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(ABSTRACT) 
 

Despite recent advances in convex optimization techniques, the areas of discrete and 
continuous nonconvex optimization remain formidable, particularly when globally optimal 
solutions are desired.  Most solution techniques, such as branch-and-bound, are enumerative in 
nature, and the rate of their convergence is strongly dependent on the accuracy of the bounds 
provided, and therefore, on the tightness of the underlying formulation.  This research develops 
both general and problem-specific procedures to be used in conjunction with the Reformulation-
Linearization Technique (RLT) for generating tight model formulations for challenging 
nonconvex optimization problems.  These problems include the general classes of nonlinear and 
integer programs, as well as specific applications within these areas.  We begin by deriving a 
new class of cutting planes, called semidefinite cuts, for enhancing the solution of nonconvex 
optimization problems.  While these cuts can be generally applied to either discrete or 
continuous nonconvex problems, we specifically demonstrate their effectiveness in solving 
quadratic optimization problems.  We then focus on the important class of mixed-integer 
programming (MIP) problems, and develop a new decomposition technique.  This methodology 
is particularly well-suited to solve stochastic integer programming problems, arguably, the most 
difficult class of discrete problems.  Finally, we address a specific MIP application, known as the 
facility layout problem, that has defied exact solution methods, and which subsumes the 
notorious quadratic assignment problem.  We significantly advance the state-of-the-art in solving 
these problems by developing substantially improved models and algorithms through outer-
linearization techniques and concepts from disjunctive programming.   

 Our first contribution proposes a mechanism to tighten RLT-based relaxations for general 
problems in nonconvex optimization by importing concepts from semidefinite programming 
(SDP), leading to a new class of semidefinite cutting planes.  Given an RLT relaxation, the usual 
nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable 
positive semidefinite constraint.  Instead of relying on specific SDP solvers, the positive 
semidefinite stipulation is re-written to develop a semi-infinite linear programming 
representation of the problem, and an approach is developed that can be implemented using 
traditional optimization software.  Specifically, the infinite set of constraints is relaxed, and 
members of this set are generated as needed via a separation routine in polynomial time. In 
essence, this process yields an RLT relaxation that is augmented with valid inequalities, which 
are themselves classes of RLT constraints that we call semidefinite cuts.  We illustrate the use of  
this strategy by applying it to the case of optimizing a nonconvex quadratic objective function 
over a simplex.  Several implementation variants of this basic concept are delineated and 
computationally explored.  The results indicate that the cutting plane algorithm provides a 
significant tightening of the lower bound obtained by using RLT alone.  Moreover, when used 
within a branch-and-bound framework, the proposed lower bound substantially reduces the effort 
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required to obtain globally optimal solutions.  On average, the semidefinite cuts have reduced the 
number of nodes in the branch-and-bound tree by a factor of 37.6, while decreasing solution time 
by a factor of 3.4.  The semidefinite cuts have also led to a significant reduction in the optimality 
gap at termination for larger problem instances, in some cases producing optimal solutions for 
problems that could not be solved using RLT alone within the allowable size and time limits.  
We have also proposed a method for generating semidefinite cuts to enhance higher order levels 
of RLT, thus enabling the semidefinite concept to be extended to orders higher than two for the 
first time in the literature.  

 Next, we consider a modification of Benders� decomposition method, using concepts 
from the Reformulation-Linearization Technique (RLT) and lift-and-project cuts, in order to 
develop an approach for solving discrete optimization problems that yield integral subproblems, 
such as those that arise in the case of two-stage stochastic programs with integer recourse.  We 
first demonstrate that if a particular convex hull representation of the problem�s constrained 
region is available when binariness is enforced on only the second-stage (or recourse) variables, 
then the regular Benders� algorithm is applicable.  The proposed procedure is based on 
sequentially generating a suitable partial description of this convex hull representation as needed 
in the process of deriving valid Benders� cuts.  We also show how this procedure can be applied 
even more efficiently to the case of stochastic programs, by exploiting the dual angular structure 
that they possess.  The key idea is to design an RLT or lift-and-project cutting plane scheme for 
solving the subproblems where the cuts generated have right-hand sides that are functions of the 
first-stage variables.  Hence, we are able to re-use these cutting planes from one subproblem 
solution to the next simply by updating the values of the first-stage decisions.  The proposed 
Benders� cuts also recognize these RLT or lift-and-project cuts as functions of the first-stage 
variables, and are hence shown to be globally valid, thereby leading to an overall finitely 
convergent solution procedure.  An illustrative example is provided to elucidate the proposed 
approach.  The focus is on developing a first comprehensive finitely convergent extension of 
Benders� methodology for problems having 0-1 mixed-integer subproblems, as in the 
aforementioned context of two-stage stochastic programs with integer recourse.   

 Finally, we develop a substantially improved mixed-integer programming (MIP) 
modeling and algorithmic approach for the facility layout problem.  Given a rectangular 
building, and area requirements along with aesthetic ratios for each department, the problem is to 
determine the dimensions and location of each (rectangular) department within the building in 
order to minimize the total travel cost (number of trips times the distance) between all 
departments.  The distance between departments is measured as the rectilinear distance 
separating their respective  centroids.  Although the facility layout problem can be stated rather 
simply, it is extremely difficult to solve to optimality, even for small problem instances.  The 
difficulty arises from the nonlinear area constraints for each department and the disjunctive 
constraints that no two departments can overlap.  Existing models for this problem have been 
unable to even capture an adequately accurate linearized representation of the nonlinear area 
constraints that would yield a tractable model formulation.  Motivated by this dearth, we focus 
on developing several model enhancements for producing more accurate solutions while also 
decreasing the solution effort required.  In order to represent the nonlinear area constraints, we 
begin by strengthening the bounds on the departmental dimensions, and then derive a novel 
polyhedral outer approximation scheme that can provide as accurate a representation as desired.  
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We also develop and evaluate the performance of several classes of valid inequalities, as well as 
alternative methods for reducing problem symmetry.  Finally, we explore the construction of 
partial convex hull representations for the disjunctive constraints that are used to prohibit the 
overlapping of departments.  These proposed enhancements have been evaluated using an AMPL 
interface with CPLEX, and compared with published results to gauge their effectiveness.  The 
results indicate a substantial increase in the accuracy of the layout produced, while at the same 
time, providing a dramatic reduction in computational effort.  Overall, the maximum error in 
department size was reduced from over 6% to nearly zero, while solution time decreased by a 
factor of 110.  Previously unsolved test problems from the literature that had defied even 
approximate solution methods have been solved to exact optimality using our proposed 
approach.   
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Chapter 1: Introduction and Motivation 
While efficient solution techniques have been developed for certain types of convex 

optimization problems, particularly linear programming problems, there are few efficient 
algorithms for discrete or continuous nonconvex optimization problems.  The most typical 
solution techniques are enumerative in nature, including the typical branch-and-bound strategy 
and its variants, and their performance is highly dependent on the strength of the bounding 
mechanisms employed.  In order to derive accurate problem bounds, it is essential to develop 
tight model formulations, through the use of both general-purpose and problem-specific 
strategies.  This dissertation focuses on developing both general-purpose and problem-specific 
strategies to strengthen model formulations for continuous nonconvex optimization, stochastic 
integer programming, and facility layout problems.  

1.1 Motivation  

 As evident from several studies in the literature, there is a clear need for deriving tight 
formulations for nonconvex optimization problems in order to develop effective solution 
methods.  Our focus in this dissertation will be to build upon existing methods and concepts for 
obtaining such tight reformulations.  Solution techniques for solving nonconvex optimization 
problems typically involve a reformulation step of relaxing some of the complicating constraints, 
but then augmenting this with a set of additional suitable restrictions that are implied for any 
feasible solution and that tighten the resulting formulation.  The goal of problem relaxation is to 
obtain a formulation that is significantly easier to solve, and yet provides a sufficiently accurate 
approximation for the original problem.   Since some of the restrictions on the problem have 
been eliminated, any solution to the relaxation gives a best-case bound for the original problem.  
A feasible solution to the original problem provides a worst-case bound, and these two bounds 
can be used in conjunction to search for globally optimal solutions.  It is essential to have tight 
bounds if this search is to be computationally effective.  In this dissertation, we rely heavily on 
the relaxation strategy known as the Reformulation-Linearization Technique (RLT) (see Sherali 
and Adams (1990, 1994, 1999)), and we develop several extensions and specializations of this 
technique to tighten model formulations through general and problem-specific insights. 

There are many commonly used techniques for obtaining relaxations for nonconvex 
optimization problems.  In discrete optimization, for instance, a basic strategy is to relax the 
integrality restrictions to produce a linear programming relaxation.  While such a relaxation is 
easy to solve, it is typically not a tight formulation, and therefore provides weak bounds and 
leads to a significant effort in the overall search process.  An alternative relaxation strategy relies 
on semidefinite programming (SDP).  SDP is similar to linear programming, except that the 
vector of variables is replaced by a matrix, and the non-negativity restrictions are replaced by the 
restriction that the matrix of variables should be positive semidefinite.  SDP has been used to 
provide relatively tight relaxations for discrete and continuous optimization problems, but their 
solution requires specialized SDP solvers.  On the other hand, the RLT approach is amenable to 
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the use of standard LP solvers, while providing a significant tightening beyond the basic LP 
relaxation.  The RLT strategy, which is a unifying approach for solving discrete and continuous 
nonconvex optimization problems (see Sherali and Adams (1999) for a comprehensive 
exposition), is to suitably multiply appropriate constraints by nonnegative bound-factors, 
constraint-factors, or simply variables in a reformulation phase, and then to replace the products 
of original variables by new variables in order to derive a higher-dimensional lower bounding 
linear programming (LP) relaxation for the original problem.  This RLT process can actually 
generate a hierarchy of tighter relaxations, depending on the types of factor products employed 
in the reformulation phase. In practice, however, the lowest-level RLT relaxation (as dictated by 
the nature of the terms in the original problem) is most frequently implemented in order to 
control the size of the resulting relaxation, although higher-level relaxations have been 
successfully used in certain special applications.  In order to close the gap between these lower 
level RLT relaxations and the convex hull of feasible solutions, it is often helpful to incorporate 
additional classes of RLT constraints. 

 In deriving effective solution strategies, it is essential to strengthen the relaxation 
employed by including suitable additional restrictions in order to obtain tighter bounds.  
However, including a large number of additional restrictions can significantly increase the size of 
the problem, thereby making it more difficult to solve.  As a compromise between tightening the 
bound and increasing the problem size, many solution strategies iteratively solve the relaxation 
and then add to it cutting planes or valid inequalities that are implied for any feasible solution but 
are violated by the current solution of the relaxation.  These inequalities are used to �cut off� the 
current solution in an attempt to drive the best-case bound to more closely approximate the true 
solution value.  Some types of cutting planes, such as Gomory�s fractional cuts for discrete 
optimization problems, are generic to entire classes of problems, while others have been derived 
for specific applications.  Among the general-purpose techniques, we will discuss applications of 
disjunctive programming and RLT (or lift-and-project) cuts.  These cuts are used to derive tight 
approximations for the convex hull of feasible solutions.  In addition, we will develop a new 
general class of RLT cuts, based upon concepts from semidefinite programming, that are valid 
for any nonconvex optimization problem.  We will also explore the use of some valid 
inequalities that are problem-specific, particularly in the case of the facility layout problem.  

The focus of this dissertation is to develop tight problem formulations in order to lead to 
improved solution techniques for general and specific applications of nonconvex optimization.  
Specifically, we concentrate on three applications of nonconvex optimization:  continuous 
nonconvex problems, stochastic programs with integer recourse, and mixed-integer 
programming (MIP) formulations for the facility layout problem.  In each of these problems, 
there is a particular need for developing tight model formulations in order to enhance algorithmic 
performance.  For continuous nonconvex optimization problems, the search for a global optimum 
is typically obtained through branch-and-bound enumeration.  Without tight bounds, the 
enumeration tree would continue to explore non-improving areas of the solution space and 
thereby dramatically increase the overall computational effort.  In the context of stochastic 
programs, typical solution strategies involve solving the subproblems repeatedly, for many 
different realizations of the first-stage variables.  When these subproblems involve integer 
variables, the overall solution effort can become prohibitive unless we are able to approximate 
the convex hull of feasible solutions for the subproblems.  Finally, in the case of facility layout 
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problems, the nature of these MIP problems has made it difficult to solve even moderately sized 
instances to optimality.  Moreover, existing model formulations provide relatively poor 
approximations to the underlying nonlinear problem.  We demonstrate that improved 
formulations can enhance both the accuracy and solvability of these problems, thereby 
facilitating the derivation of optimal or good provable quality solutions to larger instances of this 
class of problems. 

1.2 Research Goals 

We state the goals of this research in terms of the three areas discussed above. 

The first portion of this dissertation focuses on using concepts from semidefinite 
programming to develop a new class of cutting planes that can be used to enhance general RLT 
relaxations. We explore several alternative cut generation strategies and evaluate their 
performance to identify the most effective techniques for deriving tighter bounds.  We also study 
their effectiveness in determining globally optimal solutions within a branch-and-bound 
framework.  The effectiveness of these cuts is demonstrated for a class of problems in which a 
nonconvex quadratic objective function is minimized over a simplex. 

The next endeavor is concerned with developing a modified Benders� partitioning 
strategy to solve discrete optimization problems that decompose into discrete subproblems.  In 
particular, we develop a finitely convergent algorithm for solving the subproblems via an RLT-
based cutting plane approach, while using these subproblem cuts to obtain valid Benders� cuts, 
and lifting them to enable their re-use for subsequent visits to the subproblem.  The design of this 
approach is particularly motivated by the case of stochastic programs with integer recourse. 

In the final portion of this dissertation, we develop a new, more accurate mixed-integer 
programming formulation for the facility layout problem, and design a series of enhancements to 
this model by tightening relaxations through symmetry-breaking considerations, valid 
inequalities, and partial convex hull constructions.  The effectiveness of these proposed 
enhancements is evaluated in comparison with previously published approaches using several 
test problems that have been addressed in the literature.   

1.3 Organization of the Dissertation 

The remainder of this dissertation is organized as follows.  Chapter 2 provides a review 
of the literature relevant to this research, beginning with a discussion on the need for deriving 
tight formulations.  This leads to a description of several popular solution techniques for solving 
nonconvex optimization problems, including the Reformulation-Linearization Technique (RLT), 
semidefinite programming (SDP), cutting planes, and Benders� decomposition.   Elements of 
each of these are included in the development of the solution techniques presented in the ensuing 
chapters.  The remainder of Chapter 2 reviews the literature for some specific applications of 
nonconvex optimization, including stochastic programming and facility layout problems.   
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Chapter 3 uses concepts from semidefinite programming to create a new class of cuts that 
enhance RLT relaxations for general nonconvex optimization problems.  Based on the fact that 
the traditional matrix of second-order (or more generally, even-ordered) RLT variables can be 
restricted to be positive semidefinite, we develop a polynomial-time framework to determine 
whether this matrix satisfies the stated positive semidefiniteness requirement, and if not, we 
generate valid linear inequalities that delete the current approximating solution.  This leads to an 
iterative process whereby the semidefinite relaxation of a problem is solved via a series of linear 
programming problems, beginning with an initial RLT relaxation.  We have proposed several 
variations for generating these SDP cuts, and we demonstrate their use on a class of continuous 
nonconvex quadratic optimization problems.  Computational results are presented to exhibit the 
strong effectiveness of the proposed cuts in providing tighter bounds, and in substantially 
decreasing the overall solution effort within the context of an exact branch-and-bound solution 
strategy.  

As opposed to the general-purpose model strengthening procedures developed in Chapter 
3, Chapters 4 and 5 design problem-specific techniques for tightening problem formulations.  
Chapter 4 presents a modified Benders� partitioning strategy for solving discrete optimization 
problems that yield discrete subproblems.  This methodology is particularly motivated by the 
class of stochastic integer programs with mixed-integer recourse.  The proposed procedure 
solves the resulting subproblems through a series of cutting planes that approximate the convex 
hull of solutions, and these cutting planes are then used to derive valid Benders� cuts.  In order to 
enhance algorithmic performance, we also develop various lifting techniques that render the 
generated cuts to be globally valid for all subsequently solved subproblems.  In addition, we 
develop a specialization for stochastic programming problems that exploits the dual angular 
structure that they possess.  The proposed solution strategy is the first comprehensive extension 
of Benders� methodology for problems having 0-1 mixed-integer subproblems. 

Chapter 5 addresses the facility layout problem, a discrete optimization problem that has 
proven difficult to solve to optimality, even for moderately sized problem instances.  We review 
a published mixed-integer programming formulation for this problem, and then propose a series 
of enhancements that are designed to provide more accurate solutions to the underlying 
nonlinear, nonconvex problem, as well as decrease solution effort.  We begin by deriving a novel 
polyhedral outer approximation scheme that can provide as accurate a representation as desired 
for the nonlinear area requirements for each department.  We also develop and evaluate the 
performance of several classes of valid inequalities, alternative methods for reducing problem 
symmetry, and certain partial convex hull constructions for the disjunctive constraints that are 
used to prohibit the overlapping of departments.  The results indicate a substantial increase in the 
accuracy of the layout produced, as well as a dramatic reduction in computational effort.  Finally, 
Chapter 6 provides a summary and conclusion, along with recommendations for future research.
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Chapter 2: Literature Review 
This chapter contains a summary of literature that is relevant to the topics covered in the 

remainder of the dissertation.  Section 2.1 discusses the importance of deriving tight 
formulations for nonconvex optimization problems, particularly within the context of branch-
and-bound or other enumerative approaches. Section 2.2 reviews some of the more common 
solution techniques for nonconvex optimization problems, beginning with traditional methods 
(cutting planes, enumerative methods, and partitioning strategies) and concluding with the more 
modern approaches of disjunctive programming, the Reformulation-Linearization Technique, 
and semidefinite programming.  Section 3.3 reviews the literature on two areas (namely, 
stochastic programming and facility layout problems) for which we will later propose new 
conceptual approaches and techniques. 

2.1 Model Formulations 

 From the onset of operations research as a field, the key to obtaining meaningful results 
has relied upon formulating a mathematically correct model that accurately characterizes the 
situation being studied.  For most problems, there are many representations that constitute 
mathematically correct models, and in some cases (for example moderately sized linear 
programming problems), most of these equivalent representations can be solved within a 
reasonable amount of time given sophisticated solver routines.  In the case of nonconvex 
optimization, however, the problems become substantially more challenging to solve, and the 
model formulation can have a significant impact on the effort required to solve the problem to 
optimality.  As we will discuss throughout this dissertation, most solution techniques for 
nonconvex optimization problems rely heavily on solving successive (typically linear 
programming based) approximations to the underlying problem.  The tightness of these 
approximations directly affects how accurately they reflect the original problem and, in turn, 
influences the amount of effort required to solve the problem to global optimality.  In order to 
develop such tight problem relaxations, it is essential to seek good models to represent these 
problems, rather than just models that are mathematically correct.   

Sherali and Driscoll (2000) provide an excellent discussion on the importance of tight 
formulations for discrete optimization problems, which they illustrate with the following fixed-
charge location problem example, in which up to m supply facilities (having capacities 

msss ,,, 21 K ) are to be constructed.  The objective is to minimize the cost of construction plus the 
cost of shipping from the constructed supply centers to the set of n customers having demands 

nddd ,,, 21 K .  The variables 0≥ijx  represent the amount shipped from facility i to customer j, 
and iy  is a binary variable that equals one if facility i is constructed and zero otherwise.  If 
facility i is not constructed ( 0=iy ), the model must then ensure that jxij ∀= 0 .  As a first-step 
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in formulating this restriction, consider the constraint ∑
=

≤
n

j
iiij ysx

1

 for mi ,,1 K= .  If 0=iy , 

this constraint (coupled with 0≥ijx ) forces jxij ∀= 0 , and if 1=iy , it simply enforces that the 
total amount shipped out of facility i is at most its supply is .  Although this formulation is 
mathematically correct, it can be substantially strengthened by including the constraints 

jidsyx jiiij ,},min{0 ∀≤≤ .  These constraints are clearly satisfied in the discrete sense, since 
they force jxij ∀= 0  when 0=iy  and otherwise limit the amount shipped between supply i and 
customer j to be within the logically implied bounds.   Although these additional restrictions are 
implied for the discrete case, they significantly tighten the linear programming relaxation by 
including variable upper bounds on each individual ijx .  This tightening of the relaxation has 
been amply demonstrated to significantly improve the solvability of the model. 

The foregoing example illustrates how formulations can be strengthened by making 
logical inferences based on the problem structure.  In addition, in the case of discrete 
optimization, it is sometimes possible to examine the problem data and alter some of the 
constraint coefficients to provide even tighter approximations through a technique known as 
coefficient reduction (see Nemhauser and Wolsey (1998) for example).  In other cases (see 
Sherali and Smith (1999), for example) a natural symmetry in the problem can produce a series 
of solutions that, while appearing to be different numerically, each represent an equivalent set of 
decisions.  In such cases, a solver could spend a great deal of time examining these solutions, not 
recognizing that they in fact represented the same situation.  In order to reduce such inherent 
problem symmetry and thus speed the solution process, a set of symmetry breaking constraints, 
or hierarchical constraints as proposed by Sherali and Smith, can often be developed.  We will 
apply these conceptual techniques in our study of a facility layout problem as described in 
Chapter 5.   

2.2 Solution Techniques for Nonconvex Optimization Problems 

 There are several general techniques that have been developed for nonconvex 
optimization.  We now review some of the relevant solution methods, beginning with the 
classical techniques of cutting planes, enumeration, and Benders� decomposition.  Following 
this, we address some of the more recent developments, including disjunctive programming, the 
Reformulation-Linearization Technique (RLT), and semidefinite programming.  We note that 
rather than relying solely on one of these specific techniques, it is typically more effective to 
combine these strategies, along with problem specific insights, while designing solution 
algorithms.  For more on the importance of using hybrid algorithms of this type, we refer the 
reader to Hoffman and Padberg (1985, 1991) and Padberg and Rinaldi (1987). 

2.2.1 Cutting Planes  
 As mentioned previously, the basic technique for solving nonconvex optimization 
problems relies on solving a sequence of relaxations that produce tighter and tighter 
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approximations to the original problem.  (In this dissertation, the relaxations that we consider, 
although possibly derived in a higher-dimensional space, will typically be linear programming 
representations.)  Since any relaxation has weakened the set of constraints imposed by the 
original problem, and thereby expanded the feasible region for the problem, the solution to the 
relaxed problem provides a best-case bound on the original problem.  If the solution to the 
relaxed problem satisfies all of the relaxed restrictions, it is feasible and therefore optimal to the 
original problem as well.  If the solution violates some of these relaxed constraints, we need to 
include additional restrictions to force the relaxed solution towards an optimal solution for the 
original problem.   

 Cutting planes, or valid inequalities, are such additional restrictions that are satisfied by 
every feasible solution to the original constraints, but are violated by the current solution to the 
relaxed problem.  These constraints are said to �cut off� the current solution to the relaxed 
problem and force the feasible region of the relaxed problem to more closely approximate that of 
the original problem.  The revised relaxation would then be solved, and if its solution continues 
to violate the constraints of the original problem, a new cutting plane would be derived.  This 
procedure would then be repeated until the original problem was solved.  Cutting planes for 
discrete optimization problems were introduced in the 1960�s by Gomory (1960), and several 
other cutting plane schemes were developed in the same era.  Recently, several stronger types of 
cuts have been developed based upon the concepts of disjunctive programming (see Balas 
(1974), Balas and Jeroslow (1975) and Sherali and Shetty (1980)) and the Reformulation-
Linearization Technique (see Sherali and Adams (1990, 1994, 1999) and Sherali et al. (1998)). 
Although cutting planes are not always particularly effective in solving a problem to optimality 
in and of themselves, they have recently experienced a resurgence in attention due to their 
effectiveness when implemented within an enumerative framework such as branch-and-bound.   

2.2.2 Enumerative Methods 
 Enumerative methods, such as branch-and-bound, successively partition the solution 
space of the original problem into smaller and smaller regions in the search for a globally 
optimal solution.  The concept of branch-and-bound was developed by Land and Doig (1960) 
and further refined by Dakin (1965), and it remains one of the most widely used techniques in 
nonconvex optimization.  This type of search is typically characterized by an enumeration tree, 
beginning with a root node that represents some base-level relaxation of the original problem.  
The root node is further partitioned into successor or children nodes that represent more 
restricted problems, with each branch of the tree detailing some set of additional restrictions on 
the variables.  The specific restrictions at any particular node are all those listed on the branches 
along the path to the root node.  At each node, the relaxation is solved to obtain a best-case 
bound, and a feasible solution to the original problem is sought in order to determine a worst-
case bound.  The goal is to shrink the gap between these two bounds in order to find an exact 
solution to the problem associated with each node.  If these two bounds are different, the current 
node is partitioned into two (or more) new nodes that are more restricted.  Whenever a node is 
infeasible or its best-case bound is worse than some previously obtained worst-case solution, or 
if the node subproblem is solved to optimality, we remove the node from any further 
consideration, or fathom the node.  Throughout the process, we track the best known (or 
incumbent) solution, and the search ends when the bounds indicate that the incumbent solution 



Chapter 2: Literature Review  8 

  

cannot be improved upon, and thus that all active nodes have been fathomed.   

Most implementations of branch-and-bound solve some linear programming outer 
approximation or relaxation to obtain the best-case bound at each node, and a worst-case bound 
is found by performing a local search in the neighborhood of the relaxation solution.  (If the 
solution to the relaxed problem is feasible to the original problem at that node, then this local 
search would be unnecessary as an optimal solution would already be at hand.)  Since branching 
occurs whenever the bounds for a node are not sufficiently close to each other, the number of 
branches can become quite large unless good bounding strategies are employed.  Thus, in order 
to prevent the enumeration tree from becoming prohibitively large, it is essential to have linear 
programming relaxations that closely approximate the original problem.  Cutting planes are often 
employed within the branch-and-bound framework in order to tighten the bounds obtained at 
each node.  While the cutting planes derived at a particular node are inherently valid for any 
subsequent node on the same branch, there has recently been increased attention on making these 
cuts globally valid for any node in the branch-and-bound tree.  Such a solution technique, 
introduced by Padberg and Rinaldi (1987), is known as branch-and-cut, and is one of the most 
popular solution techniques in practice today.   In the approach that we develop in Chapter 4, we 
will discuss one such technique for deriving globally valid cutting planes based upon the solution 
of a particular subproblem.   

2.2.3 Benders� Decomposition  
 Benders� decomposition has proven to be a powerful technique for solving large-scale 
linear (and integer) programs since its introduction in 1962.  The main idea behind this approach 
is to group the variables in such a way as to partition the problem into components that are easier 
to solve.  This is accomplished by transforming the problem to create inner and outer 
optimization problems.   The outer optimization, or master problem, captures the implicit 
projection of the original problem onto the space of the �complicating variables� via a set of 
Benders� constraints or cuts.  Only a subset of these constraints is maintained at any stage to 
produce a relaxed master problem, and violated members of this set of cuts are sequentially 
generated as needed by solving the inner optimization problems, or subproblems.  By fixing the 
complicating variables at values determined by the relaxed master problem, the subproblems can 
be solved with relative ease.  The solution procedure, in essence, determines an optimal solution 
for the current relaxed master problem and solves a subproblem to determine whether or not the 
prospective solution violates any of the omitted constraints.  (As detailed in Chapter 4, practical 
implementations, however, do not require the master program to be solved to optimality at each 
stage, and are designed to generate Benders� cuts in the spirit of applying a branch-and-cut 
procedure on the master program.)  The subproblems can provide two types of cuts for the 
master problem, feasibility and optimality cuts.  Feasibility cuts are used to eliminate any master 
program decisions that can produce infeasible inner optimization subproblems, while optimality 
cuts are used to approximate the inner optimization problem�s objective value function.  Both of 
these types of cuts can be generated using the dual solution to the subproblem.  If no violated 
constraints are found, then the aforementioned prospective solution is determined to be an 
optimal solution to the original problem.  Otherwise, a (most) violated Benders� cut is generated 
and this process is reiterated.  More details on the Benders� partitioning strategy can be found in 
several linear or integer programming books (see, for example, Bazaraa et al. (1993) or Parker 
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and Rardin (1988)).  In Section 2.3.1, we show the details of how Benders� partitioning can be 
used to solve stochastic programs, and in Chapter 4 we will present a specific application of this 
technique for discrete problems. 

2.2.4 Disjunctive Programming  
 Many modern techniques for nonconvex optimization are based on generating polyhedral 
approximations for the original problem, and the theory and algorithms supporting these 
approaches can often be viewed in the context of disjunctive programming.  Disjunctive 
programming problems are optimization problems in which the constraints of the problem are 
given as logical functions of two or more clauses, and typically these clauses are assumed to be 
linear with respect to the problem variables.  Sherali and Shetty (1980) provide a thorough 
overview of disjunctive programming, as does Balas (1974, 1998), demonstrating how this field 
subsumes several classes of nonconvex optimization problems.  In order to express the logical 
relationships between two clauses A and B, the following operations have been defined.  A 
conjunction, denoted by BA ∧ , indicates that both clauses A and B must be true, while a 
disjunction, denoted BA ∨ , indicates that either of the two clauses (or both) must be true.  In 
many cases, the constraints of a disjunctive program restrict solutions to satisfy at least one of 
the relationships 0, ≥≥ xbxA hh  for some Hh ∈ , where H is an index set over the family of 
restrictions.  In this case, the feasible region of the disjunctive program, F, can be stated as a 
union of sets by }0,:{ ≥≥∪=

∈
xbxAxF hh

Hh
.  The disjunctive cut principle facilitates linear 

constraints to be developed to enforce such logical restrictions on the variables.  The forward 
part of the disjunctive cut principle, due to Balas (1974, 1975), associates a set of nonnegative 
multipliers, hλ , with each set of constraints, hh bxA ≥ , and surrogates this set of constraints into 
the single inequality, hThhTh bxA )()( λλ ≥ , for each Hh ∈ .  This set of surrogate constraints is 
then reduced to a single constraint by taking the pointwise supremum of the left-hand side and 

the infimum of the right-hand side of these constraints to yield ])[(inf])[(sup hTh

Hh

hTh

Hh
bxA λλ

∈∈
≥



  

as a valid inequality for F.  Jeroslow (1977) showed that the converse of this statement, known 
as the reverse part of the disjunctive cut principle, is also true.  (Glover (1974) also provided 
similar results in a different context.)  This indicates that any valid inequality for F can be 
uniformly dominated by a disjunctive cut of the above form, implying that the convex hull of F 
can theoretically be obtained by selecting appropriate λ -values.   

Much attention has been given to the class of disjunctive programs known as facial 
disjunctive programs (FDP), which are detailed clearly and concisely in Sherali (1999).  A facial 
disjunctive program is generally represented as: minimize { }YXxxcT ∩∈: , where X is a 
nonempty polytope, and Y is given in conjunctive normal form, i.e., as a conjunction of 

disjunctions.   More precisely, we have 



 ≥∪∩=

∈∈
}:{ h

i
h
iQiHh

bxaxY
h

, where for each 

}�,,1{ hHh K≡∈ , the corresponding disjunction requires that at least one of the inequalities 
h
i

h
i bxa ≥  be satisfied for some hQi ∈ .  The term facial implies that for each HhQi h ∈∈ , , 

}:{ h
i

h
i bxaxX ≥∩ defines a face of X.   The class of 0-1 mixed-integer programming problems, 
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for instance, can be viewed as a facial disjunctive program by taking X as the linear 
programming relaxation of the original problem, H as the index set of the binary variables, and 

[ ])1()0( ≥∨≤∩=
∈ hhHh

xxY .  As shown by Balas (1998), it is possible to construct the convex 

hull of feasible solutions for FDPs in an iterative fashion through a hierarchy of tighter 
relaxations hKKK �10 ,,, K , starting with 0K  as the linear programming relaxation, XK =0 .  At 
each step of the process, Balas has shown how to inductively determine 





 ≥∩∪= −∈

}):{(conv 1
h
i

h
ihQih bxaxKK

h

 for hh �,,1 K= , with )(conv� YXKh ∩= .  Recent work 

in disjunctive programming has focused on generating deep disjunctive cuts within a branch-and-
cut framework.  (Earlier ideas in this vein were proposed by Sherali and Shetty (1980).)  Toward 
this end, Balas et al. (1993) have developed lift-and-project cuts for 0-1 mixed integer programs 
by taking [ ]})1:{(})0:{(conv 11 ≥∩∪≤∩= −− hhhhh xxKxxKK .  In this process, each 
constraint in 1−hK  is multiplied by the factors hx  and  )1( hx− , and the resulting problem is 
linearized by replacing each product of variables as a single variable.  As shown in the next 
section, however, this process can also be viewed as a direct application of the Reformulation-
Linearization Technique (1990). 

2.2.5 Reformulation-Linearization Technique (RLT)  
 The Reformulation-Linearization Technique (RLT) of Sherali and Adams (1990, 1994, 
1999), provides a unifying approach for discrete and continuous nonconvex optimization 
problems.  This approach can be used to generate a hierarchy of relaxations for nonconvex 
optimization problems that can lead to the convex hull of feasible solutions.  The initial purpose 
of RLT was to address the class of 0-1 (mixed) integer linear and polynomial programming 
problems (Sherali and Adams (1990)), but it has since been extended to continuous nonconvex 
programming problems (Sherali and Tuncbilek (1992)).  The main construct of RLT begins by 
multiplying problem constraints by a group of factors, known to be nonnegative for any feasible 
solution, where each factor is defined in terms of the original problem variables.  Following  this 
step, product terms of variables are replaced by a set of new variables in order to re-linearize the 
problem.  This yields a relaxation derived in a higher dimensional space.  The most basic factors 
used in the multiplication process, known as bound-factors, are based upon the premise that for 
any feasible solution jx  for },,1{ nNj K≡∈ , we have 0)( ≥− jj lx  and 0)( ≥− jj xu , where 

jl  and ju are, respectively, the given (or implied) lower and upper bounds for the variable jx .  
These individual terms can then be used to construct nonnegative bound-factors of the form 

∏∏
∈∈

−−
21

)()(
Jj

jj
Jj

jj xulx , where 1J  and 2J  are appropriate index sets.  In the case of continuous 

nonconvex optimization problems, each of the variables are used within these bound-factor 
products, and moreover, indices might repeat within the sets 1J  and 2J .  However, in the 
context of 0-1 mixed-integer optimization problems, only the integer-restricted variables need be 
considered, and 1J  and 2J  are subsets of N with ∅=∩ 21 JJ . Specifically, focusing on 0-1 
problems, for  any level d in the hierarchy of relaxations produced by RLT, nd ≤≤0 , the 
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bound-factors of order d are given as 







−








−= ∏∏

∈∈ 21

)()(),( 21
Jj

jj
Jj

jjd xulxJJF , for all 

NJJ ⊆21,  such that ∅=∩ 21 JJ  and dJJ =∪ 21 .     

The level-d relaxation of the original problem is obtained by multiplying each of the 
constraints by every bound-factor of order d.  The process for constructing a level-d RLT 
relaxation is comprised of two basic steps, a reformulation step and a linearization step, as 
summarized below. 

Step 1 (Reformulation Step):  Multiply each inequality in the original problem 
(including upper and lower bounds on the variables) by each factor ),( 21 JJFd .  In the 
case of 0-1 integer programming, we may tighten the formulation by noting that jj xx ≡2  
and 0)1( ≡− jj xx  for any binary jx . 

Step 2 (Linearization Step):  Linearize the resulting formulation in a higher dimensional 
space by defining a new variable to replace each distinct term that represents the product 
of original variables.   

For the case of 0-1 mixed integer programming problems, common notation gives the binary 
variables jx  for },,1{ nj K= , while the continuous variables are represented by ky  for 

},,1{ mk K= .  Given this notation, we linearize the resulting product terms using the variable 
substitutions ∏

∈

≡
Jj

jJ xw  and ∏
∈

≡
Jj

jkJk xyv  for },,1{ mk K= .  In the case of continuous 

problems, however, all of the variables are assumed to be given as jx  for },,1{ nj K= ,  and 
each of these variables is used to create the bound-factors.  In this case, the typical substitution is 
given as ∏

∈

≡
Jj

jJ xX , where J might have replicated indices from N. 

In the case of 0-1 (mixed) integer programming problems with binary variables, Sherali 
and Adams have shown that a hierarchy of RLT relaxations can be obtained as d varies from 0 to 
n, starting with the linear programming relaxation with 0=d , and ending with the convex hull 
of feasible solutions for nd = .    We note, however, that the process at level n involves 
multiplying each constraint by n2  such bound-factors, which increases the size of the problem 
exponentially.  The RLT process is by no means limited to the realm of 0-1 discrete optimization 
problems.  As detailed in Sherali and Adams (1996, 1999), the RLT process has also been used 
to solve general integer programs, continuous polynomial programming problems, 0-1 quadratic 
programs, continuous and discrete bilinear programming problems, and indefinite quadratic 
programs.  In all of these cases, the same conceptual two-step process is applied with appropriate 
specializations, and tighter formulations can be derived by applying higher levels of RLT.     

Due to the tremendous growth in problem size at higher levels of RLT, levels greater than 
one or two are rarely used in practice.  Sherali and Adams, however, have shown that lower level 
RLT applications, even the most basic level-one application, have proven very effective in 
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tightening problem relaxations for many classes of problems.  In addition, several other 
strategies have been developed in order to tighten the lower level RLT relaxations, including the 
use of projected implications from higher level applications.  One such tactic at level-one itself is 
to also multiply the original constraints by constraint factors, 0)( ≥− βαx , for any structural 
inequalities βα ≥x  that are implied by the original constraints, and then to apply the traditional 
linearization strategies.  This can be particularly effective with constraints containing special 
structures.  In addition, the concepts of RLT can be used to generate cutting planes to 
sequentially create tight representations of the problem in the vicinity of  optimal solutions, 
rather than to develop a priori a tight representation of the entire feasible region during the 
modeling phase itself.  A new tightening strategy, based upon incorporating concepts from 
semidefinite programming into RLT, will be presented in Chapter 3 of this dissertation. 

2.2.6 Semidefinite Programming (SDP) 
 Semidefinite programming (SDP) offers a related relaxation strategy to RLT for solving 
certain types of nonconvex programming problems.  Semidefinite programs are similar to LPs, 
except that the vector of variables is replaced by a matrix of appropriate variables, a special 
product operation is defined in lieu of the usual matrix-vector operations, and the matrix of 
variables is restricted to be positive semidefinite (PSD), in contrast with the nonnegativity 
constraints on the variables in linear programming.  SDP has been receiving increased attention 
from the mathematical programming community since its inception over the past 5-10 years.  
Part of the reason for its popularity, as pointed out by Vandenberghe and Boyd (1996), is that 
SDP unifies several areas of mathematical programming (including linear and quadratic 
programming) from a theoretical point of view.  Active set methods (similar to the simplex 
method in LP) were originally employed to solve SDP problems, but more recently, as shown by 
Alizadeh (1995), many interior point methods for solving linear programs can be directly 
modified and used to solve semidefinite programs in polynomial time. For a detailed overview of 
SDP, see Vandenberghe and Boyd (1996) or Alizadeh (1995).   For articles that address 
theoretical results as well as various specific applications pertaining to SDP, see also: 
Wolkowicz et al. (2000), Todd (1998), Bertsimas and Zhang (1998), Ramana and Pardalos 
(1996), Ramana and Goldman (1995), and Goemans and Williamson (1995).  

In general, semidefinite programming is the minimization of a linear function of 
symmetric matrices, subject to the constraint that an affine combination of these matrices is 
positive semidefinite.  Recall that the following are equivalent for a symmetric n x n matrix U: 

1. U is positive semidefinite (PSD), denoted as U f  0. 
2. 0≥UzzT  for all nonzero nRz ∈ . 
3. All eigenvalues )(Ujλ , nj ,,1 K= , of U are nonnegative. 

The definition for a positive definite (PD) matrix is the same, but with strict inequalities.  A 
common form of an SDP is given by: 

    SDP: minimize XC •  
     subject to XAi •  = mibi ,,1     , K=  
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        0 fX , 
 
where nxn

m RAACX ∈,,,, 1 K and mRb ∈ . The dot product of matrices A and B, denoted as 
BA • , is defined as the trace of the matrix ATB.  That is, ∑∑=•

i j
ijij BABA . SDP is nonlinear 

and nonsmooth, but it is a convex optimization problem  (see Vandenberghe and Boyd (1996) for 
a proof).  Semidefinite programming shares the concepts of duality and complementary 
slackness, as well as some well-known theorems in linear programming such as weak duality. 
For a review of these theorems, see Vandenberghe and Boyd (1996).  A semidefinite program 
can also be represented as a semi-infinite linear program, which is defined as a linear program 
having a finite number of variables and an infinite number of constraints.  This is clear from the 
definition of PSD, since X f  0 implies that  0≥XzzT  for all nRz ∈ .   

 Semidefinite programming is often used to obtain lower bounds for nonconvex 
optimization problems.  A common strategy for developing an SDP relaxation commences by 
modifying the problem (if necessary) to create constraints containing the term xxT. The 
substitution X = xxT is next used, noting that X is PSD and rank-one by construction.  In order to 
relax the problem, the constraint X = xxT is then replaced by 0  fX , or more strongly 

by TxxX   f .  Note that the latter constraint may be expressed as 0  
1

f







Tx

xX
.    

 Interior point methods are usually used to solve semidefinite programs. Alizadeh (1995) 
has shown that although several variations of these methods have been proposed, they have a 
similar structure, the same worst-case behavior, and similar performance in practice.  The 
solution procedures generally solve one or two least-squares problems to determine a primal and 
dual search direction, as well as to compute a suitable step length.  These two calculations 
comprise the majority of computation time per iteration.  Vandenberghe and Boyd (1996) state 
that, in theory, the number of iterations required to solve an SDP to a specified accuracy grows 
no faster than the square root of the problem size. In practice, however, the algorithms converge 
much faster.  In most cases, the number of iterations required is about 5-50, with almost no 
regard to problem size.  

 Semidefinite programming has been used, for example, to provide relaxations for the 
max-cut problem, in which the task is to select a maximally weighted set of arcs that separate the 
nodes of a graph into two disjoint sets.  After some manipulation, this problem can be formulated 
as the optimization of a quadratic function over a hypercube, which happens to be NP-hard. This 
problem may be stated as follows:  

   MC: maximize LxxT    
     subject to nx }1,1{−∈ .   
 
Observe that the constraint simply requires 2

ix to equal 1 for all i.  To obtain an SDP relaxation 
of this problem, we can define X = xxT, constrain each diagonal element to equal one, and relax X 
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to be any PSD matrix.  This gives the following, noting that )( TT xxLLxx •≡ . 

  SDP(MC): maximize  XL •  
     subject to eX =)(diag  

        0 fX .  
 

Upon solving SDP(MC), the resultant matrix X must be transformed back into the vector x to 
derive a solution for the original problem.  Goemans and Williamson (1995) have developed a 
�randomized algorithm� for this procedure, and they have proven that their solution has an 
expected maximum error of 13.8%.   

 Although the bounds provided by Goemans and Williamson are promising, it is shown 
that a branch-and-bound routine using only SDP relaxations cannot solve large problems. For 
this reason, Helmberg and Rendl (1998) have developed a solution procedure, combining SDP 
relaxation with cutting planes, that is both fast and robust. After an exact solution to the SDP 
relaxation has been found, Helmberg and Rendl transform X into the vector x by rounding each 
row of X to a {-1,1} vector.  Next they vary the signs of the elements until there is no 
improvement in the objective function.  The best of these rows is taken as the max-cut, and in 
many cases, this rounding procedure produces an optimal cut.  If it does not, they use several 
criteria to try to generate an inequality that is violated by the current solution, and they append 
this to the problem.  Since adding constraints adds more dimensions (and more work) to finding 
the search direction, the authors recommend adding only several of the strongest inequalities to 
the problem, even though many violated constraints may be detected.  After these constraints are 
added to the problem, the authors restart their primal-dual algorithm.  In addition to adding 
inequalities after the solution of the SDP relaxation (called a large-add), they also append some 
constraints during the process of solving the current relaxation (small-add).  The overall 
procedure constructs the SDP relaxation of the problem and iteratively performs a large-add 
followed by 10 small-adds, terminating when the gap between the upper bound and the best 
known solution falls to within a pre-specified range.  The results of their computational 
experience in combining SDP with cutting planes in this fashion are promising, albeit at a high 
computational cost.  Helmberg and Rendl noted that the first round of adding inequalities 
typically yielded significant improvements while the improvement from later iterations was less 
dramatic.  The authors hence recommend using one phase of adding the inequalities (1 large-add, 
10 small-adds) within a branch-and-bound framework.   It is worth noting that in their 
computational experiments, the relatively small problems having fewer than 50 nodes typically 
required no branching, being solved at the root node itself.  

  Benson, Ye, and Zhang (1998) have also addressed quadratic optimization problems 
using SDP relaxations.  They have applied a polynomial-time dual-scaling algorithm to an SDP 
relaxation and combined it with heuristic procedures to achieve results for test problems of 
dimension 800 to 10,000.  The problem considered by Benson et al. is of the form: 

   QP1: minimize xcvvC TT �)(� +•  
     subject to xavvA T

i
T

i �)(� +•  =  mibi ,1,   , K=∀  
           0≥x ,  
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where C�  and iA�  are given symmetric matrices, ia� and c�  are given column vectors, and v and x 
are the unknown variable vectors.  Several combinatorial and optimization problems, including 
graph partitioning problems and box-constrained quadratic problems, can be put into this general 
form.  Typically iA� is a sparse matrix of rank one, C�  is sparse, and ia�  is either null or equal to 
the ith unit vector.  The authors make the standard substitution, X = vvT, and then relax X to be 
any positive semidefinite matrix. Their computational experience has shown that the parameter 
values that work well at one point may be very different from the ones that work well at another 
point.  For this reason, their dual-scaling algorithm computes four dual step directions by using 
four different input parameter values. If none of the four directions yields an improving solution, 
the input parameter is reverted to a multiple of the value that was used at the previous iteration. 
Five types of problems have been solved using a software package (DSDP) that contains their 
dual-scaling algorithm along with the aforementioned randomized algorithm.  Their solution 
method was the first study to solve SDP relaxations of combinatorial problems having over 1000 
variables. 

 Kojima and Tuncel (1999) have used the SDP approach to provide successive convex 
relaxations for problems having nonconvex feasible regions.  They have developed two methods, 
the Successive Semidefinite Relaxation (SSDP) Method and the Successive Semi-Infinite Linear 
Program (SSILP) Relaxation Method.  The SSILP is similar to the Reformulation-Linearization 
Technique (RLT) for continuous polynomial programs as developed by Sherali and Tuncbilek 
(1995). Kojima and Tuncel focus on problems having a linear objective function maximized over 
a nonconvex region that is described by a finite number of quadratic inequalities.  They develop 
a procedure known as discretization to approximate an infinite number of semi-infinite SDPs (or 
LPs) by a finite number of standard SDPs (LPs) using a finite number of linear inequalities.  A 
second technique, known as localization, is used when only an upper bound is required on the 
objective value for a particular objective function.  This effort concentrates on finding a convex 
hull representation only in a suitable local neighborhood. Kojima and Takeda (1999) have 
performed a complexity analysis for the convex relaxation scheme proposed by Kojima and 
Tuncel. They found that even though the successive relaxations involve a finite number of 
problems having a finite number of constraints, the problem size still grows rapidly when higher 
accuracy is required, making the solution procedure impractical. Takeda et al. (1999) further 
reduced the problem to obtain an implementation containing a reasonable number of constraints. 
Their research focuses on an implementation of the Discretized-Localized version of SSILP.  
Their computational experience (on six types of test problems) shows that this method provides 
better approximations as compared with algorithms that use a single application of semidefinite 
programming or semi-infinite linear programming relaxations. 

 More recently, there has been an impetus of research related to reformulating and solving 
SDPs as ordinary nonlinear programs.  Vanderbei and Benson (2000) propose a smooth, convex, 
finite nonlinear programming representation of a given positive semidefinite constraint 0 fX , 
by noting that a symmetric matrix X is PSD if and only if it can be factored as TLDLX = , where 
L is a unit lower triangular matrix, and D is a diagonal nonnegative matrix .  Denoting 

njXd j ,,1),( K= , as the diagonal elements of D for a given nn ×  symmetric matrix X, 
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Vanderbei and Benson show that each )(Xd j  is a concave function of the elements of X, and 
moreover, is twice continuously differentiable on the set of PSD matrices.  Accordingly, they 
replace 0 fX  by the nonlinear, smooth constraints 0)( ≥Xd j  for nj ,,1 K= , and develop a 
specialized interior-point algorithm for solving the underlying semidefinite program.  Burer and 
Monteiro (2000) consider linear semidefinite programs in the standard form to 

minimize }0 ,,,1for:{ fK XmibXAXC ii ==•• , 

where C and iA , mi ,,1 K=  are symmetric nn ×  matrices.  They show that this problem can be 
solved as a nonlinear program in which X is replaced by a low-rank factorization TRR , where R 
is an rn ×  matrix, with r taken as  m2 .  An augmented Lagrangian approach is then 
proposed to solve this resulting problem, using a limited-memory BFGS scheme for the inner-
loop minimization process.  However, the authors note that several local minima might exist, and 
offer no theoretical proof of convergence, although encouraging empirical results are presented.   

 Shor (1998) develops an alternative nondifferentiable optimization approach to 
semidefinite programming based on incorporating the nonsmooth convex constraint that restricts 
the smallest eigenvalue of X to be nonnegative.  Given a symmetric nn ×  matrix X, if we denote 
the n real eigenvalues of X arranged in nondecreasing order by njXj ,,1),( K=λ , then 0 fX  is 

equivalent to the condition that 0)(1 ≥Xλ .  Moreover, if we denote  njXjj ,,1),( K=≡αα , as 
the set of linearly independent normalized eigenvectors corresponding to njXj ,,1),( K=λ , 

then noting that njXX jTj
j ,,1)()( K=∀= ααλ , we have that 0 fX 0)( ≥⇔ Xjλ  for 

nj ,,1 K= 0)( ≥⇔ jTj Xαα  for nj ,,1 K= .  It is interesting to note that as a function of 
symmetric matrices X, )(1 Xλ  is a concave, but nondifferentiable, function (see Shor (1998), for 
example), although as demonstrated by Vanderbei and Benson (2000), the remaining eigenvalue 
functions )( Xjλ  for nj ,,2 K= , do not necessarily enjoy this concavity property.   Furthermore, 
by the Raleigh-Ritz formula (which can be readily verified via the normalized eigen-basis 
diagonalization process), we have that 

)(minimum)(
11 ααλ

α
XX T

=
= . 

Observe that as a function of X, 1λ  is hereby characterized as the minimum of a family of linear 
functions, and is therefore concave with a set of subgradients that can be characterized in terms 
of the normed eigenvectors *α  associated with )(1 Xλ , where **

1 )( ααλ XX T=   for each such  
*α .  Accordingly, Shor (1998) incorporates the nonsmooth convex constraint 0)(1 ≥Xλ  in the 

model formulation, in lieu of 0 fX , and proposes a nondifferentiable optimization strategy. 
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 2.3 Some Relevant Application Areas of Nonconvex Optimization  

 In Chapters 4 and 5 of this dissertation, we will focus on two particular types of 
nonconvex optimization problems, namely stochastic programming and facility location 
problems.  We therefore review some of the relevant literature in these areas in the following two 
sections. 

2.3.1   Stochastic Programming Problems 
Stochastic programs are mathematical programs where some of the problem parameters 

are not known with certainty, but rather, their values are known to follow some probabilistic 
distributions.  Dantzig and Beale independently proposed the basic concepts of stochastic 
programming in 1955, with Dantzig calling the area �Linear Programming Under Uncertainty� 
and Beale labeling it �Linear Programming with Random Coefficients.�  The application areas of 
stochastic programming can be as varied as those of linear programming, but applications in 
production, financial planning, airplane scheduling, power generation, and vehicle routing are 
among the most common.  The literature on stochastic programs focuses largely on two-stage 
stochastic programs with recourse.  In theory, multi-stage programs can be handled in a similar 
fashion via a nested approach, but in practice, this process is cumbersome to implement.  In these 
problems, the first-stage decisions must be made before the relevant random components of the 
environment are realized, and then, a set of second-stage (or recourse) variables is used to 
compensate for the ensuing effect of the environment.   In the context of production planning, for 
example, the first-stage variables might include the number of worker-hours required to meet 
customer demand, where the latter is not known with certainty at the time of scheduling.  If the 
actual customer demand is not met exactly by the first-stage decision, recourse actions (such as 
using overtime, underutilizing the workforce, or laying off workers) may be used, but they 
generally incur a penalty cost.  The goal of the stochastic program is to optimize the first-stage 
costs plus the expected recourse costs.  Some notable applications of stochastic programming 
include scheduling (Birge and Dempster, 1996), financial planning (Carino et al., 1994), power 
generation (Murphy et al., 1982), facility location (Laporte et al., 1994), and vehicle routing 
(Laporte et al., 1992).  For more information on stochastic programming in general, we refer the 
reader to recent books on stochastic programming by Ermoliev and Wets (1988), Kall and 
Wallace (1994), and Birge and Louveaux (1997). 

There are several popular methods for solving two-stage stochastic LPs with recourse, 
and most of these rely on the underlying principle of Benders� decomposition.  The inherent 
structure of these problems lends itself to a natural partitioning of the variables.  The first-stage 
investment, resource acquisition or location-type decisions, represent the complicating variables, 
while the subproblems determine the best recourse actions for each realization of the 
environment, given any first-stage decisions.  A common practice is to approximate continuous 
distributions with discrete ones, which allows the expected recourse function to be calculated as 
a simple weighted sum.   In the case of stochastic programs with integer recourse, Schultz (1995) 
has shown that, under mild conditions, discrete distributions can effectively approximate 
continuous ones to any given accuracy.  Consequently, assume that there are L possible 
environments, lξ~ , Ll ,...,1= , each occurring with a respective probability of pl.  The set of 
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constraints that couples the first- and second-stage decisions, nRx ∈  and mRy ∈ , respectively, 
is generally expressed as  

xThyW llll −= ,  

where the (technology) matrix lT and the (resource) vector lh are known for each possible 
environment lξ~ , Ll ,...,1= .  The matrix lW  (which is often assumed to be fixed in order to 
yield an exploitable subproblem structure, but in general, could be stochastic as well) is known 
as the recourse matrix, and it determines the set of recourse actions, yl, that are governed by the 
net outcome xTh ll − .  Given this notation, a typical Benders� decomposition for the two-stage 
stochastic program with recourse would view the given problem in the form  

  SP:  minimize  ),(
1

l
L

l
l xQpcx ξ∑

=

+  

    subject to   Xx ∈ , 
 
  }0 , :{ min),(   where ≥−== llllllll yxThyWyqxQ ξ  for Ll ,,1 K= , 
 
and where X is some nonempty polytope in nR , with approximations for the optimal value 
functions LlxQ l ,,1 ),,( K=ξ  being generated via Benders� cuts.  The term fixed recourse refers 
to the situation where the recourse matrix is non-stochastic, that is LlWW l K,1, =∀= . In the 
special case of complete recourse, we have that the recourse problem remains feasible for any 
given realization of the first-stage variables.  The weaker assumption of relatively complete 
recourse implies that for every feasible first-stage decision, i.e. }{ Xxx ∈ , the recourse problems 

0, ≥−= llll yxThWy  are feasible for all Ll ,...,1= .  In practice, it is difficult to recognize a 
priori whether or not a particular problem has relatively complete recourse.  The most basic type 
of stochastic programs possess simple recourse, in which the recourse variables directly equal 
the net outcome xTh ll − .  In other words, we have ],[ IIW l −= , and the constraints of each 

recourse problem simplify to xThyy llll −=− −+ . Clearly, simple recourse problems also 
exhibit complete recourse.  In the cases of complete or relatively complete recourse, the 
subproblems encountered in the Benders� partitioning strategy are all feasible, and in such cases, 
only optimality cuts are generated.    

We note that stochastic programs with recourse can also be modeled as large-scale linear 
programs, assuming that the random outcomes follow a discrete distribution.  The LP equivalent 
of SP is given as: 

 SLP: minimize LTL
L

TTT yqpyqpyqpxc )(         . . .    )()( 22
2

11
1 ++++   

  subject to bAx =                                                                                     
     111                                                                            hWyxT =+  
     222                                                                           hWyxT =+  
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      O                                                 
     LLL hWyxT =+                                                                        
          0,                                                                                ≥lyx . 
 
These two formulations are equivalent in the sense that they have the same set of solutions over 
x , and the optimal values of Lly l ,...,1, =  for the SLP are the solutions to the second stage 
problem of P, given an optimal set of first-stage decisions x .   Note that when lTT l ∀=   (i.e. 
T is non-stochastic), the structure of SLP simplifies significantly to the staircase structure shown 
below. 

c p1q1 p2q2 . . .   pLqL   
A       = b 
T W      = 1�h  
 -W W     = 2�h  
  -W W    = 3�h  
    . . .     
         
     -W W = Lh�  

 

When this type of problem structure exists, special solution techniques can be used to take 
advantage of it.  Similarly, the dual structure provides an alternative method for solving the LP 
equivalent of SP.  Consider the dual of SLP as: 

  SLD′′′′: maximize ∑
=

π+σ
L

l

lTlT hb
1

�)(  

    subject to cTA l
L

l

TlT ≤+∑
=

πσ �)(
1

 

        LlqpW l
l

lT ,...,1           ,� =≤π . 
 
If we let l

ll p/�ππ = , we arrive at the following equivalent formulation: 

  SLD: maximize ∑
=

π+σ
L

l

lTl
l

T hpb
1

)(  

    subject to cTpA l
L

l

Tl
l

T ≤+∑
=

πσ
1

)(  

        LlqW llT ,...,1           , =≤π . 
 
The matrix structure of SLD displayed below can be exploited to generate efficient solution 
techniques for SLD.  
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bT p1h1 p2h2 . . .   pLhL   
AT p1(T1)T p2(T2)T    pL(TL)T ≤ c 

 WT      ≤ q1 

  WT     ≤ q2 
   WT    ≤ q3 

    . . .     
         
      WT ≤ qL 
 

In particular, when the recourse problem contains more variables than constraints (which is 
usually the case) SLD has fewer (unconstrained) variables but a large number of constraints.   

 The majority of stochastic programming algorithms, however, focus on solving problem 
SP using decomposition techniques.  Most of these methods can be considered as extensions of 
the L-shaped algorithm that was proposed by Van Slyke and Wets (1969).  The L-shaped 
algorithm is a cutting plane algorithm that uses Benders� decomposition to create an outer 
linearization of the objective function.  The algorithm iterates between a master problem and a 
series of subproblems.  The master problem is shown below. 

   MP:  Minimize θ+xcT  
      subject to bAx =    
        0)( ≥−θ xf    

        0≥x , 
  

      where ]}0,[min{)( ≥−== yTxhWyyqExf T . 
 
Since )(xf is not known explicitly, it is typically approximated via a set of feasibility and 
optimality constraints or cuts.  This produces the relaxed master problem shown below. 

   RMP: Minimize θ+xcT  
     subject to bAx =    
        rkdxD kk ,...,1   ,       =≥    
        skexE kk ,...,1     , =≥θ+  
            ,0 θ≥x unrestricted. 
 
At iteration v, we are given a solution, ),( vvx θ , to the relaxed master problem.  We first 
determine if vx  admits a feasible solution to the recourse problem.  To do this, we solve a Phase 
I problem for the recourse problems. If the optimal solution value for this problem is positive, vx  
does not yield a feasible solution to the recourse problem, and so we add to the master problem a 
feasibility cut that constrains the equivalent dual solution to be non-positive.  If vx  is feasible to 
the recourse problem, we then compare the optimal recourse objective value to the bound  vθ , in 



Chapter 2: Literature Review  21 

  

essence verifying whether vvxf θ≤)( .  If not, we add an optimality cut to the master problem, 
forcing θ≤σ−= vTvv Txhxf )()( . Recall that from duality theory,  

})max{(}0,min{)( qWTxhyTxhWyyqxf vTvTvvTv ≤σσ−=≥−== . 

Since only a finite number of these constraints exist based on extremal solutions, the overall 
algorithm converges finitely.  In summary, at each iteration of the L-Shaped Algorithm, we solve 
the relaxed master problem followed by one subproblem for each of the L outcomes.  If any of 
the subproblems are infeasible, a feasibility cut is added to the master problem.  Otherwise, the 
optimal dual multipliers for the set of subproblems are used to create a single optimality cut for 
the master problem.  If the cost coefficients of the recourse problem are deterministic and only 
the right-hand side values are stochastic, we solve L linear programs that differ only in their 
right-hand side values: 

   minimize  yqw Tl =  
   subject to ltWy =  

      0≥y , 
  

where xTht lll −= .  In such cases, we can use special techniques such as sifting (discrete 
parametric analysis) and bunching (basis by basis analysis). 

Birge and Louveaux (1988) developed a multicut enhancement to the L-Shaped 
Algorithm, in which a separate optimality cut is constructed for each subproblem.  While the L-
shaped method sends a single constraint to the relaxed master problem as an outer linearization 
of the expected recourse costs, the multicut algorithm sends an outer linearization of the recourse 
cost for each subproblem.  Note that using multiple cuts corresponds to including several 
columns in a dual procedure (Dantzig-Wolfe decomposition) instead of one aggregate column.  
The intention is to send more information to the relaxed master problem than a single cut, and in 
so doing, reduce the number of major iterations, and therefore increase convergence speed of the 
algorithm.  Birge and Louveaux have also developed a simplification for simple recourse 
problems, stemming from the fact that only two types of optimality cuts can be generated for 
these problems.   

 The major limitation of the L-shaped and multicut algorithms is that they require the 
solution of L linear programs at each iteration.  An alternative approach to the decomposition-
based strategies is to use modified convex optimization techniques such as stochastic 
quasigradient (SQG) methods.   This strategy works with discrete and continuous distributions, 
and it generates one observation of the random variable at each iteration.  The SQG techniques 
also have limitations, however.  Their major drawbacks are the difficulty in determining step 
lengths and the lack of an estimate of the objective function during the iterative process.  Higle 
and Sen have developed Stochastic Decomposition (1991) and Conditional Stochastic 
Decomposition (1994) to combine the best aspects of decomposition-based and stochastic 
approximation algorithms.  (See Higle and Sen (1996) for a thorough review of both 
approaches.)  These methods are similar to the L-shaped and multicut algorithms, except that at 
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each iteration, the subproblem is solved for one randomly generated sample point.  There are no 
restrictions on the random variable distributions.  The idea is to generate statistically-based 
approximations for the feasibility and optimality cuts.  At later iterations, when more 
observations of the random variable are available, the previous cuts are updated to reflect the 
most accurate information.  Although Higle and Sen have shown that these methods contain a 
sequence of iterates that converge to optimality with probability one, practical implementations 
track the best incumbent solution since the convergent subsequence is difficult to track. For a 
thorough summary of current decomposition methods for stochastic programs, including some 
recent advances, see Ruszczynski (1999).   

 Stochastic integer programs are stochastic programs in which some of the variables are 
restricted to be integer-valued.  The integrality restriction can apply to the first- and/or second- 
stage variables.  When the second-stage (recourse) variables are restricted to be integral, the 
resulting problem is referred to as a stochastic program with integer recourse.  In this case, the 
problem complexity increases significantly, since the subproblem for any random outcome is an 
integer program whose parameters depend on the first-stage decisions.  Moreover, the optimal 
value recourse objective function now becomes nonconvex and discontinuous in general.   

Although some solution strategies have been developed for specific applications of 
stochastic IPs, relatively few techniques have been developed to solve general stochastic IPs. We 
comment here on some recent algorithmic advances that employ decomposition techniques.  (For 
a thorough review of recent advances in developing models and algorithms for stochastic integer 
programming, see Klein Haneveld and van der Vlerk (1999) and Schultz et al. (1996).)  Laporte 
and Louveaux (1993) developed the integer L-shaped algorithm (a combination of the L-shaped 
method and branch-and-bound) to solve stochastic IPs with binary first-stage variables and 
complete (mixed-integer) recourse.  This extension constructs optimality cuts based on 
independent evaluations of the recourse value function.  For efficiency in an enumerative search 
process, certain lower bounding functionals on this recourse value function are also derived.  
Caroe and Tind (1998) have used general duality theory to develop a more general extension of 
the L-shaped decomposition method to solve two-stage stochastic programs with integer 
recourse, and have shown the integer L-shaped method to be a special case of their more general 
framework.  Previously, Caroe and Tind (1997) had developed a Lagrangian dual approach 
based on applying variable splitting to the first-stage decisions, and then dualizing the resultant 
equal-value nonanticipatory constraints.  This approach was shown to be equivalent to 
computing a hull relaxation in the context of disjunctive programming, and was solved using the 
lift-and-project cutting plane technique of Balas et al. (1993).  Cuts derived for one subproblem 
were lifted to derive valid inequalities for other subproblems.  However, in order to preserve 
facetial properties in this lifting process, a separate linear program needed to be solved.  We note 
here that in our approach (presented in Chapter 4), which is geared toward solving the original 
problem itself (rather than its relaxation), we show how cuts derived for one subproblem can be 
directly used for other subproblems without any intermediate lifting step or auxiliary problem 
solution (other than a simple substitution).  Moreover, facetial properties are preserved in a 
manner that induces finite convergence.   

For the specific case of simple integer recourse where ],[ IIW l −= , and with a fixed 
technology matrix and discretely distributed right-hand sides, Klein Haneveld et al. (1996) have 
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used theoretical properties of the recourse objective value function to derive a convex hull 
representation for the problem.  They first show that the expected value function is separable and 
that the mass points of the discrete distribution dictate its structure.  They then develop an 
algorithm based on the premise that the convex hull of the simple integer recourse objective is 
equal to that of the expected value of a continuous simple recourse problem (under a suitable 
transformation of variables) plus a constant.  Based on this, they next apply a procedure to 
systematically smooth out �knots,� or nondifferentiable points, from an underlying piecewise 
linear approximation, and use the corners of the resulting smoothed piecewise linear function as 
the mass points for the transformed variables.  The constant term is then determined as a function 
of the transformed variables, and the overall algorithm is shown to be polynomially bounded in 
terms of the number of random outcomes.  (See Klein Haneveld and ven der Vlerk (1999) for a 
summary of several other techniques for simple integer recourse problems.)   

Caroe and Schultz (1999) have used scenario decomposition and Lagrangian relaxation 
within a branch-and-bound framework to solve two-stage stochastic IPs, and this approach can 
readily be extended to multistage stochastic programs.  Ahmed et al. (2000) consider two-stage 
stochastic programs having pure integer second-stage variables, but mixed-integer first-stage 
variables.  They employ a transformation that induces a special structure in the discontinuities of 
the second-stage optimal value function and based on a characterization of this structure, they 
design a finitely convergent branch-and-bound algorithm for the original problem.  Promising 
computational results are provided on several classes of problems.  A specialized approach for 
two-stage stochastic IPs with mixed-integer recourse that is similar to ours in concept, but uses 
an alternative sequential convexification process based on a different asymptotically exact 
cutting plane approach for solving the subproblems for fixed values of the first-stage decisions, 
has been proposed by Higle and Sen (2000).  In a different vein, Schultz et al. (1998) have used 
Grobner basis techniques within an implicit enumeration strategy to address the class of 
problems having integer recourse.  Although Grobner bases are typically expensive to compute, 
their use becomes relatively more effective when the same problem is re-solved for different 
right-hand side values, which is the case for recourse problems.   

2.3.2 Facility Layout Problems 
 The facility layout problem is concerned with determining a non-overlapping layout of 
departments within a designated section of a building, while maintaining certain area restrictions 
for each department and minimizing the expected cost of flows, taken as the rectilinear distance 
times the number of trips, between the departments.  The literature addresses problem instances 
that specify fixed dimensions for each of the departments while considering only their relative 
positions as decision variables, as well instances where both the location and dimensions of each 
department are variables to be optimized.  Similarly, some instances assume fixed grid positions 
for the departments, while others allow more flexibility.   While most applications assume that 
the flow of material occurs to and from the departmental centroids, some applications consider 
the placement of a specific input/output station within each department.  In the most general 
sense, facility layout problems are composed of two types of constraints, as noted by Meller and 
Gau (1996).  The first type restricts the area of the departments to be within some prescribed 
limits, while the second type provides restrictions on departmental locations, such as avoiding 
departmental overlaps, and requires the departments to remain within the limits of the facility, 
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and to avoid certain fixed areas of the building.  For a detailed survey of recent advances in the 
facility layout problem, see Meller and Gau (1996).        

  Several sources in the literature (see, for example, Chittratanawat and Noble (1999) and 
Georgiadia et al. (1999)) have shown that the layout of a facility has a tremendous impact on its 
operating costs, and is therefore of critical importance.  For this reason, the facility layout 
problem has received a great deal of attention in the operations research community.  In the 
1970s and 1980s, the most popular approaches to the facility layout problem were graph 
theoretical approaches.  In these approaches, the relative desirability of locating each pair of 
departments adjacent to one another is specified.  These relationships are used to construct an 
adjacency graph which, ignoring department sizes, specifies a general preference for which 
departments should be near one another.  The dual of this graph is then constructed, and is used 
to generate a block layout for the facility.  Typically, heuristic approaches are used to construct 
an adjacency graph that is maximally weighted, yet still limited enough to construct its dual with 
reasonable effort.  The truly limiting factor, however, is translating the dual graph to a block 
layout that specifies each department�s shape and size, a task that is typically done by hand. 

While most of the research on the facility layout problem has focused on generating good 
layouts through construction and improvement heuristics, a new trend has also emerged.  Within 
the past decade, several researchers have formulated the facility layout problem as an 
optimization problem.  If we desire to locate equally sized departments within some  
predetermined grid, the facility layout problem reduces to the quadratic assignment problem, 
which is itself a very difficult problem for even a moderate number of departments.  When 
adding the complications of unequal areas and varying horizontal and vertical dimensions, it is 
clear that the facility layout problem is highly challenging to solve to optimality.  For this reason, 
several researchers have considered heuristic approaches for the underlying optimization 
problem.  

In this respect, Montreuil et al. (1993) examine several design skeletons (flow graphs, 
adjacency graphs, cut trees, etc.) from which human designers have traditionally generated good 
facility layouts.  Given such a design skeleton and its graphical representation, the authors solve 
a linear programming model to generate a layout.  This approach can be integrated well with an 
interactive optimization-based design framework.  Delmaire et al. (1997) have combined genetic 
algorithms with linear programming for the problem where all the departments must be located 
on either side of a main aisle.  They use a genetic algorithm to generate the relative positioning 
of the departments, and then formulate and solve a linear programming model to determine the 
locations of the input/output stations and the dimensions of the departments, to minimize the cost 
of the layout.  The method can also be extended to the case where the departments are located 
around a ring-shaped aisle. The results reported are promising, outperforming several available 
methods for the test cases solved.  Chittratanawat and Noble (1999) have developed an 
integrated approach to address facility layout, including the determination of input/output 
stations and material handling equipment selection.  Due to these added complications, the 
model requires equal department sizes that are known a priori.  Their model is a nonlinear 
mixed-integer program, and is solved using tabu search metaheuristic schemes, including two 
heuristic procedures for solving the underlying subproblems.  Other recent examples of  
combining submodels with heuristic optimization techniques include the approaches of Banerjee 
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et al. (1992), Heragu and Kusiak (1991), and Langevin et al. (1994).  

There have been several attempts, however, to solve the facility layout problem through 
traditional modeling and optimization techniques, and this is the area that our research will focus 
on.  The main difficulty in these models is finding good approximations for the nonlinear 
departmental area restrictions, and providing adequate constraints to prevent departments from 
overlapping.  Montreuil (1990) has proposed one such model, a mixed-integer programming 
formulation called FLP1.  This model includes four decision variables for each department i; 
namely, the half-length and half-width ),( y

i
x
i ll , and the centroidal location ),( y

i
x
i cc .  For each 

department i, the required area ia  is specified, and a parameter )1(≥iα , known as the aspect 
ratio, is delineated to restrict the maximum permissible ratio between the longest and shortest 
sides of the department for aesthetic purposes.  Using this information,  Montreuil relaxes the 
nonlinear area constraint, y

i
x
ii lla 4= , with bounded perimeter constraints, 

iPllp i
y

i
x
ii ∀≤+≤ )(4 , where ii ap 4=  and iiii aP αα /)1(2 += .  This formulation, 

however, is biased in favor of smaller departments and can lead to a significant under-
representation of the area.  In their model FLP2, Meller et al. (1999) develop improved area 
restriction representations, called surrogate area constraints, by requiring 

ifa ii
y
i

x
i ∀×+≥+ max23)(4 lll , where f is a parameter that is empirically determined to be 

0.95.  These constraints are also not very effective in enforcing the area requirements, as we shall 
exhibit later in Chapter 5, where we will describe a more analytical approach to deriving 
appropriate area representation approximations.  We note that a more complete review of the 
model FLP2 is presented in Chapter 5, prior to the presentation of our proposed enhancements.  
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Chapter 3: Enhancing RLT Formulations 
through Connections with Semidefinite 
Programming 

As discussed in Chapters 1 and 2, it is essential to have tight formulations for nonconvex 
optimization problems if we are to obtain good lower and upper bounds, and thereby solve the 
original problem with a reasonable amount of effort.  For many classes of problems, lowest-level 
RLT relaxations have proven effective in deriving tight lower bounding mechanisms.  However, 
this observation is not a uniform experience, and even in the aforementioned cases, the overall 
process can greatly benefit by incorporating suitable general classes of additional RLT 
inequalities that serve to further tighten the relaxation, without having to resort to higher-level 
representations.  With this motivation, we explore the generation of particular types of valid 
inequalities or cutting planes that are in fact generalized RLT constraints derived via 
semidefinite programming concepts.  We call this class of valid inequalities semidefinite cuts.  
For some other classes of effective RLT cuts developed for the special case of quadratic 
polynomial programs, we refer the reader to Audet et al. (2000).     

The remainder of this chapter is organized as follows.  After discussing the motivation 
for combining the SDP and RLT methods in Section 3.1, we introduce in Section 3.2 the 
Problem QP that is used to evaluate the proposed methodology, and discuss a typical SDP 
relaxation for Problem QP that would then be solved by specific SDP solvers.  To illustrate our 
more general methodology, we present in Section 3.3 an alternative semidefinite relaxation for 
Problem QP that is more closely associated with the usual RLT process, and which in fact yields 
a tighter relaxation.  This SDP relaxation is then shown to be equivalent to a suitable semi-
infinite RLT relaxation.  Based on this derivation, we develop a strategy that sequentially 
augments the first-level relaxation RLT-1(QP) with cutting planes that are automatically 
generated from the constraints in the semi-infinite representation using a special polynomial-time 
separation procedure.  In Section 3.3.2, several cut generation mechanisms are explored in this 
context.  Thereafter, in Section 3.3.3, we demonstrate that potentially stronger classes of such 
cutting planes can be generated in a likewise fashion with comparable effort by simply replacing 

the semidefinite constraint 0  fX  by the restriction TxxX   f , i.e., 0   
1

f







Tx

xX
.  A summary of 

our experimental design is presented in Section 3.4, along with computational results for 
employing cutting planes based on both types of semidefinite constraints.  Section 3.5 examines 
the extension of the proposed relaxation enhancement procedure to higher-level RLT 
representations.  Finally, Section 3.6 presents conclusions and suggestions for future research.  



Chapter 3: Enhancing RLT Formulations through Connections with SDP 27 

 

 3.1 Motivation 

 In this chapter, we integrate the concepts of semidefinite programming and RLT to 
develop a class of semidefinite cuts that can be used to augment the RLT relaxation for any 
problem (discrete or continuous, linear or nonlinear) to which the latter technique is applicable.  
Given an RLT relaxation for any such problem, we show that we can further enhance this 
relaxation by incorporating an infinite class of particular RLT constraints that are based on 
semidefinite relationships.  Rather than solve the resulting semi-infinite program, which in itself 
would require a specialized solution approach, we adopt the strategy of generating suitable 
members from the infinite constraint set as needed through a cutting plane or separation 
procedure. This separation routine is executed in polynomial time, thereby making the cut 
generation process efficient.  Moreover, each relaxation in this sequential process is a linear 
program whose solution can be updated using standard mathematical programming software.  At 
termination, this procedure yields a lower bound on the optimal value of the original problem.   
In addition, an upper bound can be computed by initializing a local search procedure with the 
solution obtained for the final relaxation.   These bounds can be embedded within a branch-and-
bound framework to determine a global optimum to the original problem.  

 Note that this concept of generating cutting planes based on semidefinite restrictions can 
be used to augment any RLT relaxation, even if the overall relaxation cannot be cast as a 
semidefinite program, or if it contains sets of (nonlinear) convex constraints as in Sherali and 
Tuncbilek (1997).  For example, Sherali and Wang (2001) have recently proposed a global 
optimization approach for solving general nonconvex factorable programs by integrating a 
polynomial approximation with an RLT scheme.  In this context, our proposed approach can be 
applied identically by augmenting the simple nonnegativity and symmetry restrictions on the 
even-ordered RLT variables by a stronger positive semidefinite constraint, and then generating 
valid inequalities to tighten the relaxation in a manner similar to that exposed in the sequel. 

3.2 Problem Class QP 

 As a point of illustration of this general concept, we will consider a specific example of 
the class of problems involving the minimization of a nonconvex quadratic objective function 
over a simplex (denoted QP below).   This problem is interesting in its own right, and has been 
extensively studied by Nowak (1998a,b, 1999).  It arises, for instance, in the context of finding a 
maximal weighted clique in an undirected graph.   

QP: Minimize  ∑∑
i j

jiij xxC   (3.1a) 

 subject to xeT = 1 (3.1b) 
  x ≥ 0, (3.1c) 
 
where nRx ∈  and e is a vector of n ones.  Although Problem QP is NP-Hard, it has a simple 
structure that makes it convenient to illustrate the essence of our approach, and extensions to 
more general problems are readily evident. 
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 The first-level RLT relaxation RLT-1 (see Sherali and Tuncbilek, 1992) for Problem QP 
would multiply (3.1b) with each variable ix , for ni ,,1 K= , and then substitute a nonnegative 
variable ijX for each term ji xx  in the problem, where njiXX jiij ,,1, K=∀≡ .  To write this 
resulting problem in a specific manner that exposes connections with semidefinite programming 
and motivates our development, define ][ ijXX ≡  to be an nn ×  (symmetric) matrix that 

represents the linearization of Txx  under the foregoing RLT substitution (i.e., L
TxxX ][≡ , 

where in general, L][⋅ represents the standard linearization operation of RLT; in the present 
context, this involves the substitution of ijX  for the product term ji xx ).  Then, we can write the 
level-one RLT relaxation for QP in the form   

RLT-1(QP): minimize  ∑∑
i j

ijij XC   (3.2a) 

 subject to xeT = 1 (3.2b) 
 Xe = x  (3.2c) 
 symmetric. and 0,0 ≥≥ Xx  (3.2d) 
 
 Nowak (1998a,b, 1999) has proposed various SDP approaches for solving Problem QP.  
To derive a suitable semidefinite relaxation for QP, Nowak first employs the particular RLT 
constructs of multiplying the constraints 0≥ix  and 0≥jx  pairwise and squaring the constraint 

1=xeT , to derive the following quadratically constrained quadratic program (QQP).     

QQP: Minimize  ∑∑
i j

jiij xxC    

 subject to 2)( xeT = 1 
 ji xx ≥ nji ≤≤∀ ,1    ,0  
 x ≥ 0.  
 
By substituting TxxX = , he then obtains a semidefinite relaxation for this representation as 
given by  

SDP(QQP): minimize XC •   (3.3a) 
 subject to XeeT •)( = 1 (3.3b) 
 X ≥ 0 (3.3c) 
 X  f  0 (3.3d) 
 
where ][ ijCC =  and where for any conformable square matrices ][ ijAA = and ][ ijBB = , the dot 

product BA •  is defined as the trace of BAT , i.e., ∑∑=•
i j

ijij BABA .  Also, 0  fX  denotes 

that X is symmetric and positive semidefinite. Nowak next constructs a convex quadratic 
function, Wxxxw T=)( , such that W ≤ C and w(x) approximates CxxXC T=• .  The matrix W is 
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found by solving a separate semidefinite program.  This produces an approximation for the 
convex envelope of the objective function, and the optimal solution to this convex program is 
used to provide an estimate for the global minimum of Problem QP. Nowak has developed 
several lower bounding schemes for Problem QP, each based upon solving a different SDP 
problem to find W.   

3.3 Development of the SDP Cuts 

There are several ways to construct a semidefinite relaxation for QP.  One such 
formulation, suggested by Nowak, was presented above in (3.3).  Alternatively, rather than 
squaring the simplex constraint, we can instead multiply it (on the right) by xT as one would in an 
RLT approach, and use the substitution TxxX = .   Since X is symmetric, this yields the 
constraint xXe = , which we append to the original problem.  Relaxing TxxX =  to 0 fX , we 
obtain the following semidefinite relaxation of QP.  Note that from (3.4b,c), we have 

1)( ==≡• xeXeeXee TTT , or that (3.3b) is implied.  Hence, formulation (3.4) potentially 
yields a tighter relaxation of QP than that given by (3.3). 

SDP(QP): Minimize XC •   (3.4a) 
 subject to xeT = 1 (3.4b) 
 Xe = x (3.4c) 
  0,0 ≥≥ Xx  (3.4d) 
 X  f  0. (3.4e) 
    
We will now construct an equivalent semi-infinite linear programming restatement of Problem 
SDP(QP).  This will facilitate the derivation of valid inequalities to augment the first-level RLT 
relaxation of Problem QP, given by (3.2).  Consider the following result. 

Proposition 3.1.  The problem SDP(QP) given by (3.4) is equivalent to the semi-infinite linear 
program (SILP(QP)) stated in (3.5) below. 

SILP(QP): Minimize  ∑∑
i j

ijij XC   (3.5a) 

 subject to xeT  = 1 (3.5b) 
 Xe = x (3.5c) 
 

L
T x ])([ 2α  ≥ 0, 1=α∋∈α∀ nR  (3.5d) 

 symmetric. and  0,0 ≥≥ Xx   (3.5e) 
 
Proof.  By definition, 0 fX  is equivalent to requiring that X is symmetric and that  

   ,0≥αα XT  1=∋∈∀ αα nR , noting that any nonzero nR∈α  can be made of unit length.  

But L
T

L
TT

L
TTT xxxxxX ])[()])([(])([ 2α=αα=αα=αα .  Hence, (3.4e) is equivalent to 

requiring X to be symmetric and such that (3.5d) holds true.  This completes the proof. ! 
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Proposition 3.1 reveals a connection between RLT and semidefinite relaxations. Observe 
that (3.5a,b,c, and e) are respectively identical to (3.2a,b,c, and d) that define the first-level RLT 
relaxation RLT-1(QP).  The constraint set (3.5d) provides a potential strengthening of SDP(QP) 
or SILP(QP) over RLT-1(QP).  The first-level RLT relaxation replaces the nonlinear substitution 
restriction TxxX =  by simply requiring X to be nonnegative and symmetric. On the other hand, 
the semidefinite relaxation also requires X to satisfy the positive semidefiniteness condition 
associated with the identity TxxX = . But note that as explored in Sherali and Tuncbilek (1997) 
and Audet et al. (2000), for example, aside from the minimal RLT representation constraints 
stated in (3.2) in the present context, the first-level RLT relaxation can optionally incorporate 
any other classes of linearized quadratic implied constraints.   In particular, enhancing RLT-
1(QP) with such implied restrictions of the type (3.5d) yields the semidefinite relaxation 
SDP(QP) as a special case.  We therefore refer to the valid inequalities of the type (3.5d) as 
semidefinite cuts (or SDP cuts). 

Note that if we denote njXjj ,,1),( K=≡αα , as the set of linearly independent 
normalized eigenvectors of X, then 0 fX  is equivalent to the condition that 0)( ≥jTj Xαα  for 

nj ,,1 K= .  Hence, in the relationships embodied in (3.5d), we could focus on just the α -
vectors corresponding to such eigenvectors of X, and generate violated members of these 
constraints in a relaxation framework based on detected negative eigenvalues.  The Lanczos 
algorithm could be used for this purpose (see Paige and Saunders (1975), for example).  
However, because of the complexity of this approach, given that X is a variable in the problem, 
we will find it more convenient to derive a (polynomial-time) separation mechanism for 
generating suitable members of (3.5d) in a sequential fashion, based on an LU factorization 
concept for X. 

3.3.1 Basic SDP Cut Generation  
 Rather than solving the semi-infinite program SILP(QP) directly, we adopt the following 
relaxation approach which leads to a cutting plane generation strategy that can be applied in 
more general contexts.  To begin with, we first solve SILP(QP) with the constraints (3.5d) 
omitted.  Note that this relaxation corresponds precisely to the first-level RLT relaxation of QP 
as given by (3.2).  Let us denote the resulting solution to this problem as )�,�( Xx .  If 0 � fX , then 
X� solves Problem SILP(QP) (or SDP(QP)) as well.  Otherwise, the solution X�  violates at least 
one of the constraints (3.5d).  The task now is to generate a suitable vector of unit length, 

nR∈α , for which the constraint 0≥αα XT  is not satisfied when XX �= .   This will then yield 
a cutting plane of type (3.5d).   

 In essence, our solution strategy recursively evaluates the entries of X�  to determine 
whether or not X�  is indeed positive semidefinite.  Toward this end, consider the application of a 
superdiagonalization (or upper triangularization) process to the symmetric matrix X�  (see 
Bazaraa et al., 1993).  In this process, proceeding in the order ni ,,2,1 K= , we continue to zero 
out the elements in the ith column under the current ith diagonal element by performing 
elementary row operations using the ith row, so long as the diagonal elements encountered 
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remain positive.  Starting with XG �1 ≡  for 1=i , at the ith stage in this process, }1,,1{ −∈ ni K , 
suppose that we have encountered all positive diagonal elements thus far, and that we are 
examining the reduced submatrix iG )1(x)1( +−+−∈ ininR  appearing in rows and columns nii K,1, + .  
Let us view iG  in its partitioned form, where its first row and column are explicitly displayed as 
follows 









≡

Gg
gGG i

Tii
i )(11 , 

(3.6) 

 
and consider the following result.  

Proposition 3.2. Given iG  as in (3.6), suppose that 011 >iG  and define  

  )(

11

1
i

Tii
i

G
ggGG −=+ . 

(3.7) 

 
Then iG is PSD if and only if 1+iG  is PSD.  Moreover, given any T

ni
i ),,( 1

1 αα≡α +
+ K , by 

selecting i

iTi

i G
g

11

1 )( +α−=α , we have that 111 )()( +++ αα=αα iiTiiiTi GG   for 







α
α

≡α +1i
ii . 

Proof. By simplifying terms, we have from (3.6) and (3.7) that  

1112

11

1

11 )())(()( +++
+

αα+α+α=αα iiTi
i

iTi

i
iiiTi G

G
gGG . 

Clearly, if 1+iG  is PSD, then so is iG .  Conversely, if iG  is PSD, then noting that by setting  

i

iTi

i G
g

11

1 )( +α−≡α   gives 111 )()( +++ αα=αα iiTiiiTi GG , 
(3.8) 

we must have that 1+iG  is also PSD.  Moreover, in any case, (3.8) holds true.  This completes the 
proof. ! 

 Note that the first part of Proposition 3.2 is based on the superdiagonalization procedure 
for checking the positive semidefiniteness of X�  (see Bazaraa et al. (1993)).  The related latter 
part of the result asserts that if iG  is not PSD, then since 1+iG  must also not be PSD, we can 
seek an 1+α i  such that 0)( 111 <αα +++ iiTi G , and accordingly, we will have found an iα  with iα  
given by (3.8) such that 0)( <αα iiTi G .  We can repeat this process recursively until all 
components of α  are determined. Upon normalizing this α , we will have generated a valid 
linear inequality of the form (3.5d) that is not satisfied for the current solution X� .   

 Next, consider the situation addressed by the following result in which for some stage 
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}1,,1{ −∈ ni K , we encounter a submatrix iG  of the type (3.6) for which 011 =iG  and 0≡ig .   

Proposition 3.3.  Given iG  as in (3.6), suppose that 011 =iG  and that 0≡ig .  Then by letting  

GGi ≡+1  and 0=α i , (3.9) 

we have that iG  is PSD if and only if 1+iG  is PSD, and moreover,  

111 )()( +++ αα=αα iiTiiiTi GG   where 







α

≡α
=α +1

0
i

ii . 
(3.10) 

Proof.  Similar to the proof of Proposition 3.2. ! 

 This result asserts again that if 1+iG  is not PSD and we find an 1+α i  such that 
0)( 111 <αα +++ iiTi G , then we can recursively recover an α  via (3.8) and (3.10) (according to 

whether the corresponding diagonal element is positive or zero, noting the condition of 
Proposition 3.3 in the latter case), such that (3.5d) is violated. 

 Now, let us consider two cases where for the first time, a situation other than the 
foregoing types arises.  

Case (i): i
11G  < 0 in (3.6). 

Suppose that in the foregoing diagonalization process, we encounter for the first time a 
matrix iG  given by (3.6) having 011 <iG .  In this case, we can take =αα=α T

ni
i ),,( K  

)0,,0,1( K .  Then 0)( 11 <=αα iiiTi GG , and we can subsequently compute the full vector α  
inductively using (3.8) and (3.10). 

Case (ii): i
11G  = 0, but 0θGG ≠== i

j
i

j 11 for some 1},{2, +−∈ inj K  in (3.6). 

 In this case, we know that iG  is not PSD and we can find an α  for which 0� ≥αα XT is 
violated as follows.  Specifically, consider iα  to be of the form =αα=α T

ni
i ),,( K  

T
jii )0,,0,,0,,0,( 1 KK −+αα .  Let φ=i

jjG , T
jii ),( 1−+αα=ξ , and 








φθ
θ

=
0

H .  We then have that 

ξξ=αα HG TiiTi )( , and if we can determine a ξ  for which ξξ HT  < 0, we will have obtained an 
iα  for which 0)( <αα iiTi G .  By using (3.8) and (3.10) recursively as before, we could thereby 

find an α  for which 0� <αα XT .  This α  could then be normalized to produce a valid inequality 
of the form (3.5d) that must be satisfied for all feasible solutions X.  In order to determine such a 
vector iα , consider the following result. 

Proposition 3.4.  Let T
jii ),( 1−+αα=ξ and let 








φθ
θ

=
0

H , where 0≠θ .  Then ξξ HT  is 
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minimized, subject to 12 =ξ , by selecting  

2

2
1

1

θ
λ+

=α i  
 

and 
θ
λα

=α −+
i

ji 1
 

where 
.

2
4 22 θ+φ−φ

=λ

 

 

(3.11) 

Moreover, at the solution (3.11), 0<λ≡ξξ HT . 

Proof.  By the linear independence constraint qualification, the KKT necessary optimality 
conditions (see Bazaraa et al. (1993)) for the problem of minimizing ξξ HT  subject to 

12 =ξ yield for some λ , 

1    , 2 =ξξλ=ξH . (3.12) 

This implies that at any KKT solution, we have 

λλξξλξξξ === 2 TT H . (3.13) 

From (3.12) and (3.13), it follows that the optimal objective value sought equals the minimum 
eigenvalue λ  of H, and the corresponding normalized eigenvector yields the optimal solution ξ .  
To find the minimum eigenvalue for H, consider the equation 0)det( 22 =θ−φλ−λ=λ− IH . 

 Using the quadratic formula, we derive the minimum eigenvalue of H as 

 
2

4 22 θ+φ−φ
=λ .  The corresponding eigenvector of H can be found via the system 

ξλ− )( IH =0, which gives 
θ

λα
=α −+

i
ji 1 .  Since, 12

1
22 =α+α=ξ −+ jii , we have 

2

2
1

1

θ
λ+

=α i , 

where the positive square-root for computing iα can be chosen without loss of generality. 

Furthermore, from (3.13), 0<ξξ=λ HT  since X is not PSD. This completes the proof. ! 

Remark 3.1. Note that in case of alternative choices of elements pertaining to Case (ii) for which 
Proposition 3.4 can be applied, we can select one that yields the most negative value of λ . ! 

Example 3.1.  To illustrate, consider the following example. Suppose that the current solution 
X�  is given as follows: 
















=

2.0015.0
02.015.0
15.015.00

�X . 
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With i = 1, we have 011 =iG  and 011 ≠= i
j

i
j GG  for j = 2 and j = 3, indicating that there are two 

possible values of j that can generate a separating inequality.  With j=2, we have 
15.02112 == ii GG .  This yields T),( 21 αα=ξ  with 15.0=θ  and 2.0=φ  in the notation of Case 

(ii) above.  From (3.11), -0.08028 
2

)15.0(42.02.0 22

=
+−

=λ , 8817.0
1

1

2

2

15.0
)08028.0(

1 =
+

=α
−

, 

and ( ) 4719.0
15.0

8817.0)08028.0(
2 −=−=α .  Hence, T)0  ,4719.0  ,8817.0( −=α .  Note that 

1=α  and that 08028.0
4719.0

8817.0
2.015.0
15.00

)4719.0,8817.0(� −=







−








−=ξξ=αα HX TT , 

which is the value of λ .   In a similar fashion, we can calculate the corresponding α  for  j=3 as 
T)4719.0   ,0   ,8817.0( −=α , which also produces -0.08028=λ .  Thus, the procedure has 

found two possible choices of α  for which 0])([ 2 ≥α≡αα L
TT xX  is not satisfied for the 

current solution X� .   The corresponding linearized constraints are given as 

02226.08321.07774.0 221211 ≥+− XXX   

and 02226.08321.07774.0 331311 ≥+− XXX .  

Since both of these cuts produced the same value of λ , we could arbitrarily choose either cut. ! 

 The foregoing approach establishes an inductive polynomial-time process for generating 
valid inequalities for the first-level RLT relaxation. Since each recursive step of applying this 
process to Gi at iteration i is of complexity O(n2) and we perform at most n such steps, the 
complexity of the overall separation routine is O(n3).  After obtaining an α  for which 

0� <αα XT , 1=α , and generating the corresponding inequality 0])([ 2 ≥α L
T x , we can append 

this to the current RLT relaxation. This problem could then be re-solved to obtain a new solution 
)�,�( Xx , and the procedure could be repeated until any of the following termination criteria is 

realized:  the solution X�  for some relaxed problem turns out to be PSD, or some maximum limit 
K1 on the number of LPs solved is attained, or the improvement in the lower bound from one 
iteration to the next is lesser than a prescribed 0>δ  for some p consecutive iterations. Note that, 
as described in the sequel, we could generate multiple cuts at each iteration.  Hence, we also 
impose a limit, K2, on the number of inequalities of type (3.5d) that are generated for any 
particular solution X� . (In our computations, we used K1 = 100, K2 = 100, δ  = 0.001, and p = 3.)  
Figure 3.1 gives a flow-chart for this approximate truncated scheme for solving SILP(QP) by 
way of augmenting RLT-1(QP) with the proposed SDP cuts.  
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y

y 

XGi �,1 1 ≡=

0 11 <iG

1+= ii

011 =iG

ni =  X� is PSD; 
stop. Store 








i

i

g
G11  and 

compute 1+iG  as 

i

Tii

G
ggG
11

)(− , 

where 









=

Gg
gGG i

Tii
i )(11 . 

Store 011 =iG  
and let 1+iG  be 
obtained by 
deleting the first 
row and column 
of iG . 

Put 1=α i , 
ipp >∀=α 0 . 

Select a j such that 
01 ≠θ=i

jG  and such that 

with i
jjG=φ , the quantity λ  

given by (3.7) is a minimum.  
Set 

2
2

  1
1

θ
λ+

=α i , 

)(1 θ
λα=α −+ iji , and 

1,0 −+≠>∀=α jipipp . 

Recursively, for r = i-1 to 1, 
compute rα  as: 
If 011 =rG , then 0=α r ;  

otherwise, r

rr

r G
g

11

1+α−=α  

where ),,( 1
1

nr
r αα≡α +
+ K . 

Normalize 
α . 

Generate new SDP cut 
(3.5d) and append to the 
current relaxation. 

jGi
j ∀= 01

Figure 3.1.  Flow-chart for the Fundamental SDP Cut Generation Procedure. 

Solve the first-level RLT relaxation along with any generated constraints of the type (3.5d).  Let 
)�,�( Xx be the solution obtained.  If any of the termination criterion of Section 3.3.1 holds, stop; the 

objective yields a LB on QP.  Else, delete previous inactive SDP cuts and continue.  

1>i   
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Example 3.2. Suppose that the current solution X�  is given as follows. 
















=

4.002.0
0008.0
2.008.004.0

�X  

We can see that X�  is not PSD, since 0�
22 =X  but 08.0��

2112 == XX . The procedure of Figure 
3.1 starts with 1=i , XG �1 = , and examines 11

1
11

�XG = .  Since 01
11 >G , we store 04.01

11 =G ,  









=

2.0
08.01g , and we derive the reduced matrix 2G  of Proposition 3.2 via (3.7) as  

( )








−−
−−

=









−







=

6.04.0
4.016.0

04.0

2.008.0
2.0
08.0

4.00
002G . 

At 2=i , 16.02
11 −=G  is negative.  Hence, we take TT )0,1(),( 32

2 =αα=α  which gives 
16.0)( 222 −=αα GT .  At the final step in Figure 3.1, with 1=r , we compute 

2),( 1
11

1
321 −=⋅αα−=α Gg  from Equation (3.8).  This yields ( )T0,1,2−=α  with 

16.0� −=αα XT .  When we normalize α  to ( )T0,,
5

1
5
2− , we obtain 032.0� −=αα XT . The 

corresponding SDP cut,  

02.08.08.0])[( 221211
2 ≥+−=α XXXx L

T , 

is violated for XX �= , since 032.0)0(2.0)08.0(8.0)04.0(8.0�])[( 2 −=+−=αα≡α Xx T
L

T . ! 

3.3.2 Enhancing the Basic SDP Cut Generation Strategy 

In the cut generation process described above, we have assumed that the matrix X�  is 
scanned with respect to its ith diagonal element in the order ni ,,1 K= , and that a single SDP cut 
is generated once it is revealed that X�  is not PSD.  There are several variations to this strategy 
that we could possibly adopt. One such variation is a look-ahead feature for the cut generation 
process.  In this modification, when the matrix under consideration is iG  having dimension 

1+− in , we scan the entire diagonal ( i
qqG  for 1,,1 +−= inq K ) to see if any diagonal element 

is negative.  If we find such a negative diagonal element, say 0<i
QQG , we take 11 =α −+Qi  and 

1,  ,0 −+≠≥∀=α Qipipp .  As before, we use Equations (3.8) and (3.10) recursively to 
determine 1  −≤∀α ipp  (if i ≥ 2).  In a similar manner, we can look ahead for cases where there 

is a diagonal element that equals zero, say, 0=i
QQG , but 0≠i

QkG  for some }1,,1{ +−∈ ink K , 
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and generate a cut based on this revealed violation of positive semidefiniteness.  Figures 3.2 and 
3.3 provide detailed flow-charts of routines for implementing this look-ahead feature.  Here, we 
use �status = 0� to indicate that we should continue to increment i and look for additional cuts.  
Since, barring a further permutation of rows and columns of X� , it is only valid to increment i 
when either 011 >iG  or when 011 == i

j
i
j GG 1,,1 +−=∀ inj K  we set �status = 1� when either a 

Case (i) or Case (ii) violation is detected with respect to the leading element iG11  of iG .   

As a second variant of this strategy, whenever the leading element of the current reduced 
matrix iG  yields a Case (i) or Case (ii) violation, we generate the valid cuts as above, but instead 
of exiting from the cut generation routine, we examine if any of the other diagonal elements are 
positive.  If so, we permute the rows and columns of iG  to make the most positive diagonal 
element as the leading element, and continue the cut generation process, taking care to record the 
appropriate order of the permuted indices for generating future cuts.  Let us refer to this 
technique as the full permutation strategy.   Since such a permutation strategy can consume 
significant computational effort, a third variant is developed in order to decrease computational 
effort while maintaining the benefits of permutation.  In this variant, called the diagonal sort 
strategy, we perform an nlog(n) sort to arrange the diagonal elements in nonincreasing order, and 
we continue to generate cuts until we encounter a Case (i) or Case (ii) violation from the leading 
diagonal element.  A fourth variant that applies to all of the foregoing strategies adds multiple 
cuts at each iteration, also using the look-ahead feature.  Since there might be several distinct 
choices of α  for composing SDP cuts as revealed during the sequential look-ahead process for 
the current solution X� , we attempt to generate a bundle of SDP cuts for each such X�  in order to 
possibly reduce the computational time for the overall solution process. For all variants, we 
delete previously generated inactive cuts at each iteration.  (We also implement an efficient 
check to avoid the generation of duplicated cuts.)  In our experimental analysis, we will 
investigate both the single and multiple cut implementations, using both the original matrix X�  
as well as an augmented matrix that will be considered in Section 3.3.3.  

Example 3.3.   To illustrate these variants, consider the matrix X�  from Example 3.2: 
















=

4.002.0
0008.0
2.008.004.0

�X . 

With i = 1 and XG �1 = , we can look-ahead and see that 0�
22 =X  but 08.0��

1221 ===θ XX . 
Accordingly, we can derive a violated constraint at this point itself, before incrementing i and 
examining 2G .   If we take T),( 12 αα=ξ , 08.0��

2112 ===θ XX , and 04.0�
11 ==φ X , we obtain 

from Proposition 3.4 that T)0,7882.0,6154.0(−=α .    The corresponding SDP cut is   

06213.09701.03787.0 221211 ≥+− XXX , 
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n 

n 

y y 

n 

y 
n 

y 

0status,� ,1 ,0 ,1 1 =≡==+= XGinkk k  

X� is PSD; 
stop. 

Store 011 =iG  
and let 1+iG  be 
obtained by 
deleting the first 
row and column 
of iG . 

1+= ii

01 =i
jG  

1,,1 +−=∀ inj K

Store 







i

i

g
G11 , and compute 1+iG  as 

i

Tii

G
ggG
11

)(− , where 







=

Gg
gGG i

Tii
i )(11 .

Figure 3.2.  Flow-chart for the Look-Ahead SDP Cut Generation Procedure. 

1+= ii

Call the SDP cut generation 
subroutine of Figure 3.3 to identify 
potential α -vectors for cuts. 

Store the α  that gives the minimum 
value for αα XT � .  (In the multiple-cut 
version, store all generated α -vectors.) 

Solve the first-level RLT relaxation along with any generated constraints of the type (3.5d).  Let 
)�,�( Xx  be the solution obtained.  If any termination criterion of Section 3.3.1 holds, stop; the 

objective yields a LB on QP.  Else, delete previous inactive SDP cuts and continue. 

0=k

i = n

status = 0 0=kn

Generate the SDP 
cut(s) (3.5d) for the 
stored α -vector(s).
Append to the 
current relaxation. 
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y 

n 

n 

y 

n 

y 

0<i
qqG  

1=q

0=i
qqG ,

0≠i
qjG  

Select a j such that 
0≠θ=i

qjG and such that with 
i
jjG=φ , the quantity λ  given 

by (3.7) is a minimum.  Set 

2
2

  1
1

1
θ

λ+−+ =α qi , 

)(11 θ
λα=α −+−+ qiji , and 

1,0 −+≠≥∀=α qipipp  or 
1−+ ji . 

Put 11 =α −+qi ,  
1,0 −+≠≥∀=α qipipp . 

1+= kk nn .   
If q = 1, status = 1. 
 
Recursively, for r = i-1 to 1, compute rα  as: 
     If 011 =rG , then 0=α r ;   

     otherwise, r

rr

r G
g

11

1+α−=α  where ),,( 1
1

nr
r αα≡α +
+ K . 

Normalize  α .  Store α  and  αα XT � .  

1+= qq  

If  i = n, status = 1.  Return. 

1+−= inq  

Figure 3.3.  Flow-chart for the SDP Cut Generation Subroutine Invoked by 
the Look-Ahead Procedure of Figure 3.2.
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which is currently violated since 0625.0� −=αα XT .  Now, since 01
11 >G , we could continue to 

increment i as before and generate the following SDP cut that was obtained in Example 3.2:  

02.08.08.0 221211 ≥+− XXX , 

with the corresponding 032.0� −=αα XT .  Observe that the SDP cut generated by looking ahead 
had a violation nearly twice as large as the latter cut.  In implementing the single-cut option of 
Figure 3.2, we would only add the first cut since we select the one cut that yields the largest 
violation.  However, when using the multiple cut implementation of Figure 3.2, we would 
impose both of the above cuts before re-solving the current relaxation. ! 

Remark 3.2.  As a computational expedient, we have adopted the strategy to terminate the above 
cut generation process when either the resulting solution matrix X�  is PSD or when some 
practical stopping criterion is attained.  In our computations, as indicated above, we set limits on 
the maximum number of cuts and iterations, as well as on the number of successive iterations 
performed while obtaining insufficient progress in tightening the lower bound.  A question of 
interest that arises in this context is whether such a process can be induced to attain the ideal 
termination condition of X�  being PSD, even in an infinite convergence sense, if the other 
practical stopping criteria are omitted.  One approach for attaining such a theoretically 
convergent process would be to impose a spacer step, whereby finitely often, a vector α  is 
generated uniformly distributed on the surface of a unit sphere in nR .  Then, if *�X  is the 
limiting matrix for some convergent subsequence of solutions X� generated in an infinite process, 
we could not have the situation that there exists an α  for which 0� * <αα XT , because then there 
would exist an −ε neighborhood )(αεN  about α  for which  

0� * <αα XT  }1:{)( =αα∩α∈α∀ εN . 

This would imply the absence of having generated any α  in the latter region which has a 
nonzero measure on the surface of the unit sphere, a contradiction to the uniform distribution of 
the generated values of α  on the surface of this sphere. ! 

3.3.3 SDP Cuts Using an Augmented Matrix  
The development of the semidefinite cuts in Section 3.3.1 was based on the noting that 

the identity TxxX =  implies the PSD restriction 0  fX .  Another common tactic in semidefinite 
programming is to recognize that X = xxT  also implies the stronger condition that TxxX   f  (see 
Nowak (1998a,b, 1999), for example).  Note that TxxX   f  can equivalently be expressed as 

0   
1

f







Tx

xX
.   From the viewpoint of RLT constraints (as per Proposition 3.1), 0   

1
f








Tx

xX
 

translates to the class of SDP cuts   
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1),(),(  0)(2])[( 11
2

11
2

1 =αα∋αα∀≥α+αα+αα=α+α +++++ n
T

n
T

n
T

n
T

Ln
T xXx . 

In terms of the separation routine of the foregoing section, an identical procedure can be 

implemented on the matrix AX , where  
1






= T

A

x
xX

X .  That is, given a solution ( x� , X� ), we 

can construct the matrix  
1�
��� 







= T

A

x
xXX and apply the routine of Section 3.3.1 to the matrix AX�  

in lieu of X� .    

Example 3.4.  To illustrate the cut generation procedure using the foregoing augmented matrix, 
consider X�  as given in Example 3.1, and suppose that for all i, we have ∑=

j
iji Xx �� as required 

by (3.5c). This leads to the matrix AX�  as follows: 



















=

135.035.03.0
35.02.0015.0
35.002.015.0
3.015.015.00

� AX . 

Since the upper left portion of the matrix contains X� , we can still derive the two SDP cuts that 
were obtained in Example 3.1.  However, with the additional row and column of AX� , we also 
have another possibility for generating an SDP cut inequality.   With i=1, we have 0�

11 =AX , but 
03.0��

4114 ≠== AA XX , and so we can apply Proposition 3.4 with T),( 41 αα=ξ , 3.0=θ , and 

1=φ .  From (3.11), we get 0831.0
2

)3.0(411 22

−=
+−

=λ , 9637.01 =α , and 2669.04 −=α . 

Hence, T

n

)0.2669-  ,0  ,0  ,9637.0(
1

=








+α
α

.  Note that 1
1

=







α
α

+n

 and that =







α
α









α
α

++ 11

�
n

A
T

n

X  

0831.0−=ξξ HT , which is the value of λ .   The corresponding SDP cuts is given by  

07125.09287.05145.0 111 −≥+− Xx , 

which is currently violated, since we have 15435.0�9287.0�5145.0 111 −=+− Xx . Thus, the 

procedure has found an 







α
α

+1n

 for which 0])([ 2
1

11

≥α+α≡







α
α









α
α

+
++

Ln
T

n

A
T

n

xX  is not 

satisfied for the current solution AX� .  Recall that both of the cuts derived in Example 3.1 had 
0803.0� −=αα XT ; hence, examining the augmented matrix has produced a cut that is violated to 

a greater extent than the former cuts. In the single-cut option, we would therefore implement the 
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cut that was generated by the present example, since it has a larger violation than either of the 
cuts generated in Example 3.1.  In the multiple-cut implementation, we would append all of these 
generated cuts to the current RLT-1 relaxation before returning to re-solve the next relaxation. ! 

3.4 Computational Analysis 

To gauge the effectiveness of the proposed class of SDP cuts in solving Problem QP, we 
conducted two types of computational experiments.  We first conducted an experiment to 
evaluate the relative performance of the various cut generation strategies in enhancing the lower 
bound derived by RLT-1(QP) at the root node within a branch-and-bound framework.  Following 
this analysis, we selected several of the best SDP cut generation strategies and implemented 
them within a branch-and-bound framework in order to assess their performance in the search for 
a globally optimal solution. 

3.4.1 Root Node Performance 
In this section, we compare how the different cut generation strategies compared as to the 

bound they obtained for the root node problem of a branch-and-bound tree.  The first strategy, 
which serves as a baseline case, uses a single cut per iteration derived from the matrix X�  using 
no permutations.  The remaining six strategies were composed by using each combination of the 
two matrix types (regular and augmented) with the three permutation types described in Remark 
3.2 (no permutation, full permutation, and diagonal sort).  Since some preliminary computations 
indicated that the single cut approach was dominated by the multiple cut implementation, we 
consider the single cut strategy only in the baseline case.  In addition to the stopping criteria 
mentioned in Section 3.3.1, we also limited each of the strategies to 60 seconds of CPU time per 
problem.  (All computations were executed on a SUN Ultra-1 workstation, with CPLEX 6.5 
being used to solve the generated LP relaxations.)   

The sizes of the test problems range from 10 variables to 100, by increments of 10.  For 
each problem, the objective coefficients were generated uniformly on the interval [0,10].  The 
objective coefficients iiC  of the terms 2

ix  were always taken to be positive, while the 
coefficients ijC  of the terms ji xx  were permitted to be positive or negative.  In order to vary the 
problem structure for a given size, the proportion of positive ijC  coefficients was varied through 
four values (0.1, 0.33, 0.66, 0.9), and four problems were generated for each such value, creating 
a total of 16 problems for each problem size.  We obtained a lower bound for each of these 160 
problems using each of the seven proposed strategies.  The data is summarized in Table 3.1.  For 
each problem, the SDP cut-enhanced bounds were all tighter than the RLT-1 bound, and the 
improvement was most pronounced with higher proportions of positive ijC  coefficients and 
smaller problem sizes.  For instance, for the (four) 10-variable problems having 90% of the ijC  
coefficients positive, the best SDP cut-enhanced bound improved the RLT-1 bound by an 
average of 65%; however, for the 100-variable problems having 10% of the ijC  coefficients 
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Table 3.1:  Average % Improvement of the Best SDP Cut Bound over the RLT-1 Bound. 

  Number of Variables 
  10 20 30 40 50 60 70 80 90 100 

Proportion  0.1 45.63 34.76 25.01 15.94 11.50 7.40 5.23 3.41 1.28 1.35 
of Positive 0.33 56.72 43.86 29.46 21.48 14.13 10.25 5.69 4.18 2.38 1.43 

Cij  0.66 59.30 55.44 46.18 35.40 24.20 19.94 14.37 10.25 7.34 5.85 
Coefficients 0.9 65.18 64.28 59.69 58.10 52.38 44.76 39.61 33.02 28.11 19.14 

 

positive, the SDP cut-enhanced bound only improved the RLT-1 bound by an average of 1.35%.  
In order to assess the relative performances of the different cut generation strategies, we ranked 
these methods for each problem size with respect to the bound obtained at the root node, as well 
as with respect to the CPU time required.  For each problem, we computed the best (greatest) 
lower bound and the best (smallest) CPU time, and then calculated the percentage amount by 
which each method deviated from the best bound and time for the given problem. Since we have 
16 problems of each size being solved using each of the seven strategies, this yields a total of 
112 data points for each value of n.  These data points pertaining to the bound and time 
deviations were ranked separately in increasing order for each value of n.  In the case of ties, 

average ranks were assigned so that the sum of the ranks for each n equals 6328
112

1
=∑

=i
i .  Tables 

3.2 and 3.3 present the rank-sums for each strategy for each value of n, as well as over the ten 
problem sizes, for the two respective criteria: lower bounds and CPU times. 

The results indicate that the baseline strategy provides significantly worse bounds than its 
more sophisticated counterparts, but it has a slightly better than average performance with 
respect to computational time. When used with the regular matrix, the full permutation strategy 
provides a distinctly better bound than the non-permutation and diagonal-sort strategies, and this  
trend occurs across all problem sizes.  Both permutation strategies (full or diagonal sort) provide 
a tighter lower bound than the non-permutation strategy when used in combination with the 
regular matrix, but the effect is less clear when used in combination with the augmented matrix 
strategy. There are several notable cases where the permutation strategy does not tighten the 
bounds obtained from the non-permuted method. In general, the augmented matrix strategy 
provides an improvement in bounds as compared to the regular matrix strategy, particularly as 
problem size increases.  Overall, the rankings indicate that Strategies 3 and 7 provide the best 
lower bounds, although Strategies 4, 5, and 6 are also competitive.  Note that Strategy 3 performs 
better for smaller problems, while Strategies 5, 6, and 7 tend to perform better as the problem 
size increases.  From Table 3.3, we see that, in general, the methods using the augmented matrix 
tend to require less computational time, with Strategies 5 and 7 emerging as clearly more time-
efficient.  Based upon the rankings shown in Tables 3.2 and 3.3, it appears that Strategy 7 
provides desirable results in terms of both the quality of the lower bound obtained and the 
amount of CPU time consumed.  In particular, it seems promising that Strategy 7 also performs 
well in both categories as problem size increases. 

 In order to determine whether or not the differences in the strategy rankings were 
significant, we performed a Kruskal-Wallis (rank-sum) test on the data for each n for the seven  
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Table 3.2: Sum of Lower Bound Rankings. 

  Strategy 
  1 2 3 4 5 6 7 

 Matrix Type Reg.  Reg. Reg. Reg. Aug. Aug. Aug. 
 # Cuts Single  Multi  Multi  Multi  Multi  Multi  Multi  
 Permutation None None Full Diag. Sort None Full Diag. Sort
 10 1252 1011.5 798.5 803 1070.5 798 594.5 
 20 1290.5 1077 305 541.5 1125 945 1044 
 30 1153 895.5 293.5 661 936.5 1358 1030.5 
 40 1125 978 627 875 625 1410 688 

n 50 1113.5 1086.5 735.5 992.5 673.5 1014 712.5 
 60 1165 1079 798.5 941.5 803.5 664 876.5 
 70 1124.5 1058 987.5 1013.5 729 654 761.5 
 80 1163 1100 1100 1100 633 673.5 558.5 
 90 1090.5 1071.5 1071.5 1071.5 730 502 791 
 100 1078.5 1099 1045 1068.5 747.5 487.5 802 

Total 11555.5 10456 7762 9068 8073.5 8506 7859 
 

 

Table 3.3: Sum of CPU Time Rankings. 

  Strategy (as defined in Table 3.2) 
 n 1 2 3 4 5 6 7 

 10 869 759 1108 930 415 1269.5 977.5 
 20 636 732 1225.5 1067.5 467.5 1478.5 721 
 30 869 853 1227 1172 716.5 799.5 691 
 40 1014 864 1099 1132 823 739 657 
 50 913 807 1128 1325 590 891.5 673.5 
 60 928.5 1026 992 1180 496 1149.5 556 
 70 1233 875 874 1175 559.5 936.5 675 
 80 579.5 818.5 1617 934 369 1215 795 
 90 752 934 944.5 1137.5 510 1254 796 
 100 985 1023.5 892.5 1101 405 1181.5 739.5 
Total 8779 8692 11107.5 11154 5351.5 10914.5 7281.5 
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strategies.  Table 3.4 indicates that the CPU times were significantly different at the 5% level 
( 592.122

6,05.0 =χ>h ) for each problem size other than for n = 40, and the lower bounds were 
significantly different for all sizes except for n = 60 and n = 70.  We performed an additional 
Kruskal-Wallis test by analyzing the combined data from all problem sizes.    That is, we ranked 
each of the percentage deviations from 1 through 1120 (= 160 x 7), and performed the Kruskal-
Wallis test using a sample size equal to 160 for each strategy.  The test statistics for the lower 
bounds and CPU times were 66.77 and 119.9, respectively, which were much greater than 

592.122
6,05.0 =χ , indicating significant differences in the performance of the seven strategies.    

As final comparative evidence, we directly display in Table 3.5 the number of problems 
(out of 160) for which each strategy obtained the best lower bound and CPU time.  The strategies 
that use the augmented matrix have the largest proportion of best lower bounds and best CPU 
times.  Of the strategies based on the regular matrix, the ones that employed the full permutation 
and the diagonal sort techniques performed significantly better than the one that used no 
permutation. 

 
Table 3.4:  h-Statistic for the Kruskal-Wallis Test. 

 h-Statistic 

n 
Lower 
Bound 

CPU 
Time 

10 17.11 26.23 
20 43.83 46.55 
30 42.49 16.08 
40 30.37 11.76 
50 12.76 23.34 
60 10.65 26.5 
70 12.13 21.07 
80 25.38 60.25 
90 19.18 21.90 
100 19.19 24.47 

 

 

Table 3.5: Number of Problems for which the Best Lower Bounds and CPU 
Times were Achieved for Each Strategy. 

 Strategy (as Defined in Table 3.2) 
 1 2 3 4 5 6 7 

Lower Bound 12 16 46 27 48 67 49 
CPU Time 18 9 1 3 83 26 22 
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3.4.2 Overview of the Branch-and-Bound Procedure 
Before presenting the results of the branch-and-bound analysis, we first present an 

overview of the branch-and-bound procedure.  Each node of the branch-and-bound tree contains 
an RLT relaxation of a problem, augmented by a series of SDP cuts.  We focus here on 
developing the RLT representation for each node, given l and u as the appropriate vectors of 
upper and lower bounds, respectively, for the original variables.  We begin, as before, by 
multiplying the simplex constraint (3.2b) by each variable.  This yields the problem (3.2), with 
(3.2d) replaced by uxl ≤≤ , 0≥X  and symmetric.  We then augment this representation with a 
set of constraints obtained by multiplying the bound-factors pairwise, as in Sherali and Tuncbilek 
(1992).  We note that all variables (original and RLT) are implicitly bounded between zero and 
one, with the bounds for the original variables implied by (3.2b) and (3.2d), while the additional 
constraints (3.2c) imply the same bounds for the RLT variables.  We therefore need only include 
bound-factor product constraints when the corresponding bounds are tighter than the implied 
bounds of 0 and 1.  The pairwise products of bound-factors result in six types of constraints, as 
outlined in Table 3.6.  Types I, III, and V are simply specializations of Types II, IV, and VI, 
respectively, for the case when ij = .  The maximum number of each type of constraint is also 
presented in Table 3.6, giving a total of nn +22  potential constraints, where n is the number of 
original variables.  We note, however, that several of these constraints may be unnecessary.  For 
example, in the case where 0=il , the corresponding Type I constraint reduces to a simple 
nonnegativity constraint on iiX .  If, in addition 0=jl , the Type II constraint also reduces to a 
simple nonnegativity constraint on ijX .  Since at the root node we have 0=il  and 1=iu  for 
each i, all of the bound-product constraints reduce to nonnegativity restrictions on the RLT 
variables.  At subsequent nodes, however, we will not necessarily have 0=il  and 1=iu  for 
each i, thereby requiring us to generate the appropriate bound-factor products.  In summary, then, 
the initial relaxation at each node (prior to adding SDP cuts) is given as follows: 

RLT-1(QP): Minimize  ∑∑
i j

ijij XC    (3.14a) 

 subject to xeT  = 1  (3.14b) 
  Xe = x  (3.14c) 
  iiii xlX 2−  ≥ 2

il−  0>∋∀ ili  (3.14d) 
  jiijij xlxlX −−  ≥ ji ll− , 0or  >∋<∀ ji llji  (3.14e) 
  iiiii Xxul −+ )(  ≥ iiul , 1<∋∀ iui  (3.14f) 
  ijjiij Xxlxu −+  ≥ jiul , 1<∋≠∀ juji  (3.14g) 
  iiii xuX 2−  ≥ 2

iu− , 1<∋∀ iui  (3.14h) 
  jiijij xuxuX −−  ≥ jiuu−  1, <∋<∀ ji uuji  (3.14i) 
  uxl ≤≤ ,  0≥X ,  and symmetric. (3.14j) 
 

Upon obtaining the solution to this RLT relaxation in (3.14), we examine the matrix 
X� and generate SDP cuts as described previously.  Since we are employing the SDP cuts to 
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Table 3.6:  Types of Bound-Factor Constraints. 

Type 
1st 

Factor 
2nd 

Factor Linearized Product 
Maximum 
Number 

I ii lx ≥  ii lx ≥  22 iiiii lxlX −≥−  n  
II ii lx ≥  jj lx ≥  jijiijij llxlxlX −≥−−  

2
)1( −nn  

III ii lx ≥  ii ux ≤  iiiiiii ulXxul ≥−+ )(  n  
IV ii lx ≥  jj ux ≤  jiijjiij ulXxlxu ≥−+  )1( −nn  
V ii ux ≤  ii ux ≤  22 iiiii uxuX −≥−  n  
VI ii ux ≤  jj ux ≤  jijiijij uuxuxuX −≥−−  

2
)1( −nn  

 

tighten the bounds within a branch-and-bound framework, we do not necessarily need to solve 
the SDP relaxation (as given by the SILP representation) to optimality.  In our computational 
analysis, we allowed a maximum of 100 cuts to be generated per iteration, and we limited such 
sequential rounds of cuts per node to either one or five (as specified).  We also included the 
corresponding SDP cuts that were generated at the nodes on the chain connecting the current 
node to the root node in the enumeration tree.  These cuts are likely to be most effective for the 
current node subproblem, although the cuts generated elsewhere in the tree are also valid.  We 
took the maximum number of stored cuts as three times the maximum number of cuts that could 
be generated at any given node (i.e., 300 for the one-round-of-cuts limit and 1500 for the five-
rounds-of-cuts case).  In case this number exceeded the maximum allowable number of 
implemented cuts, we overwrote the cuts that were generated the earliest.    

Throughout the process, we track the best known solution (incumbent solution) and 
maintain a list of active nodes listed in order of increasing lower bounds.   At the start of the 
problem, the list contains only the root node with a lower bound of negative infinity and an upper 
bound of infinity.  When a node is selected from the list, the solution to its SDP cut-enhanced 
problem yields a lower bound on its optimal solution, and since we have linear constraints, the 
LP solution for each node subproblem also provides an upper bound.  In our experimental 
analysis, we fathomed nodes when the lower bound exceeded upperz)1( ε− , where upperz  is the 
best-known solution value.  In our computations, we used 0001.0=ε  for  the 10- and 20- 
variable problems, and we used 01.0=ε  for the 30-variable problems.  If the current node 
cannot be fathomed, we select a branching variable and create two children nodes in which all 
variable bounds are the same as the parent node, except those corresponding to the branching 
variable.  We select the branching variable, px , as given by  

})���({maxarg
,,1

∑ −=δ∈
= j

ijjiiji
ni

XxxCp
K

, 

and we split the current interval ],[ pp ul  at the value px~ in order to derive two children nodes, 
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where  








+

−≥−−
=

otherwise.  ,
2

)(1.0}�,�min{ if  ,�
~

pp

ppppppp

p ul
luxulxx

x  

This induces convergence to a global optimum (see Sherali and Tuncbilek (1992)). Since the 
children nodes are more constrained than their parent node, their lower bounds are potentially 
tighter and are computed via (3.14), augmented by the appropriate SDP cuts.  The parent node is 
then  removed from the list of active nodes, and the new nodes are inserted into the list according 
to the value of their lower bound.    The first node in the list (having the least lower bound) is 
selected as the current node, and the process is repeated.  Whenever we update the incumbent 
solution value zupper, we fathom (remove) all nodes having lower bounds greater than upperz)1( ε−   
from the list.  The procedure ends when no nodes remain in the list (the upper and lower bounds 
for the problem have converged within a tolerance of upperz⋅ε   or when the maximum number of 
nodes has been reached.     In our analysis, we permitted a maximum of 10,000 nodes for the 
branch-and-bound routine when using RLT alone, and a maximum of 1,000 nodes for the SDP 
cut-enhanced procedures.   

3.4.3 Branch-and-Bound Results 
Based upon the root node analysis, we narrowed our study to exploring the performance 

of using Strategies 3, 4, 5, 6, and 7 to generate SDP cuts within a branch-and-bound framework.  
As a benchmark in this comparison, we also implemented the RLT-1 strategy without any 
cutting planes for computing lower bounds.  Tables 3.7 through 3.10 display the results obtained 
for this branch-and-bound experimentation.  Note that in all of these tables, the SDP cut 
strategies are numbered according to the order shown in Table 3.2, and the baseline RLT strategy 
using no SDP cuts is referred to simply as RLT.  Table 3.7 presents the results obtained for the 
10-variable problems, and it shows that for nearly every implementation strategy, the SDP cuts 
provide a significant improvement in the performance of the branch-and-bound algorithm over 
that using the RLT-1 relaxations alone.  The SDP cuts greatly reduce the number of nodes 
generated as might be expected, but also substantially reduce the overall computational effort.  
Within the SDP cut- enhanced strategies, using five rounds of SDP cuts per node significantly 
reduces the number of nodes enumerated as compared with using a single round of SDP cuts; 
however, the computational time is not consistently reduced.  In general, using five rounds of 
cuts proves most valuable for the relatively more difficult problem instances (lower proportions 
of positive Cij coefficients), and it does not appear to work well in conjunction with the no 
permutation strategy.   Based upon the results from the 10-variable problems, it was evident that 
Strategy 5 (augmented matrix, no permutation) would not remain competitive for the more 
difficult problems, and Strategy 5 was dropped from consideration for the remaining analysis.  
The results for the 20-variable problems are presented in Tables 3.8 and 3.9.  Table 3.8 displays 
the average time and number of nodes for the various problem types and implementation 
strategies.  Note that in contrast to the results for the 10-variable problems, several problems 
were not solved to optimality within the allowable number of nodes.  In such cases when the gap 
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Table 3.7: Average Computation Time (in seconds) and Average Number of Nodes for 
Problems of Size n = 10. 

  Proportion of Positive Cij Coefficients 
0.1 0.33 0.66 0.9 Strategy  Rounds 

of Cuts Time  Nodes Time  Nodes Time  Nodes Time  Nodes 
RLT 0 482.41 5657.5 65.84 1006.5 10.95 239.5 0.74 27 

1 152.24 339 24.15 121.5 3.42 40 0.40 11 3 
5 135.90 92 32.79 44 4.55 17.5 0.79 7 
1 88.16 195.5 22.77 118 4.00 40.5 0.45 11 4 
5 62.69 40.5 21.84 34.5 3.94 16.5 0.73 7.75 
1 232.89 422 39.62 162.5 5.89 43.5 0.65 12 5 
5 419.18 205 109.76 96 9.21 23.5 0.70 3.5 
1 187.61 360.5 31.03 127 7.84 51 0.65 12.5 6 
5 160.80 95.5 33.79 41.5 5.44 13.5 0.66 3.5 
1 69.43 117 24.46 87 4.53 28.5 0.71 10.5 7 
5 52.76 32 29.80 26 4.21 9 0.81 3.5 

 
 
 

Table 3.8: Average Computation Time (in seconds) and Average Number of Nodes for 
Problems of Size  n = 20. 

  Proportion of Positive Cij Coefficients 

0.1 0.33 0.66 0.9 Strategy Rounds 
of Cuts Time  Nodes Time  Nodes Time  Nodes Time  Nodes 

RLT 0 6485.25 10001 3917.5 7133.5 86.02 371.5 5.91 51.5 
1 5256 978.5 1304.75 426 25.31 61 3.44 22 3 
5 5695.75 534 887.75 130 25.04 22.5 3.83 9.5 
1 6025.25 990.5 1162.25 367.5 24.82 60 4.11 27 4 
5 2775.25 323.5 638.75 96 28.34 24.5 3.37 9.5 
1 5604 1001 2509.5 723.5 44.76 75 5.05 20 6 
5 10414.5 922 2625 311 95.64 26.5 4.93 7 
1 6683.75 1001 1910 447 52.26 46 4.81 19.5 7 
5 6478.75 503.5 1450.25 157.5 79.77 21.5 7.78 8 
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Table 3.9: Average Percentage Optimality Gap at Termination for Problems of Size n = 20. 

 Proportion of Positive Cij Coefficients 
Strategy 

Rounds 
of Cuts 0.1 0.33 0.66 0.9 

RLT 0 7.07 0.78 0 0 
1 2.02 0 0 0 3 
5 0.17 0 0 0 
1 1.26 0 0 0 4 
5 0 0 0 0 
1 5.71 0.02 0 0 6 
5 2.01 0 0 0 
1 2.71 0 0 0 7 
5 0.06 0 0 0 

 
 
 

Table 3.10: Average Results for Problems of Size n = 30. 

  Time Nodes % Gap 

  RLT SDP  RLT SDP  RLT SDP  
Proportion  0.1 20574.5 12237 10001 499.5 9.50 0.95 
of Positive 0.33 17640.5 8554 9613 437.5 4.7 0 

Cij  0.66 1559.75 380 1370.5 65.5 0 0 
Coefficients 0.9 125.75 58 209.5 25 0 0 

 
 

between the best-known solution and least lower bound did not fall below 0.01%, we recorded 
the percentage gap at termination, and we summarize these results in Table 3.9.  Note that 
although several SDP cut strategies do not significantly decrease the computational effort, they 
do significantly tighten the optimality gap.  Similarly, the use of 5 rounds of cuts generally 
provides better results than 1 round of cuts across nearly all strategies, either by tightening the 
optimality gap or by decreasing computational effort.  The striking result in Table 3.9 is that one 
strategy, Strategy 4 (regular matrix, diagonal sort) used in combination with 5 rounds of cuts, 
obtained the optimal solution (within the allowable number of nodes) for every problem.  
Although Strategy 7 (augmented matrix, diagonal sort) with 5 rounds of cuts also obtained the 
global optimum for all problems except one, it did not perform as well with respect to 
computational effort.  Note that Strategy 4, with 5 rounds of cuts, dominated the other strategies 
in terms of both the average number of nodes enumerated and the average computational effort, 
particularly for the more difficult set of problems.   

Based upon the results obtained for the 20-variable problems, we used only one SDP cut 
strategy, Strategy 4 with 5 rounds of cuts, to solve the 30-variable problems.   The results 
comparing this strategy with the basic RLT scheme are shown in Table 3.10.  For the RLT 
bounding strategy, seven problems could not be solved to optimality (using a 1% tolerance) 
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within the 10,000 node limit, while the SDP cut-enhanced strategy failed to solve only one 
problem to global optimality within 1000 nodes.  Furthermore, the SDP cuts drastically decrease 
the average computational effort as well as the number of nodes enumerated across all problem 
types.  The overall results appear to indicate that the SDP cuts significantly decrease the 
computational effort and the number of nodes required to solve this class of problems to 
optimality.  Moreover, this relative improvement becomes more pronounced as the degree of 
difficulty of the problem increases (larger n, smaller proportion of positive Cij coefficients).   

3.5 Extensions to Higher Levels of RLT 

 Observe that the proposed class of SDP cuts can be used in any context where RLT is 
applied (whether this problem admits an overall SDP formulation or not).  This includes 
problems having polynomial objective and constraint functions, factorable programming 
problems, or even linear mixed-integer programming problems.  In all such cases, SDP cuts can 
be generated based on the (regular or augmented) matrix of second-order RLT variables.  While 
our focus thus far has been on generating cuts to augment the RLT-1 relaxation for a given 
problem, it is useful to also consider augmenting higher-level RLT relaxations in a similar 
manner.  For example, consider an RLT relaxation that includes fourth-order RLT variables ijklX  
representing the product term nlkjixxxx lkji ≤≤≤≤≤∀ 1, .  Let )2(X  denote the vector 

comprising all distinct 






 +
2

1n
 second-order RLT variables, and let )4(X  be a matrix comprised 

of the fourth-order RLT variables structured in the form L
TXXX ][ )2()2(

)4( ≡ .  Since )4(X  must 
be PSD, we can impose a class of SDP cuts in the same spirit as (3.5d) in the form  

1  0])[( 2
1

2
)2(

)4( =α∋∈α∀≥α≡αα







 +n

L
TT RXX .  (3.15) 

 
Then, given any )4(�X  as part of a solution to the RLT relaxation, we can use the techniques of 
Section 3.3 identically to derive SDP cuts of the type (3.15) involving the higher dimensional 
variables.   

A second-level RLT relaxation of the problem QP, for example, provides another way to 
strengthen RLT-1(QP).   Such a second-order RLT relaxation RLT-2 could be obtained by 
multiplying (3.2b) by the quadratic bound-factors kjxx kj ≤∀≥   0 .  The variable ijkX would 
then be defined to linearize the product terms of the form kji xxx .  In order to have a unique 
variable represent the product term kji xxx , regardless of the order in which the variables appear 
in this term, we would define ijkX only for kji ≤≤ . Accordingly, for arbitrary indices i, j, and 
k, let )(ijkX represent the appropriate RLT variable that represents the product of kji xxx  and , , .   
(This same convention is used on the double-subscripted variables as well.) This leads to the 
following second-level RLT relaxation of QP. 
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RLT-2(QP): Minimize   )()(∑∑
i j

ijij XC    (3.16a) 

 subject to ∑
i

ix = 1  (3.16b) 

 ∑
i

ijX )( = jx ,  j∀  (3.16c) 

 ∑
i

ijkX )( = jkX ,   kj ≤∀  (3.16d) 

 ) ,   (  kjiXji Xi,x ijkiji ≤≤∀≤∀∀ ≥ 0.  (3.16e) 
 
Note that Problem (3.16) can be viewed as imposing the additional constraints (3.16d) in terms 
of the new variables ijkX  on Problem (3.2).  These additional constraints force each element Xjk 
to equal the summation of several components of a three dimensional symmetric matrix.  For 
example, with n = 5 and (j,k) = (2,3), the associated constraint in (3.16d) requires X23 to be 
computable as the sum of the following elements of ][ ijkX : 

   23523423322312323 XXXXXX ++++= . 

That is, Xjk is the sum of all terms of the three dimensional matrix that contain the subscripts j 
and k.  This type of constraint can be viewed as requiring that the two-dimensional matrix  X can 
be obtained by collapsing a three-dimensional symmetric matrix via a summation process. 

 The semidefinite relaxation of Problem QP was developed by relaxing the variable 
substitution constraint TxxX =  to 0fX , noting that Txx is PSD. This concept led to the 
equivalent class of RLT restrictions 0])([ 2 ≥α L

T x  that were imposed on the first-level RLT 
relaxation RLT-1(QP). Naturally, this same set of constraints is valid for the level-two relaxation 
(3.16).  Note that in this same spirit, similar additional classes of valid inequalities can be 
generated to further enhance any odd-level RLT relaxation beyond level-one.   For example, 
consider the third-level RLT relaxation of QP.  This relaxation contains all of the constraints in 
(3.16) along with the constraints obtained by multiplying (3.16b) with the cubic bound-factors 

lkjxxx lkj ≤≤∀≥   0 .  The linearization scheme would substitute the variable )(PX  for the 

product term ∏
∈ Pj

jx , where (P) orders the indices in P in nondecreasing order. The resulting 

formulation is given as follows.  

RLT-3(QP): Minimize   )()(∑∑
i j

ijij XC    (3.17a) 

 subject to ∑
i

ix = 1  (3.17b) 

 ∑
i

ijX )( = jx ,  j∀  (3.17c) 

 ∑
i

ijkX )( = jkX ,   kj ≤∀  (3.17d) 
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 ∑
i

ijklX )( = ,jklX  l ≤≤∀ kj
 

(3.17e) 

), ,   (  lkjiXkjiXji Xi,x ijklijkiji ≤≤≤∀≤≤∀≤∀∀  ≥ 0.  (3.17e) 
 
By defining lkjiijklA αααα= , and denoting ∑∑∑∑=•

i j k l
ijklijkl XAXA , we can validly 

impose the semidefinite programming types of constraints 0≥• XA  for any vector nR∈α .  
This follows from the fact that L

T xXA ])[( 4α=• . For the first-order and second-order RLT 
relaxations of QP, we imposed the semidefinite restrictions     ,0])([)( 2T ≥=• L

T xX ααα  
1=∋∈∀ αα nR  in constraint (3.5d).  In addition, and in a higher-order extension of (3.5d), we 

can now enhance the third-level RLT relaxation by dropping the substitution constraint 
lkjiijkl xxxxX =  as usual, but instead imposing the implied constraints  

 1   ,0])([ 4 =α∋∈α∀≥α n
L

T Rx . 

This results in augmenting RLT-3(QP) with the following semi-infinite sets of constraints.  

 
L

T x ])([ 2α ≥ 0, 1=α∋∈α∀ nR  (3.18a) 

 
L

T x ])([ 4α ≥ 0, 1=α∋∈α∀ nR . (3.18b) 

 
A similar procedure could be applied to any general RLT relaxation of level 12 −v , where the 
additional constraints would correspond to ,1  ,0])[( 2 =α∋∈α∀≥α n

L
rT Rx  vr ,,1for K= .  In 

Section 3.3.1, a polynomial-time procedure was developed to generate an α  for which (3.18a) is 
violated or to verify that none exists.  It remains to determine a similar separation routine to 
systematically generate an α  for which (3.18b) or any higher-order variant is violated.  We 
propose this task and related computational studies for future research. 

3.6 Conclusions and Extensions 

In this chapter, we have explored connections between semidefinite programming (SDP) 
and the Reformulation-Linearization Technique (RLT), and we have used this insight to develop 
a new class of cuts to enhance RLT relaxations.  This concept has been illustrated on a class of 
problems involving the minimization of a nonconvex quadratic function over a simplex.  The 
process of closing the gap between a first-level RLT relaxation and a semidefinite relaxation for 
this problem was shown to yield an equivalent semi-infinite linear program in which the set of 
infinite constraints comprised a particular class of RLT constraints that we called semidefinite 
cuts (or SDP cuts).  Based on this representation, a relaxation and row generation scheme was 
devised, leading to a polynomial-time SDP cut generation procedure.  Several cut generation 
strategies, based on using the original or augmented matrix of second-order variables, in natural 
or specially permuted form, were devised and tested.    The SDP cut-enhanced relaxations not 
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only provided significantly tighter lower bounds, but also resulted in a substantial decrease in 
both the number of nodes enumerated and in the overall computation effort when embedded 
within a branch-and-bound framework to determine a global optimal solution (particularly for 
more challenging problem instances). Of the proposed implementation strategies, the use of 
multiple cuts clearly dominated the single-cut approach, and the permutation and augmented 
matrix implementations also provided improved results for some problems.  For the most 
challenging problems, the best combined strategy by far used five rounds of SDP cuts at each 
node, generated via the regular matrix of second-order RLT variables, rearranged using the 
diagonal sort permutation strategy.   Extensions of this research are readily evident.  Future 
research interests include extending the framework developed here to higher levels of RLT, 
particularly in the hopes of deriving a cut generation procedure for such higher levels.  In 
addition, experiments should be performed in order to analyze the effectiveness of the proposed 
algorithm on other classes of discrete or continuous nonconvex optimization problems. 
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Chapter 4: A Modified Benders� Partitioning 
Strategy for Discrete Optimization Problems 
 The focus of this chapter is to develop a Benders� decomposition strategy for discrete 
optimization problems where both the inner and outer stage decisions might involve 0-1 
variables.  Although we derive the proposed method for a generic discrete optimization problem, 
the discussion on stochastic integer programs in Chapter 2 elucidates that the technique is readily 
applicable to two-stage stochastic programs with (mixed) integer recourse. In particular, due to 
the large number of subproblems that are encountered therein, the proposed methodology could 
greatly decrease the effort required to solve stochastic integer programs.  Since the technique is 
also applicable to general discrete optimization problems, however, we use the more generic 
problem notation throughout the remainder of the chapter.  As a point of special interest, we also 
discuss certain specific modifications for exploiting dual-angular structures, such as those that 
arise in the aforementioned context of stochastic programs. 

This chapter is organized as follows.  In Section 4.1, we provide the motivation for 
developing the method.  Section 4.2 contains a preliminary development of the methodology, 
beginning in Section 4.2.1 with a relatively simpler conceptual case for which a suitable convex 
hull representation can be constructed that permits a finite regular application of Benders� 
methodology.  Section 4.2.2 provides details for how the approach can be modified to take 
advantage of dual angular structures, and Section 4.2.3 finishes the development for the case 
where a complete convex hull representation is available.  This lays the groundwork for the more 
usual case discussed in Section 4.3, where such a representation is only partially generated in a 
sequential fashion as needed within the context of a Benders� branch-and-cut approach.  This 
viewpoint facilitates the generation of valid inequalities during the solution of any given 
subproblem in a form that renders them valid for any other subproblems by merely substituting 
the revised first-stage decisions in a derived linear functional term, and also enables the 
derivation of suitable Benders� cuts that induce finite convergence.  Some numerical examples 
are presented to illustrate the proposed methodology.  Section 4.4 addresses finite convergence 
issues related to the proposed cutting plane approach for solving the subproblems, and Section 
4.5 contains conclusions and suggestions for future research. 

4.1 Motivation 

 While we derive the proposed methodology for any generic discrete optimization 
problem, the main motivation for this research has been to develop a more effective solution 
technique for stochastic programs with integer recourse.  As mentioned in Chapter 2, stochastic 
integer programs are among the most challenging optimization problems, since they involve 
stochastic programs and integer programs, both of which are themselves difficult.  Stochastic 
linear programs are typically solved with the L-shaped algorithm, a direct extension of Benders� 
partitioning, since the problems decompose naturally into first-stage and second-stage (or 
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recourse) problems.  At each iteration of the L-shaped algorithm, we solve one master problem 
to obtain a first-stage decision, followed by one subproblem for each possible realization of the 
environment.  When integer variables are involved in the subproblems, this implies that we must 
solve a number of integer programs at each step of the L-shaped algorithm.  Given any 
reasonably sized problem, it is impractical to solve each of the subproblems with traditional IP 
techniques such as branch-and-bound.   As we demonstrate in the following section, if we had an 
a priori explicit representation for the convex hull of certain suitable subsystems, we could 
implement the traditional Benders� method or the L-shaped algorithm with the subproblems 
being reduced to linear programs.   The effort to obtain explicit representations for such convex 
hulls, however, is generally prohibitive.  Due to the number of times we re-solve the 
subproblems for varying first-stage decisions, even partial convex hull representations that are 
constructed sequentially can be of great computational benefit.  In the following section, we will 
verify that valid Benders� cuts can be obtained even if we only use certain partial convex hull 
representations.  Rather than a priori generating even such partial convex hull representations, 
however, we propose to solve the subproblems through a cutting plane technique, where the cuts 
are derived using the RLT process and are designed to construct relevant parts of the convex hull 
representations in an as-needed fashion.  Furthermore, we propose lifting mechanisms for 
deriving these cuts as functions of the first-stage variables, enabling them to be re-usable in 
subsequent visits to the subproblem solution stage, and facilitating the development of effective 
valid Benders� cuts for the master problem. 

4.2 Derivation of the Proposed Benders� Strategy 

For the sake of wider applicability, we describe our development in terms of the generic 
problem P that is given below in (4.1).  Although this form does not specifically correspond to 
the notation used for stochastic IPs, it should be evident from the foregoing discussion that the 
structure of this problem subsumes this class of problems.  (Note that in this context, it would be 
computationally facile, but not necessary, to have constant technology and recourse matrices, as 
variously assumed in the literature � for example, see Caroe and Tind (1997)). 

   P: Minimize cx + dy    (4.1a) 
     subject to Ax + Dy ≥ b  (4.1b) 
        x ∈ X, x ∈ {0, 1}n , y ∈ Y  (4.1c) 
 
where X represents a nonempty polytope in Rn  that is defined in terms of the binary variables x, 
and Y is a compact subset of  mR  and represents some linear restrictions on the y-variables, in 
addition to binary restrictions on a subset (say, pyy ,,1 K ) of the variables.  By appropriately 
incorporating an artificial (interval-bounded) variable column within the y-variable set, we will 
assume that P is feasible for any fixed x ∈ X , x binary, and moreover, we will also assume that 
an optimum exists for P. 

4.2.1 Benders� Cuts Given a Convex Hull Representation 
In order to develop the proposed methodology, we first consider the case where we have an 
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explicit representation of the convex hull for the subproblem.  In this respect, let us define 
(denoting e as a compatible vector of ones) 

   } ,0 ,:),{( YyexbDyAxyxconvZ ∈≤≤≥+=  (4.2a) 
     ≡ {(x, y) : Gx + Hy + Fw ≥ f}, say, (4.2b) 
 
where for convenience, we have also absorbed any simple bound restrictions within the 
inequalities describing (4.2b).  Note that the description (4.2b) is assumed to be derived in a 
higher dimensional space (including a set of new w-variables), as for example by using the RLT 
process (see Sherali and Adams, 1990, 1994, 1999).  Note also that aside from the bounding 
constraints ex ≤≤0  on the x-variables, the other constraining restrictions Xx ∈ on these 
variables are not included in the definition of Z.  (This might be computationally advantageous in 
deriving the convex hull representation for Z; also, see Proposition 4.2 below for details on how 
this can be further exploited in the presence of dual-angular special structures.)  Later, we will 
discuss a sequential scheme for partially generating this system as needed, but for now, assume 
that the entire description of Z is at hand. 

Consider the problem 

   ′ P : Minimize cx + dy    (4.3a) 
     subject to Gx + Hy + Fw ≥ f  (4.3b) 
        x ∈ X, x ∈ {0, 1}n . (4.3c) 
 
Proposition 4.1.  P ′  has an optimal solution, and moreover, it is equivalent to P in the sense that 
if (x*, y*, w* )  solves P ′ , where (y* , w *)  is an extreme point optimum to P ′  for x fixed at x* , 
then (x*, y*)  solves P. 

Proof.  By our assumptions on P, the set Z given by (4.2) is bounded and P ′  is feasible.  Hence 
P ′  has an optimum ),,( *** wyx  where ),( ** wy  satisfies the condition stated in the proposition.  
Moreover, since P ′  is a relaxation of P, and its constraints imply Ax + Dy ≥ b, x ∈ X , and the 
linear constraints describing y ∈ Y , it is sufficient to show that y*  satisfies the required binary 
restrictions on its subcomponents.  From (4.2), any extreme point (x , y )  of Z satisfies y ∈ Y  
(including the binary restrictions).  Furthermore, if we define Z(x* ) =  Z ∩ {(x, y) : x = x*} , 
then since Z(x* )  is a face of Z, any extreme point (x*, y )  of Z(x* )  has y ∈ Y  as well. Noting 
that Z(x* )  defines the feasible region of P ′  when x is fixed at x* , and that (x*, y*)  is a vertex of 
Z(x* ) , we have (x*, y*)  is feasible, and therefore optimal, to P.  This completes the proof.  ! 

4.2.2  Specialized Modifications for Dual Angular Structures 
 Before proceeding further, it is instructive to comment on a modified derivation of the 
equivalent representation P ′  when the original problem P exhibits a dual-angular structure (as in 
the special case of two-stage stochastic IPs).  This analysis also lends further insights into the 
flexibility of constructing only partial convex hull representations in deriving an equivalent 
restatement of the problem to which Benders� decomposition method is applicable.  Toward this 
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end, suppose that P possesses a dual-angular structure as revealed by the coefficient matrices 
given in the form 

  
















≡
SA
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A M

1

 , 
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1

, 















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b
b M

1
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















≡
Sd

d
d M

1

, (4.4a) 

where the vector y is also accordingly partitioned into components sy , for  , S,  s …= 1 , with 
y ∈ Y  being replaced by 

  SsYy s
s ,,1 K=∀∈ . (4.4b)  

Here, for  , S,  s …= 1 , each sY  is assumed to impose certain polyhedral restrictions on the 
(recourse) variables sy  (pertaining to scenario s), including binary restrictions on a subset of 
variables.   

 Now, let us define for each  , S,  s …= 1 , 

  } ,0 ,:),{( s
ssssss

s YyexbyDxAyxconvZ ∈≤≤≥+= ,  (4.5a) 

and let  

  s
s ZyxyxZ ∈=′ ),(:),{(  for each  , S,  s …= 1 }. (4.5b) 

Note that in general, ZZ ′⊆ , and that it is relatively easier to characterize Z ′  than it is to 
construct Z.  Moreover, Z ′  retains the separability of the (recourse) variables sy , 

 , S,  s …= 1 .  The following result asserts that the equivalence of P ′  and P as stated in 
Proposition 4.1 remains valid when Z is replaced by Z ′  under (4.4).  In this context, similar to 
(4.2b), the construction (4.5) would yield P ′  in the form given by (4.3) where the coefficient 
matrices in (4.3b) would possess the structure 
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f
f M

1

 (4.6) 

and where the higher-dimensional vector w is also decomposed into the corresponding 
components sw ,  , S,  s …= 1 .   

Proposition 4.2.  Supposed that P has a dual angular structure as given by (4.4) , and let P ′  be 
defined by replacing Z with the set Z ′  given by (4.5) and (4.6).  Then P ′  is equivalent to P in 
the sense asserted by Proposition 4.1. 
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Proof.  Let (x*, y*, w* )  solve P ′ , where (y* , w*)  is as stated in the proposition.  Note from (4.6) 
that when we fix *xx = , the problem P ′  separates into S problems (by scenarios) given as 
follows: 

  minimize }),(:{ *
s

sss Zyxyd ∈ . (4.7) 

Again, because (4.5) includes the hypercube restrictions ex ≤≤0 , we have that 
}:),{()( ** xxyxZxZ s

ss =∩≡  is a face of sZ , and therefore, its extreme points satisfy the 
required binary restrictions on sy .  Noting that )( *xZs  is the feasible region of (4.7), this 
completes the proof.  ! 

 In what follows, for the sake of simplicity in notation and generality, we will assume that 
the set Z conforms with Z ′  whenever we have the dual angular structure exhibited by (4.4), with 
the system (4.2b) possessing the structure exhibited by (4.6).  Hence, whenever we employ 
(4.2b), or develop lower-level RLT relaxations for the system }{⋅  in (4.2a), we assume via 
Proposition 4.2 that in the presence of a dual-angular structure, we respectively have the 
structure (4.6), or that we correspondingly apply the lower-level RLT relaxation to the system 

}{⋅  in (4.5a) for each  , S,  s …= 1 .  We will periodically make some related comments in the 
sequel to re-emphasize this feature. 

4.2.3  Derivation of a Benders� Approach for Problem P′′′′  

Assuming tentatively that we have explicitly constructed the equivalent formulation P′, we 
can apply Benders� partitioning to solve this problem as follows. 

  Minimize
x ∈ X∩{0,1}n

{cx +  minimum {dy : Hy + Fw ≥ f − Gx}} (4.8a) 

 i.e., Minimize
x ∈ X∩{0,1}n

{cx +  maximum {π( f − Gx) : πH = d, πF = 0, π ≥ 0}}. (4.8b) 

 
Since we have assumed that the inner problem in (4.8) is feasible and bounded for any fixed 
x ∈ X ∩ {0, 1}n  letting 

 {πq, q = 1, ..., Q} ≡ vert(Λ) , where Λ ≡ {π : πH = d, πF = 0, π ≥ 0}, (4.9) 

we obtain the following projected form of P ′ . 

  Minimize z       (4.10a) 
  subject to z ≥ cx + πq ( f − Gx) for q = 1, ..., Q  (4.10b) 
      nXx }1,0{∩∈ .    (4.10c) 
 
Recall that (4.10) is the Benders� (overall) master program, and the inner minimization problem 
in (4.8a), or its dual in (4.8b), for any fixed x is referred to as the Benders� subproblem.  This 
subproblem generates the Benders’ cuts (4.10b) (along with upper bounds on the problem). 



Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 60 

  

Note that in case we do not incorporate suitable artificial variable column(s) as needed to 
ensure that the inner problem in (4.8a) is feasible for any fixed x ∈ X ∩ {0, 1}n , we would also 
need to generate feasibility or extreme direction cuts in (4.10) of the following type, where rδ , 
r = 1, ..., R , are extreme directions of the polyhedron Λ  that is defined in (4.9).  

 δr ( f − Gx) ≤ 0  for  r = 1, ..., R .     (4.11) 

Remark 4.1.  Note that in a practical implementation, we need not solve the relaxed Benders� 
master programs to optimality at each iteration. Rather, a branch-and-cut approach could be 
adopted, with the enumeration process set up only once, and with the current relaxed master 
program (RMP, say) being used to determine lower bounds, the subproblem (SP, say) providing 
upper bounds, and the (globally valid) Benders' cuts (4.10b) being generated as needed, i.e., 
whenever an incumbent solution to the current relaxed master program is found that has an 
objective value less than the present upper bound on the overall problem.  Geoffrion and 
McBride (1978) and Adams and Sherali (1993) provide details for such an approach.  Any actual 
application of Benders' method discussed here can be adapted to follow such a scheme.   ! 

Example 4.1.  As an illustration, consider the following example. 

   P: Minimize −x1 − 2y1      (4.12a) 
    subject to −4x1 − 3y1 ≥ −6     (4.12b) 
       (x1, y1)  binary.    (4.12c) 
 
Figure 4.1 depicts the solution of this problem and identifies the set Z, along with the key facet 
that describes this set.  By (4.2), this set Z is given by 

 Z = conv{(x1, y1) : −4x1 − 3y1 ≥ −6, 0 ≤ x1 ≤ 1, y1  binary}. (4.13) 

Since there is only one y-variable for this problem, we can develop the complete RLT 
representation of Z by multiplying each of the constraints in (4.13) by the two bound-factors 
associated with 1y .  This yields the following equivalent Problem P ′  as defined by (4.3): 

  Minimize 11 2yx −−      (4.14a) 
  subject to              3y1 − 4w ≥ 0   (4.14b) 
     −4x1 − 6y1 + 4w ≥ −6    (4.14c) 
                         01 ≥− wy     (4.14d) 
              x1             0≥− w    (4.14e) 
         −x1      11 −≥+− wy    (4.14f) 

                               w ≥ 0   (4.14g) 
        x1  binary.     (4.14h) 
 

Note that (4.14b) and (4.14c) are obtained by the RLT product of −4x1 − 3y1 ≥ −6  with y1  and 
(1 − y1) , respectively, and (4.14d-g) are bound-factor RLT product constraints obtained via the 
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Figure 4.1.  Illustration for Example 4.1. 
 

products of the bounding inequalities 0 ≤ x1 ≤ 1 with 1y  and with )1( 1y− .  Observe that the 
surrogate of (4.14b) and (4.14f) according to 

 (3y1 − 4w) + 4(−x1 − y1 + w + 1) ≥ 0 (4.15a) 

produces the required key facet of Z identified in Figure 4.1 as 

 −4x1 − y1 ≥ −4 . (4.15b) 

In essence, by projecting the region of (4.14) onto the (x1, y1)  space (only for illustrative 
purposes; this combinatorial step would not be performed in actual implementations), we get that 
(4.14) can equivalently be written as follows. 

  Minimize −x1 − 2y1      (4.16a) 
  subject to −4x1 − y1 ≥ −4     (4.16b) 
     x1 binary,  0 ≤ y1 ≤ 1.   (4.16c) 
 
We could now apply Benders� partitioning to solve (4.14), which in essence, would be 
tantamount to applying this method to (4.16).  For the sake of convenience, we apply it directly 
to (4.16) and obtain the decomposition 
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      minimize
x1 ∈ {0,1}

{−x1 +  maximum {π1(4x1 − 4) − π2 :  −π1 − π2 ≤ −2, (π1, π2 ) ≥ 0}}. (4.17) 

Noting that the extreme points of the inner maximization problem in (4.17) are (π1, π2 )  = (2, 0) 
and (0, 2), and that (4.12) is feasible for any binary x1 , the complete Benders' master program is 
derived as follows. 

  Minimize z       (4.18a) 
  subject to z ≥ 7x1 − 8     (4.18b) 
     z ≥ −x1 − 2      (4.18c) 
      x1  binary.     (4.18d) 
 
The optimum to (4.18) (which would ultimately be generated via the usual process of applying 
Benders� methodology) is given by x1

∗ = 0 and z∗ = −2.  Solving (4.16) (or (4.14)) with x1  
fixed at x1

∗ = 0 yields y1
∗ = 1 (and w ∗ = 0), with v(x1

∗ ) = z∗ = −2.  Since the relaxed master 
problem and subproblem have the same objective values, we have obtained an optimal solution 
to (4.12).  ! 

4.3  Benders� Partitioning Using a Sequential Partial Convex Hull 
Constructive Process 

 The approach (4.8)-(4.10) is based on an a priori generation of the convex hull 
representation Z defined in (4.2) (or Z ′  defined by (4.5) and (4.6) under the structure (4.4)).  If 
the size of the problem permits this construction (in particular, if we have few y-variables, or 
each partitioned constraint set in (4.5a) has a relatively simple structure), then this is a viable 
option, and leads to a usual application of Benders� decomposition as per Remark 4.1.  
Otherwise, we can generate a partial representation for Z as needed in a sequential 
convexification process, as discussed below.  The following remark first highlights a key concept 
that is used in developing our proposed solution process.   

Remark 4.2.  Let Y  denote the continuous relaxation of Y, and let J ∗ = {j : yj  is restricted to 
be binary in Y}.  For any J ⊆ J ∗ , define   

 Z J = conv{(x, y) : Ax + Dy ≥ b, 0 ≤ x ≤ e, y ∈ Y , }binary  Jjy j ∈∀ . (4.19) 

Note that ∅Z  along with x ∈ X  represents the continuous relaxation of (4.1), and Z ≡ Z J ∗ .  
Since JZZ ⊆  for each ∗⊆ JJ , valid Benders� cuts can be derived from any such set Z J .  In 
fact, using the RLT process, we can construct a higher dimensional representation of Z J  for any 

∗⊆ JJ that could be characterized as a surrogate of the representation (4.2b) for Z using suitable 
nonnegative multipliers (see Sherali and Adams 1990, 1994).  Hence, Benders� cuts derived via 
the relaxation Z J  substituted in place of Z would correspond to cuts obtained via some feasible, 
though not necessarily extreme point, solution to Λ .  Likewise, Benders� cuts derived via lower-
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level RLT applications to ∅Z  (levels less than J  for the case of Z J ) based on considering 
binariness on the variables jy  for Jj ∈ , but not necessarily having constructed the entire 
convex hull representation Z J , would be valid as well.  Moreover, since the description of such a 
lower level representation can be obtained by surrogating the constraints of Z J , and hence those 
of Z, the resulting cuts can also be viewed as implicitly obtained from feasible, nonextremal 
solutions to Λ .   ! 

 Based upon these insights, we now develop a finitely convergent method for solving 
Problem P, or Problem P ′  via (4.8)-(4.10), by sequentially constructing a partial convex hull 
representation as needed.  In this approach, for any fixed x , the corresponding Benders� 
subproblem in (4.8b) that is reproduced below as  

SP:  }0,0,:)({maximize ≥==− ππππ FdHxGf , (4.20) 

is solved implicitly via an RLT-based or lift-and-project cutting plane approach (see Balas et al. 
(1993), and Sherali et al. (2000)).  In the proposed method, we explicitly generate appropriate 
surrogated versions of Z as needed to derive valid RLT or lift-and-project cutting planes as 
needed for solving the subproblems.  The key idea is that these generated cuts are characterized 
as functions of x, and can therefore be updated and re-used for subsequent subproblems based on 
the corresponding fixed value of x.  Likewise, the Benders� cuts derived via the solution of the 
subproblems using such a cutting plane approach recognize these cuts as function of x, and are 
hence shown to be globally valid.  This leads to an overall finitely convergent solution process.    

Remark 4.3.  To set ideas, let us first consider a preliminary rudimentary approach for solving 
Problem P ′  via Benders� decomposition.  This simple approach solves various restricted 
versions of the subproblems (4.20) (or relaxed versions of its dual) as follows.   For the first 
instance of Problem SP, we let 0=k  and take ∅=kJ .  Using kJZ = ∅Z  as the current RLT 
representation within the inner minimization in (4.8a), we solve SP and generate the associated 
Benders� constraint for the relaxed master problem.  At each subsequent visit to SP, if the current 
subproblem yields a binary y-solution, we use this solution to update the incumbent solution and 
to generate a Benders� cut.  Otherwise, we increment k and take }{1 jJJ kk ∪= −  where jy  is 
restricted to be binary, but currently has a fractional value. We then construct kJZ  as the updated 
RLT representation using the scheme described in Sherali and Adams (1990, 1994), solve SP, 
and generate the associated Benders� constraint for the relaxed master problem.   

 Note that this process creates a nested sequence of sets L⊆⊆⊆ 210 JJJ  leading up to 
*J  in the worst case.  Within a finite number of visits to SP, this procedure generates cuts based 

on Z via either a partial or full representation of this set, thereby deriving valid upper bounds 
from each such SP, and resulting in an overall finitely convergent algorithm based on the 
finiteness of the set X ∩ {0, 1}n .  Alternatively, we could derive valid upper bounds from each 
subproblem by continuing to expand the set kJ  at each iteration k to include fractionating y-
variable indices until an integer feasible y-solution is obtained.  This alternative is more in the 
conceptual spirit of the proposed approach as explained below.  ! 
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 Clearly, the approach described in Remark 4.3 of sequentially generating approximations 
leading up to Z is computationally intensive because of the potentially exponential size of these 
(partial) convex hull representations.  The procedure we propose below instead relies on 
generating cuts as needed to solve each subproblem SP based upon its fractionating variables, 
rather than generating full (partial) convex hull representations.  More importantly, it 
characterizes these cuts in a fashion that permits them to be re-used in a suitably modified form 
for other subsequent subproblems.  Furthermore, the cuts are generated in the original 
dimensional space, and previously generated cuts can be retained or deleted as desired. 

 As alluded above, the proposed method implicitly generates an appropriate surrogated 
representation of Z as needed for each individual SP via an RLT cutting plane approach as 
follows.  Suppose that we are solving SP for a given x .  In essence, we wish to solve  

 v(x ) = cx +  minimum {dy : Dy ≥ b − Ax , y ∈ Y} (4.21) 

but we conceive solving this (albeit implicitly) via the problem 

 v(x ) = cx +  minimum {dy : Hy + Fw ≥ f − Gx } (4.22) 

from (4.8a), so that we can derive a valid Benders' cut.  (Note that in the presence of a dual 
angular structure, (4.22) would yield a separable system as per (4.6).)  Now suppose that we 
adopt a sequential convexification lift-and-project type of cutting plane scheme to solve (4.21), 
using RLT cuts based on enforcing binariness on one variable as in Balas et al. (1993), or on 
multiple variables as in Sherali et al. (2000).  (See Section 4.4 for details on the finite 
convergence of such a cutting plane algorithm.)  Suppose that we obtain the final cut-enhanced 
problem that solves (4.21) as given by (4.23) below, where (4.23c) represents the continuous 
relaxation Y , and where (4.23d) represents the set of RLT or lift-and-project cuts generated. 

 v(x ) = cx + minimum dy       (4.23a) 
    subject to  Dy ≥ b − Ax     (4.23b) 
      Γy ≥ γ      (4.23c) 
      α ty ≥ βt − φtx  for t = 1, ..., T . (4.23d) 
 
Each of the cuts t = 1, ..., T  in (4.23d) is derived via the following steps. 

Step 1.  Based on some current fractional solution y , generate an appropriate RLT enhancement 
of Zφ  given as follows (by enforcing binariness on one or more variables � see Section 4.4, and 
in particular, Remark 4.5 given later for some additional details): 

 Gt x + Ht y + Ftw ≥ ft . (4.24) 

(In the presence of dual-angularity, this system would have a structure similar to that in (4.6).) 

Step 2.  Fix x = x , and determine dual multipliers πt ≥ 0  for (4.24) that solves the following 
separation problem, where e is a conformable vector of ones, and where (4.25c) is a 



Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 65 

  

normalization constraint (that can be imposed separably in the context of dual-angular 
structures). 

  Minimize  πt (Ht y ) − πt ( ft − Gt x )   (4.25a) 
  subject to πt Ft = 0      (4.25b) 
    1=⋅ te π      (4.25c) 
     πt ≥ 0 .     (4.25d) 
 
Note that by virtue of the RLT process, an appropriate representation (4.24) can be generated 
that yields a negative value in (4.24).  Let � π t  be the solution of (4.24).  Then we have that  

 )(~~ xGfyH ttttt −≥ ππ   (4.26) 

deletes the current fractional solution y .  Furthermore, with the substitution 

 ttttttttt GfH πφπβπα ~ and ,~,~ ≡≡≡ , (4.27) 

we have that (4.26) is of the form (4.23d). 

 The final representation (4.23) can be used to derive a valid Benders' cut, as shown in 
Proposition 4.2.   This leads to a finitely convergent algorithm, as demonstrated subsequently in 
Proposition 4.3.  Following this, we will comment on the re-use of previously generated cuts for 
new subproblems (4.21)-(4.23) solved for revised values for x . 

Proposition 4.2.  Consider Problem (4.23), and let ψ1, ψ 2 , and (ψ 3t , t = 1, ..., T ) be the optimal 
nonnegative dual multipliers obtained for the constraints (4.23b), (4.23c), and (4.23d), 
respectively.  Then, noting (4.27), the inequality 

 z ≥ cx + ψ 1(b − Ax ) + ψ 2γ + ψ 3t
t =1

T

∑ (βt − φt x) (4.28) 

is a valid Benders' cut. 

Proof.  Consider the system (4.3b) that is derived from (4.2).  Since the original constraints in 
(4.2a) are implied by (4.2b) via a suitable surrogation process, and noting the definition of 
(4.23c), there exist nonnegative surrogate multiplier matrices τ 1 and τ 2  such that 

   τ 1[G, H, F] = [A, D, 0], with τ 1 f ≥ b , and (4.29) 
   τ 2[G, H, F] = [0, Γ , 0], with τ 2 f ≥ γ . (4.30) 
 
Similarly, since any lower-level or partial RLT application such as (4.24) is implied by (4.3b) via 
a surrogation process, there exist nonnegative surrogate multiplier matrices τ 3t , t = 1, ..., T , such 
that  
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 τ 3t[G, H, F] = [Gt , Ht , Ft], with τ 3t f ≥ ft , ∀ t = 1, ..., T . (4.31) 

Now, let us define 

 π = ψ1τ 1 + ψ2τ 2 + ψ 3t
t =1

T

∑ � π tτ 3t  (4.32) 

where � π t  is obtained as an optimum to (4.25) and satisfies (4.26).  Note that π ≥ 0 , and from 
(4.26), (4.29) � (4.32), we get 

  π H = ψ1D + ψ 2Γ + ψ 3t
t =1

T

∑ � π tHt  

 i.e. π H = ψ1D + ψ 2Γ + ψ 3t
t =1

T

∑ α t = d     (4.33) 

 
via duality in (4.23).  Moreover, we have from (4.25b), (4.29) � (4.32) that 

 π F = ψ1 (0) + ψ 2 (0) + ψ3t
t =1

T

∑ � π tFt = 0. (4.34) 

Hence, π ∈ Λ  as defined in (4.9), and so the constraint 

 z ≥ cx + π ( f − Gx)  (4.35a) 

is a valid Benders' inequality. But from (4.26), (4.29) � (4.32), we have, 

  π ( f − Gx) ≥ ψ1(b − Ax) + ψ 2γ + ψ 3t
t =1

T

∑ � π t ( ft − Gt x) 

 i.e. π ( f − Gx) ≥ ψ1(b − Ax) + ψ 2γ + ψ 3t
t =1

T

∑ (βt − φtx) . (4.35b) 

 
Noting (4.35a) and (4.35b), we have that (4.28) is a valid Benders� cut, and this completes the      
proof.   ! 

Remark 4.4.  Note that the key insight above is that although the right-hand sides in (4.23) are 
real numbers in the process of solving the underlying subproblem, the Benders' inequality 
generated from its optimal dual solution via (4.28) needs to recognize the right-hand sides of 
both (4.23b) and (4.23d) as functions of x, much as in the usual Benders approach.  In particular, 
we need to store the constant βt  and the vector φt  for each cut t = 1, ..., T  in (4.23d).  Note that 
the parent matrices or RLT representations that generated these cuts need not be stored.  
Furthermore, because of the global validity of the inequality 

 α ty ≥ βt − φtx  (4.36) 
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for any x by virtue of (4.24) and the surrogation of the type in (4.26), we can impose the 
previously generated cuts of type (4.23d) in any subsequent subproblem solution, simply by 
modifying its right-hand side according to the current x .  This re-use opportunity can greatly 
benefit the solution procedure.  Section 4.4 further addresses the finite convergence issues 
related to such a cutting plane process applied to any given subproblem.  ! 

 Despite the fact that we might not be generating extreme points of Λ in the cuts (4.28), 
the following result establishes finite convergence of the overall algorithm, assuming that each 
subproblem is solved finitely (as discussed in Section 4.4 below).   

Proposition 4.3.  Suppose that we implement Benders� algorithm in the traditional fashion as 
follows.  At each iteration, we solve the relaxed master program (4.10), where the Benders� cuts 
(4.10b) are replaced by the current set of cuts of type (4.28).  Let (z , x ) be an optimal solution to 
this relaxed master program, where x ∈ X ∩ {0, 1}n .  Next, we solve the subproblem (4.23) to 
determine the value v(x ) of Problem P when x is fixed at x , and accordingly, either terminate if 
z ≥ v(x )  (equivalently, z = v(x )), or else, generate a Benders� cut (4.28) if z < v(x ) .  Then, 
this process will converge finitely with an optimum for Problem P. 

Proof.  Note that by the validity of (4.28) in Proposition 4.2, the result holds true if we show that 
we will finitely obtain the termination criterion z ≥ v(x ) .  Observe that by duality in (4.23), the 
right-hand side of (4.28) evaluated at x = x  yields v(x ).  Hence, whenever a previous x  is 
regenerated by the master program, the termination criterion would hold true.  Since there are 
only a finite number of solutions in X ∩ {0, 1}n , this must occur finitely, and the proof is 
complete.    ! 

 As mentioned previously, an actual implementation would follow Remark 4.1.  Figure 
4.2 provides a flow-chart for such a process. 

Example 4.2.  Consider the problem of Example 4.1.  To illustrate the concept of the proposed 
approach, suppose that we have a relaxed master program RMP that currently has the Benders� 
inequality (4.18c), but not (4.18b).  This problem yields the solution 11 =x  and 3−=z .  We now  

solve for v(x 1)  via the following problem, using a cutting plane process in the spirit of (4.23). 

 v(x 1) = −x 1 +  minimum {−2y1 : −3y1 ≥ 4x 1 − 6, y1 binary}. (4.37) 

The continuous optimum for (4.37) is y 1 = 2 / 3.  At Step 1 of the cut generation process, let the 
RLT constraints (4.24) be given by (4.14b) � (4.14g) as in Balas et al.�s (1993) lift-and-project 
scheme.  The corresponding separation problem (4.25) at Step 2 is given as follows, where (for   
�t�= 1), π11, ..., π16  denote the surrogate multipliers with respect to the constraints (4.14b) � 
(4.14g), respectively. 
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Solve the LP relaxation of P via Benders� algorithm.  If the resulting continuous 
solution satisfies all the required binary restrictions, then terminate with this 
solution as an optimum.  If an incumbent (integer) feasible solution is found in 
this process, then let ),( ** yx  represent this solution, and initialize the upper 
bound UB with its corresponding objective value; else, let ∞=UB  and let 

),( ** yx  be null.  Initialize a branch-and-bound/cut scheme to solve the current 
relaxed master program (RMP) in the (z, x)-variable space, letting UB be the 
starting upper bound on this problem. 

Continue solving the current RMP via an LP-based branch-and-bound scheme 
until such a time as a new incumbent solution ),( xz  is found for RMP such that 

UB<z .  If no such solution is found until optimality of RMP is achieved, then 
the optimum to this relaxed master program has the same objective value as the 
incumbent solution to P (of value UB), and so, terminate the process with the 
latter solution as an optimum.  Else, continue. 

Fix xx =  and solve the subproblem SP given by (4.23), using (any of) the 
previously generated cuts (4.23d) with their right-hand sides modified according 
to the current x , and generating additional RLT or lift-and-project cuts as needed 
until optimality is attained for SP (see Section 4 for related convergence issues).  
Once )(xv  is determined, update UB and the incumbent solution ),( ** yx  to P if 
necessary.  Also, using the optimal dual solution to (4.23) at termination, generate 
the Benders� cut (4.28).  Note that upon substituting xx =  in the right-hand side 
of this cut (4.28), we would obtain )(xvz ≥ as evident from (4.23).  Hence, the 
current upper bound on the revised RMP again coincides with UB. 

Figure 4.2.  Flow-chart of an Implementation for the Proposed Benders� Algorithm. 
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 Minimize 1514131211 3
2

3
222 πππππ −++−  

 subject to −4π11 + 4π12 − π13 − π14 + π15 + π16 = 0 
          π11 + π12 + π13 + π14 + π15 + π16 = 1 
                         (π11, ..., π16) ≥ 0 .  
 

This problem yields the solution � π 11 =
1
5

, � π 15 =
4
5

, � π 12 = � π 13 = � π 14 = � π 16 = 0, with an 

objective value of �2/15, thereby indicating that a cut is generated.  From (4.27), this cut yields 

 α1 = −
1
5

, β1 = −
4
5

,  and φ1 = −
4
5

. (4.38) 

The globally valid cut of type (4.32) is then given via (4.26) as 

 −(1 / 5)y1 ≥ (−4 / 5) + (4 / 5)x1 (4.39) 

which corresponds to the facet of Z depicted in Figure 4.1.  The particular cut (4.23d) that is 
incorporated within (4.37) is obtained by fixing x1 = x 1 ≡ 1 in (4.39).  This yields the 
inequality −y1 ≥ 0 , thereby producing (4.23) as 

 v(x 1) = −x 1 +  minimum −2y1     (4.40a) 
     subject to −3y1 ≥ 4x 1 − 6 ≡ −2  (4.40b) 
        −y1 ≥ −4 + 4x 1 = 0  (4.40c) 
        10 1 ≤≤ y .   (4.40d) 
 
The optimal solution is given by y 1 = 0 , with the dual multipliers with respect to (4.40b,d) 
being zeroes and with respect to (4.40c) being 2, yielding v(x 1) = −1 > z = −3.  Hence, we 
generate the Benders� cut (4.28) as 

   )44(2 11 xxz +−+−≥  
  i.e. z ≥ 7x1 − 8.      (4.41) 
 
This produces the revised relaxed Benders� master program given by (4.18) as in Example 4.1, 
which results in an optimal solution being detected as before. 

4.4  Finite Convergence of a Cutting Plane Procedure for Solving 
Subproblems 

 In the foregoing section, we have developed a Benders partitioning approach for Problem 
P of the type (4.1) based on the use of a suitable cutting plane approach for solving each 
subproblem (4.21) via (4.23).  The cuts derived via (4.24) � (4.27) were generated to be directly 
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valid for Z itself, but were then imposed on the current subproblem by fixing xx = , where x  
corresponds to the given first-stage decision for the present subproblem.  This not only permitted 
their re-use for other subproblems, but also enabled the derivation of the required Benders� cuts 
that induced an overall finitely convergent process.  In this section, we now address the issue of 
designing a finitely convergent cutting plane procedure of this type for computing )(xv  defined 
in (4.21) via (4.23).  (As alluded variously in the foregoing section, in the context of dual-angular 
structures, the separability of (4.21) and the partial convex hull requirement stipulated by 
Proposition 4.2 can be exploited below with obvious modifications.) 

 Note that in practice, one could use a variety of lift-and-project or RLT cuts as presented 
in Balas et al. (1993) and Sherali et al. (2000) to implement (4.23).  However, in order to ensure 
that such a process finitely solves the underlying 0-1 mixed-integer program, some care needs to 
be exercised while sequentially constructing the (partial) convex hull representation that is 
necessary to solve this problem.  As in Balas et al.�s (1993) lift-and-project cutting plane 
algorithm, we rely on Jeroslow�s (1980) cutting plane game concept for facial disjunctive 
programs.  (Note that (4.21), and likewise Problem P given by (4.1), is a facial disjunctive 
program in that it involves the conjunction of the disjunctions that 0≤jy  or 1≥jy  (in concert 
with 10 ≤≤ jy ) for each pj ,,1 K= , along with the facial property that the intersection of 
either of these disjunctive restrictions with the continuous feasible region of (4.21) defines a face 
of this region.)  However, there is one important variation in the standard process that we need to 
account for, in that we are generating cuts that are valid for Z of Equation (4.2) in our context, 
and then imposing these cuts in (4.23) by fixing xx = .  As Proposition 4.4 below establishes, 
the key element that validates this variation is that for any binary feasible solution x , if we 
denote the convex hull of the feasible region of the subproblem (4.21) as )(xZ  and view this 
region in the form  

  } and  ,  ,  :),{(conv)( xxYyAxbDyyxxZ =∈−≥= , (4.42a) 

then we effectively have that  

  } :),{()( xxyxZxZ =∩=  (4.42b) 

since the right-hand side in (4.42b) defines a face of Z because Z includes the restrictions 
ex ≤≤0  in its definition.  Consequently, we can derive the required description of the facial 

structure of )(xZ  given by (4.42a) that is necessary for solving the subproblem (4.21) by 
generating appropriate valid inequalities for Z, and then restricting xx = .  Figure 4.3 provides a 
flow-chart for such a cutting plane process in the context of lift-and-project cuts of Balas et al. 
(1993), and Remark 4.5 below provides comments on using more general RLT cuts along with 
some implementation suggestions.  The following result establishes finite convergence of the 
procedure presented in Figure 4.3.   

Proposition 4.4.  The cutting plane procedure of Figure 4.3 finitely solves the subproblem (4.21) 
via (4.23), yielding a family of valid inequalities (4.23d) that can be re-used for any other 
subproblem by revising the corresponding first-stage decision x . 
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Figure 4.3.  Cutting Plane Procedure for Solving any Subproblem. 

N 

Y 

Initialize the solution of (4.21) via (4.23) using some (possibly empty) set of 
cuts (4.23d) that are valid for the current first-stage decision x .  Let 

(4.23)} in usedcut  initial an is :{0 xyt ttt φβατ −≥= .   

Solve the current LP relaxation (4.23) to obtain a solution y . 

pyy ,,1 K  binary? Exit and generate a Benders� 
cut as per Proposition 4.3. 

Identify }fractional is :},,1{max{ jypjq K∈= . 

Consider the following system extracted from the current version of (4.23): 
 
 
 
          (4.43) 
 
 
 
 
where   :{1 xyt tttq φβατ −≥=− is a j-cut },1for −≤ qj  and where a j-cut is one that has 
been generated during a previous step of this type, when jy  was identified as the largest 
indexed fractional variable in the corresponding LP solution.  

ex
tyx

y
bDyAx

qttt

≤≤

∪∈∀≥+
≥Γ

≥+

−

0
   10 ττβαφ

γ
 

Increment the cut index t.  Use the RLT process of multiplying (4.43) by qy  and )1( qy−  
and linearizing to obtain the system of type (4.24) as in Step 1 of the cut generation process 
described in Section 4.3, and follow this process to generate a new cut (4.26, 4.27) of the 
form xy ttt φβα −≥ .  Label this valid inequality as a q-cut, and add it to the current 
subproblem representation (4.23).   
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Proof.  First of all, note that the cut generation process of Section 4.3 is based on deriving valid 
inequalities for relaxations of Z of the type (4.24), obtained by applying RLT while enforcing 
binariness on a single variable qy  to some system of type (4.43) (see Figure 4.3).  Hence, 
inductively, each inequality generated of the form ttt yx βαφ ≥+  is valid for Z, and therefore, 
can be imposed for any subproblem by fixing the x-variables to the corresponding first-stage 
decision values. 

 Next, let us view the subproblem (4.21) that is to be solved in the following form 
(augmented with an initial set of valid cuts), where x is declared to be a variable, but the 
parameter M is assumed to be sufficiently large so that we necessarily have xx =  at optimality 
in this problem (4.44), as well as at its LP relaxation. 

 ])1([ minimum  )(
1:0:

∑∑
==

−+++=
jj xj

j
xj

j xxMdyxcxv  

      subject to 

       

.1 }1,0{ ,0
   0

,p,iyex
tyx

y
bDyAx

i

ttt

K=∀∈≤≤
∈∀≥+

≥Γ
≥+

τβαφ
γ

 (4.44) 

 
Now, suppose that we apply the lift-and-project cutting plane procedure described in 

Balas et al. (1993) to Problem (4.44).  By making M sufficiently large, we can assume that each 
LP relaxation solved in the (finite) iterative process will continue to yield xx = , so that each of 
these LP relaxations can effectively be solved via (4.23) by fixing xx =  as in the flow-chart of 
Figure 4.3.  Note that if y  is a resulting extreme point solution, then ),( yx  is a vertex of the 
continuous relaxation to (4.44) augmented with any additional cuts, since xx =  describes a face 
of this latter region.  Consequently, the procedure of Figure 4.3 is precisely the lift-and-project 
cutting plane scheme that is proven in Theorem 3.1 of Balas et al. (1993) to converge finitely as 
applied to Problem (4.44), and this completes the proof.  ! 

Remark 4.5.  Note that the lift-and-project cutting plane procedure of Balas et al. (1993) is 
predicated on generating cuts based on enforcing binariness on 0-1 variables one at a time.  A 
more general RLT process of Sherali and Adams (1990, 1994) could be used to devise a cut 
generation scheme that likewise enforces binariness on more than one variable at a time.  In such 
a process, the 0-1 variables can be grouped into batches containing one or more variables per 
batch, perhaps based on the initial LP solution.  A similar scheme as in Figure 4.3 could then be 
followed, in which the relaxation (4.24) of Z is generated by applying RLT while enforcing 
binariness on the highest indexed batch of variables that contains some fractionating variable(s), 
to a system (4.43) that contains cuts generated previously for lower-indexed batches.  The 
convergence of such a problem would follow from Jeroslow�s (1980) cutting plane game as in 
Proposition 4.4.  Of course, the advantage of considering batches of cardinality one is that the 
associated separation problems are relatively easier to solve.  However, Sherali et al. (2000) have 
recently demonstrated how stronger RLT cuts accruing from the simultaneous consideration of 
multiple variables can be efficiently generated by using suitably restricted projections of the 
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associated dual cone.  Furthermore, in practical implementations, one could employ all the 
retained cuts in (4.43) of the procedure of Figure 4.3 or consider the deletion of cuts based on 
certain filtering criteria as well.  In addition, as alluded in Remarks 4.2 and 4.3, and as evident 
from the foregoing discussion, we could prematurely abort the solution of any particular 
subproblem for a given xx =  via the described cutting plane scheme, and generate a 
corresponding valid Benders� cut.  This might entail regenerating a previous x , while not yet 
having solved Problem P.  However, so long as complete subproblem solutions are enforced after 
a finite number of iterations or even finitely often, we would obtain an overall finitely 
convergent process.  Investigations of this type require extensive computational 
experimentations that we hope to pursue in future research.  ! 

4.5  Summary and Conclusions 

In this chapter, we have modified Benders� decomposition method using RLT and lift-
and-project cuts to develop a new method for solving discrete optimization problems that yield 
0-1 mixed-integer subproblems, such as those encountered in stochastic programs with integer 
recourse.  Viewing the problem implicitly in the light of a suitably defined convex hull 
representation, with appropriate modifications when the original problem exhibits a dual-angular 
structure, we have demonstrated how cutting planes could be generated to derive a partial 
description of this convex hull representation as needed in order to devise a finitely convergent 
solution procedure.  Importantly, the classes of cuts used in the subproblems were derived in 
terms of functions of the first-stage x-variables, enabling them to be re-used in subsequent 
subproblems simply by revising them according to the corresponding x-solutions.  Additionally, 
globally valid Benders� cuts were obtained by recognizing these cuts as functions of the first-
stage variables.  The ability to re-use cutting planes from one subproblem to the next in this 
fashion is useful from the viewpoint of potentially reducing the computational effort required to 
solve the discrete subproblems, while providing globally valid Benders� cuts that enhance the 
lower-bounding mechanism via the relaxed master program.  The focus of this chapter has been 
on developing the theory for such a modified Benders� approach.  In order to gauge the 
effectiveness of the proposed technique, a variety of computational test, particularly in the 
context of stochastic programs with integer recourse, should be conducted, and we propose this 
task for future research.
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Chapter 5: Improved MIP Models and 
Algorithms for the Facility Layout Problem 

As discussed in Chapter 2, the facility layout problem is a challenging optimization 
problem that arises in the context of many practical applications.  Given the dimensions of a 
rectangular building, the basic problem is to design a floor-plan comprised of rectangular 
departments in order to minimize the total amount of travel (distance times the number of trips) 
between the departments.  The difficult nature of this optimization problem has led to a number 
of construction and improvement heuristics, but very little research has focused on directly using 
MIP formulations to solve the problem optimally.  One notable exception is the paper by Meller 
et al. (1999) that examines the MIP formulation originally proposed by Montreuil (1990) and 
discusses several enhancements to improve and strengthen the model representation.   While the 
results presented by Meller et al. are promising, we describe in this chapter a series of significant 
enhancements to the MIP model that lead to more accurate solutions, as well as decreased 
solution effort.   

The remainder of this chapter is organized as follows.  Section 5.1 provides a 
comprehensive overview of the MIP model (FLP2+) that was proposed by Meller et al., and 
Section 5.2 presents computational results obtained using this model, as well as an experimental 
design for evaluating our proposed enhancements.  Sections 5.3 through 5.6 each outline a 
specific enhancement to the basic FLP model and discuss related computational results.  Section 
5.3 addresses a new formulation for the nonlinear area constraints, Section 5.4 develops special 
symmetry breaking valid inequalities, and Section 5.5 analyzes the effect of using several other 
classes of valid inequalities.  As a final enhancement, Section 5.6 discusses two new techniques 
for modeling the disjunctive relationships that prohibit departments from overlapping and 
explores the derivation of partial convex hull representations and valid inequalities from their 
structure.  After evaluating several combinations of proposed enhancements, we narrow our 
focus to two promising formulations, which are used to solve three more challenging problem 
instances in Section 5.7.  We provide conclusions and directions for future research in Section 
5.8. 

5.1 Problem Overview 

Given a set of departments },,1{ nK , the facility layout problem seeks to determine a 
non-overlapping arrangement of the departments that minimizes the total travel between 
departments as specified by ∑∑∑

<i j s

s
ijijdf , where the parameter ijf  is a given amount of flow 

between departments i and j, and where the variable s
ijd  represents the rectilinear distance 

between the respective centroids of departments i and j in the direction s.  For notational 
convenience, all dimensions, distance measures, and locations that are specified in terms of their 
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horizontal and vertical components are denoted by the superscripts x and y, respectively.  The 
overall building is assumed to be a rectangle of size yx LL × , and each department i is required to 
be a rectangle with target area ia .  For each department i, the parameter )1(≥iα , known as the 
aspect ratio, delineates the maximum permissible ratio between the longest and shortest sides; 
i.e., ii

s
iyxs

s
iyxs

∀≤
==

,}{min/}{max
,,

αll .  There are four decision variables for each department i, 

namely, the half-length and half-width ),( y
i

x
i ll , and the centroidal location ),( y

i
x
i cc .  In order to 

guarantee that each department i is contained within the building, we impose the bounds 
s
i

ss
i

s
i Lc ll −≤≤  for each s on the placement of its centroid.  In addition, we denote any valid 

implied upper and lower bounds on  s
il  as s

ibl  and s
iub , respectively.   (We note that, although 

not computationally effective, some previous formulations for the facility layout problem have 
taken sbb i

s
i ∀= ll .  In Section 5.2.1, we derive tight values for s

ibl  and s
iub  by considering the 

bounds in direction x and y separately.)    A generic version for the facility location problem can 
then be stated as follows. 

 FLP: Minimize ∑∑
<

+
i j

y
ij

x
ijij ddf )(     (5.1a) 

  subject to Departmental Area Constraints (5.1b) 
     Overlap Prevention (or Separation) Constraints (5.1c) 
     dij

s = ci
s − cj

s ∀ i < j, s   (5.1d) 
       l i

s ≤ ci
s ≤ Ls − l i

s ∀ i, s   (5.1e) 
       lbi

s ≤ li
s ≤ ubi

s ∀ i, s .   (5.1f) 
 
In addition to the constraints listed in (5.1), appropriate restrictions can be added to 
accommodate the case where some departments are given fixed locations or when certain areas 
of the building are not permitted to be occupied by any department.  

5.2.1 The FLP2 Model 
Throughout the remainder of this chapter, we will propose enhancements to the best 

existing MIP formulation of the facility layout problem that was presented as FLP2 in Meller et 
al. (1999).  Before proceeding with this endeavor, we first review the notation of the FLP2 
model.  For ease in notation, we define P as the set of department pairs having positive flow 
interaction; that is, }0:),,{( ><= ijfjijiP .  We also denote the set F as the departments with 
fixed size and location, while its complement F  contains all of the departments with variable 
size and location.  (In the present context, we do not consider departments that are fixed with 
respect only size or location, although this modification could also be accommodated in a 
straightforward manner.) Using the aspect ratios for each department, Meller et al. derive 
implied upper and lower bounds on the half-sides of each non-fixed department, which we 
denote as iub and ibl , respectively.  These bounds are given by   

2/}}{max,min{ s

siii Laub α=   and  )4/( iii ubab =l Fi ∈∀ , 
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and are used to constrain the department dimensions via the restrictions 

siLubb s
i

s
ii ,},2/,min{ ∀≤≤ ll . 

Accordingly, the centroid of each department Fi ∈  is bounded as sbLcb i
ss

ii ∀−≤≤ ll .  (We 
note here that Meller et al. use the same lower and upper bounding values for the half-width and 
half-length of department i (i.e., yxsububbb i

s
ii

s
i ,  and  =∀== ll ), but we will develop tighter 

bounds in Section 5.3 by considering each dimensional separately.) 

One of the major difficulties in modeling the MIP facility problem  is to derive a suitable 
approximation for the nonlinear area constraints, i

y
i

x
i a=ll4 , for each department Fi ∈ .  

Toward this end, Meller et al. propose an approximation that uses a parameter f  (empirically 
taken to be 0.95 in their computations), and the maximum departmental half-side denoted by 

}{max
,

max s
iyxsi ll

=
= .  In order to ensure that departments do not overlap, Meller et al. propose 

several disjunctive statements that are linearized using binary variables, s
ijz , to indicate relative 

locations, where 1=s
ijz  if department i is forced to precede department j in the direction s.  

Given this notation, Problem FLP2 of Meller et al. can be stated as follows, where throughout 
the formulation, i and j represent the indices for the n departments, and s is an indicator 
representing the two directions (x and y). 

 FLP2:  Minimize ∑ ∑
∈ =Pji yxs

s
ijijdf

),( ,

    (5.2a) 

   subject to Fifa ii
y
i

x
i ∈∀×+≥+ max23)(4 lll  (5.2b) 

      sFis
ii ,,max ∈∀≥ ll   (5.2c) 

      sjizz
y

xs

s
ji

s
ij ,1)( <∀≥+∑

=

  (5.2d) 

      sjizz s
ji

s
ij ,1 <∀≤+    (5.2e) 

      sjizLcc s
ij

ss
j

s
j

s
i

s
i ,)1( ≠∀−+−≤+ ll  (5.2f) 

      sPjiccd s
j

s
i

s
ij ∀∈∀−= ,),(  (5.2g) 

      sFiLc s
i

ss
i

s
i ,∈∀−≤≤ ll  (5.2h) 

      sFiLubb s
i

s
ii ,},2/,min{ ∈∀≤≤ ll  (5.2i) 

      sic s
i ,0 ∀≥     (5.2j) 

      sPjid s
ij ,),(0 ∈∀≥    (5.2k) 

      sjiz s
ij ,}1,0{ ≠∀∈    (5.2l) 

      sFic s
i

s
i , fixed  ),( ∈∀l .  (5.2m) 

 
In terms of the notation of problem (5.1), constraints (5.2b) and (5.2c) capture the 

departmental area requirements, while (5.2d-f, l) prevent departmental overlaps.  Specifically, 
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the constraints (5.2b) approximate the nonlinear area constraints ( iai
y
i

x
i ∀=ll4 ) by forcing the 

actual perimeter of each department, given as the left-hand side of (5.2b), to be at least equal to 
an empirically determined function of ia  and max

il (as defined by (5.2c))  that exceeds the 

perimeter ia4  of a square department having area ia .  The motivation behind this approach is 
to make the area restrictions more faithful as departments become more non-square.  Constraints 
(5.2d) and (5.2e), together with constraints (5.2f), force each pair of departments to be separated 
in at least one direction, and hence prevent departments from overlapping.  Meller et al. 
demonstrated that the constraints (5.2e) are unnecessary, and that a tighter formulation can be 
found by making constraint (5.2d) an equality, which enables branching based on specially 
ordered set (SOS) constraints.  Using (5.2d) as an equality constraint also reduces problem 
symmetry by curtailing alternative z-solutions that pertain to the same layout.  Constraints (5.2m) 
address the set of fixed departments, forcing the respective locations and sizes equal to the 
corresponding given values.  Although not displayed in (5.2), we note that it is also 
straightforward to adapt FLP2 to include constraints that require certain departments to be placed 
away from each other by at least some given distance. 

The remainder of the model represents the constraints (5.1d-f).  Note that the absolute 
values in (5.2g) can be linearized through either of two common techniques.  The first option is 
to replace s

j
s
i

s
ij ccd −=  with the two inequalities s

j
s
i

s
ij ccd −≥  and s

i
s
j

s
ij ccd −≥ .  The second 

option is to define two nonnegative variables, +s
ijd and −s

ijd , to represent the difference 

relationship as s
j

s
i

s
ij

s
ij ccdd −=− −+  and then use the substitution −+ += s

ij
s
ij

s
ij ddd .  (In their 

computational experiments, Meller et al. implemented the first option.)  The departments are 
required to be contained within the building through the constraints (5.2h).  Finally, constraints 
(5.2i) impose the derived bounds on the dimensions based on area and aspect ratio 
considerations, and (5.2j - 5.2l) represent logical restrictions.  This completes the basic FLP2 
model.   

5.2.2 The FLP2+ Model 
After presenting this basic model, Meller et al. then strengthen FLP2 by developing a 

series of valid inequalities with the motivation of increasing the bound obtained from the linear 
programming relaxation of FLP2 (and any of its subsequent restrictions in a branch-and-bound 
framework).  Typically, the LP relaxation sets the s

ijz  variables to fractional values, allowing the 
departments to overlap one another, and locates the centroid of each department at a common 
coordinate.  This allows the s

ijd  variables to take on values of zero, and thus, the objective of the 

LP solution at the root node is equal to zero.  In order to force the s
ijd  variables to take on non-

zero values, Meller et al. develop transitivity constraints, lower bounding constraints for distance 
variables, and centroid separation constraints.  The resulting enhanced model is referred to as 
FLP2+, and is shown below in complete form.  

FLP2+:  Minimize ∑ ∑
∈ =Pji yxs

s
ijijdf

),( ,

      (5.3a) 
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 We now briefly comment on the derivation of the valid inequalities (5.3h) � (5.3w) that 
Meller et al. used to strengthen the basic FLP2 model.  The transitivity constraints (T3) given by 
(5.3h) enforce logical relationships about the relative locations for any triplet of departments.  
The dmin constraint, shown in (5.3i), forces the rectilinear distance between departments i and j to 
be at least as large as }{min}{min s

js

s
is

ll + .  In addition, Meller et al. enforce bounds on the 

distance between the centroids of departments 1i  and ki , given that the sequence ,,,1 kii K  
nk ≤≤2  holds along direction s.  Using the lower bounds, the variables themselves, and a 

combination of both, Meller et al. have developed distance bound constraints (Bka and Bkb), 
variable distance constraints (Vka and Vkb), and bound-variable distance constraints (BVka and 
BVkb), respectively.  (We note that when 2=k , B2bB2a ≡  and  V2bV2a ≡ , with BV2a and 
BV2b being redundant.)  While these constraints can be developed for any value of k such 
that nk ≤≤2 , Meller et al.�s computational analysis included constraints for only 3,2=k  in 
order to control the size of the problem.  The constraints (5.3j) � (5.3q) correspond to Meller et 
al.�s B2, V2, B3a, B3b, V3a, V3b, BV3a, and BV3b.  An additional series of constraints (Ska 
and Skb) was developed to increase the separation of the centroids of departments i and j, given 
any cycle ,,,,: 11 iiiCk kK  for nk ≤≤2 .  In their computational analysis, Meller et al. included 
only S3a, displayed in (5.3r), noting that when 2=k , the S3a constraints reduce to (5.2f).  The 
final set of valid inequalities are linearizations of the constraints 

   sjizLczc s
ij

s
j

ss
i

s
i

s
ij

s
i

s
j

s
j ,2and2 ≠∀−≤+≥− llll . (5.4) 

The nonlinear terms s
ij

s
i zl  are linearized by using s

iji zbl  in (5.3s,t) and by using 

)1}(2/,min{ s
ij

s
i

s
i zLub −−l  in (5.3u,v).  Note that these constraints subsume (5.2h).  As a final 

enhancement, Meller et al. implement a scheme to reduce problem symmetry, displayed in 
(5.3w), by forcing the centroid of some key department q to be positioned in the southwest 
corner of the building.  The results presented in Meller et al. indicate that the additional 
inequalities of the  enhanced model (FLP2+) provide significant computational advantages as 
compared to using the basic FLP2 model.  Their computational experience revealed several test 
cases that were solved to optimality with FLP2+ yet could not be solved using model FLP2 .  
(We will discuss the effect of these constraints in more detail in Section 5.2.3.)    

Although Meller et al. were able to strengthen the model FLP2, several significant 
improvements in the model formulation are yet possible.  In the remaining sections of this 
chapter, we present various such enhancements that serve to tighten the model formulation and 
thereby decrease solution effort.  We begin with a set of constraints that allow the nonlinear area 
constraints to be specified to any given accuracy, and we then address issues such as reducing 
problem symmetry more definitively, and deriving tighter representations of the inherent 
disjunctive relationships.   In order to gauge the effectiveness of our proposed enhancements, we 
first evaluated the performance of the FLP2+ model on a series of problems that were presented 
in Meller et al.  The results are described in the next section.  We will subsequently use these 
same test problems to evaluate our proposed enhancements.   
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5.2  Experimental Design 

 In our computational analysis, we focused on the set of test problems that were presented 
in Meller et al.  The problems range in size from three to nine departments, with either one or no 
fixed departments, and with aspect ratios ranging from three to five.  Some properties of these 
test problems are summarized in Table 5.1.  Here, as in Meller et al., we define flow density as 
the number of departmental pairs having positive flow interactions as a percentage of the 
maximum possible number of pairs; i.e., %100*])2/)1(/[( −nnP .   We define layout 
compactness as the percentage of available space occupied by the departments; that is, 

%100*)/(
1








 ×∑
=

yx
n

i
i LLa .  We also list the aspect ratio for each problem, where Fii ∈∀= αα .    

The FO problems correspond to flowshop versions of the O problems, where each flow intensity 
in an O problem instance is replaced by a unit value in the corresponding FO problem.  We note 
that Meller et al. did not report results for problem M5 since their model FLP2+ declared this 
instance to be infeasible.  Instead, they constructed the more relaxed problems M5-1 (with 
decreased area for each department) and M5-2 (with an increased aspect ratio for each 
department) and reported the error in area with respect to the original target values in M5.  
Although problems O7 and FO7 were not found to be infeasible using the FLP2+ model, Meller 
et al. employed a similar relaxation strategy for these problems to create the corresponding 
instances O7-1, O7-2, FO7-1, and FO7-2.     However, using our more accurate modeling 
strategy as discussed below, we detected that M5 was indeed feasible, and so for the sake of 
consistency, we treat all these problems as separate test cases, and report on them individually 
with respect to their associated  modified input parameters. 

The performance of all proposed models was evaluated using an AMPL interface with 
CPLEX version 6.5.3 on a SUN Ultra-2 Workstation.   Limits on time, number of nodes, and tree 
memory were set at 86,400 seconds (24 hours), 10 million nodes, and 390MB, respectively.  For 
each problem, we report the best known integer solution (zMIP) and the percentage optimality 
gap, (zMIP � zLB)/ zMIP*100, where zLB is the lower bound at termination of the search.  
Additionally, we display the number of nodes and the solution time in CPU seconds.  For each 
optimal solution, we also report the maximum error in department areas (due to the 
approximation employed in the area representations), calculated as %100*/4max ii

y
i

x
i

Fi
aa−

∈
ll .   

The computational results of the FLP2+ analysis are presented in Table 5.2.  We note that 
the results in Table 5.2 are similar to those presented in Meller et al., although there is a general 
reduction in computational effort which we attribute to advances in computing power and 
software technology.  This reduced effort has led to tighter bounds for some problems that were 
not solved to optimality in Meller et al.  We also note that there are some differences regarding 
the maximum error in department size since we report this statistic with respect to the given 
input parameters for each individual problem, rather than considering some problems as 
approximations of other instances.  

Throughout the remainder of this chapter, we will evaluate the performance of alternative 
models for the facility layout problem.  In order to assess the effect of each of our proposed  
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Table 5.1:  Characteristics of the Test Problems. 
Number of  

Departments Problem 
Name Total Fixed 

Aspect 
Ratio α  

Flow 
Density 

(%) 

Layout 
Compactness 

(%) 
M3 3 0 3 66.67 88.00 
M4 4 1 3 66.67 92.00 
M5 5 1 3 50.00 100.00 
M5-1 5 1 3 50.00 98.00 
M5-2 5 1 5 50.00 100.00 
M6 6 0 4 26.67 98.67 
M7 7 0 4 23.81 99.00 
FO7 7 0 4 28.57 99.98 
FO7-1 7 0 4 28.57 97.48 
FO7-2 7 0 5 28.57 99.98 
FO8 8 0 4 25.00 99.98 
FO9 9 0 4 22.22 100.00 
O7 7 0 4 42.86 99.98 
O7-1 7 0 4 42.86 97.48 
O7-2 7 0 5 42.86 99.98 
O8 8 0 4 53.57 99.98 
O9 9 0 4 41.67 100.00 

 

Table 5.2:  Computational Results for the FLP2+ Model. 

Problem zMIP 
Optimality

Gap (%) Time Nodes
Max. %

Error
M3 3938.88 0 0.26 7 6.15
M4 5299.76 0 0.33 7 6.15
M5 Infeasible n/a 2.9 163 n/a
M5-1 6370.34 0 2 85 5.50
M5-2 7621.58 0 4.4 301 10.32
M6 9412.90 0 40 518 4.17
M7 12971.30 0 670 5757 5.83
FO7 24.67 0 10000 79557 6.51
FO7-1 20.09 0 3700 21790 4.76
FO7-2 17.69 0 1500 7357 10.32
FO8 26.25 0 66000 215483 7.13
FO9 20.98 10.14 86400* 66386 4.76
O7 113.56 0 60000 393187 5.59
O7-1 96.00 0 17000 113396 4.76
O7-2 92.13 0 10000 62740 7.14
O8 182.40 26.45 86400* 107334 4.96
O9 166.66 40.00 86400* 50442 7.14

   * Prematurely terminated after 24 hours of computation. 
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enhancements, we evaluate them in a sequential manner, starting with the basic FLP2 model and 
replacing the area constraints with our proposed representation.  After determining the level of 
approximation in our area constraints that performs best, we then investigate new symmetry 
breaking constraints, followed by an analysis of the valid inequalities proposed by Meller et al.  
We conclude our development by examining several alternative formulations for the inherent 
disjunctive relationships that prevent departmental overlaps.  In the process of evaluating our 
proposed enhancements in all these experiments, we consider only those problems that were 
solved to optimality by the model FLP2+.  Following this, we then solve the remaining problems 
(FO9, O8, and O9) using some of the most promising strategies, as determined by our 
experimentation on the previous problems.   

5.3  Improved Representation of the Nonlinear Area Constraints  

One of the more challenging aspects of the facility layout problem arises in representing 
the nonlinear constraints that require each department to maintain a given area.  Rather than 
relying on approximations based upon properties of rectangles, we propose an outer-linearization 
of the area constraints that can yield as tight an approximation as desired. 

5.3.1 Development of the Area Constraints 

Consider any department i of half-length x
il  and half-width   l i

y  that is to have an area of 
ai  with an aspect ratio of α i , leading to the restrictions 

 i
y
i

x
i

x
ii

y
i

y
ii

x
i a=≤≤ llllll 4and,, αα . (5.5) 

Figure 5.1 illustrates the combinations of l i
x  and l i

y  that are feasible to (5.5).  These 
combinations lie on the hyperbolic curve between the depicted points A and B.   Note that the 
coordinates of A and B are given by 

 
2

and  
2
/

 where ),,(),,( ii
i

ii
iiiii

a
ub

a
bbubBubbA

αα
=≡≡≡ lll . (5.6) 

We can additionally impose the constraints 

   2li
x ≤ Lx  and 2l i

y ≤ Ly . (5.7) 

Consequently, we can tighten the upper bounds on   l i
x  and   l i

y  to ubi
x  and ubi

y , respectively, 
where 

 ubi
x = min{

aiα i

2
,

Lx

2
} and ubi

y = min{
aiα i

2
,

Ly

2
}. (5.8a) 
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Figure 5.1.  Depiction of Area Constraints. 
 

 

Since 4li
xli

y = ai  must hold true, this correspondingly yields lower bounds lbi
x  and lbi

y  on l i
x  

and l i
y , respectively, as 

 
  
lbi

x =
ai

4(ubi
y )

 and 
 
lbi

y =
ai

4(ubi
x )

. (5.8b) 

Hence, we can impose the bounds stated below as given by (5.8a, b): 

   lbi
s ≤ li

s ≤ ubi
s  for s = x, y, ∀ i . (5.8c) 

It is important to note that these bounds are tighter than the bounds ),( ii ubbl  proposed by 
Meller et al., who take the maximum of Lx and Ly  to bound both   2li

x  and 2li
y , in lieu of our 

bounding scheme in (5.8).   More importantly, Meller et al. then derive an empirical 
approximation for the area constraints that can be significantly improved, leading to a more 
accurate and stronger representation.   

While Meller et al. approximate the nonlinear area restrictions for each department with 
the constraints (5.2b,c), we propose instead to derive a polyhedral outer-approximation of the 
area constraints.  Consider the hyperbolic curve between ′ A and ′ B , where ′ A  and ′ B  refer to the 
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appropriate end-points (that replace A and B, respectively, in Figure 5.1) on the valid portion of 
this curve based on the modified values for the bounds as given by (5.8). The coordinates of 
these end-points ′ A  and ′ B  are given by 

   ′ A = (lbi
x , ubi

y ) and ′ B = (ubi
x , lbi

y ). 

In place of the nonlinear area constraints (5.5), we propose a polyhedral approximation that is 
comprised of the affine concave envelope that passes through ′ A and ′ B , along with a suitable 
number of affine supports to the convex hyperbolic curve between ′ A and ′ B .  The former 
concave envelope of this segmented function yields the valid inequality  

   l i
x (ubi

y − lbi
y ) + li

y (ubi
x − lbi

x ) ≤ ubi
xubi

y − lbi
xlbi

y . (5.9) 

Furthermore, the convex envelope (which is described by the function itself) yields the set of 
valid approximating linear inequalities (based on tangential supports to the curve l i

y = ai /4li
x  at 

various points   x ,  where lbi
x ≤ x ≤ ubi

x ) given by 
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



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 −−+≥ 24
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i ll  
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For example, we can use values of x  equal to 

 2integer  selectedany for   ,1,,1,0)(
)1(

≥∆−∆=∀−
−∆

+= Kll λλ x
i

x
i

x
i bubbx . (5.11) 

Note that unlike the piecewise linearization used in Lacksonen (1994), this approximation 
is purely linear and does not involve any binary variables.  Furthermore, it can provide as tight a 
representation as desired unlike the approximation used in Meller et al., assuming that by the 
linearity of the problem, the ultimate values of ),( y

i
x
i ll  turn out to be vertices of the 

corresponding outer approximating polytope for each i.  This is likely to be the case (as borne out 
by our results) since the problem tendency is naturally to underestimate the areas.  We also note 
that Meller et al. quote maximum error values for their area approximation, but these are actually 
only errors stemming from an under-representation of the area under consideration.  However, 
their approximation can have significant errors in over-representing the areas. For example, with 
α i = 4  and (lbi , ubi) =  ( ai /4, ai ) from (5.6), if we take  l i

x = l i
y = ai , this satisfies  

(5.2b), but yields an error of 100[(4ai − ai) / ai] = 300%.  The role of (5.9) above is to reduce 
such an over-representation (the solution l i

x = l i
y = ai  violates this constraint, for example).   

5.3.2  Effect of the Proposed Area Constraints  
In order to determine the effect of the proposed area constraints, we evaluated the 

performance of the FLP2 model with the area constraints (5.2b,c)  replaced by (5.9) - (5.11).  As 
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in Meller et al.�s analysis, we eliminated constraint (5.2e) and changed (5.2d) to an equality, and 
we modeled the absolute value constraints through a pair of inequalities.  We did not, however, 
include any of the symmetry breaking techniques or valid inequalities that were proposed by 
Meller et al., as we will study these features of the model in subsequent sections.  For each of the 
test problems, we varied the number of discretization points ∆  for the tangential supports from 
five to fifty, and the results of these runs are compared to those obtained for FLP2+ in Tables 5.3 
and 5.4.   

In examining Tables 5.3 and 5.4, we first note that the optimal solution values of several  
test problems vary significantly when solved by the FLP2+ model as opposed to the FLP2 model 
with our proposed area constraints.  In the case of problem M5, for instance, an optimal solution 
was found using our proposed area constraints, while the problem was declared to be infeasible 
using the FLP2+ model.  For most problems, our proposed area constraints lead to a noticeably 
improved optimal solution value, while in two instances (FO7-1 and FO7-2), they lead to a 
slightly higher optimal value.  This can be explained by recalling that the FLP2+ model 
approximates the nonlinear area constraints based upon relationships between the perimeter and 
the area of a rectangle.  These approximations frequently add unnecessary restrictions to the 
problem and needlessly increase the optimal solution value, as evidenced by our computational 
results.  At times, however, they admit optimal solutions to the approximating model that 
significantly violate the area constraints that they purport to represent, thus producing solutions 
that are actually infeasible to the given original problem.  In contrast, our proposed area 
constraints model the underlying nonlinear area restrictions in a consistent manner.  As the 
number of tangential supports increases, the solutions are forced to more closely approximate the 
actual nonlinear area constraints (because of the natural tendency of underapproximate the 
areas), thus increasing the optimal solution value.  Furthermore, the results for some problems 
show a leveling-off effect as the number of supports increases, indicating that we are 
approaching solutions that exactly satisfy the nonlinear area constraints.   

This increase in accuracy can also be seen by examining the maximum error for each 
problem.  Tables 5.3 and 5.4 indicate that the proposed area constraints are quite effective in 
decreasing the error with respect to departmental area constraints.  While each of the test 
problems exhibited a maximum error of greater than 4% (as high as 10% for some problems) 
when solved using the FLP2+ model, our proposed area constraints decreased this error to less 
than 1% with the use of just ten tangential supports for each department.  Furthermore, as 
expected, increasing the number of supports led to an even greater reduction in departmental 
errors.  Overall, the FLP2+ model produced an average maximum error of 6.45% while our 
proposed area constraints reduced this average maximum error to 2.28%, 0.37%, 0.19%, 0.05%, 
0.04%, and 0.03% when using 5, 10, 20, 30, 40, and 50 supports, respectively. 

Perhaps the most (pleasantly) surprising result, however, is the dramatic decrease in 
solution time achieved through the use of the more accurate proposed area constraints.  In 
several problem instances, the solution time was decreased by over 95%.   We note that the times 
presented in Tables 5.3 and 5.4 were obtained using simply the model FLP2 with the new area 
constraints.  That is, this model does not include any symmetry breaking constraints or valid 
inequalities, while the results from FLP2+ included both of these enhancements.  A possible 
explanation of this phenomenon is that a tighter control on the dimensions of each department 
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Table 5.3:  Effect of Area Constraints on M Problems. 

 Model FLP2+ FLP2 with Proposed Area Constraints 
Problem Supports 0 5 10 20 30 40 50
M3 zMIP 3938.88 3750.86 3774.77 3778.09 3779.30 3779.51 3779.79
  Time 0.26 0.05 0.06 0.04 0.07 0.09 0.06
  Nodes 7 6 6 4 6 6 4
  Max. Error   6.15 1.08 0.62 0.09 0.08 0.02 0.02
M4 zMIP 5299.76 5078.98 5103.28 5106.39 5107.94 5108.25 5108.50
  Time 0.33 0.04 0.04 0.06 0.06 0.1 0.08
  Nodes 7 7 7 7 7 7 7
  Max. Error   6.15 1.08 0.62 0.09 0.08 0.02 0.02
M5 zMIP Infeasible 6131.43 6172.16 6170.89 6174.22 6174.15 6174.88
  Time 2.9 0.14 0.16 0.24 0.22 0.28 0.35
  Nodes 163 21 21 27 20 21 27
  Max. Error   n/a 1.08 0.06 0.09 0.02 0.02 0.01
M5-1 zMIP 6370.34 5068.31 5088.03 5094.98 5095.27 5095.75 5095.92
  Time 2 0.12 0.13 0.16 0.22 0.24 0.27
  Nodes 85 18 18 20 18 18 19
  Max. Error   5.50 1.07 0.53 0.07 0.04 0.03 0.01
M5-2 zMIP 7621.58 5155.78 5214.41 5226.93 5225.35 5226.03 5227.23
  Time 4.4 0.19 0.22 0.22 0.29 0.31 0.4
  Nodes 301 46 33 30 46 43 45
  Max. Error   10.32 3.19 0.76 0.75 0.09 0.08 0.02
M6 zMIP 9412.90 8166.68 8212.04 8222.32 8224.13 8224.30 8224.73
  Time 40 0.94 0.37 1.2 1.3 0.82 1.8
  Nodes 518 212 60 210 185 93 200
  Max. Error   4.17 3.45 0.37 0.23 0.04 0.05 0.05
M7 zMIP 12971.30 10592.50 10658.40 10672.10 10673.40 10673.70 10674.40
  Time 670 0.78 1 2.3 2.2 2.1 1.9
  Nodes 5757 180 266 466 328 304 261
  Max. Error   5.83 3.45 0.37 0.23 0.04 0.05 0.05
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Table 5.4:  Effect of Area Constraints on FO and O Problems. 

 Model FLP2+ FLP2 with Proposed Area Constraints  
Problem Supports 0 5 10 20 30 40 50
FO7 zMIP 24.67 20.92 20.94 20.95 20.95 20.95 20.95
  Time 10000 1900 2100 3600 3500 2700 2300
  Nodes 79557 462695 444119 632642 519886 331524 245210
  Max. Error  6.51 0.44 0.12 0.05 0.01 0.00 0.01
FO7-1 zMIP 20.09 20.21 20.23 20.25 20.25 20.25 20.25
  Time 3700 2200 1100 2900 2900 3600 2200
  Nodes 21790 544105 235159 528733 381646 435804 277196
  Max. Error  4.76 3.68 0.11 0.31 0.06 0.06 0.06
FO7-2 zMIP 17.69 17.70 17.75 17.75 17.75 17.75 17.75
  Time 1500 410 450 340 440 980 990
  Nodes 7357 105852 101608 59747 62869 133340 122631
  Max. Error  10.32 1.01 0.02 0.01 0.04 0.05 0.01
FO8 zMIP 26.25 22.22 22.27 22.31 22.37 22.38 22.38
  Time 66000 3900 4700 5100 6900 12000 7100
  Nodes 215483 734723 759959 596769 861074 1311596 728357
  Max. Error  7.13 0.91 0.57 0.40 0.04 0.02 0.03
O7 zMIP 113.56 98.16 98.44 98.49 98.51 98.52 98.51
  Time 60000 5400 5500 8900 7700 8800 5500
  Nodes 393187 1252617 1063177 1615783 1187869 1077777 596892
  Max. Error  5.59 0.81 0.24 0.05 0.02 0.01 0.01
O7-1 zMIP 96.00 89.79 90.68 90.76 90.84 90.85 90.84
  Time 17000 1200 720 1300 3200 2800 4000
  Nodes 113396 290059 145045 197815 482342 373823 481320
  Max. Error  4.76 2.83 0.14 0.27 0.04 0.00 0.02
O7-2 zMIP 92.13 84.61 90.54 90.57 90.59 90.59 90.60
  Time 10000 1600 2900 1700 2100 5200 2700
  Nodes 62740 3525087 614357 280844 320777 691973 304978
  Max. Error  7.14 6.20 0.95 0.15 0.12 0.10 0.07
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works favorably in concert with the disjunctive separation constraints, and admits a more 
effective scheme for fathoming inferior solutions.  Table 5.5 provides a summary of the average 
factor of improvement (given by the corresponding FLP2+ value divided by our value) for each 
number of supports.  We observe that on average, when at least twenty supports are used, our 
model yields solutions that are over 100 times more accurate than the FLP2+ solution, while 
curtailing effort in comparison with the FLP2+ model by a factor of over 27 times.  We further 
note that the dramatic decrease in solution time associated with using our area constraints is seen 
across all problem types and sizes, and it is obtained while simultaneously providing more 
accurate solutions, frequently with a lower optimal objective value. 

 While we have demonstrated that our proposed area constraints provide increasingly 
accurate solutions as the number of tangential supports increases, this also entails an increase in 
solution effort, as evidenced by Figures 5.2 and 5.3.  Our computational experience indicates that 
a minimum of 10 supports are clearly necessary in order to achieve a reasonable degree of 
accuracy in representing the area constraints.  As the number of supports increases to 50 for each 
department, this error approaches zero.  Throughout the remainder of this chapter, we will 
propose several additional strategies for enhancing the solvability of the facility layout model.  
These enhancements will not alter the objective value or the accuracy of the optimal solution, but 
are intended simply to further decrease solution effort.  For this reason, we will evaluate each of 
the remaining enhancements using a fixed number of tangential supports for the area constraints 
of each department.  For our purposes, we determined to use the minimum number of supports 
necessary to achieve an acceptable level of average maximum error, which we selected to be 
0.25%.  At such a level, for instance, the maximum amount of error corresponds to a six by six 
inch square for a department with a target area of 100 square feet.   Accordingly, we opted to 
conduct all remaining experiments using 20 supports, which led to an average maximum error of 
0.18%.   

 

 

Table 5.5:  Factor of Improvement in Solution Time and Error. 

Number of 
Supports Solution Time Maximum Error 

5 68.98 5.39 
10 60.54 59.33 
20 28.31 113.95 
30 27.74 201.64 
40 28.95 763.20 
50 29.71 390.91 
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Figure 5.2.  Average Solution Time versus Number of Supports. 
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Figure 5.3.  Average Maximum Error versus Number of Supports. 
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5.4 Reducing Problem Symmetry 

 As noted in Meller et al., the solution of FLP2 can be significantly slowed by the large 
degree of symmetry in the problem.  While Meller et al. incorporated a symmetry breaking 
constraint as embodied by (5.3w) to reduce this effect, we propose and test two alternative 
symmetry breaking strategies. 

5.4.1 Development of Alternative Symmetry Breaking Strategies 
 In order to reduce the solution effort consumed by searching for symmetrical solutions, 
Meller et al. incorporated the following symmetry-breaking constraint in their implementation: 

 cq
s ≤ Ls /2 for s = x, y , for some key department q. (5.12) 

This tends to eliminate the symmetry with respect to 180º flips in the x or y directions. However, 
as depicted for the solution in Figure 5.4, this might not always help or serve the intended 
purpose.  Observe that constraint (5.12) continues to hold true when the layout is flipped 180º in 
either the x or y directions. We now propose two alternative classes of symmetry-breaking 
constraints that turn out to be more definitive in ameliorating symmetry effects.  We first note 
that, in general, symmetry breaking techniques are not valid in the presence of departments with 
fixed locations, as frequently the problem symmetry is already eliminated by forcing certain 
departments to be placed at specific locations.  However, if the fixed departments are themselves 
symmetric with respect to flips in either the x or y directions, then the corresponding symmetry 
breaking constraints could additionally be incorporated. 
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Figure 5.4.  Symmetry Considerations. 
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As shown in Sherali and Smith (1999), the generation of suitable hierarchical constraints 
to curtail the symmetry inherent in many applications can greatly benefit the model 
representation and its consequent solvability.  We now propose a set of hierarchical symmetry 
breaking constraints for the facility layout problem.  Our first symmetry breaking method 
requires the orientation of the encompassing rectangle with respect to 180º flips in the x or y 
direction to be such that a particular hierarchy is established in a specified function value when 
applied along, versus in reverse to, each axis direction. For example, taking this function to be  

the sum of centroids weighted by their indices, we can impose 

   i
i =1

n

∑ ci
s ≤ i

i =1

n

∑ (Ls − ci
s ) for  s = x, y ,  (5.13) 

  i.e.,   4 i
i =1

n

∑ ci
s ≤ n(n + 1)Ls  for  s = x, y .  (5.14) 

 
For the example in Figure 5.4, when s ≡ x , the inequality (5.14) is violated since 4[1(3) + 2(5) 
+ 3(4) + 4(3) + 5(5)] = 248 > (5) (6) (8) = 240.  Hence, we would need to flip the layout 180º in 
the x-direction in order to satisfy (5.14).  Furthermore, it can be verified that the layout satisfies 
(5.14) in the y-direction, but not if it is flipped in this direction. 

For the second type of symmetry-breaking constraint, we consider a pair of departments p 
and q based on a maximum total interaction and/or area-based criterion, and we then require the 
centroid of p to be south and west of the centroid of q.  For example, with p = 4, and q = 3, we 
(uniquely) obtain the configuration of Figure 5.4.  However, with p = 1 and q = 2, flipping in the 
y-direction yields an alternative acceptable configuration.  As such, we can impose 

 cp
s ≤ cq

s for s = x, y . (5.15) 

We can further tighten the model of Meller et al. under (5.15) by accordingly restricting 

 },min{)( and ,0 y
q

y
p

x
q

x
p

s
p

s
q

y

xs

y
qp

x
qp bbbbcczz llll ++≥−== ∑

=

. (5.16) 

5.4.2 Effect of Symmetry Breaking Constraints 
In this section, we discuss the effect of three symmetry breaking techniques for the 

facility layout problem.  The results of our computational analysis are presented in Tables 5.6 
through 5.8.  The first of these three alternatives is the hierarchical constraints of (5.14), which 
we refer to in our analysis simply as hierarchy.  The second alternative that we considered was 
using constraints (5.15) � (5.16), referred to as position p-q.  In our experimentation, we selected 
departments p and q as a pair having the largest flow; that is, ijPjipq ff

∈
=

),(
max .   In the case of ties, 

we selected a pair among such ties having the maximum total area.  (We note here that several 
other methods were explored for selecting departments p and q, but the variations performed 
similarly, and in many cases, selected the same two departments as did the foregoing strategy.)   
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Table 5.6: Effect of Symmetry Breaking Techniques on M Problems. 

Problem Symmetry Time Nodes
M3    None 0.04 4

    Hierarchy 0.05 4
    Position p-q 0.03 1
    Position q 0.03 3

M6    None 1.20 210
    Hierarchy 1.10 149
    Position p-q 0.50 34
    Position q 0.76 93

M7    None 2.30 466
    Hierarchy 1.90 326
    Position p-q 0.73 86
    Position q 1.40 243

 

The final alternative that we evaluated, referred to as position q, is the strategy proposed by 
Meller et al. and displayed in (5.12).  We applied each of the aforementioned strategies to the 
FLP2 model, using our proposed area constraints (5.9) - (5.11)  with 20 tangential supports for 
each department.  No additional valid inequalities were included at this stage.  (As noted earlier, 
since these symmetry breaking techniques are only valid for problems having no fixed 
departments, we did not implement these strategies on problems M4, M5, M5-1, and M5-2.) 

The results indicate that by using symmetry breaking techniques, we dramatically 
decrease the solution effort, both in terms of solution time and the number of nodes enumerated, 
for nearly all problem instances.  It is also clear that the hierarchical symmetry breaking 
constraints do not perform as well as the other two alternatives, noting that in the last two 
problem instances, the solution time actually increased over the model with no symmetry 
reduction techniques.  We believe that this stems from the dense nature of the hierarchical 
constraints, which may interfere with the special structures of the model that are exploited by 
CPLEX throughout the branch-and-bound process.  In contrast, the other two symmetry breaking 
alternatives consist of sparse constraints having unit coefficients, and do not adversely affect the 
problem structure. 

 While problem effort decreases with the position p-q and position q strategies, our 
computational results do not indicate that either method is clearly superior to the other.  For 
example, in terms of solution time, position p-q is best on four problems, position q is best on 
five, and one problem is solved equally quickly by both options.  Table 5.8 displays the average 
decrease in solution effort (as compared to using no symmetry breaking techniques) for each of 
the proposed methods.  This table confirms that the hierarchical constraints are outperformed by 
the other alternatives, which perform competitively with respect to each other.  For this reason, 
we will investigate how each of these two latter strategies perform in conjunction with the valid 
inequalities explored in the following section.   
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Table 5.7: Effect of Symmetry Breaking Techniques on FO and O Problems. 

Problem Symmetry Time Nodes
FO7    None 3600 632642

    Hierarchy 1200 174605
    Position p-q 830 126741
    Position q 740 124046

FO7-1    None 2900 528733
    Hierarchy 1500 255507
    Position p-q 380 62512
    Position q 790 147831

FO7-2    None 340 59747
    Hierarchy 310 49240
    Position p-q 170 29112
    Position q 180 32413

FO8    None 5100 596769
    Hierarchy 4000 450287
    Position p-q 2000 284944
    Position q 1700 219929

O7    None 8900 1615783
    Hierarchy 3800 534090
    Position p-q 2700 452488
    Position q 1800 285649

O7-1    None 1300 197815
    Hierarchy 1700 272910
    Position p-q 1400 252366
    Position q 630 98751

O7-2    None 1700 280844
    Hierarchy 2900 446433
    Position p-q 1300 224042
    Position q 820 136410

 

 

Table 5.8: Average % Decrease in Solution Effort 

Symmetry Type Time Nodes
   Hierarchy 10.20 19.53
   Position p-q 51.17 57.67
   Position q 54.98 57.37
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Before concluding this section, we take a moment to reflect on why the position p-q 
strategy did not clearly dominate the Meller et al. strategy, although the position p-q has been 
shown to eliminate symmetrical cases that are not eliminated by the position q method.  The 
reason for this is that the position p-q strategy also introduces additional valid inequalities (5.16).  
While these inequalities assist by tightening the relaxation, the compromise between obtaining 
tighter bounds and expending more effort in this process does not turn out to be uniformly 
favorable.  Note that the position q approach does nothing to eliminate the relaxed solution that 
locates all the departments at a common location, and often yields a root node relaxation value of 
zero.  The position p-q strategy, however, eliminates this possibility by including the centroid 
separation constraints in (5.16).  (The root node analysis of the following section contains results 
to support this argument.)  However, as we shall see subsequently, when suitable additional valid 
inequalities are added to the model, the position p-q strategy begins to more strongly dominate 
the position q alternative. 

5.5 Additional Valid Inequalities 

As discussed in Chapter 2, the derivation of problem-specific valid inequalities can 
greatly increase the strength of a (mixed) integer program.  Section 5.2.2 provided an overview 
of the valid inequalities incorporated by Meller et al. in the FLP2+ model.  In the following 
sections, we discuss the effect of including only certain subsets of the valid inequalities, (5.3h)-
(5.3v), used in FLP2+.  We wish to evaluate the effect of these valid inequalities when applied to 
the FLP2 model using our proposed area constraints with 20 tangential supports per department, 
in combination with each of the competitive symmetry breaking methods: position p-q and 
position q.  We note that when appending these valid inequalities to our model, we replace the 
bounds ibl  and iub , respectively, by our tighter bounds s

ibl  and s
iub . 

5.5.1 Root Node Analysis 
In early computational experiments, it became quite evident that the addition of all the 

valid inequalities proposed by Meller et al. led to a  drastic increase in overall solution effort.  
Although the proposed inequalities did reduce the number of nodes enumerated, the trade-off 
between better bounds and increased solution effort was not favorable.  To demonstrate this 
effect, we display the solution effort for a sample of smaller problem instances in Table 5.9.  
Rather than continuing to solve the remaining problems using a solution technique that was 
clearly not effective, we instead conducted an analysis of how the valid inequalities performed 
with respect to the LP relaxation at the root node itself.  Our hope was to determine a subset of 
the proposed inequalities that served to provide a substantial tightening of the LP relaxation, 
without encumbering the associated solution effort.  By solving the root node LP relaxation 
using various subsets of the valid inequalities proposed by Meller et al., we were able to 
determine that the best results were obtained by incorporating only the constraints B2 and V2 
displayed in (5.3j) and (5.3k), respectively.  We display the results pertaining to the objective 
value at the root node in Table 5.10 and to the solution time in Table 5.11.   



Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 95 

 

 
Table 5.9:  Solution Effort for Several Smaller Problems. 

   Symmetry    Valid M6 M7 FO7-2 
   Breaking    Inequalities  Time Nodes Time Nodes Time Nodes 
   Position p-q    None 0.5 34 0.73 86 170 29112 
   Position p-q    All 2.6 9 4.3 8 1100 4314 
   Position q    None 0.76 93 1.4 243 180 32413 
   Position q    All 2.7 10 4.1 6 1500 5736 

 

 

 

Table 5.10: Objective Value at the Root Node Using Various Valid Inequalities. 

Valid Inequalities None All B2 and V2 Only 
Symmetry Pos. p-q Pos. q Pos. p-q Pos. q Pos. p-q Pos. q 
   M3 2038.66 0.00 3778.09 3778.09 3778.09 3778.09
   M4 1374.70 1374.70 5092.96 5092.96 5021.45 5021.45
   M5 1406.77 1406.77 5156.55 5156.55 5053.52 5053.52
   M5-1 1389.12 1389.12 5027.21 5027.21 4927.23 4927.23
   M5-2 1405.95 1405.95 5138.81 5138.81 5053.96 5053.96
   M6 3734.85 0.00 7954.14 7921.83 7921.28 7921.28
   M7 3734.85 0.00 10473.98 10448.08 10376.04 10376.04
   FO7 2.50 0.00 11.88 11.88 11.88 11.88
   FO7-1 2.47 0.00 11.72 11.72 11.72 11.72
   FO7-2 2.28 0.00 10.76 10.76 10.76 10.76
   FO8 3.00 0.00 14.76 14.76 14.76 14.76
   O7 15.00 0.00 44.73 44.66 44.64 44.64
   O7-1 14.81 0.00 44.09 44.03 44.00 44.00
   O7-2 13.67 0.00 41.00 40.89 40.85 40.85
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Table 5.11: Solution Time at the Root Node Using Various Valid Inequalities. 

Valid Inequalities None All B2 and V2 Only 
Symmetry Pos. p-q Pos. q Pos. p-q Pos. q Pos. p-q Pos. q 
   M3 0.02 0.01 0.01 0.03 0.01 0.00
   M4 0.02 0.02 0.04 0.04 0.02 0.01
   M5 0.03 0.03 0.07 0.08 0.02 0.03
   M5-1 0.03 0.03 0.07 0.08 0.03 0.03
   M5-2 0.01 0.02 0.09 0.08 0.01 0.01
   M6 0.03 0.01 0.43 0.43 0.06 0.04
   M7 0.03 0.04 0.40 0.56 0.05 0.04
   FO7 0.08 0.07 1.80 2.00 0.12 0.11
   FO7-1 0.06 0.05 1.70 2.20 0.13 0.11
   FO7-2 0.05 0.06 2.20 2.40 0.14 0.13
   FO8 0.10 0.07 4.00 3.80 0.15 0.14
   O7 0.04 0.05 2.90 2.60 0.17 0.17
   O7-1 0.06 0.05 3.10 2.60 0.14 0.15
   O7-2 0.05 0.05 2.70 2.50 0.13 0.16

 

 First of all, note that the results support the hypothesis of the previous section that the 
position p-q  symmetry breaking strategy increases the value of the LP relaxation, while in some 
cases, also increases the required solution effort.  Note that when using the position q symmetry-
breaking strategy with no valid inequalities, the objective value of the root node is zero for all 
problems having no fixed departments, indicating that the centroids of all the departments are 
placed at a single location.  In contrast, the position p-q symmetry-breaking strategy yields 
strictly positive solution values for all problems by enforcing a centroidal separation for at least 
the two key departments.  (In the case of fixed departments, the symmetry tends to be broken by 
the fixed departments themselves, and no additional symmetry-breaking measures are 
employed.)  Even when using all the valid inequalities, there are several problem instances for 
which the position p-q strategy continues to provide strictly better bounds than the position q 
strategy.   

 The results also indicate that by including all of the valid inequalities proposed by Meller 
et al., the lower bound is substantially increased over that obtained without using any valid 
inequalities.  We note, however, that this increase comes at quite an expense.  For example, each 
of the O problem instances experience an increase in solution time of over 5000% as compared 
to when no valid inequalities are used.  At the same time, however, the increase in the lower 
bounds averages only 198%.  On the other hand, note that the use of only two of the proposed 
valid inequalities (B2 and V2) yields nearly the same increase in the lower bound at only a 
fraction of the computational cost.  On average, using only B2 and V2 achieves a bound equal to 
99.38% of that obtained using all the proposed inequalities, and takes only 16.64% of 
computational effort.  If we omit the relatively simple M problems from this analysis, the 
average bound increases to 99.92% of that obtained using all the proposed inequalities, and the 
time decreases to 5.57% on average.  Given such a promising performance in the root node 
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relaxation, we then examined the effect of including only the B2 and V2 constraints on the 
overall branch-and-bound search process. 

5.5.2 Effect of Valid Inequalities on the Branch-and-Bound Process 
 Table 5.12 displays the overall solution effort when incorporating only the classes of 
valid inequalities B2 and V2.  For convenience, we also display in Table 5.12 the cpu time and 
the number of nodes enumerated when no valid inequalities were included.  For the problems 
having no fixed departments, this data corresponds to the information displayed in Tables 5.6 
and 5.7.    Since no symmetry breaking constraints were investigated for the cases having fixed 
departments, we report the corresponding solution effort obtained in both the columns pertaining 
to the two symmetry breaking strategies for problems M4, M5, M5-1, and M5-2.   

 The results of Table 5.12 show that the valid inequalities B2 and V2 are effective at 
decreasing both solution time and the number of nodes for nearly all problem instances.  A 
notable exception is Problem O7.  For this problem, the inclusion of inequalities B2 and V2 led 
to a substantial increase in effort for both types of symmetry-breaking constraints.  These results 
are not surprising, given the performance of B2 and V2 at the root node for Problem O7.  When 
using the position p-q symmetry-breaking technique, the root node lower bound increased by 
197.6% with the inclusion of B2 and V2, but the solution time increased by 325%, indicating 
that the gains made by introducing B2 and V2 were not worth the computational expense.  We 
note that, under the position p-q symmetry breaking approach, Problem O7 is the only instance 
in this test set for which the percentage increase in the lower bound is lower than the percentage 
increase in time at the root node, thereby helping to explain why using the valid inequalities B2 
and V2 performed much differently on this particular problem.  In practice, when solving a new 
instance of the facility location problem, conducting a quick analysis of how B2 and V2 affect 
the performance at the root node might help the user determine such instances when B2 and V2 
will be detrimental to the overall search process.  (We note that when the position q strategy is 
used and no departments are fixed, the lower bound for the root node relaxation is always zero, 
which precludes the foregoing type of analysis.)  

 We therefore will disregard Problem O7 for the remainder of the analysis in this section 
pertaining to determining the effect of adding B2 and V2.  In addition, we will focus only on 
problems having seven or more departments, since the smaller problems are easily solved under 
any of the methods considered.  Focusing on the remaining seven problems, we note that the B2 
and V2 constraints are particularly effective when used in conjunction with the position p-q 
strategy, reducing both the number of nodes and solution time in every problem instance.  When 
B2 and V2 are used with the position q strategy, the number of nodes enumerated decreases in all 
problem instances except for O7-2, while the solution time increases for problems FO8 and for 
all the O problems.  We also note that when constraints B2 and V2 are used, five of the seven 
problems are solved faster under the position p-q strategy than under the position q alternative.  
Additionally, when using constraints B2 and V2, the seven problems are solved in 3491 seconds 
with the position p-q technique, but require a total of 7181 seconds with the position q method.  
Furthermore, the 3491 second total solution time is by far the lowest of the four studied methods 
thus far, with the position q method using no valid inequalities coming in second with a total of 
4862 seconds.  Given these results, coupled with the fact that using the position p-q strategy  
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Table 5.12: Effect of Valid Inequalities on the Overall Branch-and-Bound Process. 

 Valid  Position p-q  Position q 
Problem Inequalities Time Nodes Time Nodes
M3 None 0.03 1 0.03 3
  B2 and V2 0.04 0 0.04 0
M4 None 0.09 7 0.09 7
  B2 and V2 0.03 3 0.05 3
M5 None 0.09 27 0.09 27
  B2 and V2 0.19 18 0.2 18
M5-1 None 0.07 20 0.07 20
  B2 and V2 0.18 17 0.16 17
M5-2 None 0.75 30 0.75 30
  B2 and V2 0.16 21 0.15 21
M6 None 0.5 34 0.76 93
  B2 and V2 0.39 23 0.38 19
M7 None 0.73 86 1.4 243
  B2 and V2 0.67 51 0.8 88
FO7 None 830 126741 740 124046
  B2 and V2 790 79539 510 66292
FO7-1 None 380 62512 790 147831
  B2 and V2 270 32141 400 49987
FO7-2 None 170 29112 180 32413
  B2 and V2 120 15137 180 21045
FO8 None 2000 284944 1700 219929
  B2 and V2 320 26613 2300 204989
O7 None 2700 452488 1800 285649
  B2 and V2 10000 1322262 4600 530465
O7-1 None 1400 252366 630 98751
  B2 and V2 790 103656 690 84619
O7-2 None 1300 224042 820 136410
  B2 and V2 1200 152607 3100 413497
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permits a simple root node analysis to determine the effectiveness of including valid inequalities, 
we will focus on only the position p-q strategy for symmetry breaking for the remainder of this 
chapter.  Furthermore, the additional enhancements proposed in Section 5.6 will be used to 
augment the current best model revealed thus far, which uses our proposed area constraints (with 
20 tangential supports per department), the position p-q symmetry breaking strategy, and the 
valid inequalities B2 and V2. 

5.5.3 Effect of Valid Inequalities on the FLP2+ Model 
We now take a brief aside to explore the effect of the inequalities proposed by Meller et 

al. on the basic FLP2 model. Given that superior results were attained with our model when we 
used only constraints B2 and V2, as a point of interest, we next performed a small experiment to 
see if a similar result would have occurred without using our proposed area constraints.  Toward 
this end, we constructed the basic FLP2 model of (5.2), retaining the area constraints proposed 
by Meller et al., and replacing (5.2d,e) with the single equality (5.3d).  To this model, we added 
only the inequalities B2 and V2, in place of the entire set proposed in FLP2+.  In addition, we 
evaluated using both the position p-q and position q symmetry-breaking approaches.  Table 5.13 
displays the results obtained, where we have focused on only three problems (M7, FO7, and O7).  
We note that the performance of FLP2+ corresponds to the first line for each problem, in which 
problem symmetry was broken using the position q method, and all valid inequalities were 
included.  The striking result is that for each of the three problems we investigated, the FLP2+ 
model performed the worst out of the five alternatives that we explored.  The best performance 
seems to come from using the position p-q symmetry breaking technique with no valid 
inequalities, although including B2 and V2 also performed well for FO7.  We recall that the B2 
and V2 inequalities were already shown to be rather ineffective on Problem O7 in the previous 
section, yet their inclusion still significantly reduces computational effort as compared to using 
all the proposed valid inequalities of FLP2+.  The results also demonstrate a significant reduction 
in the number of nodes enumerated for the position p-q over the position q method in all 
instances.  Given that Meller et al. demonstrated significant computational gains when using 
FLP2+ over FLP2, we conclude that even more improvement would have been realized had they 
explored the effect of using only a subset of their proposed inequalities, as well as alternative 
methods for reducing problem symmetry.  However, for each of these three problems, their 
model would still have led to solutions having a maximum error in departmental area of over 
5%.  Furthermore, as demonstrated previously, our proposed area constraints produce a structure 
that results in a dramatic decrease  in solution effort over that when using the area approximation 
constraints of Meller et al. 

5.6 Convex Hull Representations of the Separation Constraints 

 In this section, after reviewing the traditional constructs for preventing departmental 
overlaps, we propose two new methods for modeling the associated disjunctive relationships.  
We then show that these formulations exhibit partial convex hull properties.  Additionally, we 
consider several implementation strategies for each of these modeling approaches, in order to 
ascertain computationally favorable options for solving the overall facility layout problem. 
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Table 5.13: Effect of Valid Inequalities on FLP2+. 

Problem Symmetry 
Valid 
Inequalities Time Nodes 

  Position q All 670 5757 
  Position p-q None 96 32508 
M7 Position q None 230 58802 
  Position p-q B2, V2 210 364188 
  Position q B2, V2 470 647774 
  Position q All 10000 79557 
  Position p-q None 1900 732686 
FO7 Position q None 5000 1185908 
  Position p-q B2, V2 1800 507030 
  Position q B2, V2 9500 1796613 
  Position q All 60000 393187 
  Position p-q None 8300 2900017 
O7 Position q None 26000 5230940 
  Position p-q B2, V2 25000 6299996 
  Position q B2, V2 39200* 2244477* 

   * This problem ran out of memory with an 18% integrality gap. 

5.6.1 Traditional Formulation of the Separation Constraints 
 Traditionally, the departmental separation constraints have been modeled through (5.2d), 
(5.2f), (5.2i), and (5.2l).  In order to infer some of the properties associated with this set of 
constraints, we first introduce the following notation:  

 θij
s = cj

s − ci
s  and φij

s = li
s + l j

s for s = x, y, ∀ i < j . (5.17) 

Now, the separation disjunction characterized by (5.2d) at equality, (5.2f), (5.2i), and (5.2l) for 
any i < j can be equivalently modeled as: 

   szL s
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ij ∀−≥ )-(1 φθ     (5.18a) 
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ij ∀−≥− )-(1 φθ     (5.18b) 
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s
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s
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i ∀+≤≤+ )()( φll   (5.18c) 

   ∑
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=+
yxs

s
ji

s
ij zz

,

1)(      (5.18d) 

   z binary.        (5.18e) 
 
We show in Proposition 5.1 that in the case when sLubub ss

j
s
i ∀≤+ 2/ , the continuous 

relaxation of (5.18) yields the convex hull of feasible solutions.  However, if this condition is not 
satisfied, then additional tightening can be achieved. 
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Proposition 5.1.  If sLubub ss
j

s
i ∀≤+ 2/ , then the continuous relaxation of (5.18) defines its 

convex hull. 

Proof.  It is sufficient to show that the extreme points of the set X , defined as the set of feasible 
solutions to (5.18) when (5.18e) is replaced by 0≥z , have binary z-values.  To prove this, we 
will show that under the stated condition, given any linear objective function zfff 321 ++ φθ  
that yields a unique optimum for the problem }),,(:max{ 321 Xzzfff ∈++ φθφθ , we have that 
z is binary valued in this optimal solution.  The foregoing problem can be re-stated as  

 )]}cb,a,18.5(:[max{max 21,30),d18.5(
φθ

φθ
ffzf

z
++

≥
. (5.19) 

For any fixed z  feasible to the outer optimization problem, the inner problem is given by   

  maximize φθ 21 ff +      (5.20a) 
  subject to szLzL s

ji
ss

ij
s

ij
s
ij

ss
ij ∀+≤≤− )-(1- )-(1 φθφ  (5.20b) 
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j

s
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s
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i ∀+≤≤+ )()( φll  (5.20c) 

 
Given that sLubub ss

j
s
i ∀≤+ 2/ , for any φ  feasible to (5.20c), the constraint (5.20b) always 

provides feasible bounds for s
ijθ ; that is,  

    szLzL s
ji

ss
ij

s
ij

ss
ij ∀+≤− )-(1- )-(1 φφ . (5.21) 

 
To see this, note that after regrouping terms, (5.21) corresponds to the restriction that  

    szzL s
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s
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s
s
ij ∀+≤ )](-[2

2
φ .   (5.22) 

 
Given that sLubub ss

j
s
i ∀≤+ 2/  and noting (5.20c), we have that  

  szzLLubub s
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s
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s
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j
s
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s
ij ∀+≤≤+≤ )](-[2

2
2/φ , 

  
where the right-most upper bound is satisfied since 0≥z  and z  is feasible to (5.18d).  
Consequently, we can rewrite (5.19) as follows:  

 )]}(max[max{max 1b)a,18.5(:2c)18.5(:30),d18.5(
θφ

θφ
ffzf

z
++

≥
. (5.23) 

 Note that we can solve (5.23) by setting s
ijθ  for each s equal to its appropriate bound given in 

(5.18a,b), noting the coefficients of 1f  and then setting s
ijφ  for each s equal to its appropriate 
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bounds based upon the resulting objective coefficients.  This  reduces the problem (5.23) to 
effectively maximizing an affine function 54 fzf + , say, subject to (5.18d) and 0≥z , as stated 
below: 

 }0,1)(:max{(
,

54 ≥=++ ∑
=

zzzfzf
yxs

s
ji

s
ij . (5.24) 

By assumption, the solution to (5.19) (and therefore (5.24)) is unique, indicating that the solution 
lies at an extreme point of the feasible region of (5.24).  Since (5.24) has purely binary vertices, 
this completes the proof.   ! 

We emphasize that the separation embodied in (5.23) would not be possible without the 
assumption that sLubub ss

j
s
i ∀≤+ 2/ , since otherwise, values of φ  feasible to (5.20c) alone 

could lead to inconsistent bounds for θ  in the innermost optimization problem.  In the next 
section, we develop a model for the separation constraints that retains the convex hull properties 
without such an assumption. 

5.6.2 Alternative Formulation of the Separation Constraints 
 As we have shown in the previous section, the continuous relaxation of (5.18) can be 
tightened in certain situations.  In this section, we consider an alternate set of separation 
constraints whose continuous relaxation captures the convex hull regardless of whether 

2/ss
j

s
i Lubub ≤+ .  Toward this end, let us use the notation of (5.17) and consider the separation 

disjunction for any i < j: 

 ∨
s = x

y
(θij

s ≥ φij
s ) ∨ (−θij

s ≥ φij
s ) , (5.25) 

where  
  
−(Ls − lbi

s − lbj
s ) ≤ θij

s ≤ (Ls − lbi
s − lbj

s)  and 
  
(lbi

s + lbj
s) ≤ φij

s ≤ (ubi
s + ubj

s)  for  s = 
x, y.  Defining 

 
  
Ms = Ls + (ubi

s − lbi
s ) + (ubj

s − lbj
s )   for s = x, y, (5.26) 

we can model this disjunction as follows: 

   θij
s ≥ φij

s − Ms (1 − zij
s )  for s = x, y   (5.27a) 

   −θij
s ≥ φij

s − Ms (1 − zji
s )   for s = x, y  (5.27b) 

   
  
−(Ls − lbi

s − lbj
s ) ≤ θij

s ≤ (Ls − lbi
s − lbj

s)   for s = x, y (5.27c) 

   (lbi
s + lbj

s) ≤ φij
s ≤ (ubi

s + ubj
s)   for s = x, y (5.27d) 

   (
s=x

y

∑ zij
s + z ji

s ) = 1     (5.27e) 

   z binary.        (5.27f) 
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We can now use the GUB structured RLT process described in Sherali et al. (1998) to 

construct the convex hull of (5.27).  Let us define the following set of continuous variables, 
given any i < j. 

 cij
s , cji

s , lij
s , l ji

s , ∆ij
s ,  and δij

s , for s = x, y. (5.28) 

Applying conditional logic, along with an aggregation that maintains the convex hull 
representation, yields a reformulation of (5.27) shown below in (5.29).  Propositions 5.2 and 5.3 
below verify the validity and convex hull property of this representation, which introduces 
6n(n − 1) new (continuous) variables.  For convenience, because of several equivalent 
reductions involved in deriving (5.29), we provide a self-contained proof independent of RLT 
constructs. 
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 θij
s = cij

s − cji
s + ∆ij

s         for s = x, y (5.29g) 
 φij

s = l ij
s + l ji

s + δij
s         for s = x, y (5.29h) 

 (zij
s + z ji

s ) = 1
s=x

y

∑          (5.29i) 

 z binary.           (5.29j) 
 
Proposition 5.2.  Let ξ represent the set of variables listed in (5.28), and let θ, φ and z be vectors 
of the corresponding subscripted variables.  Then, (5.27) and (5.29) are equivalent in the sense 
that for any (θ, φ, z) feasible to (5.27), there exists a ξ such that (θ, φ, z, ξ) is feasible to (5.29).  
Conversely, given any (θ, φ, z, ξ) feasible to (5.29), we have that (θ, φ, z) is feasible to (5.27). 

Proof.  Consider any (θ, φ, z) feasible to (5.27). Noting (5.27e), assume that zij
x = 1 and 

zji
x = zij

y = z ji
y = 0.  (The other three cases are similar.)  Hence, from (5.27a), we have 

 θij
x ≥ φij

x . (5.30) 

Now, in (5.29), let us select  

  cij
x = θij

x, l ij
x = φij

x, cji
x = cij

y = cji
y = l ji

x = l ij
y = l ji

y = ∆ij
x = δij

x = 0 , ∆ ij
y = θij

y,  and δij
y = φij

y .   

Then it is readily verified that (θ, φ, z, ξ) is feasible to (5.29), noting (5.30) and (5.27c,d). 
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Conversely, consider any feasible solution (θ, φ, z, ξ) to (5.29).  Again, let us assume that 
zij

x = 1 and z ji
x = zij

y = z ji
y = 0 , with the other three cases of 0-1 assignments to the z-variables 

via (5.29i) being similar.  From (5.29c, d), we get  

 
  
(lbi

x + lbj
x ) ≤ l ij

x ≤ (ubi
x + ubj

x ),  while l ji
x = lij

y = l ji
y = 0. (5.31) 

Consequently, from (5.29a, b), we have 

 
  
l ij
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x ≤ (Ls − lbi

x − lbj
x ),  while cji

x = cij
y = cji

y = 0. (5.32) 

Furthermore, (5.29e, f) yield that ∆ ij
x = δij

x = 0 , while 
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s ububububbbLbbL +≤≤+−−≤∆≤−−− δllll . (5.33) 

Finally, (5.29g, h) assert, using (5.30), (5.31) and (5.32), that  

 θij
x = cij

x  and φij
x = l ij

x , while θij
y = ∆ij

y  and φij
y = δij

y . (5.34) 

From (5.29i, j) and (5.31)-(5.34), we have that (5.27c-f) are satisfied.  Moreover, (5.32) and 
(5.34) assert that (5.27a) holds true when xs = , while the remaining constraints in (5.27a,b) 
which require that φij

x + θij
x ≤ Mx , and φij

y ± θij
y ≤ My  are implied by the bounds (5.27c, d).  

This completes the proof.   ! 

Proposition 5.3.  The continuous relaxation of (5.29) defines the convex hull of feasible 
solutions to (5.27). 

Proof.  Given the assertion of Proposition 5.2, it is sufficient to show that the extreme points of 
the set X, defined by (5.29a-i) along with z ≥ 0, have binary values of z.  Toward this end, we 
will show that the maximization of any linear objective function over X that yields a unique 
optimum (θ *, φ*, z* , ξ* )  in the notation of Proposition 5.2, necessarily has 0-1 values for z* .  
Given any such linear program to maximize g1θ + g2φ + g3z + g4ξ , say, subject to (θ, φ, z, ξ ) in 
X, we can rewrite this problem as  

 )}}h29.5()a29.5(:{maximize{maximize 421),,(3)i21.5(,0
−+++

≥
ξφθ

φθ
gggzg

zz
. (5.35) 

The inner maximization problem can be solved as follows. First, using (5.29g,h), we can 
substitute θ and φ out of the problem. Next, note that ∆ ij

s  and δij
s , for s = x, y, can be set at their 

appropriate bounds in (5.29e,f), depending on the signs of the resulting objective coefficients. 
The remaining problem is separable in the sets of variables   (cij

s , lij
s ) and (cji

s , l ji
s ) for s = x, y, 

where the corresponding constraints in (5.29a-d) for each of these subproblems have all their 
right-hand sides scaled by zij

s  or z ji
s , respectively.  Hence, by LP duality, s

ji
s
ji

s
ij

s
ij cc ll ,,,  for s = x, y, 

can each be obtained as linear functions of the z-variables. This means that the inner 
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maximization problem in (5.35) can be reduced to a linear function g5z , say, of z. Consequently, 
(5.35) reduces to the problem 

maximize{(g3 + g5) ⋅ z : (zij
s

s =x

y

∑ + zji
s ) = 1, z ≥ 0}. (5.36) 

The optimum value z*  is therefore given by the solution to (5.36), which under the hypothesis of 
uniqueness and noting that (5.36) has binary vertices, asserts that z*  is binary valued. This 
completes the proof.   ! 

We will investigate the computational effectiveness of this method after detailing an 
alternative formulation for the separation constraints in the next section.  Throughout the 
remainder of the chapter, we refer to the model obtained by replacing (5.2f) with (5.29) as DJ1. 

Remark 5.1.  We note that by using the tighter bounds sL , we could have directly constructed 
the convex hull of (5.18) to yield a tighter, though larger, representation than (5.29). This convex 
hull could have been derived by applying the GUB-specialized RLT process described in Sherali 
et al. (1998), but in this case, the simplification yields a larger representation than (5.29).  
Therefore, we postpone the task of evaluating this formulation for future research. 

 Observe also by the proof of Proposition 5.1 that if we had formulated (5.18) by using the 
weaker bounds sM  given by (5.26) in lieu of sL , then the continuous relaxation of (5.18) would 
yield the convex hull representation whenever  

sLbbubub ss
j

s
i

s
j

s
i ∀≤+++ 2/ll . (5.37) 

However, whether (5.37) holds true or not, the representation (5.27) is tighter than (5.18) with sL  
replaced by sM  since (5.27c) is not then implied by the latter.  (Actually, (5.27) is related to 
(5.18) in the manner of having added (5.27c) that is implied by the continuous relaxation to 
(5.18), but then replacing sL  by sM  in (5.18a,b).  However, (5.29) then tightens the resulting 
formulation by creating its convex hull representation.)  Thus, we might expect (5.29) to be 
perhaps beneficial over (5.18), particularly when (5.37) does not hold true.   ! 

5.6.3 A Distance-Based Formulation of the Separation Constraints 
We now present an additional enhancement of the model FLP2 that uses the distance 

relationships themselves to develop a disjunctive formulation that would prevent departments 
from overlapping.  Rather than beginning from the traditional FLP2 formulation presented in 
(5.2), we instead consider the basic FLP model presented in (5.1).  For the Area Constraints in 
(5.1b), we continue to use the outer-linearization presented in Section 5.3.  We focus here on an 
alternative representation of (5.1c) and (5.1d). 

First, let us consider the Separation Constraints (5.1c), assuming that (5.1d) has been 
modeled as an equality, in contrast with the pair of inequalities 
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 dij
s ≥ ci

s − cj
s  and dij

s ≥ cj
s − ci

s ∀ i < j, s . (5.38) 

In this case, we can model (5.1c) directly in terms of the dij
s -variables themselves via the 

disjunction 

 (dij
x ≥ li

x + l j
x) ∨ (dij

y ≥ l i
y + l j

y ) ∀ i < j . (5.39) 

For each i < j, let us define the binary variable 

  



=
direction-  thealong enforced is separation  theif  0,

direction-  thealong enforced is  and  between separation  theif  1,
y

xji
wij  (5.40) 

and let 

 Qij
s = minimum{Ls, ubi

s + ubj
s} ∀ i < j, s . (5.41) 

Consider the following modeling of (5.39), ∀ i < j , which is readily verified to be valid. 
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Suppose that given any i < j, we define ss

j
s
i

s
ij ∀+= llφ  as in (5.17), and construct the set 
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      ij
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s
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s
ij wsdsQ ,0,0 ∀≥∀≤≤ φ  binary}. (5.43c) 

 
Let us denote X ij  to be the continuous relaxation of Xij  in which the binary restriction on ijw  is 

replaced by 10 ≤≤ ijw .  Proposition 5.4 asserts that conv(Xij ) = X ij , and so, any further 
tightening of (5.42) would need to involve more relationships than inherent within the 
representation (5.43). In essence, this would expand to the development of the foregoing section.  
Consequently, we model the separation constraints (5.1c) via (5.43) here, along with binary 
restrictions on the w-variables.   

Proposition 5.4.  Conv(Xij) = X ij . 

Proof.  It is sufficient to show that ijw  is binary at each vertex of X ij .  Toward this end, let us 
divide (5.43a) and (5.43b) by Qij

x  and Qij
y , respectively, and accordingly, define dij

′ s = dij
s / Qij

s  
and sQ s

ij
s

ij
s
ij ∀=′ /φφ .  This yields an equivalent representation of X ij  via the constraints 
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    ij
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y

ijij
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ij
x
ij wdwd −≥−−≥ ′′′′ φφ ),1(   (5.44a) 

    10,0,10 ≤≤≥∀≤≤ ′′
ij

s
ij

s
ij wdsφ .  (5.44b) 

 
Noting the total unimodularity (see Bazaraa et al., 1990) of the constraint set (5.44), we have that 

ijw  is binary at each extreme point, and this completes the proof. ! 

Remark 5.2.   Recall that one of the two particularly effective valid inequalities from the FLP2+ 
model was the constraint referred to as V2, reproduced here for convenience. 

 )1}(,min{ s
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s
ij zzLububd −−+−+≥ ll . (5.45) 

Noting the definitions in (5.40) and (5.41), we can see that (5.45) directly corresponds to our 
representation (5.42).  Since we have shown that (5.42) captures the convex hull of feasible 
solutions for the disjunction in (5.39) in the sense of Proposition 5.4, we have gained insight into 
why the constraint set V2 was particularly helpful in tightening the FLP2 formulation.  
Furthermore, the constraint set B2, which was also effective in tightening the FLP2 formulation, 
can also be stated in terms of ijw  as follows:  
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Therefore, we can also include this constraint set in the proposed model.   ! 

Next, let us proceed to model (5.1d). Toward this end, for each i < j, let us define the binary 
variables sy s

ij ∀  as 
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 (5.47) 

with the choice of 0 or 1 being inconsequential when ci
s = cj

s .  Furthermore, let us define an 
upper bound on dij

s  as 

 Uij
s = Ls − lbi

s − lbj
s ∀ s . (5.48) 

Then, for each i < j, and each s = x, y, consider the following representation of (5.1d), where we 
have introduced a set of new continuous variables Dij

s . 
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ij yUD ≤≤0       (5.49c) 

   s
ijy  binary.       (5.49d) 

 
Proposition 5.5.  For each i < j, and each s = x, y, the constraints (5.49) yield a valid 
representation of the relationship (5.1d). 

Proof.  When 1=s
ijy , we have from (5.49b) that Dij

s = (c j
s − ci

s ), which gives from (5.49a, c) 

that s
ij

s
i

s
j

s
ij Uccd ≤−=≤ )(0 .  Similarly, when 0=s

ijy , we obtain Dij
s = 0 from (5.49c), and 

(5.49a, b) yield 0 ≤ dij
s = ci

s − cj
s ≤ Uij

s .  Hence, (5.49) is a valid representation of (5.1d).  This 
completes the proof. ! 

 Next, let us define θij
s = cj

s − ci
s  as in (5.17), and consider the following set based on 

(5.49). 

 :),,,{( s
ij

s
ij

s
ij

s
ij

s
ij yDd θχ =  

      dij
s = 2Dij

s − θij
s

    (5.50a) 
      )1(0 s

ij
s
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s
ij

s
ij yUD −≤−≤ θ   (5.50b) 

      s
ij

s
ij

s
ij yUD ≤≤0     (5.50c) 

      s
ijy  binary}.    (5.50d) 

 
Then, the following result motivates the (unconventional) representation (5.49) of (5.1d), where 
χ ij

s  is given by (5.50) with (5.50d) being replaced with 10 ≤≤ s
ijy . 

Proposition 5.6.  s
ij

s
ijConv χχ =)( . 

Proof.  Consider the nonsingular linear transformation 

 α = Dij
s / Uij

s , β = (Dij
s − θij

s ) / Uij
s ,  and γ = dij

s / Uij
s . (5.51a) 

This has an inverse given by  

 Dij
s = αUij

s , θij
s = (α − β)Uij

s ,  and dij
s = γUij

s . (5.51b) 

Consequently, under (5.51), χ ij
s  is equivalently transformed into the following set, where there is 

a one-to-one preservation of extreme points because of the nonsingularity of (5.51). 

  :),,,{( s
ij

s
ij yγβαχ =   

     −α − β + γ = 0    (5.52a) 
                   1≤+ s

ijyβ     (5.52b) 
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       α          � 0≤s
ijy     (5.52c) 

     }10,0),( ≤≤≥ s
ijyβα .   (5.52d) 

 
Noting the total unimodularity (see Bazaraa et al., 1990) of (5.52), we have that s

ijy  is binary at 
all extreme points of χ ij

s , and this completes the proof.   ! 

 Upon eliminating the variables s
ijD  using (5.49a) and noting the definitions in (5.40) and 

(5.46), the complete representation of the proposed model can be obtained as (5.53) below, 
where the subscripts p and q refer to the two departments whose orientation is fixed in order to 
reduce problem symmetry.  Naturally these related constraints are omitted whenever we have 
any fixed departments, and also in this case, the corresponding centroidal variables are fixed in 
value.  We refer to this model as DJ2. 

 DJ2:  Minimize ∑
∈

+
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       l i
s ≤ ci

s ≤ Ls − l i
s ∀ i, s   (5.53i) 

     lbi
s ≤ li

s ≤ ubi
s ∀ i, s    (5.53j) 

     sjid s
ij ,0 <∀≥     (5.53k)  

     sjiy s
ij ,binary <∀     (5.53l) 

     jiwij <∀binary .    (5.53m) 
 
 Note that the formulation in (5.53) yields 3n(n − 1) / 2  binary variables, which is similar 
to the formulation of Meller et al. when (5.2d) is written as an equality and one of the four binary 
variables is eliminated for each i < j.  Furthermore, it contains the same number of continuous 
variables.  However, our model representation captures certain partial convex hull 
characterizations and imparts a different structure that is worth evaluating computationally.    
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5.6.4  Computational Analysis of the Alternative DJ1 and DJ2 Formulations 
 We initially evaluated the performance of using the DJ1 and DJ2 formulations in their 
entirety as presented in the foregoing sections.  Very early on, however, it became quite clear 
that these formulations would lead to a dramatic increase in solution time as compared with the 
model that uses only the valid inequalities B2 and V2, in combination with our proposed area 
and symmetry breaking constraints.  For example, in considering the total solution time for all of 
the FO problems, the solution time increased over eight times when using DJ1 and over thirty 
times when using DJ2.  We attribute this dramatic increase to the large increase in problem size 
for DJ1.  For DJ2, however, we suspect that the elimination of the SOS constraints (5.3d) from 
the model formulation, which most solvers exploit to make more efficient specialized branching 
decisions, is responsible for the increase in solution effort. 

We therefore considered several alternative strategies in order to impart some of the 
tightness accruing from these new formulations, while limiting the increase in problem size and 
retaining the SOS constraints of the previous models.  As noted earlier, (5.29) presents a tighter 
formulation of the disjunctive constraints presented in (5.2f), and therefore the constraints (5.2f) 
are replaced by the constraints (5.29) in the model DJ1.  Rather than using the complete 
representation DJ1, we considered the option of using (5.29) only for one pair of departments, 
taken as the positively interacting (non-fixed) pair having the largest total area, and retaining 
(5.2f) for all other pairs.  Similarly, we implemented the representation DJ2 for only one pair of 
departments.  That is, using the traditional FLP2 model, we replaced the distance relationships in 
(5.2g) with those in (5.53) (including the valid inequalities (5.53e,f)) for only one pair of 
departments.  In so doing, we defined the variables ijw  and s

ijy  only for the key ),( ji  pair for 

which (5.53) is constructed, while the variables s
ijz  were defined and used to represent the 

separation relationships for all the other ),( ji  pairs as before.  We note that  this model defines 
the variables s

ijd  for only those pairs Pji ∈),( , and also retains the SOS structure of the model 
for all but the single pair of departments identified above for implementing (5.53). 

 As an additional alternative to DJ2, we considered translating the implied upper bounds 
on the s

ijd  variables in (5.53c,d) to conform with the definitions of the s
ijz  variables in order to 

derive a new class of valid inequalities.  Recalling the definitions (5.47) and (5.48), constraints 
(5.53c,d) induce the derivation of the following relationships that can be readily verified to be 
valid.    

   sjizUccd s
ji

s
ij

s
j

s
i

s
ij ,)1(2 <∀−+−≤   (5.54a) 

   sjizUccd s
ij

s
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s
i

s
j

s
ij ,)1(2 <∀−+−≤ .  (5.54b) 

 
We refer to this class of upper bounding valid inequalities as UB inequalities, and we discuss 
below its effect when incorporated within the previously derived models. 

 Tables 5.14 and 5.15 present the results of our computational analysis.  We note that all 
of the M problems continued to be solved in under one second for each of the studied 
alternatives.  For this reason, we focus only on the FO and O problems in this analysis.  Table  
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Table 5.14: Effect of the New Disjunctive Formulations and the UB Inequalities on the 
Solution Effort. 

  UB-Inequalities 
  None All 
Problem Model Time Nodes Time Nodes 
 No DJ 790 79539 430** 40175 
FO7 DJ1 for 1 pair 320* 32604 760 66182 
 DJ2 for 1 pair 480 54947 460 52371 
 No DJ 270 32141 200** 22715 
FO7-1 DJ1 for 1 pair 240 29144 280 32629 
 DJ2 for 1 pair 190* 24993 330 42798 
 No DJ 120 15137 65* 8099 
FO7-2 DJ1 for 1 pair 91 12006 87 10670 
 DJ2 for 1 pair 80** 11270 83 11364 
 No DJ 320* 26613 450** 33837 
FO8 DJ1 for 1 pair 510 47535 800 68014 
 DJ2 for 1 pair 810 88097 750 72872 
 No DJ 10000 1322262 3000** 313585 
O7 DJ1 for 1 pair 3800 466459 3600 378341 
 DJ2 for 1 pair 6100 820029 2500* 320297 
 No DJ 790* 103656 900 103903 
O7-1 DJ1 for 1 pair 830** 91152 1700 160084 
 DJ2 for 1 pair 1200 161309 1500 188576 
 No DJ 1200** 152607 3900 488526 
O7-2 DJ1 for 1 pair 1400 166682 1500 168688 
 DJ2 for 1 pair 890* 126146 2200 266564 

* Minimum solution time for this problem instance. 
** Second smallest solution time for this problem instance. 

 

 

Table 5.15: Total Time and Total Ranking for Disjunctive Models. 
 UB-Inequalities 
 None All 

Model 
Solution 

Time 
Time 

Ranking 
Solution 

Time 
Time 

Ranking 
No DJ 13490 26 8945 19+ 
DJ1 for 1 pair 7191* 21++ 8727 32 
DJ2 for 1 pair 9750 22 7823** 27 

* Minimum total solution time.  + Minimum total rank-sum. 
** Second smallest total solution time. ++ Second smallest total rank-sum. 
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5.14 compares the results for each problem using each of the six techniques composed by using 
neither DJ1 nor DJ2 (referred to as No DJ), DJ1 for the single identified pair, and DJ2 for the 
single identified pair, each with or without the class (5.54) of UB inequalities.  Here we have 
used the position p-q symmetry breaking technique for each of the disjunctive models, and the 
results for the No DJ - No UB inequalities case correspond to the results displayed previously in 
Table 5.12.  The results indicate that, in general, the disjunctive enhancements are effective in 
decreasing the solution effort, although some of the disjunctive techniques are not as effective as 
others.  Note that each of the disjunctive enhancements succeeded in significantly reducing the 
solution time for problem O7, which had previously exhibited a substantial increase in effect 
upon including the valid inequalities B2 and V2.  Of the proposed disjunctive methods, we see 
that using DJ1 for one pair of departments has the lowest total solution time, while using the UB 
inequalities along with the No DJ option provides the lowest total rank-sum when the methods 
are ranked in increasing order of solution times.  For this reason, we will focus on only these two 
methods in the evaluation of the three challenging problems (O8, FO9, O9) that we analyze in 
the next section.   

 However, before proceeding, it might be instructive to reflect on why the class of UB 
inequalities proves to be effective, although the objective function is attempting to minimize the 
weighted sum of distances.  The reason for this is that in concert with the other problem 
constraints and valid inequalities that impose lower bounds on these distance variables, the 
UBinequalities induce additional relationships that must be satisfied (so that the lower bounding 
expressions are less than or equal to the corresponding upper bounding expressions).  Evidently, 
these additional implied relationships help further tighter the model representation. 

5.7  Computational Results for the Most Challenging Test Problems 

 Throughout the previous sections, we have outlined and evaluated a series of proposed 
enhancements for the MIP formulation of the facility layout problem.  At this point, we turn our 
attention to the three larger problems that remained previously unsolved in the literature using 
the FLP2+ model.  Having narrowed our focus to only two potential models, we now solve these 
three problems with each of these models.  In both of the proposed models, we use the proposed 
area constraints along with 20 tangential supports, include the valid inequalities B2 and V2, and 
reduce problem symmetry using the position p-q approach.  In the first model, we employ the 
disjunction DJ1 for one pair of departments as identified in Section 5.6.4, while for the other 
model we include the class of UB-inequalities with no other disjunctive enhancements.  The 
results of this analysis are presented in Table 5.16, where for the sake of comparison, we also 
display the results obtained using the previously best FLP2+ model. 

 We first note that both of our proposed models were able to solve Problem FO9, using a 
0.01% optimality tolerance, within the allowable limits on time (24 hours) and tree memory (390 
MB), even though this problem had been previously unsolved in the literature.  Furthermore, 
both of our models obtained optimal solutions that had a maximum error in departmental area of 
0%.  That is, each of the departments exactly met the proposed area requirements.  On the other 
hand, the FLP2+ model was terminated (upon reaching the 24-hour time limit) with a 10.14% 
optimality gap, and its best-known integer solution had a maximum error of 4.62% with respect  
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Table 5.16: Accuracy and Solution Effort for the More Challenging Test Problems. 

Problem Model 
Best Integer 
Solution 

Optimality 
Gap (%) 

Maximum
Error (%) 

Solution 
Time 

Number 
of Nodes 

FO9 FLP2+ 23.35 10.14 4.76 86400* 66386 
 DJ1 for 1 pair 23.46 0.00 0.00 5900 407779 
 UB-Inequalities 23.46 0.00 0.00 11000 625275 
O8 FLP2+ 248.00 26.45 4.96 86400* 107334 
 DJ1 for 1 pair 251.65 15.32 0.04 37060+ 2423000 
 UB-Inequalities 257.52 22.34 0.03 36000+ 2039034 
O9 FLP2+ 277.76 40.00 7.14 86400* 50442 
 DJ1 for 1 pair 269.49 32.92 0.03 33000+ 1985589 
 UB-Inequalities 270.71 35.06 0.10 32000+ 1890026 

  * Terminated due to 24-hour time limit. 
  + Terminated when memory requirements for the search tree reached 390 MB. 

 

to departmental areas.  In addition to having a lower quality of solution as compared to our 
proposed models, we observe that the FLP2+ had a solution time of over fourteen times that 
obtained when using the model with DJ1 for one pair of departments, and this time would have 
been even larger if not for the time limit that we imposed.   

While neither of our proposed models could solve Problems O8 and O9 to exact 
optimality, they did substantially reduce the optimality gap at termination.  We note that both of 
our models were terminated due to the amount of memory required for the search tree, while the 
FLP2+ model was terminated due to the 24-hour time limit.  As such, the FLP2+ model was run 
for an average of 2.5 times as long as the proposed models.  Nonetheless, the model using the 
UB Inequalities reduced the optimality gap of the FLP2+ solution by an average of 13.93%, 
while the model using DJ1 for one pair of departments reduced the gap by 29.65%.  (The 
optimality gaps for FLP2+ for the problems O8 and O9 were 26.45% and 40%, respectively, 
while the optimality gaps for these test instances using the better of methods (DJ1 for once pair 
of departments) were 15.44% and 32.92%, respectively, at termination.)  Furthermore, both of 
our proposed models led to a dramatic reduction in the maximum error for departmental areas.  
Therefore, even for the problems that could not be solved to optimality, both of our proposed 
models still demonstrated significant advantages over the FLP2+ model. 

Upon examining the results for the three more challenging problems, it is clear that the 
model using DJ1 for one pair of departments outperforms the model using the UB Inequalities.  
While each of these models solved Problem FO9 to optimality, the UB-Inequalities solution time 
was nearly twice that of the DJ1 model.  For each of the two problems (O8 and O9) that could 
not be solved to optimality, the DJ1 model provided tighter bounds at termination than the UB-
Inequalities model.  Considering the performance on these more challenging problems, coupled 
with the results exhibited on the previous test problems, we recommend the model using DJ1 for 
one pair of departments as the most effective of our proposed models.  We conclude by noting 
that the initial evaluation of the complete DJ1 model led to very discouraging results.  Only upon 
experimenting with its implementation by applying it to only one pair of departments was the 
strength of this formulation realized.  
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5.8  Conclusions 

In this chapter, we have developed a variety of enhancements for an MIP formulation of 
the facility layout problem.  Through a series of computational tests performed on a set of 
problems from the literature, we have shown that our proposed enhancements are very effective 
in increasing the accuracy of solutions while simultaneously decreasing solution effort.  Our 
computational analysis has demonstrated that the proposed area constraints systematically drive 
the maximum error in departmental area to zero as the number of tangential supports increase.  
Additionally, we have proposed a new symmetry breaking approach that reduces computational 
effort, particularly when employed in conjunction with effective valid inequalities and 
disjunctive models.  We have also conducted a thorough analysis of previously proposed valid 
inequalities for this problem, which has revealed that retaining only a limited subset of these 
inequalities can significantly decrease the solution time.  Finally, we have examined several 
alternative methods for modeling the disjunctive relationships that prevent departments from 
overlapping, and we have shown that these characterizations capture certain partial convex hull 
properties and induce additional useful classes of valid inequalities. 

Our computational analysis indicates that the best performance was obtained using the 
model DJ1 for one pair of departments.  This model used the tightened bounds (5.8) on the half-
length and half-width of each department, as well as the area constraints (5.9) � (5.11) with 20 
tangential supports per department.  The symmetry of the problem was reduced using the 
Position p-q strategy as presented in (5.15) - (5.16), and the valid inequalities B2 and V2 (5.3j,k) 
were included for all positively interacting pairs of departments.  In addition, the disjunctive 
relationship of (5.29) was included for one key pair of departments, taken as the positively 
interacting pair having the largest total area.  The next most effective model, denoted as UB 
Inequalities, used the same area constraints, symmetry breaking approach, and valid inequalities 
as the foregoing model.  However, rather than including the DJ1 representation for one pair of 
departments, this model included the UB inequalities (5.54) for all positively interacting 
departments.  Recalling that these UB inequalities were derived from the disjunctive 
representation DJ2, we see that the two best performing models were obtained by experimenting 
with alternative representations for the DJ1 and DJ2 formulations, which each led to increased 
solution time when applied in their original form. 

As a final comparison between the performance of our proposed model (DJ1 for one pair 
of departments) and FLP2+, Table 5.17 summarizes the factor of improvement (corresponding 
FLP2+ value divided by our model value) in the optimal objective value, the maximum error, 
and the solution time for all the test problems.  Note that in some cases, our proposed model 
leads to an increase in the optimal objective value, since the optimal solution produced by the 
FLP2+ turns out to be infeasible to our more accurate area constraints.  However, the maximum 
departmental error and solution time of our proposed model are dramatically smaller than those  
achieved using the FLP2+ model.  Considering all of the test problems evaluated throughout this 
chapter, the solutions obtained using the FLP2+ model have maximum errors of 13 to 904 
timesas large as those obtained using our proposed model.  Additionally, for all problems that 
were solved by FLP2+ within the 24-hour time limit, the solution time for the FLP2+ model was 
cut by a factor of 6 to 1456 times using our proposed model.    
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Table 5.17: Factor of Improvement over FLP2+. 

Problem Objective Error
Solution 

Time 
M3 1.04 71.62 8.67 
M4 1.04 71.62 6.60 
M5 n/a1 n/a1 13.811 
M5-1 1.25 75.58 14.29 
M5-2 1.46 13.71 27.50 
M6 1.14 18.38 102.56 
M7 1.22 25.69 1456.52 
FO7 1.18 137.61 31.25 
FO7-1 0.99 15.52 15.42 
FO7-2 1.00 904.46 16.48 
FO8 1.18 18.00 129.41 
FO9 1.00 n/a2 2.33 
O7 1.15 112.98 15.79 
O7-1 1.06 17.50 20.48 
O7-2 1.02 46.66 7.14 
O8 0.99 124.09 2.33 
O9 1.03 278.91 2.62 

   1 This problem was found infeasible by FLP2+ but not with our model. 
   2 Using our proposed method, the solution had a maximum error of 0%. 
 

 Our computational analysis has amply demonstrated that the proposed enhancements for  
FLP2 provide a dramatic decrease in solution effort while providing a more accurate 
representation of the underlying problem.  We note that although substantial computational 
advances have been made, several moderately large sized problems cannot yet be solved to 
optimality within a reasonable amount of time.  For this reason, we believe that further research 
breakthroughs are needed in this area.  Although our improved model representation can enable 
the solution of larger instances to reasonable tolerances of optimality, further improvements can 
reduce the latter total for relatively larger sized problems.  Throughout this chapter, we have 
considered a series of proposed enhancements in a sequential manner.  We recommend that any 
future research into this or other difficult MIP problems should take a similar approach, since our 
computational analysis revealed that many previously proposed valid inequalities led to an 
increase in computational effort, rather than the decrease that was surmised, and other 
approaches that could have been dismissed when applied as developed within our framework, 
turned out to be beneficial when implemented in a modified or reduced fashion.   
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Chapter 6: Conclusions and Future Research 
While efficient solution techniques for linear and convex programming are well-known, 

the most pressing challenge to the optimization community is to develop efficient solution 
techniques for the class of nonconvex optimization problems.  These problems remain difficult to 
solve to optimality, despite advances in computer processing speed and memory.  Typically, both 
continuous and discrete types of nonconvex problems are solved through the same types of 
enumerative techniques.  Without tight bounds, the search process would hopelessly continue to 
explore vast extents of non-improving areas of the solution space and thereby dramatically 
increase computational effort.  Therefore, it is imperative to employ both general-purpose and 
problem-specific techniques, in conjunction with existing methods, to develop tight model 
formulations for all classes of nonconvex optimization problems. 

This dissertation has focused on a set of general and specific problems in nonconvex 
optimization,  providing theoretical developments that, in turn, have led to more efficient 
solution techniques.  This dissertation can generally be separated into three major areas, each 
dealing with a different type of nonconvex optimization problem.  Each of these endeavors has 
sought to combine traditional and modern optimization techniques in novel ways in order to 
create even more efficient solution strategies.  The first portion on this research uses concepts 
from the recently emerging field of semidefinite programming to develop a new class of cutting 
planes that can be used to enhance general RLT formulations.  The second area combines 
traditional Benders� decomposition techniques with modern RLT and lift-and-project cutting 
planes in order to develop a solution technique for stochastic integer programs and other suitable 
discrete optimization problems.  The final part of this dissertation uses the concepts of outer-
linearizations, symmetry breaking techniques, and disjunctive programming to tighten an MIP 
formulation for the facility layout problem.  Throughout each of these endeavors, we have relied 
on problem-specific and general purpose approaches, in combination with a variety of 
optimization techniques, in order to develop solution methodologies that significantly advance 
the state-of-the-art. 

The first part of the dissertation develops a mechanism to tighten RLT-based relaxations 
by importing concepts from semidefinite programming (SDP), leading to a new class of 
semidefinite cutting planes.  Given an RLT relaxation, the usual nonnegativity restriction on the 
matrix of RLT product variables is replaced by a constraint that the matrix of variables remain 
positive semidefinite.  Instead of relying on specific SDP solvers, the definition of positive 
semidefiniteness is used to re-write the semidefinite restriction as an infinite set of linear 
restrictions.  This enables the problem to be written as a (semi-infinite) linear programming 
representation, which can be solved using traditional optimization software.   This research 
represents the first time that the semidefinite restriction has been used to derive valid linear 
inequalities, thereby providing the tightness of an SDP formulation in a framework that is more 
amenable to optimization techniques.  In addition, this research provides a theoretical extension 
of the semidefinite concept to matrices of dimension greater than two for the first time in the 
published literature. 
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In order to implement the semidefinite cutting plane solution strategy, the infinite set of 
constraints is initially relaxed, and members of this set are generated as needed via a polynomial 
time separation routine.  In essence, this process yields an RLT relaxation that is augmented with 
valid inequalities, which we call semidefinite cuts.  The general concept of the proposed solution 
strategy is specialized for the problem of minimizing a nonconvex quadratic objective function 
over a simplex.  The algorithm has been implemented in C++, using CPLEX callable routines to 
solve the linear programming problems.  In addition, two types of semidefinite restrictions have 
been explored, along with several implementation strategies, to further improve the solution 
technique.  In an experiment to evaluate the effectiveness of the cuts in tightening the lower 
bound, the semidefinite cuts were shown to provide up to a 65% increase in the bound provided 
by using RLT alone.   When implemented within a branch-and-bound framework to find a global 
optimum, the semidefinite cuts led to dramatic improvements over the performance of using 
RLT alone.  In problems containing 10, 20, and 30 variables, the semidefinite cuts reduced the 
size of the enumeration tree by 95%, 94%, and 94%, while the overall solution time was reduced 
by 67%, 64%, and 55%, respectively.  Furthermore, while both the RLT and semidefinite cut 
techniques were able to solve all of the 10-variable problems to optimality, there were several 
larger problem instances that were solved to optimality when using the semidefinite cuts, but 
could not be solved when using RLT alone.  Overall, the computational results indicated that the 
cutting plane algorithm provides a significant tightening of the lower bound obtained by using 
RLT alone.  Moreover, when used within a branch-and-bound framework, the proposed 
methodology significantly reduce the effort required to obtain globally optimal solutions.  As 
such, the results of this research suggest a new technique that can be used to enhance solvability 
for many classes of nonconvex optimization problems. 

 The second part of the dissertation develops a modification of Benders� decomposition 
method, using concepts from RLT and lift-and-project cuts, in order to design a solution strategy 
for discrete optimization problems, such as those that arise in the case of two-stage stochastic 
programs with integer recourse.  Stochastic programs are linear programs where the set of first-
stage decisions is made before a realization of the environment is revealed, where the latter 
occurs according to some probabilistic distribution.  The second-stage variables determine the 
best action to compensate for the ensuing effect of the environment.  Stochastic programs that 
contain purely continuous variables are typically solved using Benders� decomposition, an 
iterative strategy in which information is passed back and forth between a master problem 
(which involves only first-stage variables) and a set of subproblems (which couple the first- and 
second- stage variables for each possible outcome of the environment).  In the presence of 
(mixed-) integer second-stage variables, however, Benders� decomposition cannot be applied in 
the traditional sense.  This research suitably modifies Benders� decomposition to be applicable 
for the case of problems that decompose into discrete subproblems.  The proposed procedure is 
based on sequentially generating cutting planes to approximate the solution of the subproblems 
in the process of deriving valid Benders� cuts for the master problem.  In addition, the procedure 
is modified to perform even more efficiently in the case of stochastic programs, by exploiting the 
dual angular structure that they possess.  The key idea is to solve the subproblems using an RLT 
or lift-and-project cutting plane scheme, and to generate and store the cuts as functions of the 
first-stage variables.  Hence, these cutting planes can be re-used from one subproblem solution 
to the next simply by updating the values of the first-stage decisions.  The proposed Benders� 
cuts also recognize these RLT or lift-and-project cuts as functions of the first-stage variables, and 
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are hence shown to be globally valid, thereby leading to an overall finitely convergent solution 
procedure.  This research represents the first proposed methodology for solving stochastic 
integer programs with mixed-integer recourse.  Furthermore, it is the first time that  Benders’ 
decomposition  has been effectively modified for handling discontinuous, nonconvex value 
functions.  This method is expected to provide a seminal and viable solution technique for a class 
of problems that has not previously been adequately solved  in the literature. 

 The final part of the dissertation focuses on an improved mixed-integer programming 
(MIP) representation for the facility layout problem.  Given a rectangular building and area (as 
well as certain aesthetic) requirements for each department, the problem is to determine the 
dimensions and location of each (rectangular) department within the building in order to 
minimize a total travel measure (number of trips times the distance) between all the departments.  
The distance between pairs of departments is measured as the rectilinear distance between the 
departmental centroids.  Although the facility layout problem can be stated rather simply, it is 
extremely difficult to solve to optimality, for even small problem instances.  The difficulty in this 
problem arises from the nonlinear area constraints for each department and the disjunctive 
constraints that no two departments can overlap.  This research develops several model 
enhancements to produce more accurate solutions while decreasing the solution effort required.  
In order to approximate the area constraints, tangential supports are used to derive a polyhedral 
outer approximation of the nonlinear constraints, and this representation is shown to provide as 
tight an approximation as desired.  In addition, valid inequalities are used to reduce problem 
symmetry and to impose implied upper bounds on the centroidal separations.  Finally, several 
different formulations are developed for the disjunctive constraints that prohibit the departments 
from overlapping.  These proposed enhancements have been evaluated, using an AMPL interface 
with CPLEX, and compared with published results to gauge their effectiveness.  The improved 
area constraints have yielded solutions that are within 0.5% of the target areas, while previously 
published models led to errors as high as 10%.  Furthermore, as compared with previously 
published models, the new area constraints admitted solutions to some test problems that could 
not previously be solved, while reducing solution time by a factor of 1.28 to 291.3 for other 
problem instances.  The additional improvements in the model have provided even greater 
reductions in computational effort, thereby yielding tremendous improvements in the solvability 
of this class of problems.  The overall solution effort was reduced by a factor of 2.33 to 2.62 for 
the three most challenging problems and by a factor of 6.6 to 1456.5 for the remaining problems. 

 Throughout this dissertation, we have developed a variety of novel solution techniques 
for several classes of nonconvex optimization problems.  There are several ways in which the 
various concepts exposed in this research can be extended in the future.  In the case of 
semidefinite cuts, it would be most interesting to develop and evaluate a technique for generating 
SDP cuts corresponding to higher level RLT relaxations.  Additionally, we look forward to 
investigating how SDP cuts might impact the solution of other types of nonconvex optimization 
problems, such as polynomial programs and integer programming problems.  It would also be 
beneficial to investigate the possibility of generating certain classes of SDP constraints a priori, 
rather than through cutting plane generation separation routine.  The proposed Benders� 
methodology for discrete optimization problems also provides future research opportunities.  The 
most important step following the proposed theoretical development is to conduct computational 
experiments to gauge the effectiveness of the proposed technique, particularly as applied to 
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stochastic integer programs with recourse.  It would also be instructive to explore special 
structures that might be particularly amenable to our proposed approach.  In the case of the 
facility layout problem, while we have demonstrated significant computational gains, the 
solution to even moderately large sized problems remains rather challenging.  A further analysis 
into the polyhedral structure of these problems might provide additional computational benefits.  
Moreover, it might be worthwhile to learn from the successes in developing solution techniques 
for the facility layout problem, particularly with respect to the disjunctive formulations, and 
extend these ideas to other similar classes of mixed-integer programming formulations.   

In conclusion, although we have developed some very promising solution techniques for 
several classes of nonconvex optimization problems, many more problems cannot yet be solved 
efficiently.  The development of tight model representations and effective solution techniques for 
such classes of challenging problems along the lines exposed in this dissertation, offers a rich 
and exciting arena for future research. 
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