retained, unattached cells, we rinsed the screens and filters with phosphate buffered water (Hach Company, Loveland, CO) and then centrifuged the re-suspended solution.

A number 35 mesh screen (Bel-Art Products, Pequannock, NJ) was used to retain particles larger than coarse sand (>500 μ m) and a number 230 mesh screen was used to retain medium, fine, and very fine sand (63 - 500 μ m). An 8 μ m filter (Poretics, Polycarbonate, GE Water and Processes

Technologies) was used to retain fine, medium, and coarse silt particles and a 3 µm filter (Nuclepore Track - Etch Membrane Filtration Products, Whatman) was used to retain clay and very fine silt particles. Throughout the study few particulates passed thorough the 8 µm filter. Following filtration, the retained solids were re-suspended in phosphate buffered water and centrifuged (Avanti J-25I, Beckman Coulter, Fullerton, CA) at 4,700 rpm for 15 seconds (Huysman and Verstraete, 1993; Lago, 2005). The filtrate and supernatant was enumerated for *E. coli* and enterococci concentrations on Modified mTEC and mE agar (U.S. EPA, 2000) using membrane filtration (Clesceri et al., 1998) to assess the unattached bacterial concentrations. Following centrifugation, the solutions associated with each particle size were re-suspended and dispersed prior to enumeration of the total E. coli and enterococci concentration by treatment with a hand shaker for 10 minutes. The dispersed solution was enumerated for E. coli and enterococci concentrations on modified mTEC and mE agar (U.S. EPA, 2000) by membrane filtration (Clesceri et al., 1998). Additional details on the development and validation of the dispersion and partitioning method are included in Chapter 3. The large number of samples collected in this study made it likely that replating would be necessary. Serial dilutions in 1,000 ppm Tween 85 were not performed in addition to the 10 minute hand shaker treatment because the long term impact of Tween on cellular survival is unknown.

5.2.2. Nutrient Analysis

Runoff samples were analyzed for nutrient and suspended solids concentrations to examine potential relationships between bacterial and nutrient attachment ratios. The nutrient analysis was performed following procedures in Standard Methods for the Examination of Wastewater (Clesceri et al., 1998). Nutrient analysis included Total Dissolved Phosphorus (TDP, 0.45 µm polyethersulfone filter, Pall Life Sciences, Ann Arbor, MI), Total Phosphorus (TP), Dissolved Organic Phosphorus (DOP), Total Organic Phosphorus (TOP), Dissolved Organic Carbon (DOC), and Total Organic Carbon (TOC). Total suspended phosphorous (TSP) was calculated as the difference between TP and TDP and Suspended Organic Phosphorus (SOP) was calculated as the difference between DOP and TOP (Clesceri et al., 1998). Suspended organic carbon (SOP) was calculated as the difference between TOC and DOC. Total Suspended Solids (TSS) were analyzed (0.45 µm glass fiber filter, Pall Life Sciences, Ann Arbor, MI) as recommended by Clesceri et al. (1998).

5.2.3. Calculations and Statistical Analysis

The attached portion was assumed to be the difference between the unattached and total *E. coli* and enterococci concentrations. The partitioning coefficient was calculated using equation 5.1 and the particulate associated fraction was calculated using equation 5.2. The attached portion associated with each screen size was divided by the total suspended solids associated with each screen size to obtain the cfu (colony forming units) per gram of particulates and determine the particle sizes to which *E. coli* and enterococci preferentially attach.

$$Partitioning Coefficient = \frac{attached}{unattached}$$
[5.1]

$$Partitculate Attached Fraction = \frac{attached}{attached + unattached}$$
[5.2]

Statistical analysis of data was performed using the Statistical Analysis System (SAS Institute, 2004). Data were normalized prior to analysis and statistical significance was determined when $p \le 0.05$. Bacterial and nutrient Total Concentration (TC), Particulate Associated Fraction (PAF), and Partitioning Coefficient (PC) were modeled as a function of soil type and simulation (run 1 and run 2) using analysis of variance (ANOVA). Least square means for bacterial and nutrient concentrations were compared using Tukey's pairwise comparison (Ott and Longnecker, 2001). Multiple regression analysis was conducted using the REG procedure in SAS and the final criteria to be included in the best model was selected based on the C_p statistic (Ott and Longnecker, 2001). Dummy variables were used to develop a full model representing bacterial PC and TC from all three soil types and a t-test was used to determine statistically significant slopes and intercepts. Statistical significance between particle sizes to which bacteria preferentially associate and soil type were also determined using the Statistical Analysis System (SAS Institute, 2004) by two-way ANOVA for run 1.

5.3. Results and Discussion

Packed bare soils were used to simulate a condition where large volume of runoff and erosion are expected. Three different soil types were used in this plot study. The PC, PAF, and TC were

calculated for *E. coli* enterococci, phosphorus, organic phosphorus, and organic carbon and are presented in Table 2 and results from individual samples are presented in Appendix D. The PC and PAF were calculated using equations 5.1 and 5.2, respectively. Attachment appeared to be influenced by both indicator organisms and soil type. The PAF for *E. coli* and enterococci, respectively, were 31% and 49% in runoff from the silty loam soils, 43% and 28% from the loamy fine sand soils, and 41% and 42% from the silty clay loam soils. Percent attachment of enterococci was higher to the silty loam and silty clay loam while *E. coli* had a higher percent attached to the loamy fine sand. No statistically significant differences existed between the *E. coli* PAF values for the three soil types and only the enterococci PAF value from the silty clay loam soils was statistically higher than that for the loamy fine sand soils. Overall, the PC was highest in samples collected from the silty loam and silty clay loam soils, while the *E. coli* PC was greater in samples collected from the silty loam and silty clay loam soils, while the *E. coli* PC was greater in samples collected from the loamy fine sand. Similar to the PAF results, only the enterococci PC from the silty loam soils was significantly higher than the loamy fine sand.

	sj till ee alliel	ene pur trere si		single com	F co	JETC ¹	
	E and		E coli D		L. con 1C		
	<i>E. Coll</i> FC Mean (SD)		E. COIL F Moon 9/ Atto	AF	Mean (SD)		
	Due 1	Dur 2	Dun 1	Due 2	Due 1 o ²	Dur 2 h	
1	$\frac{\text{Kun I}}{(0.40)}$	<u>Kun Z</u>	$\frac{Kun I}{10}$	$\frac{\operatorname{Kun} 2}{\operatorname{NLA}}$	$\frac{\text{Kun I a}}{2.57 \times 10^8}$	$\frac{\text{Kun 2 b}}{497(900)}$	
loamy fine sand	0.50(0.40) a ⁻	NA	43 (0.19) a	NA	$2.5 / \times 10^{\circ}$ a	487 (806) a	
silty loam soils	0.54 (0.44) a	NA	30 (0.18) a	NA	$1.21 \times 10^{2} \text{ b}$	66 (258) b	
silty clay loam	0.38 (0.34) a	NA	42 (0.27) a	NA	$6.50 \times 10' \text{ c}$	320 (1157) b	
					<u>entero</u>	<u>eocci TC</u>	
	<u>enteroc</u>	<u>occi PC</u>	<u>enterococ</u>	ci PAF	<u>cfu 100mL⁻¹</u>		
	Mean	<u>(SD)</u>	<u>Mean % Atta</u>	ched (SD)	Mea	<u>n (SD)</u>	
	<u>Run 1</u>	<u>Run 2</u>	<u>Run 1</u>	<u>Run 2</u>	<u>Run 1 a</u>	<u>Run 2 b</u>	
loamy fine sand	0.42 (0.22) a	NA	28 (0.11) a	NA	3.57×10^{6} a	553 (568) a	
silty loam soils	1.79 (2.49) b	NA	49 (0.23) b	NA	3.65×10^{6} a	0 (0) b	
silty clay loam	0.86 (0.53) ab	NA	43 (0.15) ab	NA	$1.83 \times 10^{7} \mathrm{b}$	1620 (2421) a	
					Phosphorus TC		
	Phosphorus PC ³		Phosphoru	IS PAF ³	$mg L^{-1}$		
	Mean (SD)		Mean % Atta	ched (SD)	Mean (SD)		
	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	
loamy fine sand	1.19 (0.54) a	0.81 (0.35) a	$5\overline{2(12)}$ a	42(14) a	16.67 (4.11) a	6.37 (0.77) a	
silty loam soils	1.65 (0.69) a	1.72 (0.51) b	52 (12) a	62 (7) b	10.07 (2.35) b	8.18 (1.78) b	
silty clay loam	3.02 (1.23) b	0.24 (0.21) c	73 (10) b	18(12) c	12.47 (2.70) b	3.29 (0.83) c	
				- () -	Organic Ph	osphorus TC	
	Organic Pho	osnhorus PC	Organic Phosn	horus PAF	m	σ.Γ. ⁻¹	
	Mean	(SD)	Mean % Atta	ched (SD)	Mean (SD)		
	Run 1	Run 2	Run 1	$\frac{1}{Run 2}$	Run 1	$\frac{1}{Run 2}$	
loamy fine sand	1 16(0.47) a	0.87(0.36)a	52(11)a	44(14)a	8.26(1.97)a	3.28(0.39)a	
silty loam soils	1.65(0.80) a	1 77 (0 50) b	52(11)a	63(7) h	5 10 (1 13) b	4 15 (0.88) h	
silty clay loam	4 73 (7 35) h	0.38(0.36) c	73(12) h	25(13)c	6 16 (1 38) c	1 80 (0 62) c	
sitty etay touin	1.75 (7.55) 6	0.50 (0.50) 0	/3 (12) 8	20 (15) 0	Organic (Tarbon TC	
	Organic (arbon PC	Organic Car	hon PAF	m	ΓL^{-1}	
	Mean	(SD)	Mean % Atta	ched (SD)	Mea	, L n (SD)	
	Run 1	$\frac{1}{2} \left(\frac{3}{2} \right)^{2}$	Run 1	$\frac{\text{Run } 2}{\text{Run } 2}$	Run 1	$\frac{R_{110}}{R_{110}}$	
loamy fine cand	0.50(0.15)	0.12(0.08) ab	$\frac{1(111)}{33(7)}$	$\frac{10}{10}$	23.07(2.46)	3.77(0.87)	
silty loom soils	0.30(0.13)a 0.16(0.12)b	0.12(0.00) a0	33(7)a 13(0)b	5(3)a	25.77 (2.40) a 16 20 (2 21) h	3.77(0.07) a 3.24(0.01) a	
silty clay loam	0.10(0.12)D 0.27(0.20)b	0.00(0.04) D 0.15(0.08) \circ	13(9)0 18(12) ob	3(3)a	10.39(2.31) D 21.22(5.69)	5.54 (0.91) a 7 77 (2 55) h	
IDC (nortitioning of	0.2/(0.30) D	0.13(0.08) a	10 (13) a0	12(0)a	$\frac{21.32(3.00) a}{1.52(3.00) a}$	1.21 (2.33) 0	

Table 5.2. Bacteria and nutrient partitioning coefficients (PC), particulate associated fractions (PAF) and total concentrations (TC) present in runoff from bare soils dominated by three different particle sizes and with a single cownat.

¹PC (partitioning coefficient), PAF (particulate attached fraction), TC (total concentration), NA (not applicable) ²Values followed by the same letter do not differ statistically between soils or run 1 and run 2 according to Tukey's pairwise comparison. ³Phosphouus, Organic Phosphorus and Organic Carbon PC and PAF were calculated using the dissolved, total, and suspended concentrations. The suspended concentrations were calculated as the difference between total and dissolved concentrations.

Statistically significant decreases in E. coli and enterococci TC were observed between run 1 and run 2 ($p \le 0.05$). The time between simulations averaged 80 days. While the cowpats were exposed to environmental factors likely to encourage die-off of pathogens and indicator organisms, cowpats were completely undisturbed during the almost three month period and no degradation of the exterior of the cowpat was observed. Temperature averaged 21.4 °C (70.5 °F) with a maximum of 32.8°C (91°F); solar radiation averaged 1.19 MJ with a maximum of 3.11 MJ; relative humidity averaged 80.8% and precipitation totaled 41.2 cm (16.2 in) during the 80 day period. Of the total

precipitation, 25.7 cm occurred in June, approximately 18 cm above average. Previously Thelin and Gifford (1983) reported fecal coliform concentrations of 40,000 MPN 100mL⁻¹ thirty days after cowpat deposition and fecal coliform concentrations peaked at 4,200 MPN 100mL⁻¹ 100 days following deposition of standard cowpats (Kress and Gifford, 1984). Kress and Gifford (1984) found that declines in peak fecal coliform counts occurred after a second rainfall simulation, suggesting that bacteria available for transport were washed from the feces during the first simulation. While warm temperatures and high solar radiation are likely to have contributed to death of pathogen indicators in the outer crust of the cowpats during this experiment, it is also likely that the first rainfall simulation, combined with the above average rainfall in June, rinsed readily available pathogen indicators from the surface of the cowpat. Extended monitoring of E. coli and enterococci in cowpats has found viable cells up to 195 days following deposition (Chapter 4). However, bacteria would be unlikely to move from the protected, moist interior environment of a cowpat to the moisture limited exterior crust and therefore surviving cells remain unavailable for release and transport during subsequent runoff events. Common grazing practices allow cowpats to be trampled, which would expose the interiors of the cowpat, and thus presents a fresh supply of indicator organisms for future release and transport; however, trampling would also likely hasten die-off by increasing environmental exposure.

5.3.1. Impact of Soil Type on Attachment

In general, the *E. coli* cells attached at a higher rate to sediments in runoff from the loamy fine sand soils (43%) and enterococci attached at a higher rate to the silty loam (49%) and silty clay loam (43%) soils (Table 5.2); however, only the enterococci PC and PAF in runoff from the silty clay loam was significantly higher than the enterococci PC and PAF in runoff from the loamy fine sand (P = 0.0137 and P = 0.0074, respectively). The higher attachment of enterococci to the silty loam and silty clay loam soils might be associated with the higher cation exchange capacity and organic matter contents of these soils (Table 5.1). Guber et al. (2005a) found that the addition of manure particulates to solution increased ionic strength and pH when compared with bacteria-water suspensions but decreased attachment overall. They attributed decreased *E. coli* attachment to competition between manure particulates and bacteria; however, a less significant decrease in attachment was observed from soils with a higher organic matter content. Competition between attachment studies and

field observations; however, attachment is high from all three soil types in this study, compared to previous edge-of-field (Chapter 6) and stormwater partitioning studies (Characklis et al., 2005; Krometis et al., 2007). Organic matter content was certainly higher for the silty loam (2.6%) and silty clay loam (2.0%) soils but significantly lower attachment ratios to loamy fine sand did not occur consistently for either *E. coli* nor for enterococci; thus, soil organic matter does not seem to be the primary factor contributing to the higher attachment rates observed in this study.

E. coli attachment to sand-dominated soils has been observed previously (Henry, 2004). It is likely that *E. coli* are able to associate with a broader range of particle sizes because the motility and rod shape of the *E. coli* makes them more able to attach to different angles or faces of the particles (Jeng et al., 2005). Laboratory-based attachment studies have identified particle size as a significant factor influencing attachment (Fontes et al., 1991, Ling et al., 2002); however, greater variability exists in the sorption properties of wild strains of *E. coli* used in this study (Lago, 2005; Muirhead et al., 2005). It appears that a combination of factors including (but not limited to) soil type and organic content of soils, carbon content and organic composition of fecal material, and cellular properties of indicator organisms are likely necessary to explain attachment of pathogen indicators to particulates.

5.3.2. Bacterial Attachment Related to TSS and Nutrient Transport

The average total suspended solids (TSS) concentrations in runoff samples collected from silty loam, loamy finesand and silty clay loam soils were 4.1 g L^{-1,} 4.0 g L⁻¹, and 2.3 g L⁻¹, respectively, during Run 1. High sediment transport rates were expected based on the experimental design: no vegetation to prevent sediment transport, short distance between detachment sites and sample collection, high intensity rainfall to promote detachment and erosion by raindrops, and dispersion of the cowpats all contributed to the high suspended solids concentrations. High TSS concentrations combined with higher bacterial attachment rates than previously observed indicates that attachment sites are not limited; however, microscopic analysis was not conducted to confirm this assumption. The presence of organic matter and fecal material in bacterial sediment suspensions has been reported to decrease bacterial attachment (Guber et al., 2005a; Johnson and Logan, 1996) and was cited as a factor contributing to low attachment rates in runoff from large (18.3-m long by 3-m wide), highly vegetated plots (Chapter 6). Total organic carbon concentrations in runoff from vegetated plots averaged 15.67 mg L⁻¹ and TSS concentrations averaged 152 mg L⁻¹. The TOC

concentration in runoff from this study averaged 20.56 mg L⁻¹ among all three soil types. Comparison of the average TOC and TSS concentrations in runoff from this study (bare soil boxes) to the TOC and TSS concentrations in runoff from the vegetated plot study in Chapter 6 reveals that TOC and TSS concentrations increased by 24% and 96%, respectively, in runoff from this study. The higher bacterial attachment in runoff from the box plot study combined with higher TSS concentrations suggests that perhaps a threshold concentration exists where bacterial attachment is no longer decreased by competition with organic carbon and limited by availability of attachment sites. Findings from this study which simulates highly erodable soils indicate that attachment is likely a significant bacterial transport mechanism.

5.3.3. Multiple Regression Analysis

Relationships between bacterial indicators and nutrient partitioning were examined by regression models in an effort to predict bacterial partitioning ratios. Log transformation of the *E. coli* and enterococci partitioning coefficients did not improve normality of the data or the fit of the model. Two dummy variables, z1 and z2, were used to develop a single model for all soil types that can then be simplified into three separate models to predict partitioning ratios specifically from each soil. Attempts were made to model *E. coli* and enterococci PC and PAF with two sets of independent variables TSS, TP, TDP, TOP, DOP, TOC, DOC and TSS (Group 1), TP, P PC, TOP, organic P PC, TOC, and organic C PC (Group 2). Dummy variables are defines as follows: if $z_1 = 1$ and $z_2 = 0$ then responses from the silty loam soil are modeled; if $z_1 = 0$ and $z_2 = 1$ then responses from the loamy fine sand soil are modeled; and if $z_1 = 0$ and $z_2 = 0$ then responses from the silty clay loam soil are modeled. A t-test was used to test for statistical significance between intercepts and slopes and only those statistically different from the different soils were included in the full model. The presence of dummy variables in the full model indicates that statistically significant differences existed between equations which best predicted the partitioning coefficient from the three soil types. For example, in the E. coli PC full model, the z1 intercept is included because the silty loam soil intercept was statistically different from the silty clay loam and loamy fine sand soil intercepts. Similarly, the DP×z1 and DP×z2 slopes are both included in the full model because the DP slope was determined to be a significantly significant variable based on a t-test and also required significantly different values to predict the E. coli PC in runoff from the silty loam versus the loamy fine sand soils. The strongest relationships to predict *E. coli* and enterococci partitioning

coefficients are presented in Table 3 (additional details in Appendix E) and substitution of dummy variables will produce reduced models specific to each soil type. In runoff from silty clay loam soils (z1 = 0 and z2 = 0), the partial model for the *E. coli* PC = -11.76438 + 0.81134 [DOC (mg L⁻¹)] - 0.06723 [TOC (mg L⁻¹)]. The coefficient of determination, R², represents the proportional reduction in the squared error of the response corresponding to the addition of independent variables (Ott and Longnecker, 2001). Variance inflation and residual plots were examined for all models and deemed acceptable.

Organic carbon was the only significant independent variable necessary to predict *E. coli* PC in runoff from all three soil types. Phosphorus and organic phosphorus are added to the model to predict *E. coli* PC in runoff from the loamy fine sand and silty loam soils while including TSS concentrations only improved predictions in runoff from the silty loam soils. Total suspended solids were included in the prediction of enterococci PC for all three soil types. Phosphorous and carbon were both added to the model to improve enterococci PC predictions in runoff from the silty loam soils. In each of the reduced models containing the TSS variable, the slope is positive, indicating a positive relationship between indicator attachment and increased concentrations of suspended solids. Organic carbon, phosphorous, and organic phosphorous were not consistently a positive or negative slope for all models.

Partitioning Coeffi	Partitioning Coefficient Models: <i>E. coll</i> and enterococci							I otal Concentration Widdels: <i>E. coll</i> and enterococci					
<i>E. coli</i> partitioning	coefficient: full	model	enterococci partition	ing coefficient: for	ull model	In <i>E. coli</i> total concentration: full model			In enterococci total concentration: full model				
Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value	Variable	Parameter estimate	<i>p</i> value		
Intercept	-11.76438	0.0012	Intercept	-0.94187	0.0216	Intercept	-6.92961	<.0001	Intercept	0.97240	0.1044		
$DOC (mg L^{-1})$	0.81134	0.0006	TSS (mg L^{-1})	0.00077745	<.0001	TP $(mg L^{-1})$	0.32350	0.0019	$DOC (mg L^{-1})$	0.90990	<.0001		
TOC (mg L^{-1})	-0.06723	0.0003	z1	18.57816	<.0001	DOC (mg L^{-1})	1.19672	<.0001	z1	-4.65642	<.0001		
z1	21.11521	<.0001	z2	1.26955	0.0135	z2	5.33296	<.0001	$TP \times z2 (mg L^{-1})$	-3.40860	0.0151		
$TSS \times z1 (mg L^{-1})$	0.00015222	0.0035	TSS×z1 (mg L^{-1})	-0.00063635	0.0008	$TP \times z2 (mg L^{-1})$	-0.22609	0.0506	$TOP \times z2 (mg L^{-1})$	6.82788	0.0204		
$TP \times z1 (mg L^{-1})$	-0.48864	0.0019	TSS×z2 (mg L^{-1})	-0.00075304	0.0002	$TOC \times z1 (mg L^{-1})$	0.42762	<.0001	$DOP \times z2 (mg L^{-1})$	1.21106	0.0535		
$DP \times z1 (mg L^{-1})$	-0.27794	0.0656	$TP \times z1 (mg L^{-1})$	-1.01389	<.0001				$TOC \times z1 (mg L^{-1})$	0.33689	<.0001		
$DP \times z2 (mg L^{-1})$	-3.73534	0.0070	$P_PC \times z1$	-1.37963	0.0179				$TOC \times z2 (mg L^{-1})$	0.50089	0.0059		
$TOP \times z1(mg L^{-1})$	0.45554	0.0567	$TOP \times z1 (mg L^{-1})$	0.76631	0.0055				$DOC \times z2 (mg L^{-1})$	-1.10629	0.0006		
TOP \times z2 (mg L ⁻¹)	-0.31962	0.0007	Organic_P_PC ×z1	2.36197	0.0002	$R^2 = 0.9308$							
$DOP \times z2 (mg L^{-1})$	8.39783	0.0051	$TOC \times z1 (mg L^{-1})$	-0.90573	<.0001				$P^2 = 0.0211$				
$DOC \times z1 (mg L^{-1})$	-1.15476	<.0001	Organic_C_PC×z1	14.44640	<.0001				K = 0.3311				
$R^2 = 0.6755$			$R^2 = 0.8964$										

 Table 5.3. Regression equations to predict *E. coli* and enterococci partitioning coefficients (PC) and total concentrations (TC) in runoff from three Virginia soils.

Total organic phosphorus and TOC concentrations significantly decreased between run 1 and run 2, but the TP concentrations in runoff from the silty loam soils were not significantly reduced (Table 5.2). While most nutrient concentrations did significantly decrease between runs as did the bacterial TC, the presence of phosphorus and carbon in runoff during run 2 questions the ability of nutrients to predict bacterial concentrations from an aged fecal source. Bacterial partitioning data was not available for run 2 (because of very low bacterial concentrations), so only the total concentrations were examined by regression models. Nutrient and TSS concentrations from run1 and run 2 were both included in an effort to predict bacterial concentrations from a fresh and aged fecal source in a single model. Log transformation of the E. coli and enterococci TC was necessary to achieve normal distribution of the data. The full models are presented in Table 5.3 (additional details in Appendix E) and substitution of dummy variables as described previously will generate reduced models specific to each soil type. Prediction of *E. coli* TC in runoff from all soils required phosphorous and organic carbon variables while the enterococci TC models specific to loamy fine sand also required the addition of organic phosphorous as an independent variable. Again it is difficult to draw conclusions based on the role of organic carbon, phosphorous, and organic phosphorous in predicting concentrations as a positive or negative slope was not consistently identified for all models. Interestingly, organic carbon exhibited a positive slope for all E. coli models but DOC had a negative slope in the enterococci TC model for loamy fine sand soils.

The most notable difference between regression equations developed to predict PC versus TC is the exclusion of TSS concentrations from the TC models. This again emphasizes the importance of attachment site availability in determining the fraction of attached cells; however, the presence of high TSS concentrations does not appear to be a factor in predicting total concentrations. Therefore, while high TSS concentrations appear to influence the state in which *E. coli* and enterococci are transported to surface waters, availability of attachment sites does not increase survival on the land to the point that overall concentrations are influenced by TSS. However, the state in which the cells are transported likely impacts long-term in-stream cellular survival and selection of management practices to reduce indicator transport.

77

5.3.4. Preferential Attachment to Particulates

Both fecal indicators preferentially attached to sediments retained by an 8μ m filter (Table 5.4, Appendix D). At least 50% of the attached *E. coli* and enterococci were associated with sediment and organic particles passing through the 63μ m filter. No samples resulted in measurable solids retained by the 3 µm filter even though the silty clay loam soils contained approximately 26% clay (Table 5.1). We assumed that the clay sized particles present in runoff were most likely transported as aggregates.

samples concelle in our bare son box plots.									
	Particle	Average	% TSS associated	E. co	li	enterococci			
	Size' µm	TSS (mg/L)	category	cfu/mg solids	% attached	cfu/mg solids	% attached		
C 1	>500	4,363	24	9,038	2	28	3		
$\begin{array}{c} \text{Grosclose} \\ \text{silt loam} \end{array} \qquad \begin{array}{c} 63 - 499 \\ 8 - 62 \end{array}$	63 - 499	9,256	50	51,007	10	209	20		
	8 - 62	4,930	26	435,668	88	800	77		
Eunola	>500	3,209	32	8,596	0.6	38	0.2		
loamy fine	63 - 499	5,306	52	168,640	12	507	15		
sand	8 - 62	1,621	16	1,254,993	88	2,971	85		
T 11/	>500	536	25	67,321	2	248	3		
Levy slity	63 - 499	517	24	1,151,284	34	3,204	37		
ciay ioaiii	8 - 62	1,096	51	2,134,764	64	5,179	60		

Table 5.4. Particle sizes to which *E. coli* and enterococci preferentially attach in runoff samples collected from bare soil box plots.

¹3 µm filter did not retain measurable TSS concentrations.

The distribution of TSS present in runoff samples did not correspond to the distribution of *E. coli* or enterococci attachment to particle sizes. Both the silt loam (74% retained by the 63 μ m filter) and loamy fine sand (84% retained by the 63 μ m filter) soils had higher concentrations of sediments classified as sand than silt (retained by the 8 μ m filter), but greater concentrations of *E. coli* and enterococci preferentially attached to the silt-sized particles retained by the 8 μ m filter. The silty clay loam soils had the greatest percentage of TSS particles in runoff retained by the 8 μ m filter (51%) and similar to the silt loam and loamy fine sand soils, *E. coli* and enterococci both preferentially attached to these particulates. The higher surface area associated with finer particles allows for more attachment sites and thus greater bacterial attachment. Previous studies have identified preferential attachment of fecal indicators to smaller particle sizes (<10 μ m) through the use of fractional filtration (Auer and Niehaus, 1993; Schillinger and Gannon, 1985). Auer and Niehaus (1993) found that fecal coliforms were primarily sorbed to particle classes 0.45 – 1 μ m and 6 – 10 μ m during storm overflow events. On average 90.5% of

the attached fecal coliform bacteria were found to be sorbed to particle sizes ranging from $0.45 - 10 \,\mu\text{m}$. Mitchell and Chamberlin (1978) also found that clays tend to adsorb coliforms more than silts or sands. The soils used in this study generally had low clay content (Table 1) and thus the majority of particulates present in runoff were classified by screen filtration as sand or silt. Similar to findings from previous studies, *E. coli* and enterococci both preferentially attached to the smallest particles present in runoff (silt in this study) even when the particle distribution in runoff was dominated by sand.

A two-way ANOVA was used to study the effects of soil type and particle size and any interactions between particle size and soil type on the attached bacteria (cfu/mg soil). *E. coli* and enterococci data were normalized by natural log transformation prior to analysis and soil type and particle size both significantly impacted attached bacteria (Table 5.5). Interactions between soil type and particle size were not significant for *E. coli* attachment but were significant for enterococci attachment (P = 0.02). Least square means for *E. coli* and enterococci attachment between soil type and particle size were compared using Tukey's pairwise comparison (Ott and Longnecker, 2001) and results are presented in Table 5.5.

<u>categories, >500 μm, 63 - 499 μm, and 8 - 62 μm (for each soil type)</u>							
Soil trung	Particle Size	E. coli	enterococci				
son type	μm	P value	P value				
Eunola	>500 - 63	< 0.0001	< 0.0001				
loamy fine	63 - 8	< 0.0001	0.0001				
sand	8 - 500	< 0.0001	< 0.0001				
Gradalada	>500 - 63	0.0002	< 0.0001				
cilt loom	63 - 8	0.0001	0.0235				
siit ioain	8 - 500	< 0.0001	< 0.0001				
Lovar ciltar	>500 - 63	< 0.0001	< 0.0001				
Levy Silty	63 - 8	0.3844	0.9994				
ciay ioam	8 - 500	< 0.0001	< 0.0001				

Table 5.5. *P* values showing statistically significant differences between *E. coli* and enterococci associated with sediments retained by the three particle size categories, >500 µm, 63 - 499 µm, and 8 - 62 µm (for each soil type).

Statistically significant differences were noted in bacterial attachment between all three particle size categories for all soils except the 63µm and 8 µm size category retaining silty clay loam soils; however, when comparing bacterial attachment between soils for each particle size category, less statistical differences were observed (Table E.1). Bacterial attachment did not

differ between loamy fine sand and silt loam soils classified in the 500 μ m and 63 μ m categories. In addition, *E. coli* attachment did not differ between loamy fine sand and silt loam soils (*p* = 0.1027) and loamy fine sand and silty clay loam soils (*p* = 0.9340) classified as silt (8 μ m) while enterococci attachment did not differ statistically between loamy fine sand and silty clay loam soils (*p* = 0.8874) also classified as silt (8 μ m). According to the particle size analysis (Table 5.1), the silt loam and loamy fine sand soils varied greatly in particle composition; yet few statistically significant differences in attachment were noted between two soils, regardless of the particle size.

From this portion of the study we are able to conclude that particle size in runoff greatly influences attachment, as at least 50% of all *E. coli* and enterococci were associated with sediment and organic particles retained by the 8 µm filter, the smallest particle category examined. No clear trends emerged when examining attachment of *E. coli* and enterococci to particulates in runoff related to the soil properties (organic matter and cation exchange capacity) and distribution of the particle sizes within the soil matrix. Comparison of *E. coli* and enterococci preferential attachment to particle size categories within the soil matrix and the resulting preferential attachment to particle size categories present in runoff would further clarify whether or not relationships exist between soil matrix particle size distribution and indicator preferential attachment; however, the author is not aware of any such study. More screen sizes would have provided additional insight into distribution of indicator attachment to soils with higher clay content than the soils used in the study.

5.4. Summary and Conclusions

A soil box study was conducted to examine the state of *E. coli* and enterococci transport from three bare soil types receiving cowpat treatments and develop relationships between bacterial partitioning and phosphorous and carbon transport. Particles sizes to which cells preferentially associated were also identified. Soil boxes (100-cm \times 20-cm \times 7.5-cm) were packed with three different Virginia soils, loamy fine sand, silty loam and silty clay loam. A rainfall simulation was conducted 24-hours after application of a standard cowpat, followed by a second rainfall simulation approximately 80 days later. Runoff samples were analyzed for *E. coli*, enterococci,

80

TSS, phosphorous, organic phosphorous and organic carbon. *E. coli* and enterococci partitioning coefficient (PC) and particulate associated fraction (PAF) were calculated to compare fecal indicator attachment in runoff from the different soil types and between two pathogen indicators, *E. coli* and enterococci, and fractional filtration followed by centrifugation identified particle sizes to which indicators preferentially attached. Regression analysis was conducted to examine potential relationships to utilize nutrient and TSS data to predict *E. coli* and enterococci PC and total concentration (TC).

Percent of E. coli and enterococci attached to particulates in runoff ranged from 28% to 49%. In general, the E. coli cells attached at a higher rate to sediments in runoff from the loamy fine sand box plots and enterococci attached at a higher rate to the silty loam and silty clay loam soils. Enterococci appeared associate with soils with a higher cation exchange capacity and organic matter content while E. coli had higher association with loamy fine sand soils, which has a lower cation exchange capacity and organic matter content. We hypothesized that the majority of cells would be associated with particles retained by the 8 µm filter and at least 50% of all attached cells were associated with particles less than 63 µm in size. The larger surface area of the smaller particles corresponds to a higher number of sites available for bacterial attachment. While particle size in runoff greatly influenced attachment, we were unable to establish a particular particle size range present in the soil matrix as a dominant factor statistically impacting overall attachment. We hypothesized that the E. coli and enterococci partitioning would be related to the dissolved/suspended phosphorus ratio, but a direct linear relationship was not present. Regression equations were developed to predict *E. coli* and enterococci PC ($R^2 = 0.54$) and $R^2 = 0.86$, respectively) and *E. coli* and enterococci TC ($R^2 = 0.93 R^2 = 0.92$, respectively). A single regression model was capable of predicting E. coli and enterococci TC in runoff from both a fresh and aged fecal source. TSS concentrations were only included as independent variables in regression equations developed to predict PC, emphasizing the importance of attachment sites in predicting the fraction of attached cells.

Based on this study and previous findings, it appears that a combination of factors influence attachment of *E. coli* and enterococci to particulates in runoff; including soil type and organic content of soils, carbon content and organic composition of fecal material, and cellular properties

of indicator organisms. Partitioning coefficients and PAF developed in this study can be incorporated into the initial release equations in non-point source models, typically described by a linear partitioning relationship (Equation 2.4), to improve prediction of in-stream bacterial concentrations from highly erobible soils. In addition the regression equations developed in the study could improve predictive capabilities of current NPS models when only nutrient data is available. Partitioning coefficients and PAF developed in this study are not meant to represent bacterial attachment during overland flow events or at the edge-of-the-field because of the small plot size and short distance between the fecal source and sample collection point. Future study is recommended to assess bacterial attachment from fecal sources other than cowpats. It could be possible that soils with higher clay content than the Levy soils used in this study (29% clay) would have even higher attachment rates due to increased availability of attachment sites. Higher attachment associated with highly erodible soils as used in this study (when compared to previous edge-of-field and stormwater studies) indicates that lower concentrations of total suspended solids could be limiting bacterial attachment and thus PC and PAF from other landuses could be much lower. Settling of particulates prior to release of runoff to surface waters by best management practices such as detention basins or vegetative filter strips might be an appropriate method of reducing bacterial loadings by as much as 50% in the presence of high sediment loads.

Chapter 6. *E. coli* and Enterococci Attachment to Particles and Loading Rates in Pastureland Runoff

6.1. Introduction

Pathogens are the leading cause of water quality impairments in many parts of the United States. Pathogens originate from many different sources including agricultural operations such as allowing cattle to have direct access to streams; human sources such as leaking septic systems; or wildlife sources such as migratory birds. However, agricultural practices have been cited as the primary contributor to impairments of rivers and streams (U.S. EPA, 2003). The three most common pathogen indicators in the United States include fecal coliforms, E. coli, and enterococci (U.S. EPA, 1986). Although fecal coliform have been traditionally used as an indicator to detect the presence of pathogens in surface waters, E. coli and enterococci are thought to have a higher degree of association with outbreaks of gastrointestinal illnesses (U.S. EPA, 1986) and are therefore currently the recommended indicator organisms (U.S. EPA, 1998; U.S. EPA, 2002b). In an attempt to reduce pollutant loading to the nation's water bodies, Total Maximum Daily Loads (TMDLs) are being developed to assess water quality problems, identify pollution sources, and determine pollutant reductions needed to restore and protect rivers, streams, and lakes. A TMDL is a calculation of the maximum amount of a pollutant that can be introduced to a water body, while still meeting the water quality standards, and an allocation of that amount to the pollutant's sources.

Because of the high costs associated with the development and implementation of TMDLs, it is essential that TMDLs be developed using sound scientific methods that are able to accurately reflect the pollutant loadings from the potential sources within a watershed. Currently, Nonpoint Source (NPS) pollution models are most frequently used to determine the maximum allowable loading rates of bacteria from the identified sources and most currently-used NPS models simulate bacterial transport to surface waters as an unattached or dissolved pollutant (Paul et al., 2004). Cell surface properties such as hydrophobicity of the cell (Fattom and Shilo, 1984; Kinoshita et al., 1993) and the electrostatic nature of the cell envelope (Jamieson et al., 2004) and external factors including availability of attachment sites (Characklis et al., 2005; Fries et al., 2006), ionic strength, and pH of the carrying solution (Jewett et al., 1995; Scholl and Harvey,

1992), and size of the particulate matter (Fontes et al., 1991) have been listed as factors that influence bacterial attachment to soils. Previous studies have determined that fecal bacteria preferentially attached to particulates (Auer and Niehaus, 1993; Henry, 2004; Ling et al., 2002) and statistically indistinguishable release rates between manure particulates and fecal coliforms have been observed through stony soils (Shelton et al., 2003). Very little data is available on bacterial partitioning between the attached and unattached phases during movement along overland transport pathways (Jamieson et al., 2004).

Many researchers and practitioners recognize the shortcomings in the existing methods used to model bacterial fate and transport (Jamieson et al., 2004; Paul et al., 2004). Representing bacteria as a dissolved pollutant might not accurately reflect the transport processes that occur in agricultural watersheds. However, before bacteria transport modeling can be improved, an infield study of bacteria transport and the related associations with flow, particulates, and water quality indicators is needed. Many models already partition between nutrient phases; thus, identifying correlations between bacterial and nutrient partitioning might improve predictive capabilities of bacterial transport models by modification of existing nutrient overland transport process algorithms. In addition, if attachment is a significant edge-of-field transport factor, design and selection of management practices could be improved to encourage settling of particulates and the attached fecal indicators for reduction of pathogen transport to surface waters.

The goal of this study was to investigate the partitioning of *E. coli* and enterococci between the unattached and particulate-attached phases during overland flow from pasturelands. The objectives of this study were to examine correlations between bacterial and nutrient partitioning ratios and loading rates for potential relationships and to use multiple regression analysis to develop equations to predict *E. coli* and enterococci partitioning between the attached and unattached phases with suspended solids and nutrient data. The next objective was to employ the separation technique described in Chapter 3 to partition between the unattached and attached phases of *E. coli* and enterococci at the edge-of-the-field and to identify the particle sizes to which the attached bacteria preferentially associated. Similar to the box plot study presented in Chapter 5, we hypothesized that the *E. coli* and enterococci partitioning would be related to the

84

dissolved/suspended phosphorus ratio and that the majority of cells would be associated with particles retained by the 8 µm filter.

6.2. Materials and Methods

Plots were constructed on newly established vegetation on an area that had not received any manure applications of any kind in the previous three years. A seedbed of Kentucky 31 Tall Fescue was prepared the fall prior to plot construction. The existing vegetation was sprayed twice with Roundup[™], plowed twice, limed, fertilized and broadcast with Kentucky 31 Tall Fescue. The area was irrigated weekly until vegetation emerged. The following spring five field plots 3-m (9.8-ft) wide by 18.3-m (60-ft) long were constructed on a Groseclose silt loam hayfield (35% sand, 60% silt, and 5% clay) on an approximate 9-percent slope dominated by a dense stand of Kentucky 31 Tall Fescue. A "V" shaped outlet at the down-slope end of each plot directed runoff into a 0.15-m (6-inch) H-flume equipped with a stilling well and a stage recorder for flow measurement (Figure 6.1). The stage recorder did not function properly on the control plot, so runoff rates and flow volumes from the control plot in Chapter 7 were used to calculate the flow weighted concentrations (FWC) and loads presented in the results and discussion section. The plot cover and rainfall application rates were similar between the Chapter 6 and Chapter 7 simulations. Surface soil samples (0 - 8 cm depth) were collected with a soil probe from each transport plot. The samples were sieved (2 mm), and stored prior to analysis. Soils were analyzed for Mehlich -1 P, organic matter by a modified Walkley-Black method and pH by 1:1 soil to distilled water ratio and solid state pH meter (Donohue and Heckendorn, 1994).

Fresh dairy cattle fecal deposits were collected at the Virginia Tech dairy facility over a 24 hour period. Standard cowpats (Thelin and Gifford, 1983) were formed by mixing the manure in a cement mixer for fifteen minutes. The homogenized manure was placed in molds with a diameter of 20.3 cm (8 in) and a depth of 2.54 cm (1 in) until a weight of 0.9 kg (2.0 lbs) was reached. Manure samples were collected prior to land application and analyzed by the Clemson Agricultural Service Laboratory. Water soluble P was determined by the method proposed by Sharpley and Moyer (2000). The pH was measured potentiometrically in a 1:2 manure/water slurry (Peters et al., 2003). Approximately 106 cowpats were applied to four of the five plots to represent grazed pastureland. The plot length was divided into 0.91 meter (3 ft) segments and

five cowpats were randomly applied to each section. Six cowpats were applied to the "V" shaped outlet at the down-slope end of each plot. One plot received no treatment and was used as a control.

Due to the unreliability of natural precipitation for short-term field research, a rainfall simulator (Dillaha et al., 1988) generated a uniform rainfall event (2.8 cm/h) to all plots (Figure 6.1) twenty hours after application of manure to the plots. After the beginning of runoff, discreet grab samples were collected at the outfall of the flumes. Samples were collected at the onset of runoff, at ten minute intervals during the storm event, immediately following the end of the storm event, and four minutes after the precipitation ceased. Three samples were collected during each sampling event, one for bacterial partitioning studies, one for total *E. coli* and enterococci concentration analysis, and one for nutrient analysis. The rainfall event continued until runoff from all plots reached steady state (three hours and 20 minutes) and the longest runoff event lasted 90 minutes (plot 2).

Figure 6.1. Portable rainfall simulator was used to apply rain to the transport plots and samples were collected from the base of the plots every 10 minutes after the onset of runoff.

6.2.1. Bacterial Partitioning and Enumeration

Collected samples were transported to the laboratory immediately following the end of the rainfall simulation and analyzed for *E. coli* and enterococci. Partitioning of pathogen indicators between attached and unattached phases was achieved by fractional filtration followed by centrifugation. Fractional filtration has been used previously to identify particle sizes to which bacteria are attached (Auer and Niehaus, 1993; Schillinger and Gannon, 1985), and a filter pore

size of 8 µm has been identified as a viable method to separate attached and free bacteria (Gordon et al., 2002; Henry, 2004; Mahler et al., 2000; Qualls et al., 1983). The presence of sediments and organic particles in runoff from agricultural lands makes it very likely that the filters could clog and retain free cells, resulting in a higher fraction of cells being classified as attached. To assess the retained, unattached cells, we rinsed the screens and filters with phosphate buffered water (Hach Company, Loveland, CO) and then centrifuged the re-suspended solution. This technique combines the benefits of fractional filtration, identifying particle sizes to which cells attach, with the more common practice of centrifugation (Chapter 3).

The number 35 mesh screen (Bel-Art Products, Pequannock, NJ) was used to retain particles larger than coarse sand (>500 µm) and number 230 mesh screen was used to retain medium, fine, and very fine sand (63 - 500 µm). An 8 µm filter (Poretics, Polycarbonate, GE Water and Processes Technologies) was used to retain fine, medium, and coarse silt particles and a 3 µm filter (Nuclepore Track – Etch Membrane Filtration Products, Whatman) was used to retain clay and very fine silt particles. Throughout the study no measurable particulates passed thorough the 8 µm filter. Following filtration, the retained solids were re-suspended in phosphate buffered water and centrifuged (Avanti J-25I, Beckman Coulter, Fullerton, CA) at 4,700 rpm for 15 seconds (Huysman and Verstraete, 1993; Lago, 2005). The filtrate and supernatant were enumerated for E. coli and enterococci concentrations on modified mTEC and mE agar (U.S. EPA, 2000) using membrane filtration (Clesceri et al., 1998) to assess the unattached bacterial concentrations. Following centrifugation, the solutions associated with each particle size were re-suspended and dispersed prior to enumeration of the total E. coli and enterococci concentration by treatment with a hand shaker for 10 minutes (Chapter 4). The dispersed solution was enumerated for E. coli and enterococci concentrations on modified mTEC and mE agar (U.S. EPA, 2000) by membrane filtration (Clesceri et al., 1998).

6.2.2. Nutrient Analysis

Runoff samples were analyzed for nutrient and suspended solids concentrations to examine potential relationships between bacterial and nutrient attachment ratios. Nutrient analysis was performed following procedures in Standard Methods for the Examination of Wastewater (Clesceri et al., 1998). Nutrient analysis included Total Dissolved Phosphorus (TDP, 0.45 µm)

87

polyethersulfone filter, Pall Life Sciences, Ann Arbor, MI), Total Phosphorus (TP), Dissolved Organic Phosphorus (DOP), Total Organic Phosphorus (TOP), Dissolved Organic Carbon (DOC), and Total Organic Carbon (TOC). Total suspended phosphorous (TSP) was calculated as the difference between TP and TDP and Suspended Organic Phosphorus (SOP) was calculated as the difference between DOP and TOP (Clesceri et al., 1998). Nutrient analysis included total and organic forms of phosphorus to account for inorganic residual from fall fertilizer application and the organic forms present in fresh cowpats. Suspended organic carbon (SOP) was calculated as the difference between TOC and DOC. Total Suspended Solids (TSS) were analyzed (0.45 µm glass fiber filter, Pall Life Sciences, Ann Arbor, MI) as recommended by Clesceri et al. (1998).

6.2.3. Calculations and Statistical Analysis

The attached cells were assumed to be the difference between the unattached and total *E. coli* and enterococci concentrations. The partitioning coefficient was calculated using Equation 6.1 and the particulate associated fraction was calculated using Equation 6.2. The attached portion associated with each screen size was divided by the TSS associated with respective screen size to obtain the colony forming units per gram of particulates and determine the particle sizes to which *E. coli* and enterococci preferentially attach.

$$Partitioning Coefficient = \frac{attached}{planktonic}$$
[6.1]

$$Partitculate Attached Fraction = \frac{attached}{attached + planktonic}$$
[6.2]

Statistical analysis of data was performed using the Statistical Analysis System (SAS Institute, 2004). The nonparametric Kruskal-Wallis rank test was used to test for significant differences between partitioning ratios, particulate associated fractions, and total concentrations during the rising, peak, and receding limbs of the runoff hydrograph. Pearson correlation coefficients between bacteria partitioning and concentrations and runoff, TSS, and nutrients were determined using PROC CORR and a *p*-test was performed to test for statistical significance (SAS Institute, 2004). Multiple regression analysis was conducted using the REG procedure in SAS and

analysis of variance (ANOVA) was used to determine statistical significance of the model. Statistical significance between particle sizes to which bacteria preferentially associate were also determined by ANOVA. Data were normalized prior to analysis and statistical significance was determined when $p \le 0.05$.

6.3. Results and Discussion

Soils were analyzed for Mehlich -1 P (11 mg kg⁻¹), organic matter (2.6%) and pH (6.22) prior to land application of manure. Fresh manure samples were also analyzed prior to land application. Water soluble P was 2.02 g kg⁻¹, pH was 5.6, and average moisture content of fresh manure samples was 83.61%.

The average *E. coli*, enterococci, and nutrient flow-weighted concentrations and loads are presented in Table 6.1 and the results associated with each sample are available in Appendix F. Flow-weighted concentrations were calculated by multiplying the sample concentrations by the subsequent runoff volume and then dividing by the total runoff volume from each plot. Bacterial and nutrient loads were calculated by multiplying the sample concentrations by the subsequent runoff volume and converting the plot area to a per hectare basis. Plot 3 was excluded from bacterial load calculations because of missing data points. High standard deviations in load calculations are to be expected because of the differences in total runoff volumes from each plot (ranging from 0.12 to 0.50 m^3).

One plot received no treatment and was used as a control. Background *E. coli* concentrations flow-weighted concentrations were 72.4 cfu 100 mL⁻¹ and enterococci concentrations were 0.0 cfu 100 mL⁻¹. The control plot *E. coli* load was 8.87×10^5 cfu ha⁻¹ and enterococci load was 0.0 cfu ha⁻¹. Control plot bacteria samples were not partitioned between the attached and unattached phases because of the low cell counts. The background *E. coli* was only detected in two of the ten samples collected during the runoff event and is most likely attributed to wildlife (Doran et al., 1981; Patni et al., 1985).

	concenti at	ions and	loaus				
	Treatment Plot Mean	Control Plot			Treatment Plot Mean Load	Control Plot Load	
	\mathbf{FWC}^1	FWC	units		(SD)		units
E. coli	6.96×10 ⁵	176	cfu 100 mL ⁻¹	<i>E. coli</i> attached	1.63×10^{10} (1.40×10 ¹⁰)	NA	cfu ha ⁻¹
enterococci	3.63×10 ⁵	0.00	cfu 100 mL ⁻¹	<i>E. coli</i> unattached	4.16×10^{11} (5.29×10 ¹¹)	NA	cfu ha ⁻¹
TDP	2.67	0.210	mg L^{-1}	enterococci attached	6.97×10^{9} (7.72×10 ⁹)	NA	cfu ha ⁻¹
TSP	1.41	0.002	mg L ⁻¹	enterococci unattached	2.71×10^{11} (4.47×10 ¹¹)	NA	cfu ha ⁻¹
ТР	4.08	0.212	$mg L^{-1}$	TDP	0.11 (0.09)	6.40×10^{-3}	kg ha⁻¹
DOP	1.36	0.103	mg L ⁻¹	TSP	0.049 (0.030)	6.97×10 ⁻⁵	kg ha ⁻¹
SOP	0.75	0.003	mg L^{-1}	DOP	0.056 (0.046)	3.14×10 ⁻³	kg ha ⁻¹
ТОР	2.11	0.106	mg L ⁻¹	SOP	0.025 (0.018)	8.62×10 ⁻⁵	kg ha ⁻¹
DOC	14.65	9.801	mg L ⁻¹	DOC	0.604 (0.462)	2.95×10 ⁻¹	kg ha ⁻¹
SOC	1.02	1.05	mg L ⁻¹	SOC	0.038 (0.020)	3.92×10 ⁻²	kg ha ⁻¹
TOC	15.67	10.85	mg^{-1}	TSS	544 (273)	0.951	kg ha ⁻¹
TSS	152.22	19.81	mg L ⁻¹				

 Table 6.1. Average E. coli, enterococci, total suspended solids, and nutrient flow-weighted concentrations and loads

¹Flow weighted concentration (FWC), Standard Deviation (SD), Total Dissolved Phosphorus (TDP), Total suspended phosphorous (TSP), Total Phosphorus (TP), Dissolved Organic Phosphorus (DOP), Suspended Organic Phosphorus (SOP), Total Organic Phosphorus (TOP), Dissolved Organic Carbon (DOC), Suspended organic carbon (SOP), and Total Organic Carbon (TOC), Total Suspended Solids (TSS)

6.3.1. Bacterial Partitioning Related to Flow Regime

As indicated previously, following the onset of runoff from the plots, samples were collected at ten minute increments from the outfall of the flume. Bacterial partitioning might be impacted by flow velocities (Guber et al., 2005b; Krometis et al., 2007) so bacterial and nutrient partitioning was separated into rising, peak, and receding limbs of the overland flow hydrograph (Figure 6.2). The number of samples collected from each plot varied due to different beginning of runoff times but ranged from seven to eleven samples. Nineteen samples were included in the rising limb analysis, ten samples in the peak limb analysis, and 6 samples in the falling limb analysis. Partitioning coefficients and PAF are presented as box and whisker plots illustrating 10th, 25th, 75th, and 90th percentiles. The *E. coli* PC and PAF medians are both slightly lower during the rising and falling limbs of the hydrograph following the same pattern as TSS concentrations (Figure 6.3). Enterococci, however followed the opposite trend; the mean PC and PAF increased during the rising and falling limbs of the runoff hydrograph. The total bacterial concentrations decreased as the runoff hydrograph progressed (Figure 6.3), similar to what you would expect from a first flush effect (Novotny, 2003).

Figure 6.2. Partitioning coefficients (a) and particulate associated fractions (b) of *E. coli*, enterococci, phosphorus, organic phosphorus, and organic carbon in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph.

Figure 6.3. Bacterial and nutrient concentrations in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph for (a) *E. coli*, (b) enterococci, (c) total phosphorus, (d) total organic phosphorus, (e) total carbon, and (f) total suspended solids.

The nonparametric Kruskal-Wallis rank test was used to identify statistically significant differences between PC, PAF, and TC during the rising, peak, and recession phases of the runoff hydrograph (Appendix G). Neither *E. coli* nor enterococci PC, PAF, or TC were significantly different between the rising, peak, and recession limbs of the runoff hydrograph. Only organic carbon exhibited statistically significant differences among the partitioning coefficients ($p \le$ 0.0300) and particulate associated fractions ($p \le 0.0300$). Concentrations of TP, TOP, and TOC all significantly differed between phases of the runoff hydrograph ($p \le 0.0003$, $p \le 0.0187$, and $p \le$ 0.0045, respectively). A Wilcoxon pairwise comparison found the concentration of TP to differ among all three phases while TOP concentrations only differed between the peak and rising limbs of the hydrograph. Total organic carbon differed between the peak and the rising limb and the peak and recession limb while the PC and PAF differed between the peak and recession and rising and recession limbs.

The average *E. coli* PC for all samples collected was 0.06 which corresponded to a PAF of 4.8% and the average PC for enterococci was 0.18 with corresponding PAF of 13%. Partitioning coefficients and PAF were calculated using Equations 6.1 and 6.2. Characklis et al. (2005) found *E. coli*, fecal coliforms, and enterococci all displayed relatively similar partitioning behavior from background samples, but during storm events the attached fractions of fecal coliforms and enterococci increased at all three sites while the attached fraction of *E. coli* decreased at two of the three sites. While it is difficult to attribute a single factor to the increased attachment exhibited by enterococci, enterococci cells have a tendency to occur in pairs or short chains during the exponential or log phase of the growth curve (Holt et al., 1993). Enterococci were likely in the active growth stage since the rainfall simulation occurred within 24 hours after deposition and several decay studies have reported that bacteria increase in fresh fecal deposits for up to two weeks before die-off begins (Conner and Kotrola, 1995; Crane et al., 1980; Muirhead et al., 2005; Wang et al., 1996; Wang et al., 2004). It is possible that these chains could have been retained by the filters and removed from suspension during centrifugation.

These rates of *E. coli* and enterococci attachment are lower than the majority of studies that have focused on in-stream background and storm event partitioning. Jeng et al. (2005) found *E. coli* attachment to range from 21.8% to 30.4% in stormwater samples while Characklis et al. (2005)

found an average attachment ranging from 20% to 35% in grab samples collected during storm events. Muirhead et al. (2005) found that on average 8% of *E. coli* cells attached to sediment particles and most cells were not bioflocculated in runoff from cowpats and fecal-material–soil mixtures placed on metal trays. Differences between this study and previous findings are likely due to the differences in landuses contributing runoff. The high concentration of manure particulates in runoff from a fresh fecal source (Guber et al., 2005a, Guber et al., 2005b) and the different methods used to partition between unattached and attached phases might also help to explain the lower attachment rates observed in this study.

Different time periods between introduction of the fecal sources into the environment and sample collection could also partially explain differences in bacterial partitioning rates. Cells exposed to an oligotrophic (nutrient limited) environment are more likely to attach to particulates in an effort to obtain nutrients and increase survival (Morita, 1997). The short time (24 hours) between manure application and runoff in our study could help to explain the low bacterial attachment rates. Bacteria present in runoff from lands treated with a fresh manure source are unlikely to be stressed since nutrients and moisture are in abundant supply. Sources from which the fecal indicators originated might also explain differences between the results of our study and previous studies. The source of *E. coli* from stormwater samples (Characklis et al., 2005; Jeng et al., 2005; Krometis et al., 2007) is unknown and there is some indication that strains of E. coli introduced into a system from different sources (eg. waterfowl, cattle, domestic pets) may exhibit different attachment properties (Lago, 2005). Nevertheless, many different environmental strains of dairy cow E. coli were also applied to the plots in this study and attachment rates also differ among strains from the same source (Muirhead et al., 2005). Therefore, even though the source species in the stormwater studies are unknown, it is difficult to attribute lower attachment ratios to differences in environmental strains without knowledge of the strains present in each study.

6.3.2. Bacterial Attachment and TSS Concentrations

Raindrops detached fecal material from cowpats but the thick vegetation aided to reduce particulate transport. The TSS flow-weighted concentration of 152 mg L^{-1} (Table 6.1) is similar to TSS concentrations in runoff from previous pastureland studies and slightly higher than

simulated pastureland plots receiving liquid dairy and poultry litter applications (Soupir et al., 2006a). A correlation analysis found no significant linear relationships between bacterial concentrations, PC, or PAF and TSS concentrations. Characklis et al. (2005) identified potential linkages between in-stream fecal coliform partitioning and particle number concentrations ($R^2 = 0.51$), and Fries et al. (2006) found that concentrations of *E. coli* and enterococci increased along with particulates in suspension following storm events. After being transported into the stream and prolonged exposure to the external environment, bacteria attachment might increase to enhance survival (Morita, 1997). The exposed cell surface of the attached cell is decreased and the attached portion of the cell does not participate in substrate uptake. In addition to surface attachment, bacteria also bioflocculate, usually when substrates are depleted and bacteria are stressed for nutrients (Morita, 1997). Therefore, once in- stream, the availability of attachment sites, bacterial attachment. If in fact attachment is limited by availability of attachment sites, bacterial attachment from poorly managed pasturelands with lower vegetative cover and erosive soils might be higher than the PAF presented in this study.

6.3.3. Bacterial Attachment and Nutrient Partitioning

NPS pollution models assess sources of microbial loadings in watersheds and identify reductions necessary for these sources to meet water quality standards. These models already have mechanisms in place to partition between dissolved and suspended forms of nutrients, so relationships developed between bacterial partitioning and nutrient partitioning could be easily incorporated in these models. Partitioning coefficients and PAF were calculated for phosphorus, organic phosphorus, and organic carbon to compare trends between the pathogen indicator and nutrient fractions. A correlation analysis was conducted to investigate the potential linear relationships between bacterial and nutrient partitioning. Data were normalized and statistically significant ($p \le 0.05$) correlation coefficients are presented in Table 6.2. The correlation analysis provides an initial indication as to which nutrient variables could predict bacterial partitioning by water quality models. This analysis indicates that *E. coli* PC is most closely related to TP PC (r = 0.50800); correlations also exist between TP PAF (r = 0.48819), TOP PC (r = 0.49983), and TOP PAF (r = 0.49100). Correlations between enterococci partitioning and phosphorous and organic carbon were not as strong, but TOP PC (r = 0.37557) and TOC (r = 0.42220 and r = 0.41358) might both aid in prediction of enterococci partitioning at the edge-of-the-field.

Nutrients and nutrient fractions not significantly correlated with bacteria PC or PAF included TP, TP PAF, DOC, TOC PC, and TOC PAF. Total concentrations of *E. coli* and enterococci also were not significantly correlated with nutrient TC, PC or PAF. While it appears that some statistically significant correlations exist, these relationships are relatively weak and lower than the Pearson correlation coefficient value of 0.6 which is a minimum value necessary to identify linear relationships between parameters (Ott and Longnecker, 2001). Additional research and data collection is needed prior to implementation of these linear relationships into NPS models.

 Table 6.2. Pearson correlation coefficients identify statistically significant relationships between nutrient parameters and bacterial partitioning.

	TDP	TP	TP	DOD	тор	TOP	TOP	тос
	TC	PC	PAF	DOP	TOP	PC	PAF	IOC
E. coli PC	-0.40074^{1}	0.50800	0.49235	-0.40593	NS	0.49983	0.49541	0.37521
E. coli PAF	-0.39995	0.50414	0.48819	-0.40493	NS	0.49622	0.49100	0.36824
enterococci PC	NS	0.38811	0.39793	NS	0.43041	0.37557	0.37895	0.42220
enterococci PAF	NS	0.39312	0.40209	NS	0.41113	0.37808	0.37996	0.41358
1.44 4	1.01							

¹All values presented significant at the $p \le 0.05$ level, data normalized prior to analysis

6.3.4. Bacterial and Nutrient Loading Rates

Loading curves describing the bacterial partitioning over the duration of a storm event from a single plot are presented in Figure 6.4. Plot 2 was selected because runoff first began from this plot, resulting in the highest number of samples. The unattached fraction consistently exceeded the attached fraction by more than an order of magnitude. The overwhelming loading of indicators in the unattached state suggests that management practices should focus on removal of unattached cells to improve water quality from agricultural landuses with dense vegetation that receive high applications of animal waste.

Figure 6.4. *E. coli* and enterococci loading rates from a single plot (plot 2) treated with cowpats during an overland flow event.

Because loading curves appeared to follow similar trends as nutrients, a second correlation analysis was conducted to investigate the potential linear relationships between bacterial and nutrient loading rates. Again, data were normalized and statistically significant ($p \le 0.05$) correlation coefficients are presented in Table 6.3. The correlation analysis provides an initial indication as to which nutrient variables could predict bacterial partitioning by water quality models. Significant correlations were not found when relating ratios of partitioned bacteria and nutrient phases. A different approach could be to model separately the attached and unattached phases *of E. coli* and enterococci. Attached *E. coli* loads were significantly correlated with SOP (r = 0.84682). Unattached *E. coli* (r = 0.93166) and both attached and unattached enterococci loading curves (r = 0.92257 and 0.87567, respectively) were most closely related to DOC.

 Table 6.3. Pearson correlation coefficients identify statistically significant relationships between bacteria and nutrient partitioning loads

	TSP	TDP	P ratio	SOP	DOP	Organic P ratio	TSC	DOC	Organic C ratio	TSS
E. coli attached	0.83974 ¹	0.74154	NS	0.84682	0.74581	NS	0.69583	0.83832	NS	0.74991
E. coli unattached	0.82664	0.88770	0.46104	0.82786	0.88980	0.39711	0.82757	0.93166	NS	0.83984
E. coli ratio	0.60040	0.35792	NS	0.60993	0.36235	NS	NS	0.45832	NS	0.41334
enterococci attached	0.87319	0.89986	0.38204	0.87499	0.90161	NS	0.76396	0.92257	NS	0.85686
enterococci unattached	0.77906	0.84105	0.46726	0.77963	0.84248	0.39569	0.74988	0.87567	NS	0.77922
enterococci ratio	NS	NS	NS	NS	NS	NS	-0.37S046	NS	NS	NS

¹All values presented significant at the $p \le 0.05$ level, data normalized prior to analysis

6.3.5. Regression Equations for Predicting Partitioning Ratios and Loading Curves

Relationships between bacterial indicators and nutrient partition were examined by regression models in an effort to predict bacterial PC and loading rates. Attempts were made to model *E. coli* and enterococci PC, PAF, and TC with two sets of independent variables: flow, TSS, TP, TDP, TOP, DOP, TOC, DOC, and flow, TSS, TP, P ratio, TOP, organic P ratio, TOC, and organic C ratio (Appendix G). The strongest relationships to predict *E. coli* and enterococci ratios are as follows:

E. coli PC (ln) =
$$-12.765 - [0.981 \times \text{TDP} (\text{mg L}^{-1})] + [0.648 \times \text{TOC} (\text{mg L}^{-1})]$$
 [6.3]

enterococci PC (ln) = $-17.088 - [10.59 \times \text{runoff volume } (\text{m}^3)] + [0.949 \times \text{TOC } (\text{mg L}^{-1})]$ [6.4]

Both models were statistically significant (p = 0.01 and p = 0.01, respectively) and all slopes and intercepts were statistically significant as well ($p \le 0.05$) except TOC in the *E. coli* ratio model (p = 0.07). While it appears that TOC, TDP, and runoff volume might explain some trends in the dataset, correlations were relatively weak (adjusted $R^2 = 0.22$ and $R^2 = 0.25$, respectively). The enterococci PAF also correlated with runoff volume and TOC ($R^2 = 0.23$) while the *E. coli* PAF correlated best with DOP and TOC ($R^2 = 0.22$).

Similarities between the loading curves indicated that a greater potential might exist to model that unattached and attached bacterial loading rates separately. Regression models examined for potential to predict *E. coli* and enterococci loading rates with two sets of independent variables. Group 1 included TSS, TP, TDP, TOP, DOP, TOC, DOC and group 2 included TSS, TP, P loading ratio, TOP, organic P loading ratio, TOC, and organic C loading ratio as independent variables. *E. coli* and enterococci loading ratios (attached loading rate/unattached loading rate) were modeled as a function of TSS, TP, P loading ratio, TOP, organic P loading ratio. The strongest relationships for predicting *E. coli* and enterococci loading rates are as follows:

E. coli unattached (ln kg ha⁻¹) = $21.20 + [182.7 \times TP (kg ha^{-1})] - [25.88 \times DOC (kg ha^{-1})] - [1349 \times TP^{2} (kg ha^{-1})] + [63.90 \times DOC^{2} (kg ha^{-1})]$ Adjusted R² = 0.85 (6.5)

E. coli attached (ln kg ha⁻¹) = $15.87 + [3.647 \times TSS (kg ha^{-1})] + [4.473 \times P ratio] - [0.8014 \times TSS² (kg ha^{-1})] - [1.045 \times P ratio² + [17.99 \times TOC² (kg ha^{-1})]$ [6.6] Adjusted R² = 0.86

enterococci unattached (ln kg ha⁻¹) = $17.79 + [3.973 \times TSS (kg ha^{-1})] + [2.403 \times OP ratio] - [0.8577 \times TSS² (kg ha^{-1})] - [0.6558 \times OP ratio² (kg ha^{-1})] + [19.78 \times TOC² (kg ha^{-1})] [6.7]$ Adjusted R² = 0.90

enterococci attached (ln kg ha⁻¹) = $17.69 + [55.05 \times [TP (kg ha^{-1})] - [123.4 \times TP^{2} (kg ha^{-1})]$ [6.8] Adjusted R² = 0.77 Equations 6.5, 6.6, 6.7, and 6.8 are all statistically significant ($p \le 0.0001$) and all intercepts and slopes are also statistically significant ($p \le 0.01$) except for DOC in equation 6.5 ($p \le 0.07$). Attempts to predict *E. coli* and enterococci loading ratios resulted in lower coefficient of determinations (adjusted $R^2 = 0.58$ and $R^2 = 0.47$, respectively) and not all slopes were statistically significant (Appendix G). Results of this study indicate that prediction of indicator loading rates in the attached and unattached phases at the edge-of-the-field is possible with combinations of phosphorous, carbon and TSS. While these equations are the best that we were able to develop from this limited dataset, the applications of these equations are limited. Most notably, the attached enterococci loading rate equation did not include TSS as a statistically significant independent variable. These equations are only applicable to the specific scenario simulated in this study and because of the limited dataset they have not been validated.

After *E. coli* and enterococci enter into the stream, literature suggests that partitioning between phases might be predicted by availability of attachment sites (Characklis et al., 2005; Fries et al., 2006), resuspension of bottom sediments (An et al., 2002; Burton et al., 1987; Jamieson et al., 2003; Sayler et al., 1975), and changes in flow regime (Guber et al., 2005a; Krometis et al., 2007); however, relationships between *E. coli* and enterococci in-stream partitioning and phosphorous partitioning has not yet been examined to the best of our knowledge.

6.3.6. Preferential Attachment to Particulates

The TSS associated with each particle size category were weighed and used to identify the particle sizes to which fecal bacteria preferentially attach. Total suspended solids associated with a screen size weighing less than 1 mg were considered to be negligible and it was assumed that all cells retained by that screen size either remained in suspension or were bioflocculated but not attached to particulates. The majority of sediments were retained on the 8 μ m screen and the highest concentrations of *E. coli* and enterococci were both associated with particles retained by this screen size as presented in Table 6.4 and Appendix D. The larger surface area of the smaller particles corresponds to a higher number of sites available for bacterial attachment. Very few solids passed through the 8 μ m filter and only one sample had measurable solids retained by the 3 μ m screen. This could be due to the particle size distribution of the Grosclose silt loam soils

which contained only 5% clay. It is also likely that the clay sized particles present in runoff were transported as aggregates and were trapped by the 8 µm filter and unable to pass through it.

		E. coli		enterococci		
	Mean TSS	Mean cfu/mg		Mean cfu/mg		
Particle Size	(mg/L)	solids	% attached	solids	% attached	
>500 µm	43.9	851ab ¹	28%	240b	13%	
63 - 499 μm	70.7	433b	14%	549a	29%	
8 - 62 μm	171.9	1,766a	58%	1,095a	58%	

 Table 6.4. Particle sizes to which *E. coli* and enterococci preferentially attach in samples collected during an overland flow event.

¹Means followed by the same letter do not differ at the 5% level of significance according to Tukey's pairwise comparison.

Previous studies have identified preferential attachment of fecal indicators to smaller particle sizes (>10 μ m) through the use of fractional filtration (Auer and Niehaus, 1993; Schillinger and Gannon, 1985); however, these studies assumed that all cells retained on each screen were attached while our study accounted for unattached cells trapped by the filter or sediments. The higher surface area associated with finer particles allows for more attachment sites, possibly explaining the higher association of *E. coli* and enterococci to the particles retained by the 8 μ m filter.

While the majority of attached *E. coli* and enterococci cells were associated with particulates retained by an 8 µm screen, the overall low attachment ratios indicate that reducing particulate transport will not sufficiently reduce transport of pathogen indicators to surface waters. Between 87 and 95% of all fecal indicators transported along overland flow pathways from a fresh manure source are not attached to either sediments or manure particulates. It is possible that attachment might be higher in runoff from different sources or land management scenarios. Thick vegetative cover, present in our study, reduced TSS concentrations when compared to levels that might be observed from pasturelands or different agricultural landuses. In that case, it is possible that attachment to particulates could be a significant transport mechanism and management practices would need to focus on retention of the smallest particulates (8 µm in this study) to reduce the bacterial loadings and improve water quality.

101

6.4. Summary and Conclusions

A field study was conducted to evaluate the partitioning of *E. coli* and enterococci between the unattached and attached phases in runoff from virgin pasturelands and to identify the particle sizes to which the fecal indicators preferentially attach. Field plots were constructed on simulated pastureland with high vegetative cover to determine partitioning ratios of *E. coli* and enterococci in runoff samples collected at the edge-of-the-field. The goal of this study was to investigate the partitioning of *E. coli* and enterococci between the unattached and particulate-attached phases during overland flow from pasturelands by examining correlations between bacterial and nutrient partitioning ratios and loading rates and developing relationships to predict *E. coli* and enterococci partitioning between the attached and unattached phases with suspended solids and nutrient data. The particle sizes to which the attached bacteria preferentially associated were identified. *E. coli* and enterococci partitioning were not clearly related to the dissolved/suspended phosphorus ratio as hypothesized since all linear relationships between bacterial and nutrient ratios were weak. The majority of cells were associated with particles retained by the 8 μ m filter.

Results indicate that the majority of bacterial indicator organisms are transported from a fresh manure source in the unattached state. Average PC for *E. coli* was 0.06 which corresponds to 4.8% attachment and 0.18 for enterococci corresponding to 13% attachment. Low attachment rates might be best explained by the low TSS concentrations (relative to poorly managed and other agricultural landuses) and competition for attachment sites between fecal indicators and organic carbon. Linear correlations existed between *E. coli* loading rates and SOP while unattached *E. coli* and both attached and unattached enterococci loading rates were most closely related to DOC. Regression models to predict unattached and attached indicator loading rates separately as a function of phosphorous and organic carbon were developed; however, application of these models to landuse scenarios other than highly vegetated pastureland is not recommended. Comparison of unattached and attached indicator loading rates found that the unattached fraction exceeded the attached fraction by at least two orders of magnitude. Fifty-eight percent of all attached cells were associated with particles between 8 - 62 μ m in diameter.

Partitioning ratios developed from this study can be incorporated into NPS models that allow for partitioning between the attached and unattached phases. The majority of cells were transported in the unattached state from pasturelands with high vegetative cover receiving fresh fecal deposits and therefore, development of best management practices for well-managed pastureland scenarios should focus on reduction of unattached pathogen indicators. Future study is recommended to determine partitioning of indicators from different landuses with higher transport of suspended solids and from aged fecal sources.

Chapter 7. *E. coli* and Enterococci Attachment to Particles during Runoff from High and Low Vegetative Cover Pastureland

7.1. Introduction

Runoff from grazed pasturelands often contributes bacterial loadings resulting in downstream water quality impairments (Doran and Linn, 1979; Doran et al., 1981; Moore et al., 1982). Flow-weighted concentrations of *E. coli*, fecal coliform, and enterococci in runoff from simulated pasturelands receiving cowpat applications were 1.37×10^5 , 1.65×10^5 and 1.19×10^5 , respectively (Soupir et al., 2006b). Stream bank fencing is often recommended as a management practice to reduce pollutant loadings to surface waters (Line, 2003) when cattle have direct access to streams; however, other management practices, in addition to stream fencing, are likely necessary to reduce fecal loadings to the streams from grazed lands (Oliver et al., 2007b). Vegetated buffer strips are often promoted as a practice to reduce pollution transport to surface waters, but their effectiveness in reducing pathogen indicators has produced mixed results (Coyne et al., 1995; Entry et al., 2000; Larsen et al., 1994; Lim et al., 1998). Meals (2001) found that the combination of buffers, riparian fencing and protected stream crossings were necessary for significant reduction of bacterial counts in an agricultural watershed in Vermont.

Limited understanding of how microbes are released from fecal matter and transported along overland flow pathways results in high uncertainty in bacterial fate and transport models (Collins and Rutherford, 2004). Specifically, little is known about microbial partitioning between the freely suspended and particulate attached phases (Oliver et al., 2007b) and data on the partitioning between these two phases are not yet available (Benham et al., 2006; Collins and Rutherford, 2004; Jamieson et al., 2004). Previous chapters in this dissertation have investigated attachment rates present in runoff from different pastureland management scenarios and found low attachment rates averaging 4.8% attached for *E. coli* and 13% attached for enterococci when cowpats were applied to simulated pasturelands. These low attachment rates might be explained by the low TSS concentrations present in runoff, but linear correlations between attachment rates and TSS concentrations were not observed. The application of a single cowpat to bare soil box plots resulted in much higher attachment rates ranging from 28% to 49% attached for both *E. coli* and enterococci. While the bare soil box plot study indicated that increased particulate

104

transport might allow for increased attachment because of increased availability of attachment sites, results from the box plot study are not representative of edge-of-field partitioning that would be observed during an overland flow event.

The goal of this study was to investigate the partitioning of *E. coli* and enterococci between the unattached and particulate-attached phases during overland flow from pasturelands. The objectives were to examine partitioning of *E. coli* and enterococci to sediments and organic particles from different pastureland vegetative cover scenarios during overland flow and to identify the particle sizes to which the attached bacteria preferentially associate. Bacterial partitioning was examined for relation to flow regime, TSS, and nutrients. Similar to the previous two chapters, we hypothesized that the *E. coli* and enterococci partitioning would be related to the dissolved/suspended phosphorus ratio and that the majority of cells would be associated with particles retained by the 8 μ m filter.

7.2. Materials and Methods

The five field plots described in Chapter 6 were used to conduct a second rainfall simulation. Of the five field plots, vegetation was removed from two of the plots with a dethatcher and string trimmer to represent varying soil cover that might be correlated with overgrazed or poorlymanaged pasture conditions. The dethatcher was first used to remove approximately 50% of all established vegetation. Three equally sized bare areas were created in the top, middle, and lower third of the plots using the string trimmer. Areas void of all vegetation accounted for an average of 28.4% of the total plot area. Plots with vegetation removed are referred to as low vegetation plots and the plots without removal of vegetation are referred to as high vegetation plots (Figure 7.1). There were two replicates of each treatment and one control.

Fresh dairy cattle fecal deposits were collected at the Virginia Tech dairy facility over a 24 hour period. Standard cowpats (Thelin and Gifford, 1983) were formed by mixing the manure in a cement mixer for fifteen minutes. The homogenized manure was placed in molds with a diameter of 20.3 cm (8 in) and a depth of 2.54 cm (1 in) until a weight of 0.9 kg (2.0 lbs) was reached. Manure samples were collected prior to land application and analyzed by the Clemson Agricultural Service Laboratory. Water soluble P, (2.02 g kg^{-1}),was determined by the method

proposed by Sharpley and Moyer (2000). The pH, (5.6), was measured potentiometrically in a 1:2 manure/water slurry (Peters et al., 2003). Average moisture content of fresh manure samples was 83.61%. Approximately 106 cowpats were applied to four of the five plots to represent a heavily grazed area. The plots receiving manure applications had received a previous, similar application of fresh fecal cowpats approximately four months prior to this application (Chapter 6). Previous cowpats had disintegrated due to warm temperatures, thick vegetation and frequent mowing; however, it is likely that a fraction of the total concentrations of fecal indicators was due to the previous manure applications (Kress and Gifford, 1984). One plot received no treatment and was used as a control.

Due to the unreliability of natural precipitation for short-term field research, a rainfall simulator (Dillaha et al., 1988) generated a uniform rainfall event (2.8 cm/h) to all plots. After the beginning of runoff, discreet grab samples were collected at the outfall of the flumes (Figure 6.1). Samples were collected at the onset of runoff, at ten minute intervals during the storm event, at the end of the storm event, and four minutes after the precipitation ceased. Three types of samples were collected during each sampling event, one for bacterial partitioning studies, one for total *E. coli* and enterococci concentration analysis, and one for nutrient analysis. The rainfall event continued until runoff from all plots reached steady state (four hours and 11 minutes) and the longest runoff event lasted 105 minutes (plot 2). Steady-state occurred when flow at the outfall of the flumes remained constant as determined by the stage recorder.

7.2.1. Bacterial Partitioning and Enumeration

Collected samples were transported to the laboratory immediately following the end of the rainfall simulation and analyzed for *E. coli* and enterococci within 24 hours. Partitioning of pathogen indicators between attached and unattached phases was achieved by fractional filtration followed by centrifugation. Fractional filtration has been used previously to identify particle sizes to which bacteria are attached (Auer and Niehaus, 1993; Schillinger and Gannon, 1985), and a filter pore size of 8 µm has been identified as a viable method to separate attached and free bacteria (Gordon et al., 2002; Henry, 2004; Mahler et al., 2000; Qualls et al., 1983). The presence of sediments and organic particles in runoff from agricultural lands makes it very likely that the filters could clog and retain free cells, resulting in a higher fraction of cells being classified as attached. To assess the retained, unattached cells, we rinsed the screens and filters with phosphate buffered water (Hach Company, Loveland, CO) and then centrifuged the resuspended solution. This technique combines the benefits of fractional filtration, identifying particle sizes to which cells attach, with the more common practice of centrifugation (Chapter 3).

The number 35 mesh screen (Bel-Art Products, Pequannock, NJ) was used to retain particles larger than coarse sand (>500 µm) and number 230 mesh screen was used to retain medium, fine, and very fine sand (63 - 500 µm). An 8 µm filter (Poretics, Polycarbonate, GE Water and Processes Technologies) was used to retain fine, medium, and coarse silt particles and a 3 µm filter (Nuclepore Track – Etch Membrane Filtration Products, Whatman) was used to retain clay and very fine silt particles. Throughout the study no measurable particulates passed thorough the 8 µm filter. Following filtration, the retained solids were re-suspended in phosphate buffered water and centrifuged (Avanti J-25I, Beckman Coulter, Fullerton, CA) at 4,700 rpm for 15 seconds (Huysman and Verstraete, 1993; Lago, 2005). The filtrate and supernatant was enumerated for *E. coli* and enterococci concentrations on Modified mTEC and mE agar (U.S. EPA, 2000) using membrane filtration (Clesceri et al., 1998) to assess the unattached bacterial concentrations. Following centrifugation, the solutions associated with each particle size were re-suspended and dispersed prior to enumeration of the total E. coli and enterococci concentration by treatment with a hand shaker for 10 minutes (Chapter 4). The dispersed solution was enumerated for E. coli and enterococci concentrations on Modified mTEC and mE agar (U.S. EPA, 2000) by membrane filtration (Clesceri et al., 1998).

7.2.2. Nutrient Analysis

Runoff samples were analyzed for nutrient and suspended solids concentrations to examine potential relationships between bacterial and nutrient attachment ratios. The nutrient analysis was performed following procedures in Standard Methods for the Examination of Wastewater (Clesceri et al., 1998). Nutrient analysis included total dissolved phosphorous (TDP, 0.45 µm polyethersulfone filter, Pall Life Sciences, Ann Arbor, MI), total phosphorous (TP), dissolved organic phosphorous (DOP), total organic phosphorous (TOP), dissolved organic carbon (DOC), and total organic carbon (TOC). Total suspended phosphorous (TSP) was calculated as the difference between TP and TDP and suspended organic phosphorous (SOP) was calculated as the difference between DOP and TOP (Clesceri et al., 1998). Suspended organic carbon was calculated as the difference between TOC and DOC. Total Suspended Solids were analyzed (0.45 µm glass fiber filter, Pall Life Sciences, Ann Arbor, MI) as recommended by Clescersi et al. (1998).

7.2.3. Calculations and Statistical Analysis

The attached cells were assumed to be the difference between the unattached and total *E. coli* and enterococci concentrations. The partitioning coefficient was calculated using Equation 7.1 and the particulate associated fraction was calculated using Equation 7.2. The attached portion associated with each screen size was divided by the TSS associated with respective screen size to obtain the colony forming units per gram of particulates and determine the particle sizes to which *E. coli* and enterococci preferentially attach.

$$Partitioning Coefficient = \frac{attached}{planktonic}$$
[7.1]

$$Partitculate Attached Fraction = \frac{attached}{attached + planktonic}$$
[7.2]

Statistical analysis of data was performed using the Statistical Analysis System (SAS Institute, 2004). A 2-way ANOVA and Tukey's pairwise comparison were used to test for significant

differences between partitioning coefficients and total concentrations during the rising, peak, and receding limbs of the runoff hydrograph and between high and low vegetative cover plots using the MIXED procedure in SAS. Multiple regression analysis was conducted using the REG procedure in SAS and analysis of variance (ANOVA) was used to determine statistical significance of the models. Statistical significance between particle sizes to which bacteria preferentially associate was also determined by ANOVA and Tukey's pairwise comparison. When necessary, data were normalized prior to analysis and statistical significance was determined when $p \le 0.05$.

7.3. Results and Discussion

The average *E. coli*, enterococci, and nutrient flow-weighted concentrations (FWC) are presented in Table 7.1 and individual samples are presented in Appendix H. Flow-weighted concentrations were calculated by multiplying the sample concentrations by the subsequent runoff volume, summing the multiplied terms, and then dividing by the total runoff volume from each plot. Nutrient analysis included total and organic forms of phosphorus to account for inorganic residual from fall fertilizer application and the organic forms present in fresh cowpats and the cowpats from the previous simulation. The most notable difference in pollutant transport between the high and low vegetative cover plots was in the TSS FWC. Thick vegetation prevented particulate transport with average FWC of 51.02 mg L⁻¹ while removal of vegetation increased TSS concentrations by an order of magnitude to 670.2 mg L⁻¹.

One plot received no treatment and was used as a control. Background *E. coli* concentrations flow-weighted concentrations were 2.52×10^2 cfu 100 mL⁻¹ and enterococci concentrations were 4.02×10^3 cfu 100 mL⁻¹. The background *E. coli* was detected in five of the twelve samples collected during the runoff event while the enterococci was detected in all samples. Background bacterial loading are most likely attributed to wildlife (Doran et al., 1981; Patni et al., 1985).

	concenti ation			
	FWC	FWC	FWC	
	High-	Low-	Control	
	vegetation	vegetation		units
E. coli	2.73×10^{4}	2.00×10^4	2.52×10^{2}	cfu 100 mL ⁻¹
enterococci	1.51×10^{4}	1.36×10^{4}	4.02×10^{3}	cfu 100 mL ⁻¹
Total dissolved phosphorous	4.48	4.66	0.115	$mg L^{-1}$
Total suspended phosphorous	0.78	1.17	5.21×10 ⁻³	$mg L^{-1}$
Total phosphorous	5.26	5.83	0.12	$mg L^{-1}$
Dissolved organic phosphorous	2.20	2.32	4.95×10 ⁻²	$mg L^{-1}$
Suspended organic phosphorous	0.55	0.71	2.51×10 ⁻³	$mg L^{-1}$
Total organic phosphorous	2.74	3.03	5.13×10 ⁻²	$mg L^{-1}$
Dissolved organic carbon	15.54	14.09	10.0	$mg L^{-1}$
Suspended organic carbon	1.54	1.25	0.89	$mg L^{-1}$
Total organic carbon	17.08	15.35	10.89	$mg L^{-1}$
Total suspended solids	51.02	670.20	23.15	mg L ⁻¹

 Table 7.1. Average E. coli, enterococci, total suspended solids, and nutrient flow-weighted concentrations (FWC).

7.3.1. Bacterial Partitioning Related to Flow Regime and Vegetative Cover

Previous research has determined that bacterial partitioning might be impacted by flow velocities (Guber et al., 2005b; Krometis et al., 2007) so bacterial and nutrient partitioning coefficients were separated into rising, peak, and receding limbs of the overland flow hydrograph (Figure 7.2). The number of samples collected from each plot varied due to different beginning of runoff times but ranged from seven to twelve samples. Typically, 11 samples were included in the rising limb analysis, 6 samples in the peak limb analysis, and 2 samples in the falling limb analysis. Partitioning coefficients are presented as box and whisker plots illustrating 10th, 25th, 75th, and 90th percentiles.

Figure 7.2. Partitioning coefficients of a) *E. coli*, enterococci, and b) phosphorus, organic phosphorus, and organic carbon in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph from high and low vegetation plots.

A 2-way ANOVA with Tukey's pairwise comparison was used to test for significant differences between partitioning coefficients and total concentrations during the rising, peak, and receding limbs of the runoff hydrograph and between well managed and poorly managed pasture plots (Appendix I). The *E. coli* PC did not differ statistically between the rising, peak or recession limbs of the runoff hydrograph from either the well managed or poorly managed plots. Among treatments, the *E. coli* PC from plots with poorly managed pasture was significantly higher than the *E. coli* PC from well managed plots. Interactions between plot treatment and hydrograph stage (rising, peak and recession) were not found to be statistically significant and the reduced model determined that statistically significant differences in *E. coli* PC existed between the two

plot vegetative covers (*p-value* = 0.0002). Interactions between plot treatment and hydrograph stage were found to be statistically significant in enterococci PC but no differences existed between PC in runoff from the two treatments or runoff stages.

Similar analysis was conducted on phosphorous and carbon PC in runoff (Appendix I). The full model found no statistically significant differences between plot treatment or hydrograph stage; however, interactions were not significant and the reduced model determined that the TP PC was statistically lower from the well managed pasture plots (p-value = 0.0489) as compared with the poorly managed pasture plots. Flow appeared to impact TOP PC more than plot treatment. Again, interactions among treatment and stage were not significant and the only statistically significant difference occurred between the TOP PC in runoff from the rising and receding limbs of the runoff hydrograph (p-value = 0.0313). The DOC PC differed between the two plot treatments (p-value = 0.0397).

Figure 7.3 presents total bacterial concentrations during the rising, peak, and receding limbs of the overland flow hydrograph. The total *E. coli* and enterococci concentrations were not impacted by vegetative cover; the only statistically significant differences (p-value = 0.0387 for *E. coli* and p-value = 0.0007 for enterococci) occurred between the rising and peak limbs of the runoff hydrographs. Similar analysis was conducted on total TSS, phosphorous and carbon concentrations (Appendix I). Well-managed pasture significantly reduced TSS concentrations (p-value < 0.0001) and increased TOC TC (p-value = 0.0217) while the TP and TOP TC were only impacted by the hydrograph stage in runoff from the high vegetation plots. The rising limb was statistically higher than the peak and receding limbs for both forms of phosphorous.

Figure 7.3. Bacterial total concentrations in runoff from pasturelands during the rising, peak, and recession limbs of a runoff hydrograph for *E. coli* and enterocci from pasturelands with 100 and 50% vegetative cover.

The average *E. coli* PC for all samples collected was 0.0006 from plots with high vegetative cover and 0.029 from plots with low vegetative cover, which corresponded to a particulate attached fraction (PAF) of 0.06% and 2.8%, respectively. The average PC for enterococci was 0.0103 from well managed plots and 0.0132 from poorly managed plots, which corresponded to a PAF of 0.98% and 1.23%, respectively. Partitioning coefficients and PAF were calculated using Equations 7.1 and 7.2. In general, attachment from both high and low vegetative cover plots was low with less than 3% of all *E. coli* and enterococci classified as attached. Among the two fecal indicators, only *E. coli* attachment of either indicator. The overall low attachment rates and the relatively small impact of the reduced vegetation (and greater TSS transport) were both unexpected.

7.3.2. Bacterial Attachment and TSS Concentrations

The increase in TSS FWC between the high and low vegetative plot treatments was 619.2 mg L⁻¹. While thick vegetation efficiently reduced particulate transport, no reductions in *E. coli* or enterococci FWC were observed (Table 7.1), as concentrations from high vegetation plots were slightly higher than those resulted from low vegetation plots. Similarly, differences in PC and PAF between the two plot treatments were also very minor. This was not the case, however, when comparing the attachment rates among the three rainfall simulation studies. The previous

113

edge-of-field partitioning transport study (Chapter 6) examined E. coli and enterococci partitioning in runoff from highly vegetated plots treated with cowpats. This study found average E. coli PC for all samples collected was 0.06 which corresponded to a PAF of 4.8% and the average PC for enterococci was 0.18 with corresponding PAF of 13%. The average PAF was higher for enterococci (13%) than E. coli (4.8%). While only highly vegetated plots were examined in the previous study, the average TSS FWC was 152 mg L⁻¹; 101.2 mg L⁻¹ higher than the average TSS FWC from the highly vegetated plots in this study. Denser vegetation present at the end of the summer explains the reduced TSS FWC in the second study and the reduced TSS FWC also could explain the lower attachment rates observed during the second rainfall simulation. TSS concentrations present in runoff from a bare plot soil box study (also using Grosclose silty loam soils) averaged 4.1 g L⁻¹, while *E. coli* and enterococci attachment averaged 30 and 49%, respectively (Chapter 5). Particulate transport from the box plot study was much higher than this study because of the experimental design: no vegetation to prevent sediment transport, a short distance between detachment sites and sample collection, and a high intensity rainfall application rate. Even though the experimental set-up differed, the key factor distinguishing attachment rates between the studies is the greater particulate transport. The combined results from these three simulations indicate that vegetation is very effective in filtering out particulates along with the associated pollutants and greater particulate transport corresponds to higher attachment rates. High particulate transport might be necessary to allow for sufficient attachment sites when competition exists between carbon, organic particulates, and bacteria for free attachment sites.

7.3.3. Bacterial Attachment and Nutrient Concentrations

NPS pollution models are used to assess sources of microbial loadings in watersheds and identify reductions necessary from these sources to meet water quality standards. These models already have mechanisms in place to partition between dissolved and suspended forms of nutrients, so relationships developed between bacterial partitioning and nutrients could be easily incorporated in these models. Relationships between bacterial indicators and nutrients were examined by regression models in an effort to predict bacterial PC and PAF. A single model was developed for both high and low vegetation treatments. Attempts were made to model *E. coli* and enterococci PC, PAF, and TC with two sets of independent variables: flow, TSS, TP, TDP, TOP,

DOP, TOC, DOC; and flow, TSS, TP, P ratio, TOP, organic P ratio, TOC, and organic C ratio. A t-test was used to test for statistical significance between intercepts and slopes and the coefficient of determination, R^2 , represents the proportional reduction in the squared error of the response corresponding to the addition of independent variables (Ott and Longnecker, 2001). Variance inflation and residual plots were examined for all models and deemed acceptable. The strongest relationships to predict *E. coli* PC during high and low vegetation are presented in Table 7.2. Attempts to predict enterococci PC produced poor results with the highest R^2 value equal to 0.16 and the only variable influencing enterococci ratios was TSS; however, this parameter was not statistically significant. Predictions of *E. coli* and enterococci TC produced $R^2 = 0.54$ and $R^2 = 0.47$, respectively (Appendix I).

 Table 7.2. Regression equations to predict *E. coli* partitioning coefficients (PC) in runoff from plots with high and low vegetative cover.

In E. coli partitioning coefficient: high vegetation			In E. coli partitioning coefficient: low vegetation			
Variable	<u>Parameter</u> <u>estimate</u>	<u>p value</u>	Variable	<u>Parameter</u> <u>estimate</u>	<u>p value</u>	
Intercept	-0.750	0.8124	Intercept	-0.750	0.8124	
TSS (mg L^{-1})	2.33×10 ⁻³	<.0001	TSS (mg L^{-1})	2.33×10 ⁻³	<.0001	
DOC (mg L^{-1})	-0.479	0.0258	DOC (mg L^{-1})	-0.479	0.0258	
			TP (mg L^{-1})	-9.32	0.0832	
			$DP (mg L^{-1})$	1.46	0.0005	
			TOP (mg L^{-1})	15.8	0.1249	
		$R^2 = 0$	0.7286			

Both models presented in Table 7.2 were statistically significant ($p \le 0.0001$). Based on these models, *E. coli* PC in runoff from pasturelands with high vegetation are best predicted with TSS and DOC while the addition of phosphorous is necessary to predict *E. coli* PC in runoff from pasturelands with low vegetative cover.

7.3.4. Bacterial and Nutrient Loading Rates

Loading curves describing the bacterial partitioning over the duration of a storm event from high and low vegetation plots are presented in Figure 7.4. Plots with the longest runoff event and therefore highest number of samples were used to create the figures. The *E. coli* unattached load was greatest from plots with high vegetative cover while the *E. coli* attached load was higher from plots with low vegetative cover. The unattached enterococci load was similar between the two plot treatments but the attached fraction was consistently higher in runoff from plots with low vegetative treatment. While the higher loading of the attached indicators from low vegetation plots is to be expected, the overwhelming loading of both indicators in the unattached state suggests that management practices should focus on removal of cells transported in the free or unattached state to reduce bacterial transport from freshly grazed pasturelands, regardless of vegetative cover. Nutrient loading rates followed similar patterns as bacterial indicators but with less distinction between the dissolved and suspended phases (Figure 7.4). The highest loading rates were of dissolved phosphorous, organic phosphorous and organic carbon from the plots with high vegetative cover. Phosphorous and organic phosphorus transported in the suspended phase were indistinguishable between the two plot treatments while SOC loading rate was slightly higher from the plots with high vegetation.

Figure 7.4. *E. coli*, enterococci, phosphorous, organic carbon, and TSS loading rates from plots with high and low vegetative cover treated with cowpats during an overland flow event.

Relationships between bacterial and nutrient loads were examined by regression models in an effort to predict bacterial loading rates. Regression models were examined for potential to predict *E. coli* and enterococci loading rates using TSS, TP, TDP, TOP, DOP, TOC, and DOC

loading rates (kg ha⁻¹) as independent variables. The strongest relationships for predicting *E. coli* and enterococci loading rates are presented in Table 7.3. A dummy variable, z, was used to develop a full model for both high and low vegetation treatments. The presence of the dummy variables in Table 7.3 indicates that statistically significant differences existed between equations which best predicted the bacterial loading rates from the two vegetative treatments. Reduced models representing only one type of vegetative cover are calculated from the full model by substitution of 1 or 0 in for the dummy variable. If z = 1, the responses from the plots with low vegetative cover are modeled and if z = 0 the responses from the plots with high vegetative cover are modeled. Additional model details and residual plots are presented in Appendix I.

 Table 7.3. Regression equations to predict *E. coli* and enterococci loading rates (attached and unattached) in runoff from high and low vegetation plots.

Loading Rate Models: <i>E. coli</i> and enterococci								
<i>E. coli</i> unat	tached: full mod	el	enterococci unattached: full model					
Variable	<u>Parameter</u> <u>estimate</u>	<u>p value</u>	<u>Variable</u>	<u>Parameter</u> <u>estimate</u>	<u>p value</u>			
Intercept	1.52×10^{10}	0.0083	Intercept	-4.06×10^{8}	0.8209			
TSS (kg ha ⁻¹)	-4.68×10^{10}	0.0232	TP (kg ha ⁻¹)	-1.29×10^{13}	< 0.0001			
TDP (kg ha ⁻¹)	1.84×10^{13}	0.0086	TOP (kg ha ⁻¹)	2.71×10^{13}	< 0.0001			
DOP (kg ha ⁻¹)	-2.97×10^{13}	0.0307	TOCP (kg ha ⁻¹)	9.34×10^{11}	0.0156			
TOC (kg ha ⁻¹)	-3.99×10^{12}	0.0005	DOC (kg ha ⁻¹)	-1.31×10^{12}	0.0015			
DOC (kg ha ⁻¹)	3.95×10^{12}	0.0007	TOP×z1 (kg ha ⁻¹)	-2.73×10^{12}	< 0.0001			
TSS×z (kg ha ⁻¹)	4.77×10^{10}	0.0212	TOC×z (kg ha ⁻¹)	-7.25×10^{11}	0.0864			
$TDP \times z (kg ha^{-1})$	-4.53×10^{13}	0.0153	$DOC \times z (kg ha^{-1})$	1.35×10^{12}	0.0028			
$DOP \times z$ (kg ha ⁻¹)	8.31×10^{13}	0.0300						
TOC $\times z$ (kg ha ⁻¹)	4.24×10^{12}	0.0025						
$DOC \times z (kg ha^{-1})$	-3.87×10^{12}	0.0067						
R ²	= 0.9988		R	$^{2} = 9896$				
	Loading R	ate Models:	E. coli and enterococc	i				
<i>E. coli</i> atta	ched: full mode	I	enterococci a	ttached: full mo	del			
<u>Variable</u>	<u>Parameter</u> <u>estimate</u>	<u>p value</u>	Variable	<u>Parameter</u> <u>estimate</u>	<u>p value</u>			
Intercept	-5.86×10^{7}	0.8581	Intercept	-3.46×10^{7}	0.5219			
TSS (kg ha ⁻¹)	4.18×10^{8}	< 0.0001	DOP (kg ha ⁻¹)	1.11×10^{9}	0.0774			
Z	1.69×10^{9}	0.0167	$TP \times z$ (kg ha ⁻¹)	2.00×10^{9}	0.0007			
TP×z (kg ha ⁻¹)	-2.45×10^{12}	< 0.0001	$TDP \times z$ (kg ha ⁻¹)	-1.99×10 ⁹	0.0044			
$TOP \times z$ (kg ha ⁻¹)	4.64×10 ¹²	< 0.0001						
R ²	= 0.9424		R ²	= 0.8319				

All full models were statistically significant with P-value < 0.001. This regression analysis indicates that prediction of indicator organism loading rates at the edge-of-the-field might require a combination of TSS, phosphorous and carbon loading rates for best prediction. Interestingly, TSS was not identified as a significant independent variable when predicting enterococci loading

rates but was a statistically significant independent variable when predicting *E. coli* loading rates (Table 7.3). The TSS variable slope was not consistently negative or positive in both equations to indicate either a positive or negative relationship between particulates and *E. coli* loading rates. Therefore, while these equations are the best that we were able to develop from this limited dataset, the application of these equations is limited. These equations are only applicable to the specific scenario simulated in this study and because of the limited dataset they have not been validated.

7.3.5. Preferential Attachment to Particulates

Table 7.4 and Appendix H present the distribution of attached *E. coli* and enterococci to three particle size categories. The TSS associated with each screen size were weighed and used to identify the particle sizes to which fecal bacteria preferentially attach. TSS associated with a screen size weighing less than 1 mg were considered to be negligible and in that case it was assumed that all cells retained by that screen size either remained in suspension or were bioflocculated but not attached to particulates. Very few solids passed through the 8 μ m filter and no samples had measurable solids retained by the 3 μ m screen, likely due to the particle size distribution of the Grosclose silt loam soils which contained only 5% clay. It is also possible that the clay sized particles present in runoff were transported as aggregates and were trapped by the 8 μ m filter and unable to pass through it.

			Е. со	li	enterococci			
Particle Size	Mean TSS (mg/L)	% TSS	Mean cfu/mg solids ¹	% attachment	Mean cfu/mg solids	% attachment		
High Vegetative Cover								
>500 µm	28.8	21%	76a	44%	120a	76%		
63 - 499 μm	34.0	24%	25a	15%	23a	15%		
8 - 62 μm	76.4	55%	70a	41%	15a	9%		
Low Vegetative Cover								
>500 µm	413.5	32%	18a	2%	34a	33%		
63 - 499 μm	512.9	39%	49a	6%	32a	31%		
8 - 62 μm	374.0	29%	726b	92%	37a	36%		

 Table 7.4. Particle sizes to which *E. coli* and enterococci preferentially attach in samples collected during an overland flow event.

¹Means followed by the same letter do not differ at the 5% level of significance according to Tukey's pairwise comparison; data normalized by ln transformation

The majority of sediments from the plots with high vegetative cover were retained on the 8 μ m screen while the majority of sediments from the plots with low vegetative cover were retained by

the 63 µm screen. These results indicate that high vegetation is either effective in filtering larger soil particles or preventing detachment of these particles. No statistically significant differences were found between the E. coli and enterococci concentrations associated with different particle sizes in runoff from the high vegetation plots (Appendix I). From the low vegetation plots, only the E. coli associated with the 8 µm screen (92%) was statistically higher than the E. coli associated with particles retained by the 63 μ m (6%) and 500 μ m (2%) screens. Typically, the larger surface area of the smaller particles corresponds to a higher number of sites available for bacterial attachment and previous studies using this same separation technique found that nearly 60% of all attached cells were associated with particles passing through a 63 µm screen (Chapter 5). The broad distribution of E. coli and enterococci across particles sizes might be due to their extremely low attachment rates. Only a very small fraction of the total indicator populations was classified as attached and therefore only a small sample of attached cells were available for classification. The broad distribution of enterococci among particle categories in runoff from plots with low vegetative cover is similar to the TSS distribution. E. coli attachment to a broad range of suspended particle diameters has been previously observed (Jeng et al., 2005). The authors attributed E. coli association with a broader range of particle sizes to the motility and rod shape of the cell and their ability to attach to different angles or faces of the particles (edge-toedge or face-to-edge associations).

7.4. Summary and Conclusions

The goal of this study was to evaluate the partitioning of *E. coli* and enterococci between the unattached and attached phases in runoff from high vegetation and low vegetation pasturelands and to identify the particle sizes to which the fecal indicators preferentially attach. Field plots 3-m (9.8-ft) wide by 18.3-m (60-ft) long were constructed on two pastureland conditions to determine partitioning ratios of *E. coli* and enterococci in runoff samples collected at the edge-of-the-field. *E. coli* and enterococci partitioning was not clearly related to the dissolved/suspended phosphorus ratio as hypothesized and only the attached *E. coli* and enterococci in runoff from the low vegetative cover plots had a majority of cells associated with particles retained by the 8 μ m filter.

Results indicate that the majority of bacterial indicator organisms are transported from the fresh manure source in the unattached state. The average E. coli partitioning coefficient (PC) for all samples collected was 0.0006 from plots with high vegetative cover and 0.029 from plots with low vegetative cover which corresponded to 0.06% and 2.8% attached to particulates, respectively. The average PC for enterococci was 0.0103 from plots with high vegetative cover and 0.0132 from plots with low vegetative cover which corresponded to 0.98% and 1.23% attached to particulates, respectively. Low attachment rates might be best explained by the moist, nutrient-rich cowpat environment and competition for attachment sites between fecal indicators and organic carbon. Attempts to predict E. coli and enteorocci PC as a function of flow, TSS, and nutrient concentrations produced fair results with R² values equal to 0.73 and 0.16, respectively. Regression models to predict unattached and attached indicator loading rates as a function of TSS, phosphorous and organic carbon had R² values ranging from 0.86 to 0.99 for E. coli and from 0.91 to 0.99 for enterococci. Only the E. coli present in runoff from the plots with low vegetative cover had statistically higher association with the 8 µm particle size category (92%) than the 63 μ m (6%) and 500 μ m (2%) particle size categories. The larger surface area of smaller particles corresponds to a higher number of sites available for bacterial attachment.

Partitioning ratios developed from this study can be incorporated into NPS models that allow for partitioning between the attached and unattached phases; however, the partitioning coefficients developed in this study are much lower than those previously identified in the literature so caution is recommended before direct implementation of these values. It appears that even slight changes in conditions could potentially result in great variation in attached fractions and the conditions causing these changes have not been clearly identified. The majority of cells in this study were transported to the edge-of-the-field in the unattached state from pasturelands receiving fresh fecal deposits regardless of vegetative cover, and therefore, development of best management practices from all pastureland scenarios should focus on reduction of unattached pathogen indicators. Future study is recommended to determine partitioning of indicators from different landuses with higher transport of suspended solids and from aged fecal sources with potentially stressed fecal indicators.

121

Chapter 8. Summary and Conclusions

The goal of this study was to improve understanding of the fate and transport mechanisms of two pathogen indicators, *E. coli* and enterococci, from grazed pasturelands. First, dispersion and separation techniques were compared and examined in the laboratory to identify the best method to disperse attached and bioflocculated cells and to separate cells transported to surface water bodies in the attached and unattached phases. Secondly, cowpats applied to pasturelands were monitored over four seasons to assess re-growth and die-off patterns of the two indicators and to examine the impacts of environmental factors on long-term indicator survival. Lastly, two separate field studies were conducted to evaluate overland transport processes of *E. coli* and enterococci. A small box plot study examined *E. coli* and enterococci attachment to particulates in runoff from three bare soils receiving cowpat treatments while a larger plot study examined the partitioning of *E. coli* and enterococci from two pastureland management scenarios during overland flow. The following sections summarize the methods and significant findings from each of the four study objectives.

8.1. Objective 1: Method development

Evaluate various laboratory procedures for dispersing and separating *E. coli* and enterococci into attached and unattached phases and to identify particle size ranges to which *E. coli* and enterococci preferentially attach

Hypothesis: Sonification is the best method of recovering attached bacteria from sediments.

Many factors can contribute to cellular attachment; however, there is currently no consistency among laboratory techniques used to disperse and separate unattached and attached *E. coli* in runoff or surface water samples. Both physical and chemical dispersion techniques were evaluated. Selected chemical surfactant treatments included Tween-80 and Tween-85 at concentrations of 10, 100, 1,000, and 10,000 mg L⁻¹ and sodium pyrophosphate (NaPP) combined with 1% glycerol, 1% peptone, and DI water(Trevors and Cook, 1992). Three physical dispersion methods: hand shaker treatment for 10 min, ultrasonic bath treatment for 30 sec, 2 min, 6 min and 10 min, and a one minute vortex were also compared. Physical and chemical dispersion techniques were evaluated separately and the most promising techniques were combined. The best and most consistent results were obtained using a combined treatment with a hand shaker for 10 minutes followed by dilutions in 1,000 mg L⁻¹ of Tween-85. The hand shaker treatment followed by dilutions in Tween-85 significantly increased total *E. coli* concentrations by 31% (*P* value = 0.0028) and enterococci concentrations by 17% (not significant) when compared to a control.

To separate unattached from attached fractions, two commonly used techniques, fractional filtration and centrifugation, were combined and tested. A number 35 mesh screen was used to retain particles larger than coarse sand (>500 µm) and a number 230 mesh screen was used to retain medium, fine and very fine sand (63 - 500 µm). An 8 µm polycarbonate filter was used to retain fine, medium, and coarse silt particles and a 3 µm filter was used to retain clay and very fine silt particles. Centrifugation of suspended, unattached E. coli DH2 1030 at 4,700 rpm for 15 seconds did not reduce unattached concentrations. A mass balance was conducted to evaluate the impacts of the filtration and centrifugation treatments on total counts when compared to a control. The filtration and centrifugation treatment did not reduce E. coli concentrations when compared to a control but instead an increase of 22% was observed; although, this increase was not statistically significant (P value = 0.97). The mass balance found a 37% decrease in average enterococci counts when compared to the control, but this decrease was also not statistically significant (*P* value = 0.83). One possible reason for the differences in *E. coli* and enterococci concentrations when compared to the controls could be compounded sample variability as a result of summing the bacteria associated with each particle size range. The combination of these procedures resulted in an easy-to-replicate technique that could be applied to runoff and stormwater samples. This method is useful for determining partitioning coefficients for NPS models and identifying the particle sizes to which *E. coli* and enterococci preferentially attach.

8.2. Objective 2: Die-off study

Assess E. coli and enterococci re-growth and decay patterns in cowpats applied to pasturelands.

Hypothesis: First order decay does not adequately describe die-off rates for E. coli or enterococci in cowpats.

Standard cowpats were formed and applied to pastureland during spring, summer, fall and winter seasons to assess *E. coli* and enterococci re-growth and decay in cowpats. Approximately 100 cowpats were formed and applied to a mowed hay field in a randomly distributed pattern to represent a rotational grazing system during each season. Cowpats were applied to four separate field plots with no history of previous manure application and monitored until cowpats could no longer be detected or the lower bacterial detection level of 10^2 cfu g⁻¹ was reached. Cowpats applied during the spring, summer, fall, and winter were monitored for 133, 175, 196, and 135 days, respectively. Seasonal variations in decay patterns were assessed using the decimal reduction times (*D*-values) and first order decay coefficients. Higher order approximations and weather parameters were evaluated by multiple regression analysis to identify parameters impacting in-field decay and to identify possible techniques to improve predictions of *E. coli* and enterococci decay in cowpats.

Populations of *E. coli* and enterococci both exhibited re-growth, which seemed to differ by both indicator and season. Re-growth occurred immediately or within the first few days after field application of cowpats. In general, cool temperatures preserved bacterial concentrations while increased decay occurred during warm temperatures when vegetation and insects hastened the disappearance of the fecal deposits. First order kinetics approximated *E. coli* and enterococci decay rates in cowpats with regression coefficients ranging from 0.70 to 0.90; however, when indicators exhibited re-growth patterns, the first order approximations overestimated initial concentrations present in freshly excreted manures. Die-off rate constants were greatest in cowpats applied to pasture during late winter and monitored into summer months for *E. coli* (k = 0.0995 d⁻¹) and applied to the field during the summer and monitored until December for enterococci (k = 0.0978 d⁻¹). Decay rates were lowest in cowpats applied to the pasture during the fall and monitored over the winter (k = 0.0581 d⁻¹ for *E. coli* and k = 0.0557 d⁻¹ for enterococci). *E. coli* and enterococci *D*-values were very similar with a 10-fold reduction in both populations occurring within five days of each other. The *D*-values were greatest during the fall monitoring period (40 and 41 days for *E. coli* and enterococci, respectively).

Higher order approximations and addition of weather variables improved regression coefficients of die-off rate equations to values ranging from 0.81 to 0.97, from 0.70 and 0.80, respectively, and improved distribution of residual plots for both indicators was noted. The addition of weather variables including solar radiation, temperature, relative humidity and rainfall improved predictability of regression equations for all seasonal studies, except for the fall monitoring period. It is possible that the average temperature and solar radiation that occurred during the fall monitoring period (average temperature = 6.22 °C and average solar radiation = 0.84 MJ) did not contribute significantly to bacterial decay. Statistically significant variables included in the models predicting bacterial decay during the spring, summer and winter monitoring periods were temperature, solar radiation, rainfall and relative humidity.

Die-off rate coefficients representing actual field conditions should be developed for implementation in decay models when first order approximations are used to predict in-field bacterial concentrations. Comparable *E. coli* and enterococci seasonal cowpat *D*-values suggest that similar on-farm management strategies should reduce both *E. coli* and enterococci indicator populations. This study recommends using higher order approximations and the inclusion of weather variables to better capture re-growth and die-off trends over extended periods of time.

8.3. Objective 3: Box Plot Study

Quantify partitioning of *E. coli* and enterococci between the attached and unattached phase in runoff from three bare Virginia soils.

Hypothesis: E. coli and enterococci partitioning during runoff is related to the dissolved phosphorus/suspended phosphorus ratio and the majority of cells are associated with particles retained by the 8 μ m filter.

A field study was conducted to examine the state of *E. coli* and enterococci transport from three bare soil types receiving cowpat treatments and develop relationships between bacterial partitioning and phosphorous and carbon transport. Particles sizes to which cells preferentially associated were also identified. Soil boxes (100-cm \times 20-cm \times 7.5-cm) were packed with three

Virginia soils, loamy fine sand, silty loam and silty clay loam, to simulate runoff from bare soils. A Tlaloc 3000 portable rainfall simulation was conducted 24-hours after application of a standard cowpat, followed by a second rainfall simulation approximately 80 days later. Runoff samples were analyzed for *E. coli*, enterococci, TSS, phosphorous, organic phosphorous and organic carbon. *E. coli* and enterococci partitioning coefficient (PC) and particulate associated fraction (PAF) were calculated to compare fecal indicator attachment in runoff from the different soil types and between two pathogen indicators, *E. coli* and enterococci. Fractional filtration followed by centrifugations identified particle sizes to which indicators preferentially attached. Regression analysis was conducted to examine potential relationships to utilize nutrient and TSS data to predict *E. coli* and enterococci PC and total concentration (TC).

Percent of E. coli and enterococci attached to particulates in runoff as determined by fractional filtration and centrifugation ranged from 28% to 49%. In general, the E. coli cells attached at a higher rate to sediments in runoff from the loamy fine sand and enterococci attached at a higher rate to the silty loam and silty clay loam soils. Enterococci appeared to be attached at a higher rate to soils with a higher cation exchange capacity (CEC) and organic matter content while E. coli had higher attachment to loamy fine sand soils, which has a lower CEC and organic matter content. At least 50% of all attached cells were associated with particles less than 63 µm in diameter. The larger surface area of the smaller particles corresponds to a higher number of sites available for bacterial attachment. While particle size in runoff greatly influenced attachment, we were unable to establish a particular particle size range present in the soil matrix as a dominant factor statistically impacting attachment in runoff. Regression equations were developed to predict *E. coli* and enterococci PC ($R^2 = 0.54$ and $R^2 = 0.86$, respectively) and *E. coli* and enterococci TC ($R^2 = 0.93 R^2 = 0.92$, respectively) as a function of TSS, phosphorous and carbon. A single regression model was capable of predicting E. coli and enterococci TC in runoff from both a fresh and aged fecal source. TSS concentrations were only included as an independent variable in regression equations developed to predict PC, emphasizing the importance of attachment sites in predicting the fraction of attached cells.

A combination of factors influence attachment of *E. coli* and enterococci to particulates in runoff; including soil type and organic content of soils, carbon content and organic composition
of fecal material, and cellular properties of indicator organisms. Partitioning coefficients and PAF developed in this portion of the study are not meant to represent bacterial attachment during overland flow events or at the edge-of-the-field because of the small plot size and short distance between the fecal source and sample collection point. Future studies are recommended to assess bacterial attachment from fecal sources other than cowpats. It could be possible that soils with higher clay content than the Levy soils used in this study (29% clay) would have even higher attachment rates due to increased availability of attachment sites. Higher attachment associated with highly erodible soils as used in this study (when compared to previous edge-of-field and stormwater studies) indicates that lower concentrations of total suspended solids could be limiting bacterial attachment and thus PC and PAF values for other landuses such as well-managed pastureland could be much lower.

8.4. Objective 4: Transport Plot Study

Quantify partitioning of *E. coli* and enterococci between the attached and unattached phase from pastureland with high and low vegetative cover during overland flow.

Hypothesis: E. coli and enterococci partitioning during overland flow is related to the dissolved phosphorus/suspended phosphorus ratio and the majority of cells are associated with particles retained by the 8 µm filter.

Two field studies were conducted to evaluate the partitioning of *E. coli* and enterococci between the unattached and attached phases in runoff from pasturelands and to identify the particle sizes to which the fecal indicators preferentially attach at the edge-of-the-field. A set of field plots 3-m (9.8-ft) wide by 18.3-m (60-ft) long were constructed on Groseclose silt loam pasturelands dominated by a dense stand of Kentucky 31 Tall Fescue. Runoff was directed into an H-flume equipped with a stilling well and a stage recorder for flow measurement. Approximately 106 standard cowpats were applied to four of the plots to represent a rotational grazing system. One plot received no cowpat treatment and was used as a control to monitor background bacteria and nutrient concentrations and loads. A rainfall simulator was used to generate a uniform rainfall event (2.8 cm/h) to all plots and discreet grab samples were collected at the outfall of the flumes.

Runoff samples were analyzed for *E. coli*, enterococci, TSS, phosphorous, organic phosphorous and organic carbon.

High vegetative cover plots were used to approximate well managed pasturelands during the first study which was conducted in April. A second rainfall simulation comparing high and low vegetative cover pasturelands was conducted in August of the same year. Prior to re-application of the cowpats for the second study, vegetation was removed from two of the plots (previously receiving cowpat treatments) with a dethatcher and string trimmer to represent poorly-managed pasture conditions. The dethatcher removed approximately 50% of all established vegetation. Three equally-sized bare areas accounting for 28.4% of the total plot area were created in the top, middle, and lower third of the two plots using the string trimmer. High vegetative cover, representing well managed pastureland on the remaining two plots receiving cowpat treatments and the control plot, was left undisturbed. The control plot did not receive a cowpat treatment.

First Transport Plot Study: High Vegetative Cover Pastureland

Results from the high vegetative cover pastureland study conducted in April indicate that the majority of *E. coli* and enterococci are transported from a fresh manure source in the unattached state. Average PC for *E. coli* was 0.06 which corresponds to 4.8% attachment to particulates and 0.18 for enterococci corresponding to 13% attachment to particulates. Low attachment rates might be best explained by the low TSS concentrations (relative to poorly-managed and other agricultural landuses) and competition for attachment sites between fecal indicators and organic carbon. Linear correlations existed between *E. coli* and both attached and unattached enterococci loading rates were most closely related to dissolved organic carbon (DOC). Comparison of unattached and attached indicator loading rates indicated that the unattached fraction exceeded the attached fraction by at least two orders of magnitude. Fifty-eight percent of all attached cells were associated with particles smaller than 63 µm in size.

Second Transport Plot Study: Comparison of High and Low Vegetative Cover Pastureland

Results from the second study comparing high and low vegetative cover pasturelands also indicated that the majority of *E. coli* and enterococci are transported from the fresh manure

source in the unattached state. The average *E. coli* PC for all samples collected was 0.0006 from plots with well-managed pastureland and 0.029 from poorly-managed pastureland which corresponded to 0.06% and 2.8% of *E. coli* being attached in runoff, respectively. The average PC for enterococci was 0.0103 from plots with well-managed pastureland and 0.0132 from plots with poorly-managed pastureland which corresponded to 0.98% and 1.23% of enterococci being attached in runoff, respectively. Low attachment rates might be best explained by the moist, nutrient-rich cowpat environment and competition for attachment sites between fecal indicators and organic carbon. Attempts to predict *E. coli* and enteorocci PC as a function of flow, TSS, and nutrient concentrations produced fair results with R^2 values equal to 0.73 and 0.16, respectively. Regression models to predict unattached and attached indicator loading rates as a function of TSS, phosphorous and organic carbon had R^2 values ranging from 0.94 to 0.99 for *E. coli* and from 0.83 to 0.99 for enterococci (Table 7.3).

Screen filtration to identify particle size categories to which cells preferentially attach produced different results than the first transport plot study. Only the *E. coli* present in runoff from the poorly-managed pastureland plots had statistically higher association with the 8 μ m particle size range (92%) than the 63 μ m (6%) and 500 μ m (2%) particle size ranges. The larger surface area of smaller particles corresponds to a higher number of sites available for bacterial attachment.

Partitioning ratios developed in this study can be incorporated into NPS models that allow for partitioning between the attached and unattached phases; however, the partitioning coefficients developed in the second portion of this study are much lower than those identified in the first portion so caution is recommended prior to direct implementation of these values into models. It appears that even slight changes in conditions could potentially result in great variation in attached fractions and the conditions causing these changes have not been identified. The majority of cells were transported in the unattached state from pasturelands receiving fresh fecal deposits regardless of vegetative cover, and therefore, the results of this study indicate that best management practices to reduce bacterial transport from pasturelands should focus on reduction of unattached pathogen indicators.

8.5. Implications of the Study

This study developed an easy-to-replicate method to disperse cells from particulates, partition between attached and unattached phases and identified particle size ranges to which cells preferentially attach. This method was developed using samples with high sediment and organic matter concentrations and thus could be applied to runoff samples collected from a variety of agricultural landuses including feedlots, poor pastureland or well-managed pastureland as is demonstrated in various chapters of this dissertation. While the focus of this study is on runoff from agricultural landuses, it is possible that this method could also be applied to nonagricultural runoff samples such as urban stormwater samples.

The die-off equations developed through this research will improve predictions of bacterial concentrations in surface runoff. In-field die-off rate coefficients developed in this study are representative of field conditions and should be implemented in first-order decay models rather than the currently used laboratory-developed die-off rate coefficients. The inclusion of environmental parameters and higher-order approximations better simulated die-off and regrowth trends over an extended period of time. In situations where heavy rainfall occurs shortly after the application of manure to agricultural lands, the re-growth can play a major role in determining the concentration of bacteria in runoff and thus simulating this re-growth is necessary to improve predictions of in-stream bacterial concentrations.

Partitioning coefficients developed through this research will assist in development of new management practices and/or refinement of existing practices implemented to reduce the movement of bacteria from agricultural lands to downstream water bodies. Many NPS models already partition different phases of other water quality indicators such as phosphorous, so relationships between these parameters and bacterial transport partitioning could allow for a simple adaptation to existing models. The results of this study indicate that bacterial transport from high vegetation and low vegetation areas is primarily in the unattached phase during overland flow conditions; however, in runoff from highly erosive areas as much as 50% of *E. coli* and enterococci could be transported in the attached phase. Management practices should consider particulate loadings and soil type when designing for the removal of pathogen indicators. Identification of particulate size ranges to which bacteria preferentially attach can

also be used to improve selection and design of best management practices when particulate transport is high.

8.6. Limitations of the Study and Future Research Recommendations

The method used to disperse and partition *E. coli* and enterococci between the attached and unattached phases was tested and validated on a single soil type (Grosclose silt loam) and portions of the method development were conducted on a single strain of dairy cow *E. coli* (DH2 1030). It is recommended that the dispersion technique be evaluated prior to application to samples collected from different soil types to ensure that the optimal dispersion technique is selected for soils with different particle size distributions. Additional screen sizes would be useful to identify a finer distribution of the particle size ranges to which *E. coli* and enterococci preferentially attach, especially in samples collected from areas with high clay content.

Originally, this study proposed a mass balance of the fate and transport of fecal indicators applied to the land surface during intensive grazing conditions. Lysimeters designed to capture infiltrating bacterial concentrations at 30 and 60-cm failed and attempts to assess bacterial concentrations in sediments surrounding cowpats proved to be too extensive of a task to be performed on the large vegetated plots. A future mass balance study is recommended on much smaller plots that would allow for destructive sampling.

While this study focused on fate and transport of *E. coli* and enterococci from grazed pasturelands, future studies are also recommended to determine partitioning of indicators from different landuses, especially those with higher transport of suspended solids. Fresh cowpats were applied to plots prior to each rainfall simulation so the potential for increased attachment of *E. coli* and enterococci to particulates when the fecal source is aged and fecal indicators are stressed was not evaluated. Improvements in predicting *E. coli* and enterococci fate in cowpats through the use of higher order approximations and environmental parameters appears promising and similar efforts should be attempted on other landuses serving as a source of fecal indicators to surface waters.

Evaluating the fate and transport of fecal indicators after delivery to the stream would provide valuable information as to when attachment occurs. Current in-stream partitioning studies (primarily collected during storm events) generally have identified higher attachment rates than the edge-of-field attachment rates identified in this study. Evaluation of in-stream processes through a flume simulation is recommended to determine if these higher attachment rates are a function of different or aged fecal sources in a watershed; the cellular response to environmental stress and limited substrates over time; or the resuspension of stable populations of fecal indicators surviving in bottom sediments.

Chapter 9. References

- An, Y. J., D. H. Kampbell, and G. P. Breidenbach. 2002. *Escherichia coli* and total coliforms in water and sediments at lake marinas. *Environmental Pollution*. 120 (3): 771-778.
- Auer, M. T. and S. L. Niehaus. 1993. Modeling fecal coliform bacteria. I. Field and laboratory determination of loss kinetics. *Water Research*. 27 (4): 693-701.
- Benham, B. L., C. Baffaut, R. W. Zeckoski, K. R. Mankin, Y. A. Pachepsky, A. A. Sadeghi, K. M. Brannan, M. L. Soupir, and M. J. Habersack. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. *Transactions of the ASABE*. 49 (4): 987-1002.
- Bicknell, B., J. Imhoff, J. J. Kittle, J. A. Donigan, and R. Johanson. 1997. Hydrologic Simulation Program FORTRAN. User's Manuel for Version 11. EPA/600/R-97/080. National Exposure Reserach Laboratory, U.S. EPA, Research Triangle Park NC.
- Burton, G. A., Jr., D. Gunnison, and G. R. Lanza. 1987. Survival of pathogenic bacteria in various freshwater sediments. *Applied and Environmental Microbiology*. 53 (4): 633-638.
- Characklis, G. W., M. J. Dilts, O. D. Simmons III, C. A. Likirdopulos, L.-A. H. Krometis, and M. D. Sobsey. 2005. Microbial partitioning to settleable particles in stormwater. *Water Research*. 39: 1773-1782.
- Clesceri, L. S., A. E. Greenburg, and A. D. Eaton (eds). 1998. *Standard Methods for the Examination of Water and Wastewater*. Washington, D.C.: American Public Health Association.
- Collins, R. and K. Rutherford. 2004. Modelling bacterial water quality in streams draining pastoral land. *Water Research*. 38 (3): 700-712.
- Conner, D. E. and J. S. Kotrola. 1995. Growth and survival of *Escherichia coli* O157:H7 under acidic conditions. *Applied and Environmental Microbiology*. 61 (1): 382-385.
- Coyne, M. S., R. A. Gilfillen, R. W. Rhodes, and R. L. Blevins. 1995. Soil and fecal coliform trapping by grass filter strips during simulated rain. *Journal of Soil and Water Conservation*. 50 (4): 405-408.
- Craig, D., H. Fallowfield, and N. Cromar. 2002. Enumeration of faecal coliforms from recreational coastal sites: evaluation of techniques for the separation of bacteria from sediments. *Journal of Applied Microbiology*. 93 (4): 557-565.

- Crane, S. R., P. W. Westerman, and M. R. Overcash. 1980. Die-off of fecal indicator organisms following land application of poultry manure Agricultural nonpoint source pollution. *Journal of Environmental Quality*. 9 (3): 531-537.
- Crane, S. R., J. A. Moore, M. E. Grismer, and J. R. Miner. 1983. Bacterial pollution from agricultural sources: A review. *Transactions of the ASAE*. 26 (3): 858-866.
- Crane, S. R. and J. A. Moore. 1986. Modeling enteric bacterial die-off: A review. *Water Air and Soil Pollution*. 27 (3/4): 411-439.
- Creggar, W. H., H. C. Hudson, and H. C. Porter. 1985. Soil Survey of Montgomery County, Virginia. National Cooperative Soil Survey.
- Crowther, J., D. Kay, and M. D. Wyer. 2002. Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices. *Water Research.* 36 (7): 1725-1734.
- Davies, C. M., J. A. H. Long, M. Donald, and N. J. Ashbolt. 1995. Survival of fecal microorganisms in marine and freshwater sediments. *Applied and Environmental Microbiology*. 61 (5): 1888-1896.
- Dawson, M. P., B. A. Humphrey, and K. C. Marshall. 1981. Adhesion: A tactic in the survival strategy of a marine vibrio during starvation. *Current Microbiology*. 6 (4): 195-199.
- DeGuise, K. A., M. L. Wolfe, and T. A. Dillaha III. 1999. A foundation for modeling bacterial contamination of surface waters due to nonpoint sources. ASAE Annual International Meeting, Paper No. 99-2153. St. Joseph, MI.
- Dillaha, T. A., B. B. Ross, S. Mostaghimi, C. D. Heatwole, V. O. Shanholtz, and F. B. Givens.
 1988. Rainfall simulation: A tool for best management practice education. *Journal of Soil* and Water Conservation. 43 (4): 288-290.
- Donohue, S. J. and S. E. Heckendorn. 1994. Laboratory procedures: Virginia Tech Soil Testing and Plant Analysis Laboratory. Publ. 452-881. Virginia Coop Ext., Blacksburg.
- Doran, J. W. and D. M. Linn. 1979. Bacteriological quality of runoff water from pastureland. *Applied and Environmental Microbiology*. 37 (5): 985-991.
- Doran, J. W., J. S. Schepers, and N. P. Swanson. 1981. Chemical and bacteriological quality of pasture runoff. *Journal of Soil and Water Conservation*. 36 (3): 166-171.
- Dumontet, S., K. Krovacek, S. B. Baloda, R. Grottoli, V. Pasquale, and S. Vanucci. 1996. Ecological relationship between Aeromonas and Vibrio spp. and planktonic copepods in

the coastal marine environment in southern Italy. *Comparative Immunology, Microbiology and Infectious Diseases*. 19 (3): 245-254.

- Edwards, D. R., T. C. Daniel, P. A. Moore, Jr., and A. N. Sharpley. 1994. Solids transport and erodibility of poultry litter surface-applied to fescue. *Transactions of the ASAE*. 37 (3): 771-776.
- Edwards, D. R., B. T. Larson, and T. T. Lim. 2000. Runoff nutrient and fecal coliform content from cattle manure application to fescue plots. *Journal of the American Water Resources Association*. 36 (4): 711-721.
- Ellis, J. R. and T. M. McCalla. 1978. Fate of pathogens in soils receiving animal wastes--A review. *Transactions of the ASAE*. 21 (2): 309-313.
- Entry, J. A., R. K. Hubbard, J. E. Thies, and J. J. Fuhrmann. 2000. The influence of vegetation in riparian filterstrips on coliform bacteria: I. Movement and survival in water. *Journal of Environmental Quality*. 29 (4): 1206-1214.
- Epstein, S. S. and J. Rossel. 1995. Enumeration of sandy sediment bacteria: Search for optimal protocol. *Marine Ecology Progress Series*. 117 (1-3): 289-298.
- Epstein, S. S., D. Alexander, K. Cosman, A. Dompe, S. Gallagher, J. Jarsobski, E. Laning, R. Martinez, G. Panasik, C. Peluso, R. Runde, and E. Timmer. 1997. Enumeration of sandy sediment bacteria: Are the counts quantitative or relative? *Marine Ecology Progress Series*. 151: 11-16.
- Fattom, A. and M. Shilo. 1984. Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. *Applied and Environmental Microbiology*. 47 (1): 135-143.
- Faust, M. A. 1982. Relationship between land-use practices and fecal bacteria in soils. *Journal of Environmental Quality*. 11 (1): 141-146.
- Fontes, D. E., A. L. Mills, G. M. Hornberger, and J. S. Herman. 1991. Physical and chemical factors influencing transport of microorganisms through porous media. *Applied and Environmental Microbiology*. 57 (9): 2473-2481.
- Francy, D. S. and R. A. Darner. 2000. Comparison of methods for determining *Escherichia coli* concentrations in recreational waters. *Water Research*. 34 (10): 2770-2778.
- Fraser, R. H., P. K. Barten, and D. A. K. Pinney. 1998. Predicting stream pathogen loading from livestock using a geographical information system-based delivery model. *Journal of Environmental Quality*. 27 (4): 935-945.

- Fries, J. S., G. W. Characklis, and R. T. Noble. 2006. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, NC. *Journal of Environmental Engineering-ASCE*. 132 (10): 1338-1345.
- Gerba, C. P., C. Wallis, and J. L. Melnick. 1975. Fate of wastewater bacteria and viruses in soil. In Proc. Irr. Drain. Div., pp. 157-174: ASCE IR3.
- Gerba, C. P. and J. S. McLeod. 1976. Effect of sediments on the survival of *Escherichia coli* in marine waters. *Applied and Environmental Microbiology*. 32 (1): 114-120.
- Gordon, D. M., S. Bauer, and J. R. Johnson. 2002. The genetic structure of *Escherichia coli* populations in primary and secondary habitats. *Microbiology*. 148 (5): 1513-1522.
- Goulder, R. 1977. Attached and free bacteria in an estuary with abundant suspended solids. *Journal of Applied Bacteriology*. 43: 399-405.
- Guber, A. K., D. R. Shelton, and Y. A. Pachepsky. 2005a. Effect of manure on *Escherichia coli* attachment to soil. *Journal of Environmental Quality*. 34 (6): 2086-2090.
- Guber, A. K., D. R. Shelton, and Y. A. Pachepsky. 2005b. Transport and retention of manureborne coliforms in soil. *Vadose Zone Journal*. 4 (3): 828-837.
- Guber, A. K., Y. A. Pachepsky, D. R. Shelton, and O. Yu. 2007. Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes. *Applied and Environmental Microbiology*. 73 (10): 3363-3370.
- Hafez, E. S. W., M. W. Schein, and R. Ewbank. 1969. *The behavior of cattle* 2nd. Baltimore, Md: The Williams and Wilkins Company.
- Haydon, S. and A. Deletic. 2006. Development of a coupled pathogen-hydrologic catchment model. *Journal of Hydrology*. 328 (3-4): 467-480.
- Henry, L.-A. 2004. Partitioning between the Soil-Adsorbed and Planktonic Phases of *Escherichia coli*. M.S. Thesis, Biological Systems Engineering, Blacksburg, VA: Virginia Tech.
- Himathongkham, S., S. Bahari, H. Riemann, and D. Cliver. 1999. Survival of *Escherichia coli* O157:H7 and *Salmonella typhimurium* in cow manure and cow manure slurry. *FEMS Microbiology Letters*. 178 (2): 251-257.
- Holt, J. G., N. R. Noel, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1993. *Bergey's Manual of Determinative Bacteriology*. 9th ed. Baltimore: Williams & Wilkins.

- Howell, J. M., M. S. Coyne, and P. Cornelius. 1995. Fecal bacteria in agricultural waters of the bluegrass region of Kentucky. *Journal of Environmental Quality*. 24 (3): 411-419.
- Howell, J. M., M. S. Coyne, and P. L. Cornelius. 1996. Effect of sediment particle size and temperature on fecal bacteria mortality rates and the fecal coliform/fecal streptococci ratio. *Journal of Environmental Quality*. 25 (6): 1216-1220.
- Huysman, F. and W. Verstraete. 1993. Water-facilitated transport of bacteria in unsaturated soil columns: Influence of cell surface hydrophobicity and soil properties. *Soil Biology and Biochemistry*. 25 (1): 83-90.
- Jamieson, R. C., R. J. Gordon, S. C. Tattrie, and G. W. Stratton. 2003. Sources and persistence of fecal coliform bacteria in a rural watershed. *Water Quality Research Journal of Canada*. 38 (1): 33-47.
- Jamieson, R. C., R. J. Gordon, D. Joy, and H. Lee. 2004. Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches. *Agricultural Water Management*. 70: 1-17.
- Janzen, J. J., A. B. Bodine, and L. J. Luszcz. 1974. A survey of effects of animal wastes on stream pollution from selected dairy farms. *Journal of Dairy Science*. 57 (2): 260-263.
- Jawson, M. D., L. F. Elliott, K. E. Saxton, and D. H. Fortier. 1982. The effect of cattle grazing on indicator bacteria in runoff from a Pacific Northwest watershed. *Journal of Environmental Quality*. 11 (4): 621-627.
- Jeng, H. C., A. J. England, and H. B. Bradford. 2005. Indicator organisms associated with stormwater suspended particles and estuarian sediment. *Journal of Environmental Science and Health.* 40: 779-791.
- Jewett, D. G., T. A. Hilbert, B. E. Logan, R. G. Arnold, and R. C. Bales. 1995. Bacterial transport in laboratory columns and filters: Influence of ionic strength and pH on collision efficiency. *Water Research*. 29 (7): 1673-1680.
- Johnson, W. P. and B. E. Logan. 1996. Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. *Water Research*. 30 (4): 923-931.
- Jones, K. 1997. Coliforms and *E. coli*: problem or solution? In: *Strategies for Survival*. Volume 191. Great Britain: Royal Society of Chemistry

- Khaleel, R., G. R. Foster, K. R. Reddy, M. R. Overcash, and P. W. Westerman. 1979a. A nonpoint source model for land areas receiving animal wastes. III. A conceptual model for sediment and manure transport. *Transactions of the ASAE*. 22 (6): 1353-1361.
- Khaleel, R., K. R. Reddy, and M. R. Overcash. 1979b. Transport of potential pollutants in runoff water from land areas receiving animal wastes: A review. *Water Resources*. 14: 421-426.
- Kinoshita, T., R. C. Bales, M. T. Yahya, and C. P. Gerba. 1993. Bacteria transport in a porousmedium - Retention of *Bacillus* and *Pseudomonas* on silica surfaces. *Water Research*. 27 (8): 1295-1301.
- Kress, M. and G. F. Gifford. 1984. Fecal coliform release from cattle fecal deposits [Link between water and spread of disease]. *Water Resources Bulletin*. 20 (1): 61-66.
- Krometis, L. A. H., G. W. Characklis, O. D. Simmons, M. J. Dilts, C. A. Likirdopulos, and M. D. Sobsey. 2007. Intra-storm variability in microbial partitioning and microbial loading rates. *Water Research*. 41 (2): 506-516.
- Kudva, I. T., K. Blanch, and C. J. Hovde. 1998. Analysis of *Escherichia coli* O157:H7 survival in ovine or bovine manure and manure slurry. *Applied and Environmental Microbiology*. 64 (9): 3166-3174.
- Lago, K. 2005. Effects of strain and water quality on sorption of *E. coli*. M.S. Thesis, Civil and Environmental Engineering, Blacksburg, VA: Virginia Tech.
- Larsen, R. E., J. R. Miner, J. C. Buckhouse, and J. A. Moore. 1994. Water-quality benefits of having cattle manure deposited away from streams. *Bioresource Technology*. 48: 113-118.
- Lim, T. T., D. R. Edwards, S. R. Workman, B. T. Larson, and L. Dunn. 1998. Vegetated filter strip removal of cattle manure constituents in runoff. *Transactions of the ASAE*. 41 (5): 1375-1381.
- Line, D. E. 2003. Changes in a stream's physical and biological conditions following livestock exclusion. *Transactions of the ASAE*. 46 (2): 287-293.
- Ling, T. Y., E. C. Achberger, C. M. Drapcho, and R. L. Bengtson. 2002. Quantifying adsorption of an indicator bacteria in a soil-water system. *Transactions of the ASAE*. 45 (3): 669-674.
- Madigan, M. T., J. M. Martinko, and J. Parker. 2000. *Brock Biology of Microorganisms*. 9th ed. Upper Saddle River, NJ: Prentice-Hall, Inc.

- Mahler, B. J., J. C. Personne, G. F. Lods, and C. Drogue. 2000. Transport of free and particulateassociated bacteria in karst. *Journal of Hydrology*. 238 (3-4): 179-193.
- Maier, R. M., I. L. Pepper, and C. P. Gerba. 2000. *Environmental Microbiology*. San Diego, CA: Academic Press.
- Mancini, J. L. 1978. Numerical estimates of fecal coliform mortality rates under various conditions. *Journal of the Water Pollution Control Federation*. 51 (1): 13-19.
- Mazurak, A. P., L. Chesnin, and A. E. Tiarks. 1975. Detachment of soil aggregates by simulated rainfall from heavily manured soils in eastern Nebraska. *Soil Science of America Proceedings*. 39 (4): 732-736.
- McDaniel, J. A. and D. G. Capone. 1985. A comparison of procedures for the separation of aquatic bacteria from sediments for subsequent direct enumeration. *Journal of Microbiological Methods*. 3 (5-6): 291-302.
- Meals, D. W. 2001. Water quality response to riparian restoration in an agricultural watershed in Vermont, USA. *Water Science and Technology*. 43 (5): 175-182.
- Miller, W. P. 1987. A solenoid-operated, variable intensity rainfall simulator. *Soil Science Society of America Journal*. 51: 832-834.
- Mitchell, R. and C. Chamberlin. 1978. *Survival of indicator organisms*. Ann Arbor, Mich: Ann Arbor Science.
- Moore, J. A., M. E. Grismer, S. R. Crane, and J. R. Miner. 1982. Evaluating dairy waste management systems' influence on coliform concentration in runoff. In Station Bulletin 658, Agricultural Experiment Station. Oregon State University, Corvallis.
- Moore, J. A., J. Smyth, S. Baker, and J. R. Miner. 1988. Evaluating coliform concentrations in runoff from various animal waste management systems. In: Special Report 817, Agricultural Experiment Station: Oregon State University, Corvallis.
- Morita, R. Y. 1997. Bacteria in Oligotrophic Environments. Florence: Chapman & Hall.
- Mostaghimi, S., K. De Guide, and P. W. McClellan. 1999. Field investigation of bacteria die-off rates in cow manure and poultry litter. Report No. 0301BAC, Richmond, VA: VADCR.
- Mubiru, D. N., M. S. Coyne, and J. H. Grove. 2000. Mortality of *Escherichia coli* O157:H7 in two soils with different physical and chemical properties. *Journal of Environmental Quality*. 29 (6): 1821-1825.

- Muirhead, R. W., R. P. Collins, and P. J. Bremer. 2005. Erosion and subsequent transport state of *Escherichia coli* from cowpats. *Applied and Environmental Microbiology*. 71 (6): 2875-2879.
- Muirhead, R. W., R. P. Collins, and P. J. Bremer. 2006a. The association of *E. coli* and soil particles in overland flow. *Water Science and Technology*. 54 (3): 153-159.
- Muirhead, R. W., R. P. Collins, and P. J. Bremer. 2006b. Numbers and transported state of *Escherichia coli* in runoff direct from fresh cowpats under simulated rainfall. *Letters in Applied Microbiology*. 42 (2): 83-87.
- Muirhead, R. W., R. P. Collins, and P. J. Bremer. 2006c. Interaction of *Escherichia coli* and soil particles in runoff. *Applied and Environmental Microbiology*. 72 (5): 3406-3411.
- Mukamolova, G. V., A. S. Kaprelyants, D. B. Kell, and M. Young. 2003. Adoption of the Transiently Non-culturable State - a Bacterial Survival Strategy? San Diego: Academic Press.
- Mullins, G. L. and S. E. Heckendorn. 2005. Laboratory procedures: Virginia Tech Soil Testing Laboratory. Publ. 452-881. Virginia Coop Ext., Blacksburg.
- NOAA. 2006. Daily Climate Data for Blacksburg, Danville, Lynchburg and Roanoke, VA and Bluefield, WV. Accessed August 16, 2007.
- Novotny, V. 2003. *Water quality: diffuse pollution and watershed management*. New York, NY: John Wiley & Sons.
- Oliver, D. M., P. M. Haygarth, C. D. Clegg, and L. Heathwaite. 2006. Differential *E. coli* die-off patterns associated with agricultural matrices. *Environmental Science & Technology*. 40 (18): 5710-5716.
- Oliver, D. M., C. D. Clegg, A. L. Heathwaite, and P. M. Haygarth. 2007a. Preferential attachment of *Escherichia coli* to different particle size fractions of an agricultural grassland soil. *Water Air and Soil Pollution*. 185 (1-4): 369-375.
- Oliver, D. M., A. L. Heathwaite, C. J. Hodgson, and D. R. Chadwick. 2007b. Mitigation and current management attempts to limit pathogen survival and movement within farmed grassland. *Advances in Agronomy*. 93: 95-152.
- Ott, R. L., and M. Longnecker. 2001. *Statistical Methods and Data Analysis*. 5th ed. Pacific Grove, CA: Wadsworth Group.

- Pachepsky, Y. A., A. M. Sadeghi, S. A. Bradford, D. R. Shelton, A. K. Guber, and T. Dao. 2006. Transport and fate of manure-borne pathogens: Modeling perspective. *Agricultural Water Management*. 86 (1-2): 81-92.
- Patni, N. K., H. R. Toxopeus, and P. Y. Jui. 1985. Bacterial quality of runoff from manured and non-manured cropland. *Transactions of the ASAE*. 28 (6): 1871-1877, 1884.
- Paul, S., P. K. Haan, M. D. Matlock, S. Mukhtar, and S. D. Pillai. 2004. Analysis of the HSPF water quality parameter uncertainty in predicting peak in-stream fecal coliform concentrations. *Transactions of the ASAE*. 47 (1): 69-78.
- Peters, J., S. M. Combs, B. Hoskins, J.Jarman, J. L. Kovar, M. E. Watson, A. M. Wolf, and N. Wolf. 2003. Recommended methods of manure analysis. M. Coop. Ext. Publ. Operations, WI.
- Polprasert, C., M. G. Dissanayake, and N. C. Thanh. 1983. Bacterial die-off kinetics in waste stabilization ponds. *Journal of the Water Pollution Control Federation*. 55 (2, 1): 285-296.
- Qualls, R. G., M. P. Flynn, and J. D. Johnson. 1983. The role of suspended particles in ultraviolet disinfection. *Journal of the Water Pollution Control Federation*. 55 (10): 1280-1285.
- Reber, E. J., M. A. Bailey, P. J. Swecker, J. S. Quesenberry, and D. Bradshaw. 1981. Soil survey of City of Suffolk, Virginia. National Cooperative Soil Survey.
- Reddy, K. R., R. Khaleel, and M. R. Overcash. 1981. Behavior and transport of microbial pathogens and indicator organisms in soils treated with organic wastes. *Journal of Environmental Quality*. 10 (3): 255-266.
- Ritchie, J. M., G. R. Campbell, J. Shepherd, Y. Beaton, D. Jones, K. Killham, and R. R. E. Artz. 2003. A stable bioluminescent construct of *Escherichia coli* O157 : H7 for hazard assessments of long-term survival in the environment. *Applied and Environmental Microbiology*. 69 (6): 3359-3367.
- Roszak, D. B., and R. R. Colwell. 1987a. Metabolic activity of bacterial cells enumerated by direct viable count. *Applied and Environmental Microbiology*. 53 (12): 2889-2893.
- Roszak, D. B., and R. R. Colwell. 1987b. Survival strategies of bacteria in the natural environment. *Microbiology Review*. 51 (3): 365-379.
- SAS Institute. 2004. Version 9.1. SAS Inst., Cary, NC.

- Sayler, G. S., J. Nelson, A. Justice, and R. R. Colwell. 1975. Distribution and significance of fecal indicator organisms in the Upper Chesapeake Bay. *Applied Microbiology*. 30 (4): 625-638.
- Schepers, J., E. J. Vavricka, D. R. Andersen, H. D. Wittmuss, and G. E. Schuman. 1980. Agricultural runoff during a drought period.
- Schepers, J. S., and J. W. Doran. 1980. Effect of grazing management on the chemical and microbiological aspects of the environment. In: Proc. Nebraska Forage and Grassland council, 37-41. Lincoln, NE.
- Schillinger, J. E., and J. J. Gannon. 1985. Bacterial adsorption and suspended particles in urban stormwater. *Journal of Water Pollution Control Federation*. 57 (5): 384-389.
- Scholl, M. A., and R. W. Harvey. 1992. Laboratory Investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contaminated sandy aquifer. *Environmental Science & Technology*. 26 (7): 1410-1417.
- SERA-17. 2005. National Research Project for Simulated Rainfall Surface Runoff Studies. http://www.sera17.ext.vt.edu/SERA_17_Publications.htm. Accessed July 20, 2006.
- Sharpley, A. and B. Moyer. 2000. Phosphorus forms in manure and compost and their release during simulated rainfall. *Journal of Environmental Quality*. 29 (5): 1462-1469.
- Shelton, D. R., Y. A. Pachepsky, A. M. Sadeghi, W. L. Stout, J. S. Karns, and W. J. Gburek. 2003. Release rates of manure-borne coliform bacteria from data on leaching through stony soil. *Vadose Zone Journal*. 2: 34-39.
- Sjogren, R. E. 1994. Prolonged survival of an environmental *Escherichia coli* in laboratory soil microcosms. *Water Air and Soil Pollution*. 75 (3-4): 389-403.
- Soupir, M. L. 2003. Release and Transport of Bacteria and Nutrients from Livestock Manure Applied to Pasturelands. M.S. Thesis, Biological Systems Engineering, Blacksburg, VA: Virginia Tech.
- Soupir, M. L., S. Mostaghimi, and E. R. Yagow. 2006a. Nutrient transport from livestock manure applied to pastureland using phosphorus-based management strategies. *Journal of Environmental Quality*. 35 (4): 1269-1278.
- Soupir, M. L., S. Mostaghimi, E. R. Yagow, C. Hagedorn, and D. H. Vaughan. 2006b. Transport of fecal bacteria from poultry litter and cattle manures applied to pastureland. *Water Air and Soil Pollution*. 169 (1-4): 125-136.

- Stenstroem, T. A. 1989. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. *Applied and Environmental Microbiology*. 55 (1): 142-147.
- Taylor, R. J., and M. R. Burrows. 1971. The survival of *Escherichia coli* and *Salmonella dublin* in slurry on pasture and the infectivity of *Salmonella dublin* for grazing calves. *British Vet. Journal*. 127 (11): 536-543.
- Thelin, R. and G. F. Gifford. 1983. Fecal coliform release patterns from fecal material of cattle. *Journal of Environmental Quality*. 12 (1): 57-63.
- Tian, Y. Q., P. Gong, J. D. Radke, and J. Scarborough. 2002. Spatial and temporal modeling of microbial contaminants on grazing farmlands. *Journal of Environmental Quality*. 31 (3): 860-869.
- Trevors, J. T., and S. Cook. 1992. A comparison of plating media and diluents for enumeration of aerobic bacteria in a loam soil. *Journal of Microbiological Methods*. 14 (4): 271-275.
- U.S. EPA. 1986. Ambient water quality criteria for bacteria. EPA-440-5-84-002. U.S. EPA Office of Water, Washington, D.C.
- U.S. EPA. 1998. Bacterial water quality standards for recreational waters (freshwater and marine waters). U.S. EPA Office of Water, Washington, D.C.
- U.S. EPA. 2000. Improved enumeration methods for the recreational water quality indicators: Enterococci and *Escherichia coli*. EPA-821-R-97-004. U.S. EPA Office of Science and Technology, Washington, D.C.
- U.S. EPA. 2002a. Fact Sheet on "The National Costs of the Total Maximum Daily Load Program (Draft Report)". <u>http://www.epa.gov/owow/tmdl/coststudy/costfact.html</u> Accessed November 20, 2007.
- U.S. EPA. 2002b. Implementation guidance for ambient water quality criteria for bacteria. EPA-823-B-02-003. U.S. EPA Office of Water, Washington, D.C.
- U.S. EPA. 2003. National Pollutant Discharge Elimination System Permit Regulation and Effluent Limitation Guidelines and Standards for Concentrated Animal Feeding Operations (CAFOs); Final Rule. *Fed. Regist.* 68 (29): 7176-7274.
- U.S. EPA. 2007a. *TMDL Definition -- What is a total maximum daily load (TMDL)?* . <u>http://www.epa.gov/owow/tmdl/intro.html</u>. Accessed November 20, 2007.

- U.S. EPA. 2007b. *National Section 303(d) List Fact Sheet*. http://oaspub.epa.gov/waters/national_rept.control. Accessed March 8, 2005.
- VanDonsel, D. J., E. E. Geldreich, and N. A. Clarke. 1967. Seasonal variations in survival of indicator bacteria in soil and their contribution to storm-water pollution. *Applied Microbiology*. 15 (6): 1362-1370.
- Vinten, A. J. A., D. R. Lewis, D. R. Fenlon, K. A. Leach, R. Howard, I. Svoboda, and I. Ogden. 2002. Fate of *Escherichia coli* and *Escherichia coli* O157 in soils and drainage water following cattle slurry application at 3 sites in southern Scotland. *Soil Use and Management*. 18 (3): 223-231.
- Walker, S. E., S. Mostaghimi, T. A. Dillaha, and F. E. Woeste. 1990. Modeling animal waste management practices: Impacts on bacteria levels in runoff from agricultural lands. *Transactions of the ASAE*. 33 (3): 807-817.
- Wang, G. D., T. Zhao, and M. P. Doyle. 1996. Fate of enterohemorrhagic *Escherichia coli* O157:H7 in bovine feces. *Applied and Environmental Microbiology*. 62 (7): 2567-2570.
- Wang, L., K. R. Mankin, and G. L. Marchin. 2004. Survival of fecal bacteria in dairy cow manure. *Transactions of the ASAE*. 47 (4): 1239-1246.
- Yoon, W. B., and R. A. Rosson. 1990. Improved method of enumeration of attached bacteria for study of fluctuation in the abundance of attached and free-living bacteria in response to diel variation in seawater turbidity. *Applied and Environmental Microbiology*. 56 (3): 595-600.
- Zhai, Q., M. S. Coyne, and R. I. Barnhisel. 1995. Mortality rates of fecal bacteria in subsoil amended with poultry manure. *Bioresourse Technology*. 54 (2): 165-169.

Appendix A. Additional Data for Dispersion and Separation Technique Development

	Е. са	oli	entero	cocci
Chemical dispersion treatments	Concentration (cfu mL ⁻¹)	Average % change from control ^[1]	Concentration (cfu mL ⁻¹)	Average % change from control
	7.83×10^{3}		1.40×10^{5}	
Control (phosphate buffer water)	$7.0 - 9.2 \times 10^{3[2]}$		$1.31 - 1.44 \times 10^{5}$	
	5.17×10^{3}	2.40/	5.00×10^4	(40 /
Tween 85 (10 ppm)	$4.2 - 6.2 \times 10^3$	-34%	$2.0 - 10.0 \times 10^4$	-64%
	5.33×10 ³	220/	1.29×10^{5}	00/
Tween 85 (100 ppm)	$4.8 - 5.7 \times 10^3$	-32%	$1.15 - 1.47 \times 10^5$	-8%
	1.06×10^4	2(0/	1.68×10^{5}	210/
Tween 85 (1,000 ppm)	$8.8 - 11.8 \times 10^3$	36%	$1.33 - 2.27 \times 10^5$	21%
	5.60×10^{3}	200/	1.35×10^{5}	40/
Tween 85 (10,000 ppm)	$4.6 - 6.2 \times 10^3$	-29%	$1.12 - 1.56 \times 10^5$	-4%
	7.03×10^4		5.00×10^2	
Control (phosphate buffer water)	$6.4 - 7.3 \times 10^4$		$4.0 - 6.0 \times 10^2$	
	6.80×10^4	20/	4.00×10^{2}	2004
Tween 80 (10 ppm)	$5.7 - 7.9 \times 10^4$	-370	$3.0 - 5.0 \times 10^2$	-2070
	6.60×10^4	60/	8.00×10^2	600/
Tween 80 (100 ppm)	$5.9 - 7.7 \times 10^4$	-070	$6.0 - 10.0 \times 10^2$	0070
	5.73×10^{4}	100/	5.33×10^{2}	70/
Tween 80 (1,000 ppm)	$4.9 - 7.1 \times 10^4$	-10/0	$1.0 - 11.0 \times 10^2$	/ /0
	5.87×10^4	170/	6.00×10^2	20%
Tween 80 (10,000 ppm)	$5.4 - 6.4 \times 10^4$	-1//0	$6.0 - 6.0 \times 10^2$	2070
	1.95×10^{5}		2.97×10^4	
Control (phosphate buffer water)	$1.90 - 2.04 \times 10^{5}$		$2.3 - 3.5 \times 10^4$	
	4.90×10^4	-75%	2.40×10^4	-19%
0.1% NaPP + DI water	$4.0 - 5.6 \times 10^4$	7570	$2.1 - 2.8 \times 10^4$	1770
	4.20×10^{4}	-78%	3.37×10 ⁴	13%
0.1% NaPP + 1% glycerol + DI water	$3.3 - 5.8 \times 10^4$	/0/0	$2.4 - 4.0 \times 10^4$	1570
	6.90×10 ⁴	-65%	3.07×10 ⁴	3%
0.1% NaPP + 1% peptone + DI water	$6.3 - 7.4 \times 10^4$	0070	$2.0 - 3.8 \times 10^4$	570

Table A.1. Preliminary comparison of chemical dispersion treatments applied to runoff samples collected from a dairy cowpat on pastureland.

^[1] A negative value indicates a decrease in cells when compared to the control ^[2]Range of values

· · · · ·	Е. са	oli	enteroc	occi
Physical dispersion treatments	Concentration (cfu mL ⁻¹)	Average % change from control ^[1]	Concentration (cfu mL ⁻¹)	Average % change from control
	2.77×10^4		5.33×10 ²	
Control (Phosphate buffer water)	$2.5 - 3.0 \times 10^{4[1]}$		$3.0 - 9.0 \times 10^{2}$	
Illtrasonic bath treatment 30 sec	8.63×10^4 7 1 - 9 5 × 10 ⁴	212%	1.50×10^{3} 1.3 - 1.8 × 10 ³	181%
Offrasome bain treatment 50 see	$7.1 - 9.3 \times 10^{4}$ 7.40×10^{4}	1 (70/	$1.3 = 1.3 \times 10^{3}$ 1.87×10^{3}	2500/
Ultrasonic bath treatment 2 min	$6.7 - 8.4 \times 10^4$	16/%	$1.6 - 2.0 \times 10^3$	250%
	6.40×10^4	131%	2.23×10^{3}	319%
Ultrasonic bath treatment 6 min	$6.2 - 6.6 \times 10^{-10}$		$2.0 - 2.5 \times 10^3$	
Ultrasonic bath treatment 10 min	5.93×10^{-10} $5.5 - 6.6 \times 10^{4}$	114%	2.20×10^{3} $1.9 - 2.4 \times 10^{3}$	313%
	3.17×10 ⁴		6.00×10 ²	
Control (Phosphate buffer water)	$2.5 - 4.3 \times 10^4$		$5.0 - 7.0 \times 10^2$	
	2.13×10 ⁴	-33%	5.67×10^{2}	-6%
Vortex 1 minutes	$1.9 - 2.5 \times 10^{4}$		$5.0 - 6.0 \times 10^2$	
	3.50×10^4		6.00×10^2	
Control (Phosphate buffer water)	$2.7 - 4.0 \times 10^4$		$5.0 - 7.0 \times 10^2$	
	8.70×10 ⁴	149%	8.00×10 ²	33%
Hand Shaker 10 minutes	$8.2 - 9.6 \times 10^4$	11970	$7.0 - 10.0 \times 10^2$	5570

Table A.2. Preliminary comparison of physical dispersion treatments applied to runoff samples collected from a dairy cowpat on pastureland.

^[1]A negative value indicates a decrease in cells when compared to the control ^[2]Range of values

Figure A.2. *E. coli* DH2 1030 concentrations were reduced by filtering cells through 8 μm and 3 μm filters, when compared to a control.

Figure A.3. *E. coli* DH2 1030 cells captured on the 8 μm and 3 μm filters when 10 mL of 10⁵ E. coli cfu mL⁻¹.

Figure A.4. *E. coli* DH2 1030 concentrations collected from the stationary phase of the growth curve before and after a 10 minute centrifugation treatment at 1,200 × g (4700 rpm) and 4°C (n=12).

Appendix B.	Die-off Monitoring	Data
-------------	---------------------------	------

Table B.1. Weather Data and Indicator Concentrations Collected during Die-off Monitoring

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M1	spring	4/19/2006	0	1.70E+06	8.99E+06	6.92E+07	3.66E+08	0.81	23.9	23.9	13.9	13.9	2.881	1.69			61.08		0.00	
M2	spring	4/19/2006	0	2.00E+04	1.16E+05	2.32E+07	1.34E+08	0.83	23.9	23.9	13.9	13.9	2.881	1.69			61.08		0.00	
M3	spring	4/19/2006	0	6.60E+05	4.01E+06	5.92E+07	3.60E+08	0.84	23.9	23.9	13.9	13.9	2.881	1.69			61.08		0.00	
M4	spring	4/19/2006	0	6.30E+05	3.74E+06	4.04E+07	2.40E+08	0.83	23.9	23.9	13.9	13.9	2.881	1.69			61.08		0.00	
M5	spring	4/19/2006	0	7.50E+05	4.08E+06	3.16E+07	1.72E+08	0.82	23.9	23.9	13.9	13.9	2.881	1.69			61.08		0.00	
M1	spring	4/21/2006	2	9.00E+05	5.08E+06	9.54E+07	5.38E+08	0.82	25.6	25.6	15.6	14.7	2.713	1.40	2.88	1.44	67.28	63.28	0.00	0.00
M2	spring	4/21/2006	2	6.20E+06	3.04E+07	1.86E+08	9.11E+08	0.80	25.6	25.6	15.6	14.7	2.713	1.40	2.88	1.44	67.28	63.28	0.00	0.00
M3	spring	4/21/2006	2	4.30E+06	2.34E+07	1.10E+08	5.97E+08	0.82	25.6	25.6	15.6	14.7	2.713	1.40	2.88	1.44	67.28	63.28	0.00	0.00
M4	spring	4/21/2006	2	5.60E+05	2.73E+06	1.43E+08	6.98E+08	0.79	25.6	25.6	15.6	14.7	2.713	1.40	2.88	1.44	67.28	63.28	0.00	0.00
M5	spring	4/21/2006	2	4.30E+05	2.52E+06	8.22E+07	4.82E+08	0.83	25.6	25.6	15.6	14.7	2.713	1.40	2.88	1.44	67.28	63.28	0.00	0.00
M1	spring	4/25/2006	6	3.50E+07	1.76E+08	3.30E+05	1.66E+06	0.80	23.3	23.3	17.2	15.6	2.973	1.09	2.97	0.86	62.25	76.00	0.00	3.28
M2	spring	4/25/2006	6	1.11E+06	5.83E+06	4.50E+05	2.36E+06	0.81	23.3	23.3	17.2	15.6	2.973	1.09	2.97	0.86	62.25	76.00	0.00	3.28
M3	spring	4/25/2006	6	1.65E+06	8.95E+06	3.60E+05	1.95E+06	0.82	23.3	23.3	17.2	15.6	2.973	1.09	2.97	0.86	62.25	76.00	0.00	3.28
M4	spring	4/25/2006	6	7.00E+06	4.03E+07	3.20E+05	1.84E+06	0.83	23.3	23.3	17.2	15.6	2.973	1.09	2.97	0.86	62.25	76.00	0.00	3.28
M5	spring	4/25/2006	6	2.10E+07	1.14E+08	1.90E+05	1.03E+06	0.82	23.3	23.3	17.2	15.6	2.973	1.09	2.97	0.86	62.25	76.00	0.00	3.28
M1	spring	4/27/2006	8	2.00E+07	1.01E+08	3.50E+05	1.77E+06	0.80	13.3	25.0	10.6	13.6	0.336	0.20	2.66	0.91	96.64	85.85	0.15	0.89
M2	spring	4/27/2006	8	1.02E+08	4.79E+08	1.30E+05	6.10E+05	0.79	13.3	25.0	10.6	13.6	0.336	0.20	2.66	0.91	96.64	85.85	0.15	0.89
M3	spring	4/27/2006	8	1.30E+07	5.87E+07	4.70E+05	2.12E+06	0.78	13.3	25.0	10.6	13.6	0.336	0.20	2.66	0.91	96.64	85.85	0.15	0.89
M4	spring	4/27/2006	8	2.70E+07	1.06E+08	8.60E+05	3.39E+06	0.75	13.3	25.0	10.6	13.6	0.336	0.20	2.66	0.91	96.64	85.85	0.15	0.89
M5	spring	4/27/2006	8	1.50E+07	5.65E+07	6.00E+05	2.26E+06	0.73	13.3	25.0	10.6	13.6	0.336	0.20	2.66	0.91	96.64	85.85	0.15	0.89
M1	spring	5/3/2006	14	9.60E+06	3.41E+07	1.06E+08	3.77E+08	0.72	23.3	23.3	13.3	12.4	2.764	1.20	3.07	1.26	67.78	57.63	0.13	0.15
M2	spring	5/3/2006	14	1.09E+07	3.43E+07	4.70E+08	1.48E+09	0.68	23.3	23.3	13.3	12.4	2.764	1.20	3.07	1.26	67.78	57.63	0.13	0.15
M3	spring	5/3/2006	14	4.10E+06	1.28E+07	8.00E+07	2.51E+08	0.68	23.3	23.3	13.3	12.4	2.764	1.20	3.07	1.26	67.78	57.63	0.13	0.15
M4	spring	5/3/2006	14	3.10E+06	1.05E+07	1.45E+08	4.91E+08	0.70	23.3	23.3	13.3	12.4	2.764	1.20	3.07	1.26	67.78	57.63	0.13	0.15
M5	spring	5/3/2006	14	1.17E+07	3.68E+07	3.10E+08	9.74E+08	0.68	23.3	23.3	13.3	12.4	2.764	1.20	3.07	1.26	67.78	57.63	0.13	0.15
M1	spring	5/10/2006	21	3.00E+06	1.28E+07	2.20E+07	9.37E+07	0.77	16.7	16.7	12.2	9.8	1.971	0.74	2.93	0.70	85.53	81.31	0.00	1.55
M2	spring	5/10/2006	21	3.80E+06	1.91E+07	4.40E+07	2.21E+08	0.80	16.7	16.7	12.2	9.8	1.971	0.74	2.93	0.70	85.53	81.31	0.00	1.55
M3	spring	5/10/2006	21	5.00E+06	2.66E+07	4.10E+07	2.18E+08	0.81	16.7	16.7	12.2	9.8	1.971	0.74	2.93	0.70	85.53	81.31	0.00	1.55
M4	spring	5/10/2006	21	1.90E+06	1.03E+07	4.50E+07	2.44E+08	0.82	16.7	16.7	12.2	9.8	1.971	0.74	2.93	0.70	85.53	81.31	0.00	1.55
M5	spring	5/10/2006	21	5.70E+06	2.88E+07	4.70E+07	2.38E+08	0.80	16.7	16.7	12.2	9.8	1.971	0.74	2.93	0.70	85.53	81.31	0.00	1.55
M1	spring	5/17/2006	28	2.30E+06	7.36E+06	4.30E+07	1.38E+08	0.69	16.7	23.9	10.6	11.8	3.237	1.08	3.24	0.94	72.80	77.97	0.00	2.08

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M2	spring	5/17/2006	28	1.24E+07	5.01E+07	5.70E+07	2.30E+08	0.75	16.7	23.9	10.6	11.8	3.237	1.08	3.24	0.94	72.80	77.97	0.00	2.08
M3	spring	5/17/2006	28	1.30E+06	5.64E+06	3.70E+07	1.61E+08	0.77	16.7	23.9	10.6	11.8	3.237	1.08	3.24	0.94	72.80	77.97	0.00	2.08
M4	spring	5/17/2006	28	1.00E+05	3.61E+05	1.10E+07	3.97E+07	0.72	16.7	23.9	10.6	11.8	3.237	1.08	3.24	0.94	72.80	77.97	0.00	2.08
M5	spring	5/17/2006	28	1.70E+07	7.24E+07	1.14E+08	4.85E+08	0.77	16.7	23.9	10.6	11.8	3.237	1.08	3.24	0.94	72.80	77.97	0.00	2.08
M1	spring	5/24/2006	35	8.60E+05	1.71E+06	4.90E+07	9.76E+07	0.50	20.6	25.0	11.7	12.8	3.152	1.77	3.15	1.35	49.04	59.85	0.00	0.00
M2	spring	5/24/2006	35	3.80E+06	1.10E+07	7.80E+07	2.26E+08	0.66	20.6	25.0	11.7	12.8	3.152	1.77	3.15	1.35	49.04	59.85	0.00	0.00
M3	spring	5/24/2006	35	6.90E+05	1.58E+06	1.20E+07	2.75E+07	0.56	20.6	25.0	11.7	12.8	3.152	1.77	3.15	1.35	49.04	59.85	0.00	0.00
M4	spring	5/24/2006	35	2.40E+05	3.62E+05	1.80E+07	2.72E+07	0.34	20.6	25.0	11.7	12.8	3.152	1.77	3.15	1.35	49.04	59.85	0.00	0.00
M5	spring	5/24/2006	35	8.00E+05	1.42E+06	1.10E+07	1.96E+07	0.44	20.6	25.0	11.7	12.8	3.152	1.77	3.15	1.35	49.04	59.85	0.00	0.00
M1	spring	5/31/2006	42	8.60E+06	1.26E+07	7.70E+07	1.13E+08	0.32	31.7	31.7	22.8	19.6	3.023	1.67	3.08	1.45	70.41	71.41	0.00	1.73
M2	spring	5/31/2006	42	5.60E+06	8.99E+06	3.50E+07	5.62E+07	0.38	31.7	31.7	22.8	19.6	3.023	1.67	3.08	1.45	70.41	71.41	0.00	1.73
M3	spring	5/31/2006	42	3.20E+06	5.04E+06	5.60E+07	8.81E+07	0.36	31.7	31.7	22.8	19.6	3.023	1.67	3.08	1.45	70.41	71.41	0.00	1.73
M4	spring	5/31/2006	42	1.70E+05	2.34E+05	2.90E+07	3.99E+07	0.27	31.7	31.7	22.8	19.6	3.023	1.67	3.08	1.45	70.41	71.41	0.00	1.73
M5	spring	5/31/2006	42	7.50E+06	9.03E+06	8.80E+06	1.06E+07	0.17	31.7	31.7	22.8	19.6	3.023	1.67	3.08	1.45	70.41	71.41	0.00	1.73
M1	spring	6/7/2006	49	6.00E+04	7.60E+04	3.20E+06	4.05E+06	0.21	22.8	30.0	16.1	18.7	3.081	1.36	3.08	1.18	68.41	76.24	0.00	4.24
M2	spring	6/7/2006	49	7.50E+05	9.06E+05	1.10E+06	1.33E+06	0.17	22.8	30.0	16.1	18.7	3.081	1.36	3.08	1.18	68.41	76.24	0.00	4.24
M3	spring	6/7/2006	49	4.50E+05	5.36E+05	2.40E+06	2.86E+06	0.16	22.8	30.0	16.1	18.7	3.081	1.36	3.08	1.18	68.41	76.24	0.00	4.24
M4	spring	6/7/2006	49	5.70E+05	5.84E+05	3.80E+06	3.89E+06	0.02	22.8	30.0	16.1	18.7	3.081	1.36	3.08	1.18	68.41	76.24	0.00	4.24
M5	spring	6/7/2006	49	1.07E+06	1.29E+06	2.70E+06	3.26E+06	0.17	22.8	30.0	16.1	18.7	3.081	1.36	3.08	1.18	68.41	76.24	0.00	4.24
M1	spring	6/15/2006	57	1.60E+05	3.23E+05	2.00E+05	4.04E+05	0.50	24.4	28.3	19.4	17.9	2.489	1.03	2.94	1.03	74.56	75.77	0.00	1.83
M2	spring	6/15/2006	57	1.91E+06	3.09E+06	1.63E+07	2.64E+07	0.38	24.4	28.3	19.4	17.9	2.489	1.03	2.94	1.03	74.56	75.77	0.00	1.83
M3	spring	6/15/2006	57	4.00E+04	6.37E+04	3.00E+05	4.78E+05	0.37	24.4	28.3	19.4	17.9	2.489	1.03	2.94	1.03	74.56	75.77	0.00	1.83
M4	spring	6/15/2006	57	1.00E+04	1.63E+04	2.00E+05	3.27E+05	0.39	24.4	28.3	19.4	17.9	2.489	1.03	2.94	1.03	74.56	75.77	0.00	1.83
M5	spring	6/15/2006	57	1.10E+05	1.58E+05	4.00E+06	5.75E+06	0.30	24.4	28.3	19.4	17.9	2.489	1.03	2.94	1.03	74.56	75.77	0.00	1.83
M1	spring	6/22/2006	64	9.40E+04	1.55E+05	8.00E+04	1.32E+05	0.39	28.9	30.0	21.7	19.9	2.288	1.28	3.03	1.39	76.54	70.84	0.00	0.00
M2	spring	6/22/2006	64	3.90E+04	4.96E+04	2.50E+05	3.18E+05	0.21	28.9	30.0	21.7	19.9	2.288	1.28	3.03	1.39	76.54	70.84	0.00	0.00
M3	spring	6/22/2006	64	4.60E+04	7.34E+04	5.00E+04	7.98E+04	0.37	28.9	30.0	21.7	19.9	2.288	1.28	3.03	1.39	76.54	70.84	0.00	0.00
M4	spring	6/22/2006	64	1.60E+04		5.10E+05	4.25E+05		28.9	30.0	21.7	19.9	2.288	1.28	3.03	1.39	76.54	70.84	0.00	0.00
M5	spring	6/22/2006	64	1.40E+04	1.63E+04	3.20E+05	3.72E+05	0.14	28.9	30.0	21.7	19.9	2.288	1.28	3.03	1.39	76.54	70.84	0.00	0.00
M1	spring	6/28/2006	70	1.00E+02	4.50E+02	3.00E+03	1.35E+04	0.78	24.4	32.2	21.1	22.9	1.564	0.54	2.90	1.03	97.06	86.66	5.41	23.93
M2	spring	6/28/2006	70	1.50E+04	6.45E+04	1.20E+04	5.16E+04	0.77	24.4	32.2	21.1	22.9	1.564	0.54	2.90	1.03	97.06	86.66	5.41	23.93
M3	spring	6/28/2006	70	2.91E+04	1.17E+05	1.30E+05	5.22E+05	0.75	24.4	32.2	21.1	22.9	1.564	0.54	2.90	1.03	97.06	86.66	5.41	23.93
M4	spring	6/28/2006	70	6.00E+03	2.51E+04	6.70E+04	2.80E+05	0.76	24.4	32.2	21.1	22.9	1.564	0.54	2.90	1.03	97.06	86.66	5.41	23.93
M5	spring	6/28/2006	70	2.00E+03	8.94E+03	1.90E+04	8.49E+04	0.78	24.4	32.2	21.1	22.9	1.564	0.54	2.90	1.03	97.06	86.66	5.41	23.93

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M1	spring	7/5/2006	77	1.35E+04	2.59E+04	5.50E+04	1.05E+05	0.48	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M2	spring	7/5/2006	77	2.58E+04	4.98E+04	6.30E+04	1.22E+05	0.48	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M3	spring	7/5/2006	77	2.20E+04	4.20E+04	3.47E+05	6.63E+05	0.48	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M4	spring	7/5/2006	77	1.90E+03	3.44E+03	3.00E+04	5.42E+04	0.45	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M5	spring	7/5/2006	77	6.00E+04	1.10E+05	7.80E+04	1.44E+05	0.46	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M1	spring	7/12/2006	84	5.40E+03	8.56E+03	8.20E+04	1.30E+05	0.37	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13
M2	spring	7/12/2006	84	3.03E+04	5.52E+04	3.10E+04	5.65E+04	0.45	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13
M3	spring	7/12/2006	84	3.45E+04	5.67E+04	5.30E+04	8.70E+04	0.39	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13
M4	spring	7/12/2006	84	2.62E+04	3.83E+04			0.32	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13
M1	spring	7/19/2006	91	1.40E+05	1.58E+05	5.40E+04	6.11E+04	0.12	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M2	spring	7/19/2006	91	8.70E+04	1.04E+05	6.00E+03	7.16E+03	0.16	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M3	spring	7/19/2006	91	2.00E+04	2.26E+04	3.60E+04	4.07E+04	0.12	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M4	spring	7/19/2006	91	5.00E+03	6.53E+03	5.70E+04	7.45E+04	0.23	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M5	spring	7/19/2006	91	2.50E+03	2.94E+03	2.20E+04	2.59E+04	0.15	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M1	spring	7/26/2006	98	4.00E+03	5.72E+03	7.60E+03	1.09E+04	0.30	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M2	spring	7/26/2006	98	3.80E+03	5.21E+03	6.00E+04	8.23E+04	0.27	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M3	spring	7/26/2006	98	9.00E+02	1.32E+03	7.12E+05	1.04E+06	0.32	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M4	spring	7/26/2006	98	0.00E+00	0.00E+00	5.20E+04	7.73E+04	0.33	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M5	spring	7/26/2006	98	7.00E+03	1.06E+04	1.15E+05	1.74E+05	0.34	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M1	spring	8/2/2006	105	4.80E+04	8.31E+04	8.50E+05	1.47E+06	0.42	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M2	spring	8/2/2006	105	2.00E+04	4.98E+04	3.20E+04	7.96E+04	0.60	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M3	spring	8/2/2006	105	5.40E+05	1.10E+06			0.51	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M4	spring	8/2/2006	105	3.30E+05	6.69E+05	5.20E+05	1.05E+06	0.51	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M5	spring	8/2/2006	105	4.10E+04	8.30E+04	3.40E+05	6.88E+05	0.51	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M1	spring	8/9/2006	112	1.40E+04	3.68E+04	1.30E+04	3.41E+04	0.62	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M2	spring	8/9/2006	112	4.00E+03	9.39E+03	5.00E+03	1.17E+04	0.57	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M3	spring	8/9/2006	112	1.40E+05	3.43E+05	3.70E+04	9.07E+04	0.59	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M4	spring	8/9/2006	112	5.30E+04	1.08E+05	7.50E+04	1.53E+05	0.51	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M5	spring	8/9/2006	112	1.10E+04	2.33E+04	4.60E+04	9.73E+04	0.53	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M1	spring	8/16/2006	119	8.00E+02	1.31E+03	5.00E+02	8.19E+02	0.39	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M2	spring	8/16/2006	119	1.83E+04	3.06E+04	2.79E+04	4.67E+04	0.40	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M3	spring	8/16/2006	119	8.00E+02	1.54E+03	5.34E+04	1.03E+05	0.48	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M4	spring	8/16/2006	119	2.00E+02	3.53E+02	2.20E+03	3.88E+03	0.43	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M5	spring	8/16/2006	119	1.20E+03	2.04E+03	4.20E+03	7.15E+03	0.41	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39

Sample			Time	<i>E. coli</i> (cfu 9 ⁻¹)	<i>E. coli</i> (cfu 9 ⁻¹)	ENT (cfu g ⁻¹)	ENT (cfu 9 ⁻¹)	MC	Temp PDH	Temp PWH	Temp PDA	Temp PWA	SR PDH	SR PDA	SR PWH	SR PWA	RH PDA	RH PWA	rainfall PDT	Rainfall PWT
No.	Season	Sample date	(d)	wet wt.	dry wt.	wet wt.	dry wt.	(%)	(°C)	(°C)	(°C)	(°C)	(MJ)	(MJ)	(MJ)	(MJ)	(%)	(%)	(cm)	(cm)
M1	spring	8/24/2006	127	1.00E+02	1.37E+02	1.10E+03	1.51E+03	0.27	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M2	spring	8/24/2006	127	1.40E+03	1.88E+03	1.40E+03	1.88E+03	0.26	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M3	spring	8/24/2006	127	9.40E+03	1.10E+04	8.60E+03	1.00E+04	0.14	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M4	spring	8/24/2006	127	1.10E+03	6.89E+03	1.85E+04	1.16E+05	0.84	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M5	spring	8/24/2006	127	1.00E+03	1.28E+03	2.03E+04	2.59E+04	0.22	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M1	spring	8/30/2006	133	7.00E+02	1.37E+03	6.50E+03	1.27E+04	0.49	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M2	spring	8/30/2006	133	2.00E+02	4.21E+02	2.00E+03	4.21E+03	0.53	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M3	spring	8/30/2006	133	1.30E+03	2.51E+03	1.29E+04	2.49E+04	0.48	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M4	spring	8/30/2006	133	2.00E+03	4.09E+03	4.20E+03	8.59E+03	0.51	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M5	spring	8/30/2006	133	2.10E+03	5.73E+03	8.50E+03	2.32E+04	0.63	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M1	summer	6/28/2006	0	8.00E+05	3.11E+06	1.20E+08	4.66E+08	0.74	24.4		21.1		2.93	1.47			97.06		0.00	
M2	summer	6/28/2006	0	1.00E+06	9.36E+06	1.10E+08	1.03E+09	0.89	24.4		21.1		2.93	1.47			97.06		0.00	
M3	summer	6/28/2006	0	9.00E+05	4.78E+06	1.90E+08	1.01E+09	0.81	24.4		21.1		2.93	1.47			97.06		0.00	
M4	summer	6/28/2006	0	1.00E+06	5.71E+06	1.20E+08	6.86E+08	0.82	24.4		21.1		2.93	1.47			97.06		0.00	
M5	summer	6/28/2006	0	4.00E+05	2.10E+06	1.10E+08	5.78E+08	0.81	24.4		21.1		2.93	1.47			97.06		0.00	
M1	summer	6/30/2006	2	5.00E+05	2.25E+06	2.30E+08	1.03E+09	0.78	25.0	27.8	18.3	14.7	2.888	1.36	2.93	1.42	77.72	78.54	0.00	0.00
M2	summer	6/30/2006	2	1.00E+05	4.30E+05	2.10E+08	9.03E+08	0.77	25.0	27.8	18.3	14.7	2.888	1.36	2.93	1.42	77.72	78.54	0.00	0.00
M3	summer	6/30/2006	2	1.00E+05	4.02E+05	1.20E+08	4.82E+08	0.75	25.0	27.8	18.3	14.7	2.888	1.36	2.93	1.42	77.72	78.54	0.00	0.00
M4	summer	6/30/2006	2	4.00E+05	1.67E+06	1.90E+08	7.93E+08	0.76	25.0	27.8	18.3	14.7	2.888	1.36	2.93	1.42	77.72	78.54	0.00	0.00
M5	summer	6/30/2006	2	3.00E+05	1.34E+06	1.10E+08	4.92E+08	0.78	25.0	27.8	18.3	14.7	2.888	1.36	2.93	1.42	77.72	78.54	0.00	0.00
M1	summer	7/3/2006	5	4.40E+06	1.08E+07	1.70E+08	4.16E+08	0.59	30.6	30.6	23.9	20.4	2.999	1.61	3.11	1.58	72.52	75.03	0.00	0.00
M2	summer	7/3/2006	5	2.86E+07	7.46E+07	2.50E+08	6.52E+08	0.62	30.6	30.6	23.9	20.4	2.999	1.61	3.11	1.58	72.52	75.03	0.00	0.00
M3	summer	7/3/2006	5	1.68E+07	5.11E+07	2.00E+08	6.09E+08	0.67	30.6	30.6	23.9	20.4	2.999	1.61	3.11	1.58	72.52	75.03	0.00	0.00
M4	summer	7/3/2006	5	1.76E+07	5.00E+07	1.30E+08	3.69E+08	0.65	30.6	30.6	23.9	20.4	2.999	1.61	3.11	1.58	72.52	75.03	0.00	0.00
M5	summer	7/3/2006	5	6.90E+06	1.76E+07	1.80E+08	4.60E+08	0.61	30.6	30.6	23.9	20.4	2.999	1.61	3.11	1.58	72.52	75.03	0.00	0.00
M1	summer	7/5/2006	7	2.18E+07	7.24E+07	1.60E+08	5.32E+08	0.70	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M2	summer	7/5/2006	7	1.92E+07	7.13E+07	1.20E+08	4.45E+08	0.73	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M3	summer	7/5/2006	7	5.30E+07	1.76E+08	1.30E+08	4.31E+08	0.70	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M4	summer	7/5/2006	7	3.90E+07	1.51E+08	2.10E+08	8.11E+08	0.74	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M5	summer	7/5/2006	7	1.09E+08	3.43E+08	1.90E+08	5.99E+08	0.68	30.6	30.6	23.9	21.6	2.734	1.28	3.11	1.47	84.47	77.65	1.14	1.14
M1	summer	7/12/2006	14	2.04E+07	6.68E+07	2.70E+07	8.85E+07	0.69	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13
M2	summer	7/12/2006	14	4.40E+06	1.46E+07	2.10E+07	6.96E+07	0.70	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13
M3	summer	7/12/2006	14	5.20E+06	1.57E+07	1.00E+07	3.02E+07	0.67	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13
M4	summer	7/12/2006	14	1.01E+07	3.21E+07	3.20E+07	1.02E+08	0.69	28.9	28.9	22.2	19.6	2.371	1.09	2.74	1.16	88.03	82.83	0.53	5.13

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M1	summer	7/19/2006	21	1.00E+06	1.49E+06	4.30E+06	6.39E+06	0.33	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M2	summer	7/19/2006	21	1.20E+06	3.42E+06	3.20E+06	9.12E+06	0.65	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M3	summer	7/19/2006	21	2.80E+06	4.70E+06	2.10E+06	3.52E+06	0.40	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M4	summer	7/19/2006	21	2.40E+06	7.21E+06	4.50E+06	1.35E+07	0.67	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M5	summer	7/19/2006	21	1.10E+06	2.54E+06	5.70E+06	1.32E+07	0.57	32.8	32.8	25.0	24.2	2.986	1.65	3.07	1.33	75.31	81.67	0.00	0.91
M1	summer	7/26/2006	28	2.20E+05	6.70E+05	9.40E+05	2.86E+06	0.67	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M2	summer	7/26/2006	28	5.30E+05	1.38E+06	1.30E+06	3.40E+06	0.62	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M3	summer	7/26/2006	28	2.00E+05	6.27E+05	4.00E+05	1.25E+06	0.68	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M4	summer	7/26/2006	28	4.40E+06	9.39E+06	5.30E+06	1.13E+07	0.53	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M5	summer	7/26/2006	28	3.90E+05	9.32E+05	2.40E+06	5.74E+06	0.58	25.6	31.7	21.7	22.3	1.704	0.61	2.93	1.25	89.66	82.21	0.00	1.42
M1	summer	8/2/2006	35	2.30E+05	3.77E+05	9.00E+04	1.48E+05	0.39	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M2	summer	8/2/2006	35	5.20E+05	9.56E+05	3.40E+05	6.25E+05	0.46	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M3	summer	8/2/2006	35	1.47E+06	2.35E+06	1.64E+06	2.62E+06	0.37	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M4	summer	8/2/2006	35	1.40E+05	2.36E+05	1.60E+05	2.70E+05	0.41	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M5	summer	8/2/2006	35	2.30E+05	5.07E+05	7.00E+04	1.54E+05	0.55	32.2	32.2	25.6	23.6	2.849	1.50	2.85	1.16	78.00	82.90	0.00	0.56
M1	summer	8/9/2006	42	1.45E+06	4.48E+06	1.92E+06	5.93E+06	0.68	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M2	summer	8/9/2006	42	6.40E+05	1.68E+06	2.68E+06	7.05E+06	0.62	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M3	summer	8/9/2006	42	5.20E+06	1.21E+07	4.16E+06	9.67E+06	0.57	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M4	summer	8/9/2006	42	5.10E+05	1.10E+06	2.73E+06	5.91E+06	0.54	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M5	summer	8/9/2006	42	2.60E+06	6.08E+06	6.00E+05	1.40E+06	0.57	28.9	32.2	23.9	24.9	1.936	0.90	2.77	1.06	90.07	81.21	0.08	0.33
M1	summer	8/16/2006	49	9.10E+05	1.70E+06	4.00E+04	7.48E+04	0.47	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M2	summer	8/16/2006	49	1.80E+05	2.89E+05	2.20E+05	3.53E+05	0.38	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M3	summer	8/16/2006	49	9.00E+04	1.39E+05	1.50E+05	2.32E+05	0.35	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M4	summer	8/16/2006	49	1.25E+06	2.19E+06	6.80E+05	1.19E+06	0.43	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M5	summer	8/16/2006	49	5.00E+04	7.63E+04	1.10E+05	1.68E+05	0.34	26.7	29.4	22.2	20.9	1.247	0.58	2.62	0.84	88.44	87.55	0.03	2.39
M1	summer	8/24/2006	56	4.90E+05	6.69E+05	3.50E+04	4.78E+04	0.27	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M2	summer	8/24/2006	56	1.20E+04	1.55E+04	1.00E+04	1.29E+04	0.23	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M3	summer	8/24/2006	56	1.30E+04	1.64E+04	4.00E+03	5.03E+03	0.20	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M4	summer	8/24/2006	56	4.60E+04	5.70E+04	3.90E+04	4.84E+04	0.19	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M5	summer	8/24/2006	56	3.50E+04	4.45E+04	6.40E+04	8.13E+04	0.21	28.9	28.9	21.7	21.6	2.85	1.40	2.88	1.31	73.35	78.86	0.00	2.41
M1	summer	8/30/2006	63	1.56E+05	2.72E+05	1.29E+05	2.25E+05	0.43	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M2	summer	8/30/2006	63	1.70E+04	2.99E+04	7.90E+04	1.39E+05	0.43	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M3	summer	8/30/2006	63	3.50E+04	6.40E+04	8.40E+04	1.54E+05	0.45	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M4	summer	8/30/2006	63	4.50E+04	8.31E+04	1.52E+05	2.81E+05	0.46	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M5	summer	8/30/2006	63	2.10E+05	3.80E+05	5.30E+04	9.58E+04	0.45	28.9	31.1	24.4	23.1	2.256	1.00	2.68	1.22	86.37	79.41	0.08	1.19
M1	summer	9/6/2006	70	5.00E+03	1.41E+04	1.07E+05	3.02E+05	0.65	22.2	26.1	19.4	18.7	1.434	0.63	2.52	0.63	95.68	90.48	1.19	3.68
M2	summer	9/6/2006	70	4.00E+02	1.16E+03	2.40E+04	6.93E+04	0.65	22.2	26.1	19.4	18.7	1.434	0.63	2.52	0.63	95.68	90.48	1.19	3.68
M3	summer	9/6/2006	70	6.00E+04	1.54E+05	4.00E+03	1.03E+04	0.61	22.2	26.1	19.4	18.7	1.434	0.63	2.52	0.63	95.68	90.48	1.19	3.68
M4	summer	9/6/2006	70	2.80E+05	6.63E+05	1.60E+04	3.79E+04	0.58	22.2	26.1	19.4	18.7	1.434	0.63	2.52	0.63	95.68	90.48	1.19	3.68
M5	summer	9/6/2006	70	6.00E+03	1.64E+04	4.00E+03	1.10E+04	0.63	22.2	26.1	19.4	18.7	1.434	0.63	2.52	0.63	95.68	90.48	1.19	3.68
M1	summer	9/13/2006	77	3.90E+03	1.28E+04	9.00E+03	2.96E+04	0.70	17.2	25.6	16.1	18.2	0.437	0.18	2.39	0.87	91.95	88.41	0.00	0.74
M2	summer	9/13/2006	77	1.10E+03	2.87E+03	7.00E+03	1.83E+04	0.62	17.2	25.6	16.1	18.2	0.437	0.18	2.39	0.87	91.95	88.41	0.00	0.74
M3	summer	9/13/2006	77	2.50E+03	5.78E+03	8.00E+03	1.85E+04	0.57	17.2	25.6	16.1	18.2	0.437	0.18	2.39	0.87	91.95	88.41	0.00	0.74
M4	summer	9/13/2006	77	8.00E+02	2.25E+03	4.60E+03	1.29E+04	0.64	17.2	25.6	16.1	18.2	0.437	0.18	2.39	0.87	91.95	88.41	0.00	0.74
M5	summer	9/13/2006	77	1.80E+03	4.98E+03	6.00E+03	1.66E+04	0.64	17.2	25.6	16.1	18.2	0.437	0.18	2.39	0.87	91.95	88.41	0.00	0.74
M1	summer	9/20/2007	84	2.40E+03	2.93E+03	1.70E+03	2.07E+03	0.18	22.2	27.2	17.8	17.2							0.00	1.75
M2	summer	9/20/2007	84	1.70E+03	2.14E+03	9.90E+03	1.25E+04	0.21	22.2	27.2	17.8	17.2							0.00	1.75
M3	summer	9/20/2007	84	2.10E+03	2.85E+03	1.20E+03	1.63E+03	0.26	22.2	27.2	17.8	17.2							0.00	1.75
M4	summer	9/20/2007	84	3.40E+03	4.19E+03	3.60E+03	4.44E+03	0.19	22.2	27.2	17.8	17.2							0.00	1.75
M5	summer	9/20/2007	84	5.10E+03	7.29E+03	4.50E+03	6.43E+03	0.30	22.2	27.2	17.8	17.2							0.00	1.75
M1	summer	9/27/2006	91	3.70E+03	5.53E+03	1.00E+03	1.50E+03	0.33	20.0	25.6	12.2	14.4							0.00	0.56
M2	summer	9/27/2006	91	8.50E+03	1.26E+04	1.10E+03	1.64E+03	0.33	20.0	25.6	12.2	14.4							0.00	0.56
M3	summer	9/27/2006	91	8.00E+02	1.27E+03	9.00E+02	1.43E+03	0.37	20.0	25.6	12.2	14.4							0.00	0.56
M4	summer	9/27/2006	91	2.00E+03	3.17E+03	1.10E+03	1.74E+03	0.37	20.0	25.6	12.2	14.4							0.00	0.56
M5	summer	9/27/2006	91	9.40E+02	1.40E+03	1.20E+03	1.79E+03	0.33	20.0	25.6	12.2	14.4							0.00	0.56
M1	summer	10/4/2006	98	2.80E+02	4.04E+02	1.07E+04	1.54E+04	0.31	24.4	24.4	15.6	13.7							0.00	2.34
M2	summer	10/4/2006	98	4.70E+03	7.16E+03	3.60E+03	5.48E+03	0.34	24.4	24.4	15.6	13.7							0.00	2.34
M3	summer	10/4/2006	98	1.20E+03	1.66E+03	8.00E+02	1.11E+03	0.28	24.4	24.4	15.6	13.7							0.00	2.34
M4	summer	10/4/2006	98	1.10E+04	1.50E+04	1.20E+02	1.64E+02	0.27	24.4	24.4	15.6	13.7							0.00	2.34
M5	summer	10/4/2006	98	2.20E+03	3.16E+03	3.30E+03	4.74E+03	0.30	24.4	24.4	15.6	13.7							0.00	2.34
M1	summer	10/11/2007	105	1.89E+04	2.87E+04	6.00E+03	9.12E+03	0.34	25.0	26.1	15.6	14.9							0.00	3.23
M2	summer	10/11/2007	105	4.50E+03	6.16E+03	3.10E+03	4.25E+03	0.27	25.0	26.1	15.6	14.9							0.00	3.23
M3	summer	10/11/2007	105	2.80E+03	5.18E+03	5.00E+03	9.24E+03	0.46	25.0	26.1	15.6	14.9							0.00	3.23
M4	summer	10/11/2007	105	1.90E+03	3.14E+03	4.20E+03	6.95E+03	0.40	25.0	26.1	15.6	14.9							0.00	3.23
M5	summer	10/11/2007	105	2.80E+03		2.30E+03		1.92	25.0	26.1	15.6	14.9							0.00	3.23
M1	summer	10/18/2007	112	2.50E+02	3.86E+02	2.20E+03	3.40E+03	0.35	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M2	summer	10/18/2007	112	2.00E+01	3.09E+01	6.10E+03	9.42E+03	0.35	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M3	summer	10/18/2007	112	2.20E+03	3.47E+03	7.00E+03	1.10E+04	0.37	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M4	summer	10/18/2007	112	3.30E+03	6.35E+03	3.60E+03	6.93E+03	0.48	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M5	summer	10/18/2007	112	1.20E+02	1.96E+02	8.90E+03	1.46E+04	0.39	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M1	summer	10/25/2007	119	2.10E+02	2.89E+02	1.30E+03	1.79E+03	0.27	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M2	summer	10/25/2007	119	7.30E+02	1.10E+03	9.00E+02	1.35E+03	0.33	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M3	summer	10/25/2007	119	5.60E+02	8.88E+02	2.00E+02	3.17E+02	0.37	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M4	summer	10/25/2007	119	1.40E+02	1.88E+02	2.20E+03	2.95E+03	0.25	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M5	summer	10/25/2007	119	8.50E+02	1.57E+03	9.00E+02	1.66E+03	0.46	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M1	summer	11/1/2006	126	1.31E+04	2.09E+04	6.70E+02	1.07E+03	0.37	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M2	summer	11/1/2006	126	6.40E+02	8.97E+02	4.00E+02	5.61E+02	0.29	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M3	summer	11/1/2006	126	4.00E+02	5.98E+02	3.10E+02	4.63E+02	0.33	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M4	summer	11/1/2006	126	3.00E+02	3.80E+02	1.13E+03	1.43E+03	0.21	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M5	summer	11/1/2006	126	1.30E+02	1.84E+02	3.40E+03	4.80E+03	0.29	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M1	summer	11/8/2007	133	5.30E+02	8.35E+02	1.10E+02	1.73E+02	0.37	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M2	summer	11/8/2007	133	1.13E+03	1.94E+03	8.00E+01	1.38E+02	0.42	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M3	summer	11/8/2007	133	4.60E+02	9.83E+02	2.70E+02	5.77E+02	0.53	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M4	summer	11/8/2007	133	3.00E+02	7.32E+02	3.00E+02	7.32E+02	0.59	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M5	summer	11/8/2007	133	1.20E+01	2.29E+01	3.50E+02	6.69E+02	0.48	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M1	summer	11/15/2007	140	5.60E+02	8.73E+02	9.00E+01	1.40E+02	0.36	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M2	summer	11/15/2007	140	1.81E+03	2.86E+03	4.30E+02	6.79E+02	0.37	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M3	summer	11/15/2007	140	1.10E+02	1.75E+02	2.00E+01	3.18E+01	0.37	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M4	summer	11/15/2007	140	1.10E+02	1.76E+02	2.10E+02	3.37E+02	0.38	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M5	summer	11/15/2007	140	1.24E+03	2.35E+03	6.00E+01	1.14E+02	0.47	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M1	summer	11/29/2006	154	7.00E+01	1.18E+02	2.00E+01	3.38E+01	0.41	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M2	summer	11/29/2006	154	1.10E+02	1.66E+02	1.60E+02	2.42E+02	0.34	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M3	summer	11/29/2006	154	2.20E+02	3.46E+02	3.00E+01	4.72E+01	0.36	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M4	summer	11/29/2006	154	5.70E+02	1.01E+03	7.00E+01	1.24E+02	0.44	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M5	summer	11/29/2006	154	3.40E+02	5.72E+02	8.00E+01	1.35E+02	0.41	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M1	summer	12/13/2007	168	4.00E+01	6.76E+01	5.00E+01	8.45E+01	0.41	11.7	22.2	3.3	3.1							0.00	0.38
M2	summer	12/13/2007	168	6.00E+01	9.06E+01	1.40E+02	2.11E+02	0.34	11.7	22.2	3.3	3.1							0.00	0.38
M3	summer	12/13/2007	168	3.00E+01	4.72E+01	1.40E+02	2.20E+02	0.36	11.7	22.2	3.3	3.1							0.00	0.38
M4	summer	12/13/2007	168	0.00E+00	0.00E+00	1.00E+01	1.78E+01	0.44	11.7	22.2	3.3	3.1							0.00	0.38
M5	summer	12/13/2007	168	1.20E+02	2.02E+02	1.30E+02	2.19E+02	0.41	11.7	22.2	3.3	3.1							0.00	0.38
M1	fall	9/21/2006	0	1.00E+06	6.89E+06	2.00E+05	1.38E+06	0.85	19.4		11.1								0.00	

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M2	fall	9/21/2006	0	2.60E+06	1.81E+07	1.70E+06	1.18E+07	0.86	19.4		11.1								0.00	
M3	fall	9/21/2006	0	1.35E+07	8.63E+07			0.84	19.4		11.1								0.00	
M4	fall	9/21/2006	0	1.04E+07	6.54E+07			0.84	19.4		11.1								0.00	
M5	fall	9/21/2006	0	1.18E+07	7.65E+07	2.00E+05	1.30E+06	0.85	19.4		11.1								0.00	
M1	fall	9/25/2006	4	1.10E+07	5.62E+07	7.70E+06	3.93E+07	0.80	24.4	25.6	20.0	16.3							0.56	0.56
M2	fall	9/25/2006	4	4.10E+06	2.24E+07	3.90E+06	2.13E+07	0.82	24.4	25.6	20.0	16.3							0.56	0.56
M3	fall	9/25/2006	4	5.10E+06	2.59E+07	5.40E+06	2.74E+07	0.80	24.4	25.6	20.0	16.3							0.56	0.56
M4	fall	9/25/2006	4	2.50E+07	1.40E+08	9.30E+06	5.21E+07	0.82	24.4	25.6	20.0	16.3							0.56	0.56
M5	fall	9/25/2006	4	2.70E+07	1.26E+08	6.30E+06	2.94E+07	0.79	24.4	25.6	20.0	16.3							0.56	0.56
M1	fall	9/27/2006	6	2.70E+07	1.11E+08	5.70E+06	2.35E+07	0.76	20.0	25.6	12.2	14.4							0.00	0.56
M2	fall	9/27/2006	6	4.90E+06	1.64E+07	2.00E+06	6.69E+06	0.70	20.0	25.6	12.2	14.4							0.00	0.56
M3	fall	9/27/2006	6	2.10E+07	8.21E+07	6.20E+06	2.42E+07	0.74	20.0	25.6	12.2	14.4							0.00	0.56
M4	fall	9/27/2006	6	1.80E+06	6.79E+06	1.60E+06	6.04E+06	0.73	20.0	25.6	12.2	14.4							0.00	0.56
M5	fall	9/27/2006	6	1.50E+06	5.17E+06	2.50E+06	8.62E+06	0.71	20.0	25.6	12.2	14.4							0.00	0.56
M1	fall	10/4/2007	13	2.00E+05	2.88E+05	1.20E+06	1.73E+06	0.31	24.4	24.4	15.6	13.7							0.00	2.34
M2	fall	10/4/2007	13	4.00E+06	6.09E+06	6.10E+06	9.29E+06	0.34	24.4	24.4	15.6	13.7							0.00	2.34
M3	fall	10/4/2007	13	5.00E+05	6.93E+05	3.90E+06	5.41E+06	0.28	24.4	24.4	15.6	13.7							0.00	2.34
M4	fall	10/4/2007	13	3.00E+05	4.09E+05	1.40E+06	1.91E+06	0.27	24.4	24.4	15.6	13.7							0.00	2.34
M5	fall	10/4/2007	13	1.50E+06	2.16E+06	3.40E+06	4.89E+06	0.30	24.4	24.4	15.6	13.7							0.00	2.34
M1	fall	10/11/2007	20	7.80E+06	2.68E+07	4.70E+06	1.61E+07	0.71	25.0	26.1	15.6	14.9							0.00	3.23
M2	fall	10/11/2007	20	8.30E+06	3.16E+07	3.80E+06	1.45E+07	0.74	25.0	26.1	15.6	14.9							0.00	3.23
M3	fall	10/11/2007	20	7.10E+06	3.10E+07	2.40E+06	1.05E+07	0.77	25.0	26.1	15.6	14.9							0.00	3.23
M4	fall	10/11/2007	20	2.60E+06	1.09E+07	1.10E+06	4.60E+06	0.76	25.0	26.1	15.6	14.9							0.00	3.23
M5	fall	10/11/2007	20	7.50E+05	3.70E+06	3.10E+06	1.53E+07	0.80	25.0	26.1	15.6	14.9							0.00	3.23
M1	fall	10/18/2007	27	6.20E+05	3.34E+06	9.80E+05	5.28E+06	0.81	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M2	fall	10/18/2007	27	3.80E+05	1.93E+06	4.50E+05	2.28E+06	0.80	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M3	fall	10/18/2007	27	4.40E+05	2.07E+06	7.90E+05	3.72E+06	0.79	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M4	fall	10/18/2007	27	1.00E+05	4.33E+05	9.20E+05	3.98E+06	0.77	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M5	fall	10/18/2007	27	1.10E+06	5.48E+06	9.20E+05	4.59E+06	0.80	15.6	18.3	11.1	8.3	0.279	0.11	2.20	0.82	98.67	68.30	3.00	3.25
M1	fall	10/25/2007	34	1.30E+05	3.32E+05	2.80E+05	7.16E+05	0.61	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M2	fall	10/25/2007	34	2.50E+05	1.05E+06	5.00E+05	2.10E+06	0.76	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M3	fall	10/25/2007	34	3.00E+04	1.19E+05	9.00E+04	3.56E+05	0.75	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M4	fall	10/25/2007	34	3.00E+04	1.06E+05	4.20E+05	1.48E+06	0.72	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57
M5	fall	10/25/2007	34	2.00E+04	5.65E+04	7.00E+04	1.98E+05	0.65	5.0	25.6	1.7	9.2	1.011	0.52	2.08	0.69	62.13	78.61	0.00	1.57

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M1	fall	11/1/2006	41	1.50E+05	2.93E+05	4.40E+05	8.58E+05	0.49	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M2	fall	11/1/2006	41	1.80E+04	2.86E+04	4.70E+05	7.46E+05	0.37	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M3	fall	11/1/2006	41	3.10E+04	1.10E+05	5.80E+05	2.05E+06	0.72	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M4	fall	11/1/2006	41	2.40E+05	8.22E+05	8.50E+05	2.91E+06	0.71	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M5	fall	11/1/2006	41	1.00E+04	2.31E+04	6.10E+04	1.41E+05	0.57	21.1	21.1	12.2	8.1	1.952	0.97	2.00	0.69	67.23	68.21	0.00	3.48
M1	fall	11/8/2007	48	2.20E+04	6.45E+04	1.80E+04	5.28E+04	0.66	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M2	fall	11/8/2007	48	4.00E+03	1.70E+04	4.60E+04	1.96E+05	0.77	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M3	fall	11/8/2007	48	1.40E+04	3.89E+04	2.10E+04	5.83E+04	0.64	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M4	fall	11/8/2007	48	5.00E+03	1.39E+04	2.10E+04	5.83E+04	0.64	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M5	fall	11/8/2007	48	6.00E+03	1.56E+04	3.70E+04	9.62E+04	0.62	9.4	21.1	5.6	5.6	0.231	0.11	1.94	0.84	86.43	64.63	0.56	1.88
M1	fall	11/15/2007	55	1.50E+04	3.22E+04	2.10E+04	4.50E+04	0.53	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M2	fall	11/15/2007	55	5.50E+03	1.06E+04	4.20E+03	8.13E+03	0.48	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M3	fall	11/15/2007	55	1.50E+03	3.65E+03	5.00E+03	1.22E+04	0.59	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M4	fall	11/15/2007	55	4.00E+03	9.85E+03	3.60E+03	8.86E+03	0.59	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M5	fall	11/15/2007	55	3.60E+03	8.15E+03	1.20E+04	2.72E+04	0.56	14.4	25.0	7.8	11.3	1.799	0.76	1.99	0.69	71.44	78.94	0.00	1.47
M1	fall	11/29/2006	69	8.10E+03	1.39E+04	4.20E+04	7.22E+04	0.42	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M2	fall	11/29/2006	69	8.60E+03	2.04E+04	3.30E+04	7.82E+04	0.58	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M3	fall	11/29/2006	69	6.50E+03	1.21E+04	3.90E+03	7.24E+03	0.46	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M4	fall	11/29/2006	69	5.00E+02	1.07E+03	5.90E+03	1.27E+04	0.53	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M5	fall	11/29/2006	69	6.90E+03	1.31E+04	6.60E+03	1.25E+04	0.47	18.9	19.4	8.9	6.6	1.474	0.81	1.79	0.72	72.79	72.21	0.00	5.97
M1	fall	12/6/2007	76	5.70E+03	1.27E+04	3.50E+03	7.81E+03	0.55	5.6	22.2	0.0	5.7							0.00	0.00
M2	fall	12/6/2007	76	2.90E+03	4.59E+03	1.40E+03	2.22E+03	0.37	5.6	22.2	0.0	5.7							0.00	0.00
M3	fall	12/6/2007	76	1.00E+03	1.66E+03	1.60E+03	2.65E+03	0.40	5.6	22.2	0.0	5.7							0.00	0.00
M4	fall	12/6/2007	76	5.00E+02	7.10E+02	1.40E+03	1.99E+03	0.30	5.6	22.2	0.0	5.7							0.00	0.00
M5	fall	12/6/2007	76	2.10E+03	3.19E+03	6.80E+03	1.03E+04	0.34	5.6	22.2	0.0	5.7							0.00	0.00
M1	fall	12/13/2006	83	1.40E+03	2.73E+03	4.00E+03	7.80E+03	0.49	11.7	16.1	3.3	0.6							0.00	0.25
M2	fall	12/13/2006	83	1.50E+03	2.98E+03	3.10E+03	6.15E+03	0.50	11.7	16.1	3.3	0.6							0.00	0.25
M3	fall	12/13/2006	83	6.00E+02	1.29E+03	3.00E+04	6.45E+04	0.53	11.7	16.1	3.3	0.6							0.00	0.25
M4	fall	12/13/2006	83	5.00E+02	9.33E+02	3.20E+03	5.97E+03	0.46	11.7	16.1	3.3	0.6							0.00	0.25
M5	fall	12/13/2006	83	2.00E+02	3.97E+02	2.50E+03	4.96E+03	0.50	11.7	16.1	3.3	0.6							0.00	0.25
M1	fall	12/19/2006	89	4.40E+03	8.80E+03	1.04E+04	2.08E+04	0.50	18.9	18.9	4.4	7.8							0.00	0.28
M2	fall	12/19/2006	89	4.40E+03	8.77E+03	1.27E+04	2.53E+04	0.50	18.9	18.9	4.4	7.8							0.00	0.28
M3	fall	12/19/2006	89	1.30E+03	1.85E+03	5.50E+03	7.84E+03	0.30	18.9	18.9	4.4	7.8							0.00	0.28
M4	fall	12/19/2006	89	3.40E+03	5.77E+03	8.10E+03	1.37E+04	0.41	18.9	18.9	4.4	7.8							0.00	0.28

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M5	fall	12/19/2006	89	1.40E+03	2.28E+03	4.00E+03	6.51E+03	0.39	18.9	18.9	4.4	7.8							0.00	0.28
M1	fall	1/3/2007	104	4.10E+03	7.71E+03	3.20E+03	6.02E+03	0.47	7.8	14.4	2.2	5.1	1.741	0.87	3.24	0.71	75.15	76.06	0.00	5.84
M2	fall	1/3/2007	104	7.00E+02	1.45E+03	1.50E+03	3.11E+03	0.52	7.8	14.4	2.2	5.1	1.741	0.87	3.24	0.71	75.15	76.06	0.00	5.84
M3	fall	1/3/2007	104	7.00E+02	1.28E+03	4.70E+03	8.60E+03	0.45	7.8	14.4	2.2	5.1	1.741	0.87	3.24	0.71	75.15	76.06	0.00	5.84
M4	fall	1/3/2007	104	9.00E+02	1.89E+03	2.90E+03	6.09E+03	0.52	7.8	14.4	2.2	5.1	1.741	0.87	3.24	0.71	75.15	76.06	0.00	5.84
M5	fall	1/3/2007	104	4.10E+03	7.40E+03	2.80E+03	5.06E+03	0.45	7.8	14.4	2.2	5.1	1.741	0.87	3.24	0.71	75.15	76.06	0.00	5.84
M1	fall	1/11/2007	112	1.57E+03	3.98E+03	3.80E+03	9.62E+03	0.61	1.1	18.3	-2.8	5.8	1.585	0.83	1.80	0.65	60.12	73.30	0.00	3.45
M2	fall	1/11/2007	112					0.64	1.1	18.3	-2.8	5.8	1.585	0.83	1.80	0.65	60.12	73.30	0.00	3.45
M3	fall	1/11/2007	112	2.10E+02	5.22E+02	1.60E+03	3.98E+03	0.60	1.1	18.3	-2.8	5.8	1.585	0.83	1.80	0.65	60.12	73.30	0.00	3.45
M4	fall	1/11/2007	112	5.20E+02	1.00E+03	1.00E+02	1.92E+02	0.48	1.1	18.3	-2.8	5.8	1.585	0.83	1.80	0.65	60.12	73.30	0.00	3.45
M5	fall	1/11/2007	112	7.30E+02	1.70E+03	1.40E+03	3.27E+03	0.57	1.1	18.3	-2.8	5.8	1.585	0.83	1.80	0.65	60.12	73.30	0.00	3.45
M1	fall	1/24/2007	125	4.80E+02	9.73E+02	1.45E+03	2.94E+03	0.51	2.8	19.4	0.0	2.7	0.895	0.38	1.86	0.47	87.93	74.73	0.00	1.91
M2	fall	1/24/2007	125	1.30E+03	3.05E+03	1.10E+03	2.58E+03	0.57	2.8	19.4	0.0	2.7	0.895	0.38	1.86	0.47	87.93	74.73	0.00	1.91
M3	fall	1/24/2007	125	9.30E+02	1.67E+03	6.50E+02	1.17E+03	0.44	2.8	19.4	0.0	2.7	0.895	0.38	1.86	0.47	87.93	74.73	0.00	1.91
M4	fall	1/24/2007	125	1.74E+03	3.64E+03	2.90E+03	6.06E+03	0.52	2.8	19.4	0.0	2.7	0.895	0.38	1.86	0.47	87.93	74.73	0.00	1.91
M5	fall	1/24/2007	125	2.18E+03	4.56E+03	9.40E+03	1.97E+04	0.52	2.8	19.4	0.0	2.7	0.895	0.38	1.86	0.47	87.93	74.73	0.00	1.91
M1	fall	2/1/2007	133	2.70E+02	4.60E+02	2.90E+02	4.94E+02	0.41	-1.1	12.2	-6.1	-1.8	2.06	1.07	2.06	0.81	52.32	58.16	0.00	0.08
M2	fall	2/1/2007	133	3.90E+02	6.50E+02	2.20E+02	3.67E+02	0.40	-1.1	12.2	-6.1	-1.8	2.06	1.07	2.06	0.81	52.32	58.16	0.00	0.08
M3	fall	2/1/2007	133	7.60E+02	1.47E+03	4.40E+03	8.49E+03	0.48	-1.1	12.2	-6.1	-1.8	2.06	1.07	2.06	0.81	52.32	58.16	0.00	0.08
M4	fall	2/1/2007	133	3.00E+01	5.62E+01	1.10E+02	2.06E+02	0.47	-1.1	12.2	-6.1	-1.8	2.06	1.07	2.06	0.81	52.32	58.16	0.00	0.08
M5	fall	2/1/2007	133	3.80E+02	7.98E+02	7.40E+03	1.55E+04	0.52	-1.1	12.2	-6.1	-1.8	2.06	1.07	2.06	0.81	52.32	58.16	0.00	0.08
M1	fall	2/13/2007	145	9.00E+01	2.46E+02	1.40E+03	3.82E+03	0.63	7.2	7.2	-0.6	-4.1	1.16	0.58	2.43	0.87	63.66	54.59	0.03	0.89
M2	fall	2/13/2007	145	2.00E+02	4.85E+02			0.59	7.2	7.2	-0.6	-4.1	1.16	0.58	2.43	0.87	63.66	54.59	0.03	0.89
M3	fall	2/13/2007	145	6.60E+02	1.99E+03	7.00E+02	2.11E+03	0.67	7.2	7.2	-0.6	-4.1	1.16	0.58	2.43	0.87	63.66	54.59	0.03	0.89
M4	fall	2/13/2007	145	9.00E+01	2.20E+02	4.00E+02	9.78E+02	0.59	7.2	7.2	-0.6	-4.1	1.16	0.58	2.43	0.87	63.66	54.59	0.03	0.89
M5	fall	2/13/2007	145	2.10E+02	6.45E+02	4.60E+03	1.41E+04	0.67	7.2	7.2	-0.6	-4.1	1.16	0.58	2.43	0.87	63.66	54.59	0.03	0.89
M1	fall	3/2/2007	162	1.50E+02	3.00E+02	5.00E+01	9.99E+01	0.50	9.4	14.4	4.4	1.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	3.81
M2	fall	3/2/2007	162	7.70E+02	1.64E+03	8.70E+02	1.85E+03	0.53	9.4	14.4	4.4	1.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	3.81
M3	fall	3/2/2007	162	1.10E+02	2.08E+02	3.00E+01	5.66E+01	0.47	9.4	14.4	4.4	1.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	3.81
M4	fall	3/2/2007	162	7.90E+02	1.49E+03	7.20E+02	1.35E+03	0.47	9.4	14.4	4.4	1.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	3.81
M5	fall	3/2/2007	162	1.21E+03	2.74E+03	5.70E+02	1.29E+03	0.56	9.4	14.4	4.4	1.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	3.81
M1	fall	3/8/2007	168	4.20E+02	7.06E+02	2.90E+02	4.87E+02	0.40	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M2	fall	3/8/2007	168	3.50E+02	6.35E+02	5.90E+02	1.07E+03	0.45	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M3	fall	3/8/2007	168	2.20E+02	3.82E+02	1.70E+02	2.95E+02	0.42	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M4	fall	3/8/2007	168	3.40E+02	6.12E+02	6.20E+02	1.12E+03	0.44	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M5	fall	3/8/2007	168	7.00E+01	1.24E+02	2.10E+02	3.71E+02	0.43	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M1	fall	3/19/2007	179	3.00E+02	4.13E+02	1.00E+03	1.38E+03	0.27	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M2	fall	3/19/2007	179	1.30E+03	1.84E+03	5.00E+02	7.08E+02	0.29	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M3	fall	3/19/2007	179	3.40E+03	4.78E+03	2.50E+03	3.51E+03	0.29	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M4	fall	3/19/2007	179	1.00E+03	1.44E+03	3.10E+03	4.46E+03	0.30	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M5	fall	3/19/2007	179	7.00E+02	9.21E+02	1.60E+03	2.10E+03	0.24	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M1	fall	3/29/2007	189	4.00E+01	7.48E+01	3.00E+01	5.61E+01	0.47	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M2	fall	3/29/2007	189	9.00E+01	1.75E+02	1.20E+02	2.33E+02	0.49	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M3	fall	3/29/2007	189	2.40E+02	5.35E+02	1.14E+03	2.54E+03	0.55	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M4	fall	3/29/2007	189	4.10E+02	8.18E+02	3.20E+02	6.38E+02	0.50	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M5	fall	3/29/2007	189	4.00E+01	7.74E+01	3.00E+01	5.80E+01	0.48	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M1	fall	4/5/2007	196	2.40E+02	2.95E+02	3.50E+02	4.31E+02	0.19	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.08	56.65	72.40	0.00	0.36
M2	fall	4/5/2007	196	6.00E+01	7.92E+01	6.70E+02	8.85E+02	0.24	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M3	fall	4/5/2007	196	4.00E+01	5.54E+01	5.00E+01	6.92E+01	0.28	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M4	fall	4/5/2007	196	7.00E+01	8.60E+01	5.00E+01	6.14E+01	0.19	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M5	fall	4/5/2007	196	1.10E+02	1.41E+02	7.00E+01	9.00E+01	0.22	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M1	winter	2/13/2007	0	3.50E+06	2.33E+07	9.00E+06	6.00E+07	0.85	7.2	7.2	-0.6	-4.1	1.16	0.58			63.66	54.59	0.03	0.89
M2	winter	2/13/2007	0			5.00E+06	3.29E+07	0.85	7.2	7.2	-0.6	-4.1	1.16	0.58			63.66	54.59	0.03	0.89
M3	winter	2/13/2007	0	1.40E+06	9.34E+06	1.90E+07	1.27E+08	0.85	7.2	7.2	-0.6	-4.1	1.16	0.58			63.66	54.59	0.03	0.89
M4	winter	2/13/2007	0	6.00E+05	4.03E+06	4.00E+06	2.69E+07	0.85	7.2	7.2	-0.6	-4.1	1.16	0.58			63.66	54.59	0.03	0.89
M5	winter	2/13/2007	0	4.00E+05	2.70E+06	7.00E+06	4.73E+07	0.85	7.2	7.2	-0.6	-4.1	1.16	0.58			63.66	54.59	0.03	0.89
M1	winter	2/16/2007	3	4.00E+05	2.08E+06	7.00E+06	3.64E+07	0.81	-3.9	2.8	-7.2	-3.3	1.745	0.88	1.75	0.43	64.46	78.68	0.00	2.01
M2	winter	2/16/2007	3	2.00E+05	1.13E+06	1.00E+07	5.64E+07	0.82	-3.9	2.8	-7.2	-3.3	1.745	0.88	1.75	0.43	64.46	78.68	0.00	2.01
M3	winter	2/16/2007	3	1.00E+05	5.68E+05	8.00E+06	4.55E+07	0.82	-3.9	2.8	-7.2	-3.3	1.745	0.88	1.75	0.43	64.46	78.68	0.00	2.01
M4	winter	2/16/2007	3	9.00E+05	4.61E+06	4.00E+06	2.05E+07	0.80	-3.9	2.8	-7.2	-3.3	1.745	0.88	1.75	0.43	64.46	78.68	0.00	2.01
M5	winter	2/16/2007	3	1.00E+05	5.39E+05	3.00E+06	1.62E+07	0.81	-3.9	2.8	-7.2	-3.3	1.745	0.88	1.75	0.43	64.46	78.68	0.00	2.01
M1	winter	2/20/2007	7	2.30E+04	1.12E+05	7.00E+05	3.42E+06	0.80	7.8	7.8	-0.6	-4.4	2.262	1.17	2.29	0.94	56.85	63.27	0.00	0.03
M2	winter	2/20/2007	7	1.90E+04	9.08E+04	2.20E+06	1.05E+07	0.79	7.8	7.8	-0.6	-4.4	2.262	1.17	2.29	0.94	56.85	63.27	0.00	0.03
M3	winter	2/20/2007	7	1.50E+04	7.86E+04	1.10E+06	5.76E+06	0.81	7.8	7.8	-0.6	-4.4	2.262	1.17	2.29	0.94	56.85	63.27	0.00	0.03
M4	winter	2/20/2007	7	5.00E+03	2.35E+04	7.00E+06	3.29E+07	0.79	7.8	7.8	-0.6	-4.4	2.262	1.17	2.29	0.94	56.85	63.27	0.00	0.03
M5	winter	2/20/2007	7	2.00E+04	9.85E+04	2.40E+06	1.18E+07	0.80	7.8	7.8	-0.6	-4.4	2.262	1.17	2.29	0.94	56.85	63.27	0.00	0.03
M1	winter	2/25/2007	12	7.40E+03	3.84E+04	3.10E+06	1.61E+07	0.81	11.1	14.4	3.9	5.3	2.384	1.26	2.49	1.00	29.31	57.71	0.00	0.66
M2	winter	2/25/2007	12	2.52E+04	1.26E+05	7.00E+05	3.49E+06	0.80	11.1	14.4	3.9	5.3	2.384	1.26	2.49	1.00	29.31	57.71	0.00	0.66

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M3	winter	2/25/2007	12	1.01E+04	4.78E+04	1.56E+07	7.39E+07	0.79	11.1	14.4	3.9	5.3	2.384	1.26	2.49	1.00	29.31	57.71	0.00	0.66
M4	winter	2/25/2007	12	3.20E+03	1.57E+04	5.10E+06	2.51E+07	0.80	11.1	14.4	3.9	5.3	2.384	1.26	2.49	1.00	29.31	57.71	0.00	0.66
M5	winter	2/25/2007	12	1.50E+03	7.72E+03	1.70E+06	8.75E+06	0.81	11.1	14.4	3.9	5.3	2.384	1.26	2.49	1.00	29.31	57.71	0.00	0.66
M1	winter	3/2/2007	17	1.50E+05	6.92E+05	1.99E+07	9.18E+07	0.78	9.4	14.4	4.4	4.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	2.69
M2	winter	3/2/2007	17	7.40E+04	3.29E+05	4.90E+06	2.18E+07	0.78	9.4	14.4	4.4	4.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	2.69
M3	winter	3/2/2007	17	4.90E+05	2.28E+06	2.10E+06	9.77E+06	0.79	9.4	14.4	4.4	4.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	2.69
M4	winter	3/2/2007	17	5.80E+05	2.70E+06	2.80E+06	1.30E+07	0.78	9.4	14.4	4.4	4.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	2.69
M5	winter	3/2/2007	17	2.09E+04	1.04E+05	1.80E+06	8.97E+06	0.80	9.4	14.4	4.4	4.1	0.534	0.21	2.61	0.81	81.11	66.14	1.57	2.69
M1	winter	3/8/2007	23	5.90E+04	1.49E+05	1.00E+07	2.53E+07	0.60	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M2	winter	3/8/2007	23	1.50E+04	4.33E+04	5.30E+06	1.53E+07	0.65	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M3	winter	3/8/2007	23	1.24E+05	3.56E+05	7.90E+05	2.27E+06	0.65	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M4	winter	3/8/2007	23	2.34E+05	6.57E+05	1.20E+06	3.37E+06	0.64	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M5	winter	3/8/2007	23	5.40E+05	1.70E+06	8.60E+06	2.70E+07	0.68	16.7	16.7	7.8	3.3	2.743	1.27	2.76	1.32	37.72	47.41	0.00	0.43
M1	winter	3/19/2007	34	3.80E+04	8.79E+04	1.70E+05	3.93E+05	0.57	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M2	winter	3/19/2007	34	2.41E+05	4.84E+05	8.30E+05	1.67E+06	0.50	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M3	winter	3/19/2007	34	1.06E+08	2.74E+08	1.42E+07	3.68E+07	0.61	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M4	winter	3/19/2007	34	6.10E+06	1.17E+07	7.50E+05	1.43E+06	0.48	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M5	winter	3/19/2007	34	3.60E+05	6.18E+05	5.10E+06	8.75E+06	0.42	3.9	25.0	-0.6	7.2	2.36	1.41	2.83	1.11	51.67	59.67	0.00	7.01
M1	winter	3/29/2007	44	1.50E+05	4.92E+05	1.40E+05	4.59E+05	0.69	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M2	winter	3/29/2007	44	9.00E+04	2.55E+05	1.07E+06	3.03E+06	0.65	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M3	winter	3/29/2007	44	1.90E+05	5.52E+05	5.90E+05	1.72E+06	0.66	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M4	winter	3/29/2007	44	1.00E+04	4.16E+04	5.00E+05	2.08E+06	0.76	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M5	winter	3/29/2007	44	4.00E+05	1.14E+06	4.90E+06	1.39E+07	0.65	27.2	27.2	18.3	14.2	2.858	1.05	2.90	1.17	81.36	65.83	7.44	7.77
M1	winter	4/5/2007	51	1.00E+03	1.97E+03	4.30E+05	8.45E+05	0.49	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M2	winter	4/5/2007	51	1.00E+03	3.09E+03	1.40E+05	4.32E+05	0.68	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M3	winter	4/5/2007	51	1.10E+05	3.63E+05	1.10E+05	3.63E+05	0.70	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M4	winter	4/5/2007	51	1.00E+03	2.86E+03	6.10E+05	1.75E+06	0.65	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M5	winter	4/5/2007	51	6.30E+05	2.26E+06	2.02E+06	7.26E+06	0.72	20.0	25.0	12.2	12.6	2.924	1.07	2.98	1.07	56.65	72.40	0.00	0.36
M1	winter	4/12/2007	58	2.40E+04	1.06E+05	5.30E+04	2.35E+05	0.77	8.3	13.3	6.1	2.0	0.464	0.17	3.31	1.27	80.68	58.47	1.80	1.98
M2	winter	4/12/2007	58	5.00E+06	2.17E+07	4.60E+05	2.00E+06	0.77	8.3	13.3	6.1	2.0	0.464	0.17	3.31	1.27	80.68	58.47	1.80	1.98
M3	winter	4/12/2007	58	1.90E+04	8.32E+04	2.90E+04	1.27E+05	0.77	8.3	13.3	6.1	2.0	0.464	0.17	3.31	1.27	80.68	58.47	1.80	1.98
M4	winter	4/12/2007	58	2.70E+04	1.05E+05	5.50E+04	2.14E+05	0.74	8.3	13.3	6.1	2.0	0.464	0.17	3.31	1.27	80.68	58.47	1.80	1.98
M5	winter	4/12/2007	58	2.20E+04	1.05E+05	6.70E+04	3.19E+05	0.79	8.3	13.3	6.1	2.0	0.464	0.17	3.31	1.27	80.68	58.47	1.80	1.98
M1	winter	4/26/2007	68	3.90E+03	6.62E+03	5.80E+03	9.85E+03	0.41	28.3	28.3	18.9	11.6	3.037	1.43	3.34	1.36	59.90	61.82	0.00	4.75

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M2	winter	4/26/2007	68	1.04E+06	1.72E+06	3.60E+05	5.96E+05	0.40	28.3	28.3	18.9	11.6	3.037	1.43	3.34	1.36	59.90	61.82	0.00	4.75
M3	winter	4/26/2007	68	4.30E+03	6.02E+03	6.80E+03	9.52E+03	0.29	28.3	28.3	18.9	11.6	3.037	1.43	3.34	1.36	59.90	61.82	0.00	4.75
M4	winter	4/26/2007	68	8.00E+02	1.69E+03	9.60E+04	2.03E+05	0.53	28.3	28.3	18.9	11.6	3.037	1.43	3.34	1.36	59.90	61.82	0.00	4.75
M5	winter	4/26/2007	68	8.20E+04	2.06E+05	2.30E+05	5.77E+05	0.60	28.3	28.3	18.9	11.6	3.037	1.43	3.34	1.36	59.90	61.82	0.00	4.75
M1	winter	5/3/2007	75	5.40E+02	2.12E+03	2.00E+04	7.85E+04	0.75	30.0	30.0	20.0	16.7	2.492	1.19	3.31	1.31	60.79	60.22	0.00	2.08
M2	winter	5/3/2007	75	1.10E+03	4.53E+03	2.90E+04	1.19E+05	0.76	30.0	30.0	20.0	16.7	2.492	1.19	3.31	1.31	60.79	60.22	0.00	2.08
M3	winter	5/3/2007	75	1.03E+04	3.33E+04	6.10E+04	1.97E+05	0.69	30.0	30.0	20.0	16.7	2.492	1.19	3.31	1.31	60.79	60.22	0.00	2.08
M4	winter	5/3/2007	75	1.00E+03	2.22E+03	4.30E+04	9.56E+04	0.55	30.0	30.0	20.0	16.7	2.492	1.19	3.31	1.31	60.79	60.22	0.00	2.08
M5	winter	5/3/2007	75	2.40E+02	5.36E+02	1.00E+04	2.23E+04	0.55	30.0	30.0	20.0	16.7	2.492	1.19	3.31	1.31	60.79	60.22	0.00	2.08
M1	winter	5/10/2007	82	6.80E+02	1.16E+03	1.40E+04	2.40E+04	0.42	24.4	24.4	17.8	12.6	2.862	1.08	3.30	1.02	80.56	80.29	0.00	2.90
M2	winter	5/10/2007	82	6.00E+01	1.17E+02	1.30E+05	2.54E+05	0.49	24.4	24.4	17.8	12.6	2.862	1.08	3.30	1.02	80.56	80.29	0.00	2.90
M3	winter	5/10/2007	82	3.00E+01	8.01E+01	3.70E+04	9.87E+04	0.63	24.4	24.4	17.8	12.6	2.862	1.08	3.30	1.02	80.56	80.29	0.00	2.90
M4	winter	5/10/2007	82	2.40E+03	5.22E+03	1.00E+04	2.17E+04	0.54	24.4	24.4	17.8	12.6	2.862	1.08	3.30	1.02	80.56	80.29	0.00	2.90
M5	winter	5/10/2007	82	1.40E+03	2.86E+03	3.00E+03	6.13E+03	0.51	24.4	24.4	17.8	12.6	2.862	1.08	3.30	1.02	80.56	80.29	0.00	2.90
M1	winter	5/16/2007	88	1.60E+02	3.43E+02	1.80E+03	3.86E+03	0.53	26.7	28.9	17.2	17.6	2.91	1.62	3.29	1.54	64.85	69.08	0.00	0.08
M2	winter	5/16/2007	88	1.00E+02	1.31E+02	2.70E+03	3.55E+03	0.24	26.7	28.9	17.2	17.6	2.91	1.62	3.29	1.54	64.85	69.08	0.00	0.08
M3	winter	5/16/2007	88	1.20E+02	2.51E+02	2.60E+04	5.43E+04	0.52	26.7	28.9	17.2	17.6	2.91	1.62	3.29	1.54	64.85	69.08	0.00	0.08
M4	winter	5/16/2007	88	1.00E+03	1.32E+03	2.80E+03	3.69E+03	0.24	26.7	28.9	17.2	17.6	2.91	1.62	3.29	1.54	64.85	69.08	0.00	0.08
M5	winter	5/16/2007	88	1.00E+01	1.48E+01	3.90E+03	5.77E+03	0.32	26.7	28.9	17.2	17.6	2.91	1.62	3.29	1.54	64.85	69.08	0.00	0.08
M1	winter	5/23/2007	95	0.00E+00	0.00E+00	3.50E+03	4.09E+03	0.14	25.0	26.1	18.9	15.2	3.131	1.35	3.36	1.37	78.76	64.82	0.00	0.61
M2	winter	5/23/2007	95	4.30E+02	4.90E+02	4.00E+02	4.56E+02	0.12	25.0	26.1	18.9	15.2	3.131	1.35	3.36	1.37	78.76	64.82	0.00	0.61
M3	winter	5/23/2007	95	0.00E+00	0.00E+00	7.00E+02	8.33E+02	0.16	25.0	26.1	18.9	15.2	3.131	1.35	3.36	1.37	78.76	64.82	0.00	0.61
M4	winter	5/23/2007	95	2.00E+01	2.29E+01	1.40E+02	1.60E+02	0.13	25.0	26.1	18.9	15.2	3.131	1.35	3.36	1.37	78.76	64.82	0.00	0.61
M5	winter	5/23/2007	95	1.80E+03	2.17E+03	1.60E+03	1.93E+03	0.17	25.0	26.1	18.9	15.2	3.131	1.35	3.36	1.37	78.76	64.82	0.00	0.61
M1	winter	5/29/2007	101	1.00E+01	1.13E+01	8.60E+02	9.73E+02	0.12	28.3	28.3	20.6	19.9	2.885	1.09	3.20	1.39	69.50	73.27	0.00	1.40
M2	winter	5/29/2007	101	5.10E+02	5.93E+02	4.00E+03	4.65E+03	0.14	28.3	28.3	20.6	19.9	2.885	1.09	3.20	1.39	69.50	73.27	0.00	1.40
M3	winter	5/29/2007	101	4.00E+02	4.55E+02	6.50E+02	7.40E+02	0.12	28.3	28.3	20.6	19.9	2.885	1.09	3.20	1.39	69.50	73.27	0.00	1.40
M4	winter	5/29/2007	101	2.00E+01	2.32E+01	5.80E+02	6.74E+02	0.14	28.3	28.3	20.6	19.9	2.885	1.09	3.20	1.39	69.50	73.27	0.00	1.40
M5	winter	5/29/2007	101	2.00E+01	2.26E+01	6.00E+02	6.79E+02	0.12	28.3	28.3	20.6	19.9	2.885	1.09	3.20	1.39	69.50	73.27	0.00	1.40
M1	winter	6/6/2007	109	1.20E+02	3.58E+02	9.00E+03	2.68E+04	0.66	23.3	28.9	18.3	19.7							0.69	6.60
M2	winter	6/6/2007	109	1.00E+01	2.37E+01	2.80E+03	6.62E+03	0.58	23.3	28.9	18.3	19.7							0.69	6.60
M3	winter	6/6/2007	109	3.50E+02	8.74E+02	1.30E+03	3.24E+03	0.60	23.3	28.9	18.3	19.7							0.69	6.60
M4	winter	6/6/2007	109	0.00E+00	0.00E+00	1.50E+03	3.92E+03	0.62	23.3	28.9	18.3	19.7							0.69	6.60
M5	winter	6/6/2007	109	1.00E+01	3.06E+01	1.52E+03	4.65E+03	0.67	23.3	28.9	18.3	19.7							0.69	6.60

Sample No.	Season	Sample date	Time (d)	<i>E. coli</i> (cfu g ⁻¹) wet wt.	<i>E. coli</i> (cfu g ⁻¹) dry wt.	ENT (cfu g ⁻¹) wet wt.	ENT (cfu g ⁻¹) dry wt.	MC (%)	Temp PDH (°C)	Temp PWH (°C)	Temp PDA (°C)	Temp PWA (°C)	SR PDH (MJ)	SR PDA (MJ)	SR PWH (MJ)	SR PWA (MJ)	RH PDA (%)	RH PWA (%)	rainfall PDT (cm)	Rainfall PWT (cm)
M1	winter	6/13/2007	116	0.00E+00	0.00E+00	4.80E+03	7.41E+03	0.35	27.2	30.6	20.0	20.6	3.03	1.62	3.19	1.57	72.03	70.87	0.00	0.03
M2	winter	6/13/2007	116	0.00E+00	0.00E+00	1.60E+03	2.15E+03	0.26	27.2	30.6	20.0	20.6	3.03	1.62	3.19	1.57	72.03	70.87	0.00	0.03
M3	winter	6/13/2007	116	0.00E+00	0.00E+00	3.30E+02	5.94E+02	0.44	27.2	30.6	20.0	20.6	3.03	1.62	3.19	1.57	72.03	70.87	0.00	0.03
M4	winter	6/13/2007	116	1.00E+01	1.55E+01	2.00E+02	3.10E+02	0.36	27.2	30.6	20.0	20.6	3.03	1.62	3.19	1.57	72.03	70.87	0.00	0.03
M5	winter	6/13/2007	116	1.00E+01	1.54E+01	2.30E+03	3.54E+03	0.35	27.2	30.6	20.0	20.6	3.03	1.62	3.19	1.57	72.03	70.87	0.00	0.03
M1	winter	6/20/2007	123	1.00E+01	1.33E+01	2.10E+02	2.79E+02	0.25	28.9	31.1	22.8	19.5	3.06	1.29	3.17	1.19	74.02	78.81	0.18	0.28
M2	winter	6/20/2007	123	2.00E+01	2.60E+01	3.70E+02	4.82E+02	0.23	28.9	31.1	22.8	19.5	3.06	1.29	3.17	1.19	74.02	78.81	0.18	0.28
M3	winter	6/20/2007	123	0.00E+00	0.00E+00	3.00E+01	3.81E+01	0.21	28.9	31.1	22.8	19.5	3.06	1.29	3.17	1.19	74.02	78.81	0.18	0.28
M4	winter	6/20/2007	123	5.50E+02	7.90E+02	1.30E+03	1.87E+03	0.30	28.9	31.1	22.8	19.5	3.06	1.29	3.17	1.19	74.02	78.81	0.18	0.28
M5	winter	6/20/2007	123	3.00E+01	4.09E+01	1.10E+03	1.50E+03	0.27	28.9	31.1	22.8	19.5	3.06	1.29	3.17	1.19	74.02	78.81	0.18	0.28
M1	winter	6/27/2007	130	0.00E+00	0.00E+00	1.00E+01	1.25E+01	0.20	30.6	30.6	24.4	21.1	3.16	1.70	3.29	1.51	75.90	71.26	0.00	2.90
M2	winter	6/27/2007	130	0.00E+00	0.00E+00	2.00E+02	2.38E+02	0.16	30.6	30.6	24.4	21.1	3.16	1.70	3.29	1.51	75.90	71.26	0.00	2.90
M3	winter	6/27/2007	130	0.00E+00	0.00E+00	1.10E+02	1.29E+02	0.15	30.6	30.6	24.4	21.1	3.16	1.70	3.29	1.51	75.90	71.26	0.00	2.90
M4	winter	6/27/2007	130	3.00E+01	3.37E+01	2.20E+03	2.47E+03	0.11	30.6	30.6	24.4	21.1	3.16	1.70	3.29	1.51	75.90	71.26	0.00	2.90
M5	winter	6/27/2007	130	1.00E+01	1.30E+01	4.00E+01	5.21E+01	0.23	30.6	30.6	24.4	21.1	3.16	1.70	3.29	1.51	75.90	71.26	0.00	2.90
M1	winter	7/2/2007	135	7.40E+02	8.30E+02	8.00E+02	8.97E+02	0.11	26.1	30.0	18.9	21.9	3.24	1.65	3.24	1.32	65.29	78.69	0.00	0.33
M2	winter	7/2/2007	135	2.00E+01	2.22E+01	2.00E+01	2.22E+01	0.10	26.1	30.0	18.9	21.9	3.24	1.65	3.24	1.32	65.29	78.69	0.00	0.33
M3	winter	7/2/2007	135	1.00E+01	1.14E+01	4.60E+02	5.22E+02	0.12	26.1	30.0	18.9	21.9	3.24	1.65	3.24	1.32	65.29	78.69	0.00	0.33
M4	winter	7/2/2007	135	0.00E+00	0.00E+00	9.00E+02	1.10E+03	0.19	26.1	30.0	18.9	21.9	3.24	1.65	3.24	1.32	65.29	78.69	0.00	0.33
M5	winter	7/2/2007	135	0.00E+00	0.00E+00	2.60E+02	2.75E+02	0.06	26.1	30.0	18.9	21.9	3.24	1.65	3.24	1.32	65.29	78.69	0.00	0.33
Appendix C. Supplemental Statistical Data for Die-off Analysis

C.1. First-order decay models

C.1.1. Predictions of ln E. coli decay during the fall season:

Analysis of Variance

			Sum of	Mean		
Source		DF	Squares	Square	F Value	Pr > F
Model		1	1571.43283	1571.43283	374.31	<.0001
Error		117	491.18637	4.19817		
Corrected	Total	118	2062.61919			
Root MSE		2.04894	R-Square	0.7619		
Dependent Coeff Var	Mean	9.94902 20.59443	Adj R-Sq	0.7598		

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	14.96569	0.32018	46.74	<.0001
Time	Time	1	-0.05808	0.00300	-19.35	<.0001

C.1.2. Predictions of ln E. coli decay during the spring season:

Analysis of Variance

Source	D	Su F Squ	um of uares	Mean Square	F Value	Pr > F
Model Error Corrected To	10 Dtal 10	1 1107.2 6 469.3 7 1576.6	29889 110 33877 53766	7.29889 4.42772	250.08	<.0001
Root MSE Dependent Me Coeff Var	2.10 ean 12.51 16.81	422 R-Squ 236 AdjF 709	uare 0.703 R-Sq 0.699	23 95		

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	17.05568	0.35148	48.53	<.0001
Time	Time	1	-0.07478	0.00473	-15.81	<.0001

Figure C.2. Residual plots predicted ln *E. coli* during the spring season for first-order decay model.

C.1.3. Predictions of ln E. coli decay during the summer season:

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Tot	1 121 al 122	1932.28485 362.06991 2294.35476	1932.28485 2.99231	645.75	<.0001
Root MSE Dependent Mea Coeff Var	1.72983 n 10.72214 16.13326	R-Square Adj R-Sq	0.8422 0.8409		

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	16.40788	0.27275	60.16	<.0001
Time	Time	1	-0.07879	0.00310	-25.41	<.0001

Figure C.3. Residual plots predicted ln *E. coli* during the summer season for first-order decay model.

C.1.4. Predictions of ln E. coli decay during the winter season:

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error	1 102	1940.87664 701.58225	1940.87664 6.87826	282.18	<.0001
Corrected Tot	al 103	2642.45889			
Root MSE Dependent Mea Coeff Var	2.62264 n 8.37674 31.30862	R-Square Adj R-Sq	0.7345 0.7319		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	14.93221	0.46737	31.95	<.0001
Time	Time	1	-0.09946	0.00592	-16.80	<.0001

Predicted Value of ln E. coli

Figure C.4. Residual plots predicted ln *E. coli* during the winter season for first-order decay model.

C.1.5. Predictions of ln enterococci decay during the fall season:

		-			
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	1388.94000	1388.94000	493.43	<.0001
Error	114	320.89250	2.81485		
Corrected Total	115	1709.83250			
Root MSE	1.67775	R-Square	0.8123		
Dependent Mean	10.41652	Adj R-Sq	0.8107		
Coeff Var	16.10663	5			

Analysis of Variance

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	15.28411	0.26886	56.85	<.0001
Time	Time	1	-0.05572	0.00251	-22.21	<.0001

Figure C.5. Residual plots predicted ln enterococci during the fall season for first-order decay model.

C.1.6. Predictions of ln enterococci decay during the spring season:

	Analysis of variance									
		Sum of	Mean							
Source	DF	Squares	Square	F Value	Pr > F					
Model	1	1125.77378	1125.77378	259.20	<.0001					
Error	105	456.04113	4.34325							
Corrected Total	106	1581.81491								
Root MSE	2.08405	R-Square	0.7117							
Dependent Mean	14.23798	Adj R-Sq	0.7090							
Coeff Var	14.63723									

Analysis of Variance

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	18.80298	0.34783	54.06	<.0001
Time	Time	1	-0.07588	0.00471	-16.10	<.0001

Figure C.6. Residual plots predicted ln enterococci during the spring season for first-order decay model.

C.1.7. Predictions of ln enterococci decay during the summer season:

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	1 121 122	2977.43399 361.16584 3338.59982	2977.43399 2.98484	997.52	<.0001
Root MSE Dependent Mean Coeff Var	1.72767 11.53693 14.97512	R-Square Adj R-Sq	0.8918 0.8909		

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	18.59478	0.27240	68.26	<.0001
Time	Time	1	-0.09780	0.00310	-31.58	<.0001

Figure C.7. Residual plots predicted ln enterococci during the summer season for firstorder decay model.

C.1.8. Predictions of ln enterococci decay during the winter season:

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Tota	1 103 1 104	1813.35179 202.87105 2016.22284	1813.35179 1.96962	920.66	<.0001
Root MSE Dependent Mean Coeff Var	1.40343 11.69151 12.00385	R-Square Adj R-Sq	0.8994 0.8984		

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	17.89990	0.24622	72.70	<.0001
Time	Time	1	-0.09510	0.00313	-30.34	<.0001

C.2. Two-staged decay models

C.2.1. Prediction of ln E. coli decay during the summer spring and fall season – first stage:

Analv	sis	of	Var	iance
·		•••		

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		3	46.53837	15.51279	7.64	0.0004
Error		41	83.24771	2.03043		
Corrected	Total	44	129.78608			
Root MSE		1.42493	R-Square	0.3586		
Dependent Coeff Var	Mean	16.25941 8.76374	Adj R-Sq	0.3116		

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	15.76182	0.36779	42.85	<.0001
Time	Time	1	-2.23430	0.79175	-2.82	0.0073
Sq_time		1	1.15042	0.36040	3.19	0.0027
Cu_time		1	-0.12381	0.04055	-3.05	0.0040
	3-					

Figure C.9. Residual plots predicted ln *E. coli* during the fall, spring and summer seasons for first stage, time range 0 to 6.5 days.

C.2.1. Prediction of ln E. coli decay during the summer spring and fall season – second stage:

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	3826.05810	1275.35270	406.82	<.0001
Error	301	943.60798	3.13491		
Corrected Tot	al 304	4769.66607			
Root MSE	1.77057	R-Square	0.8022		
Dependent Mea Coeff Var	n 10.23744 17.29503	Adj R-Sq	0.8002		

Analysis of Variance

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	19.37631	0.45594	42.50	<.0001
Time	Time	1	-0.19978	0.02001	-9.99	<.0001
Sq_time		1	0.00116	0.00023568	4.93	<.0001
Cu_time		1	-0.00000267	7.907467E-7	-3.38	0.0008

Figure C.10. Residual plots predicted ln E. coli during the fall, spring and summer seasons for first stage, beginning at 6.5 days.

Figure C.11. Residual plots predicted ln *E. coli* during the fall, spring and summer seasons combined first and second stage.

C.3. Higher-order approximations

C.3.1. Predictions of ln E. coli decay during the fall season:

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	1882.22882	627.40961	399.98	<.0001
Error	115	180.39038	1.56861		
Corrected To	otal 118	2062.61919			
Root MSE	1.2524	4 R-Square	0.9125		
Dependent Me Coeff Var	ean 9.9490 12.5885	2 AdjR-Sq 9	0.9103		

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	18.22374	0.31923	57.09	<.0001
Time	Time	1	-0.22262	0.01622	-13.72	<.0001
Sq_time		1	0.00153	0.00020591	7.42	<.0001
Cu time		1	-0.00000372	7.071029E-7	-5.26	<.0001

Figure C.12. Residual plots predicted ln *E. coli* during the fall season for higher order approximation.

C.3.2. Predictions of ln E. coli decay during the spring season:

	Analysis of variance							
		Sum of	Mean					
Source	DF	Squares	Square	F Value	Pr > F			
Model	4	1212.31957	303.07989	85.69	<.0001			
Error	103	364.31809	3.53707					
Corrected Total	107	1576.63766						
Root MSE	1.88071	R-Square	0.7689					
Dependent Mean	12.51236	Adj R-Sq	0.7600					
Coeff Var	15.03081							

f Vo . .

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	15.51578	0.55742	27.84	<.0001
Time	Time	1	0.27554	0.07221	3.82	0.0002
Sq_time		1	-0.01227	0.00240	-5.12	<.0001
Cu_time		1	0.00013858	0.00002784	4.98	<.0001
Qu_time		1	-4.93188E-7	1.045539E-7	-4.72	<.0001

Figure C.13. Residual plots predicted ln *E. coli* during the spring season for higher order approximation.

C.3.3. Predictions of ln E. coli decay during the summer season:

Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > FModel 4 2011.48715 502.87179 209.78 <.0001 282.86761 Error 118 2.39718 Corrected Total 2294.35476 122 Root MSE R-Square 0.8767 1.54828 Dependent Mean 10.72214 Adj R-Sq 0.8725 Coeff Var 14.44006

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	15.80443	0.41979	37.65	<.0001
Time	Time	1	0.09486	0.04324	2.19	0.0302
Sq_time		1	-0.00534	0.00115	-4.64	<.0001
Cu_time		1	0.00004994	0.00001069	4.67	<.0001
Qu_time		1	-1.43308E-7	3.199232E-8	-4.48	<.0001

Figure C.14. Residual plots predicted ln *E. coli* during the summer season for higher order approximation.

C.3.4. Predictions of ln E. coli decay during the winter season:

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		3	1891.80700	630.60233	116.15	<.0001
Error		96	521.20488	5.42922		
Corrected	Total	99	2413.01188			
Root MSE		2.33007	R-Square	0.7840		
Dependent	Mean	8.08146	Adj R-Sq	0.7773		
Coeff Var		28.83227				

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	10.88696	0.82403	13.21	<.0001
Time	Time	1	0.21670	0.05731	3.78	0.0003
Sq_time		1	-0.00503	0.00098526	-5.11	<.0001
Cu_time		1	0.00002182	0.0000469	4.65	<.0001

Figure C.15. Residual plots predicted ln *E. coli* during the winter season for higher order approximation.

C.3.5. Predictions of ln enterococci decay during the fall season:

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	6 109 115	1557.75452 152.07798 1709.83250	259.62575 1.39521	186.08	<.0001
Root MSE Dependent Mean Coeff Var	1.18119 10.41652 11.33959	R-Square Adj R-Sq	0.9111 0.9062		

Parameter Estimates

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	15.37542	0.49110	31.31	<.0001
Time	Time	1	0.26625	0.08434	3.16	0.0021
Sq_time		1	-0.01745	0.00410	-4.26	<.0001
Cu_time		1	0.00031971	0.00008200	3.90	0.0002
Qu_time		1	-0.00000271	7.764822E-7	-3.49	0.0007
Qi_time		1	1.098878E-8	3.465963E-9	3.17	0.0020
Si_time		1	-1.7194E-11	5.87152E-12	-2.93	0.0041

Predicted Value of ln enterococi

Figure C.16. Residual plots predicted ln enterococci during the fall season for higher order approximation.

C.3.6. Predictions of ln enterococci decay during the spring season:

Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > FModel 4 1192.53752 298.13438 78.12 <.0001 3.81645 Error 102 389.27739 Corrected Total 106 1581.81491 Root MSE R-Square 0.7539 1.95357 Dependent Mean 14.23798 Adj R-Sq 0.7443 Coeff Var 13.72085

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	17.27294	0.57925	29.82	<.0001
Time	Time	1	0.20863	0.07507	2.78	0.0065
Sq_time		1	-0.00893	0.00249	-3.59	0.0005
Cu_time		1	0.00009306	0.00002893	3.22	0.0017
Qu_time		1	-3.10098E-7	1.08703E-7	-2.85	0.0052

Figure C.17. Residual plots predicted ln enterococci during the spring season for higher order approximation.

C.3.7. Predictions of ln enterococci decay during the summer season:

Analysis of Variance							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	3	3173.13993	1057.71331	760.72	<.0001		
Error	119	165.45989	1.39042				
Corrected Total	122	3338.59982					
Root MSE	1.17916	R-Square	0.9504				
Dependent Mean	11.53693	Adj R-Sq	0.9492				
Coeff Var	10.22075						

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	20.88073	0.28274	73.85	<.0001
Time	Time	1	-0.23507	0.01693	-13.88	<.0001
Sq_time		1	0.00146	0.00025288	5.78	<.0001
Cu_time		1	-0.0000390	0.00000103	-3.80	0.0002

Figure C.18. Residual plots predicted ln enterococci during the summer season for higher order approximation.

C.3.8. Predictions of ln enterococci decay during the winter season:

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	1813.35179	1813.35179	920.66	<.0001
Error	103	202.87105	1.96962		
Corrected To	tal 104	2016.22284			
Root MSE	1.40343	R-Square	0.8994		
Dependent Me Coeff Var	an 11.69151 12.00385	Adj R-Sq	0.8984		

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	17.89990	0.24622	72.70	<.0001
Time	Time	1	-0.09510	0.00313	-30.34	<.0001

Figure C.19. Residual plots predicted ln enterococci during the winter season for higher order approximation.

C.4. Higher-order approximation best models including weather variables

C.4.1. Predictions of ln E. coli decay during the spring season:

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	8	1279.65549	159.95694	53.32	<.0001
Error	99	296.98217	2.99982		
Corrected Total	107	1576.63766			
Root MSE	1.73200	R-Square	0.8116		
Dependent Mean Coeff Var	12.51236 13.84230	Adj R-Sq	0.7964		

Parameter Estimates

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	4.45897	3.51602	1.27	0.2077	0
Time	Time	1	0.39328	0.07635	5.15	<.0001	384.85388
Sq_time		1	-0.01793	0.00264	-6.80	<.0001	7965.66400
Cu_time		1	0.00020163	0.00002982	6.76	<.0001	16416
Qu_time		1	-7.07486E-7	1.088354E-7	-6.50	<.0001	3527.21448
Temp_high	Temp_high	1	-0.49165	0.20691	-2.38	0.0194	40.35464
Temp_avg	Temp_avg	1	0.66522	0.22215	2.99	0.0035	44.21906
Solar_rad_avg	Solar_rad_avg	1	4.54629	1.37589	3.30	0.0013	11.61557
humidity_avg	humidity_avg	1	0.09619	0.03622	2.66	0.0092	6.89171

Predicted Value of ln E. coli

Figure C.20. Residual plots predicted ln *E. coli* during the spring season for higher order approximation with weather variables.

C.4.2. Predictions of ln E. coli decay during the summer season:

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	1587.55883	226.79412	122.85	<.0001
Error	86	158.75873	1.84603		
Corrected Total	93	1746.31755			
Root MSE	1.35869	R-Square	0.9091		
Dependent Mean	11.35599	Adj R-Sq	0.9017		
Coeff Var	11.96450				

Parameter Estimates

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	28.85322	5.14619	5.61	<.0001	0
Time	Time	1	-0.32324	0.05365	-6.02	<.0001	352.67108
Sq_time		1	0.00313	0.00088853	3.53	0.0007	2328.40337
Cu_time		1	-0.00000978	0.0000359	-2.72	0.0078	808.57607
Temp_weekly_avg	Temp_weekly_avg	1	0.64946	0.09855	6.59	<.0001	20.85459
Solar_rad_weekly_avg	Solar_rad_weekly_avg	1	-5.91786	1.62069	-3.65	0.0004	11.87387
humidity_weekly_avg	humidity_weekly_avg	1	-0.18879	0.04615	-4.09	<.0001	4.86466
rainfall_weekly_total	rainfall_weekly_total	1	0.29990	0.12946	2.32	0.0229	2.19124

Predicted Value of ln E. coli

Figure C.21. Residual plots predicted ln *E. coli* during the summer season for higher order approximation with weather variables.

C.4.3. Predictions of ln E. coli decay during the winter season:

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	6	1893.89920	315.64987	69.90	<.0001
Error	88	397.36346	4.51549		
Corrected Total	94	2291.26266			
Root MSE	2.12497	R-Square	0.8266		
Dependent Mean	8.30350	Adj R-Sq	0.8147		
Coeff Var	25.59125				

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	19.48140	4.12337	4.72	<.0001	0
Time	Time	1	0.47350	0.13325	3.55	0.0006	666.60080
Sq_time		1	-0.00708	0.00163	-4.35	<.0001	1945.94587
Cu_time		1	0.00002796	0.00000649	4.31	<.0001	540.07458
Temp_weekly_avg	Temp_weekly_avg	1	-0.24117	0.07259	-3.32	0.0013	7.27337
Solar_rad_weekly_high	Solar_rad_weekly_high	1	-4.99053	2.20895	-2.26	0.0263	18.56346
rainfall_weekly_total	rainfall_weekly_total	1	0.28478	0.12613	2.26	0.0264	1.66605

Figure C.22. Residual plots predicted ln *E. coli* during the winter season for higher order approximation with weather variables.

C.4.4. Predictions of ln enterococci decay during the spring season:

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	8	1332.61255	166.57657	65.51	<.0001
Error	98	249.20236	2.54288		
Corrected Total	106	1581.81491			
Root MSE	1.59464	R-Square	0.8425		
Dependent Mean	14.23798	Adj R-Sq	0.8296		
Coeff Var	11.19991				

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	3.40476	3.33361	1.02	0.3096	0
Time	Time	1	0.24266	0.07216	3.36	0.0011	400.37456
Sq_time		1	-0.00955	0.00244	-3.91	0.0002	7985.80539
Cu_time		1	0.00010057	0.00002736	3.68	0.0004	16225
Qu_time		1	-3.39331E-7	9.951037E-8	-3.41	0.0009	3472.08301
Temp_high	Temp_high	1	0.70917	0.14226	4.99	<.0001	22.12359
Temp_avg	Temp_avg	1	-0.85997	0.17536	-4.90	<.0001	31.92042
Solar_rad_high	Solar_rad_high	1	1.12009	0.46687	2.40	0.0183	4.68354
humidity_avg	humidity_avg	1	0.10777	0.03154	3.42	0.0009	6.12057

Figure C.23. Residual plots predicted ln enterococci during the spring season for higher order approximation with weather variables.

C.4.5. Predictions of ln enterococci decay during the summer season:

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	5	2651.22117	530.24423	521.91	<.0001
Error	93	94.48435	1.01596		
Corrected Total	98	2745.70552			
Root MSE	1.00795	R-Square	0.9656		
Dependent Mean	12.55219	Adj R-Sq	0.9637		
Coeff Var	8.03006				

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	20.07105	0.79332	25.30	<.0001	0
Time	Time	1	-0.32012	0.02325	-13.77	<.0001	131.52905
Sq_time		1	0.00299	0.00041597	7.19	<.0001	964.94758
Cu_time		1	-0.00001056	0.00000182	-5.79	<.0001	389.37715
Temp_high	Temp_high	1	0.13912	0.03765	3.69	0.0004	7.96574
Solar_rad_avg	Solar_rad_avg	1	-1.89212	0.41689	-4.54	<.0001	3.91667

Figure C.24. Residual plots predicted ln enterococci during the summer season for higher order approximation with weather variables.

C.4.5. Predictions of ln enterococci decay during the winter season:

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
	2.		0444.0					
Model	2	1783.55083	891.77541	468.36	<.0001			
Error	97	184.69078	1.90403					
Corrected Total	99	1968.24161						
Root MSE	1.37987	R-Square	0.9062					
Dependent Mean	11.83810	Adj R-Sq	0.9042					
Coeff Var	11.65614							

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	17.78529	0.25427	69.95	<.0001	0
Time	Time	1	-0.09566	0.00320	-29.92	<.0001	1.02250
rainfall_prev_total	rainfall_prev_total	1	0.16150	0.08408	1.92	0.0577	1.02250

Figure C.25. Residual plots predicted ln enterococci during the winter season for higher order approximation with weather variables.

C.5. Predicted and observed plots

Figure C.26. Predicted and observed *E. coli* and enterococci decay. Predicted values are calculated using the equations presented in Table 4.4 for *E. coli* and enterococci decay beginning during the spring monitoring period.

Figure C.27. Predicted and observed *E. coli* and enterococci decay. Predicted values are calculated using the equations presented in Table 4.4 for *E. coli* and enterococci decay beginning during the summer monitoring period.

Figure C.28. Predicted and observed *E. coli* and enterococci decay. Predicted values are calculated using the equations presented in Table 4.4 for *E. coli* and enterococci decay beginning during the winter monitoring period.

Table D.1. Box Plot Study Bacteria, TSS, and Nutrient Results																			
Sample No.	Simu- lation	Date	<i>E. coli</i> TC	<i>E. coli</i> PC	<i>E. coli</i> PAF	ENT TC	ENT PC	ENT PAF	TSS	TDP	DOP	ТР	ТОР	SOP	Nitrate	Ammonia	TKN	тос	DOC
PF1-1	1	6/6/06	7.00E+08			4.40E+06	0.54	1.17	2990	4.20	1.75	12.47	5.94	4.193	0.903	0.340	2.805	14.96	13.40
PF1-2	1	6/6/06	1.10E+09	0.22	0.28	4.20E+06	0.42	0.74	2916	4.90	2.77	8.15	4.08	1.305	1.820	0.422	5.200	16.00	14.00
PF1-3	1	6/6/06	2.00E+08	0.61	1.56	2.50E+06	0.76	3.18	1588	3.20	1.54	6.75	3.02	1.477	1.130	0.325	3.704	15.15	12.80
PF2-1	1	6/6/06	4.50E+03	0.41	0.70	3.30E+03	0.90	9.52	1268	3.40	1.67	7.55	4.27	2.606	1.353	0.449	4.660	17.63	13.90
PF2-2	1	6/6/06	2.00E+03			3.20E+03	0.63	1.70	4386	3.30	1.65	9.47	4.74	3.085	1.282	0.260	3.824	15.91	13.70
PF2-3	1	6/6/06	1.00E+03	0.51	1.06	2.00E+03	0.80	4.03	1912	3.50	1.75	9.20	5.19	3.443	1.199	0.207	3.817	15.69	12.80
PF3-1	1	6/6/06	1.20E+03	0.00	0.00	4.30E+03	0.14	0.17	6636	4.20	2.20	11.25	5.72	3.525	1.865	0.776	4.536	19.45	14.70
PF3-2	1	6/6/06	1.00E+03	0.35	0.55	6.50E+03	0.42	0.73	3806	4.80	3.12	7.85	4.70	1.586	2.704	0.890	6.604	20.67	15.10
PF3-3	1	6/6/06	1.20E+03	0.27	0.38	5.10E+03	0.37	0.60	5464	4.00	1.99	8.23	3.72	1.724	1.857	0.693	4.230	19.28	14.60
PF4-1	1	6/6/06	5.00E+02	0.42	0.72	3.50E+03	0.41	0.70	1134	3.30	2.24	9.20	5.17	2.939	0.913	0.124	3.711	14.24	13.80
PF4-2	1	6/6/06	1.10E+03	0.23	0.30	2.00E+03	0.10	0.11	4478	3.70	1.85	10.05	4.82	2.971	1.006	0.250	4.433	14.85	14.50
PF4-3	1	6/6/06	9.00E+02	0.21	0.26	3.40E+03	0.44	0.77	4932	4.70	2.17	11.16	5.35	3.175	0.844	0.177	3.358	13.90	13.12
PF5-1	1	6/6/06	1.00E+03	0.04	0.04	2.60E+03	0.42	0.72	2858	3.70	1.85	13.40	6.69	4.842	0.951	0.155	2.100	13.80	12.80
PF5-2	1	6/6/06	5.00E+02			3.80E+03			2600	3.51	1.79	11.24	5.61	3.823	3.672	0.430	3.878	19.61	19.13
PF5-3	1	6/6/06	1.20E+03	0.37	0.59	3.90E+03	0.47	0.88	13952	3.60	1.70	15.08	7.49	5.787	1.322	0.179	3.000	14.78	14.30
PF6-1	1	6/6/06							6546	0.430	0.229	0.931	0.455	0.226	0.011	0.006	0.021	5.09	3.57
PF6-2	1	6/6/06							7704	0.367	0.185	0.732	0.378	0.193	0.010	0.004	0.020	4.59	3.57
PF6-3	1	6/6/06							9076	0.280	0.136	0.412	0.212	0.076	0.003	0.001	0.007	3.31	3.12
S1-1	1	6/12/06							5734	0.450	0.229	0.932	0.476	0.247	0.021	0.013	0.055	2.96	2.28
S1-2	1	6/12/06							5648	0.400	0.203	0.787	0.388	0.185	0.039	0.014	0.061	3.35	2.13
S1-3	1	6/12/06							5644	0.357	0.187	0.761	0.390	0.203	0.036	0.012	0.046	2.33	2.06
S2-1	1	6/12/06	5.00E+08	0.25	0.34	5.50E+06	0.07	0.08	2678	6.55	3.28	13.25	6.60	3.318	4.655	1.220	11.260	26.28	16.10
S2-2	1	6/12/06	4.00E+08	0.62	1.02	1.60E+06	0.49	0.98	3816	7.40	3.69	15.74	7.87	4.178	3.201	0.450	10.490	25.61	16.00
S2-3	1	6/12/06	1.00E+08	0.52	0.40	6.00E+05	0.27	0.38	4326	7.95	4.19	26.69	13.03	8.843	2.100	0.400	6.331	24.07	15.20
S3-1	1	6/12/06	2.00E+08	0.35	0.15	5.20E+06	0.30	0.43	1874	7.31	3.66	14.55	7.16	3.504	8.422	0.462	13.800	28.16	15.80
S3-2	1	6/12/06	1.00E+08			3.60E+06	0.35	0.54	5312	9.00	4.47	17.56	8.68	4.213	7.944	0.435	11.419	23.32	15.30
S3-3	1	6/12/06	2.00E+08	0.23	0.23	1.40E+06	0.21	0.27	6246	9.10	4.52	20.82	10.30	5.778	2.116	0.400	7.822	21.01	16.10
S4-1	1	6/12/06	3.00E+08	0.50	0.55	6.20E+03	0.35	0.53	2832	6.85	3.43	22.00	10.48	7.050	2.015	0.660	10.550	22.47	16.90
S4-2	1	6/12/06	1.00E+08	0.63	0.74	2.80E+03	0.33	0.50	4364	6.60	3.27	15.15	7.39	4.126	2.008	0.651	10.541	22.30	16.70
S4-3	1	6/12/06	2.47E+08	0.53	0.55	1.00E+06	0.37	0.58	5038	5.65	2.83	12.36	6.18	3.352	2.000	0.640	10.500	22.09	16.20
S5-1	1	6/12/06	4.00E+08	0.16	0.11	1.11E+07	0.27	0.36	4392	7.50	3.75	18.55	9.16	5.413	8.507	7.910	15.103	29.36	16.60
S5-2	1	6/12/06	2.00E+08	0.14	0.10	5.60E+06	0.26	0.35	3774	6.91	3.44	16.18	7.99	4.545	8.432	4.430	12.712	24.04	16.20
S5-3	1	6/12/06	2.00E+08	0.39	0.27	1.40E+06	0.36	0.56	3698	6.34	3.17	12.27	6.03	2.855	8.401	1.210	11.604	22.61	16.00

Appendix D. Box Plot Study Data

190

Sample No.	Simu- lation	Date	<i>E. coli</i> TC	E. coli PC	<i>E. coli</i> PAF	ENT TC	ENT PC	ENT PAF	TSS	TDP	DOP	ТР	ТОР	SOP	Nitrate	Ammonia	TKN	тос	DOC
S6-1	1	6/12/06	2.00E+08	0.73	1.51	7.70E+06	0.11	0.13	2732	9.21	4.51	11.65	5.83	1.325	5.839	3.614	15.100	24.72	16.10
S6-2	1	6/12/06	5.00E+08			5.10E+06			4128	9.44	4.71	15.45	7.75	3.037	5.800	1.710	11.414	21.96	15.20
S6-3	1	6/12/06	2.04E+08	0.49	0.57	3.70E+06	0.22	0.28	4550	9.87	4.92	17.90	9.39	4.474	1.911	1.011	10.802	21.55	15.20
C1-1	1	6/13/06	7.20E+07	0.08	0.08	2.81E+07	0.18	0.22	1354	2.58	1.37	8.25	4.03	2.654	1.300	0.220	6.650	17.93	16.20
C1-2	1	6/13/06	3.40E+07	0.43	0.24	1.71E+07	0.45	0.82	1588	2.79	1.25	8.95	4.36	3.113	7.706	0.655	12.516	26.86	16.70
C1-3	1	6/13/06	5.70E+07	0.53	0.24	1.52E+07	0.39	0.64	1780	3.90	1.93	15.01	7.39	5.463	5.124	0.219	6.822	19.03	16.40
C2-1	1	6/13/06	5.10E+07	0.33	0.24	3.63E+07	0.20	0.25	2314	2.47	1.22	10.44	5.11	3.892	2.788	0.221	7.166	18.42	16.30
C2-2	1	6/13/06	4.60E+07	0.64	0.61	1.62E+07	0.41	0.70	2340	2.91	1.37	15.35	7.68	6.315	3.542	0.225	8.120	19.73	16.70
C2-3	1	6/13/06	6.10E+07	0.04	0.03	1.80E+07	0.25	0.33	2280	2.88	1.44	14.85	7.43	5.985	2.762	0.221	7.068	18.17	16.10
C3-1	1	6/13/06	6.00E+07	0.61	0.51	1.70E+07	0.57	1.31	2866	2.52	0.25	16.22	8.00	7.750	2.522	0.222	7.331	18.91	16.90
C3-2	1	6/13/06	7.30E+07	0.57	0.45	7.00E+06	0.59	1.43	2614	2.24	1.11	9.75	4.76	3.654	2.500	0.200	6.809	18.40	16.90
C3-3	1	6/13/06	5.40E+07	0.71	0.76	1.70E+07	0.56	1.27	2786	2.33	1.16	10.96	5.37	4.214	2.501	0.220	6.809	18.07	16.70
C4-1	1	6/13/06	5.60E+07	0.44	0.39	1.10E+07	0.68	2.10	3092	3.14	1.57	14.12	7.05	5.484	2.566	0.657	8.600	23.08	16.90
C4-2	1	6/13/06	4.60E+07	0.31	0.33	4.00E+06	0.52	1.08	2806	3.12	1.56	11.26	5.63	4.072	3.100	0.659	10.944	23.93	17.20
C4-3	1	6/13/06	4.60E+05	0.92	1.29	5.00E+06	0.44	0.79	2348	2.22	1.11	11.09	5.43	4.326	1.339	0.401	8.109	19.18	17.00
C5-1	1	6/13/06							1920	4.65	2.32	11.12	5.45	3.134	1.806	3.218	8.422	20.25	17.30
C5-2	1	6/13/06	2.00E+08	0.01	0.01	3.44E+07	0.30	0.43	2218	6.75	3.37	16.35	8.16	4.798	4.000	3.790	11.100	39.58	17.90
C5-3	1	6/13/06	1.00E+08	0.19	0.18	3.01E+07	0.42	0.71	2124	6.58	3.29	13.38	6.59	3.301	1.223	0.714	0.851	18.30	16.40
C6-1	1	6/13/06							2902	0.042	0.020	0.093	0.045	0.025	0.060	0.022	0.111	4.64	3.24
C6-2	1	6/13/06							2614	0.040	0.019	0.086	0.042	0.023	0.065	0.029	0.128	5.11	3.48
C6-3	1	6/13/06							2254	0.029	0.013	0.079	0.039	0.026	0.039	0.021	0.112	4.89	3.37
PF1-1	2	8/24/06	0			0			1636	2.93	1.46	7.20	3.64	2.181	2.440	0.161	4.344	4.86	4.74
PF1-2	2	8/24/06	1000			0			2676	3.65	1.82	12.05	6.04	4.220	2.208	0.130	3.911	4.80	4.60
PF1-3	2	8/24/06	0			0			2148	3.42	1.70	8.13	4.08	2.378	2.115	0.124	3.155	4.66	4.54
PF2-1	2	8/24/06	0			0			2805	4.26	2.12	8.29	4.26	2.135	2.500	0.170	3.419	4.18	4.04
PF2-2	2	8/24/06	0			0			2629	3.58	1.78	8.00	4.00	2.220	2.127	0.142	3.120	3.66	3.14
PF2-3	2	8/24/06	0			0			1946	3.22	1.60	7.23	3.73	2.122	1.950	0.113	2.956	2.61	2.42
PF3-1	2	8/24/06	0			0			1968	3.80	1.89	11.46	5.84	3.942	2.102	0.145	3.188	3.26	2.98
PF3-2	2	8/24/06	0			0			1632	2.90	1.45	7.10	3.65	2.206	1.933	0.126	2.117	2.87	2.78
PF3-3	2	8/24/06	0			0			1918	2.96	1.47	7.35	3.79	2.316	1.623	0.120	1.904	2.67	2.60
PF4-1	2	8/24/06	0			0			1370	2.69	1.34	7.67	3.95	2.604	2.106	0.152	2.65	2.82	2.62
PF4-2	2	8/24/06	0			0			1316	2.46	1.22	6.38	3.30	2.076	1.902	0.144	2.212	2.36	2.12
PF4-3	2	8/24/06	0			0			1197	2.40	1.20	6.04	3.03	1.830	1.774	0.140	2.009	2.03	1.92
PF5-1	2	8/24/06	0			0			1660	2.33	1.16	8.15	4.09	2.923	1.855	0.182	3.534	3.57	3.40

Sample No.	Simu- lation	Date	E. coli TC	E. coli PC	<i>E. coli</i> PAF ENT TC ENT PC	ENT PAF	TSS	TDP	DOP	ТР	ТОР	SOP	Nitrate	Ammonia	TKN	тос	DOC
PF5-2	2	8/24/06	0		0		1829	2.87	1.43	10.60	5.30	3.871	1.795	0.119	2.922	3.01	2.95
PF5-3	2	8/24/06	0		0		1652	2.24	1.12	7.10	3.62	2.503	1.500	0.110	2.651	2.72	2.64
PF6-1	2	8/29/06	0		0		5411	0.422	0.207	0.841	0.521	0.314	0.007	0.002	0.012	2.66	2.62
PF6-2	2	8/29/06	0		0		5174	0.345	0.165	0.510	0.342	0.177	0.005	0.002	0.007	2.19	2.09
PF6-3	2	8/29/06	0		0		4697	0.216	0.084	0.331	0.244	0.160	0.002	0.001	0.002	1.91	1.84
S1-1	2	8/29/06	0		400		1325	0.300	0.145	0.755	0.477	0.332	0.014	0.008	0.046	1.76	1.66
S1-2	2	8/29/06	0		700		1357	0.341	0.168	0.776	0.488	0.320	0.035	0.011	0.051	1.90	1.78
S1-3	2	8/29/06	0		400		1446	0.352	0.172	0.861	0.541	0.369	0.030	0.005	0.036	1.31	1.30
S2-1	2	8/29/06	200		300		621	3.36	1.68	6.51	3.36	1.679	1.100	0.065	2.251	4.60	4.51
S2-2	2	8/29/06	400		700		542	3.20	1.60	6.42	3.31	1.711	1.002	0.041	1.325	4.37	4.22
S2-3	2	8/29/06	100		400		588	3.12	1.55	6.28	3.24	1.686	0.640	0.032	0.977	3.95	3.69
S3-1	2	8/29/06	1500		600		1176	6.94	3.46	8.53	4.37	0.905	0.712	0.105	2.466	4.49	4.37
S3-2	2	8/29/06	2100		600		856	3.15	1.57	7.00	3.60	2.025	0.700	0.059	2.107	3.81	3.75
S3-3	2	8/29/06	2300		400		818	2.98	1.48	6.57	3.39	1.908	0.508	0.040	0.602	3.09	2.91
S4-1	2	8/29/06	0		300		659	3.83	1.91	6.76	3.49	1.581	0.633	0.079	1.344	3.70	3.45
S4-2	2	8/29/06	0		0		518	3.14	1.57	6.15	3.09	1.516	0.415	0.070	0.755	3.06	2.52
S4-3	2	8/29/06	0		100		523	3.01	1.50	5.10	2.66	1.155	0.367	0.042	0.511	2.55	2.28
S5-1	2	8/29/06	0		0		799	3.59	1.79	6.67	3.45	1.656	1.443	0.215	2.635	5.75	4.69
S5-2	2	8/29/06	700		200		577	3.34	1.67	5.92	3.06	1.393	1.660	0.047	1.817	4.57	3.95
S5-3	2	8/29/06	0		500		594	2.57	1.28	5.79	3.01	1.723	0.200	0.013	1.684	3.32	2.95
S6-1	2	8/29/06	0		500		844	5.94	2.97	6.26	3.23	0.261	0.749	0.065	1.705	3.53	2.96
S6-2	2	8/29/06	0		1900		578	3.80	1.89	5.84	3.03	1.141	0.634	0.032	1.536	3.23	2.69
S6-3	2	8/29/06	0		1800		577	3.61	1.81	5.70	2.95	1.147	0.600	0.020	1.872	2.59	2.16
C1-1	2	8/29/06	0		5100		332	2.65	1.30	3.78	2.00	0.702	1.224	0.132	3.614	12.35	11.00
C1-2	2	8/29/06	0		8800		279	2.37	1.13	2.57	1.40	0.264	1.103	0.115	3.566	10.62	9.89
C1-3	2	8/29/06	4500		3500		261	2.00	1.00	2.33	1.28	0.281	1.100	0.080	2.778	9.00	8.06
C2-1	2	8/29/06	100		300		343	3.21	1.60	3.68	1.94	0.346	2.421	0.158	4.355	8.50	8.44
C2-2	2	8/29/06	0		700		284	3.00	1.48	3.60	1.90	0.420	0.855	0.110	3.398	7.46	7.40
C2-3	2	8/29/06	0		1200		230	2.54	1.26	2.76	1.48	0.218	0.300	0.067	3.300	6.18	5.10
C3-1	2	8/29/06	0		200		273	2.80	1.40	3.53	1.88	0.476	1.008	0.284	2.366	5.38	4.18
C3-2	2	8/29/06	100		400		283	2.69	1.30	2.84	1.53	0.232	0.712	0.129	2.025	4.76	3.94
C3-3	2	8/29/06	0		0		286	2.54	1.22	2.75	1.49	0.271	0.700	0.054	1.611	3.83	3.35
C4-1	2	8/29/06	0		400		349	2.88	1.44	5.26	3.74	2.303	1.122	0.158	2.872	5.27	4.78
C4-2	2	8/29/06	0		700		282	2.26	1.08	2.48	1.36	0.278	1.009	0.140	2.655	4.82	4.32
C4-3	2	8/29/06	0		100		277	2.11	1.04	2.20	1.10	0.056	1.000	0.077	2.008	4.53	3.66

Sample No.	Simu- lation	Date	<i>E. coli</i> TC	E. coli E. coli PC PAF	ENT TC	ENT PC	ENT PAF	TSS	TDP	DOP	ТР	ТОР	SOP	Nitrate	Ammonia	TKN	тос	DOC
C5-1	2	8/29/06	100		900			503	2.90	1.45	4.10	2.08	0.630	1.335	0.128	4.533	9.81	7.96
C5-2	2	8/29/06	0		1100			456	2.73	1.36	3.80	1.91	0.550	1.277	0.120	4.225	8.81	7.35
C5-3	2	8/29/06	0		900			412	2.70	1.35	3.73	1.98	0.628	1.200	0.072	3.921	7.78	6.72
C6-1	2	8/29/06	0		100			767	0.032	0.009	0.052	0.033	0.024	0.039	0.014	0.027	5.69	4.65
C6-2	2	8/29/06	0		0			651	0.026	0.011	0.032	0.020	0.009	0.022	0.004	0.025	4.17	2.90
C6-3	2	8/29/06	0		0			333	0.016	0.006	0.023	0.016	0.010	0.007	0.003	0.010	2.82	2.72

Table D.2. Box Plot study preferential attachment to particulates

Sample no.	Soil	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Soil	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Soil	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg
PF1-1	Grosclose	500	2505	8	C1-1	Levy	500			S2-1	Eunola	500	21687	65
	Grosclose	63	86050	245		Levy	63	5600434			Eunola	63	866523	2124
	Grosclose	8	137695	233		Levy	8	701587	1187		Eunola	8	425000	719
PF1-2	Grosclose	500	12852	27	C1-2	Levy	500	192990	401	S2-2	Eunola	500		
	Grosclose	63	24779			Levy	63	585774			Eunola	63	52790	1367
	Grosclose	8	327174	538		Levy	8	2543662	4179		Eunola	8	832258	
PF1-3	Grosclose	500	7735	22	C1-3	Levy	500	15124	43	S2-3	Eunola	500	6196	17
	Grosclose	63		261		Levy	63		6390		Eunola	63		549
	Grosclose	8	1756731	1301		Levy	8	7612500	5639		Eunola	8	4567500	3383
PF2-1	Grosclose	500		11	C2-1	Levy	500		145	S3-1	Eunola	500		14
	Grosclose	63		431		Levy	63		6359		Eunola	63		791
	Grosclose	8	242888	2619		Levy	8	2176471	23470		Eunola	8	1681818	18136
PF2-2	Grosclose	500		16	C2-2	Levy	500		126	S3-2	Eunola	500		
	Grosclose	63		178		Levy	63		4595		Eunola	63		210
	Grosclose	8	97107	816		Levy	8	510870	4291		Eunola	8	252688	2123
PF2-3	Grosclose	500		30	C2-3	Levy	500		443	S3-3	Eunola	500		16
	Grosclose	63	67523	408		Levy	63	625316	3777		Eunola	63	87858	531
	Grosclose	8	615811	2421		Levy	8	4481325	17614		Eunola	8	1660491	6527
PF3-1	Grosclose	500			C3-1	Levy	500			S4-1	Eunola	500		
	Grosclose	63				Levy	63				Eunola	63		
	Grosclose	8		521		Levy	8		840		Eunola	8		1067
PF3-2	Grosclose	500		15	C3-2	Levy	500		189	S4-2	Eunola	500		48
	Grosclose	63	80402	232		Levy	63	1656363	4789		Eunola	63	187961	543
	Grosclose	8	573504	479		Levy	8	912925	763		Eunola	8	912925	763
PF3-3	Grosclose	500		74	C3-3	Levy	500		571	S4-3	Eunola	500		116
	Grosclose	63	32051	83		Levy	63	483425	1257		Eunola	63	154867	403
	Grosclose	8	295359	554		Levy	8	979021	1836		Eunola	8	654206	1227
PF4-1	Grosclose	500	28704	50	C4-1	Levy	500	81207	141	S5-1	Eunola	500	7112	12
	Grosclose	63	79476	159		Levy	63	139144	278		Eunola	63	8844	18
	Grosclose	8	540323	470		Levy	8	1736280	1512		Eunola	8	2093750	1823

Sample no.	Soil	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Soil	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Soil	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg
PF4-2	Grosclose	500	8527	28	C4-2	Levy	500	85140	275	S5-2	Eunola	500	9117	29
	Grosclose	63	19952	65		Levy	63	308320	1005		Eunola	63	39421	129
	Grosclose	8	225377			Levy	8	891060			Eunola	8	672750	
PF4-3	Grosclose	500		44	C4-3	Levy	500		157	S5-3	Eunola	500		36
	Grosclose	63	24222	91		Levy	63	373180	1408		Eunola	63	38053	144
	Grosclose	8	171429	433		Levy	8	752239	1901		Eunola	8	586047	1481
PF5-1	Grosclose	500	1685	20	C5-2	Levy	500	15847	185	S6-1	Eunola	500	3133	37
	Grosclose	63	29149	142		Levy	63	206422	1008		Eunola	63	19550	95
	Grosclose	8		266		Levy	8		2159		Eunola	8		1378
PF5-2	Grosclose	500	1256	27	C5-3	Levy	500	13617	295	S6-2	Eunola	500	1929	42
	Grosclose	63	72370	206		Levy	63	1534462	4376		Eunola	63	278840	795
	Grosclose	8	417783	349		Levy	8	2319231	1938		Eunola	8	1330147	1112
PF5-3	Grosclose	500		15						S6-3	Eunola	500		26
	Grosclose	63	96077	210							Eunola	63	120336	263
	Grosclose	8	262500	199							Eunola	8	644554	489

Appendix E. Supplemental Statistical Data for Box-plot Study

E.1. Multiple Regression Analysis Details for Box Plot Study

E.1.1. E. coli partitioning coefficient: full model

Figure E.1. Residual plots of predicted *E. coli* partitioning coefficient concentration for all three soil types.

E.1.2. Enterococci partitioning coefficient: full model

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	11	21.79170	1.98106	22.81	<.0001
Error	29	2.51916	0.08687		
Corrected Total	40	24.31086			

Root MSE	0.29473	R-Square	0.8964
Dependent Mean	0.81827	Adj R-Sq	0.8571
Coeff Var	36.01886		

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	-0.94187	0.38796	-2.43	0.0216	0
TSS	TSS	1	0.00077745	0.00016359	4.75	<.0001	56.46735
z1		1	18.57816	2.15747	8.61	<.0001	475.71612
z2		1	1.26955	0.48286	2.63	0.0135	24.74545
TSS_z1		1	-0.00063635	0.00017058	-3.73	0.0008	100.59880
TSS_z2		1	-0.00075304	0.00017777	-4.24	0.0002	59.48931
Total_P_z1		1	-1.01389	0.15192	-6.67	<.0001	262.56041
P_ratio_z1		1	-1.37963	0.54953	-2.51	0.0179	104.43648
Total_Organic_P_z1		1	0.76631	0.25566	3.00	0.0055	188.24882
Organic_P_ratio_z1		1	2.36197	0.55850	4.23	0.0002	114.73770
Total_Organic_C_z1		1	-0.90573	0.16996	-5.33	<.0001	781.11498
Organic_C_ratio_z1		1	14.44640	2.97406	4.86	<.0001	40.27882

Figure E.2. Residual plots of predicted enterococci partitioning coefficient concentration for all three soil types.

E.1.3. In E. coli total concentration: full model

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	6816.71571	1363.34314	223.28	<.0001
Error	83	506.78682	6.10587		
Corrected Total	88	7323.50253			
Root MSE	2.47100	R-Square	0.9308		
Dependent Mean	10.33297	Adj R-Sq	0.9266		
Coeff Var	23.91378				

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	-6.92961	0.78127	-8.87	<.0001	0
Total_P	Total_P	1	0.32350	0.10077	3.21	0.0019	3.55228
Diss_Organic_C	Diss_Organic_C	1	1.19672	0.06574	18.20	<.0001	2.20862
z2		1	5.33296	1.27157	4.19	<.0001	5.26642
Total_P_z2		1	-0.22609	0.11400	-1.98	0.0506	7.83461
Total_Organic_C_z1		1	0.42762	0.04897	8.73	<.0001	1.29645

Figure E.3. Residual plots of predicted ln *E. coli* total concentration for all three soil types.
E.1.4. In enterococci total concentration: full model

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	8	3224.40887	403.05111	135.16	<.0001
Error	80	238.55535	2.98194		
Corrected Total	88	3462.96422			
Root MSE	1.72683	R-Square	0.9311		
Dependent Mean	9.46543	Adj R-Sq	0.9242		

Dependent Mean 9.46543 Adj R-Sq Coeff Var 18.24355

Parameter Estimates

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	0.97240	0.59198	1.64	0.1044	0
Diss_Organic_C	Diss_Organic_C	1	0.90990	0.04907	18.54	<.0001	2.52018
z1		1	-4.65642	0.79719	-5.84	<.0001	4.23841
Total_P_z2		1	-3.40860	1.37297	-2.48	0.0151	2326.92077
Total_Organic_P_z2		1	6.82788	2.88599	2.37	0.0204	2525.31741
Diss_Organic_P_z2		1	1.21106	0.61796	1.96	0.0535	25.94652
Total_Organic_C_z1		1	0.33689	0.06175	5.46	<.0001	4.22125
Total_Organic_C_z2		1	0.50089	0.17706	2.83	0.0059	73.38727
Diss_Organic_C_z2		1	-1.10629	0.31148	-3.55	0.0006	99.74499

E.2. Bacterial attachment between soils for each particle size

Table E.1. Bacterial attachment between soils for each particle size. P values showing statistically significant differences between *E. coli* and enterococci associated with sediments retained by the three particle categories, 500 μm, 63 μm, and 8 μm (for each soil type) and also comparing differences between E. coli and enterococci attached to different soil types, Eunola loamy fine sand, Grosclose silt loam, and Levy silty clay loam (for each particle categories).

Soil type	Particle Size µm	<i>E. coli</i> <i>P</i> value	enterococci P value		
E	>500 - 63	< 0.0001	< 0.0001		
fine sand	63 - 8	< 0.0001	0.0001		
inte sand	8 - 500	< 0.0001 < 0.0001 0.0002 0.0001 < 0.0001 < 0.0001 0.3844 < 0.0001 <i>E. coli</i> <i>P</i> value	< 0.0001		
	>500 - 63	0.0002	< 0.0001		
loam	63 - 8	0.0001	0.0235		
Ioann	8 - 500	< 0.0001	< 0.0001		
Levy silty clay	>500 - 63	< 0.0001	< 0.0001		
Levy slity clay	63 - 8	0.3844	0.9994		
Ioann	8 - 500	< 0.0001	< 0.0001		
Particle Size	Soil type	<i>E. coli</i> <i>P</i> value	enterococci P value		
	Eunola - Grosclose	1.0000	0.9956		
>500 µm	Grosclose - Levy	0.0065	< 0.0001		
	Eunola - Levy	0.0215	< 0.0001		
	Eunola - Grosclose	0.9180	0.6826		
63 µm	Grosclose - Levy	< 0.0001	< 0.0001		
	Eunola - Levy	< 0.0001	< 0.0001		
	Eunola - Grosclose	0.1027	0.0384		
8 µm	Grosclose - Levy	0.0027	0.0003		
	Eunola - Levy	0.9340	0.8874		

	Time after			E. coli												
Sample	start of runoff	Runoff		TC (cfu/100	E. coli	E. coli	ENT TC (cfu/100	ENT	ENT	TSS	TDP	ТР	DOP	ТОР	DOC	тос
No.	(min)	volume	Q (cfs)	mL)	PC	PAF	mL)	PC	PAF	(mg/L)						
P2-1	0	0.00060	0.00001	2100000	0.002	0.002	800000	0.033	0.032	579	3.64	3.90	1.82	1.95	15.40	15.40
P2-2	6	0.01604	0.00004	1800000	0.028	0.027	200000	0.582	0.368	341	3.50	3.86	1.75	1.93	16.60	16.70
P2-3	16	0.62646	0.00104	2100000	0.008	0.008	300000	0.085	0.079	193	3.37	3.84	1.68	1.92	16.30	16.40
P2-4	26	1.48625	0.00248	1500000	0.039	0.037	100000	0.047	0.045	165	3.20	3.71	1.58	1.86	15.80	16.50
P2-5	36	1.95498	0.00326	1800000	0.017	0.016	111000	0.079	0.073	111	3.18	3.69	1.66	1.87	16.50	16.50
P2-6	46	2.15220	0.00359	1500000	0.056	0.053	1400000	0.113	0.102	93	2.82	3.60	1.41	1.80	14.80	15.70
P2-7	56	2.35744	0.00393	1200000	0.044	0.042	200000	0.035	0.034	100	2.60	3.65	1.29	1.82	15.30	16.30
P2-8	66	2.76482	0.00461	2000000	0.010	0.010	1000	0.039	0.037	78	2.54	3.60	1.27	1.80	14.90	15.70
P2-9	76	2.96524	0.00494	900000	0.024	0.023	1500000	0.003	0.003	87	2.37	3.59	1.19	1.87	15.70	15.90
P2-10	83	2.96524	0.00494	1600000	0.026	0.026	2200000	0.010	0.010	79	2.70	3.20	1.51	1.58	14.40	16.00
P2-11	88	0.22742	0.00076	600000	0.001	0.001	1100000	0.194	0.162	60	2.67	3.11	1.45	1.59	15.20	16.20
P3-1	0	0.03363	0.000561	1200000			700000			21	4.20	6.85	2.10	3.43	13.80	15.70
P3-2	7	0.36176	0.000861	900000	0.0117	0.0116	57000	0.208	0.172	19	3.93	5.40	1.97	2.64	15.50	16.00
P3-3	17	0.66215	0.001104	900000	0.0063	0.0063	900000	0.371	0.271	24	3.92	5.40	1.96	2.70	15.00	15.60
P3-4	27	1.05943	0.001766	200000			1000			579	3.78	5.15	1.89	2.40	14.00	15.40
P3-5	37	0.78477	0.001308	400000			49000			341	3.75	4.90	1.88	2.45	14.00	15.20
P3-6	47	1.11519	0.001859	400000	0.0238	0.0232	700000			193	3.60	4.80	1.80	2.37	13.70	14.60
P3-7	57	1.11519	0.001859	700000	0.0021	0.0021	44000			165	3.46	3.51	1.73	1.75	13.70	14.50
P3-8	64	1.11519	0.001859	500000	0.0012	0.0012	1100000	0.118	0.105	111	3.08	3.38	1.54	1.68	12.20	14.70
P3-9	69	0.09000	0.0003	400000	0.0523	0.0497	34000			93	3.60	3.95	1.80	1.97	12.80	15.30
P4-1	0	0.03363	0.000561	1200000	0.0141	0.0139	1200000			100	5.10	7.40	2.55	3.70	16.90	16.90
P4-2	4	0.20672	0.000861	300000	0.0850	0.0783	400000	0.473	0.321	78	4.50	5.95	2.25	2.99	16.60	16.80
P4-3	14	0.56511	0.0009	200000	0.0008	0.0008	68000	0.018	0.018	87	3.69	5.95	1.85	3.01	16.10	16.40
P4-4	24	0.61342	0.0010	300000	0.0109	0.0108	57000	0.851	0.460	79	3.60	5.40	1.82	2.71	13.90	16.40
P4-5	34	0.87643	0.0015	300000	0.0242	0.0237	52000	0.011	0.011	60	3.72	4.50	1.91	2.30	14.10	14.40
P4-6	44	0.97697	0.0016	300000	0.0359	0.0346	78000	0.099	0.090	533	3.56	3.86	1.85	1.93	14.50	14.80
P4-7	51	0.97697	0.0016	100000	0.0066	0.0066	53000	0.006	0.006	143	3.45	3.59	1.75	1.83	14.70	15.10
P4-8	56	0.09000	0.0003	93000	0.0278	0.0271	49000	0.005	0.005	38	3.41	3.50	1.69	1.75	13.60	15.60

Appendix F. Transport Plot Study Data: Well Manged Pastureland

Table F.1. Transport Plot Study Bacteria, TSS, and Nutrient Results

Sample #	Time after start of runoff (min)	Runoff volume	Q (cfs)	<i>E. coli</i> TC (cfu/100 mL)	<i>E. coli</i> PC	<i>E. coli</i> PAF	ENT TC (cfu/100 mL)	ENT PC	ENT PAF	TSS (mg/L)	TDP (mg/L)	TP (mg/L)	DOP (mg/L)	TOP (mg/L)	DOC (mg/L)	TOC (mg/L)
P5-1	0	0.01461	0.000244	200000	0.5218	0.3429	90000	0.458	0.314	67	2.62	5.30	1.31	2.64	16.20	17.10
P5-2	6	0.27016	0.0008	700000	0.1430	0.1251	56000	0.144	0.126	36	1.29	4.50	0.65	2.25	15.90	16.30
P5-3	16	0.75440	0.0013	600000	0.2123	0.1751	61000	0.016	0.015	46	2.07	4.30	1.05	2.14	9.91	16.30
P5-4	26	1.30500	0.0022	700000	0.0436	0.0418	60000	0.148	0.129	44	0.76	3.90	0.46	1.96	15.70	16.10
P5-5	36	1.66989	0.0028	300000	0.2310	0.1876	60000	0.212	0.175	41	0.35	3.67	0.18	1.84	16.00	16.30
P5-6	43	1.04983	0.0017	600000	0.0303	0.0294	65000	0.499	0.333	241	0.28	3.25	0.15	2.63	15.20	16.20
P5-7	48	0.42377	0.001413	400000	0.0935	0.0855	51000	0.152	0.132	171	0.26	3.21	0.13	2.61	14.90	16.60

Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg
P2-1	500	2325	525	P3-1	500	433	674	P4-1	500	0	20	P5-1	500	1904	0
	63	29	1167		63	117	190		63	87	127		63	270	450
	8	1045	591		8	2082	1388		8		991		8	1080	170
P2-2	500	90	76	P3-2	500		80	P4-2	500			P5-2	500	700	280
	63	147	295		63	498	208		63				63	469	
	8	655	2531		8	525	875		8				8	3321	515
P2-3	500			P3-3	500			P4-3	500			P5-3	500		
	63		1150		63	552	828		63				63	1522	174
	8	1187	687		8				8				8	4541	
P2-4	500			P3-4	500			P4-4	500			P5-4	500		
	63	180	2160		63				63	360	600		63	1091	764
	8	1708	2733		8				8		113		8	568	1364
P2-5	500			P3-5	500			P4-5	500			P5-5	500	1635	102
	63		660		63				63				63	60	148
	8				8				8				8	4992	588
P2-6	500			P3-6	500			P4-6	500			P5-6	500	187	
	63				63				63	584	531		63	59	76
	8				8				8	153			8	1808	1154
P2-7	500			P3-7	500			P4-7	500			P5-7	500		
	63				63				63	159	265		63	1021	333
	8				8				8				8	682	375
P2-8	500			P3-8	500			P4-8	500						
	63				63				63						
	8				8				8						
P2-9	500			P3-9	500										
	63	667	583		63	763	678								
	8				8	2140	2345								
P2-10	500	383													
	63	27	135												
	8														
P2-11	500														
	63														
	8														

Table F.2. Transport plot study preferential attachment to particulates

Appendix G. Supplemental Statistical Data for Transport Plot Study: Well Managed Pastureland

G.1. Bacterial partitioning related to flow regime

G.1.1. E. coli Total Concentrations

G.1.1.1. Test for Normality

Tests for Normality (rising)

Tests for Normality (peak)

Test	Sta	tistic	p Valu	ie
Shapiro-Wilk	W	0.771755	Pr < W	0.0066
Kolmogorov-Smirnov	D	0.241242	Pr > D	0.0959
Cramer-von Mises	W-Sq	0.145271	Pr ≻ W-Sq	0.0227
Anderson-Darling	A-Sq	0.907768	Pr > A-Sq	0.0136

Stem	Leaf	#	Boxplot				Normal F	robability	Plot	
2	0	1	*	2250000+						*
1										++++++++
1				1250000+					++++++	++
0	5779	4	++-+	1				+++*++*++	+ *	
0	13334	5	**	250000+		*	+*++++*	·+ *		
	+			+ -	+	- +	+ + -	+ + -	+	++
Mul	tiply Stem.Leaf by 10**+6				-2		- 1	0	+1	+2

Tests for Normality (recession)

	Test	Sta	tistic	p Va	lue					
	Shapiro-Wilk	W	0.814108	Pr < W	0.0784					
	Kolmogorov-Smirnov	D	0.345296	Pr > D	0.0237					
	Cramer-von Mises	W-Sq	0.113835	Pr ≻ W-Sq	0.0561					
	Anderson-Darling	A-Sq	0.618914	Pr > A-Sq	0.0570					
Stem	Leaf	#	Boxplot			Normal	Probabilit	v Plot		
16	0	1	*	1700000+				- ,	*	+++
14				1					++	+++
12				İ				+	·+++	
10				i				++++		
8				900000+			++	+++		
6	00	2	++-+				++*+	*		
4	00	2	* *			*	++*+			
2						+++•	+			
0	9	1	0	100000+	*	+++				
	+++++++	+		+	+ +	+	+ + +	+ +	+	+ +
Mul	tiply Stem.Leaf by 10)**+5			-2	- 1	0	+1		+2

G.1.1.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Ecoli_total Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	149.50	180.0	27.284295	14.950000
recession	6	90.00	108.0	22.762364	15.000000
rising	19	390.50	342.0	30.087045	20.552632

Average scores were used for ties.

Chi-Square	2.5986
DF	2
Pr > Chi-Square	0.2727

G.1.2. E. coli Partitioning Coefficient

G.1.2.1. Test for Normality

		Tests fo	r Normality	(rising)					
	Test	Sta	tistic	p Val	ue				
	Shapiro-Wilk	W	0.587744	Pr < W	<0.0001				
	Kolmogorov-Smirnov	D	0.3075	Pr > D	<0.0100				
	Cramer-von Mises	W-Sq	0.463588	Pr > W-Sq	<0.0050				
	Anderson-Darling	A-Sq	2.497252	Pr > A-Sq	<0.0050				
Stem	Leaf	#	Boxplot			Normal	Probabil	ity Plot	
5	2	1	*	0.55+					*
4									+
3									+++++++
2	1	1	0					+++	*+++
1	4	1					++-	+++++*	
0	0011111234468	13	++-+	0.05+	* *	* * *.	+*+**+**	* * *	
	+++	- +		+	-++	+	+ +	-++	+ + +
Mul	tiply Stem.Leaf by	10**-1			-2	-1	0	+1	+2
		Tests fo	r Normality	(peak)					
	Test	Sta	tistic	p Val	ue				
	Shapiro-Wilk	W	0.558008	Pr < W	<0.0001				
	Kolmogorov-Smirnov	D	0.380333	Pr > D	<0.0100				
	Cramer-von Mises	W-Sq	0.355614	Pr > W-Sq	<0.0050				
	Anderson-Darling	A-Sq	1.901796	Pr > A-Sq	<0.0050				
Stem	Leaf	#	Boxplot			Normal	Probabil	ity Plot	
2	3	1	*	0.225+					* ++
1									++++++
1				0.125+				++++	++++
0							++-	+++++	
0	001122244	9	++	0.025+	*	* * .	+*++*+*	* * *	
	+++	- +		+	-++	+	+ +	-++	+ + +
Mul	tiply Stem.Leaf by	10**-1			-2	-1	0	+1	+2
		Tests fo	r Normality	(recession)					
	Test	Sta	tistic	p Val	ue				
	Shapiro-Wilk	w	0.906249	Pr < W	0.4122				
	Kolmogorov-Smirnov	D	0.27014	Pr > D	>0.1500				
	Cramer-von Mises	W-Sq	0.070428	Pr > ₩-Sq	0.2365				
	Anderson-Darling	A-Sq	0.390274	Pr > A-Sq	>0.2500				

Stem	Leaf	#	Boxplot			Normal Pr	robabili	ty Plot		
8	3	1	0	0.09+				*+	+++++	
6				1				+++++++		
4	2	1	++	0.05+			++++	+*		
2	680	3	* + *	1		*++-	-*++ *			
0	1	1	I	0.01+		*++++++				
	+			+ -	+	+ + +	+	+	+++	t
Mult	iply Stem.Leaf by 10**-2	2			-2	- 1	0	+1	+2	

G.1.2.2. Kruskal-Wallis rank test

stage	N	Sum of Scores	Expected Under H0	Std Dev Under HO	Mean Score
peak	10	144.0	165.0	24.596748	14.400000
rising	16	274.0	264.0	26.532998	17.125000

Wilcoxon Scores (Rank Sums) for Variable Ecoli_ratio Classified by Variable stage

Kruskal-Wallis Test

Chi-Square	0.8013
DF	2
Pr > Chi-Square	0.6699

G.1. 3. E. coli Particulate Attached Fraction

G.1.3.1. Test for Normality

Test	Sta	tistic	p Val	lue	
Shapiro-Wilk	W	0.667502	Pr < W	<0.0001	
Kolmogorov-Smirnov	D	0.279195	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	0.366147	Pr > ₩-Sq	<0.0050	
Anderson-Darling	A-Sq	1.994573	Pr > A-Sq	<0.0050	

Tests for Normality (peak)

	Test	Sta	tistic	p Val	ue					
	Shapiro-Wilk	W	0.595248	Pr < W	<0.0001					
	Kolmogorov-Smirnov	D	0.353986	Pr > D	<0.0100					
	Cramer-von Mises	W-Sq	0.309159	Pr > ₩-Sq	<0.0050					
	Anderson-Darling	A-Sq	1.694964	Pr > A-Sq	<0.0050					
Stem	Leaf	#	Boxplot			Normal	Probabili	ty Plot		
1	9	1	*	0.175+					*	+++++
1								+-	+++++-	+++
0				ĺ			++	++++++		
0	001122234	9	++	0.025+	*	* *++	*++*+*+ *	* *		
	+++	+		+	-++	+ +	+	++	+	+ +
Mul	tiply Stem.Leaf by 1	0**-1			-2	- 1	0	+1		+2
			Test	s for Normali	ty (reces	ssion)				

	Test	Sta	tistic	p Val	.ue				
	Shapiro-Wilk	W	0.917888	Pr < W	0.4903				
	Kolmogorov-Smirnov	D	0.263226	Pr > D	>0.1500				
	Cramer-von Mises	W-Sq	0.066078	Pr ≻ W-Sq	>0.2500				
	Anderson-Darling	A-Sq	0.364246	Pr > A-Sq	>0.2500				
Stem	Leaf	#	Boxplot			Normal	Probabili	ity Plot	
8	5	1		0.085+					* +++
7								+	+++
6								+++	
5	0	1	++					++++	
4			1 1	0.045+			+++	- *	
3			+				++++		
2	679	3	**			*-	+++* *		
1			I			++++			
0	1	1	Ì	0.005+	*	+++			
	+++	+		+	-++	+ +	++	++	+ + +
Mul	tiply Stem.Leaf by 1	0**-2			-2	- 1	0	+1	+2

G.1.3.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Ecoli_percent Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	144.0	165.0	24.596748	14.400000
recession	6	110.0	99.0	20.712315	18.333333
rising	16	274.0	264.0	26.532998	17.125000

Kruskal-Wallis Test

Chi-Square	0.8013
DF	2
Pr > Chi-Square	0.6699

G.1.4. Enterococci Total Concentrations

G.1.4.1. Test for Normality

Tests for Normality (rising)

	Test	Sta	tistic	p Val	ue				
	Shapiro-Wilk	W	0.764404	Pr < W	0.0004				
	Kolmogorov-Smirnov	D	0.272668	Pr > D	<0.0100				
	Cramer-von Mises	W-Sq	0.355526	Pr ≻ W-Sq	<0.0050				
	Anderson-Darling	A-Sq	1.897448	Pr > A-Sq	<0.0050				
Stem	Leaf	#	Boxplot			Normal F	Probability	Plot	

Tests for Normality (peak)

Test	Sta	tistic	p Val	.ue
Shapiro-Wilk	W	0.6897	Pr < W	0.0007
Kolmogorov-Smirnov	D	0.401786	Pr > D	<0.0100
Cramer-von Mises	W-Sq	0.295291	Pr ≻ W-Sq	<0.0050
Anderson-Darling	A-Sq	1.513677	Pr > A−Sq	<0.0050

G.1.4.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable enterococci_total Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	158.50	180.0	27.372700	15.850000
recession	6	97.00	108.0	22.836117	16.166667
rising	19	374.50	342.0	30.184531	19.710526

Average scores were used for ties.

Chi-Square	1.1629
DF	2
Pr > Chi-Square	0.5591

G.1.5. Enterococci Partitioning Coefficient

G.1.5.1. Test for Normality

Tests for Normality (recession)

	Test	Sta	tistic	p Val	.ue				
	Shapiro-Wilk	W	0.858144	Pr < W	0.2217				
	Kolmogorov-Smirnov	D	0.256609	Pr > D	>0.1500)			
	Cramer-von Mises	W-Sq	0.063661	Pr ≻ W-Sq	>0.2500)			
	Anderson-Darling	A-Sq	0.397289	Pr > A-Sq	0.2251				
Stem	Leaf	#	Boxplot			Normal I	Probabili	ty Plot	
5	0	1	0	0.55+				5	+++++
4				1				*++	++
3				ĺ				+++++	
2				ĺ			+++	++	
1	59	2	++-+	l			+++*+	*	
0	01	2	++	0.05+		* +++*-	+		
	+++	+		+	-++-	+ +	+	++	+ + +
Mul	tiply Stem.Leaf by 10	0**-1			-2	- 1	0	+1	+2

G.1.5.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable enterococci_ratio Classified by Variable stage

stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	8	89.0	116.00	19.663842	11.1250
recession	5	71.0	72.50	16.670833	14.2000
rising	15	246.0	217.50	21.708293	16.4000

Kruskal-Wallis Test

Chi-Square	2.1536
DF	2
Pr > Chi-Square	0.3407

G.1.6. Enterococci Particulate Attached Fraction

G.1.6.1. Test for Normality

Test	Statistic		p Value	
Shapiro-Wilk	W	0.867717	Pr < W	0.0312
Kolmogorov-Smirnov	D	0.19783	Pr > D	0.1129
Cramer-von Mises	W-Sq	0.1432	Pr > ₩-Sq	0.0250
Anderson-Darling	A-Sq	0.806887	Pr > A-Sq	0.0287

Tests for Normality (recession)

	Test	Sta	tistic	p Val	ue				
	Shapiro-Wilk	W	0.89825	Pr < W	0.4003				
	Kolmogorov-Smirnov	D	0.211222	Pr > D	>0.1500				
	Cramer-von Mises	W-Sq	0.046722	Pr > ₩-Sq	>0.2500				
	Anderson-Darling	A-Sq	0.312726	Pr > A-Sq	>0.2500				
Stem	Leaf	#	Boxplot			Normal Pi	robabili	ty Plot	
3	3	1	Ì	0.325+				*+-	+++
2			Ì					+++	
2				l				++++	
1	6	1	++	0.175+			+++	*	
1	3	1	*+*				++*+		
0			1 1			++-	+		
0	01	2	++	0.025+		* ++++*			
	++++	+		+	-++-	+ +	+	++	. + + +
Mul	tiply Stem.Leaf by 10	0**-1			-2	- 1	0	+1	+2

G.1.6.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable enterococci_percent Classified by Variable stage

stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	8	89.0	116.00	19.663842	11.1250
recession rising	5 15	246.0	217.50	21.708293	14.2000

Kruskal-Wallis Test

Chi-Square	2.1536
DF	2
Pr > Chi-Square	0.3407

G.1.7. Total Phosphorous Concentration

G.1.7.1. Test for Normality

Tests for Normality (rising)

	Test	Sta	tistic	p Val	ue				
	Shapiro-Wilk	W	0.906409	Pr < W	0.0636				
	Kolmogorov-Smirnov	D	0.175401	Pr > D	0.1250				
	Cramer-von Mises	W-Sq	0.086876	Pr ≻ W-Sq	0.1608				
	Anderson-Darling	A-Sq	0.607592	Pr > A-Sq	0.0982				
Stem	Leaf	#	Boxplot			Normal F	Probabili	ty Plot	
7	4	1	Ì	7.25+					*+++++
6	8	1	l	1					*++++
6	00	2	l	ĺ				++++	+
5			l	ĺ				+++* *	
5	23444	5	++	Í			*+**	+ *	
4	59	2	*+*	ĺ			++**+		
4	3	1		ĺ		++++	+*		
3	6677899	7	++	3.75+	* *	+*+*+* **	*		
	++++	F		+	++	+ + -	+	++	-++
				-	2	- 1	0	+1	+2

Tests for Normality (peak)

Test	Sta	tistic	p Valu	Value	
Shapiro-Wilk	W	0.815793	Pr < W	0.0225	
Kolmogorov-Smirnov	D	0.247959	Pr > D	0.0807	
Cramer-von Mises	W-Sq	0.156103	Pr > ₩-Sq	0.0170	
Anderson-Darling	A-Sq	0.858748	Pr > A-Sq	0.0186	

G.1.7.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Total_P Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	138.0	180.0	27.366943	13.800000
recession	6	37.0	108.0	22.831314	6.166667
rising	19	455.0	342.0	30.178182	23.947368

Average scores were used for ties.

Chi-Square	16.1046
DF	2
Pr > Chi-Square	0.0003

Wilcoxon Scores (Rank Sums) for Variable Total_P Classified by Variable stage

stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	106.0		9.212763	10.60
recession	6	30.0	51.0	9.212763	5.00

Average scores were used for ties.

Wilcoxon Two-Sample Test

30.0000 Statistic

Normal Approximation

Normal Approximation	
Z	-2.2252
One-Sided Pr < Z	0.0130
Two-Sided Pr > Z	0.0261

t Approxim	nati	Lon	1	
One-Sided	Pr	<	Z	0.0209
Two-Sided	Pr	>	Z	0.0418

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	5.1959
DF	1
Pr > Chi-Square	0.0226

Wilcoxon Scores (Rank Sums) for Variable Total_P Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
recession	6	28.0	78.0	15.701115	4.666667
rising	19	297.0	247.0	15.701115	15.631579

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 28.0000

Normal Approximation	
Z	-3.1526
One-Sided Pr < Z	0.0008
Two-Sided Pr > Z	0.0016

t Approximation

One-Sided Pr < Z 0.0022 Two-Sided Pr > |Z| 0.0043

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	10.1410
DF	1
Pr > Chi-Square	0.0015

Wilcoxon Scores (Rank Sums) for Variable Total_P Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
	10		150.0	01 767600	
реак	10	87.0	150.0	21.707038	8.700000
rising	19	348.0	285.0	21.767638	18.315789

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 87.0000

Normal Approximation	
Z	-2.8712
One-Sided Pr < Z	0.0020
Two-Sided Pr > Z	0.0041

t Approximation One-Sided Pr < Z 0.0039 Two-Sided Pr > |Z| 0.0077

Z includes a continuity correction of 0.5.

Chi-Square	8.3764
DF	1
Pr > Chi-Square	0.0038

G.1.8. Phosphorous Partitioning Ratio

G.1.8.1. Test for Normality

Tests for Normality (recession)

G.1.8.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable P_ratio Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	162.0	180.0	27.386128	16.200000
recession	6	102.0	108.0	22.847319	17.000000
rısıng	19	366.0	342.0	30.199338	19.263158

Kruskal-Wallis Test

Chi-Square	0.6544
DF	2
Pr > Chi-Square	0.7209

G.1.9. Phosphorous Particulate Attached Fraction

G.1.9.1. Test for Normality

Test	Sta	tistic	p Va:	p Value		
Shapiro-Wilk	W	0.928474	Pr < W	0.1623		
Kolmogorov-Smirnov	D	0.13621	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.072258	Pr > W-Sq	0.2491		
Anderson-Darling	A-Sq	0.462446	Pr > A-Sq	0.2351		

Tests for Normality (peak)

Test	Sta	tistic	p Valu	e
Shapiro-Wilk	W	0.811635	Pr < W	0.0201
Kolmogorov-Smirnov	D	0.247822	Pr > D	0.0810
Cramer-von Mises	W-Sq	0.135272	Pr ≻ W-Sq	0.0318
Anderson-Darling	A-Sq	0.807425	Pr > A-Sq	0.0238

Tests for Normality (recession)

Test	Sta	tistic	p Value			
Shapiro-Wilk	W	0.730105	Pr < W	0.0126		
Kolmogorov-Smirnov	D	0.363632	Pr > D	0.0141		
Cramer-von Mises	W-Sq	0.145525	Pr ≻ W-Sq	0.0202		
Anderson-Darling	A-Sq	0.816073	Pr > A-Sq	0.0161		

G.1.9.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable P_percent Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under H0	Std Dev Under HO	Mean Score
peak	10	162.0	180.0	27.386128	16.200000
recession	6	102.0	108.0	22.847319	17.000000
rising	19	366.0	342.0	30.199338	19.263158

Kruskal-Wallis Test

Chi-Square	0.6544
DF	2
Pr > Chi-Square	0.7209

G.1.10. Total Organic Phosphorous Concentration

G.1.10.1. Test for Normality

	Test	Sta	tistic	p Val	ue				
	Shapiro-Wilk	W	0.907592	Pr < W	0.0669				
	Kolmogorov-Smirnov	D	0.171085	Pr > D	0.1473				
	Cramer-von Mises	W-Sq	0.081168	Pr ≻ W-Sq	0.1953				
	Anderson-Darling	A-Sq	0.580777	Pr > A-Sq	0.1169				
Stem	ı Leaf	#	Boxplot			Normal	Probabili	ty Plot	
З	8 7	1	Ì	3.75+					*++++++
З	8 004	3	Ì	1				*++*	++++
2	2 6677	4	++	2.75+			+**	*+*+*+	
2	2 01344	5	*+*	1		+++	+*+***		
1	889999	6	++	1.75+	* ++*+-	+*+*+* *	*		
	+			+	++	+ +	+	++	++
				-	2	-1	0	+1	+2

Tests for Normality (peak)

Shapiro-Wilk	W	0.837139	Pr < W	0.0408
Kolmogorov-Smirnov	D	0.259018	Pr > D	0.0558
Cramer-von Mises	W-Sq	0.135513	Pr ≻ W-Sq	0.0315
Anderson-Darling	A-Sq	0.766545	Pr ≻ A-Sq	0.0316

Tests for Normality (recession)

	Test	Sta	tistic	p Val	ue						
	Shapiro-Wilk	W	0.818546	Pr < W	0.0857						
	Kolmogorov-Smirnov	D	0.221675	Pr > D	>0.1500						
	Cramer-von Mises	W-Sq	0.0789	Pr ≻ W-Sq	0.1825						
	Anderson-Darling	A-Sq	0.507185	Pr > A-Sq	0.1205						
Stem	Leaf	#	Boxplot			Normal	Probability	/ Plot			
26	12	2	++	2.7+			- k	*	+*+++		
24			1 1	1				++++			
22			i i	ĺ			+++	++			
20			+	2.1+			++++				
18	7	1	* *				++++ *				
16	5	1				++++	+ *				
14	89	2	++	1.5+	1	*++++ *					
	+++++++	ł		+	-++-	+ +	+ + + -	+ -	+	-++	-
Mul	tiply Stem.Leaf by 10)**- 1			-2	- 1	0	+1		+2	

G.1.10.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Total_Organic_P Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	123.0	180.0	27.386128	12.300000
recession	6	80.0	108.0	22.847319	13.333333
rising	19	427.0	342.0	30.199338	22.473684

Kruskal-Wallis Test

Chi-Square	7.9603
DF	2
Pr > Chi-Square	0.0187

Wilcoxon Scores (Rank Sums) for Variable Total_Organic_P Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	85.0	85.0	9.219544	8.50
recession	6	51.0	51.0	9.219544	8.50

Wilcoxon Two-Sample Test

Statistic 51.0000

Normal Approximation	
Z	0.0000
One-Sided Pr < Z	0.5000
Two-Sided Pr > Z	1.0000

t Approximation

One-Sided	Pr	<	Z	0.5000
Two-Sided	Pr	>	Z	1.0000

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	0.0000
DF	1
Pr > Chi-Square	1.0000

Wilcoxon Scores (Rank Sums) for Variable Total_Organic_P Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
recession	6	50.0	78.0	15.716234	8.333333
rising	19	275.0	247.0	15.716234	14.473684

Wilcoxon Two-Sample Test

Statistic 50.0000

Normal Approximation

Z -1.7498 One-Sided Pr < Z 0.0401 Two-Sided Pr > |Z| 0.0802

t Approximation	
One-Sided Pr < Z	0.0465
Two-Sided Pr > Z	0.0929

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	3.1741
DF	1
Pr > Chi-Square	0.0748

Wilcoxon Scores (Rank Sums) for Variable Total_Organic_P Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	93.0	150.0	21.794495	9.30
rising	19	342.0	285.0	21.794495	18.00

Wilcoxon Two-Sample Test

Statistic 93.0000

Normal Approximation	
Z	-2.5924
One-Sided Pr < Z	0.0048
Two-Sided Pr > Z	0.0095

t Approximation	
One-Sided Pr < Z	0.0075
Two-Sided Pr > Z	0.0150

Z includes a continuity correction of 0.5.

Chi-Square	6.8400
DF	1
Pr > Chi-Square	0.0089

G.1.11. Organic Phosphorous Partitioning Ratio

G.1.11.1. Test for Normality

Test	Statistic		p Value		
Shapiro-Wilk	W	0.677032	Pr < W	<0.0001	
Kolmogorov-Smirnov	D	0.251977	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	0.337236	Pr > ₩-Sq	<0.0050	
Anderson-Darling	A-Sq	1.955028	Pr > A-Sq	<0.0050	

G.1.11.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Organic_P_ratio Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under H0	Std Dev Under HO	Mean Score
peak	10	163.0	180.0	27.386128	16.300000
recession	6	91.0	108.0	22.847319	15.166667
rising	19	376.0	342.0	30.199338	19.789474

Kruskal-Wallis Test

Chi-Square	1.3134
DF	2
Pr > Chi-Square	0.5186

G.1.12. Organic Phosphorous Particulate Attached Fraction

G.1.12.1. Test for Normality

Tests for Normality (peak)

Test	Statistic		p Value	
Shapiro-Wilk	W	0.826359	Pr < W	0.0302
Kolmogorov-Smirnov	D	0.207354	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.120463	Pr > ₩-Sq	0.0494
Anderson-Darling	A-Sq	0.729747	Pr > A-Sq	0.0399

Tests for Normality (recession)

Test	Sta	tistic	p Val	.ue				
Shapiro-Wilk	W	0.675891	Pr < W	0.0034				
Kolmogorov-Smirnov	D	0.388835	Pr > D	<0.0100				
Cramer-von Mises	W-Sq	0.175477	Pr ≻ W-Sq	0.0074				
Anderson-Darling	A-Sq	0.973186	Pr > A-Sq	0.0051				
Stem Leaf	#	Boxplot			Normal	Probabili	ty Plot	
8 45	2	++	0.9+				* +++*+	
6							++++	
4			0.5+			++++	+	
2		+				++++		
0 4499	4	* *	0.1+	*	+*-	++ * *		
+++	- +		+	-++	+	+ + ·	+ +	++
Multiply Stem.Leaf by	10**-1			-2	- 1	0	+1	+2

G.1.12.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Organic_P_percent Classified by Variable stage

stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	163.0	180.0	27.386128	16.300000
recession	6	91.0	108.0	22.847319	15.166667
rising	19	376.0	342.0	30.199338	19.789474

Kruskal-Wallis Test

Chi-Square	1.3134
DF	2
Pr > Chi-Square	0.5186

G.1.13. Total Organic Carbon Concentration

G.1.13.1. Test for Normality

Tests for Normality (rising)

	Test	Sta	tistic	p Val	lue				
	Shapiro-Wilk	W	0.94479	Pr < W	0.3210				
	Kolmogorov-Smirnov	D	0.211409	Pr > D	0.0239				
	Cramer-von Mises	W-Sq	0.096163	Pr ≻ W-Sq	0.1204				
	Anderson-Darling	A-Sq	0.495029	Pr > A-Sq	0.1976				
Stem	Leaf	#	Boxplot			Norma	l Probabili [.]	ty Plot	
17	1	1	1	17.25+					+++*++++
16	55789	5	++	1				*+*+*+*	*
16	0333444	7	* + *	16.25+			**++**++*	+	
15	677	3	++	1		+++*+*	+++		
15	244	3	1	15.25+	+++*++*	F			
	+++	+		+	-++-	+	-++	+ +	. + + +
					-2	- 1	0	+1	+2

Tests for Normality (peak)

Test	Statistic		p Val	ue
Shapiro-Wilk	W	0.882505	Pr < W	0.1394
Kolmogorov-Smirnov	D	0.215402	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.088319	Pr ≻ W-Sq	0.1433
Anderson-Darling	A-Sq	0.513187	Pr > A-Sq	0.1484

G.1.13.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Total_Organic_C Classified by Variable stage

stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	93.50	180.0	27.341983	9.350000
recession	6	109.00	108.0	22.810491	18.166667
rising	19	427.50	342.0	30.150658	22.500000

Average scores were used for ties.

Chi-Square	10.8267
DF	2
Pr > Chi-Square	0.0045

Wilcoxon Scores (Rank Sums) for Variable Total_Organic_C Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score		
peak recession	10 6	67.0 69.0	85.0 51.0	9.212763 9.212763	6.70 11.50		
	Ave	erage scores w	ere used for t	ies.			
Wilcoxon 1	[wo-Sample	e Test					
Statistic		69.0000					
Normal Appro	oximation	1 8005					
2 One-Sided Pr	• • 7	1.8995					
Two-Sided Pr	r > Z	0.0575					
t Approximat	tion 7	0.0004					
Two-Sided Pr	r > Z r > Z	0.0384					
Z includes a	Z includes a continuity correction of 0.5.						
Kruska]	L-Wallis 1	Test					
Chi-Square		3.8174					
DF		1					
Pr > UII-Squ	lare	0.0507					
Wild	coxon Scor	res (Rank Sums Classified b) for Variable y Variable sta	e Total_Organio uge	o_C		
stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score		
recession	6	61.0	78.0	15.673864	10.166667		
rising	19	264.0	247.0	15.673864	13.894737		
	Av	verage scores	were used for	ties.			
Wilcoxon 1	[wo-Sample	e Test					
Statistic		61.0000					
Normal Appro	oximation						
	7	-1.0527					
Two-Sided Pr	r > Z	0.1462					
t Approximat	tion						
One-Sided Pr	r < Z	0.1515					
Iwo-Sided Pr	· > Z	0.3030					
Z includes a	a continui	ity correction	of 0.5.				

Kruskal-Wallis Test

Chi-Square	1.1764
DF	1
Pr > Chi-Square	0.2781

Wilcoxon Scores (Rank Sums) for Variable Total_Organic_C Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	81.50	150.0	21.740747	8.150000
rising	19	353.50	285.0	21.740747	18.605263

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 81.5000

Normal Approximation	
Z	-3.1278
One-Sided Pr < Z	0.0009
Two-Sided Pr > Z	0.0018

t Approximation One-Sided Pr < Z 0.0020

	_			
Two-Sided	Pr	>	Z	0.0041

Z includes a continuity correction of 0.5.

Chi-Square	9.9273
DF	1
Pr > Chi-Square	0.0016

G.1.14. Organic Carbon Partitioning Coefficient

G.1.14.1. Test for Normality

Tests for Normality (rising)

Tests for Normality (peak)

Test		Sta	tistic	p Val	ue				
Shap	iro-Wilk	W	0.644152	Pr < W	0.0002				
Kolm	ogorov-Smirnov	D	0.297931	Pr > D	0.0130				
Cram	er-von Mises	W-Sq	0.251652	Pr ≻ W-Sq	<0.0050				
Ande	rson-Darling	A-Sq	1.45006	Pr > A-Sq	<0.0050				
Stem Leat	f	#	Boxplot			Normal	Probabili	ty Plot	
2 0		1	*	0.225+					*
1				1					+++++++
1				0.125+				+++++	+++
0 567		3	++-+	1			++++*	++*+ *	
0 1222	233	6	* *	0.025+	*	* +*++	*++* *		
	-+++	- +		+	. + +	+ +	+	+ +	++
Multiply	y Stem.Leaf by	10**-1			-2	- 1	0	+1	+2
		Tests fo	r Normality	(recession)					
Test		Sta	tistic	p Val	ue				
Shap	iro-Wilk	W	0.917914	Pr < W	0.4905				
Kolm	ogorov-Smirnov	D	0.186202	Pr > D	>0.1500				
Cram	er-von Mises	W-Sq	0.041409	Pr ≻ W-Sq	>0.2500				
Ande	rson-Darling	A-Sq	0.282968	Pr > A-Sq	>0.2500				

G.1.14.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Organic_C_ratio Classified by Variable stage

stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak recession	10	139.0 158.0	170.0	25.525630	13.900000
rising	17	264.0	289.0	27.758564	15.529412

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square 7.012	
DF	2
Pr > Chi-Square	0.0300

Wilcoxon Scores (Rank Sums) for Variable Organic_C_ratio Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	61.0	85.0	9.212763	6.10
recession	6	75.0	51.0	9.212763	12.50

Average scores were used for ties.

Wilcoxon Two-Sample Test

5.0000	Statistic
5.0000	Statistic

Normal Approximation	
Z	2.5508
One-Sided Pr > Z	0.0054
Two-Sided Pr > Z	0.0107

t Approximation One-Sided Pr > Z 0.0111Two-Sided Pr > |Z| 0.0222

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	6.7865
DF	1
Pr > Chi-Square	0.0092

Wilcoxon Scores (Rank Sums) for Variable Organic_C_ratio Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
recession	6	104.0	72.0	14.279328	17.333333
rising	17	172.0	204.0	14.279328	10.117647

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 104.0000

Normal Approximation	
Z	2.2060
One-Sided Pr > Z	0.0137
Two-Sided Pr > Z	0.0274

t Approximation

 Two-Sided Pr > |Z|
 0.0191

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	5.0221
DF	1
Pr > Chi-Square	0.0250

Wilcoxon Scores (Rank Sums) for Variable Organic_C_ratio Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	133.0	140.0	19.916492	13.300000
rising	17	245.0	238.0	19.916492	14.411765

Wilcoxon Two-Sample Test

Statistic 133.0000

Normal Approximation	
Z	-0.3264
One-Sided Pr < Z	0.3721
Two-Sided Pr > Z	0.7441

t Approximation
One-Sided Pr < Z</td>
 0.3734

 Two-Sided Pr > |Z|
 0.7468

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	0.1235
DF	1
Pr > Chi-Square	0.7252

G.1.15. Organic Carbon Particulate Attached Fraction

G.1.15.1. Test for Normality

Tests for Normality (rising)

Tests for Normality (peak)

Test	Statistic		p Val	ue
Shapiro-Wilk	W	0.679316	Pr < W	0.0005
Kolmogorov-Smirnov	D	0.27022	Pr > D	0.0377
Cramer-von Mises	W-Sq	0.217483	Pr > W-Sq	<0.0050
Anderson-Darling	A-Sq	1.28733	Pr > A-Sq	<0.0050

Tests for Normality (recession)

	Test	Sta	tistic	p Val	.ue				
	Shapiro-Wilk	W	0.921792	Pr < W	0.5184				
	Kolmogorov-Smirnov	D	0.186358	Pr > D	>0.1500				
	Cramer-von Mises	W-Sq	0.039829	Pr ≻ W-Sq	>0.2500				
	Anderson-Darling	A-Sq	0.274304	Pr > A-Sq	>0.2500				
Stem	Leaf	#	Boxplot			Normal	Probabili	ty Plot	
16	3	1	Ì	0.17+				*	+++++
14			l	1				+++++	
12	8	1	++					+*+++	
10	02	2	* + *	ĺ			* ++*++		
8						+	++++		
6	22	2	++	0.07+	*	++++*			
	+++	+		+	-++	+ +	+	+ +	+ + +
Mul	tiply Stem.Leaf by 1	0**-2			-2	- 1	0	+1	+2

G.1.15.2. Kruskal-Wallis rank test

Wilcoxon Scores (Rank Sums) for Variable Organic_C_percent Classified by Variable stage

stage	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
peak	10	139.0	170.0	25.525630	13.900000
recession rising	6 17	158.0 264.0	102.0 289.0	21.422495 27.758564	26.333333 15.529412

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square	7.0122
DF	2
Pr > Chi-Square	0.0300

Wilcoxon Scores (Rank Sums) for Variable Organic_C_percent Classified by Variable stage

stage	Ν	Sum of Scores	Expected Under H0	Std Dev Under HO	Mean Score
peak	10	61.0	85.0	9.212763	6.10
recession	6	75.0	51.0	9.212763	12.50
	A	verage scores	were used for	ties.	
Wilcoxon T	wo-Sampl	e Test			
Statistic		75.0000			
Normal Appro	ximation				
Z		2.5508			
One-Sided Pr	> Z	0.0054			
Two-Sided Pr	> Z	0.0107			
t Approximat	ion				
One-Sided Pr	> Z	0.0111			
Two-Sided Pr	> Z	0.0222			
Z includes a	continu	ity correction	of 0.5.		
Kruskal	-Wallis	Test			
Chi-Square		6.7865			
DF Pr > Chi-Squ	are	0.0092			
Wilco	xon Scor	es (Rank Sums) Classified b	for Variable y Variable sta	Organic_C_pero age	cent
		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
recession	6	104.0	72.0	14.279328	17.333333
rising	17	172.0	204.0	14.279328	10.117647
W 1	A	verage scores	were used for	ties.	
WILCOXON	Iwo-Samp	le lest			
Statistic		104.0000			
Normal Appro	ximation				
Z		2.2060			
One-Sided Pr	> Z	0.0137			
Two-Sided Pr	> Z	0.0274			
t Approximat	ion				
One-Sided Pr	> Z	0.0191			
Two-Sided Pr	> Z	0.0381			
Z includes a	continu	ity correction	of 0.5.		

Kruskal-Wallis Test

Chi-Square	5.0221
DF	1
Pr > Chi-Square	0.0250

Wilcoxon Scores (Rank Sums) for Variable Organic_C_percent Classified by Variable stage

		Sum of	Expected	Std Dev	Mean
stage	Ν	Scores	Under HO	Under HO	Score
peak	10	133.0	140.0	19.916492	13.300000
rising	17	245.0	238.0	19.916492	14.411765

Wilcoxon Two-Sample Test

Statistic	133.0000

Normal Approximation

Z				-0.3264
One-Sided	Pr	<	Ζ	0.3721
Two-Sided	Pr	>	Z	0.7441

t Approximation

One-Sided Pr < Z 0.3734 Two-Sided Pr > |Z| 0.7468

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	0.1235
DF	1
Pr > Chi-Square	0.7252

G.2. Multiple Regression Analysis Details for Transport Plot Study

G.2.1. In E. coli Total Concentrations

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	4.26755	2.13377	3.29	0.0504
Error	32	20.77999	0.64937		
Corrected Total	34	25.04754			

Root MSE	0.80584	R-Square	0.1704
Dependent Mean	13.31202	Adj R-Sq	0.1185
Coeff Var	6.05346		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	10.75398	1.45571	7.39	<.0001	0
Q	Q	1	204.92114	102.17949	2.01	0.0534	1.00114
Diss_Organic_C	Diss_Organic_C	1	0.14864	0.09727	1.53	0.1363	1.00114

G.2.2. In E. coli Partitioning Coefficient

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	21.05554	10.52777	5.44	0.0099
Error	29	56.14880	1.93617		
Corrected Tota	1 31	77.20435			
R	oot MSE	1.39146	R-Square	0.2727	
De	ependent Mean	-3.89200	Adj R-Sq	0.2226	
Co	oeff Var	-35.75184			

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	-12.76484	5.69824	-2.24	0.0329	0
Diss_Organic_P	Diss_Organic_P	1	-0.98128	0.43208	-2.27	0.0307	1.04530
Total_Organic_C	Total_Organic_C	1	0.64799	0.34727	1.87	0.0722	1.04530

G.2.3. In E. coli Particulate Attached Fraction

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	18.97177	9.48589	5.25	0.0113
Error	29	52.41567	1.80744		
Corrected Total	31	71.38744			
Root	MSE	1.34441	R-Square	0.2658	
Depe	ndent Mean	-3.94394	Adj R-Sq	0.2151	
Coef	f Var	-34.08797			

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	-12.25969	5.50556	-2.23	0.0339	0
Diss_Organic_P	Diss_Organic_P	1	-0.93808	0.41747	-2.25	0.0324	1.04530
Total_Organic_C	Total_Organic_C	1	0.60900	0.33553	1.82	0.0799	1.04530

G.2.4. In enterococci Total Concentrations

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	7.81253	3.90627	1.24	0.3034
Error	32	100.93589	3.15425		
Corrected Total	34	108.74843			

Root MSE	1.77602	R-Square	0.0718
Dependent Mean	11.76932	Adj R-Sq	0.0138
Coeff Var	15.09026		

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	12.28519	0.45212	27.17	<.0001	0
TSS	TSS	1	-0.00248	0.00202	-1.23	0.2286	1.00293
P_ratio	P_ratio	1	-0.10877	0.10359	-1.05	0.3016	1.00293

G.2.5. In enterococci Partitioning Coefficient

Analysis of Variance

Source	D	Sum - Squa	of res S	Mean Square F	Value	Pr > F
Model Error Corrected To	29 tal 27	2 20.05 5 46.40 7 66.46	945 10. 536 1. 481	.02973 .85621	5.40	0.0112
	Root MSE Dependent Mea Coeff Var	1.36 n -2.59 -52.46	243 R-Squa 661 AdjR- 947	are 0.30 -Sq 0.24)18 160	

Parameter Estimates

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	-17.08801	6.50353	-2.63	0.0145
Q	Q	1	-374.09066	181.41334	-2.06	0.0497
Total_Organic_C	Total_Organic_C	1	0.94883	0.40362	2.35	0.0269

G.2.6. In enterococci Particulate Attached Fraction

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	15.98455	7.99228	5.07	0.0142
Error	25	39.44484	1.57779		
Corrected Total	27	55.42939			

Root MSE	1.25610	R-Square	0.2884
Dependent Mean	-2.74738	Adj R-Sq	0.2314
Coeff Var	-45.72004		

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	-15.71882	5.99598	-2.62	0.0147
Q	Q	1	-332.88903	167.25544	-1.99	0.0576
Total_Organic_C	Total_Organic_C	1	0.84909	0.37212	2.28	0.0313

G.2.7. In E. coli unattached

Analysis of Variance

	Sum of	Mea	n		
Source	DF	Squares	Square	F Value	Pr > F
Model	4	122.01253	30.50313	37.28	<.0001
Error	21	17.18153	0.81817		
Corrected Total	25	139.19406			
Root MSE	0.90453	R-Square	0.8766		
Dependent Mean Coeff Var	24.41661 3.70455	Adj R-Sq	0.8531		

Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	21.20195	0.36124	58.69	<.0001	0
ТР	ТР	1	182.70696	61.84728	2.95	0.0076	930.71561
DOC	DOC	1	-25.87730	13.69611	-1.89	0.0727	862.71623
Sq_TP		1	-1348.53595	454.26719	-2.97	0.0073	4337.82407
Sq_DOC		1	63.90247	23.91053	2.67	0.0142	4128.74874

Figure G.1. Residual plots of predicted ln *E. coli* unattached loading rates in runoff from well managed pastureland.

G.2.8. In E. coli attached

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	152.90198	30.58040	31.39	<.0001
Error	20	19.48602	0.97430		
Corrected Total	25	172.38800			
Boot MSF	0.98707	B-Square	0.8870		
Dependent Mean	21.10797	Adi R-Sa	0.8587		
Coeff Var	4.67628	,			
Coeff Var	6.15515				
		Parame	ter Estimates		

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	15.86963	0.55292	28.70	<.0001	0
TSS	TSS	1	3.64728	0.53167	6.86	<.0001	52.55137
P_ratio	P_ratio	1	4.47340	0.81274	5.50	<.0001	26.56764
Sq_TSS		1	-0.80135	0.16495	-4.86	<.0001	313.20356
Sq_P_ratio		1	-1.04504	0.21611	-4.84	0.0001	30.74792
Sq_TOC		1	17.99062	4.23415	4.25	0.0004	130.24061

Figure G.2. Residual plots of predicted ln *E. coli* attached loading rates in runoff from well managed pastureland.

G.2.9. In enterococci attached

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	2 23 25	108.08188 29.75171 137.83359	54.04094 1.29355	41.78	<.0001
Root MSE Dependent Mean Coeff Var	1.13734 20.48983 5.55078	R-Square Adj R-Sq	0.7841 0.7654		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	17.69332	0.39666	44.61	<.0001	0
ТР	ТР	1	55.05166	8.36244	6.58	<.0001	10.76218
Sq_TP		1	-123.38681	28.45092	-4.34	0.0002	10.76218

Predicted Value of In enterococci attached

Figure G.3. Residual plots of predicted ln enterococci unattached loading rates in runoff from well managed pastureland.

G.2.10. In enterococci unattached

Analysis of Variance						
		Sum of	Mean			
Source	DF	Squares	Square	F Value	Pr > F	
Model	5	209.90184	41.98037	44.82	<.0001	
Error	20	18.73232	0.93662			
Corrected Total	25	228.63417				
Root MSE	0.96779	R-Square	0.9181			
Dependent Mean	22.54861	Adj R-Sq	0.8976			
Coeff Var	4.29201					

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	17.78876	0.51108	34.81	<.0001	0
TSS	TSS	1	3.97339	0.50114	7.93	<.0001	48.56902
OP_ratio	OP_ratio	1	2.40251	0.68371	3.51	0.0022	20.56133
Sq_TSS		1	-0.85769	0.15583	-5.50	<.0001	290.78105
Sq_OP_ratio		1	-0.65584	0.16746	-3.92	0.0009	23.01293
Sq_TOC		1	19.77649	4.01994	4.92	<.0001	122.11962

Figure G.4. Residual plots of predicted ln enterococci attached loading rates in runoff from well managed pastureland.

G.2.11. In E. coli loading ratio

Analysis of Variance							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	2	19.80222	9.90111	18.13	<.0001		
Error	23	12.56046	0.54611				
Corrected Total	25	32.36267					
Root MSE	0.73899	R-Square	0.6119				
Dependent Mean	-3.30864	Adj R-Sq	0.5781				
Coeff Var	-22.33515						

	Parameter Estimates							
			Parameter	Standard			Variance	
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation	
Intercept	Intercept	1	-4.51577	0.26082	-17.31	<.0001	0	
OP_ratio	OP_ratio	1	2.81015	0.61752	4.55	0.0001	28.76677	
Sq_P_ratio		1	-0.58460	0.15649	-3.74	0.0011	28.76677	

Figure G.5. Residual plots of predicted ln *E. coli* loading ratio in runoff from well managed pastureland.

G.2.12. In enterococci loading ratio

Analysis of Variance									
		Sum of	Mean						
Source	DF	Squares	Square	F Value	Pr > F				
Model	2	18.44090	9.22045	11.98	0.0003				
Error	23	17.70402	0.76974						
Corrected Total	25	36.14492							
Root MSE	0.87735	R-Square	0.5102						
Dependent Mean	-2.05878	Adj R-Sq	0.4676						
Coeff Var	-42.61499								

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	-1.18123	0.24879	-4.75	<.0001	0
TSS	TSS	1	-0.31641	0.06640	-4.77	<.0001	1.03752
Sq_OC_ratio		1	-10.84372	5.41033	-2.00	0.0570	1.03752

Predicted Value of ln enterococci loading ratio

Figure G.6. Residual plots of predicted ln enterococci loading ratio in runoff from well managed pastureland.

Appendix H. Transport Plot Study Data: Comparison of Well-managed and Poorly-managed Pastureland

Sample	Treatment	Time after	Runoff	O (afa)	E. coli TC	E. coli	E. coli	ENT TC	ENT	ENT	TSS	TDP	ТР	DOP	ТОР	DOC	тос
No.	i reatment	runoff start	volume	Q (cis)	(cfu/100 mL)	PC	PAF	(Clu/100 mL)	PC	PAF	(mg/L)						
P2-1	high veg.	1	0.05	0.00085	17400	0.0004	0.0004	2700	0.0024	0.0024	29	6.55	6.75	2.83	3.48	15.47	15.70
P2-2	high veg.	11	1.12	0.00186	19600	0.0002	0.0002	3800	0.0135	0.0133	18	6.36	6.70	3.18	3.45	16.50	18.14
P2-3	high veg.	21	1.35	0.00224	12900	0.0001	0.0001	3700	0.0011	0.0011	7	5.88	5.90	2.72	3.05	16.40	17.70
P2-4	high veg.	31	1.54	0.00257	10400	0.0004	0.0004	3900	0.0001	0.0001	10	5.80	5.96	2.84	3.08	15.30	16.71
P2-5	high veg.	41	1.63	0.00272	5200	0.0002	0.0002	2200	0.0103	0.0102	7	5.54	5.90	2.76	3.05	16.30	17.09
P2-6	high veg.	51	1.93	0.00321	7200	0.0006	0.0006	1700	0.0204	0.0200	6	4.86	4.92	2.33	2.56	15.90	17.60
P2-7	high veg.	61	2.07	0.00345	10400	0.0000	0.0000	3400	0.0056	0.0056	3	4.15	4.56	1.98	2.39	15.50	16.60
P2-8	high veg.	71	2.29	0.00382	6100	0.0001	0.0001	3100	0.0008	0.0008	7	4.74	5.06	2.33	2.63	15.60	15.77
P2-9	high veg.	81	2.12	0.00353	7000	0.0007	0.0007	3200			10	3.41	4.68	1.70	2.44	15.40	15.95
P2-10	high veg.	91	2.35	0.00392	5700			3400	0.0006	0.0006	11	4.45	4.82	2.11	2.42	15.00	17.47
P2-11	high veg.	101	2.73	0.00456	6600	0.0002	0.0002	4900			15	4.10	5.67	1.95	2.94	14.60	15.48
P2-12	high veg.	105	1.06	0.00441	6800	0.0002	0.0002	4500			11	2.37	3.77	1.07	2.00	15.40	16.37
P3-1	high veg.	1	0.03	0.00056	7800	0.0003	0.0003	1800	0.0856	0.0789	157	5.75	6.86	2.88	3.63	15.00	16.18
P3-2	high veg.	11	0.52	0.00086	10900	0.0015	0.0015	2700	0.0117	0.0116	151	4.88	5.85	2.44	3.00	15.30	16.18
P3-3	high veg.	21	0.66	0.00110	6700	0.0009	0.0009	2900	0.0009	0.0009	31	3.97	5.65	1.98	2.94	15.10	16.18
P3-4	high veg.	31	1.06	0.00177	4200	0.0002	0.0002	4100	0.0007	0.0007	14	3.83	4.22	1.92	2.22	15.00	15.80
P3-5	high veg.	41	1.09	0.00181	6000	0.0020	0.0020	4000	0.0009	0.0009	65	3.80	4.65	1.88	2.43	14.98	15.10
P3-6	high veg.	51	1.12	0.00186	5100	0.0014	0.0014	4100	0.0006	0.0006	29	3.65	3.78	1.77	2.00	12.91	14.50
P3-7	high veg.	55	0.27	0.00114	6500	0.0010	0.0010	4500			6	3.00	3.73	1.49	1.98	15.30	21.20
P4-1	low veg.	1	0.07	0.00109	5500	0.0014	0.0014	2200	0.0016	0.0016	173	6.90	7.65	3.45	3.93	14.90	16.30
P4-2	low veg.	11	1.01	0.00168	4200	0.0002	0.0002	2300	0.0046	0.0046	134	4.67	6.35	2.33	3.28	14.90	19.19
P4-3	low veg.	21	1.46	0.00244	3700	0.0027	0.0027	2400			141	5.54	6.15	2.76	3.19	14.90	15.25
P4-4	low veg.	31	2.02	0.00336	4900	0.0214	0.0210	5500	0.0073	0.0072	1029	5.67	5.86	2.78	3.04	15.70	16.53
P4-5	low veg.	41	2.23	0.00372	7200	0.0089	0.0088	4200	0.0124	0.0122	1123	5.40	5.63	2.69	2.92	15.70	16.39
P4-6	low veg.	51	2.29	0.00382	4600	0.0179	0.0176	4200	0.0006	0.0006	842	5.34	6.85	2.67	3.64	15.51	15.80
P4-7	low veg.	61	2.49	0.00415	6800	0.2991	0.2302	4800	0.0142	0.0140	2405	5.15	6.94	2.57	3.68	15.60	15.96
P4-8	low veg.	71	2.42	0.00404	5300	0.0150	0.0148	4900	0.0045	0.0045	895	4.80	6.23	2.39	3.23	15.30	15.79
P4-9	low veg.	75	0.77	0.00321	7100	0.0001	0.0001	4100	0.0008	0.0008	453	2.28	5.48	1.13	2.84	15.60	15.83

Sample No.	Treatme nt	Time after runoff start	Runoff volume	Q (cfs)	<i>E. coli</i> TC (cfu/100 mL)	E. coli PC	<i>E. coli</i> PAF	ENT TC (cfu/100 mL)	ENT PC	ENT PAF	TSS (mg/L)	TDP (mg/L)	TP (mg/L)	DOP (mg/L)	TOP (mg/L)	DOC (mg/L)	TOC (mg/L)
P5-1	low veg.	1	0.01	0.00024	10700	0.0009	0.0009	900	0.0008	0.0008	134	5.24	5.47	2.62	2.84	13.70	18.12
P5-2	low veg.	11	0.18	0.00030	9100	0.0005	0.0005	1400	0.0034	0.0034	137	3.93	5.99	1.96	3.11	12.80	15.92
P5-3	low veg.	21	0.20	0.00034	7900	0.0012	0.0012	1400	0.0003	0.0003	103	3.77	4.65	1.88	2.44	12.70	13.00
P5-4	low veg.	31	0.24	0.00040	10100	0.1033	0.0936	4900			344	4.75	5.18	2.37	2.69	13.40	14.20
P5-5	low veg.	41	0.76	0.00126	9300	0.1458	0.1272	4400	0.0052	0.0051	695	4.67	5.25	2.33	2.73	12.20	15.00
P5-6	low veg.	51	1.09	0.00181	5400	0.0114	0.0113	3200	0.0136	0.0134	946	4.77	6.77	2.38	3.50	14.20	14.80
P5-7	low veg.	61	1.16	0.00194	6300	0.0022	0.0022	2700	0.0007	0.0007	785	4.84	5.96	2.42	3.09	14.70	14.90
P5-8	low veg.	71	1.26	0.00211	7700	0.0009	0.0009	2700	0.0036	0.0036	345	4.36	5.55	2.17	2.89	13.50	15.00
P5-9	low veg.	81	1.26	0.00211	4400	0.0230	0.0225	4500	0.0101	0.0100	2720	4.40	6.75	2.19	3.49	13.40	14.20
P5-10	low veg.	91	1.35	0.00224	6300	0.0009	0.0009	5900	0.1286	0.1140	283	4.15	5.33	2.08	2.78	13.10	13.30
P5-11	low veg.	95	0.34	0.00141	7000	0.0006	0.0006	4200	0.0251	0.0245	208	4.00	4.25	1.99	2.23	14.20	14.40

Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg
P2-1	500			P3-1	500	42	372	P4-1	500	1		P5-1	500		
	63				63	10			63		2		63		
	8				8		19		8				8		
P2-2	500			P3-2	500		17	P4-2	500	23	229	P5-2	500		
	63				63	21			63	25	231		63		24
	8				8	172	10		8		23		8		
P2-3	500			P3-3	500		7	P4-3	500			P5-3	500		
	63				63	33			63	48			63	82	12
	8				8				8				8	186	
P2-4	500			P3-4	500	111		P4-4	500		19	P5-4	500	25	
	63				63	30	23		63	3	3		63	8	
	8				8	15			8	53	11		8	4645	
P2-5	500			P3-5	500			P4-5	500	3	3	P5-5	500	20	41
	63				63	32			63	6	1		63	4	3
	8				8		11		8	54	26		8	2750	
P2-6	500			P3-6	500		85	P4-6	500			P5-6	500		
	63				63				63	1	1		63	2	11
	8				8	70	14		8	68			8	29	23
P2-7	500			P3-7	500			P4-7	500	2	8	P5-7	500	3	2
	63				63				63	578	9		63		1
	8				8				8	39	141		8		
P2-8	500							P4-8	500	2	1	P5-8	500	4	7
	63								63	1	2		63	1	1
	8								8	60	12		8		12
P2-9	500							P4-9	500			P5-9	500	6	4
	63								63	1			63	9	11
	8								8				8	86	16
P2-10	500											P5-10	500	117	59
	63												63	6	6
	8												8	14	71

Table H.2. Transport plot study preferential attachment to particulates

Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg	Sample no.	Screen Size	<i>E.coli</i> cfu/mg	Enterococci cfu/mg
P2-11	500											P5-11	500	2	6
	63												63	5	193
	8												8		
P2-12	500														
	63														
	8														

Appendix I. Supplemental Statistical Data for Transport Plot Study: Comparison of Well-managed and Poorly-managed Pastureland

I.1. Bacterial TC and PC Related to Flow Regime and Vegetative Cover

I.1.1. In E. coli Total Concentration Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
			0.45	
Ireatment	1	33	0.45	0.5053
stage	2	33	3.65	0.0369
Treatment*stage	2	33	1.88	0.1690

			Standard			
stage	Treatment	Estimate	Error	DF	t Value	Pr > t
	50	8.7804	0.09502	33	92.40	<.0001
	100	8.8716	0.09655	33	91.88	<.0001
peak		8.6660	0.09257	33	93.61	<.0001
recession		8.8314	0.1664	33	53.08	<.0001
rising		8.9805	0.07095	33	126.57	<.0001
peak	50	8.6861	0.1258	33	69.06	<.0001
recession	50	8.8608	0.2353	33	37.65	<.0001
rising	50	8.7943	0.1003	33	87.65	<.0001
peak	100	8.6460	0.1359	33	63.64	<.0001
recession	100	8.8021	0.2353	33	37.41	<.0001
rising	100	9.1667	0.1003	33	91.36	<.0001
	stage peak recession rising peak recession rising peak recession rising	stage Treatment 50 100 peak recession rising peak 50 recession 50 rising 50 peak 100 recession 100 rising 100	stage Treatment Estimate 50 8.7804 100 8.8716 peak 8.6660 recession 8.8314 rising 8.9805 peak 50 recession 8.6861 recession 50 peak 50 seesing 50 peak 100 rising 50 seesing 50 rising 100 seesing 100 recession 100 seesing 100 seesing 100 seesing 100 seesing 100 seesing 100 seesing 100	Standard Standard stage Treatment Estimate Error 50 8.7804 0.09502 100 8.8716 0.09655 peak 8.6660 0.09257 0.07095 0.07095 0.07095 peak 50 8.6861 0.1258 0.2353 0.1003 peak 50 8.7943 0.1003 0.2353 0.1003 peak 100 8.6460 0.1359 0.2353 0.2353 0.2353 rising 100 8.8021 0.2353 0.1003 0.1667 0.1003	Standard stage Treatment Estimate Error DF 50 8.7804 0.09502 33 100 8.8716 0.09655 33 peak 8.6660 0.09257 33 recession 8.8314 0.1664 33 rising 8.9805 0.07095 33 peak 50 8.6861 0.1258 33 recession 50 8.7943 0.1003 33 recession 50 8.6460 0.1359 33 recession 100 8.6460 0.1359 33 recession 100 8.6021 0.2353 33 rising 100 8.6021 0.2353 33	Standard Standard stage Treatment Estimate Error DF t Value 50 8.7804 0.09502 33 92.40 100 8.8716 0.09655 33 91.88 peak 8.6660 0.09257 33 93.61 recession 8.8314 0.1664 33 53.08 rising 8.9805 0.07095 33 126.57 peak 50 8.6861 0.1258 33 69.06 recession 50 8.8608 0.2353 33 37.65 rising 50 8.7943 0.1003 33 87.65 peak 100 8.6460 0.1359 33 63.64 recession 100 8.8021 0.2353 33 37.41 rising 100 9.1667 0.1003 33 91.36

						Standard		
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value
Treatment		50		100	-0.09124	0.1355	33	-0.67
stage	peak		recession		-0.1654	0.1904	33	-0.87
stage	peak		rising		-0.3145	0.1166	33	-2.70
stage	recession		rising		-0.1491	0.1809	33	-0.82
Treatment*stage	peak	50	recession	50	-0.1747	0.2668	33	-0.65
Treatment*stage	peak	50	rising	50	-0.1083	0.1609	33	-0.67
Treatment*stage	peak	50	peak	100	0.04005	0.1851	33	0.22
Treatment*stage	peak	50	recession	100	-0.1161	0.2668	33	-0.43
Treatment*stage	peak	50	rising	100	-0.4807	0.1609	33	-2.99
Treatment*stage	recession	50	rising	50	0.06643	0.2558	33	0.26
Treatment*stage	recession	50	peak	100	0.2147	0.2717	33	0.79
Treatment*stage	recession	50	recession	100	0.05864	0.3328	33	0.18
Treatment*stage	recession	50	rising	100	-0.3060	0.2558	33	-1.20
Treatment*stage	rising	50	peak	100	0.1483	0.1689	33	0.88
Treatment*stage	rising	50	recession	100	-0.00779	0.2558	33	-0.03
Treatment*stage	rising	50	rising	100	-0.3724	0.1419	33	-2.62
Treatment*stage	peak	100	recession	100	-0.1561	0.2717	33	-0.57
Treatment*stage	peak	100	rising	100	-0.5207	0.1689	33	-3.08
Treatment*stage	recession	100	rising	100	-0.3646	0.2558	33	-1.43

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.5053	Tukey-Kramer	0.5053
stage	peak		recession		0.3913	Tukey-Kramer	0.6635
stage	peak		rising		0.0109	Tukey-Kramer	0.0287
stage	recession		rising		0.4157	Tukey-Kramer	0.6909
Treatment*stage	peak	50	recession	50	0.5172	Tukey-Kramer	0.9856
Treatment*stage	peak	50	rising	50	0.5057	Tukey-Kramer	0.9838
Treatment*stage	peak	50	peak	100	0.8301	Tukey-Kramer	0.9999
Treatment*stage	peak	50	recession	100	0.6664	Tukey-Kramer	0.9978
Treatment*stage	peak	50	rising	100	0.0053	Tukey-Kramer	0.0543
Treatment*stage	recession	50	rising	50	0.7967	Tukey-Kramer	0.9998
Treatment*stage	recession	50	peak	100	0.4350	Tukey-Kramer	0.9672
Treatment*stage	recession	50	recession	100	0.8612	Tukey-Kramer	1.0000
Treatment*stage	recession	50	rising	100	0.2402	Tukey-Kramer	0.8355
Treatment*stage	rising	50	peak	100	0.3862	Tukey-Kramer	0.9491
Treatment*stage	rising	50	recession	100	0.9759	Tukey-Kramer	1.0000
Treatment*stage	rising	50	rising	100	0.0130	Tukey-Kramer	0.1196
Treatment*stage	peak	100	recession	100	0.5695	Tukey-Kramer	0.9921
Treatment*stage	peak	100	rising	100	0.0041	Tukey-Kramer	0.0435
Treatment*stage	recession	100	rising	100	0.1635	Tukey-Kramer	0.7118

I.1.2. In E. coli Total Concentration Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	De	n	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	3.06	0.0891
stage	2	35	3.30	0.0488

Least Squares Means

				Standard			
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	8.7334	0.08746	35	99.86	<.0001
Treatment		100	8.9246	0.08919	35	100.06	<.0001
stage	peak		8.6749	0.09468	35	91.63	<.0001
stage	recession		8.8314	0.1705	35	51.79	<.0001
stage	rising		8.9805	0.07271	35	123.52	<.0001

Differences of Least Squares Means

						Standard			
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
		50		100					
Ireatment		50		100	-0.1912	0.1093	35	-1./5	0.0891
stage	peak		recession		-0.1565	0.1950	35	-0.80	0.4277
stage	peak		rising		-0.3056	0.1194	35	-2.56	0.0149
stage	recession		rising		-0.1491	0.1854	35	-0.80	0.4266

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment		50		100	Tukev-Kramer	0.0891
stage	peak	00	recession	100	Tukey-Kramer	0.7040
stage	peak		rising		Tukey-Kramer	0.0387
stage	recession		rising		Tukey-Kramer	0.7029

I.1.3. In E. coli Partitioning Coefficient Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	32	4.79	0.0360
stage	2	32	2.80	0.0756
Treatment*stage	2	32	2.03	0.1474

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	-6.2633	0.4891	32	-12.81	<.0001
Treatment		100	-7.8065	0.5078	32	-15.37	<.0001
stage	peak		-5.9628	0.5015	32	-11.89	<.0001
stage	recession		-8.2032	0.8565	32	-9.58	<.0001
stage	rising		-6.9387	0.3652	32	-19.00	<.0001
Treatment*stage	peak	50	-4.5737	0.6475	32	-7.06	<.0001
Treatment*stage	recession	50	-8.6512	1.2113	32	-7.14	<.0001
Treatment*stage	rising	50	-5.5649	0.5165	32	-10.77	<.0001
Treatment*stage	peak	100	-7.3519	0.7661	32	-9.60	<.0001
Treatment*stage	recession	100	-7.7552	1.2113	32	-6.40	<.0001
Treatment*stage	rising	100	-8.3124	0.5165	32	-16.09	<.0001

Standard									
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	
Treatment		50		100	1.5432	0.7051	32	2.19	
stage	peak		recession		2.2404	0.9925	32	2.26	
stage	peak		rising		0.9759	0.6204	32	1.57	
stage	recession		rising		-1.2645	0.9311	32	-1.36	
Treatment*stage	peak	50	recession	50	4.0775	1.3735	32	2.97	
Treatment*stage	peak	50	rising	50	0.9912	0.8282	32	1.20	
Treatment*stage	peak	50	peak	100	2.7782	1.0030	32	2.77	
Treatment*stage	peak	50	recession	100	3.1815	1.3735	32	2.32	
Treatment*stage	peak	50	rising	100	3.7387	0.8282	32	4.51	
Treatment*stage	recession	50	rising	50	-3.0862	1.3168	32	-2.34	
Treatment*stage	recession	50	peak	100	-1.2993	1.4332	32	-0.91	
Treatment*stage	recession	50	recession	100	-0.8960	1.7130	32	-0.52	
Treatment*stage	recession	50	rising	100	-0.3388	1.3168	32	-0.26	
Treatment*stage	rising	50	peak	100	1.7870	0.9239	32	1.93	
Treatment*stage	rising	50	recession	100	2.1903	1.3168	32	1.66	
Treatment*stage	rising	50	rising	100	2.7475	0.7304	32	3.76	
Treatment*stage	peak	100	recession	100	0.4033	1.4332	32	0.28	
Treatment*stage	peak	100	rising	100	0.9605	0.9239	32	1.04	
Treatment*stage	recession	100	rising	100	0.5572	1.3168	32	0.42	

Differences	of	Least	Squares	Means
-------------	----	-------	---------	-------

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0360	Tukey-Kramer	0.0360
stage	peak		recession		0.0310	Tukey-Kramer	0.0768
stage	peak		rising		0.1256	Tukey-Kramer	0.2718
stage	recession		rising		0.1839	Tukey-Kramer	0.3745
Treatment*stage	peak	50	recession	50	0.0056	Tukey-Kramer	0.0574
Treatment*stage	peak	50	rising	50	0.2402	Tukey-Kramer	0.8351
Treatment*stage	peak	50	peak	100	0.0093	Tukey-Kramer	0.0889
Treatment*stage	peak	50	recession	100	0.0271	Tukey-Kramer	0.2172
Treatment*stage	peak	50	rising	100	<.0001	Tukey-Kramer	0.0011
Treatment*stage	recession	50	rising	50	0.0255	Tukey-Kramer	0.2068
Treatment*stage	recession	50	peak	100	0.3714	Tukey-Kramer	0.9420
Treatment*stage	recession	50	recession	100	0.6045	Tukey-Kramer	0.9948
Treatment*stage	recession	50	rising	100	0.7986	Tukey-Kramer	0.9998
Treatment*stage	rising	50	peak	100	0.0620	Tukey-Kramer	0.4010
Treatment*stage	rising	50	recession	100	0.1060	Tukey-Kramer	0.5647
Treatment*stage	rising	50	rising	100	0.0007	Tukey-Kramer	0.0082
Treatment*stage	peak	100	recession	100	0.7802	Tukey-Kramer	0.9997
Treatment*stage	peak	100	rising	100	0.3063	Tukey-Kramer	0.9009
Treatment*stage	recession	100	rising	100	0.6750	Tukey-Kramer	0.9981

I.1.4. In E. coli Partitioning Coefficient Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	D	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	34	16.99	0.0002
stage	2	34	2.77	0.0768

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	-5.8385	0.4525	34	-12.90	<.0001
Treatment		100	-8.2086	0.4723	34	-17.38	<.0001
stage	peak		-5.9288	0.5116	34	-11.59	<.0001
stage	recession		-8.2032	0.8822	34	-9.30	<.0001
stage	rising		-6.9387	0.3762	34	-18.45	<.0001

			Standard					
stage	Treatment	stage	Treatment	Estimat	e Error	DF	t Value	Pr > t
	50		100	2.370	1 0.5750	34	4.12	0.0002
peak		recessio	n	2.274	4 1.0198	34	2.23	0.0324
peak		rising		1.009	9 0.6350	34	1.59	0.1210
recession		rising		-1.264	5 0.9590	34	-1.32	0.1961
	Dif	ferences	of Least Squa	ares Mear	IS			
fect sta	age Tre	eatment	stage Tr	eatment	Adjustment		Adj P	
	stage peak peak recession fect sta	stage Treatment 50 peak peak recession Dif fect stage Tre	stage Treatment stage 50 peak recession peak rising recession Differences fect stage Treatment	Standard stage Treatment stage Treatment 50 100 peak recession peak rising recession rising Differences of Least Squa fect stage Treatment stage Tr	Standard stage Treatment stage Treatment Estimat 50 100 2.370 peak recession 2.274 peak rising 1.009 recession rising -1.264 Differences of Least Squares Mear fect stage Treatment stage Treatment	StandardstageTreatmentstageTreatmentEstimateError501002.37010.5750peakrecession2.27441.0198peakrising1.00990.6350recessionrising-1.26450.9590Differences of Least Squares Meansfect stageTreatment stage	StandardstageTreatment stageTreatment EstimateErrorDF501002.37010.575034peakrecession2.27441.019834peakrising1.00990.635034recessionrising-1.26450.959034Differences of Least Squares Meansfect stageTreatment stageTreatment Adjustment	Standard Treatment stageTreatment EstimateErrorDF t Value501002.37010.5750344.12peak peak recession2.27441.0198342.23peak recession1.00990.6350341.59recession-1.26450.959034-1.32Differences of Least Squares Meansfect stageTreatment stageTreatment AdjustmentAdj P

Treatment		50		100	Tukey-Kramer	0.0002
stage	peak		recession		Tukey-Kramer	0.0804
stage	peak		rising		Tukey-Kramer	0.2635
stage	recession		rising		Tukey-Kramer	0.3949

I.1.5. Enterococci Total Concentration Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	0.01	0.9365
stage	2	33	8.10	0.0014
Treatment*stage	2	33	0.40	0.6753

Standard								
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t	
Treatment		50	3817.53	298.66	33	12.78	<.0001	
Treatment		100	3783.33	303.47	33	12.47	<.0001	
stage	peak		4203.57	290.96	33	14.45	<.0001	
stage	recession		4325.00	522.99	33	8.27	<.0001	
stage	rising		2872.73	223.00	33	12.88	<.0001	
Treatment*stage	peak	50	4457.14	395.34	33	11.27	<.0001	
Treatment*stage	recession	50	4150.00	739.62	33	5.61	<.0001	
Treatment*stage	rising	50	2845.45	315.37	33	9.02	<.0001	
Treatment*stage	peak	100	3950.00	427.02	33	9.25	<.0001	
Treatment*stage	recession	100	4500.00	739.62	33	6.08	<.0001	
Treatment*stage	rising	100	2900.00	315.37	33	9.20	<.0001	

Standard										
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value		
Treatment		50		100	34.1991	425.79	33	0.08		
stage	peak		recession		-121.43	598.48	33	-0.20		
stage	peak		rising		1330.84	366.59	33	3.63		
stage	recession		rising		1452.27	568.55	33	2.55		
Treatment*stage	peak	50	recession	50	307.14	838.65	33	0.37		
Treatment*stage	peak	50	rising	50	1611.69	505.72	33	3.19		
Treatment*stage	peak	50	peak	100	507.14	581.93	33	0.87		
Treatment*stage	peak	50	recession	100	-42.8571	838.65	33	-0.05		
Treatment*stage	peak	50	rising	100	1557.14	505.72	33	3.08		
Treatment*stage	recession	50	rising	50	1304.55	804.05	33	1.62		
Treatment*stage	recession	50	peak	100	200.00	854.04	33	0.23		
Treatment*stage	recession	50	recession	100	-350.00	1045.98	33	-0.33		
Treatment*stage	recession	50	rising	100	1250.00	804.05	33	1.55		
Treatment*stage	rising	50	peak	100	-1104.55	530.85	33	-2.08		
Treatment*stage	rising	50	recession	100	-1654.55	804.05	33	-2.06		
Treatment*stage	rising	50	rising	100	-54.5455	446.01	33	-0.12		
Treatment*stage	peak	100	recession	100	-550.00	854.04	33	-0.64		
Treatment*stage	peak	100	rising	100	1050.00	530.85	33	1.98		
Treatment*stage	recession	100	rising	100	1600.00	804.05	33	1.99		

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.9365	Tukey-Kramer	0.9365
stage	peak		recession		0.8405	Tukey-Kramer	0.9776
stage	peak		rising		0.0009	Tukey-Kramer	0.0027
stage	recession		rising		0.0154	Tukey-Kramer	0.0399
Treatment*stage	peak	50	recession	50	0.7165	Tukey-Kramer	0.9991
Treatment*stage	peak	50	rising	50	0.0031	Tukey-Kramer	0.0340
Treatment*stage	peak	50	peak	100	0.3898	Tukey-Kramer	0.9507
Treatment*stage	peak	50	recession	100	0.9596	Tukey-Kramer	1.0000
Treatment*stage	peak	50	rising	100	0.0042	Tukey-Kramer	0.0439
Treatment*stage	recession	50	rising	50	0.1142	Tukey-Kramer	0.5902
Treatment*stage	recession	50	peak	100	0.8163	Tukey-Kramer	0.9999
Treatment*stage	recession	50	recession	100	0.7400	Tukey-Kramer	0.9994
Treatment*stage	recession	50	rising	100	0.1296	Tukey-Kramer	0.6328
Treatment*stage	rising	50	peak	100	0.0453	Tukey-Kramer	0.3217
Treatment*stage	rising	50	recession	100	0.0476	Tukey-Kramer	0.3334
Treatment*stage	rising	50	rising	100	0.9034	Tukey-Kramer	1.0000
Treatment*stage	peak	100	recession	100	0.5240	Tukey-Kramer	0.9866
Treatment*stage	peak	100	rising	100	0.0563	Tukey-Kramer	0.3759
Treatment*stage	recession	100	rising	100	0.0549	Tukey-Kramer	0.3694

I.1.6. Enterococci Total Concentration Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	De	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	0.10	0.7597
stage	2	35	8.55	0.0010

Least Squares Means

				Standard			
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	3856.42	263.58	35	14.63	<.0001
Treatment		100	3754.84	268.81	35	13.97	<.0001
stage	peak		4219.17	285.34	35	14.79	<.0001
stage	recession		4325.00	513.91	35	8.42	<.0001
stage	rising		2872.73	219.13	35	13.11	<.0001

Differences of Least Squares Means

			Standard							
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t	
Treatment		50		100	101.58	329.49	35	0.31	0.7597	
stage	peak		recession		-105.83	587.81	35	-0.18	0.8582	
stage	peak		rising		1346.44	359.78	35	3.74	0.0007	
stage	recession		rising		1452.27	558.67	35	2.60	0.0136	

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment		50		100	Tukey-Kramer	0.7597
stage	peak		recession		Tukey-Kramer	0.9823
stage	peak		rising		Tukey-Kramer	0.0018
stage	recession		rising		Tukey-Kramer	0.0354

I.1.7. In Enterococci Partitioning Coefficient Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	28	2.51	0.1245
stage	2	28	0.06	0.9413
Treatment*stage	1	28	5.47	0.0267

Least Squares Means

				Standard			
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	-5.4244	0.4671	28	-11.61	<.0001
Treatment		100	Non-est				
stage	peak		-6.0356	0.5058	28	-11.93	<.0001
stage	recession		Non-est				
stage	rising		-5.8191	0.3627	28	-16.04	<.0001
Treatment*stage	peak	50	-4.8149	0.6100	28	-7.89	<.0001
Treatment*stage	recession	50	-5.4043	1.1412	28	-4.74	<.0001
Treatment*stage	rising	50	-6.0541	0.5380	28	-11.25	<.0001
Treatment*stage	peak	100	-7.2564	0.8069	28	-8.99	<.0001
Treatment*stage	rising	100	-5.5840	0.4866	28	-11.48	<.0001

Effect	stage	Treatment	stage	Treatment	Estimate	Standard Error	DF	t Value
Treatment		50		100	Non-est			
stage	peak		recession		Non-est			
stage	peak		rising		-0.2166	0.6224	28	-0.35
stage	recession		rising		Non-est			
Treatment*stage	peak	50	recession	50	0.5895	1.2940	28	0.46
Treatment*stage	peak	50	rising	50	1.2392	0.8133	28	1.52
Treatment*stage	peak	50	peak	100	2.4415	1.0115	28	2.41
Treatment*stage	peak	50	rising	100	0.7692	0.7803	28	0.99
Treatment*stage	recession	50	rising	50	0.6498	1.2616	28	0.52
Treatment*stage	recession	50	peak	100	1.8521	1.3976	28	1.33
Treatment*stage	recession	50	rising	100	0.1797	1.2406	28	0.14
Treatment*stage	rising	50	peak	100	1.2023	0.9698	28	1.24
Treatment*stage	rising	50	rising	100	-0.4701	0.7254	28	-0.65
Treatment*stage	peak	100	rising	100	-1.6724	0.9423	28	-1.77

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100		Tukey-Kramer	
stage	peak		recession			Tukey-Kramer	
stage	peak		rising		0.7305	Tukey-Kramer	0.7305
stage	recession		rising			Tukey-Kramer	
Treatment*stage	peak	50	recession	50	0.6522	Tukey-Kramer	0.9906
Treatment*stage	peak	50	rising	50	0.1388	Tukey-Kramer	0.5563
Treatment*stage	peak	50	peak	100	0.0226	Tukey-Kramer	0.1412
Treatment*stage	peak	50	rising	100	0.3327	Tukey-Kramer	0.8594
Treatment*stage	recession	50	rising	50	0.6106	Tukey-Kramer	0.9851
Treatment*stage	recession	50	peak	100	0.1958	Tukey-Kramer	0.6783
Treatment*stage	recession	50	rising	100	0.8859	Tukey-Kramer	0.9999
Treatment*stage	rising	50	peak	100	0.2254	Tukey-Kramer	0.7287
Treatment*stage	rising	50	rising	100	0.5222	Tukey-Kramer	0.9656
Treatment*stage	peak	100	rising	100	0.0868	Tukey-Kramer	0.4075

I.2. TSS and Nutrient TC and PC Related to Flow Regime and Vegetative

Cover

I.2.1. In Total Suspended Solids Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	72.25	<.0001
stage	2	33	2.25	0.1213
Treatment*stage	2	33	1.14	0.3331

		Standard				
stage	Treatment	Estimate	Error	DF	t Value	Pr > t
	50	6.0698	0.2856	33	21.25	<.0001
	100	2.6087	0.2902	33	8.99	<.0001
peak		4.8757	0.2783	33	17.52	<.0001
recession		3.9108	0.5002	33	7.82	<.0001
rising		4.2312	0.2133	33	19.84	<.0001
peak	50	6.8199	0.3781	33	18.04	<.0001
recession	50	5.7267	0.7073	33	8.10	<.0001
rising	50	5.6628	0.3016	33	18.78	<.0001
peak	100	2.9315	0.4084	33	7.18	<.0001
recession	100	2.0948	0.7073	33	2.96	0.0056
rising	100	2.7996	0.3016	33	9.28	<.0001
	stage peak recession rising peak recession rising peak recession rising	stage Treatment 50 100 peak recession rising peak 50 recession 50 rising 50 peak 100 recession 100 rising 100	Standard stage Treatment Estimate 50 6.0698 100 2.6087 peak 4.8757 recession 3.9108 rising 4.2312 peak 50 6.8199 recession 50 5.7267 rising 50 5.6628 peak 100 2.9315 recession 100 2.0948 rising 100 2.7996	Standard stage Treatment Estimate Error 50 6.0698 0.2856 100 2.6087 0.2902 peak 4.8757 0.2783 recession 3.9108 0.5002 rising 4.2312 0.2133 peak 50 6.8199 0.3781 recession 50 5.7267 0.7073 rising 50 5.6628 0.3016 peak 100 2.9315 0.4084 recession 100 2.0948 0.7073 rising 100 2.7996 0.3016	Standard Error DF 50 6.0698 0.2856 33 100 2.6087 0.2902 33 peak 4.8757 0.2783 33 recession 3.9108 0.5002 33 rising 4.2312 0.2133 33 peak 50 6.8199 0.3781 33 recession 50 5.7267 0.7073 33 rising 50 5.6628 0.3016 33 peak 100 2.9315 0.4084 33 recession 100 2.0948 0.7073 33 rising 100 2.7996 0.3016 33	Standard Error DF t Value 50 6.0698 0.2856 33 21.25 100 2.6087 0.2902 33 8.99 peak 4.8757 0.2783 33 17.52 recession 3.9108 0.5002 33 7.82 rising 4.2312 0.2133 33 19.84 peak 50 6.8199 0.3781 33 18.04 recession 50 5.7267 0.7073 33 8.10 rising 50 5.6628 0.3016 33 18.78 peak 100 2.9315 0.4084 33 7.18 recession 100 2.0948 0.7073 33 2.96 rising 100 2.7996 0.3016 33 9.28

Standard									
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	
Treatment		50		100	3.4611	0.4072	33	8.50	
stage	peak		recession		0.9649	0.5724	33	1.69	
stage	peak		rising		0.6445	0.3506	33	1.84	
stage	recession		rising		-0.3205	0.5437	33	-0.59	
Treatment*stage	peak	50	recession	50	1.0931	0.8020	33	1.36	
Treatment*stage	peak	50	rising	50	1.1570	0.4836	33	2.39	
Treatment*stage	peak	50	peak	100	3.8883	0.5565	33	6.99	
Treatment*stage	peak	50	recession	100	4.7250	0.8020	33	5.89	
Treatment*stage	peak	50	rising	100	4.0202	0.4836	33	8.31	
Treatment*stage	recession	50	rising	50	0.06387	0.7689	33	0.08	
Treatment*stage	recession	50	peak	100	2.7952	0.8168	33	3.42	
Treatment*stage	recession	50	recession	100	3.6319	1.0003	33	3.63	
Treatment*stage	recession	50	rising	100	2.9271	0.7689	33	3.81	
Treatment*stage	rising	50	peak	100	2.7313	0.5077	33	5.38	
Treatment*stage	rising	50	recession	100	3.5680	0.7689	33	4.64	
Treatment*stage	rising	50	rising	100	2.8632	0.4265	33	6.71	
Treatment*stage	peak	100	recession	100	0.8367	0.8168	33	1.02	
Treatment*stage	peak	100	rising	100	0.1319	0.5077	33	0.26	
Treatment*stage	recession	100	rising	100	-0.7048	0.7689	33	-0.92	

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	<.0001	Tukey-Kramer	<.0001
stage	peak		recession		0.1012	Tukey-Kramer	0.2256
stage	peak		rising		0.0750	Tukey-Kramer	0.1730
stage	recession		rising		0.5596	Tukey-Kramer	0.8267
Treatment*stage	peak	50	recession	50	0.1821	Tukey-Kramer	0.7480
Treatment*stage	peak	50	rising	50	0.0226	Tukey-Kramer	0.1883
Treatment*stage	peak	50	peak	100	<.0001	Tukey-Kramer	<.0001
Treatment*stage	peak	50	recession	100	<.0001	Tukey-Kramer	<.0001
Treatment*stage	peak	50	rising	100	<.0001	Tukey-Kramer	<.0001
Treatment*stage	recession	50	rising	50	0.9343	Tukey-Kramer	1.0000
Treatment*stage	recession	50	peak	100	0.0017	Tukey-Kramer	0.0191
Treatment*stage	recession	50	recession	100	0.0009	Tukey-Kramer	0.0112
Treatment*stage	recession	50	rising	100	0.0006	Tukey-Kramer	0.0070
Treatment*stage	rising	50	peak	100	<.0001	Tukey-Kramer	<.0001
Treatment*stage	rising	50	recession	100	<.0001	Tukey-Kramer	0.0007
Treatment*stage	rising	50	rising	100	<.0001	Tukey-Kramer	<.0001
Treatment*stage	peak	100	recession	100	0.3131	Tukey-Kramer	0.9063
Treatment*stage	peak	100	rising	100	0.7966	Tukey-Kramer	0.9998
Treatment*stage	recession	100	rising	100	0.3660	Tukey-Kramer	0.9394

I.2.2. In Total Suspended Solids Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	De	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	103.97	<.0001
stage	2	35	2.38	0.1075

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	5.9883	0.2575	35	23.25	<.0001
Treatment		100	2.7057	0.2626	35	10.30	<.0001
stage	peak		4.8990	0.2788	35	17.57	<.0001
stage	recession		3.9108	0.5021	35	7.79	<.0001
stage	rising		4.2312	0.2141	35	19.76	<.0001

Differences of Least Squares Means

				Standard					
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50		100	3.2826	0.3219	35	10.20	<.0001
stage	peak		recession		0.9882	0.5743	35	1.72	0.0941
stage	peak		rising		0.6678	0.3515	35	1.90	0.0657
stage	recession		rising		-0.3205	0.5458	35	-0.59	0.5609

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment		50		100	Tukey-Kramer	<.0001
stage	peak		recession		Tukey-Kramer	0.2118
stage	peak		rising		Tukey-Kramer	0.1538
stage	recession		rising		Tukey-Kramer	0.8279

I.2.3. In Total Phosphorous Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	12.33	0.0013
stage	2	33	10.36	0.0003
Treatment*stage	2	33	4.91	0.0136

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	1.7209	0.03729	33	46.15	<.0001
Treatment		100	1.5343	0.03789	33	40.49	<.0001
stage	peak		1.6714	0.03633	33	46.01	<.0001
stage	recession		1.4479	0.06530	33	22.17	<.0001
stage	rising		1.7635	0.02784	33	63.33	<.0001
Treatment*stage	peak	50	1.8165	0.04936	33	36.80	<.0001
Treatment*stage	recession	50	1.5740	0.09235	33	17.04	<.0001
Treatment*stage	rising	50	1.7722	0.03938	33	45.01	<.0001
Treatment*stage	peak	100	1.5263	0.05332	33	28.63	<.0001
Treatment*stage	recession	100	1.3217	0.09235	33	14.31	<.0001
Treatment*stage	rising	100	1.7548	0.03938	33	44.56	<.0001

Standard										
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value		
Treatment		50		100	0.1867	0.05316	33	3.51		
stage	peak		recession		0.2235	0.07473	33	2.99		
stage	peak		rising		-0.09209	0.04577	33	-2.01		
stage	recession		rising		-0.3156	0.07099	33	-4.45		
Treatment*stage	peak	50	recession	50	0.2425	0.1047	33	2.32		
Treatment*stage	peak	50	rising	50	0.04430	0.06315	33	0.70		
Treatment*stage	peak	50	peak	100	0.2903	0.07266	33	3.99		
Treatment*stage	peak	50	recession	100	0.4948	0.1047	33	4.73		
Treatment*stage	peak	50	rising	100	0.06177	0.06315	33	0.98		
Treatment*stage	recession	50	rising	50	-0.1982	0.1004	33	-1.97		
Treatment*stage	recession	50	peak	100	0.04773	0.1066	33	0.45		
Treatment*stage	recession	50	recession	100	0.2523	0.1306	33	1.93		
Treatment*stage	recession	50	rising	100	-0.1808	0.1004	33	-1.80		
Treatment*stage	rising	50	peak	100	0.2460	0.06628	33	3.71		
Treatment*stage	rising	50	recession	100	0.4505	0.1004	33	4.49		
Treatment*stage	rising	50	rising	100	0.01747	0.05569	33	0.31		
Treatment*stage	peak	100	recession	100	0.2045	0.1066	33	1.92		
Treatment*stage	peak	100	rising	100	-0.2285	0.06628	33	-3.45		
Treatment*stage	recession	100	rising	100	-0.4330	0.1004	33	-4.31		

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0013	Tukey-Kramer	0.0013
stage	peak		recession		0.0052	Tukey-Kramer	0.0141
stage	peak		rising		0.0524	Tukey-Kramer	0.1251
stage	recession		rising		<.0001	Tukey-Kramer	0.0003
Treatment*stage	peak	50	recession	50	0.0269	Tukey-Kramer	0.2165
Treatment*stage	peak	50	rising	50	0.4879	Tukey-Kramer	0.9805
Treatment*stage	peak	50	peak	100	0.0003	Tukey-Kramer	0.0042
Treatment*stage	peak	50	recession	100	<.0001	Tukey-Kramer	0.0005
Treatment*stage	peak	50	rising	100	0.3351	Tukey-Kramer	0.9216
Treatment*stage	recession	50	rising	50	0.0567	Tukey-Kramer	0.3778
Treatment*stage	recession	50	peak	100	0.6574	Tukey-Kramer	0.9975
Treatment*stage	recession	50	recession	100	0.0620	Tukey-Kramer	0.4019
Treatment*stage	recession	50	rising	100	0.0809	Tukey-Kramer	0.4793
Treatment*stage	rising	50	peak	100	0.0008	Tukey-Kramer	0.0091
Treatment*stage	rising	50	recession	100	<.0001	Tukey-Kramer	0.0011
Treatment*stage	rising	50	rising	100	0.7557	Tukey-Kramer	0.9996
Treatment*stage	peak	100	recession	100	0.0638	Tukey-Kramer	0.4096
Treatment*stage	peak	100	rising	100	0.0016	Tukey-Kramer	0.0179
Treatment*stage	recession	100	rising	100	0.0001	Tukey-Kramer	0.0018

I.2.4. Total Dissolved Phosphorous Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	1.29	0.2638
stage	2	33	16.65	<.0001
Treatment*stage	2	33	2.98	0.0648

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	4.3058	0.2144	33	20.08	<.0001
Treatment		100	3.9582	0.2179	33	18.17	<.0001
stage	peak		4.3367	0.2089	33	20.76	<.0001
stage	recession		2.9125	0.3755	33	7.76	<.0001
stage	rising		5.1468	0.1601	33	32.15	<.0001
Treatment*stage	peak	50	4.8000	0.2838	33	16.91	<.0001
Treatment*stage	recession	50	3.1400	0.5310	33	5.91	<.0001
Treatment*stage	rising	50	4.9773	0.2264	33	21.98	<.0001
Treatment*stage	peak	100	3.8733	0.3066	33	12.64	<.0001
Treatment*stage	recession	100	2.6850	0.5310	33	5.06	<.0001
Treatment*stage	rising	100	5.3164	0.2264	33	23.48	<.0001

Standard										
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value		
Treatment		50		100	0.3475	0.3057	33	1.14		
stage	peak		recession		1.4242	0.4296	33	3.31		
stage	peak		rising		-0.8102	0.2632	33	-3.08		
stage	recession		rising		-2.2343	0.4082	33	-5.47		
Treatment*stage	peak	50	recession	50	1.6600	0.6021	33	2.76		
Treatment*stage	peak	50	rising	50	-0.1773	0.3631	33	-0.49		
Treatment*stage	peak	50	peak	100	0.9267	0.4178	33	2.22		
Treatment*stage	peak	50	recession	100	2.1150	0.6021	33	3.51		
Treatment*stage	peak	50	rising	100	-0.5164	0.3631	33	-1.42		
Treatment*stage	recession	50	rising	50	-1.8373	0.5772	33	-3.18		
Treatment*stage	recession	50	peak	100	-0.7333	0.6131	33	-1.20		
Treatment*stage	recession	50	recession	100	0.4550	0.7509	33	0.61		
Treatment*stage	recession	50	rising	100	-2.1764	0.5772	33	-3.77		
Treatment*stage	rising	50	peak	100	1.1039	0.3811	33	2.90		
Treatment*stage	rising	50	recession	100	2.2923	0.5772	33	3.97		
Treatment*stage	rising	50	rising	100	-0.3391	0.3202	33	-1.06		
Treatment*stage	peak	100	recession	100	1.1883	0.6131	33	1.94		
Treatment*stage	peak	100	rising	100	-1.4430	0.3811	33	-3.79		
Treatment*stage	recession	100	rising	100	-2.6314	0.5772	33	-4.56		

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.2638	Tukey-Kramer	0.2638
stage	peak		recession		0.0022	Tukey-Kramer	0.0062
stage	peak		rising		0.0042	Tukey-Kramer	0.0113
stage	recession		rising		<.0001	Tukey-Kramer	<.0001
Treatment*stage	peak	50	recession	50	0.0094	Tukey-Kramer	0.0906
Treatment*stage	peak	50	rising	50	0.6286	Tukey-Kramer	0.9963
Treatment*stage	peak	50	peak	100	0.0335	Tukey-Kramer	0.2569
Treatment*stage	peak	50	recession	100	0.0013	Tukey-Kramer	0.0151
Treatment*stage	peak	50	rising	100	0.1643	Tukey-Kramer	0.7136
Treatment*stage	recession	50	rising	50	0.0032	Tukey-Kramer	0.0343
Treatment*stage	recession	50	peak	100	0.2402	Tukey-Kramer	0.8355
Treatment*stage	recession	50	recession	100	0.5487	Tukey-Kramer	0.9899
Treatment*stage	recession	50	rising	100	0.0006	Tukey-Kramer	0.0077
Treatment*stage	rising	50	peak	100	0.0066	Tukey-Kramer	0.0667
Treatment*stage	rising	50	recession	100	0.0004	Tukey-Kramer	0.0045
Treatment*stage	rising	50	rising	100	0.2973	Tukey-Kramer	0.8938
Treatment*stage	peak	100	recession	100	0.0612	Tukey-Kramer	0.3981
Treatment*stage	peak	100	rising	100	0.0006	Tukey-Kramer	0.0074
Treatment*stage	recession	100	rising	100	<.0001	Tukey-Kramer	0.0009

I.2.5. Total Dissolved Phosphorous Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	D	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	0.41	0.5257
stage	2	35	14.78	<.0001

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	4.2232	0.2031	35	20.79	<.0001
Treatment		100	4.0604	0.2072	35	19.60	<.0001
stage	peak		4.3660	0.2199	35	19.85	<.0001
stage	recession		2.9125	0.3961	35	7.35	<.0001
stage	rising		5.1468	0.1689	35	30.47	<.0001

Differences of Least Squares Means

				Standard					
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50		100	0.1628	0.2539	35	0.64	0.5257
stage	peak		recession		1.4535	0.4530	35	3.21	0.0029
stage	peak		rising		-0.7808	0.2773	35	-2.82	0.0079
stage	recession		rising		-2.2343	0.4306	35	-5.19	<.0001

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment		50		100	Tukey-Kramer	0.5257
stage	peak		recession		Tukey-Kramer	0.0078
stage	peak		rising		Tukey-Kramer	0.0211
stage	recession		rising		Tukey-Kramer	<.0001

I.2.6. Total Suspended Phosphorous Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	4.12	0.0504
stage	2	33	2.03	0.1480
Treatment*stage	2	33	0.08	0.9191

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	1.3550	0.1986	33	6.82	<.0001
Treatment		100	0.7801	0.2018	33	3.86	0.0005
stage	peak		1.0731	0.1935	33	5.55	<.0001
stage	recession		1.3950	0.3478	33	4.01	0.0003
stage	rising		0.7345	0.1483	33	4.95	<.0001
Treatment*stage	peak	50	1.3829	0.2629	33	5.26	<.0001
Treatment*stage	recession	50	1.7250	0.4919	33	3.51	0.0013
Treatment*stage	rising	50	0.9573	0.2098	33	4.56	<.0001
Treatment*stage	peak	100	0.7633	0.2840	33	2.69	0.0112
Treatment*stage	recession	100	1.0650	0.4919	33	2.16	0.0377
Treatment*stage	rising	100	0.5118	0.2098	33	2.44	0.0202

Standard										
stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value			
	50		100	0.5750	0.2832	33	2.03			
peak		recession		-0.3219	0.3981	33	-0.81			
peak		rising		0.3385	0.2438	33	1.39			
recession		rising		0.6605	0.3781	33	1.75			
peak	50	recession	50	-0.3421	0.5578	33	-0.61			
peak	50	rising	50	0.4256	0.3364	33	1.27			
peak	50	peak	100	0.6195	0.3870	33	1.60			
peak	50	recession	100	0.3179	0.5578	33	0.57			
peak	50	rising	100	0.8710	0.3364	33	2.59			
recession	50	rising	50	0.7677	0.5348	33	1.44			
recession	50	peak	100	0.9617	0.5680	33	1.69			
recession	50	recession	100	0.6600	0.6957	33	0.95			
recession	50	rising	100	1.2132	0.5348	33	2.27			
rising	50	peak	100	0.1939	0.3531	33	0.55			
rising	50	recession	100	-0.1077	0.5348	33	-0.20			
rising	50	rising	100	0.4455	0.2966	33	1.50			
peak	100	recession	100	-0.3017	0.5680	33	-0.53			
peak	100	rising	100	0.2515	0.3531	33	0.71			
recession	100	rising	100	0.5532	0.5348	33	1.03			
	stage peak peak peak peak peak peak peak recession recession recession rising rising rising peak peak peak	stage Treatment 50 peak peak recession peak 50 peak 50 peak 50 recession 50 recession 50 recession 50 rising 50 rising 50 rising 50 resession 50 rising 50 resession 50 rising 50 peak 100 peak 100	stage Treatment stage 50 peak recession peak rising recession rising peak 50 recession peak 50 recession peak 50 peak peak 50 recession peak 50 recession peak 50 recession peak 50 recession peak 50 recession recession 50 recession rising 50 recession rising 50 recession rising 100 recession peak 100 rising recession 100 rising	stage Treatment stage Treatment 50 100 peak recession peak rising recession rising peak 50 recession 50 peak 50 recession 50 peak 50 peak 100 peak 50 recession 100 peak 50 rising 100 recession 50 rising 50 recession 50 recession 100 recession 50 recession 100 rising 100 recession 100 peak 100 recession 100 peak 100 rising 100	Stage Treatment stage Treatment Estimate 50 100 0.5750 peak recession -0.3219 peak rising 0.3385 recession rising 0.6605 peak 50 recession 50 -0.3421 peak 50 recession 100 0.6195 peak 50 recession 100 0.6195 peak 50 recession 100 0.8710 recession 50 rising 50 0.7677 recession 50 recession 100 0.6600 recession 50 recession 100 1.2132 rising 50	Standard stage Treatment stage Treatment Estimate Error 50 100 0.5750 0.2832 peak recession -0.3219 0.3981 peak rising 0.3385 0.2438 recession rising 0.6605 0.3781 peak 50 recession 50 -0.3421 0.5578 peak 50 recession 50 -0.3421 0.5578 peak 50 recession 100 0.6195 0.3870 peak 50 peak 100 0.6195 0.3870 peak 50 recession 100 0.6195 0.3870 peak 50 recession 100 0.5178 peak 50 recession 0.00 0.8710 0.3364 recession 50 recession 100 0.6600 0.6957 recession 50 recession 100 0.6600 0.	stage Treatment stage Treatment Estimate Error DF 50 100 0.5750 0.2832 33 peak recession -0.3219 0.3981 33 peak rising 0.3385 0.2438 33 recession rising 0.6605 0.3781 33 peak 50 recession 50 -0.3421 0.5578 33 peak 50 recession 50 -0.3421 0.5578 33 peak 50 recession 100 0.6195 0.3870 33 peak 50 recession 100 0.3179 0.5578 33 peak 50 recession 100 0.8710 0.3364 33 recession 50 rising 50 0.7677 0.5348 33 recession 50 recession 100 0.6600 0.6957 33 recession 50 recessi			

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0504	Tukey-Kramer	0.0504
stage	peak		recession		0.4245	Tukey-Kramer	0.7003
stage	peak		rising		0.1743	Tukey-Kramer	0.3584
stage	recession		rising		0.0900	Tukey-Kramer	0.2034
Treatment*stage	peak	50	recession	50	0.5438	Tukey-Kramer	0.9893
Treatment*stage	peak	50	rising	50	0.2146	Tukey-Kramer	0.8012
Treatment*stage	peak	50	peak	100	0.1190	Tukey-Kramer	0.6039
Treatment*stage	peak	50	recession	100	0.5726	Tukey-Kramer	0.9923
Treatment*stage	peak	50	rising	100	0.0142	Tukey-Kramer	0.1284
Treatment*stage	recession	50	rising	50	0.1605	Tukey-Kramer	0.7057
Treatment*stage	recession	50	peak	100	0.0999	Tukey-Kramer	0.5458
Treatment*stage	recession	50	recession	100	0.3497	Tukey-Kramer	0.9305
Treatment*stage	recession	50	rising	100	0.0300	Tukey-Kramer	0.2355
Treatment*stage	rising	50	peak	100	0.5865	Tukey-Kramer	0.9935
Treatment*stage	rising	50	recession	100	0.8416	Tukey-Kramer	0.9999
Treatment*stage	rising	50	rising	100	0.1427	Tukey-Kramer	0.6656
Treatment*stage	peak	100	recession	100	0.5989	Tukey-Kramer	0.9945
Treatment*stage	peak	100	rising	100	0.4813	Tukey-Kramer	0.9791
Treatment*stage	recession	100	rising	100	0.3085	Tukey-Kramer	0.9028

I.2.7. Total Suspended Phosphorous Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	5.85	0.0209
stage	2	35	2.16	0.1310
stage	2	35	2.16	0.1310

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	1.3314	0.1737	35	7.67	<.0001
Treatment		100	0.8061	0.1771	35	4.55	<.0001
stage	peak		1.0767	0.1880	35	5.73	<.0001
stage	recession		1.3950	0.3386	35	4.12	0.0002
stage	rising		0.7345	0.1444	35	5.09	<.0001

				Standard					
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50		100	0.5253	0.2171	35	2.42	0.0209
stage	peak		recession		-0.3183	0.3873	35	-0.82	0.4168
stage	peak		rising		0.3422	0.2371	35	1.44	0.1578
stage	recession		rising		0.6605	0.3681	35	1.79	0.0814
			Differences	s of Least S	Squares Mea	ns			
	Effect	stage	Treatment	stage	Treatment	Adjustment	t	Adj P	
	Treatment		50		100	Tukey-Kran	ner	0.0209	
	stage	peak		recession		Tukey-Kram	ner	0.6922	
	stage	peak		rising		Tukey-Kram	ner	0.3303	
	stage	recession		rising		Tukey-Kram	ner	0.1863	

I.2.8. In Phosphorous Partitioning Coefficient Full Model

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Treatment	1	33	0.89	0.3513
stage	2	33	3.39	0.0459
Treatment*stage	2	33	0.62	0.5422

		Standard						
stage	Treatment	Estimate	Error	DF	t Value	Pr > t		
	50	-1.5087	0.3150	33	-4.79	<.0001		
	100	-1.9332	0.3201	33	-6.04	<.0001		
peak		-1.6677	0.3069	33	-5.43	<.0001		
recession		-1.0933	0.5516	33	-1.98	0.0559		
rising		-2.4019	0.2352	33	-10.21	<.0001		
peak	50	-1.4100	0.4170	33	-3.38	0.0019		
recession	50	-1.2168	0.7801	33	-1.56	0.1283		
rising	50	-1.8992	0.3326	33	-5.71	<.0001		
peak	100	-1.9253	0.4504	33	-4.27	0.0002		
recession	100	-0.9699	0.7801	33	-1.24	0.2225		
rising	100	-2.9046	0.3326	33	-8.73	<.0001		
	stage peak recession rising peak recession rising peak recession rising	stage Treatment 50 100 peak recession rising peak 50 recession 50 rising 50 peak 100 recession 100 rising 100	Standard stage Treatment Estimate 50 -1.5087 100 -1.9332 peak -1.6677 recession -1.0933 rising -2.4019 peak 50 rising -1.2168 rising 50 recession 50 recession 50 rising 50 rising 50 recession 100 recession 100 recession 100 recession 100 recession 100 recession 100 recession 100	Standard stage Treatment Estimate Error 50 -1.5087 0.3150 100 -1.9332 0.3201 peak -1.6677 0.3069 recession -1.0933 0.5516 rising -2.4019 0.2352 peak 50 -1.4100 0.4170 recession 50 -1.2168 0.7801 rising 50 -1.8992 0.3326 peak 100 -1.9253 0.4504 recession 100 -0.9699 0.7801 rising 100 -2.9046 0.3326	Standard stage Treatment Estimate Error DF 50 -1.5087 0.3150 33 100 -1.9332 0.3201 33 peak -1.6677 0.3069 33 recession -1.0933 0.5516 33 rising -2.4019 0.2352 33 peak 50 -1.4100 0.4170 33 recession 50 -1.2168 0.7801 33 rising 50 -1.8992 0.3326 33 peak 100 -1.9253 0.4504 33 recession 100 -0.9699 0.7801 33 rising 100 -2.9046 0.3326 33	Standard Error DF t Value 50 -1.5087 0.3150 33 -4.79 100 -1.9332 0.3201 33 -6.04 peak -1.6677 0.3069 33 -5.43 recession -1.0933 0.5516 33 -1.98 rising -2.4019 0.2352 33 -10.21 peak 50 -1.4100 0.4170 33 -3.38 recession 50 -1.2168 0.7801 33 -1.56 rising 50 -1.8992 0.3326 33 -5.71 peak 100 -1.9253 0.4504 33 -4.27 recession 100 -0.9699 0.7801 33 -1.24 rising 100 -2.9046 0.3326 33 -8.73		
Standard								
-----------------	-----------	-----------	-----------	-----------	----------	--------	----	---------
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value
Treatment		50		100	0.4246	0.4491	33	0.95
stage	peak		recession		-0.5743	0.6312	33	-0.91
stage	peak		rising		0.7342	0.3867	33	1.90
stage	recession		rising		1.3086	0.5997	33	2.18
Treatment*stage	peak	50	recession	50	-0.1932	0.8846	33	-0.22
Treatment*stage	peak	50	rising	50	0.4892	0.5334	33	0.92
Treatment*stage	peak	50	peak	100	0.5153	0.6138	33	0.84
Treatment*stage	peak	50	recession	100	-0.4402	0.8846	33	-0.50
Treatment*stage	peak	50	rising	100	1.4946	0.5334	33	2.80
Treatment*stage	recession	50	rising	50	0.6824	0.8481	33	0.80
Treatment*stage	recession	50	peak	100	0.7085	0.9008	33	0.79
Treatment*stage	recession	50	recession	100	-0.2469	1.1032	33	-0.22
Treatment*stage	recession	50	rising	100	1.6878	0.8481	33	1.99
Treatment*stage	rising	50	peak	100	0.02607	0.5599	33	0.05
Treatment*stage	rising	50	recession	100	-0.9293	0.8481	33	-1.10
Treatment*stage	rising	50	rising	100	1.0054	0.4704	33	2.14
Treatment*stage	peak	100	recession	100	-0.9554	0.9008	33	-1.06
Treatment*stage	peak	100	rising	100	0.9793	0.5599	33	1.75
Treatment*stage	recession	100	rising	100	1.9347	0.8481	33	2.28

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.3513	Tukey-Kramer	0.3513
stage	peak		recession		0.3695	Tukey-Kramer	0.6380
stage	peak		rising		0.0663	Tukey-Kramer	0.1549
stage	recession		rising		0.0363	Tukey-Kramer	0.0892
Treatment*stage	peak	50	recession	50	0.8284	Tukey-Kramer	0.9999
Treatment*stage	peak	50	rising	50	0.3657	Tukey-Kramer	0.9393
Treatment*stage	peak	50	peak	100	0.4072	Tukey-Kramer	0.9578
Treatment*stage	peak	50	recession	100	0.6221	Tukey-Kramer	0.9959
Treatment*stage	peak	50	rising	100	0.0084	Tukey-Kramer	0.0822
Treatment*stage	recession	50	rising	50	0.4268	Tukey-Kramer	0.9646
Treatment*stage	recession	50	peak	100	0.4372	Tukey-Kramer	0.9679
Treatment*stage	recession	50	recession	100	0.8243	Tukey-Kramer	0.9999
Treatment*stage	recession	50	rising	100	0.0549	Tukey-Kramer	0.3692
Treatment*stage	rising	50	peak	100	0.9632	Tukey-Kramer	1.0000
Treatment*stage	rising	50	recession	100	0.2811	Tukey-Kramer	0.8795
Treatment*stage	rising	50	rising	100	0.0401	Tukey-Kramer	0.2939
Treatment*stage	peak	100	recession	100	0.2966	Tukey-Kramer	0.8932
Treatment*stage	peak	100	rising	100	0.0896	Tukey-Kramer	0.5109
Treatment*stage	recession	100	rising	100	0.0291	Tukey-Kramer	0.2302

I.2.9. In Phosphorous Partitioning Coefficient Reduced Model

Type 3 Tests of Fixed Effects

	Num	Der	ı	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	4.16	0.0489
stage	2	35	3.44	0.0434

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	-1.3665	0.2799	35	-4.88	<.0001
Treatment		100	-2.0805	0.2854	35	-7.29	<.0001
stage	peak		-1.6753	0.3030	35	-5.53	<.0001
stage	recession		-1.0933	0.5457	35	-2.00	0.0529
stage	rising		-2.4019	0.2327	35	-10.32	<.0001

Differences of Least Squares Means

Effect	stage	Treatment	stage	Standard Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50		100	0.7139	0.3498	35	2.04	0.0489
stage	peak		recession		-0.5820	0.6241	35	-0.93	0.3575
stage	peak		rising		0.7266	0.3820	35	1.90	0.0654
stage	recession		rising		1.3086	0.5932	35	2.21	0.0340

Differences of Least Squares Means

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment stage stage stage	peak peak recession	50	recession rising rising	100	Tukey-Kramer Tukey-Kramer Tukey-Kramer Tukey-Kramer	0.0489 0.6237 0.1531 0.0841

I.2.10. In Total Organic Phosphorous Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Troatmont	4	33	12 20	0 0013
	1	00	12.29	0.0013
stage	2	33	9.89	0.0004
Treatment*stage	2	33	5.20	0.0109

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	1.0683	0.03649	33	29.27	<.0001
Treatment		100	0.8859	0.03708	33	23.89	<.0001
stage	peak		1.0194	0.03555	33	28.67	<.0001
stage	recession		0.8050	0.06390	33	12.60	<.0001
stage	rising		1.1069	0.02725	33	40.62	<.0001
Treatment*stage	peak	50	1.1667	0.04830	33	24.15	<.0001
Treatment*stage	recession	50	0.9231	0.09037	33	10.21	<.0001
Treatment*stage	rising	50	1.1151	0.03853	33	28.94	<.0001
Treatment*stage	peak	100	0.8721	0.05217	33	16.71	<.0001
Treatment*stage	recession	100	0.6869	0.09037	33	7.60	<.0001
Treatment*stage	rising	100	1.0987	0.03853	33	28.51	<.0001

Standard								
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value
Treatment		50		100	0.1824	0.05202	33	3.51
stage	peak		recession		0.2144	0.07312	33	2.93
stage	peak		rising		-0.08751	0.04479	33	-1.95
stage	recession		rising		-0.3019	0.06947	33	-4.35
Treatment*stage	peak	50	recession	50	0.2436	0.1025	33	2.38
Treatment*stage	peak	50	rising	50	0.05161	0.06179	33	0.84
Treatment*stage	peak	50	peak	100	0.2946	0.07110	33	4.14
Treatment*stage	peak	50	recession	100	0.4798	0.1025	33	4.68
Treatment*stage	peak	50	rising	100	0.06795	0.06179	33	1.10
Treatment*stage	recession	50	rising	50	-0.1920	0.09824	33	-1.95
Treatment*stage	recession	50	peak	100	0.05097	0.1043	33	0.49
Treatment*stage	recession	50	recession	100	0.2362	0.1278	33	1.85
Treatment*stage	recession	50	rising	100	-0.1757	0.09824	33	-1.79
Treatment*stage	rising	50	peak	100	0.2430	0.06486	33	3.75
Treatment*stage	rising	50	recession	100	0.4282	0.09824	33	4.36
Treatment*stage	rising	50	rising	100	0.01633	0.05449	33	0.30
Treatment*stage	peak	100	recession	100	0.1852	0.1043	33	1.78
Treatment*stage	peak	100	rising	100	-0.2266	0.06486	33	-3.49
Treatment*stage	recession	100	rising	100	-0.4119	0.09824	33	-4.19

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0013	Tukey-Kramer	0.0013
stage	peak		recession		0.0061	Tukey-Kramer	0.0163
stage	peak		rising		0.0593	Tukey-Kramer	0.1399
stage	recession		rising		0.0001	Tukey-Kramer	0.0004
Treatment*stage	peak	50	recession	50	0.0234	Tukey-Kramer	0.1936
Treatment*stage	peak	50	rising	50	0.4096	Tukey-Kramer	0.9586
Treatment*stage	peak	50	peak	100	0.0002	Tukey-Kramer	0.0028
Treatment*stage	peak	50	recession	100	<.0001	Tukey-Kramer	0.0006
Treatment*stage	peak	50	rising	100	0.2795	Tukey-Kramer	0.8780
Treatment*stage	recession	50	rising	50	0.0592	Tukey-Kramer	0.3891
Treatment*stage	recession	50	peak	100	0.6284	Tukey-Kramer	0.9963
Treatment*stage	recession	50	recession	100	0.0735	Tukey-Kramer	0.4504
Treatment*stage	recession	50	rising	100	0.0830	Tukey-Kramer	0.4869
Treatment*stage	rising	50	peak	100	0.0007	Tukey-Kramer	0.0083
Treatment*stage	rising	50	recession	100	0.0001	Tukey-Kramer	0.0016
Treatment*stage	rising	50	rising	100	0.7663	Tukey-Kramer	0.9996
Treatment*stage	peak	100	recession	100	0.0851	Tukey-Kramer	0.4947
Treatment*stage	peak	100	rising	100	0.0014	Tukey-Kramer	0.0159
Treatment*stage	recession	100	rising	100	0.0002	Tukey-Kramer	0.0025

I.2.11. Dissolved Organic Phosphorous Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	2.53	0.1209
stage	2	33	17.52	<.0001
Treatment*stage	2	33	2.85	0.0719

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	2.1450	0.1026	33	20.91	<.0001
Treatment		100	1.9123	0.1042	33	18.35	<.0001
stage	peak		2.1396	0.09993	33	21.41	<.0001
stage	recession		1.4215	0.1796	33	7.91	<.0001
stage	rising		2.5249	0.07659	33	32.97	<.0001
Treatment*stage	peak	50	2.3920	0.1358	33	17.62	<.0001
Treatment*stage	recession	50	1.5625	0.2540	33	6.15	<.0001
Treatment*stage	rising	50	2.4806	0.1083	33	22.90	<.0001
Treatment*stage	peak	100	1.8872	0.1467	33	12.87	<.0001
Treatment*stage	recession	100	1.2805	0.2540	33	5.04	<.0001
Treatment*stage	rising	100	2.5691	0.1083	33	23.72	<.0001

Standard								
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value
Treatment		50		100	0.2328	0.1462	33	1.59
stage	peak		recession		0.7181	0.2055	33	3.49
stage	peak		rising		-0.3853	0.1259	33	-3.06
stage	recession		rising		-1.1034	0.1953	33	-5.65
Treatment*stage	peak	50	recession	50	0.8295	0.2880	33	2.88
Treatment*stage	peak	50	rising	50	-0.08864	0.1737	33	-0.51
Treatment*stage	peak	50	peak	100	0.5048	0.1999	33	2.53
Treatment*stage	peak	50	recession	100	1.1115	0.2880	33	3.86
Treatment*stage	peak	50	rising	100	-0.1771	0.1737	33	-1.02
Treatment*stage	recession	50	rising	50	-0.9181	0.2761	33	-3.32
Treatment*stage	recession	50	peak	100	-0.3247	0.2933	33	-1.11
Treatment*stage	recession	50	recession	100	0.2820	0.3592	33	0.79
Treatment*stage	recession	50	rising	100	-1.0066	0.2761	33	-3.65
Treatment*stage	rising	50	peak	100	0.5935	0.1823	33	3.26
Treatment*stage	rising	50	recession	100	1.2001	0.2761	33	4.35
Treatment*stage	rising	50	rising	100	-0.08845	0.1532	33	-0.58
Treatment*stage	peak	100	recession	100	0.6067	0.2933	33	2.07
Treatment*stage	peak	100	rising	100	-0.6819	0.1823	33	-3.74
Treatment*stage	recession	100	rising	100	-1.2886	0.2761	33	-4.67

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.1209	Tukey-Kramer	0.1209
stage	peak		recession		0.0014	Tukey-Kramer	0.0038
stage	peak		rising		0.0044	Tukey-Kramer	0.0119
stage	recession		rising		<.0001	Tukey-Kramer	<.0001
Treatment*stage	peak	50	recession	50	0.0069	Tukey-Kramer	0.0693
Treatment*stage	peak	50	rising	50	0.6132	Tukey-Kramer	0.9954
Treatment*stage	peak	50	peak	100	0.0165	Tukey-Kramer	0.1458
Treatment*stage	peak	50	recession	100	0.0005	Tukey-Kramer	0.0061
Treatment*stage	peak	50	rising	100	0.3153	Tukey-Kramer	0.9080
Treatment*stage	recession	50	rising	50	0.0022	Tukey-Kramer	0.0243
Treatment*stage	recession	50	peak	100	0.2763	Tukey-Kramer	0.8750
Treatment*stage	recession	50	recession	100	0.4380	Tukey-Kramer	0.9682
Treatment*stage	recession	50	rising	100	0.0009	Tukey-Kramer	0.0108
Treatment*stage	rising	50	peak	100	0.0026	Tukey-Kramer	0.0288
Treatment*stage	rising	50	recession	100	0.0001	Tukey-Kramer	0.0016
Treatment*stage	rising	50	rising	100	0.5675	Tukey-Kramer	0.9919
Treatment*stage	peak	100	recession	100	0.0465	Tukey-Kramer	0.3279
Treatment*stage	peak	100	rising	100	0.0007	Tukey-Kramer	0.0084
Treatment*stage	recession	100	rising	100	<.0001	Tukey-Kramer	0.0006

I.2.12. Dissolved Organic Phosphorous Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	D	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	1.47	0.2342
stage	2	35	15.67	<.0001

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	2.1065	0.09688	35	21.74	<.0001
Treatment		100	1.9599	0.09881	35	19.84	<.0001
stage	peak		2.1534	0.1049	35	20.53	<.0001
stage	recession		1.4215	0.1889	35	7.53	<.0001
stage	rising		2.5249	0.08054	35	31.35	<.0001

Differences of Least Squares Means

			Standard					
stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
	50		100	0.1466	0.1211	35	1.21	0.2342
peak		recession		0.7319	0.2161	35	3.39	0.0018
peak		rising		-0.3715	0.1322	35	-2.81	0.0081
recession		rising		-1.1034	0.2053	35	-5.37	<.0001
	stage peak peak recession	stage Treatment 50 peak peak recession	stage Treatment stage 50 peak recession peak rising recession rising	stage Treatment stage Treatment 50 100 peak recession peak rising recession rising	stage Treatment stage Treatment Estimate 50 100 0.1466 peak recession 0.7319 peak rising -0.3715 recession rising -1.1034	StageTreatmentStageStandard501000.14660.1211peakrecession0.73190.2161peakrising-0.37150.1322recessionrising-1.10340.2053	StandardStandardstageTreatmentEstimateErrorDF501000.14660.121135peakrecession0.73190.216135peakrising-0.37150.132235recessionrising-1.10340.205335	StandardStandardstageTreatmentEstimateErrorDFt Value501000.14660.1211351.21peakrecession0.73190.2161353.39peakrising-0.37150.132235-2.81recessionrising-1.10340.205335-5.37

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment		50		100	Tukey-Kramer	0.2342
stage	peak		recession		Tukey-Kramer	0.0049
stage	peak		rising		Tukey-Kramer	0.0215
stage	recession		rising		Tukey-Kramer	<.0001

I.2.13. Suspended Organic Phosphorous Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	2.87	0.0997
stage	2	33	1.79	0.1827
Treatment*stage	2	33	0.28	0.7580

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	0.8016	0.09966	33	8.04	<.0001
Treatment		100	0.5609	0.1013	33	5.54	<.0001
stage	peak		0.6796	0.09709	33	7.00	<.0001
stage	recession		0.8400	0.1745	33	4.81	<.0001
stage	rising		0.5241	0.07441	33	7.04	<.0001
Treatment*stage	peak	50	0.8381	0.1319	33	6.35	<.0001
Treatment*stage	recession	50	0.9730	0.2468	33	3.94	0.0004
Treatment*stage	rising	50	0.5935	0.1052	33	5.64	<.0001
Treatment*stage	peak	100	0.5210	0.1425	33	3.66	0.0009
Treatment*stage	recession	100	0.7070	0.2468	33	2.86	0.0072
Treatment*stage	rising	100	0.4547	0.1052	33	4.32	0.0001

	Standard									
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value		
Treatment		50		100	0.2407	0.1421	33	1.69		
stage	peak		recession		-0.1604	0.1997	33	-0.80		
stage	peak		rising		0.1554	0.1223	33	1.27		
stage	recession		rising		0.3159	0.1897	33	1.66		
Treatment*stage	peak	50	recession	50	-0.1349	0.2798	33	-0.48		
Treatment*stage	peak	50	rising	50	0.2446	0.1688	33	1.45		
Treatment*stage	peak	50	peak	100	0.3171	0.1942	33	1.63		
Treatment*stage	peak	50	recession	100	0.1311	0.2798	33	0.47		
Treatment*stage	peak	50	rising	100	0.3834	0.1688	33	2.27		
Treatment*stage	recession	50	rising	50	0.3795	0.2683	33	1.41		
Treatment*stage	recession	50	peak	100	0.4520	0.2850	33	1.59		
Treatment*stage	recession	50	recession	100	0.2660	0.3490	33	0.76		
Treatment*stage	recession	50	rising	100	0.5183	0.2683	33	1.93		
Treatment*stage	rising	50	peak	100	0.07255	0.1771	33	0.41		
Treatment*stage	rising	50	recession	100	-0.1135	0.2683	33	-0.42		
Treatment*stage	rising	50	rising	100	0.1388	0.1488	33	0.93		
Treatment*stage	peak	100	recession	100	-0.1860	0.2850	33	-0.65		
Treatment*stage	peak	100	rising	100	0.06627	0.1771	33	0.37		
Treatment*stage	recession	100	rising	100	0.2523	0.2683	33	0.94		

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0997	Tukey-Kramer	0.0997
stage	peak		recession		0.4275	Tukey-Kramer	0.7036
stage	peak		rising		0.2127	Tukey-Kramer	0.4214
stage	recession		rising		0.1054	Tukey-Kramer	0.2337
Treatment*stage	peak	50	recession	50	0.6331	Tukey-Kramer	0.9965
Treatment*stage	peak	50	rising	50	0.1567	Tukey-Kramer	0.6974
Treatment*stage	peak	50	peak	100	0.1119	Tukey-Kramer	0.5834
Treatment*stage	peak	50	recession	100	0.6424	Tukey-Kramer	0.9969
Treatment*stage	peak	50	rising	100	0.0297	Tukey-Kramer	0.2340
Treatment*stage	recession	50	rising	50	0.1666	Tukey-Kramer	0.7183
Treatment*stage	recession	50	peak	100	0.1223	Tukey-Kramer	0.6131
Treatment*stage	recession	50	recession	100	0.4514	Tukey-Kramer	0.9720
Treatment*stage	recession	50	rising	100	0.0620	Tukey-Kramer	0.4018
Treatment*stage	rising	50	peak	100	0.6848	Tukey-Kramer	0.9984
Treatment*stage	rising	50	recession	100	0.6751	Tukey-Kramer	0.9981
Treatment*stage	rising	50	rising	100	0.3577	Tukey-Kramer	0.9350
Treatment*stage	peak	100	recession	100	0.5185	Tukey-Kramer	0.9858
Treatment*stage	peak	100	rising	100	0.7107	Tukey-Kramer	0.9990
Treatment*stage	recession	100	rising	100	0.3539	Tukey-Kramer	0.9329

I.2.14. Suspended Organic Phosphorous Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	D	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	3.71	0.0622
stage	2	35	1.90	0.1645

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	0.7881	0.08765	35	8.99	<.0001
Treatment		100	0.5770	0.08939	35	6.46	<.0001
stage	peak		0.6837	0.09488	35	7.21	<.0001
stage	recession		0.8400	0.1709	35	4.92	<.0001
stage	rising		0.5241	0.07287	35	7.19	<.0001

				Standard					
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50		100	0.2111	0.1096	35	1.93	0.0622
stage	peak		recession		-0.1563	0.1955	35	-0.80	0.4292
stage	peak		rising		0.1595	0.1196	35	1.33	0.1910
stage	recession		rising		0.3159	0.1858	35	1.70	0.0980
			Differences	s of Least S	Squares Mean	าร			
	Effect	stage	Treatment	stage	Treatment	Adjustmen	t	Adj P	
	Treatment		50		100	Tukey-Krar	ner	0.0622	
	stage	peak		recession		Tukey-Krar	ner	0.7056	
	stage	peak		rising		Tukey-Krar	ner	0.3866	
	stage	recession		rising		Tukey-Krar	ner	0.2194	

I.2.15. In Organic Phosphorous Partitioning Coefficient Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Treatment	1	33	0.15	0.7049
stage	2	33	4.03	0.0271
Treatment*stage	2	33	0.25	0.7817

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	-1.1911	0.1931	33	-6.17	<.0001
Treatment		100	-1.2962	0.1962	33	-6.61	<.0001
stage	peak		-1.2865	0.1881	33	-6.84	<.0001
stage	recession		-0.7455	0.3381	33	-2.21	0.0345
stage	rising		-1.6990	0.1441	33	-11.79	<.0001
Treatment*stage	peak	50	-1.1515	0.2555	33	-4.51	<.0001
Treatment*stage	recession	50	-0.8603	0.4781	33	-1.80	0.0811
Treatment*stage	rising	50	-1.5614	0.2039	33	-7.66	<.0001
Treatment*stage	peak	100	-1.4214	0.2760	33	-5.15	<.0001
Treatment*stage	recession	100	-0.6308	0.4781	33	-1.32	0.1961
Treatment*stage	rising	100	-1.8366	0.2039	33	-9.01	<.0001

Standard										
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value		
Treatment		50		100	0.1051	0.2752	33	0.38		
stage	peak		recession		-0.5409	0.3869	33	-1.40		
stage	peak		rising		0.4125	0.2370	33	1.74		
stage	recession		rising		0.9534	0.3675	33	2.59		
Treatment*stage	peak	50	recession	50	-0.2912	0.5421	33	-0.54		
Treatment*stage	peak	50	rising	50	0.4099	0.3269	33	1.25		
Treatment*stage	peak	50	peak	100	0.2699	0.3762	33	0.72		
Treatment*stage	peak	50	recession	100	-0.5208	0.5421	33	-0.96		
Treatment*stage	peak	50	rising	100	0.6850	0.3269	33	2.10		
Treatment*stage	recession	50	rising	50	0.7011	0.5197	33	1.35		
Treatment*stage	recession	50	peak	100	0.5611	0.5520	33	1.02		
Treatment*stage	recession	50	recession	100	-0.2296	0.6761	33	-0.34		
Treatment*stage	recession	50	rising	100	0.9762	0.5197	33	1.88		
Treatment*stage	rising	50	peak	100	-0.1400	0.3431	33	-0.41		
Treatment*stage	rising	50	recession	100	-0.9306	0.5197	33	-1.79		
Treatment*stage	rising	50	rising	100	0.2752	0.2883	33	0.95		
Treatment*stage	peak	100	recession	100	-0.7907	0.5520	33	-1.43		
Treatment*stage	peak	100	rising	100	0.4152	0.3431	33	1.21		
Treatment*stage	recession	100	rising	100	1.2058	0.5197	33	2.32		

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.7049	Tukey-Kramer	0.7049
stage	peak		recession		0.1714	Tukey-Kramer	0.3534
stage	peak		rising		0.0910	Tukey-Kramer	0.2055
stage	recession		rising		0.0140	Tukey-Kramer	0.0364
Treatment*stage	peak	50	recession	50	0.5947	Tukey-Kramer	0.9942
Treatment*stage	peak	50	rising	50	0.2187	Tukey-Kramer	0.8071
Treatment*stage	peak	50	peak	100	0.4782	Tukey-Kramer	0.9784
Treatment*stage	peak	50	recession	100	0.3437	Tukey-Kramer	0.9270
Treatment*stage	peak	50	rising	100	0.0439	Tukey-Kramer	0.3142
Treatment*stage	recession	50	rising	50	0.1866	Tukey-Kramer	0.7560
Treatment*stage	recession	50	peak	100	0.3169	Tukey-Kramer	0.9091
Treatment*stage	recession	50	recession	100	0.7363	Tukey-Kramer	0.9993
Treatment*stage	recession	50	rising	100	0.0692	Tukey-Kramer	0.4327
Treatment*stage	rising	50	peak	100	0.6859	Tukey-Kramer	0.9984
Treatment*stage	rising	50	recession	100	0.0825	Tukey-Kramer	0.4853
Treatment*stage	rising	50	rising	100	0.3468	Tukey-Kramer	0.9288
Treatment*stage	peak	100	recession	100	0.1615	Tukey-Kramer	0.7077
Treatment*stage	peak	100	rising	100	0.2349	Tukey-Kramer	0.8289
Treatment*stage	recession	100	rising	100	0.0267	Tukey-Kramer	0.2149

I.2.16. In Organic Phosphorous Partitioning Coefficient Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	D	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	1.09	0.3033
stage	2	35	4.23	0.0227

Least Squares Means

		Standard				
stage	Treatment	Estimate	Error	DF	t Value	Pr > t
	50	-1.1323	0.1696	35	-6.68	<.0001
	100	-1.3538	0.1730	35	-7.83	<.0001
peak		-1.2846	0.1836	35	-7.00	<.0001
recession		-0.7455	0.3307	35	-2.25	0.0305
rising		-1.6990	0.1410	35	-12.05	<.0001
	stage peak recession rising	stage Treatment 50 100 peak recession rising	Standard stage Treatment Estimate 50 -1.1323 100 -1.3538 peak -1.2846 recession -0.7455 rising -1.6990	Standard stage Treatment Estimate Error 50 -1.1323 0.1696 100 -1.3538 0.1730 peak -1.2846 0.1836 recession -0.7455 0.3307 rising -1.6990 0.1410	Standard stage Treatment Estimate Error DF 50 -1.1323 0.1696 35 100 -1.3538 0.1730 35 peak -1.2846 0.1836 35 recession -0.7455 0.3307 35 rising -1.6990 0.1410 35	Standard Standard stage Treatment Estimate Error DF t Value 50 -1.1323 0.1696 35 -6.68 100 -1.3538 0.1730 35 -7.83 peak -1.2846 0.1836 35 -7.00 recession -0.7455 0.3307 35 -2.25 rising -1.6990 0.1410 35 -12.05

Differences of Least Squares Means

				Standard					
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50		100	0.2215	0.2120	35	1.04	0.3033
stage	peak		recession		-0.5391	0.3783	35	-1.43	0.1630
stage	peak		rising		0.4144	0.2315	35	1.79	0.0822
stage	recession		rising		0.9534	0.3595	35	2.65	0.0119

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment		50		100	Tukey-Kramer	0.3033
stage	peak		recession		Tukey-Kramer	0.3393
stage	peak		rising		Tukey-Kramer	0.1878
stage	recession		rising		Tukey-Kramer	0.0313

I.2.17. Total Organic Carbon Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	9.35	0.0044
stage	2	33	2.22	0.1240
Treatment*stage	2	33	2.06	0.1438

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	15.3560	0.3933	33	39.04	<.0001
Treatment		100	17.0708	0.3996	33	42.72	<.0001
stage	peak		15.4605	0.3832	33	40.35	<.0001
stage	recession		16.9495	0.6887	33	24.61	<.0001
stage	rising		16.2303	0.2937	33	55.27	<.0001
Treatment*stage	peak	50	15.2051	0.5206	33	29.21	<.0001
Treatment*stage	recession	50	15.1160	0.9740	33	15.52	<.0001
Treatment*stage	rising	50	15.7470	0.4153	33	37.92	<.0001
Treatment*stage	peak	100	15.7158	0.5623	33	27.95	<.0001
Treatment*stage	recession	100	18.7830	0.9740	33	19.28	<.0001
Treatment*stage	rising	100	16.7136	0.4153	33	40.24	<.0001

Standard										
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value		
Treatment		50		100	-1.7148	0.5607	33	-3.06		
stage	peak		recession		-1.4890	0.7881	33	-1.89		
stage	peak		rising		-0.7698	0.4828	33	-1.59		
stage	recession		rising		0.7192	0.7487	33	0.96		
Treatment*stage	peak	50	recession	50	0.08914	1.1044	33	0.08		
Treatment*stage	peak	50	rising	50	-0.5419	0.6660	33	-0.81		
Treatment*stage	peak	50	peak	100	-0.5107	0.7663	33	-0.67		
Treatment*stage	peak	50	recession	100	-3.5779	1.1044	33	-3.24		
Treatment*stage	peak	50	rising	100	-1.5085	0.6660	33	-2.27		
Treatment*stage	recession	50	rising	50	-0.6310	1.0588	33	-0.60		
Treatment*stage	recession	50	peak	100	-0.5998	1.1247	33	-0.53		
Treatment*stage	recession	50	recession	100	-3.6670	1.3774	33	-2.66		
Treatment*stage	recession	50	rising	100	-1.5976	1.0588	33	-1.51		
Treatment*stage	rising	50	peak	100	0.03117	0.6991	33	0.04		
Treatment*stage	rising	50	recession	100	-3.0360	1.0588	33	-2.87		
Treatment*stage	rising	50	rising	100	-0.9666	0.5873	33	-1.65		
Treatment*stage	peak	100	recession	100	-3.0672	1.1247	33	-2.73		
Treatment*stage	peak	100	rising	100	-0.9978	0.6991	33	-1.43		
Treatment*stage	recession	100	rising	100	2.0694	1.0588	33	1.95		

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0044	Tukey-Kramer	0.0044
stage	peak		recession		0.0677	Tukey-Kramer	0.1577
stage	peak		rising		0.1203	Tukey-Kramer	0.2621
stage	recession		rising		0.3438	Tukey-Kramer	0.6065
Treatment*stage	peak	50	recession	50	0.9362	Tukey-Kramer	1.0000
Treatment*stage	peak	50	rising	50	0.4217	Tukey-Kramer	0.9629
Treatment*stage	peak	50	peak	100	0.5098	Tukey-Kramer	0.9844
Treatment*stage	peak	50	recession	100	0.0027	Tukey-Kramer	0.0299
Treatment*stage	peak	50	rising	100	0.0302	Tukey-Kramer	0.2369
Treatment*stage	recession	50	rising	50	0.5553	Tukey-Kramer	0.9906
Treatment*stage	recession	50	peak	100	0.5974	Tukey-Kramer	0.9944
Treatment*stage	recession	50	recession	100	0.0119	Tukey-Kramer	0.1106
Treatment*stage	recession	50	rising	100	0.1408	Tukey-Kramer	0.6612
Treatment*stage	rising	50	peak	100	0.9647	Tukey-Kramer	1.0000
Treatment*stage	rising	50	recession	100	0.0072	Tukey-Kramer	0.0712
Treatment*stage	rising	50	rising	100	0.1093	Tukey-Kramer	0.5755
Treatment*stage	peak	100	recession	100	0.0102	Tukey-Kramer	0.0965
Treatment*stage	peak	100	rising	100	0.1629	Tukey-Kramer	0.7106
Treatment*stage	recession	100	rising	100	0.0592	Tukey-Kramer	0.3890

I.2.18. Total Organic Carbon Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	De	en	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	5.78	0.0217
stage	2	35	2.02	0.1480

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	15.6745	0.3638	35	43.09	<.0001
Treatment		100	16.7673	0.3710	35	45.20	<.0001
stage	peak		15.4829	0.3938	35	39.32	<.0001
stage	recession		16.9495	0.7092	35	23.90	<.0001
stage	rising		16.2303	0.3024	35	53.67	<.0001

				Standard					
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50		100	-1.0928	0.4547	35	-2.40	0.0217
stage	peak		recession		-1.4666	0.8112	35	-1.81	0.0792
stage	peak		rising		-0.7474	0.4965	35	-1.51	0.1412
stage	recession		rising		0.7192	0.7710	35	0.93	0.3573
			Differences	s of Least S	Squares Mea	ns			
	Effect	stage	Treatment	stage	Treatment	Adjustmen	t	Adj P	
	Treatment		50		100	Tukey-Krar	ner	0.0217	
	stage	peak		recession		Tukey-Krar	ner	0.1818	
	stage	peak		rising		Tukey-Krar	ner	0.3007	

I.2.19. Dissolved Organic Carbon Full Model

recession

stage

The Mixed Procedure

Tukey-Kramer

0.6235

rising

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Treatment	1	33	3.62	0.0658
stage	2	33	0.51	0.6070
Treatment*stage	2	33	3.18	0.0546

Standard										
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t			
Treatment		50	14.4987	0.2668	33	54.33	<.0001			
Treatment		100	15.2228	0.2711	33	56.14	<.0001			
stage	peak		14.6177	0.2600	33	56.23	<.0001			
stage	recession		15.1250	0.4673	33	32.37	<.0001			
stage	rising		14.8395	0.1992	33	74.48	<.0001			
Treatment*stage	peak	50	14.5871	0.3532	33	41.30	<.0001			
Treatment*stage	recession	50	14.9000	0.6608	33	22.55	<.0001			
Treatment*stage	rising	50	14.0091	0.2818	33	49.72	<.0001			
Treatment*stage	peak	100	14.6483	0.3815	33	38.39	<.0001			
Treatment*stage	recession	100	15.3500	0.6608	33	23.23	<.0001			
Treatment*stage	rising	100	15.6700	0.2818	33	55.61	<.0001			

Standard									
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	
Treatment		50		100	-0.7240	0.3804	33	-1.90	
stage	peak		recession		-0.5073	0.5347	33	-0.95	
stage	peak		rising		-0.2218	0.3275	33	-0.68	
stage	recession		rising		0.2855	0.5080	33	0.56	
Treatment*stage	peak	50	recession	50	-0.3129	0.7493	33	-0.42	
Treatment*stage	peak	50	rising	50	0.5781	0.4518	33	1.28	
Treatment*stage	peak	50	peak	100	-0.06119	0.5199	33	-0.12	
Treatment*stage	peak	50	recession	100	-0.7629	0.7493	33	-1.02	
Treatment*stage	peak	50	rising	100	-1.0829	0.4518	33	-2.40	
Treatment*stage	recession	50	rising	50	0.8909	0.7184	33	1.24	
Treatment*stage	recession	50	peak	100	0.2517	0.7630	33	0.33	
Treatment*stage	recession	50	recession	100	-0.4500	0.9345	33	-0.48	
Treatment*stage	recession	50	rising	100	-0.7700	0.7184	33	-1.07	
Treatment*stage	rising	50	peak	100	-0.6392	0.4743	33	-1.35	
Treatment*stage	rising	50	recession	100	-1.3409	0.7184	33	-1.87	
Treatment*stage	rising	50	rising	100	-1.6609	0.3985	33	-4.17	
Treatment*stage	peak	100	recession	100	-0.7017	0.7630	33	-0.92	
Treatment*stage	peak	100	rising	100	-1.0217	0.4743	33	-2.15	
Treatment*stage	recession	100	rising	100	-0.3200	0.7184	33	-0.45	

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0658	Tukey-Kramer	0.0658
stage	peak		recession		0.3497	Tukey-Kramer	0.6139
stage	peak		rising		0.5030	Tukey-Kramer	0.7783
stage	recession		rising		0.5779	Tukey-Kramer	0.8411
Treatment*stage	peak	50	recession	50	0.6790	Tukey-Kramer	0.9982
Treatment*stage	peak	50	rising	50	0.2097	Tukey-Kramer	0.7939
Treatment*stage	peak	50	peak	100	0.9070	Tukey-Kramer	1.0000
Treatment*stage	peak	50	recession	100	0.3160	Tukey-Kramer	0.9085
Treatment*stage	peak	50	rising	100	0.0224	Tukey-Kramer	0.1868
Treatment*stage	recession	50	rising	50	0.2237	Tukey-Kramer	0.8140
Treatment*stage	recession	50	peak	100	0.7436	Tukey-Kramer	0.9994
Treatment*stage	recession	50	recession	100	0.6333	Tukey-Kramer	0.9965
Treatment*stage	recession	50	rising	100	0.2916	Tukey-Kramer	0.8890
Treatment*stage	rising	50	peak	100	0.1869	Tukey-Kramer	0.7566
Treatment*stage	rising	50	recession	100	0.0709	Tukey-Kramer	0.4396
Treatment*stage	rising	50	rising	100	0.0002	Tukey-Kramer	0.0026
Treatment*stage	peak	100	recession	100	0.3645	Tukey-Kramer	0.9386
Treatment*stage	peak	100	rising	100	0.0386	Tukey-Kramer	0.2859
Treatment*stage	recession	100	rising	100	0.6589	Tukey-Kramer	0.9976

I.2.20. Dissolved Organic Carbon Reduced Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	De	n	
Effect	DF	DF	F Value	Pr > F
Treatment	1	35	10.01	0.0032
stage	2	35	0.37	0.6918

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	14.3702	0.2541	35	56.54	<.0001
Treatment		100	15.3755	0.2592	35	59.32	<.0001
stage	peak		14.6541	0.2751	35	53.26	<.0001
stage	recession		15.1250	0.4955	35	30.52	<.0001
stage	rising		14.8395	0.2113	35	70.24	<.0001

Differences of Least Squares Means

Effect	stage	Treatment	stage	Standard Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment	neak	50	recession	100	-1.0053	0.3177	35 35	-3.16	0.0032
stage	peak		rising		-0.1855	0.3469	35	-0.53	0.5962
stage	recession		rising		0.2855	0.5387	35	0.53	0.5995

Effect	stage	Treatment	stage	Treatment	Adjustment	Adj P
Treatment		50		100	Tukey-Kramer	0.0032
stage	peak		recession		Tukey-Kramer	0.6866
stage	peak		rising		Tukey-Kramer	0.8548
stage	recession		rising		Tukey-Kramer	0.8572

I.2.21. In Suspended Organic Carbon Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Treatment	1	33	5.32	0.0275
stage	2	33	0.96	0.3935
Treatment*stage	2	33	3.46	0.0434

Least Squares Means

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	-0.7193	0.2631	33	-2.73	0.0100
Treatment		100	0.1460	0.2674	33	0.55	0.5887
stage	peak		-0.4835	0.2563	33	-1.89	0.0681
stage	recession		-0.3325	0.4608	33	-0.72	0.4756
stage	rising		-0.04398	0.1965	33	-0.22	0.8242
Treatment*stage	peak	50	-0.6827	0.3483	33	-1.96	0.0585
Treatment*stage	recession	50	-1.5352	0.6516	33	-2.36	0.0246
Treatment*stage	rising	50	0.05993	0.2779	33	0.22	0.8306
Treatment*stage	peak	100	-0.2843	0.3762	33	-0.76	0.4552
Treatment*stage	recession	100	0.8702	0.6516	33	1.34	0.1909
Treatment*stage	rising	100	-0.1479	0.2779	33	-0.53	0.5981

Standard									
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	
Treatment		50		100	-0.8653	0.3751	33	-2.31	
stage	peak		recession		-0.1510	0.5273	33	-0.29	
stage	peak		rising		-0.4395	0.3230	33	-1.36	
stage	recession		rising		-0.2885	0.5009	33	-0.58	
Treatment*stage	peak	50	recession	50	0.8525	0.7389	33	1.15	
Treatment*stage	peak	50	rising	50	-0.7426	0.4456	33	-1.67	
Treatment*stage	peak	50	peak	100	-0.3984	0.5127	33	-0.78	
Treatment*stage	peak	50	recession	100	-1.5529	0.7389	33	-2.10	
Treatment*stage	peak	50	rising	100	-0.5348	0.4456	33	-1.20	
Treatment*stage	recession	50	rising	50	-1.5952	0.7084	33	-2.25	
Treatment*stage	recession	50	peak	100	-1.2509	0.7524	33	-1.66	
Treatment*stage	recession	50	recession	100	-2.4054	0.9215	33	-2.61	
Treatment*stage	recession	50	rising	100	-1.3873	0.7084	33	-1.96	
Treatment*stage	rising	50	peak	100	0.3442	0.4677	33	0.74	
Treatment*stage	rising	50	recession	100	-0.8103	0.7084	33	-1.14	
Treatment*stage	rising	50	rising	100	0.2078	0.3929	33	0.53	
Treatment*stage	peak	100	recession	100	-1.1545	0.7524	33	-1.53	
Treatment*stage	peak	100	rising	100	-0.1364	0.4677	33	-0.29	
Treatment*stage	recession	100	rising	100	1.0181	0.7084	33	1.44	

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0275	Tukey-Kramer	0.0275
stage	peak		recession		0.7764	Tukey-Kramer	0.9559
stage	peak		rising		0.1828	Tukey-Kramer	0.3727
stage	recession		rising		0.5685	Tukey-Kramer	0.8338
Treatment*stage	peak	50	recession	50	0.2569	Tukey-Kramer	0.8550
Treatment*stage	peak	50	rising	50	0.1050	Tukey-Kramer	0.5623
Treatment*stage	peak	50	peak	100	0.4427	Tukey-Kramer	0.9695
Treatment*stage	peak	50	recession	100	0.0433	Tukey-Kramer	0.3112
Treatment*stage	peak	50	rising	100	0.2386	Tukey-Kramer	0.8335
Treatment*stage	recession	50	rising	50	0.0311	Tukey-Kramer	0.2424
Treatment*stage	recession	50	peak	100	0.1059	Tukey-Kramer	0.5650
Treatment*stage	recession	50	recession	100	0.0135	Tukey-Kramer	0.1231
Treatment*stage	recession	50	rising	100	0.0587	Tukey-Kramer	0.3868
Treatment*stage	rising	50	peak	100	0.4669	Tukey-Kramer	0.9759
Treatment*stage	rising	50	recession	100	0.2609	Tukey-Kramer	0.8594
Treatment*stage	rising	50	rising	100	0.6004	Tukey-Kramer	0.9946
Treatment*stage	peak	100	recession	100	0.1345	Tukey-Kramer	0.6454
Treatment*stage	peak	100	rising	100	0.7723	Tukey-Kramer	0.9997
Treatment*stage	recession	100	rising	100	0.1601	Tukey-Kramer	0.7048

I.2.22. In Organic Carbon Partitioning Coefficient Full Model

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Treatment	1	33	4.58	0.0397
stage	2	33	0.89	0.4199
Treatment*stage	2	33	3.63	0.0376

			Standard				
Effect	stage	Treatment	Estimate	Error	DF	t Value	Pr > t
Treatment		50	-3.3907	0.2670	33	-12.70	<.0001
Treatment		100	-2.5757	0.2713	33	-9.49	<.0001
stage	peak		-3.1635	0.2601	33	-12.16	<.0001
stage	recession		-3.0482	0.4675	33	-6.52	<.0001
stage	rising		-2.7380	0.1994	33	-13.73	<.0001
Treatment*stage	peak	50	-3.3600	0.3534	33	-9.51	<.0001
Treatment*stage	recession	50	-4.2355	0.6612	33	-6.41	<.0001
Treatment*stage	rising	50	-2.5768	0.2819	33	-9.14	<.0001
Treatment*stage	peak	100	-2.9670	0.3818	33	-7.77	<.0001
Treatment*stage	recession	100	-1.8609	0.6612	33	-2.81	0.0082
Treatment*stage	rising	100	-2.8991	0.2819	33	-10.28	<.0001

Standard									
Effect	stage	Treatment	stage	Treatment	Estimate	Error	DF	t Value	
Treatment		50		100	-0.8151	0.3806	33	-2.14	
stage	peak		recession		-0.1153	0.5350	33	-0.22	
stage	peak		rising		-0.4255	0.3277	33	-1.30	
stage	recession		rising		-0.3102	0.5083	33	-0.61	
Treatment*stage	peak	50	recession	50	0.8755	0.7497	33	1.17	
Treatment*stage	peak	50	rising	50	-0.7832	0.4521	33	-1.73	
Treatment*stage	peak	50	peak	100	-0.3929	0.5202	33	-0.76	
Treatment*stage	peak	50	recession	100	-1.4990	0.7497	33	-2.00	
Treatment*stage	peak	50	rising	100	-0.4608	0.4521	33	-1.02	
Treatment*stage	recession	50	rising	50	-1.6587	0.7188	33	-2.31	
Treatment*stage	recession	50	peak	100	-1.2685	0.7635	33	-1.66	
Treatment*stage	recession	50	recession	100	-2.3746	0.9351	33	-2.54	
Treatment*stage	recession	50	rising	100	-1.3364	0.7188	33	-1.86	
Treatment*stage	rising	50	peak	100	0.3902	0.4746	33	0.82	
Treatment*stage	rising	50	recession	100	-0.7159	0.7188	33	-1.00	
Treatment*stage	rising	50	rising	100	0.3223	0.3987	33	0.81	
Treatment*stage	peak	100	recession	100	-1.1061	0.7635	33	-1.45	
Treatment*stage	peak	100	rising	100	-0.06789	0.4746	33	-0.14	
Treatment*stage	recession	100	rising	100	1.0382	0.7188	33	1.44	

Effect	stage	Treatment	stage	Treatment	Pr > t	Adjustment	Adj P
Treatment		50		100	0.0397	Tukey-Kramer	0.0397
stage	peak		recession		0.8307	Tukey-Kramer	0.9747
stage	peak		rising		0.2031	Tukey-Kramer	0.4061
stage	recession		rising		0.5458	Tukey-Kramer	0.8155
Treatment*stage	peak	50	recession	50	0.2513	Tukey-Kramer	0.8487
Treatment*stage	peak	50	rising	50	0.0926	Tukey-Kramer	0.5213
Treatment*stage	peak	50	peak	100	0.4554	Tukey-Kramer	0.9730
Treatment*stage	peak	50	recession	100	0.0539	Tukey-Kramer	0.3642
Treatment*stage	peak	50	rising	100	0.3155	Tukey-Kramer	0.9081
Treatment*stage	recession	50	rising	50	0.0274	Tukey-Kramer	0.2198
Treatment*stage	recession	50	peak	100	0.1061	Tukey-Kramer	0.5657
Treatment*stage	recession	50	recession	100	0.0160	Tukey-Kramer	0.1420
Treatment*stage	recession	50	rising	100	0.0719	Tukey-Kramer	0.4440
Treatment*stage	rising	50	peak	100	0.4168	Tukey-Kramer	0.9613
Treatment*stage	rising	50	recession	100	0.3265	Tukey-Kramer	0.9160
Treatment*stage	rising	50	rising	100	0.4246	Tukey-Kramer	0.9639
Treatment*stage	peak	100	recession	100	0.1569	Tukey-Kramer	0.6978
Treatment*stage	peak	100	rising	100	0.8871	Tukey-Kramer	1.0000
Treatment*stage	recession	100	rising	100	0.1581	Tukey-Kramer	0.7005

1.3. Multiple Regression Analysis Details for Transport Plot Study

1.3.1. In E. coli Partitioning Coefficient

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	131.35607	26.27121	17.18	<.0001
Error	32	48.92658	1.52896		
Corrected To	tal 37	180.28265			
Root MSE	1.23651	R-Square	0.7286		
Dependent Mea Coeff Var	an -6.69048 -18.48161	Adj R-Sq	0.6862		

Parameter Estimates

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	-0.75020	3.13551	-0.24	0.8124	0
TSS	TSS	1	0.00233	0.00044469	5.23	<.0001	1.84077
Diss_Organic_C	Diss_Organic_C	1	-0.47918	0.20490	-2.34	0.0258	1.23733
Total_P_z		1	-9.31584	5.20931	-1.79	0.0832	6112.97036
Diss_P_z		1	1.46206	0.37666	3.88	0.0005	21.18391
Total_Organic_P_z		1	15.83016	10.04681	1.58	0.1249	6143.05110

Figure I.1. Residual plots of predicted ln *E. coli* partitioning coefficient in runoff from well managed and poorly managed pastureland.

1.3.2. In Enterococci Partitioning Coefficient

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
	2.	equal ee	equal e		
Model	2	14.63364	7.31682	2.93	0.0687
Error	30	74.86287	2.49543		
Corrected Total	32	89.49651			
Root MSE	1.57969	R-Square	0.1635		
Dependent Mean	-5.74089	Adj R-Sq	0.1077		
Coeff Var	-27.51651				

Analysis of Variance

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	Intercept	1	-6.32960	0.36801	-17.20	<.0001	0
TSS	TSS	1	0.01456	0.00764	1.91	0.0662	320.38353
TSS_z		1	-0.01370	0.00753	-1.82	0.0788	320.38353

Predicted Value of ln enterococci PC

Figure I.2. Residual plots of predicted ln enterococci partitioning coefficient in runoff from well managed and poorly managed pastureland.

1.3.3. E. coli Total Concentration

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	5	229770805	45954161	7.78	<.0001
Error	33	194865092	5905003		
Corrected Total	38	424635897			
Root MSE	2430.02115	R-Square	0.5411		
Dependent Mean	7589.74359	Adj R-Sq	0.4716		
Coeff Var	32.01717				

Analysis of Variance

Parameter Estimates

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	957.73302	2764.18578	0.35	0.7312	0
flow	flow	1	-662527	325373	-2.04	0.0498	1.10834
Diss_P	Diss_P	1	7525.91444	2670.12375	2.82	0.0081	49.17136
Diss_Organic_P	Diss_Organic_P	1	-11401	5664.72426	-2.01	0.0524	52.48506
Z		1	9449.09132	3868.22848	2.44	0.0201	24.69012
Diss P z		1	-2341.46787	821.90835	-2.85	0.0075	26.80878

Figure I.3. Residual plots of predicted *E. coli* total concentration in runoff from well managed and poorly managed pastureland.

1.3.4. Enterococci Total Concentration

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	4	25648402	6412100	7.37	0.0002
Error	34	29570572	869723		
Corrected Total	38	55218974			
Root MSE	932.58926	R-Square	0.4645		
Dependent Mean	3471.79487	Adj R-Sq	0.4015		
Coeff Var	26.86188				

Analysis of Variance

Parameter Estimates

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	6099.47783	957.55608	6.37	<.0001	0
Total_Organic_P	Total_Organic_P	1	-984.20710	344.87547	-2.85	0.0073	1.28459
flow_z		1	664938	199952	3.33	0.0021	3.39932
TSS_z		1	0.60437	0.35446	1.71	0.0973	2.12888
Total_Organic_C_z		1	-87.72200	29.65804	-2.96	0.0056	2.40696

Figure I.4. Residual plots of predicted enterocooci total concentration in runoff from well managed and poorly managed pastureland.

1.3.5. E. coli Unattached Load

Analysis of Variance

			Sum of	Mean			
Source		DF	Squares	Square	F Value	Pr > F	
Model		10	4.935951E24	4.935951E23	2371.96	<.0001	
Error		28	5.826672E21	2.080954E20			
Corrected	Total	38	4.941777E24				
Root MSE	1	4425513143	R-Square	0.9988			
Dependent	Mean 2	.848284E11	Adj R-Sq	0.9984			
Coeff Var		5.06463					
			Parameter	Estimates			
			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	15180669092	5344897799	2.84	0.0083	0
TSS	TSS	1	-4.6808E10	19484088038	-2.40	0.0232	28083
TDP	TDP	1	1.841513E13	6.513936E12	2.83	0.0086	141994
DOP	DOP	1	-2.96703E13	1.303309E13	-2.28	0.0307	135233
TOC	тос	1	-3.99426E12	1.017579E12	-3.93	0.0005	39252
DOC	DOC	1	3.944727E12	1.036384E12	3.81	0.0007	35858
TSS_z		1	47739216643	19546259470	2.44	0.0212	28626
TDP_z		1	-4.53297E13	1.754032E13	-2.58	0.0153	591524
DOP_z		1	8.31673E13	3.638527E13	2.29	0.0300	629312
TOC_z		1	4.236025E12	1.272862E12	3.33	0.0025	30242
DOC_z		1	-3.87238E12	1.322519E12	-2.93	0.0067	29297
		4.00E+10					
			+				
		3.00E+10					
		2.00E+10	+				
		1007. 10	+ + + +	+	+		
		TOOR+ 10	+* * . *	+			
	idt	0008+00	* + + + + + + + + + + + + + + + + + + +				
	Ses 2	0.0011100	+ + + +	+			
		-100E+10	+ +	+	+		
			\$ + + +				
		-2.00E+10	+		Ŧ		
		$-3.00E + 10^{1}$					
		0.00E	+00 5.00E	E+11 100E-	+12 1.	50E+12	

Predicted Value of E. coli Attached Load

Figure I.5. Residual plots of predicted *E. coli* unattached loading rates in runoff from well managed and poorly managed pastureland.

1.3.6. E. coli Attached Load

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	4 34 38	1.098996E21 6.719485E19 1.166191E21	2.747491E20 1.976319E18	139.02	<.0001
Root MSE Dependent Mean Coeff Var	1405816187 2569988258 54.70127	R-Square Adj R-Sq	0.9424 0.9356		

Parameter Estimates

			Parameter	Standard			Variance
Variable	Label	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	Intercept	1	-58591770	325214817	-0.18	0.8581	0
TSS	TSS	1	417832268	83865792	4.98	<.0001	54.78487
z		1	1688582913	670975349	2.52	0.0167	2.21960
TP_z		1	-2.45344E12	5.324525E11	-4.61	<.0001	83901
TOP_z		1	4.640915E12	1.031687E12	4.50	<.0001	85800

Predicted Value of E. coli Attached Load

Figure I.6. Residual plots of predicted *E. coli* attached loading rates in runoff from well managed and poorly managed pastureland.

1.3.7. Enterococci Unattached Load

Analysis of Variance

Predicted Value of Enterococci Unattached Load

Figure I.7. Residual plots of predicted enterococci unattached loading rates in runoff from well managed and poorly managed pastureland.

1.3.8. Enterococci Attached Load

-2.00E + 08-3.00E + 08-4.00E + 08-5.00E + 08-6.00E + 08

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	3 35 38	8.850154E18 1.78794E18 1.063809E19	2.950051E18 5.108401E16	57.75	<.0001
Root MSE Dependent Mean Coeff Var	226017725 313438018 72.10922	R-Square Adj R-Sq	0.8319 0.8175		

Parameter Estimates

Predicted Value of Enterococci Attached Load

Figure I.8. Residual plots of predicted enterococci attached loading rates in runoff from well managed and poorly managed pastureland.