
Semidefinite Cuts and Partial Convexification Techniques with

Applications to Continuous Nonconvex Optimization, Stochastic

Integer Programming, and Facility Layout Problems

Barbara M. P. Fraticelli

Dissertation Submitted to the Faculty of the

Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Industrial and Systems Engineering

Hanif D. Sherali, Chair
Ebru Bish

Terry Herdman
C. Patrick Koelling

Subhash Sarin

April 6, 2001
Blacksburg, Virginia

Keywords: Reformulation-Linearization Technique (RLT), semidefinite programming (SDP),
stochastic programming, mixed-integer programming, facility layout problem (FLP), disjunctive
models.

©2001, Barbara M.P. Fraticelli

Semidefinite Cuts and Partial Convexification Techniques
with Applications to Continuous Nonconvex Optimization,

Stochastic Integer Programming, and Facility Layout Problems

 Barbara M. P. Fraticelli

(ABSTRACT)

Despite recent advances in convex optimization techniques, the areas of discrete and
continuous nonconvex optimization remain formidable, particularly when globally optimal
solutions are desired. Most solution techniques, such as branch-and-bound, are enumerative in
nature, and the rate of their convergence is strongly dependent on the accuracy of the bounds
provided, and therefore, on the tightness of the underlying formulation. This research develops
both general and problem-specific procedures to be used in conjunction with the Reformulation-
Linearization Technique (RLT) for generating tight model formulations for challenging
nonconvex optimization problems. These problems include the general classes of nonlinear and
integer programs, as well as specific applications within these areas. We begin by deriving a
new class of cutting planes, called semidefinite cuts, for enhancing the solution of nonconvex
optimization problems. While these cuts can be generally applied to either discrete or
continuous nonconvex problems, we specifically demonstrate their effectiveness in solving
quadratic optimization problems. We then focus on the important class of mixed-integer
programming (MIP) problems, and develop a new decomposition technique. This methodology
is particularly well-suited to solve stochastic integer programming problems, arguably, the most
difficult class of discrete problems. Finally, we address a specific MIP application, known as the
facility layout problem, that has defied exact solution methods, and which subsumes the
notorious quadratic assignment problem. We significantly advance the state-of-the-art in solving
these problems by developing substantially improved models and algorithms through outer-
linearization techniques and concepts from disjunctive programming.

 Our first contribution proposes a mechanism to tighten RLT-based relaxations for general
problems in nonconvex optimization by importing concepts from semidefinite programming
(SDP), leading to a new class of semidefinite cutting planes. Given an RLT relaxation, the usual
nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable
positive semidefinite constraint. Instead of relying on specific SDP solvers, the positive
semidefinite stipulation is re-written to develop a semi-infinite linear programming
representation of the problem, and an approach is developed that can be implemented using
traditional optimization software. Specifically, the infinite set of constraints is relaxed, and
members of this set are generated as needed via a separation routine in polynomial time. In
essence, this process yields an RLT relaxation that is augmented with valid inequalities, which
are themselves classes of RLT constraints that we call semidefinite cuts. We illustrate the use of
this strategy by applying it to the case of optimizing a nonconvex quadratic objective function
over a simplex. Several implementation variants of this basic concept are delineated and
computationally explored. The results indicate that the cutting plane algorithm provides a
significant tightening of the lower bound obtained by using RLT alone. Moreover, when used
within a branch-and-bound framework, the proposed lower bound substantially reduces the effort

 iii

required to obtain globally optimal solutions. On average, the semidefinite cuts have reduced the
number of nodes in the branch-and-bound tree by a factor of 37.6, while decreasing solution time
by a factor of 3.4. The semidefinite cuts have also led to a significant reduction in the optimality
gap at termination for larger problem instances, in some cases producing optimal solutions for
problems that could not be solved using RLT alone within the allowable size and time limits.
We have also proposed a method for generating semidefinite cuts to enhance higher order levels
of RLT, thus enabling the semidefinite concept to be extended to orders higher than two for the
first time in the literature.

 Next, we consider a modification of Benders� decomposition method, using concepts
from the Reformulation-Linearization Technique (RLT) and lift-and-project cuts, in order to
develop an approach for solving discrete optimization problems that yield integral subproblems,
such as those that arise in the case of two-stage stochastic programs with integer recourse. We
first demonstrate that if a particular convex hull representation of the problem�s constrained
region is available when binariness is enforced on only the second-stage (or recourse) variables,
then the regular Benders� algorithm is applicable. The proposed procedure is based on
sequentially generating a suitable partial description of this convex hull representation as needed
in the process of deriving valid Benders� cuts. We also show how this procedure can be applied
even more efficiently to the case of stochastic programs, by exploiting the dual angular structure
that they possess. The key idea is to design an RLT or lift-and-project cutting plane scheme for
solving the subproblems where the cuts generated have right-hand sides that are functions of the
first-stage variables. Hence, we are able to re-use these cutting planes from one subproblem
solution to the next simply by updating the values of the first-stage decisions. The proposed
Benders� cuts also recognize these RLT or lift-and-project cuts as functions of the first-stage
variables, and are hence shown to be globally valid, thereby leading to an overall finitely
convergent solution procedure. An illustrative example is provided to elucidate the proposed
approach. The focus is on developing a first comprehensive finitely convergent extension of
Benders� methodology for problems having 0-1 mixed-integer subproblems, as in the
aforementioned context of two-stage stochastic programs with integer recourse.

 Finally, we develop a substantially improved mixed-integer programming (MIP)
modeling and algorithmic approach for the facility layout problem. Given a rectangular
building, and area requirements along with aesthetic ratios for each department, the problem is to
determine the dimensions and location of each (rectangular) department within the building in
order to minimize the total travel cost (number of trips times the distance) between all
departments. The distance between departments is measured as the rectilinear distance
separating their respective centroids. Although the facility layout problem can be stated rather
simply, it is extremely difficult to solve to optimality, even for small problem instances. The
difficulty arises from the nonlinear area constraints for each department and the disjunctive
constraints that no two departments can overlap. Existing models for this problem have been
unable to even capture an adequately accurate linearized representation of the nonlinear area
constraints that would yield a tractable model formulation. Motivated by this dearth, we focus
on developing several model enhancements for producing more accurate solutions while also
decreasing the solution effort required. In order to represent the nonlinear area constraints, we
begin by strengthening the bounds on the departmental dimensions, and then derive a novel
polyhedral outer approximation scheme that can provide as accurate a representation as desired.

 iv

We also develop and evaluate the performance of several classes of valid inequalities, as well as
alternative methods for reducing problem symmetry. Finally, we explore the construction of
partial convex hull representations for the disjunctive constraints that are used to prohibit the
overlapping of departments. These proposed enhancements have been evaluated using an AMPL
interface with CPLEX, and compared with published results to gauge their effectiveness. The
results indicate a substantial increase in the accuracy of the layout produced, while at the same
time, providing a dramatic reduction in computational effort. Overall, the maximum error in
department size was reduced from over 6% to nearly zero, while solution time decreased by a
factor of 110. Previously unsolved test problems from the literature that had defied even
approximate solution methods have been solved to exact optimality using our proposed
approach.

 v

Acknowledgements
First and foremost, I wish to extend my heartfelt thanks to Dr. Hanif Sherali for all of the

help and guidance he has provided me over these past four years. He is truly a role model in
teaching excellence, research excellence, humility, and kindness. I have learned so much from
working with him and from observing the way he lives his life. Similarly, I express appreciation
to the remaining members of my committee, all of whom have helped me significantly
throughout this process. In particular, I would like to thank Dr. Ebru Bish, Dr. Pat Koelling, and
Dr. Subhash Sarin for all your help and guidance from the prelim stage right through my final
defense. I would also like to thank Dr. Stanley Suboleski for serving on my committee until his
retirement, and Dr. Terry Herdman for graciously agreeing to take his place and join the
committee in midstream. I value the insights that the committee members have given me with
respect to research and life in academia, as well as the relationships we have developed.

I thank Ms. Lovedia Cole for helping me navigate through all the required paperwork
along the way, and for always lending a kind, listening ear to me. Lovedia is a great asset to the
entire ISE department, and graduate students in particular. In addition, I would like to thank
Burak Ozdaryal for being a wonderful friend and for proofreading countless papers over the past
few years, and Cole Smith for teaching me everything there is to know about CPLEX (and a few
other things along the way). Thanks also to my good friends Greg Beskow, Elise Caruso, Felipe
Helo, Qing Li, Laurent Matthey, Ian Rehmert, Mardi Russell, Mukund Venkatesan, and
Fernando Vittes for making this whole experience a lot of fun.

I also would like to thank the members of my family who have been supportive of all my
efforts. Namely, Frederick S. Priebe (father), Patricia G. Weikert (mother), Pamela and Jose
Cowen (sister and brother-in-law), and Thomas M. and Theresa Fraticelli (mother- and father-in-
law). I know the 5-hour drive to visit us in Virginia wasn�t always a lot of fun, and I appreciate
your understanding in accepting our less frequent visits to see you.

Finally, there is no way to adequately thank my husband, Thomas D. Fraticelli, for all he
has done to make this venture a success. From moving here and starting a new job, to
understanding my need to work in the evenings and weekends, to keeping our house clean and
our kitties fed. I�ve told you before, but I thought I�d put it here in writing so you have physical
proof, you are the best husband in the world and I am grateful for your love every day of my life.

vi

Contents

Acknowledgements.. v

List of Figures .. x

List of Tables... xi

Chapter 1: Introduction and Motivation.. 1

1.1 MOTIVATION... 1

1.2 RESEARCH GOALS... 3

1.3 ORGANIZATION OF THE DISSERTATION ... 3

Chapter 2: Literature Review.. 5

2.1 MODEL FORMULATIONS.. 5

2.2 SOLUTION TECHNIQUES FOR NONCONVEX OPTIMIZATION PROBLEMS.............................. 6

2.2.1 Cutting Planes ... 6

2.2.2 Enumerative Methods ... 7

2.2.3 Benders� Decomposition ... 8

2.2.4 Disjunctive Programming ... 9

2.2.5 Reformulation-Linearization Technique (RLT).. 10

2.2.6 Semidefinite Programming (SDP) .. 12

2.3 SOME RELEVANT APPLICATION AREAS OF NONCONVEX OPTIMIZATION 17

 vii

2.3.1 Stochastic Programming Problems ... 17

2.3.2 Facility Layout Problems .. 23

Chapter 3: Enhancing RLT Formulations through Connections with
Semidefinite Programming... 26

3.1 MOTIVATION... 27

3.2 PROBLEM CLASS QP ... 27

3.3 DEVELOPMENT OF THE SDP CUTS .. 29

3.3.1 Basic SDP Cut Generation .. 30

3.3.2 Enhancing the Basic SDP Cut Generation Strategy.. 36

3.3.3 SDP Cuts Using an Augmented Matrix .. 40

3.4 COMPUTATIONAL ANALYSIS ... 42

3.4.1 Root Node Performance .. 42

3.4.2 Overview of the Branch-and-Bound Procedure .. 46

3.4.3 Branch-and-Bound Results ... 48

3.5 EXTENSIONS TO HIGHER LEVELS OF RLT ... 51

3.6 CONCLUSIONS AND EXTENSIONS... 53

Chapter 4: A Modified Benders� Partitioning Strategy for Discrete
Optimization Problems ... 55

4.1 MOTIVATION... 55

4.2 DERIVATION OF THE PROPOSED BENDERS� STRATEGY ... 56

4.2.1 Benders� Cuts Given a Convex Hull Representation .. 56

4.2.2 Specialized Modifications for Dual Angular Structures .. 57

 viii

4.2.3 Derivation of a Benders� Approach for Problem P′ ... 59

4.3 BENDERS� PARTITIONING USING A SEQUENTIAL PARTIAL CONVEX HULL CONSTRUCTIVE
PROCESS.. 62

4.4 FINITE CONVERGENCE OF A CUTTING PLANE PROCEDURE FOR SOLVING SUBPROBLEMS 69

4.5 SUMMARY AND CONCLUSIONS.. 73

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout
Problem .. 74

5.1 PROBLEM OVERVIEW .. 74

5.2.1 The FLP2 Model ... 75

5.2.2 The FLP2+ Model ... 77

5.2 EXPERIMENTAL DESIGN .. 80

5.3 IMPROVED REPRESENTATION OF THE NONLINEAR AREA CONSTRAINTS 82

5.3.1 Development of the Area Constraints ... 82

5.3.2 Effect of the Proposed Area Constraints .. 84

5.4 REDUCING PROBLEM SYMMETRY ... 90

5.4.1 Development of Alternative Symmetry Breaking Strategies 90

5.4.2 Effect of Symmetry Breaking Constraints .. 91

5.5 ADDITIONAL VALID INEQUALITIES ... 94

5.5.1 Root Node Analysis .. 94

5.5.2 Effect of Valid Inequalities on the Branch-and-Bound Process 97

5.5.3 Effect of Valid Inequalities on FLP2+ Model... 99

5.6 CONVEX HULL REPRESENTATIONS OF THE SEPARATION CONSTRAINTS.......................... 99

5.6.1 Traditional Formulation of the Separation Constraints....................................... 100

 ix

5.6.2 Alternative Formulation of the Separation Constraints....................................... 102

5.6.3 A Distance-Based Formulation of the Separation Constraints 105

5.6.4 Computational Analysis of the Alternative DJ1 and DJ2 Formulations............. 110

5.7 COMPUTATIONAL RESULTS FOR THE MOST CHALLENGING TEST PROBLEMS............... 112

5.8 CONCLUSIONS .. 114

Chapter 6: Conclusions and Future Research... 116

References .. 120

Vita.. 127

x

List of Figures

Figure 3.1. Flow-chart for the Fundamental SDP Cut Generation Procedure.. 35

Figure 3.2. Flow-chart for the Look-Ahead SDP Cut Generation Procedure 38

Figure 3.3. Flow-chart for the SDP Cut Generation Subroutine Invoked by the Look-Ahead
Procedure of Figure 3.2 ... 39

Figure 4.1. Illustration for Example 4.1. .. 61

Figure 5.1. Depiction of Area Constraints. .. 83

Figure 5.2. Average Solution Time versus Number of Supports. .. 89

Figure 5.3. Average Maximum Error versus Number of Supports. ... 89

Figure 5.4. Symmetry Considerations.. 90

xi

List of Tables
Table 3.1: Average % Improvement of the Best SDP Cut Bound over the RLT-1 Bound. 43

Table 3.2: Sum of Lower Bound Rankings... 44

Table 3.3: Sum of CPU Time Rankings.. 44

Table 3.4: h-Statistic for the Kruskal-Wallis Test.. 45

Table 3.5: Number of Problems for which the Best Lower Bounds and CPU Times were
Achieved for Each Strategy. ... 45

Table 3.6: Types of Bound-Factor Constraints. ... 47

Table 3.7: Average Computation Time (in seconds) and Average Number of Nodes for Problems
of Size n = 10.. 49

Table 3.8: Average Computation Time (in seconds) and Average Number of Nodes for Problems
of Size n = 20... 49

Table 3.9: Average Percentage Optimality Gap at Termination for Problems of Size n = 20...... 50

Table 3.10: Average Results for Problems of Size n = 30. ... 50

Table 5.1: Characteristics of the Test Problems... 81

Table 5.2: Computational Results for the FLP2+ Model. .. 81

Table 5.3: Effect of Area Constraints on M Problems... 86

Table 5.4: Effect of Area Constraints on FO and O Problems... 87

Table 5.5: Factor of Improvement in Solution Time and Error. .. 88

Table 5.6: Effect of Symmetry Breaking Techniques on M Problems. .. 92

Table 5.7: Effect of Symmetry Breaking Techniques on FO and O Problems............................. 93

Table 5.8: Average % Decrease in Solution Effort ... 93

Table 5.9: Solution Effort for Several Smaller Problems. ... 95

 xii

Table 5.10: Objective Value at the Root Node Using Various Valid Inequalities. 95

Table 5.11: Solution Time at the Root Node Using Various Valid Inequalities........................... 96

Table 5.12: Effect of Valid Inequalities on the Overall Branch-and-Bound Process. 98

Table 5.13: Effect of Valid Inequalities on FLP2+... 100

Table 5.14: Effect of the New Disjunctive Formulations and the UB Inequalities on the Solution
Effort.. 111

Table 5.15: Total Time and Total Ranking for Disjunctive Models. .. 111

Table 5.16: Accuracy and Solution Effort for the More Challenging Test Problems................. 113

Table 5.17: Factor of Improvement over FLP2+. ... 115

1

Chapter 1: Introduction and Motivation
While efficient solution techniques have been developed for certain types of convex

optimization problems, particularly linear programming problems, there are few efficient
algorithms for discrete or continuous nonconvex optimization problems. The most typical
solution techniques are enumerative in nature, including the typical branch-and-bound strategy
and its variants, and their performance is highly dependent on the strength of the bounding
mechanisms employed. In order to derive accurate problem bounds, it is essential to develop
tight model formulations, through the use of both general-purpose and problem-specific
strategies. This dissertation focuses on developing both general-purpose and problem-specific
strategies to strengthen model formulations for continuous nonconvex optimization, stochastic
integer programming, and facility layout problems.

1.1 Motivation

 As evident from several studies in the literature, there is a clear need for deriving tight
formulations for nonconvex optimization problems in order to develop effective solution
methods. Our focus in this dissertation will be to build upon existing methods and concepts for
obtaining such tight reformulations. Solution techniques for solving nonconvex optimization
problems typically involve a reformulation step of relaxing some of the complicating constraints,
but then augmenting this with a set of additional suitable restrictions that are implied for any
feasible solution and that tighten the resulting formulation. The goal of problem relaxation is to
obtain a formulation that is significantly easier to solve, and yet provides a sufficiently accurate
approximation for the original problem. Since some of the restrictions on the problem have
been eliminated, any solution to the relaxation gives a best-case bound for the original problem.
A feasible solution to the original problem provides a worst-case bound, and these two bounds
can be used in conjunction to search for globally optimal solutions. It is essential to have tight
bounds if this search is to be computationally effective. In this dissertation, we rely heavily on
the relaxation strategy known as the Reformulation-Linearization Technique (RLT) (see Sherali
and Adams (1990, 1994, 1999)), and we develop several extensions and specializations of this
technique to tighten model formulations through general and problem-specific insights.

There are many commonly used techniques for obtaining relaxations for nonconvex
optimization problems. In discrete optimization, for instance, a basic strategy is to relax the
integrality restrictions to produce a linear programming relaxation. While such a relaxation is
easy to solve, it is typically not a tight formulation, and therefore provides weak bounds and
leads to a significant effort in the overall search process. An alternative relaxation strategy relies
on semidefinite programming (SDP). SDP is similar to linear programming, except that the
vector of variables is replaced by a matrix, and the non-negativity restrictions are replaced by the
restriction that the matrix of variables should be positive semidefinite. SDP has been used to
provide relatively tight relaxations for discrete and continuous optimization problems, but their
solution requires specialized SDP solvers. On the other hand, the RLT approach is amenable to

Chapter 1: Introduction and Motivation 2

the use of standard LP solvers, while providing a significant tightening beyond the basic LP
relaxation. The RLT strategy, which is a unifying approach for solving discrete and continuous
nonconvex optimization problems (see Sherali and Adams (1999) for a comprehensive
exposition), is to suitably multiply appropriate constraints by nonnegative bound-factors,
constraint-factors, or simply variables in a reformulation phase, and then to replace the products
of original variables by new variables in order to derive a higher-dimensional lower bounding
linear programming (LP) relaxation for the original problem. This RLT process can actually
generate a hierarchy of tighter relaxations, depending on the types of factor products employed
in the reformulation phase. In practice, however, the lowest-level RLT relaxation (as dictated by
the nature of the terms in the original problem) is most frequently implemented in order to
control the size of the resulting relaxation, although higher-level relaxations have been
successfully used in certain special applications. In order to close the gap between these lower
level RLT relaxations and the convex hull of feasible solutions, it is often helpful to incorporate
additional classes of RLT constraints.

 In deriving effective solution strategies, it is essential to strengthen the relaxation
employed by including suitable additional restrictions in order to obtain tighter bounds.
However, including a large number of additional restrictions can significantly increase the size of
the problem, thereby making it more difficult to solve. As a compromise between tightening the
bound and increasing the problem size, many solution strategies iteratively solve the relaxation
and then add to it cutting planes or valid inequalities that are implied for any feasible solution but
are violated by the current solution of the relaxation. These inequalities are used to �cut off� the
current solution in an attempt to drive the best-case bound to more closely approximate the true
solution value. Some types of cutting planes, such as Gomory�s fractional cuts for discrete
optimization problems, are generic to entire classes of problems, while others have been derived
for specific applications. Among the general-purpose techniques, we will discuss applications of
disjunctive programming and RLT (or lift-and-project) cuts. These cuts are used to derive tight
approximations for the convex hull of feasible solutions. In addition, we will develop a new
general class of RLT cuts, based upon concepts from semidefinite programming, that are valid
for any nonconvex optimization problem. We will also explore the use of some valid
inequalities that are problem-specific, particularly in the case of the facility layout problem.

The focus of this dissertation is to develop tight problem formulations in order to lead to
improved solution techniques for general and specific applications of nonconvex optimization.
Specifically, we concentrate on three applications of nonconvex optimization: continuous
nonconvex problems, stochastic programs with integer recourse, and mixed-integer
programming (MIP) formulations for the facility layout problem. In each of these problems,
there is a particular need for developing tight model formulations in order to enhance algorithmic
performance. For continuous nonconvex optimization problems, the search for a global optimum
is typically obtained through branch-and-bound enumeration. Without tight bounds, the
enumeration tree would continue to explore non-improving areas of the solution space and
thereby dramatically increase the overall computational effort. In the context of stochastic
programs, typical solution strategies involve solving the subproblems repeatedly, for many
different realizations of the first-stage variables. When these subproblems involve integer
variables, the overall solution effort can become prohibitive unless we are able to approximate
the convex hull of feasible solutions for the subproblems. Finally, in the case of facility layout

Chapter 1: Introduction and Motivation 3

problems, the nature of these MIP problems has made it difficult to solve even moderately sized
instances to optimality. Moreover, existing model formulations provide relatively poor
approximations to the underlying nonlinear problem. We demonstrate that improved
formulations can enhance both the accuracy and solvability of these problems, thereby
facilitating the derivation of optimal or good provable quality solutions to larger instances of this
class of problems.

1.2 Research Goals

We state the goals of this research in terms of the three areas discussed above.

The first portion of this dissertation focuses on using concepts from semidefinite
programming to develop a new class of cutting planes that can be used to enhance general RLT
relaxations. We explore several alternative cut generation strategies and evaluate their
performance to identify the most effective techniques for deriving tighter bounds. We also study
their effectiveness in determining globally optimal solutions within a branch-and-bound
framework. The effectiveness of these cuts is demonstrated for a class of problems in which a
nonconvex quadratic objective function is minimized over a simplex.

The next endeavor is concerned with developing a modified Benders� partitioning
strategy to solve discrete optimization problems that decompose into discrete subproblems. In
particular, we develop a finitely convergent algorithm for solving the subproblems via an RLT-
based cutting plane approach, while using these subproblem cuts to obtain valid Benders� cuts,
and lifting them to enable their re-use for subsequent visits to the subproblem. The design of this
approach is particularly motivated by the case of stochastic programs with integer recourse.

In the final portion of this dissertation, we develop a new, more accurate mixed-integer
programming formulation for the facility layout problem, and design a series of enhancements to
this model by tightening relaxations through symmetry-breaking considerations, valid
inequalities, and partial convex hull constructions. The effectiveness of these proposed
enhancements is evaluated in comparison with previously published approaches using several
test problems that have been addressed in the literature.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides a review
of the literature relevant to this research, beginning with a discussion on the need for deriving
tight formulations. This leads to a description of several popular solution techniques for solving
nonconvex optimization problems, including the Reformulation-Linearization Technique (RLT),
semidefinite programming (SDP), cutting planes, and Benders� decomposition. Elements of
each of these are included in the development of the solution techniques presented in the ensuing
chapters. The remainder of Chapter 2 reviews the literature for some specific applications of
nonconvex optimization, including stochastic programming and facility layout problems.

Chapter 1: Introduction and Motivation 4

Chapter 3 uses concepts from semidefinite programming to create a new class of cuts that
enhance RLT relaxations for general nonconvex optimization problems. Based on the fact that
the traditional matrix of second-order (or more generally, even-ordered) RLT variables can be
restricted to be positive semidefinite, we develop a polynomial-time framework to determine
whether this matrix satisfies the stated positive semidefiniteness requirement, and if not, we
generate valid linear inequalities that delete the current approximating solution. This leads to an
iterative process whereby the semidefinite relaxation of a problem is solved via a series of linear
programming problems, beginning with an initial RLT relaxation. We have proposed several
variations for generating these SDP cuts, and we demonstrate their use on a class of continuous
nonconvex quadratic optimization problems. Computational results are presented to exhibit the
strong effectiveness of the proposed cuts in providing tighter bounds, and in substantially
decreasing the overall solution effort within the context of an exact branch-and-bound solution
strategy.

As opposed to the general-purpose model strengthening procedures developed in Chapter
3, Chapters 4 and 5 design problem-specific techniques for tightening problem formulations.
Chapter 4 presents a modified Benders� partitioning strategy for solving discrete optimization
problems that yield discrete subproblems. This methodology is particularly motivated by the
class of stochastic integer programs with mixed-integer recourse. The proposed procedure
solves the resulting subproblems through a series of cutting planes that approximate the convex
hull of solutions, and these cutting planes are then used to derive valid Benders� cuts. In order to
enhance algorithmic performance, we also develop various lifting techniques that render the
generated cuts to be globally valid for all subsequently solved subproblems. In addition, we
develop a specialization for stochastic programming problems that exploits the dual angular
structure that they possess. The proposed solution strategy is the first comprehensive extension
of Benders� methodology for problems having 0-1 mixed-integer subproblems.

Chapter 5 addresses the facility layout problem, a discrete optimization problem that has
proven difficult to solve to optimality, even for moderately sized problem instances. We review
a published mixed-integer programming formulation for this problem, and then propose a series
of enhancements that are designed to provide more accurate solutions to the underlying
nonlinear, nonconvex problem, as well as decrease solution effort. We begin by deriving a novel
polyhedral outer approximation scheme that can provide as accurate a representation as desired
for the nonlinear area requirements for each department. We also develop and evaluate the
performance of several classes of valid inequalities, alternative methods for reducing problem
symmetry, and certain partial convex hull constructions for the disjunctive constraints that are
used to prohibit the overlapping of departments. The results indicate a substantial increase in the
accuracy of the layout produced, as well as a dramatic reduction in computational effort. Finally,
Chapter 6 provides a summary and conclusion, along with recommendations for future research.

5

Chapter 2: Literature Review
This chapter contains a summary of literature that is relevant to the topics covered in the

remainder of the dissertation. Section 2.1 discusses the importance of deriving tight
formulations for nonconvex optimization problems, particularly within the context of branch-
and-bound or other enumerative approaches. Section 2.2 reviews some of the more common
solution techniques for nonconvex optimization problems, beginning with traditional methods
(cutting planes, enumerative methods, and partitioning strategies) and concluding with the more
modern approaches of disjunctive programming, the Reformulation-Linearization Technique,
and semidefinite programming. Section 3.3 reviews the literature on two areas (namely,
stochastic programming and facility layout problems) for which we will later propose new
conceptual approaches and techniques.

2.1 Model Formulations

 From the onset of operations research as a field, the key to obtaining meaningful results
has relied upon formulating a mathematically correct model that accurately characterizes the
situation being studied. For most problems, there are many representations that constitute
mathematically correct models, and in some cases (for example moderately sized linear
programming problems), most of these equivalent representations can be solved within a
reasonable amount of time given sophisticated solver routines. In the case of nonconvex
optimization, however, the problems become substantially more challenging to solve, and the
model formulation can have a significant impact on the effort required to solve the problem to
optimality. As we will discuss throughout this dissertation, most solution techniques for
nonconvex optimization problems rely heavily on solving successive (typically linear
programming based) approximations to the underlying problem. The tightness of these
approximations directly affects how accurately they reflect the original problem and, in turn,
influences the amount of effort required to solve the problem to global optimality. In order to
develop such tight problem relaxations, it is essential to seek good models to represent these
problems, rather than just models that are mathematically correct.

Sherali and Driscoll (2000) provide an excellent discussion on the importance of tight
formulations for discrete optimization problems, which they illustrate with the following fixed-
charge location problem example, in which up to m supply facilities (having capacities

msss ,,, 21 K) are to be constructed. The objective is to minimize the cost of construction plus the
cost of shipping from the constructed supply centers to the set of n customers having demands

nddd ,,, 21 K . The variables 0≥ijx represent the amount shipped from facility i to customer j,
and iy is a binary variable that equals one if facility i is constructed and zero otherwise. If
facility i is not constructed (0=iy), the model must then ensure that jxij ∀= 0 . As a first-step

Chapter 2: Literature Review 6

in formulating this restriction, consider the constraint ∑
=

≤
n

j
iiij ysx

1

 for mi ,,1 K= . If 0=iy ,

this constraint (coupled with 0≥ijx) forces jxij ∀= 0 , and if 1=iy , it simply enforces that the
total amount shipped out of facility i is at most its supply is . Although this formulation is
mathematically correct, it can be substantially strengthened by including the constraints

jidsyx jiiij ,},min{0 ∀≤≤ . These constraints are clearly satisfied in the discrete sense, since
they force jxij ∀= 0 when 0=iy and otherwise limit the amount shipped between supply i and
customer j to be within the logically implied bounds. Although these additional restrictions are
implied for the discrete case, they significantly tighten the linear programming relaxation by
including variable upper bounds on each individual ijx . This tightening of the relaxation has
been amply demonstrated to significantly improve the solvability of the model.

The foregoing example illustrates how formulations can be strengthened by making
logical inferences based on the problem structure. In addition, in the case of discrete
optimization, it is sometimes possible to examine the problem data and alter some of the
constraint coefficients to provide even tighter approximations through a technique known as
coefficient reduction (see Nemhauser and Wolsey (1998) for example). In other cases (see
Sherali and Smith (1999), for example) a natural symmetry in the problem can produce a series
of solutions that, while appearing to be different numerically, each represent an equivalent set of
decisions. In such cases, a solver could spend a great deal of time examining these solutions, not
recognizing that they in fact represented the same situation. In order to reduce such inherent
problem symmetry and thus speed the solution process, a set of symmetry breaking constraints,
or hierarchical constraints as proposed by Sherali and Smith, can often be developed. We will
apply these conceptual techniques in our study of a facility layout problem as described in
Chapter 5.

2.2 Solution Techniques for Nonconvex Optimization Problems

 There are several general techniques that have been developed for nonconvex
optimization. We now review some of the relevant solution methods, beginning with the
classical techniques of cutting planes, enumeration, and Benders� decomposition. Following
this, we address some of the more recent developments, including disjunctive programming, the
Reformulation-Linearization Technique (RLT), and semidefinite programming. We note that
rather than relying solely on one of these specific techniques, it is typically more effective to
combine these strategies, along with problem specific insights, while designing solution
algorithms. For more on the importance of using hybrid algorithms of this type, we refer the
reader to Hoffman and Padberg (1985, 1991) and Padberg and Rinaldi (1987).

2.2.1 Cutting Planes
 As mentioned previously, the basic technique for solving nonconvex optimization
problems relies on solving a sequence of relaxations that produce tighter and tighter

Chapter 2: Literature Review 7

approximations to the original problem. (In this dissertation, the relaxations that we consider,
although possibly derived in a higher-dimensional space, will typically be linear programming
representations.) Since any relaxation has weakened the set of constraints imposed by the
original problem, and thereby expanded the feasible region for the problem, the solution to the
relaxed problem provides a best-case bound on the original problem. If the solution to the
relaxed problem satisfies all of the relaxed restrictions, it is feasible and therefore optimal to the
original problem as well. If the solution violates some of these relaxed constraints, we need to
include additional restrictions to force the relaxed solution towards an optimal solution for the
original problem.

 Cutting planes, or valid inequalities, are such additional restrictions that are satisfied by
every feasible solution to the original constraints, but are violated by the current solution to the
relaxed problem. These constraints are said to �cut off� the current solution to the relaxed
problem and force the feasible region of the relaxed problem to more closely approximate that of
the original problem. The revised relaxation would then be solved, and if its solution continues
to violate the constraints of the original problem, a new cutting plane would be derived. This
procedure would then be repeated until the original problem was solved. Cutting planes for
discrete optimization problems were introduced in the 1960�s by Gomory (1960), and several
other cutting plane schemes were developed in the same era. Recently, several stronger types of
cuts have been developed based upon the concepts of disjunctive programming (see Balas
(1974), Balas and Jeroslow (1975) and Sherali and Shetty (1980)) and the Reformulation-
Linearization Technique (see Sherali and Adams (1990, 1994, 1999) and Sherali et al. (1998)).
Although cutting planes are not always particularly effective in solving a problem to optimality
in and of themselves, they have recently experienced a resurgence in attention due to their
effectiveness when implemented within an enumerative framework such as branch-and-bound.

2.2.2 Enumerative Methods
 Enumerative methods, such as branch-and-bound, successively partition the solution
space of the original problem into smaller and smaller regions in the search for a globally
optimal solution. The concept of branch-and-bound was developed by Land and Doig (1960)
and further refined by Dakin (1965), and it remains one of the most widely used techniques in
nonconvex optimization. This type of search is typically characterized by an enumeration tree,
beginning with a root node that represents some base-level relaxation of the original problem.
The root node is further partitioned into successor or children nodes that represent more
restricted problems, with each branch of the tree detailing some set of additional restrictions on
the variables. The specific restrictions at any particular node are all those listed on the branches
along the path to the root node. At each node, the relaxation is solved to obtain a best-case
bound, and a feasible solution to the original problem is sought in order to determine a worst-
case bound. The goal is to shrink the gap between these two bounds in order to find an exact
solution to the problem associated with each node. If these two bounds are different, the current
node is partitioned into two (or more) new nodes that are more restricted. Whenever a node is
infeasible or its best-case bound is worse than some previously obtained worst-case solution, or
if the node subproblem is solved to optimality, we remove the node from any further
consideration, or fathom the node. Throughout the process, we track the best known (or
incumbent) solution, and the search ends when the bounds indicate that the incumbent solution

Chapter 2: Literature Review 8

cannot be improved upon, and thus that all active nodes have been fathomed.

Most implementations of branch-and-bound solve some linear programming outer
approximation or relaxation to obtain the best-case bound at each node, and a worst-case bound
is found by performing a local search in the neighborhood of the relaxation solution. (If the
solution to the relaxed problem is feasible to the original problem at that node, then this local
search would be unnecessary as an optimal solution would already be at hand.) Since branching
occurs whenever the bounds for a node are not sufficiently close to each other, the number of
branches can become quite large unless good bounding strategies are employed. Thus, in order
to prevent the enumeration tree from becoming prohibitively large, it is essential to have linear
programming relaxations that closely approximate the original problem. Cutting planes are often
employed within the branch-and-bound framework in order to tighten the bounds obtained at
each node. While the cutting planes derived at a particular node are inherently valid for any
subsequent node on the same branch, there has recently been increased attention on making these
cuts globally valid for any node in the branch-and-bound tree. Such a solution technique,
introduced by Padberg and Rinaldi (1987), is known as branch-and-cut, and is one of the most
popular solution techniques in practice today. In the approach that we develop in Chapter 4, we
will discuss one such technique for deriving globally valid cutting planes based upon the solution
of a particular subproblem.

2.2.3 Benders� Decomposition
 Benders� decomposition has proven to be a powerful technique for solving large-scale
linear (and integer) programs since its introduction in 1962. The main idea behind this approach
is to group the variables in such a way as to partition the problem into components that are easier
to solve. This is accomplished by transforming the problem to create inner and outer
optimization problems. The outer optimization, or master problem, captures the implicit
projection of the original problem onto the space of the �complicating variables� via a set of
Benders� constraints or cuts. Only a subset of these constraints is maintained at any stage to
produce a relaxed master problem, and violated members of this set of cuts are sequentially
generated as needed by solving the inner optimization problems, or subproblems. By fixing the
complicating variables at values determined by the relaxed master problem, the subproblems can
be solved with relative ease. The solution procedure, in essence, determines an optimal solution
for the current relaxed master problem and solves a subproblem to determine whether or not the
prospective solution violates any of the omitted constraints. (As detailed in Chapter 4, practical
implementations, however, do not require the master program to be solved to optimality at each
stage, and are designed to generate Benders� cuts in the spirit of applying a branch-and-cut
procedure on the master program.) The subproblems can provide two types of cuts for the
master problem, feasibility and optimality cuts. Feasibility cuts are used to eliminate any master
program decisions that can produce infeasible inner optimization subproblems, while optimality
cuts are used to approximate the inner optimization problem�s objective value function. Both of
these types of cuts can be generated using the dual solution to the subproblem. If no violated
constraints are found, then the aforementioned prospective solution is determined to be an
optimal solution to the original problem. Otherwise, a (most) violated Benders� cut is generated
and this process is reiterated. More details on the Benders� partitioning strategy can be found in
several linear or integer programming books (see, for example, Bazaraa et al. (1993) or Parker

Chapter 2: Literature Review 9

and Rardin (1988)). In Section 2.3.1, we show the details of how Benders� partitioning can be
used to solve stochastic programs, and in Chapter 4 we will present a specific application of this
technique for discrete problems.

2.2.4 Disjunctive Programming
 Many modern techniques for nonconvex optimization are based on generating polyhedral
approximations for the original problem, and the theory and algorithms supporting these
approaches can often be viewed in the context of disjunctive programming. Disjunctive
programming problems are optimization problems in which the constraints of the problem are
given as logical functions of two or more clauses, and typically these clauses are assumed to be
linear with respect to the problem variables. Sherali and Shetty (1980) provide a thorough
overview of disjunctive programming, as does Balas (1974, 1998), demonstrating how this field
subsumes several classes of nonconvex optimization problems. In order to express the logical
relationships between two clauses A and B, the following operations have been defined. A
conjunction, denoted by BA ∧ , indicates that both clauses A and B must be true, while a
disjunction, denoted BA ∨ , indicates that either of the two clauses (or both) must be true. In
many cases, the constraints of a disjunctive program restrict solutions to satisfy at least one of
the relationships 0, ≥≥ xbxA hh for some Hh ∈ , where H is an index set over the family of
restrictions. In this case, the feasible region of the disjunctive program, F, can be stated as a
union of sets by }0,:{ ≥≥∪=

∈
xbxAxF hh

Hh
. The disjunctive cut principle facilitates linear

constraints to be developed to enforce such logical restrictions on the variables. The forward
part of the disjunctive cut principle, due to Balas (1974, 1975), associates a set of nonnegative
multipliers, hλ , with each set of constraints, hh bxA ≥ , and surrogates this set of constraints into
the single inequality, hThhTh bxA)()(λλ ≥ , for each Hh ∈ . This set of surrogate constraints is
then reduced to a single constraint by taking the pointwise supremum of the left-hand side and

the infimum of the right-hand side of these constraints to yield])[(inf])[(sup hTh

Hh

hTh

Hh
bxA λλ

∈∈
≥





as a valid inequality for F. Jeroslow (1977) showed that the converse of this statement, known
as the reverse part of the disjunctive cut principle, is also true. (Glover (1974) also provided
similar results in a different context.) This indicates that any valid inequality for F can be
uniformly dominated by a disjunctive cut of the above form, implying that the convex hull of F
can theoretically be obtained by selecting appropriate λ -values.

Much attention has been given to the class of disjunctive programs known as facial
disjunctive programs (FDP), which are detailed clearly and concisely in Sherali (1999). A facial
disjunctive program is generally represented as: minimize { }YXxxcT ∩∈: , where X is a
nonempty polytope, and Y is given in conjunctive normal form, i.e., as a conjunction of

disjunctions. More precisely, we have 



 ≥∪∩=

∈∈
}:{ h

i
h
iQiHh

bxaxY
h

, where for each

}�,,1{ hHh K≡∈ , the corresponding disjunction requires that at least one of the inequalities
h
i

h
i bxa ≥ be satisfied for some hQi ∈ . The term facial implies that for each HhQi h ∈∈ , ,

}:{ h
i

h
i bxaxX ≥∩ defines a face of X. The class of 0-1 mixed-integer programming problems,

Chapter 2: Literature Review 10

for instance, can be viewed as a facial disjunctive program by taking X as the linear
programming relaxation of the original problem, H as the index set of the binary variables, and

[])1()0(≥∨≤∩=
∈ hhHh

xxY . As shown by Balas (1998), it is possible to construct the convex

hull of feasible solutions for FDPs in an iterative fashion through a hierarchy of tighter
relaxations hKKK �10 ,,, K , starting with 0K as the linear programming relaxation, XK =0 . At
each step of the process, Balas has shown how to inductively determine





 ≥∩∪= −∈

}):{(conv 1
h
i

h
ihQih bxaxKK

h

 for hh �,,1 K= , with)(conv� YXKh ∩= . Recent work

in disjunctive programming has focused on generating deep disjunctive cuts within a branch-and-
cut framework. (Earlier ideas in this vein were proposed by Sherali and Shetty (1980).) Toward
this end, Balas et al. (1993) have developed lift-and-project cuts for 0-1 mixed integer programs
by taking []})1:{(})0:{(conv 11 ≥∩∪≤∩= −− hhhhh xxKxxKK . In this process, each
constraint in 1−hK is multiplied by the factors hx and)1(hx− , and the resulting problem is
linearized by replacing each product of variables as a single variable. As shown in the next
section, however, this process can also be viewed as a direct application of the Reformulation-
Linearization Technique (1990).

2.2.5 Reformulation-Linearization Technique (RLT)
 The Reformulation-Linearization Technique (RLT) of Sherali and Adams (1990, 1994,
1999), provides a unifying approach for discrete and continuous nonconvex optimization
problems. This approach can be used to generate a hierarchy of relaxations for nonconvex
optimization problems that can lead to the convex hull of feasible solutions. The initial purpose
of RLT was to address the class of 0-1 (mixed) integer linear and polynomial programming
problems (Sherali and Adams (1990)), but it has since been extended to continuous nonconvex
programming problems (Sherali and Tuncbilek (1992)). The main construct of RLT begins by
multiplying problem constraints by a group of factors, known to be nonnegative for any feasible
solution, where each factor is defined in terms of the original problem variables. Following this
step, product terms of variables are replaced by a set of new variables in order to re-linearize the
problem. This yields a relaxation derived in a higher dimensional space. The most basic factors
used in the multiplication process, known as bound-factors, are based upon the premise that for
any feasible solution jx for },,1{ nNj K≡∈ , we have 0)(≥− jj lx and 0)(≥− jj xu , where

jl and ju are, respectively, the given (or implied) lower and upper bounds for the variable jx .
These individual terms can then be used to construct nonnegative bound-factors of the form

∏∏
∈∈

−−
21

)()(
Jj

jj
Jj

jj xulx , where 1J and 2J are appropriate index sets. In the case of continuous

nonconvex optimization problems, each of the variables are used within these bound-factor
products, and moreover, indices might repeat within the sets 1J and 2J . However, in the
context of 0-1 mixed-integer optimization problems, only the integer-restricted variables need be
considered, and 1J and 2J are subsets of N with ∅=∩ 21 JJ . Specifically, focusing on 0-1
problems, for any level d in the hierarchy of relaxations produced by RLT, nd ≤≤0 , the

Chapter 2: Literature Review 11

bound-factors of order d are given as 







−








−= ∏∏

∈∈ 21

)()(),(21
Jj

jj
Jj

jjd xulxJJF , for all

NJJ ⊆21, such that ∅=∩ 21 JJ and dJJ =∪ 21 .

The level-d relaxation of the original problem is obtained by multiplying each of the
constraints by every bound-factor of order d. The process for constructing a level-d RLT
relaxation is comprised of two basic steps, a reformulation step and a linearization step, as
summarized below.

Step 1 (Reformulation Step): Multiply each inequality in the original problem
(including upper and lower bounds on the variables) by each factor),(21 JJFd . In the
case of 0-1 integer programming, we may tighten the formulation by noting that jj xx ≡2
and 0)1(≡− jj xx for any binary jx .

Step 2 (Linearization Step): Linearize the resulting formulation in a higher dimensional
space by defining a new variable to replace each distinct term that represents the product
of original variables.

For the case of 0-1 mixed integer programming problems, common notation gives the binary
variables jx for },,1{ nj K= , while the continuous variables are represented by ky for

},,1{ mk K= . Given this notation, we linearize the resulting product terms using the variable
substitutions ∏

∈

≡
Jj

jJ xw and ∏
∈

≡
Jj

jkJk xyv for },,1{ mk K= . In the case of continuous

problems, however, all of the variables are assumed to be given as jx for },,1{ nj K= , and
each of these variables is used to create the bound-factors. In this case, the typical substitution is
given as ∏

∈

≡
Jj

jJ xX , where J might have replicated indices from N.

In the case of 0-1 (mixed) integer programming problems with binary variables, Sherali
and Adams have shown that a hierarchy of RLT relaxations can be obtained as d varies from 0 to
n, starting with the linear programming relaxation with 0=d , and ending with the convex hull
of feasible solutions for nd = . We note, however, that the process at level n involves
multiplying each constraint by n2 such bound-factors, which increases the size of the problem
exponentially. The RLT process is by no means limited to the realm of 0-1 discrete optimization
problems. As detailed in Sherali and Adams (1996, 1999), the RLT process has also been used
to solve general integer programs, continuous polynomial programming problems, 0-1 quadratic
programs, continuous and discrete bilinear programming problems, and indefinite quadratic
programs. In all of these cases, the same conceptual two-step process is applied with appropriate
specializations, and tighter formulations can be derived by applying higher levels of RLT.

Due to the tremendous growth in problem size at higher levels of RLT, levels greater than
one or two are rarely used in practice. Sherali and Adams, however, have shown that lower level
RLT applications, even the most basic level-one application, have proven very effective in

Chapter 2: Literature Review 12

tightening problem relaxations for many classes of problems. In addition, several other
strategies have been developed in order to tighten the lower level RLT relaxations, including the
use of projected implications from higher level applications. One such tactic at level-one itself is
to also multiply the original constraints by constraint factors, 0)(≥− βαx , for any structural
inequalities βα ≥x that are implied by the original constraints, and then to apply the traditional
linearization strategies. This can be particularly effective with constraints containing special
structures. In addition, the concepts of RLT can be used to generate cutting planes to
sequentially create tight representations of the problem in the vicinity of optimal solutions,
rather than to develop a priori a tight representation of the entire feasible region during the
modeling phase itself. A new tightening strategy, based upon incorporating concepts from
semidefinite programming into RLT, will be presented in Chapter 3 of this dissertation.

2.2.6 Semidefinite Programming (SDP)
 Semidefinite programming (SDP) offers a related relaxation strategy to RLT for solving
certain types of nonconvex programming problems. Semidefinite programs are similar to LPs,
except that the vector of variables is replaced by a matrix of appropriate variables, a special
product operation is defined in lieu of the usual matrix-vector operations, and the matrix of
variables is restricted to be positive semidefinite (PSD), in contrast with the nonnegativity
constraints on the variables in linear programming. SDP has been receiving increased attention
from the mathematical programming community since its inception over the past 5-10 years.
Part of the reason for its popularity, as pointed out by Vandenberghe and Boyd (1996), is that
SDP unifies several areas of mathematical programming (including linear and quadratic
programming) from a theoretical point of view. Active set methods (similar to the simplex
method in LP) were originally employed to solve SDP problems, but more recently, as shown by
Alizadeh (1995), many interior point methods for solving linear programs can be directly
modified and used to solve semidefinite programs in polynomial time. For a detailed overview of
SDP, see Vandenberghe and Boyd (1996) or Alizadeh (1995). For articles that address
theoretical results as well as various specific applications pertaining to SDP, see also:
Wolkowicz et al. (2000), Todd (1998), Bertsimas and Zhang (1998), Ramana and Pardalos
(1996), Ramana and Goldman (1995), and Goemans and Williamson (1995).

In general, semidefinite programming is the minimization of a linear function of
symmetric matrices, subject to the constraint that an affine combination of these matrices is
positive semidefinite. Recall that the following are equivalent for a symmetric n x n matrix U:

1. U is positive semidefinite (PSD), denoted as U f 0.
2. 0≥UzzT for all nonzero nRz ∈ .
3. All eigenvalues)(Ujλ , nj ,,1 K= , of U are nonnegative.

The definition for a positive definite (PD) matrix is the same, but with strict inequalities. A
common form of an SDP is given by:

 SDP: minimize XC •
 subject to XAi • = mibi ,,1 , K=

Chapter 2: Literature Review 13

 0 fX ,

where nxn

m RAACX ∈,,,, 1 K and mRb ∈ . The dot product of matrices A and B, denoted as
BA • , is defined as the trace of the matrix ATB. That is, ∑∑=•

i j
ijij BABA . SDP is nonlinear

and nonsmooth, but it is a convex optimization problem (see Vandenberghe and Boyd (1996) for
a proof). Semidefinite programming shares the concepts of duality and complementary
slackness, as well as some well-known theorems in linear programming such as weak duality.
For a review of these theorems, see Vandenberghe and Boyd (1996). A semidefinite program
can also be represented as a semi-infinite linear program, which is defined as a linear program
having a finite number of variables and an infinite number of constraints. This is clear from the
definition of PSD, since X f 0 implies that 0≥XzzT for all nRz ∈ .

 Semidefinite programming is often used to obtain lower bounds for nonconvex
optimization problems. A common strategy for developing an SDP relaxation commences by
modifying the problem (if necessary) to create constraints containing the term xxT. The
substitution X = xxT is next used, noting that X is PSD and rank-one by construction. In order to
relax the problem, the constraint X = xxT is then replaced by 0 fX , or more strongly

by TxxX f . Note that the latter constraint may be expressed as 0
1

f







Tx

xX
.

 Interior point methods are usually used to solve semidefinite programs. Alizadeh (1995)
has shown that although several variations of these methods have been proposed, they have a
similar structure, the same worst-case behavior, and similar performance in practice. The
solution procedures generally solve one or two least-squares problems to determine a primal and
dual search direction, as well as to compute a suitable step length. These two calculations
comprise the majority of computation time per iteration. Vandenberghe and Boyd (1996) state
that, in theory, the number of iterations required to solve an SDP to a specified accuracy grows
no faster than the square root of the problem size. In practice, however, the algorithms converge
much faster. In most cases, the number of iterations required is about 5-50, with almost no
regard to problem size.

 Semidefinite programming has been used, for example, to provide relaxations for the
max-cut problem, in which the task is to select a maximally weighted set of arcs that separate the
nodes of a graph into two disjoint sets. After some manipulation, this problem can be formulated
as the optimization of a quadratic function over a hypercube, which happens to be NP-hard. This
problem may be stated as follows:

 MC: maximize LxxT
 subject to nx }1,1{−∈ .

Observe that the constraint simply requires 2

ix to equal 1 for all i. To obtain an SDP relaxation
of this problem, we can define X = xxT, constrain each diagonal element to equal one, and relax X

Chapter 2: Literature Review 14

to be any PSD matrix. This gives the following, noting that)(TT xxLLxx •≡ .

 SDP(MC): maximize XL •
 subject to eX =)(diag

 0 fX .

Upon solving SDP(MC), the resultant matrix X must be transformed back into the vector x to
derive a solution for the original problem. Goemans and Williamson (1995) have developed a
�randomized algorithm� for this procedure, and they have proven that their solution has an
expected maximum error of 13.8%.

 Although the bounds provided by Goemans and Williamson are promising, it is shown
that a branch-and-bound routine using only SDP relaxations cannot solve large problems. For
this reason, Helmberg and Rendl (1998) have developed a solution procedure, combining SDP
relaxation with cutting planes, that is both fast and robust. After an exact solution to the SDP
relaxation has been found, Helmberg and Rendl transform X into the vector x by rounding each
row of X to a {-1,1} vector. Next they vary the signs of the elements until there is no
improvement in the objective function. The best of these rows is taken as the max-cut, and in
many cases, this rounding procedure produces an optimal cut. If it does not, they use several
criteria to try to generate an inequality that is violated by the current solution, and they append
this to the problem. Since adding constraints adds more dimensions (and more work) to finding
the search direction, the authors recommend adding only several of the strongest inequalities to
the problem, even though many violated constraints may be detected. After these constraints are
added to the problem, the authors restart their primal-dual algorithm. In addition to adding
inequalities after the solution of the SDP relaxation (called a large-add), they also append some
constraints during the process of solving the current relaxation (small-add). The overall
procedure constructs the SDP relaxation of the problem and iteratively performs a large-add
followed by 10 small-adds, terminating when the gap between the upper bound and the best
known solution falls to within a pre-specified range. The results of their computational
experience in combining SDP with cutting planes in this fashion are promising, albeit at a high
computational cost. Helmberg and Rendl noted that the first round of adding inequalities
typically yielded significant improvements while the improvement from later iterations was less
dramatic. The authors hence recommend using one phase of adding the inequalities (1 large-add,
10 small-adds) within a branch-and-bound framework. It is worth noting that in their
computational experiments, the relatively small problems having fewer than 50 nodes typically
required no branching, being solved at the root node itself.

 Benson, Ye, and Zhang (1998) have also addressed quadratic optimization problems
using SDP relaxations. They have applied a polynomial-time dual-scaling algorithm to an SDP
relaxation and combined it with heuristic procedures to achieve results for test problems of
dimension 800 to 10,000. The problem considered by Benson et al. is of the form:

 QP1: minimize xcvvC TT �)(� +•
 subject to xavvA T

i
T

i �)(� +• = mibi ,1, , K=∀
 0≥x ,

Chapter 2: Literature Review 15

where C� and iA� are given symmetric matrices, ia� and c� are given column vectors, and v and x
are the unknown variable vectors. Several combinatorial and optimization problems, including
graph partitioning problems and box-constrained quadratic problems, can be put into this general
form. Typically iA� is a sparse matrix of rank one, C� is sparse, and ia� is either null or equal to
the ith unit vector. The authors make the standard substitution, X = vvT, and then relax X to be
any positive semidefinite matrix. Their computational experience has shown that the parameter
values that work well at one point may be very different from the ones that work well at another
point. For this reason, their dual-scaling algorithm computes four dual step directions by using
four different input parameter values. If none of the four directions yields an improving solution,
the input parameter is reverted to a multiple of the value that was used at the previous iteration.
Five types of problems have been solved using a software package (DSDP) that contains their
dual-scaling algorithm along with the aforementioned randomized algorithm. Their solution
method was the first study to solve SDP relaxations of combinatorial problems having over 1000
variables.

 Kojima and Tuncel (1999) have used the SDP approach to provide successive convex
relaxations for problems having nonconvex feasible regions. They have developed two methods,
the Successive Semidefinite Relaxation (SSDP) Method and the Successive Semi-Infinite Linear
Program (SSILP) Relaxation Method. The SSILP is similar to the Reformulation-Linearization
Technique (RLT) for continuous polynomial programs as developed by Sherali and Tuncbilek
(1995). Kojima and Tuncel focus on problems having a linear objective function maximized over
a nonconvex region that is described by a finite number of quadratic inequalities. They develop
a procedure known as discretization to approximate an infinite number of semi-infinite SDPs (or
LPs) by a finite number of standard SDPs (LPs) using a finite number of linear inequalities. A
second technique, known as localization, is used when only an upper bound is required on the
objective value for a particular objective function. This effort concentrates on finding a convex
hull representation only in a suitable local neighborhood. Kojima and Takeda (1999) have
performed a complexity analysis for the convex relaxation scheme proposed by Kojima and
Tuncel. They found that even though the successive relaxations involve a finite number of
problems having a finite number of constraints, the problem size still grows rapidly when higher
accuracy is required, making the solution procedure impractical. Takeda et al. (1999) further
reduced the problem to obtain an implementation containing a reasonable number of constraints.
Their research focuses on an implementation of the Discretized-Localized version of SSILP.
Their computational experience (on six types of test problems) shows that this method provides
better approximations as compared with algorithms that use a single application of semidefinite
programming or semi-infinite linear programming relaxations.

 More recently, there has been an impetus of research related to reformulating and solving
SDPs as ordinary nonlinear programs. Vanderbei and Benson (2000) propose a smooth, convex,
finite nonlinear programming representation of a given positive semidefinite constraint 0 fX ,
by noting that a symmetric matrix X is PSD if and only if it can be factored as TLDLX = , where
L is a unit lower triangular matrix, and D is a diagonal nonnegative matrix . Denoting

njXd j ,,1),(K= , as the diagonal elements of D for a given nn × symmetric matrix X,

Chapter 2: Literature Review 16

Vanderbei and Benson show that each)(Xd j is a concave function of the elements of X, and
moreover, is twice continuously differentiable on the set of PSD matrices. Accordingly, they
replace 0 fX by the nonlinear, smooth constraints 0)(≥Xd j for nj ,,1 K= , and develop a
specialized interior-point algorithm for solving the underlying semidefinite program. Burer and
Monteiro (2000) consider linear semidefinite programs in the standard form to

minimize }0 ,,,1for:{ fK XmibXAXC ii ==•• ,

where C and iA , mi ,,1 K= are symmetric nn × matrices. They show that this problem can be
solved as a nonlinear program in which X is replaced by a low-rank factorization TRR , where R
is an rn × matrix, with r taken as  m2 . An augmented Lagrangian approach is then
proposed to solve this resulting problem, using a limited-memory BFGS scheme for the inner-
loop minimization process. However, the authors note that several local minima might exist, and
offer no theoretical proof of convergence, although encouraging empirical results are presented.

 Shor (1998) develops an alternative nondifferentiable optimization approach to
semidefinite programming based on incorporating the nonsmooth convex constraint that restricts
the smallest eigenvalue of X to be nonnegative. Given a symmetric nn × matrix X, if we denote
the n real eigenvalues of X arranged in nondecreasing order by njXj ,,1),(K=λ , then 0 fX is

equivalent to the condition that 0)(1 ≥Xλ . Moreover, if we denote njXjj ,,1),(K=≡αα , as
the set of linearly independent normalized eigenvectors corresponding to njXj ,,1),(K=λ ,

then noting that njXX jTj
j ,,1)()(K=∀= ααλ , we have that 0 fX 0)(≥⇔ Xjλ for

nj ,,1 K= 0)(≥⇔ jTj Xαα for nj ,,1 K= . It is interesting to note that as a function of
symmetric matrices X,)(1 Xλ is a concave, but nondifferentiable, function (see Shor (1998), for
example), although as demonstrated by Vanderbei and Benson (2000), the remaining eigenvalue
functions)(Xjλ for nj ,,2 K= , do not necessarily enjoy this concavity property. Furthermore,
by the Raleigh-Ritz formula (which can be readily verified via the normalized eigen-basis
diagonalization process), we have that

)(minimum)(
11 ααλ

α
XX T

=
= .

Observe that as a function of X, 1λ is hereby characterized as the minimum of a family of linear
functions, and is therefore concave with a set of subgradients that can be characterized in terms
of the normed eigenvectors *α associated with)(1 Xλ , where **

1)(ααλ XX T= for each such
*α . Accordingly, Shor (1998) incorporates the nonsmooth convex constraint 0)(1 ≥Xλ in the

model formulation, in lieu of 0 fX , and proposes a nondifferentiable optimization strategy.

Chapter 2: Literature Review 17

 2.3 Some Relevant Application Areas of Nonconvex Optimization

 In Chapters 4 and 5 of this dissertation, we will focus on two particular types of
nonconvex optimization problems, namely stochastic programming and facility location
problems. We therefore review some of the relevant literature in these areas in the following two
sections.

2.3.1 Stochastic Programming Problems
Stochastic programs are mathematical programs where some of the problem parameters

are not known with certainty, but rather, their values are known to follow some probabilistic
distributions. Dantzig and Beale independently proposed the basic concepts of stochastic
programming in 1955, with Dantzig calling the area �Linear Programming Under Uncertainty�
and Beale labeling it �Linear Programming with Random Coefficients.� The application areas of
stochastic programming can be as varied as those of linear programming, but applications in
production, financial planning, airplane scheduling, power generation, and vehicle routing are
among the most common. The literature on stochastic programs focuses largely on two-stage
stochastic programs with recourse. In theory, multi-stage programs can be handled in a similar
fashion via a nested approach, but in practice, this process is cumbersome to implement. In these
problems, the first-stage decisions must be made before the relevant random components of the
environment are realized, and then, a set of second-stage (or recourse) variables is used to
compensate for the ensuing effect of the environment. In the context of production planning, for
example, the first-stage variables might include the number of worker-hours required to meet
customer demand, where the latter is not known with certainty at the time of scheduling. If the
actual customer demand is not met exactly by the first-stage decision, recourse actions (such as
using overtime, underutilizing the workforce, or laying off workers) may be used, but they
generally incur a penalty cost. The goal of the stochastic program is to optimize the first-stage
costs plus the expected recourse costs. Some notable applications of stochastic programming
include scheduling (Birge and Dempster, 1996), financial planning (Carino et al., 1994), power
generation (Murphy et al., 1982), facility location (Laporte et al., 1994), and vehicle routing
(Laporte et al., 1992). For more information on stochastic programming in general, we refer the
reader to recent books on stochastic programming by Ermoliev and Wets (1988), Kall and
Wallace (1994), and Birge and Louveaux (1997).

There are several popular methods for solving two-stage stochastic LPs with recourse,
and most of these rely on the underlying principle of Benders� decomposition. The inherent
structure of these problems lends itself to a natural partitioning of the variables. The first-stage
investment, resource acquisition or location-type decisions, represent the complicating variables,
while the subproblems determine the best recourse actions for each realization of the
environment, given any first-stage decisions. A common practice is to approximate continuous
distributions with discrete ones, which allows the expected recourse function to be calculated as
a simple weighted sum. In the case of stochastic programs with integer recourse, Schultz (1995)
has shown that, under mild conditions, discrete distributions can effectively approximate
continuous ones to any given accuracy. Consequently, assume that there are L possible
environments, lξ~ , Ll ,...,1= , each occurring with a respective probability of pl. The set of

Chapter 2: Literature Review 18

constraints that couples the first- and second-stage decisions, nRx ∈ and mRy ∈ , respectively,
is generally expressed as

xThyW llll −= ,

where the (technology) matrix lT and the (resource) vector lh are known for each possible
environment lξ~ , Ll ,...,1= . The matrix lW (which is often assumed to be fixed in order to
yield an exploitable subproblem structure, but in general, could be stochastic as well) is known
as the recourse matrix, and it determines the set of recourse actions, yl, that are governed by the
net outcome xTh ll − . Given this notation, a typical Benders� decomposition for the two-stage
stochastic program with recourse would view the given problem in the form

 SP: minimize),(
1

l
L

l
l xQpcx ξ∑

=

+

 subject to Xx ∈ ,

 }0 , :{ min),(where ≥−== llllllll yxThyWyqxQ ξ for Ll ,,1 K= ,

and where X is some nonempty polytope in nR , with approximations for the optimal value
functions LlxQ l ,,1),,(K=ξ being generated via Benders� cuts. The term fixed recourse refers
to the situation where the recourse matrix is non-stochastic, that is LlWW l K,1, =∀= . In the
special case of complete recourse, we have that the recourse problem remains feasible for any
given realization of the first-stage variables. The weaker assumption of relatively complete
recourse implies that for every feasible first-stage decision, i.e. }{ Xxx ∈ , the recourse problems

0, ≥−= llll yxThWy are feasible for all Ll ,...,1= . In practice, it is difficult to recognize a
priori whether or not a particular problem has relatively complete recourse. The most basic type
of stochastic programs possess simple recourse, in which the recourse variables directly equal
the net outcome xTh ll − . In other words, we have],[IIW l −= , and the constraints of each

recourse problem simplify to xThyy llll −=− −+ . Clearly, simple recourse problems also
exhibit complete recourse. In the cases of complete or relatively complete recourse, the
subproblems encountered in the Benders� partitioning strategy are all feasible, and in such cases,
only optimality cuts are generated.

We note that stochastic programs with recourse can also be modeled as large-scale linear
programs, assuming that the random outcomes follow a discrete distribution. The LP equivalent
of SP is given as:

 SLP: minimize LTL
L

TTT yqpyqpyqpxc)(. . .)()(22
2

11
1 ++++

 subject to bAx =
 111 hWyxT =+
 222 hWyxT =+

Chapter 2: Literature Review 19

 O
 LLL hWyxT =+
 0, ≥lyx .

These two formulations are equivalent in the sense that they have the same set of solutions over
x , and the optimal values of Lly l ,...,1, = for the SLP are the solutions to the second stage
problem of P, given an optimal set of first-stage decisions x . Note that when lTT l ∀= (i.e.
T is non-stochastic), the structure of SLP simplifies significantly to the staircase structure shown
below.

c p1q1 p2q2 . . . pLqL
A = b
T W = 1�h
 -W W = 2�h
 -W W = 3�h
 . . .

 -W W = Lh�

When this type of problem structure exists, special solution techniques can be used to take
advantage of it. Similarly, the dual structure provides an alternative method for solving the LP
equivalent of SP. Consider the dual of SLP as:

 SLD′′′′: maximize ∑
=

π+σ
L

l

lTlT hb
1

�)(

 subject to cTA l
L

l

TlT ≤+∑
=

πσ �)(
1

 LlqpW l
l

lT ,...,1 ,� =≤π .

If we let l

ll p/�ππ = , we arrive at the following equivalent formulation:

 SLD: maximize ∑
=

π+σ
L

l

lTl
l

T hpb
1

)(

 subject to cTpA l
L

l

Tl
l

T ≤+∑
=

πσ
1

)(

 LlqW llT ,...,1 , =≤π .

The matrix structure of SLD displayed below can be exploited to generate efficient solution
techniques for SLD.

Chapter 2: Literature Review 20

bT p1h1 p2h2 . . . pLhL
AT p1(T1)T p2(T2)T pL(TL)T ≤ c

 WT ≤ q1

 WT ≤ q2
 WT ≤ q3

 . . .

 WT ≤ qL

In particular, when the recourse problem contains more variables than constraints (which is
usually the case) SLD has fewer (unconstrained) variables but a large number of constraints.

 The majority of stochastic programming algorithms, however, focus on solving problem
SP using decomposition techniques. Most of these methods can be considered as extensions of
the L-shaped algorithm that was proposed by Van Slyke and Wets (1969). The L-shaped
algorithm is a cutting plane algorithm that uses Benders� decomposition to create an outer
linearization of the objective function. The algorithm iterates between a master problem and a
series of subproblems. The master problem is shown below.

 MP: Minimize θ+xcT
 subject to bAx =
 0)(≥−θ xf

 0≥x ,

 where]}0,[min{)(≥−== yTxhWyyqExf T .

Since)(xf is not known explicitly, it is typically approximated via a set of feasibility and
optimality constraints or cuts. This produces the relaxed master problem shown below.

 RMP: Minimize θ+xcT
 subject to bAx =
 rkdxD kk ,...,1 , =≥
 skexE kk ,...,1 , =≥θ+
 ,0 θ≥x unrestricted.

At iteration v, we are given a solution,),(vvx θ , to the relaxed master problem. We first
determine if vx admits a feasible solution to the recourse problem. To do this, we solve a Phase
I problem for the recourse problems. If the optimal solution value for this problem is positive, vx
does not yield a feasible solution to the recourse problem, and so we add to the master problem a
feasibility cut that constrains the equivalent dual solution to be non-positive. If vx is feasible to
the recourse problem, we then compare the optimal recourse objective value to the bound vθ , in

Chapter 2: Literature Review 21

essence verifying whether vvxf θ≤)(. If not, we add an optimality cut to the master problem,
forcing θ≤σ−= vTvv Txhxf)()(. Recall that from duality theory,

})max{(}0,min{)(qWTxhyTxhWyyqxf vTvTvvTv ≤σσ−=≥−== .

Since only a finite number of these constraints exist based on extremal solutions, the overall
algorithm converges finitely. In summary, at each iteration of the L-Shaped Algorithm, we solve
the relaxed master problem followed by one subproblem for each of the L outcomes. If any of
the subproblems are infeasible, a feasibility cut is added to the master problem. Otherwise, the
optimal dual multipliers for the set of subproblems are used to create a single optimality cut for
the master problem. If the cost coefficients of the recourse problem are deterministic and only
the right-hand side values are stochastic, we solve L linear programs that differ only in their
right-hand side values:

 minimize yqw Tl =
 subject to ltWy =

 0≥y ,

where xTht lll −= . In such cases, we can use special techniques such as sifting (discrete
parametric analysis) and bunching (basis by basis analysis).

Birge and Louveaux (1988) developed a multicut enhancement to the L-Shaped
Algorithm, in which a separate optimality cut is constructed for each subproblem. While the L-
shaped method sends a single constraint to the relaxed master problem as an outer linearization
of the expected recourse costs, the multicut algorithm sends an outer linearization of the recourse
cost for each subproblem. Note that using multiple cuts corresponds to including several
columns in a dual procedure (Dantzig-Wolfe decomposition) instead of one aggregate column.
The intention is to send more information to the relaxed master problem than a single cut, and in
so doing, reduce the number of major iterations, and therefore increase convergence speed of the
algorithm. Birge and Louveaux have also developed a simplification for simple recourse
problems, stemming from the fact that only two types of optimality cuts can be generated for
these problems.

 The major limitation of the L-shaped and multicut algorithms is that they require the
solution of L linear programs at each iteration. An alternative approach to the decomposition-
based strategies is to use modified convex optimization techniques such as stochastic
quasigradient (SQG) methods. This strategy works with discrete and continuous distributions,
and it generates one observation of the random variable at each iteration. The SQG techniques
also have limitations, however. Their major drawbacks are the difficulty in determining step
lengths and the lack of an estimate of the objective function during the iterative process. Higle
and Sen have developed Stochastic Decomposition (1991) and Conditional Stochastic
Decomposition (1994) to combine the best aspects of decomposition-based and stochastic
approximation algorithms. (See Higle and Sen (1996) for a thorough review of both
approaches.) These methods are similar to the L-shaped and multicut algorithms, except that at

Chapter 2: Literature Review 22

each iteration, the subproblem is solved for one randomly generated sample point. There are no
restrictions on the random variable distributions. The idea is to generate statistically-based
approximations for the feasibility and optimality cuts. At later iterations, when more
observations of the random variable are available, the previous cuts are updated to reflect the
most accurate information. Although Higle and Sen have shown that these methods contain a
sequence of iterates that converge to optimality with probability one, practical implementations
track the best incumbent solution since the convergent subsequence is difficult to track. For a
thorough summary of current decomposition methods for stochastic programs, including some
recent advances, see Ruszczynski (1999).

 Stochastic integer programs are stochastic programs in which some of the variables are
restricted to be integer-valued. The integrality restriction can apply to the first- and/or second-
stage variables. When the second-stage (recourse) variables are restricted to be integral, the
resulting problem is referred to as a stochastic program with integer recourse. In this case, the
problem complexity increases significantly, since the subproblem for any random outcome is an
integer program whose parameters depend on the first-stage decisions. Moreover, the optimal
value recourse objective function now becomes nonconvex and discontinuous in general.

Although some solution strategies have been developed for specific applications of
stochastic IPs, relatively few techniques have been developed to solve general stochastic IPs. We
comment here on some recent algorithmic advances that employ decomposition techniques. (For
a thorough review of recent advances in developing models and algorithms for stochastic integer
programming, see Klein Haneveld and van der Vlerk (1999) and Schultz et al. (1996).) Laporte
and Louveaux (1993) developed the integer L-shaped algorithm (a combination of the L-shaped
method and branch-and-bound) to solve stochastic IPs with binary first-stage variables and
complete (mixed-integer) recourse. This extension constructs optimality cuts based on
independent evaluations of the recourse value function. For efficiency in an enumerative search
process, certain lower bounding functionals on this recourse value function are also derived.
Caroe and Tind (1998) have used general duality theory to develop a more general extension of
the L-shaped decomposition method to solve two-stage stochastic programs with integer
recourse, and have shown the integer L-shaped method to be a special case of their more general
framework. Previously, Caroe and Tind (1997) had developed a Lagrangian dual approach
based on applying variable splitting to the first-stage decisions, and then dualizing the resultant
equal-value nonanticipatory constraints. This approach was shown to be equivalent to
computing a hull relaxation in the context of disjunctive programming, and was solved using the
lift-and-project cutting plane technique of Balas et al. (1993). Cuts derived for one subproblem
were lifted to derive valid inequalities for other subproblems. However, in order to preserve
facetial properties in this lifting process, a separate linear program needed to be solved. We note
here that in our approach (presented in Chapter 4), which is geared toward solving the original
problem itself (rather than its relaxation), we show how cuts derived for one subproblem can be
directly used for other subproblems without any intermediate lifting step or auxiliary problem
solution (other than a simple substitution). Moreover, facetial properties are preserved in a
manner that induces finite convergence.

For the specific case of simple integer recourse where],[IIW l −= , and with a fixed
technology matrix and discretely distributed right-hand sides, Klein Haneveld et al. (1996) have

Chapter 2: Literature Review 23

used theoretical properties of the recourse objective value function to derive a convex hull
representation for the problem. They first show that the expected value function is separable and
that the mass points of the discrete distribution dictate its structure. They then develop an
algorithm based on the premise that the convex hull of the simple integer recourse objective is
equal to that of the expected value of a continuous simple recourse problem (under a suitable
transformation of variables) plus a constant. Based on this, they next apply a procedure to
systematically smooth out �knots,� or nondifferentiable points, from an underlying piecewise
linear approximation, and use the corners of the resulting smoothed piecewise linear function as
the mass points for the transformed variables. The constant term is then determined as a function
of the transformed variables, and the overall algorithm is shown to be polynomially bounded in
terms of the number of random outcomes. (See Klein Haneveld and ven der Vlerk (1999) for a
summary of several other techniques for simple integer recourse problems.)

Caroe and Schultz (1999) have used scenario decomposition and Lagrangian relaxation
within a branch-and-bound framework to solve two-stage stochastic IPs, and this approach can
readily be extended to multistage stochastic programs. Ahmed et al. (2000) consider two-stage
stochastic programs having pure integer second-stage variables, but mixed-integer first-stage
variables. They employ a transformation that induces a special structure in the discontinuities of
the second-stage optimal value function and based on a characterization of this structure, they
design a finitely convergent branch-and-bound algorithm for the original problem. Promising
computational results are provided on several classes of problems. A specialized approach for
two-stage stochastic IPs with mixed-integer recourse that is similar to ours in concept, but uses
an alternative sequential convexification process based on a different asymptotically exact
cutting plane approach for solving the subproblems for fixed values of the first-stage decisions,
has been proposed by Higle and Sen (2000). In a different vein, Schultz et al. (1998) have used
Grobner basis techniques within an implicit enumeration strategy to address the class of
problems having integer recourse. Although Grobner bases are typically expensive to compute,
their use becomes relatively more effective when the same problem is re-solved for different
right-hand side values, which is the case for recourse problems.

2.3.2 Facility Layout Problems
 The facility layout problem is concerned with determining a non-overlapping layout of
departments within a designated section of a building, while maintaining certain area restrictions
for each department and minimizing the expected cost of flows, taken as the rectilinear distance
times the number of trips, between the departments. The literature addresses problem instances
that specify fixed dimensions for each of the departments while considering only their relative
positions as decision variables, as well instances where both the location and dimensions of each
department are variables to be optimized. Similarly, some instances assume fixed grid positions
for the departments, while others allow more flexibility. While most applications assume that
the flow of material occurs to and from the departmental centroids, some applications consider
the placement of a specific input/output station within each department. In the most general
sense, facility layout problems are composed of two types of constraints, as noted by Meller and
Gau (1996). The first type restricts the area of the departments to be within some prescribed
limits, while the second type provides restrictions on departmental locations, such as avoiding
departmental overlaps, and requires the departments to remain within the limits of the facility,

Chapter 2: Literature Review 24

and to avoid certain fixed areas of the building. For a detailed survey of recent advances in the
facility layout problem, see Meller and Gau (1996).

 Several sources in the literature (see, for example, Chittratanawat and Noble (1999) and
Georgiadia et al. (1999)) have shown that the layout of a facility has a tremendous impact on its
operating costs, and is therefore of critical importance. For this reason, the facility layout
problem has received a great deal of attention in the operations research community. In the
1970s and 1980s, the most popular approaches to the facility layout problem were graph
theoretical approaches. In these approaches, the relative desirability of locating each pair of
departments adjacent to one another is specified. These relationships are used to construct an
adjacency graph which, ignoring department sizes, specifies a general preference for which
departments should be near one another. The dual of this graph is then constructed, and is used
to generate a block layout for the facility. Typically, heuristic approaches are used to construct
an adjacency graph that is maximally weighted, yet still limited enough to construct its dual with
reasonable effort. The truly limiting factor, however, is translating the dual graph to a block
layout that specifies each department�s shape and size, a task that is typically done by hand.

While most of the research on the facility layout problem has focused on generating good
layouts through construction and improvement heuristics, a new trend has also emerged. Within
the past decade, several researchers have formulated the facility layout problem as an
optimization problem. If we desire to locate equally sized departments within some
predetermined grid, the facility layout problem reduces to the quadratic assignment problem,
which is itself a very difficult problem for even a moderate number of departments. When
adding the complications of unequal areas and varying horizontal and vertical dimensions, it is
clear that the facility layout problem is highly challenging to solve to optimality. For this reason,
several researchers have considered heuristic approaches for the underlying optimization
problem.

In this respect, Montreuil et al. (1993) examine several design skeletons (flow graphs,
adjacency graphs, cut trees, etc.) from which human designers have traditionally generated good
facility layouts. Given such a design skeleton and its graphical representation, the authors solve
a linear programming model to generate a layout. This approach can be integrated well with an
interactive optimization-based design framework. Delmaire et al. (1997) have combined genetic
algorithms with linear programming for the problem where all the departments must be located
on either side of a main aisle. They use a genetic algorithm to generate the relative positioning
of the departments, and then formulate and solve a linear programming model to determine the
locations of the input/output stations and the dimensions of the departments, to minimize the cost
of the layout. The method can also be extended to the case where the departments are located
around a ring-shaped aisle. The results reported are promising, outperforming several available
methods for the test cases solved. Chittratanawat and Noble (1999) have developed an
integrated approach to address facility layout, including the determination of input/output
stations and material handling equipment selection. Due to these added complications, the
model requires equal department sizes that are known a priori. Their model is a nonlinear
mixed-integer program, and is solved using tabu search metaheuristic schemes, including two
heuristic procedures for solving the underlying subproblems. Other recent examples of
combining submodels with heuristic optimization techniques include the approaches of Banerjee

Chapter 2: Literature Review 25

et al. (1992), Heragu and Kusiak (1991), and Langevin et al. (1994).

There have been several attempts, however, to solve the facility layout problem through
traditional modeling and optimization techniques, and this is the area that our research will focus
on. The main difficulty in these models is finding good approximations for the nonlinear
departmental area restrictions, and providing adequate constraints to prevent departments from
overlapping. Montreuil (1990) has proposed one such model, a mixed-integer programming
formulation called FLP1. This model includes four decision variables for each department i;
namely, the half-length and half-width),(y

i
x
i ll , and the centroidal location),(y

i
x
i cc . For each

department i, the required area ia is specified, and a parameter)1(≥iα , known as the aspect
ratio, is delineated to restrict the maximum permissible ratio between the longest and shortest
sides of the department for aesthetic purposes. Using this information, Montreuil relaxes the
nonlinear area constraint, y

i
x
ii lla 4= , with bounded perimeter constraints,

iPllp i
y

i
x
ii ∀≤+≤)(4 , where ii ap 4= and iiii aP αα /)1(2 += . This formulation,

however, is biased in favor of smaller departments and can lead to a significant under-
representation of the area. In their model FLP2, Meller et al. (1999) develop improved area
restriction representations, called surrogate area constraints, by requiring

ifa ii
y
i

x
i ∀×+≥+ max23)(4 lll , where f is a parameter that is empirically determined to be

0.95. These constraints are also not very effective in enforcing the area requirements, as we shall
exhibit later in Chapter 5, where we will describe a more analytical approach to deriving
appropriate area representation approximations. We note that a more complete review of the
model FLP2 is presented in Chapter 5, prior to the presentation of our proposed enhancements.

26

Chapter 3: Enhancing RLT Formulations
through Connections with Semidefinite
Programming

As discussed in Chapters 1 and 2, it is essential to have tight formulations for nonconvex
optimization problems if we are to obtain good lower and upper bounds, and thereby solve the
original problem with a reasonable amount of effort. For many classes of problems, lowest-level
RLT relaxations have proven effective in deriving tight lower bounding mechanisms. However,
this observation is not a uniform experience, and even in the aforementioned cases, the overall
process can greatly benefit by incorporating suitable general classes of additional RLT
inequalities that serve to further tighten the relaxation, without having to resort to higher-level
representations. With this motivation, we explore the generation of particular types of valid
inequalities or cutting planes that are in fact generalized RLT constraints derived via
semidefinite programming concepts. We call this class of valid inequalities semidefinite cuts.
For some other classes of effective RLT cuts developed for the special case of quadratic
polynomial programs, we refer the reader to Audet et al. (2000).

The remainder of this chapter is organized as follows. After discussing the motivation
for combining the SDP and RLT methods in Section 3.1, we introduce in Section 3.2 the
Problem QP that is used to evaluate the proposed methodology, and discuss a typical SDP
relaxation for Problem QP that would then be solved by specific SDP solvers. To illustrate our
more general methodology, we present in Section 3.3 an alternative semidefinite relaxation for
Problem QP that is more closely associated with the usual RLT process, and which in fact yields
a tighter relaxation. This SDP relaxation is then shown to be equivalent to a suitable semi-
infinite RLT relaxation. Based on this derivation, we develop a strategy that sequentially
augments the first-level relaxation RLT-1(QP) with cutting planes that are automatically
generated from the constraints in the semi-infinite representation using a special polynomial-time
separation procedure. In Section 3.3.2, several cut generation mechanisms are explored in this
context. Thereafter, in Section 3.3.3, we demonstrate that potentially stronger classes of such
cutting planes can be generated in a likewise fashion with comparable effort by simply replacing

the semidefinite constraint 0 fX by the restriction TxxX f , i.e., 0
1

f







Tx

xX
. A summary of

our experimental design is presented in Section 3.4, along with computational results for
employing cutting planes based on both types of semidefinite constraints. Section 3.5 examines
the extension of the proposed relaxation enhancement procedure to higher-level RLT
representations. Finally, Section 3.6 presents conclusions and suggestions for future research.

Chapter 3: Enhancing RLT Formulations through Connections with SDP 27

 3.1 Motivation

 In this chapter, we integrate the concepts of semidefinite programming and RLT to
develop a class of semidefinite cuts that can be used to augment the RLT relaxation for any
problem (discrete or continuous, linear or nonlinear) to which the latter technique is applicable.
Given an RLT relaxation for any such problem, we show that we can further enhance this
relaxation by incorporating an infinite class of particular RLT constraints that are based on
semidefinite relationships. Rather than solve the resulting semi-infinite program, which in itself
would require a specialized solution approach, we adopt the strategy of generating suitable
members from the infinite constraint set as needed through a cutting plane or separation
procedure. This separation routine is executed in polynomial time, thereby making the cut
generation process efficient. Moreover, each relaxation in this sequential process is a linear
program whose solution can be updated using standard mathematical programming software. At
termination, this procedure yields a lower bound on the optimal value of the original problem.
In addition, an upper bound can be computed by initializing a local search procedure with the
solution obtained for the final relaxation. These bounds can be embedded within a branch-and-
bound framework to determine a global optimum to the original problem.

 Note that this concept of generating cutting planes based on semidefinite restrictions can
be used to augment any RLT relaxation, even if the overall relaxation cannot be cast as a
semidefinite program, or if it contains sets of (nonlinear) convex constraints as in Sherali and
Tuncbilek (1997). For example, Sherali and Wang (2001) have recently proposed a global
optimization approach for solving general nonconvex factorable programs by integrating a
polynomial approximation with an RLT scheme. In this context, our proposed approach can be
applied identically by augmenting the simple nonnegativity and symmetry restrictions on the
even-ordered RLT variables by a stronger positive semidefinite constraint, and then generating
valid inequalities to tighten the relaxation in a manner similar to that exposed in the sequel.

3.2 Problem Class QP

 As a point of illustration of this general concept, we will consider a specific example of
the class of problems involving the minimization of a nonconvex quadratic objective function
over a simplex (denoted QP below). This problem is interesting in its own right, and has been
extensively studied by Nowak (1998a,b, 1999). It arises, for instance, in the context of finding a
maximal weighted clique in an undirected graph.

QP: Minimize ∑∑
i j

jiij xxC (3.1a)

 subject to xeT = 1 (3.1b)
 x ≥ 0, (3.1c)

where nRx ∈ and e is a vector of n ones. Although Problem QP is NP-Hard, it has a simple
structure that makes it convenient to illustrate the essence of our approach, and extensions to
more general problems are readily evident.

Chapter 3: Enhancing RLT Formulations through Connections with SDP 28

 The first-level RLT relaxation RLT-1 (see Sherali and Tuncbilek, 1992) for Problem QP
would multiply (3.1b) with each variable ix , for ni ,,1 K= , and then substitute a nonnegative
variable ijX for each term ji xx in the problem, where njiXX jiij ,,1, K=∀≡ . To write this
resulting problem in a specific manner that exposes connections with semidefinite programming
and motivates our development, define][ijXX ≡ to be an nn × (symmetric) matrix that

represents the linearization of Txx under the foregoing RLT substitution (i.e., L
TxxX][≡ ,

where in general, L][⋅ represents the standard linearization operation of RLT; in the present
context, this involves the substitution of ijX for the product term ji xx). Then, we can write the
level-one RLT relaxation for QP in the form

RLT-1(QP): minimize ∑∑
i j

ijij XC (3.2a)

 subject to xeT = 1 (3.2b)
 Xe = x (3.2c)
 symmetric. and 0,0 ≥≥ Xx (3.2d)

 Nowak (1998a,b, 1999) has proposed various SDP approaches for solving Problem QP.
To derive a suitable semidefinite relaxation for QP, Nowak first employs the particular RLT
constructs of multiplying the constraints 0≥ix and 0≥jx pairwise and squaring the constraint

1=xeT , to derive the following quadratically constrained quadratic program (QQP).

QQP: Minimize ∑∑
i j

jiij xxC

 subject to 2)(xeT = 1
 ji xx ≥ nji ≤≤∀ ,1 ,0
 x ≥ 0.

By substituting TxxX = , he then obtains a semidefinite relaxation for this representation as
given by

SDP(QQP): minimize XC • (3.3a)
 subject to XeeT •)(= 1 (3.3b)
 X ≥ 0 (3.3c)
 X f 0 (3.3d)

where][ijCC = and where for any conformable square matrices][ijAA = and][ijBB = , the dot

product BA • is defined as the trace of BAT , i.e., ∑∑=•
i j

ijij BABA . Also, 0 fX denotes

that X is symmetric and positive semidefinite. Nowak next constructs a convex quadratic
function, Wxxxw T=)(, such that W ≤ C and w(x) approximates CxxXC T=• . The matrix W is

Chapter 3: Enhancing RLT Formulations through Connections with SDP 29

found by solving a separate semidefinite program. This produces an approximation for the
convex envelope of the objective function, and the optimal solution to this convex program is
used to provide an estimate for the global minimum of Problem QP. Nowak has developed
several lower bounding schemes for Problem QP, each based upon solving a different SDP
problem to find W.

3.3 Development of the SDP Cuts

There are several ways to construct a semidefinite relaxation for QP. One such
formulation, suggested by Nowak, was presented above in (3.3). Alternatively, rather than
squaring the simplex constraint, we can instead multiply it (on the right) by xT as one would in an
RLT approach, and use the substitution TxxX = . Since X is symmetric, this yields the
constraint xXe = , which we append to the original problem. Relaxing TxxX = to 0 fX , we
obtain the following semidefinite relaxation of QP. Note that from (3.4b,c), we have

1)(==≡• xeXeeXee TTT , or that (3.3b) is implied. Hence, formulation (3.4) potentially
yields a tighter relaxation of QP than that given by (3.3).

SDP(QP): Minimize XC • (3.4a)
 subject to xeT = 1 (3.4b)
 Xe = x (3.4c)
 0,0 ≥≥ Xx (3.4d)
 X f 0. (3.4e)

We will now construct an equivalent semi-infinite linear programming restatement of Problem
SDP(QP). This will facilitate the derivation of valid inequalities to augment the first-level RLT
relaxation of Problem QP, given by (3.2). Consider the following result.

Proposition 3.1. The problem SDP(QP) given by (3.4) is equivalent to the semi-infinite linear
program (SILP(QP)) stated in (3.5) below.

SILP(QP): Minimize ∑∑
i j

ijij XC (3.5a)

 subject to xeT = 1 (3.5b)
 Xe = x (3.5c)

L
T x])([2α ≥ 0, 1=α∋∈α∀ nR (3.5d)

 symmetric. and 0,0 ≥≥ Xx (3.5e)

Proof. By definition, 0 fX is equivalent to requiring that X is symmetric and that

 ,0≥αα XT 1=∋∈∀ αα nR , noting that any nonzero nR∈α can be made of unit length.

But L
T

L
TT

L
TTT xxxxxX])[()])([(])([2α=αα=αα=αα . Hence, (3.4e) is equivalent to

requiring X to be symmetric and such that (3.5d) holds true. This completes the proof. !

Chapter 3: Enhancing RLT Formulations through Connections with SDP 30

Proposition 3.1 reveals a connection between RLT and semidefinite relaxations. Observe
that (3.5a,b,c, and e) are respectively identical to (3.2a,b,c, and d) that define the first-level RLT
relaxation RLT-1(QP). The constraint set (3.5d) provides a potential strengthening of SDP(QP)
or SILP(QP) over RLT-1(QP). The first-level RLT relaxation replaces the nonlinear substitution
restriction TxxX = by simply requiring X to be nonnegative and symmetric. On the other hand,
the semidefinite relaxation also requires X to satisfy the positive semidefiniteness condition
associated with the identity TxxX = . But note that as explored in Sherali and Tuncbilek (1997)
and Audet et al. (2000), for example, aside from the minimal RLT representation constraints
stated in (3.2) in the present context, the first-level RLT relaxation can optionally incorporate
any other classes of linearized quadratic implied constraints. In particular, enhancing RLT-
1(QP) with such implied restrictions of the type (3.5d) yields the semidefinite relaxation
SDP(QP) as a special case. We therefore refer to the valid inequalities of the type (3.5d) as
semidefinite cuts (or SDP cuts).

Note that if we denote njXjj ,,1),(K=≡αα , as the set of linearly independent
normalized eigenvectors of X, then 0 fX is equivalent to the condition that 0)(≥jTj Xαα for

nj ,,1 K= . Hence, in the relationships embodied in (3.5d), we could focus on just the α -
vectors corresponding to such eigenvectors of X, and generate violated members of these
constraints in a relaxation framework based on detected negative eigenvalues. The Lanczos
algorithm could be used for this purpose (see Paige and Saunders (1975), for example).
However, because of the complexity of this approach, given that X is a variable in the problem,
we will find it more convenient to derive a (polynomial-time) separation mechanism for
generating suitable members of (3.5d) in a sequential fashion, based on an LU factorization
concept for X.

3.3.1 Basic SDP Cut Generation
 Rather than solving the semi-infinite program SILP(QP) directly, we adopt the following
relaxation approach which leads to a cutting plane generation strategy that can be applied in
more general contexts. To begin with, we first solve SILP(QP) with the constraints (3.5d)
omitted. Note that this relaxation corresponds precisely to the first-level RLT relaxation of QP
as given by (3.2). Let us denote the resulting solution to this problem as)�,�(Xx . If 0 � fX , then
X� solves Problem SILP(QP) (or SDP(QP)) as well. Otherwise, the solution X� violates at least
one of the constraints (3.5d). The task now is to generate a suitable vector of unit length,

nR∈α , for which the constraint 0≥αα XT is not satisfied when XX �= . This will then yield
a cutting plane of type (3.5d).

 In essence, our solution strategy recursively evaluates the entries of X� to determine
whether or not X� is indeed positive semidefinite. Toward this end, consider the application of a
superdiagonalization (or upper triangularization) process to the symmetric matrix X� (see
Bazaraa et al., 1993). In this process, proceeding in the order ni ,,2,1 K= , we continue to zero
out the elements in the ith column under the current ith diagonal element by performing
elementary row operations using the ith row, so long as the diagonal elements encountered

Chapter 3: Enhancing RLT Formulations through Connections with SDP 31

remain positive. Starting with XG �1 ≡ for 1=i , at the ith stage in this process, }1,,1{ −∈ ni K ,
suppose that we have encountered all positive diagonal elements thus far, and that we are
examining the reduced submatrix iG)1(x)1(+−+−∈ ininR appearing in rows and columns nii K,1, + .
Let us view iG in its partitioned form, where its first row and column are explicitly displayed as
follows









≡

Gg
gGG i

Tii
i)(11 ,

(3.6)

and consider the following result.

Proposition 3.2. Given iG as in (3.6), suppose that 011 >iG and define

)(

11

1
i

Tii
i

G
ggGG −=+ .

(3.7)

Then iG is PSD if and only if 1+iG is PSD. Moreover, given any T

ni
i),,(1

1 αα≡α +
+ K , by

selecting i

iTi

i G
g

11

1)(+α−=α , we have that 111)()(+++ αα=αα iiTiiiTi GG for 







α
α

≡α +1i
ii .

Proof. By simplifying terms, we have from (3.6) and (3.7) that

1112

11

1

11)())(()(+++
+

αα+α+α=αα iiTi
i

iTi

i
iiiTi G

G
gGG .

Clearly, if 1+iG is PSD, then so is iG . Conversely, if iG is PSD, then noting that by setting

i

iTi

i G
g

11

1)(+α−≡α gives 111)()(+++ αα=αα iiTiiiTi GG ,
(3.8)

we must have that 1+iG is also PSD. Moreover, in any case, (3.8) holds true. This completes the
proof. !

 Note that the first part of Proposition 3.2 is based on the superdiagonalization procedure
for checking the positive semidefiniteness of X� (see Bazaraa et al. (1993)). The related latter
part of the result asserts that if iG is not PSD, then since 1+iG must also not be PSD, we can
seek an 1+α i such that 0)(111 <αα +++ iiTi G , and accordingly, we will have found an iα with iα
given by (3.8) such that 0)(<αα iiTi G . We can repeat this process recursively until all
components of α are determined. Upon normalizing this α , we will have generated a valid
linear inequality of the form (3.5d) that is not satisfied for the current solution X� .

 Next, consider the situation addressed by the following result in which for some stage

Chapter 3: Enhancing RLT Formulations through Connections with SDP 32

}1,,1{ −∈ ni K , we encounter a submatrix iG of the type (3.6) for which 011 =iG and 0≡ig .

Proposition 3.3. Given iG as in (3.6), suppose that 011 =iG and that 0≡ig . Then by letting

GGi ≡+1 and 0=α i , (3.9)

we have that iG is PSD if and only if 1+iG is PSD, and moreover,

111)()(+++ αα=αα iiTiiiTi GG where 







α

≡α
=α +1

0
i

ii .
(3.10)

Proof. Similar to the proof of Proposition 3.2. !

 This result asserts again that if 1+iG is not PSD and we find an 1+α i such that
0)(111 <αα +++ iiTi G , then we can recursively recover an α via (3.8) and (3.10) (according to

whether the corresponding diagonal element is positive or zero, noting the condition of
Proposition 3.3 in the latter case), such that (3.5d) is violated.

 Now, let us consider two cases where for the first time, a situation other than the
foregoing types arises.

Case (i): i
11G < 0 in (3.6).

Suppose that in the foregoing diagonalization process, we encounter for the first time a
matrix iG given by (3.6) having 011 <iG . In this case, we can take =αα=α T

ni
i),,(K

)0,,0,1(K . Then 0)(11 <=αα iiiTi GG , and we can subsequently compute the full vector α
inductively using (3.8) and (3.10).

Case (ii): i
11G = 0, but 0θGG ≠== i

j
i

j 11 for some 1},{2, +−∈ inj K in (3.6).

 In this case, we know that iG is not PSD and we can find an α for which 0� ≥αα XT is
violated as follows. Specifically, consider iα to be of the form =αα=α T

ni
i),,(K

T
jii)0,,0,,0,,0,(1 KK −+αα . Let φ=i

jjG , T
jii),(1−+αα=ξ , and 








φθ
θ

=
0

H . We then have that

ξξ=αα HG TiiTi)(, and if we can determine a ξ for which ξξ HT < 0, we will have obtained an
iα for which 0)(<αα iiTi G . By using (3.8) and (3.10) recursively as before, we could thereby

find an α for which 0� <αα XT . This α could then be normalized to produce a valid inequality
of the form (3.5d) that must be satisfied for all feasible solutions X. In order to determine such a
vector iα , consider the following result.

Proposition 3.4. Let T
jii),(1−+αα=ξ and let 








φθ
θ

=
0

H , where 0≠θ . Then ξξ HT is

Chapter 3: Enhancing RLT Formulations through Connections with SDP 33

minimized, subject to 12 =ξ , by selecting

2

2
1

1

θ
λ+

=α i

and
θ
λα

=α −+
i

ji 1

where
.

2
4 22 θ+φ−φ

=λ

(3.11)

Moreover, at the solution (3.11), 0<λ≡ξξ HT .

Proof. By the linear independence constraint qualification, the KKT necessary optimality
conditions (see Bazaraa et al. (1993)) for the problem of minimizing ξξ HT subject to

12 =ξ yield for some λ ,

1 , 2 =ξξλ=ξH . (3.12)

This implies that at any KKT solution, we have

λλξξλξξξ === 2 TT H . (3.13)

From (3.12) and (3.13), it follows that the optimal objective value sought equals the minimum
eigenvalue λ of H, and the corresponding normalized eigenvector yields the optimal solution ξ .
To find the minimum eigenvalue for H, consider the equation 0)det(22 =θ−φλ−λ=λ− IH .

 Using the quadratic formula, we derive the minimum eigenvalue of H as

2

4 22 θ+φ−φ
=λ . The corresponding eigenvector of H can be found via the system

ξλ−)(IH =0, which gives
θ

λα
=α −+

i
ji 1 . Since, 12

1
22 =α+α=ξ −+ jii , we have

2

2
1

1

θ
λ+

=α i ,

where the positive square-root for computing iα can be chosen without loss of generality.

Furthermore, from (3.13), 0<ξξ=λ HT since X is not PSD. This completes the proof. !

Remark 3.1. Note that in case of alternative choices of elements pertaining to Case (ii) for which
Proposition 3.4 can be applied, we can select one that yields the most negative value of λ . !

Example 3.1. To illustrate, consider the following example. Suppose that the current solution
X� is given as follows:
















=

2.0015.0
02.015.0
15.015.00

�X .

Chapter 3: Enhancing RLT Formulations through Connections with SDP 34

With i = 1, we have 011 =iG and 011 ≠= i
j

i
j GG for j = 2 and j = 3, indicating that there are two

possible values of j that can generate a separating inequality. With j=2, we have
15.02112 == ii GG . This yields T),(21 αα=ξ with 15.0=θ and 2.0=φ in the notation of Case

(ii) above. From (3.11), -0.08028
2

)15.0(42.02.0 22

=
+−

=λ , 8817.0
1

1

2

2

15.0
)08028.0(

1 =
+

=α
−

,

and () 4719.0
15.0

8817.0)08028.0(
2 −=−=α . Hence, T)0 ,4719.0 ,8817.0(−=α . Note that

1=α and that 08028.0
4719.0

8817.0
2.015.0
15.00

)4719.0,8817.0(� −=







−








−=ξξ=αα HX TT ,

which is the value of λ . In a similar fashion, we can calculate the corresponding α for j=3 as
T)4719.0 ,0 ,8817.0(−=α , which also produces -0.08028=λ . Thus, the procedure has

found two possible choices of α for which 0])([2 ≥α≡αα L
TT xX is not satisfied for the

current solution X� . The corresponding linearized constraints are given as

02226.08321.07774.0 221211 ≥+− XXX

and 02226.08321.07774.0 331311 ≥+− XXX .

Since both of these cuts produced the same value of λ , we could arbitrarily choose either cut. !

 The foregoing approach establishes an inductive polynomial-time process for generating
valid inequalities for the first-level RLT relaxation. Since each recursive step of applying this
process to Gi at iteration i is of complexity O(n2) and we perform at most n such steps, the
complexity of the overall separation routine is O(n3). After obtaining an α for which

0� <αα XT , 1=α , and generating the corresponding inequality 0])([2 ≥α L
T x , we can append

this to the current RLT relaxation. This problem could then be re-solved to obtain a new solution
)�,�(Xx , and the procedure could be repeated until any of the following termination criteria is

realized: the solution X� for some relaxed problem turns out to be PSD, or some maximum limit
K1 on the number of LPs solved is attained, or the improvement in the lower bound from one
iteration to the next is lesser than a prescribed 0>δ for some p consecutive iterations. Note that,
as described in the sequel, we could generate multiple cuts at each iteration. Hence, we also
impose a limit, K2, on the number of inequalities of type (3.5d) that are generated for any
particular solution X� . (In our computations, we used K1 = 100, K2 = 100, δ = 0.001, and p = 3.)
Figure 3.1 gives a flow-chart for this approximate truncated scheme for solving SILP(QP) by
way of augmenting RLT-1(QP) with the proposed SDP cuts.

Chapter 3: Enhancing RLT Formulations through Connections with SDP 35

y

y

n

n

n

y

n

y

n

y

y

XGi �,1 1 ≡=

0 11 <iG

1+= ii

011 =iG

ni = X� is PSD;
stop. Store 








i

i

g
G11 and

compute 1+iG as

i

Tii

G
ggG
11

)(− ,

where









=

Gg
gGG i

Tii
i)(11 .

Store 011 =iG
and let 1+iG be
obtained by
deleting the first
row and column
of iG .

Put 1=α i ,
ipp >∀=α 0 .

Select a j such that
01 ≠θ=i

jG and such that

with i
jjG=φ , the quantity λ

given by (3.7) is a minimum.
Set

2
2

 1
1

θ
λ+

=α i ,

)(1 θ
λα=α −+ iji , and

1,0 −+≠>∀=α jipipp .

Recursively, for r = i-1 to 1,
compute rα as:
If 011 =rG , then 0=α r ;

otherwise, r

rr

r G
g

11

1+α−=α

where),,(1
1

nr
r αα≡α +
+ K .

Normalize
α .

Generate new SDP cut
(3.5d) and append to the
current relaxation.

jGi
j ∀= 01

Figure 3.1. Flow-chart for the Fundamental SDP Cut Generation Procedure.

Solve the first-level RLT relaxation along with any generated constraints of the type (3.5d). Let
)�,�(Xx be the solution obtained. If any of the termination criterion of Section 3.3.1 holds, stop; the

objective yields a LB on QP. Else, delete previous inactive SDP cuts and continue.

1>i

Chapter 3: Enhancing RLT Formulations through Connections with SDP 36

Example 3.2. Suppose that the current solution X� is given as follows.
















=

4.002.0
0008.0
2.008.004.0

�X

We can see that X� is not PSD, since 0�
22 =X but 08.0��

2112 == XX . The procedure of Figure
3.1 starts with 1=i , XG �1 = , and examines 11

1
11

�XG = . Since 01
11 >G , we store 04.01

11 =G ,









=

2.0
08.01g , and we derive the reduced matrix 2G of Proposition 3.2 via (3.7) as

()








−−
−−

=









−







=

6.04.0
4.016.0

04.0

2.008.0
2.0
08.0

4.00
002G .

At 2=i , 16.02
11 −=G is negative. Hence, we take TT)0,1(),(32

2 =αα=α which gives
16.0)(222 −=αα GT . At the final step in Figure 3.1, with 1=r , we compute

2),(1
11

1
321 −=⋅αα−=α Gg from Equation (3.8). This yields ()T0,1,2−=α with

16.0� −=αα XT . When we normalize α to ()T0,,
5

1
5
2− , we obtain 032.0� −=αα XT . The

corresponding SDP cut,

02.08.08.0])[(221211
2 ≥+−=α XXXx L

T ,

is violated for XX �= , since 032.0)0(2.0)08.0(8.0)04.0(8.0�])[(2 −=+−=αα≡α Xx T
L

T . !

3.3.2 Enhancing the Basic SDP Cut Generation Strategy

In the cut generation process described above, we have assumed that the matrix X� is
scanned with respect to its ith diagonal element in the order ni ,,1 K= , and that a single SDP cut
is generated once it is revealed that X� is not PSD. There are several variations to this strategy
that we could possibly adopt. One such variation is a look-ahead feature for the cut generation
process. In this modification, when the matrix under consideration is iG having dimension

1+− in , we scan the entire diagonal (i
qqG for 1,,1 +−= inq K) to see if any diagonal element

is negative. If we find such a negative diagonal element, say 0<i
QQG , we take 11 =α −+Qi and

1, ,0 −+≠≥∀=α Qipipp . As before, we use Equations (3.8) and (3.10) recursively to
determine 1 −≤∀α ipp (if i ≥ 2). In a similar manner, we can look ahead for cases where there

is a diagonal element that equals zero, say, 0=i
QQG , but 0≠i

QkG for some }1,,1{ +−∈ ink K ,

Chapter 3: Enhancing RLT Formulations through Connections with SDP 37

and generate a cut based on this revealed violation of positive semidefiniteness. Figures 3.2 and
3.3 provide detailed flow-charts of routines for implementing this look-ahead feature. Here, we
use �status = 0� to indicate that we should continue to increment i and look for additional cuts.
Since, barring a further permutation of rows and columns of X� , it is only valid to increment i
when either 011 >iG or when 011 == i

j
i
j GG 1,,1 +−=∀ inj K we set �status = 1� when either a

Case (i) or Case (ii) violation is detected with respect to the leading element iG11 of iG .

As a second variant of this strategy, whenever the leading element of the current reduced
matrix iG yields a Case (i) or Case (ii) violation, we generate the valid cuts as above, but instead
of exiting from the cut generation routine, we examine if any of the other diagonal elements are
positive. If so, we permute the rows and columns of iG to make the most positive diagonal
element as the leading element, and continue the cut generation process, taking care to record the
appropriate order of the permuted indices for generating future cuts. Let us refer to this
technique as the full permutation strategy. Since such a permutation strategy can consume
significant computational effort, a third variant is developed in order to decrease computational
effort while maintaining the benefits of permutation. In this variant, called the diagonal sort
strategy, we perform an nlog(n) sort to arrange the diagonal elements in nonincreasing order, and
we continue to generate cuts until we encounter a Case (i) or Case (ii) violation from the leading
diagonal element. A fourth variant that applies to all of the foregoing strategies adds multiple
cuts at each iteration, also using the look-ahead feature. Since there might be several distinct
choices of α for composing SDP cuts as revealed during the sequential look-ahead process for
the current solution X� , we attempt to generate a bundle of SDP cuts for each such X� in order to
possibly reduce the computational time for the overall solution process. For all variants, we
delete previously generated inactive cuts at each iteration. (We also implement an efficient
check to avoid the generation of duplicated cuts.) In our experimental analysis, we will
investigate both the single and multiple cut implementations, using both the original matrix X�
as well as an augmented matrix that will be considered in Section 3.3.3.

Example 3.3. To illustrate these variants, consider the matrix X� from Example 3.2:
















=

4.002.0
0008.0
2.008.004.0

�X .

With i = 1 and XG �1 = , we can look-ahead and see that 0�
22 =X but 08.0��

1221 ===θ XX .
Accordingly, we can derive a violated constraint at this point itself, before incrementing i and
examining 2G . If we take T),(12 αα=ξ , 08.0��

2112 ===θ XX , and 04.0�
11 ==φ X , we obtain

from Proposition 3.4 that T)0,7882.0,6154.0(−=α . The corresponding SDP cut is

06213.09701.03787.0 221211 ≥+− XXX ,

Chapter 3: Enhancing RLT Formulations through Connections with SDP 38

n

n

y y

n

y
n

y

0status,� ,1 ,0 ,1 1 =≡==+= XGinkk k

X� is PSD;
stop.

Store 011 =iG
and let 1+iG be
obtained by
deleting the first
row and column
of iG .

1+= ii

01 =i
jG

1,,1 +−=∀ inj K

Store 







i

i

g
G11 , and compute 1+iG as

i

Tii

G
ggG
11

)(− , where 







=

Gg
gGG i

Tii
i)(11 .

Figure 3.2. Flow-chart for the Look-Ahead SDP Cut Generation Procedure.

1+= ii

Call the SDP cut generation
subroutine of Figure 3.3 to identify
potential α -vectors for cuts.

Store the α that gives the minimum
value for αα XT � . (In the multiple-cut
version, store all generated α -vectors.)

Solve the first-level RLT relaxation along with any generated constraints of the type (3.5d). Let
)�,�(Xx be the solution obtained. If any termination criterion of Section 3.3.1 holds, stop; the

objective yields a LB on QP. Else, delete previous inactive SDP cuts and continue.

0=k

i = n

status = 0 0=kn

Generate the SDP
cut(s) (3.5d) for the
stored α -vector(s).
Append to the
current relaxation.

Chapter 3: Enhancing RLT Formulations through Connections with SDP 39

y

n

n

y

n

y

0<i
qqG

1=q

0=i
qqG ,

0≠i
qjG

Select a j such that
0≠θ=i

qjG and such that with
i
jjG=φ , the quantity λ given

by (3.7) is a minimum. Set

2
2

 1
1

1
θ

λ+−+ =α qi ,

)(11 θ
λα=α −+−+ qiji , and

1,0 −+≠≥∀=α qipipp or
1−+ ji .

Put 11 =α −+qi ,
1,0 −+≠≥∀=α qipipp .

1+= kk nn .
If q = 1, status = 1.

Recursively, for r = i-1 to 1, compute rα as:
 If 011 =rG , then 0=α r ;

 otherwise, r

rr

r G
g

11

1+α−=α where),,(1
1

nr
r αα≡α +
+ K .

Normalize α . Store α and αα XT � .

1+= qq

If i = n, status = 1. Return.

1+−= inq

Figure 3.3. Flow-chart for the SDP Cut Generation Subroutine Invoked by
the Look-Ahead Procedure of Figure 3.2.

Chapter 3: Enhancing RLT Formulations through Connections with SDP 40

which is currently violated since 0625.0� −=αα XT . Now, since 01
11 >G , we could continue to

increment i as before and generate the following SDP cut that was obtained in Example 3.2:

02.08.08.0 221211 ≥+− XXX ,

with the corresponding 032.0� −=αα XT . Observe that the SDP cut generated by looking ahead
had a violation nearly twice as large as the latter cut. In implementing the single-cut option of
Figure 3.2, we would only add the first cut since we select the one cut that yields the largest
violation. However, when using the multiple cut implementation of Figure 3.2, we would
impose both of the above cuts before re-solving the current relaxation. !

Remark 3.2. As a computational expedient, we have adopted the strategy to terminate the above
cut generation process when either the resulting solution matrix X� is PSD or when some
practical stopping criterion is attained. In our computations, as indicated above, we set limits on
the maximum number of cuts and iterations, as well as on the number of successive iterations
performed while obtaining insufficient progress in tightening the lower bound. A question of
interest that arises in this context is whether such a process can be induced to attain the ideal
termination condition of X� being PSD, even in an infinite convergence sense, if the other
practical stopping criteria are omitted. One approach for attaining such a theoretically
convergent process would be to impose a spacer step, whereby finitely often, a vector α is
generated uniformly distributed on the surface of a unit sphere in nR . Then, if *�X is the
limiting matrix for some convergent subsequence of solutions X� generated in an infinite process,
we could not have the situation that there exists an α for which 0� * <αα XT , because then there
would exist an −ε neighborhood)(αεN about α for which

0� * <αα XT }1:{)(=αα∩α∈α∀ εN .

This would imply the absence of having generated any α in the latter region which has a
nonzero measure on the surface of the unit sphere, a contradiction to the uniform distribution of
the generated values of α on the surface of this sphere. !

3.3.3 SDP Cuts Using an Augmented Matrix
The development of the semidefinite cuts in Section 3.3.1 was based on the noting that

the identity TxxX = implies the PSD restriction 0 fX . Another common tactic in semidefinite
programming is to recognize that X = xxT also implies the stronger condition that TxxX f (see
Nowak (1998a,b, 1999), for example). Note that TxxX f can equivalently be expressed as

0
1

f







Tx

xX
. From the viewpoint of RLT constraints (as per Proposition 3.1), 0

1
f








Tx

xX

translates to the class of SDP cuts

Chapter 3: Enhancing RLT Formulations through Connections with SDP 41

1),(),(0)(2])[(11
2

11
2

1 =αα∋αα∀≥α+αα+αα=α+α +++++ n
T

n
T

n
T

n
T

Ln
T xXx .

In terms of the separation routine of the foregoing section, an identical procedure can be

implemented on the matrix AX , where
1






= T

A

x
xX

X . That is, given a solution (x� , X�), we

can construct the matrix
1�
��� 







= T

A

x
xXX and apply the routine of Section 3.3.1 to the matrix AX�

in lieu of X� .

Example 3.4. To illustrate the cut generation procedure using the foregoing augmented matrix,
consider X� as given in Example 3.1, and suppose that for all i, we have ∑=

j
iji Xx �� as required

by (3.5c). This leads to the matrix AX� as follows:



















=

135.035.03.0
35.02.0015.0
35.002.015.0
3.015.015.00

� AX .

Since the upper left portion of the matrix contains X� , we can still derive the two SDP cuts that
were obtained in Example 3.1. However, with the additional row and column of AX� , we also
have another possibility for generating an SDP cut inequality. With i=1, we have 0�

11 =AX , but
03.0��

4114 ≠== AA XX , and so we can apply Proposition 3.4 with T),(41 αα=ξ , 3.0=θ , and

1=φ . From (3.11), we get 0831.0
2

)3.0(411 22

−=
+−

=λ , 9637.01 =α , and 2669.04 −=α .

Hence, T

n

)0.2669- ,0 ,0 ,9637.0(
1

=








+α
α

. Note that 1
1

=







α
α

+n

 and that =







α
α









α
α

++ 11

�
n

A
T

n

X

0831.0−=ξξ HT , which is the value of λ . The corresponding SDP cuts is given by

07125.09287.05145.0 111 −≥+− Xx ,

which is currently violated, since we have 15435.0�9287.0�5145.0 111 −=+− Xx . Thus, the

procedure has found an 







α
α

+1n

 for which 0])([2
1

11

≥α+α≡







α
α









α
α

+
++

Ln
T

n

A
T

n

xX is not

satisfied for the current solution AX� . Recall that both of the cuts derived in Example 3.1 had
0803.0� −=αα XT ; hence, examining the augmented matrix has produced a cut that is violated to

a greater extent than the former cuts. In the single-cut option, we would therefore implement the

Chapter 3: Enhancing RLT Formulations through Connections with SDP 42

cut that was generated by the present example, since it has a larger violation than either of the
cuts generated in Example 3.1. In the multiple-cut implementation, we would append all of these
generated cuts to the current RLT-1 relaxation before returning to re-solve the next relaxation. !

3.4 Computational Analysis

To gauge the effectiveness of the proposed class of SDP cuts in solving Problem QP, we
conducted two types of computational experiments. We first conducted an experiment to
evaluate the relative performance of the various cut generation strategies in enhancing the lower
bound derived by RLT-1(QP) at the root node within a branch-and-bound framework. Following
this analysis, we selected several of the best SDP cut generation strategies and implemented
them within a branch-and-bound framework in order to assess their performance in the search for
a globally optimal solution.

3.4.1 Root Node Performance
In this section, we compare how the different cut generation strategies compared as to the

bound they obtained for the root node problem of a branch-and-bound tree. The first strategy,
which serves as a baseline case, uses a single cut per iteration derived from the matrix X� using
no permutations. The remaining six strategies were composed by using each combination of the
two matrix types (regular and augmented) with the three permutation types described in Remark
3.2 (no permutation, full permutation, and diagonal sort). Since some preliminary computations
indicated that the single cut approach was dominated by the multiple cut implementation, we
consider the single cut strategy only in the baseline case. In addition to the stopping criteria
mentioned in Section 3.3.1, we also limited each of the strategies to 60 seconds of CPU time per
problem. (All computations were executed on a SUN Ultra-1 workstation, with CPLEX 6.5
being used to solve the generated LP relaxations.)

The sizes of the test problems range from 10 variables to 100, by increments of 10. For
each problem, the objective coefficients were generated uniformly on the interval [0,10]. The
objective coefficients iiC of the terms 2

ix were always taken to be positive, while the
coefficients ijC of the terms ji xx were permitted to be positive or negative. In order to vary the
problem structure for a given size, the proportion of positive ijC coefficients was varied through
four values (0.1, 0.33, 0.66, 0.9), and four problems were generated for each such value, creating
a total of 16 problems for each problem size. We obtained a lower bound for each of these 160
problems using each of the seven proposed strategies. The data is summarized in Table 3.1. For
each problem, the SDP cut-enhanced bounds were all tighter than the RLT-1 bound, and the
improvement was most pronounced with higher proportions of positive ijC coefficients and
smaller problem sizes. For instance, for the (four) 10-variable problems having 90% of the ijC
coefficients positive, the best SDP cut-enhanced bound improved the RLT-1 bound by an
average of 65%; however, for the 100-variable problems having 10% of the ijC coefficients

Chapter 3: Enhancing RLT Formulations through Connections with SDP 43

Table 3.1: Average % Improvement of the Best SDP Cut Bound over the RLT-1 Bound.

 Number of Variables
 10 20 30 40 50 60 70 80 90 100

Proportion 0.1 45.63 34.76 25.01 15.94 11.50 7.40 5.23 3.41 1.28 1.35
of Positive 0.33 56.72 43.86 29.46 21.48 14.13 10.25 5.69 4.18 2.38 1.43

Cij 0.66 59.30 55.44 46.18 35.40 24.20 19.94 14.37 10.25 7.34 5.85
Coefficients 0.9 65.18 64.28 59.69 58.10 52.38 44.76 39.61 33.02 28.11 19.14

positive, the SDP cut-enhanced bound only improved the RLT-1 bound by an average of 1.35%.
In order to assess the relative performances of the different cut generation strategies, we ranked
these methods for each problem size with respect to the bound obtained at the root node, as well
as with respect to the CPU time required. For each problem, we computed the best (greatest)
lower bound and the best (smallest) CPU time, and then calculated the percentage amount by
which each method deviated from the best bound and time for the given problem. Since we have
16 problems of each size being solved using each of the seven strategies, this yields a total of
112 data points for each value of n. These data points pertaining to the bound and time
deviations were ranked separately in increasing order for each value of n. In the case of ties,

average ranks were assigned so that the sum of the ranks for each n equals 6328
112

1
=∑

=i
i . Tables

3.2 and 3.3 present the rank-sums for each strategy for each value of n, as well as over the ten
problem sizes, for the two respective criteria: lower bounds and CPU times.

The results indicate that the baseline strategy provides significantly worse bounds than its
more sophisticated counterparts, but it has a slightly better than average performance with
respect to computational time. When used with the regular matrix, the full permutation strategy
provides a distinctly better bound than the non-permutation and diagonal-sort strategies, and this
trend occurs across all problem sizes. Both permutation strategies (full or diagonal sort) provide
a tighter lower bound than the non-permutation strategy when used in combination with the
regular matrix, but the effect is less clear when used in combination with the augmented matrix
strategy. There are several notable cases where the permutation strategy does not tighten the
bounds obtained from the non-permuted method. In general, the augmented matrix strategy
provides an improvement in bounds as compared to the regular matrix strategy, particularly as
problem size increases. Overall, the rankings indicate that Strategies 3 and 7 provide the best
lower bounds, although Strategies 4, 5, and 6 are also competitive. Note that Strategy 3 performs
better for smaller problems, while Strategies 5, 6, and 7 tend to perform better as the problem
size increases. From Table 3.3, we see that, in general, the methods using the augmented matrix
tend to require less computational time, with Strategies 5 and 7 emerging as clearly more time-
efficient. Based upon the rankings shown in Tables 3.2 and 3.3, it appears that Strategy 7
provides desirable results in terms of both the quality of the lower bound obtained and the
amount of CPU time consumed. In particular, it seems promising that Strategy 7 also performs
well in both categories as problem size increases.

 In order to determine whether or not the differences in the strategy rankings were
significant, we performed a Kruskal-Wallis (rank-sum) test on the data for each n for the seven

Chapter 3: Enhancing RLT Formulations through Connections with SDP 44

Table 3.2: Sum of Lower Bound Rankings.

 Strategy
 1 2 3 4 5 6 7

 Matrix Type Reg. Reg. Reg. Reg. Aug. Aug. Aug.
 # Cuts Single Multi Multi Multi Multi Multi Multi
 Permutation None None Full Diag. Sort None Full Diag. Sort
 10 1252 1011.5 798.5 803 1070.5 798 594.5
 20 1290.5 1077 305 541.5 1125 945 1044
 30 1153 895.5 293.5 661 936.5 1358 1030.5
 40 1125 978 627 875 625 1410 688

n 50 1113.5 1086.5 735.5 992.5 673.5 1014 712.5
 60 1165 1079 798.5 941.5 803.5 664 876.5
 70 1124.5 1058 987.5 1013.5 729 654 761.5
 80 1163 1100 1100 1100 633 673.5 558.5
 90 1090.5 1071.5 1071.5 1071.5 730 502 791
 100 1078.5 1099 1045 1068.5 747.5 487.5 802

Total 11555.5 10456 7762 9068 8073.5 8506 7859

Table 3.3: Sum of CPU Time Rankings.

 Strategy (as defined in Table 3.2)
 n 1 2 3 4 5 6 7

 10 869 759 1108 930 415 1269.5 977.5
 20 636 732 1225.5 1067.5 467.5 1478.5 721
 30 869 853 1227 1172 716.5 799.5 691
 40 1014 864 1099 1132 823 739 657
 50 913 807 1128 1325 590 891.5 673.5
 60 928.5 1026 992 1180 496 1149.5 556
 70 1233 875 874 1175 559.5 936.5 675
 80 579.5 818.5 1617 934 369 1215 795
 90 752 934 944.5 1137.5 510 1254 796
 100 985 1023.5 892.5 1101 405 1181.5 739.5
Total 8779 8692 11107.5 11154 5351.5 10914.5 7281.5

Chapter 3: Enhancing RLT Formulations through Connections with SDP 45

strategies. Table 3.4 indicates that the CPU times were significantly different at the 5% level
(592.122

6,05.0 =χ>h) for each problem size other than for n = 40, and the lower bounds were
significantly different for all sizes except for n = 60 and n = 70. We performed an additional
Kruskal-Wallis test by analyzing the combined data from all problem sizes. That is, we ranked
each of the percentage deviations from 1 through 1120 (= 160 x 7), and performed the Kruskal-
Wallis test using a sample size equal to 160 for each strategy. The test statistics for the lower
bounds and CPU times were 66.77 and 119.9, respectively, which were much greater than

592.122
6,05.0 =χ , indicating significant differences in the performance of the seven strategies.

As final comparative evidence, we directly display in Table 3.5 the number of problems
(out of 160) for which each strategy obtained the best lower bound and CPU time. The strategies
that use the augmented matrix have the largest proportion of best lower bounds and best CPU
times. Of the strategies based on the regular matrix, the ones that employed the full permutation
and the diagonal sort techniques performed significantly better than the one that used no
permutation.

Table 3.4: h-Statistic for the Kruskal-Wallis Test.

 h-Statistic

n
Lower
Bound

CPU
Time

10 17.11 26.23
20 43.83 46.55
30 42.49 16.08
40 30.37 11.76
50 12.76 23.34
60 10.65 26.5
70 12.13 21.07
80 25.38 60.25
90 19.18 21.90
100 19.19 24.47

Table 3.5: Number of Problems for which the Best Lower Bounds and CPU
Times were Achieved for Each Strategy.

 Strategy (as Defined in Table 3.2)
 1 2 3 4 5 6 7

Lower Bound 12 16 46 27 48 67 49
CPU Time 18 9 1 3 83 26 22

Chapter 3: Enhancing RLT Formulations through Connections with SDP 46

3.4.2 Overview of the Branch-and-Bound Procedure
Before presenting the results of the branch-and-bound analysis, we first present an

overview of the branch-and-bound procedure. Each node of the branch-and-bound tree contains
an RLT relaxation of a problem, augmented by a series of SDP cuts. We focus here on
developing the RLT representation for each node, given l and u as the appropriate vectors of
upper and lower bounds, respectively, for the original variables. We begin, as before, by
multiplying the simplex constraint (3.2b) by each variable. This yields the problem (3.2), with
(3.2d) replaced by uxl ≤≤ , 0≥X and symmetric. We then augment this representation with a
set of constraints obtained by multiplying the bound-factors pairwise, as in Sherali and Tuncbilek
(1992). We note that all variables (original and RLT) are implicitly bounded between zero and
one, with the bounds for the original variables implied by (3.2b) and (3.2d), while the additional
constraints (3.2c) imply the same bounds for the RLT variables. We therefore need only include
bound-factor product constraints when the corresponding bounds are tighter than the implied
bounds of 0 and 1. The pairwise products of bound-factors result in six types of constraints, as
outlined in Table 3.6. Types I, III, and V are simply specializations of Types II, IV, and VI,
respectively, for the case when ij = . The maximum number of each type of constraint is also
presented in Table 3.6, giving a total of nn +22 potential constraints, where n is the number of
original variables. We note, however, that several of these constraints may be unnecessary. For
example, in the case where 0=il , the corresponding Type I constraint reduces to a simple
nonnegativity constraint on iiX . If, in addition 0=jl , the Type II constraint also reduces to a
simple nonnegativity constraint on ijX . Since at the root node we have 0=il and 1=iu for
each i, all of the bound-product constraints reduce to nonnegativity restrictions on the RLT
variables. At subsequent nodes, however, we will not necessarily have 0=il and 1=iu for
each i, thereby requiring us to generate the appropriate bound-factor products. In summary, then,
the initial relaxation at each node (prior to adding SDP cuts) is given as follows:

RLT-1(QP): Minimize ∑∑
i j

ijij XC (3.14a)

 subject to xeT = 1 (3.14b)
 Xe = x (3.14c)
 iiii xlX 2− ≥ 2

il− 0>∋∀ ili (3.14d)
 jiijij xlxlX −− ≥ ji ll− , 0or >∋<∀ ji llji (3.14e)
 iiiii Xxul −+)(≥ iiul , 1<∋∀ iui (3.14f)
 ijjiij Xxlxu −+ ≥ jiul , 1<∋≠∀ juji (3.14g)
 iiii xuX 2− ≥ 2

iu− , 1<∋∀ iui (3.14h)
 jiijij xuxuX −− ≥ jiuu− 1, <∋<∀ ji uuji (3.14i)
 uxl ≤≤ , 0≥X , and symmetric. (3.14j)

Upon obtaining the solution to this RLT relaxation in (3.14), we examine the matrix
X� and generate SDP cuts as described previously. Since we are employing the SDP cuts to

Chapter 3: Enhancing RLT Formulations through Connections with SDP 47

Table 3.6: Types of Bound-Factor Constraints.

Type
1st

Factor
2nd

Factor Linearized Product
Maximum
Number

I ii lx ≥ ii lx ≥ 22 iiiii lxlX −≥− n
II ii lx ≥ jj lx ≥ jijiijij llxlxlX −≥−−

2
)1(−nn

III ii lx ≥ ii ux ≤ iiiiiii ulXxul ≥−+)(n
IV ii lx ≥ jj ux ≤ jiijjiij ulXxlxu ≥−+)1(−nn
V ii ux ≤ ii ux ≤ 22 iiiii uxuX −≥− n
VI ii ux ≤ jj ux ≤ jijiijij uuxuxuX −≥−−

2
)1(−nn

tighten the bounds within a branch-and-bound framework, we do not necessarily need to solve
the SDP relaxation (as given by the SILP representation) to optimality. In our computational
analysis, we allowed a maximum of 100 cuts to be generated per iteration, and we limited such
sequential rounds of cuts per node to either one or five (as specified). We also included the
corresponding SDP cuts that were generated at the nodes on the chain connecting the current
node to the root node in the enumeration tree. These cuts are likely to be most effective for the
current node subproblem, although the cuts generated elsewhere in the tree are also valid. We
took the maximum number of stored cuts as three times the maximum number of cuts that could
be generated at any given node (i.e., 300 for the one-round-of-cuts limit and 1500 for the five-
rounds-of-cuts case). In case this number exceeded the maximum allowable number of
implemented cuts, we overwrote the cuts that were generated the earliest.

Throughout the process, we track the best known solution (incumbent solution) and
maintain a list of active nodes listed in order of increasing lower bounds. At the start of the
problem, the list contains only the root node with a lower bound of negative infinity and an upper
bound of infinity. When a node is selected from the list, the solution to its SDP cut-enhanced
problem yields a lower bound on its optimal solution, and since we have linear constraints, the
LP solution for each node subproblem also provides an upper bound. In our experimental
analysis, we fathomed nodes when the lower bound exceeded upperz)1(ε− , where upperz is the
best-known solution value. In our computations, we used 0001.0=ε for the 10- and 20-
variable problems, and we used 01.0=ε for the 30-variable problems. If the current node
cannot be fathomed, we select a branching variable and create two children nodes in which all
variable bounds are the same as the parent node, except those corresponding to the branching
variable. We select the branching variable, px , as given by

})���({maxarg
,,1

∑ −=δ∈
= j

ijjiiji
ni

XxxCp
K

,

and we split the current interval],[pp ul at the value px~ in order to derive two children nodes,

Chapter 3: Enhancing RLT Formulations through Connections with SDP 48

where








+

−≥−−
=

otherwise. ,
2

)(1.0}�,�min{ if ,�
~

pp

ppppppp

p ul
luxulxx

x

This induces convergence to a global optimum (see Sherali and Tuncbilek (1992)). Since the
children nodes are more constrained than their parent node, their lower bounds are potentially
tighter and are computed via (3.14), augmented by the appropriate SDP cuts. The parent node is
then removed from the list of active nodes, and the new nodes are inserted into the list according
to the value of their lower bound. The first node in the list (having the least lower bound) is
selected as the current node, and the process is repeated. Whenever we update the incumbent
solution value zupper, we fathom (remove) all nodes having lower bounds greater than upperz)1(ε−
from the list. The procedure ends when no nodes remain in the list (the upper and lower bounds
for the problem have converged within a tolerance of upperz⋅ε or when the maximum number of
nodes has been reached. In our analysis, we permitted a maximum of 10,000 nodes for the
branch-and-bound routine when using RLT alone, and a maximum of 1,000 nodes for the SDP
cut-enhanced procedures.

3.4.3 Branch-and-Bound Results
Based upon the root node analysis, we narrowed our study to exploring the performance

of using Strategies 3, 4, 5, 6, and 7 to generate SDP cuts within a branch-and-bound framework.
As a benchmark in this comparison, we also implemented the RLT-1 strategy without any
cutting planes for computing lower bounds. Tables 3.7 through 3.10 display the results obtained
for this branch-and-bound experimentation. Note that in all of these tables, the SDP cut
strategies are numbered according to the order shown in Table 3.2, and the baseline RLT strategy
using no SDP cuts is referred to simply as RLT. Table 3.7 presents the results obtained for the
10-variable problems, and it shows that for nearly every implementation strategy, the SDP cuts
provide a significant improvement in the performance of the branch-and-bound algorithm over
that using the RLT-1 relaxations alone. The SDP cuts greatly reduce the number of nodes
generated as might be expected, but also substantially reduce the overall computational effort.
Within the SDP cut- enhanced strategies, using five rounds of SDP cuts per node significantly
reduces the number of nodes enumerated as compared with using a single round of SDP cuts;
however, the computational time is not consistently reduced. In general, using five rounds of
cuts proves most valuable for the relatively more difficult problem instances (lower proportions
of positive Cij coefficients), and it does not appear to work well in conjunction with the no
permutation strategy. Based upon the results from the 10-variable problems, it was evident that
Strategy 5 (augmented matrix, no permutation) would not remain competitive for the more
difficult problems, and Strategy 5 was dropped from consideration for the remaining analysis.
The results for the 20-variable problems are presented in Tables 3.8 and 3.9. Table 3.8 displays
the average time and number of nodes for the various problem types and implementation
strategies. Note that in contrast to the results for the 10-variable problems, several problems
were not solved to optimality within the allowable number of nodes. In such cases when the gap

Chapter 3: Enhancing RLT Formulations through Connections with SDP 49

Table 3.7: Average Computation Time (in seconds) and Average Number of Nodes for
Problems of Size n = 10.

 Proportion of Positive Cij Coefficients
0.1 0.33 0.66 0.9 Strategy Rounds

of Cuts Time Nodes Time Nodes Time Nodes Time Nodes
RLT 0 482.41 5657.5 65.84 1006.5 10.95 239.5 0.74 27

1 152.24 339 24.15 121.5 3.42 40 0.40 11 3
5 135.90 92 32.79 44 4.55 17.5 0.79 7
1 88.16 195.5 22.77 118 4.00 40.5 0.45 11 4
5 62.69 40.5 21.84 34.5 3.94 16.5 0.73 7.75
1 232.89 422 39.62 162.5 5.89 43.5 0.65 12 5
5 419.18 205 109.76 96 9.21 23.5 0.70 3.5
1 187.61 360.5 31.03 127 7.84 51 0.65 12.5 6
5 160.80 95.5 33.79 41.5 5.44 13.5 0.66 3.5
1 69.43 117 24.46 87 4.53 28.5 0.71 10.5 7
5 52.76 32 29.80 26 4.21 9 0.81 3.5

Table 3.8: Average Computation Time (in seconds) and Average Number of Nodes for
Problems of Size n = 20.

 Proportion of Positive Cij Coefficients

0.1 0.33 0.66 0.9 Strategy Rounds
of Cuts Time Nodes Time Nodes Time Nodes Time Nodes

RLT 0 6485.25 10001 3917.5 7133.5 86.02 371.5 5.91 51.5
1 5256 978.5 1304.75 426 25.31 61 3.44 22 3
5 5695.75 534 887.75 130 25.04 22.5 3.83 9.5
1 6025.25 990.5 1162.25 367.5 24.82 60 4.11 27 4
5 2775.25 323.5 638.75 96 28.34 24.5 3.37 9.5
1 5604 1001 2509.5 723.5 44.76 75 5.05 20 6
5 10414.5 922 2625 311 95.64 26.5 4.93 7
1 6683.75 1001 1910 447 52.26 46 4.81 19.5 7
5 6478.75 503.5 1450.25 157.5 79.77 21.5 7.78 8

Chapter 3: Enhancing RLT Formulations through Connections with SDP 50

Table 3.9: Average Percentage Optimality Gap at Termination for Problems of Size n = 20.

 Proportion of Positive Cij Coefficients
Strategy

Rounds
of Cuts 0.1 0.33 0.66 0.9

RLT 0 7.07 0.78 0 0
1 2.02 0 0 0 3
5 0.17 0 0 0
1 1.26 0 0 0 4
5 0 0 0 0
1 5.71 0.02 0 0 6
5 2.01 0 0 0
1 2.71 0 0 0 7
5 0.06 0 0 0

Table 3.10: Average Results for Problems of Size n = 30.

 Time Nodes % Gap

 RLT SDP RLT SDP RLT SDP
Proportion 0.1 20574.5 12237 10001 499.5 9.50 0.95
of Positive 0.33 17640.5 8554 9613 437.5 4.7 0

Cij 0.66 1559.75 380 1370.5 65.5 0 0
Coefficients 0.9 125.75 58 209.5 25 0 0

between the best-known solution and least lower bound did not fall below 0.01%, we recorded
the percentage gap at termination, and we summarize these results in Table 3.9. Note that
although several SDP cut strategies do not significantly decrease the computational effort, they
do significantly tighten the optimality gap. Similarly, the use of 5 rounds of cuts generally
provides better results than 1 round of cuts across nearly all strategies, either by tightening the
optimality gap or by decreasing computational effort. The striking result in Table 3.9 is that one
strategy, Strategy 4 (regular matrix, diagonal sort) used in combination with 5 rounds of cuts,
obtained the optimal solution (within the allowable number of nodes) for every problem.
Although Strategy 7 (augmented matrix, diagonal sort) with 5 rounds of cuts also obtained the
global optimum for all problems except one, it did not perform as well with respect to
computational effort. Note that Strategy 4, with 5 rounds of cuts, dominated the other strategies
in terms of both the average number of nodes enumerated and the average computational effort,
particularly for the more difficult set of problems.

Based upon the results obtained for the 20-variable problems, we used only one SDP cut
strategy, Strategy 4 with 5 rounds of cuts, to solve the 30-variable problems. The results
comparing this strategy with the basic RLT scheme are shown in Table 3.10. For the RLT
bounding strategy, seven problems could not be solved to optimality (using a 1% tolerance)

Chapter 3: Enhancing RLT Formulations through Connections with SDP 51

within the 10,000 node limit, while the SDP cut-enhanced strategy failed to solve only one
problem to global optimality within 1000 nodes. Furthermore, the SDP cuts drastically decrease
the average computational effort as well as the number of nodes enumerated across all problem
types. The overall results appear to indicate that the SDP cuts significantly decrease the
computational effort and the number of nodes required to solve this class of problems to
optimality. Moreover, this relative improvement becomes more pronounced as the degree of
difficulty of the problem increases (larger n, smaller proportion of positive Cij coefficients).

3.5 Extensions to Higher Levels of RLT

 Observe that the proposed class of SDP cuts can be used in any context where RLT is
applied (whether this problem admits an overall SDP formulation or not). This includes
problems having polynomial objective and constraint functions, factorable programming
problems, or even linear mixed-integer programming problems. In all such cases, SDP cuts can
be generated based on the (regular or augmented) matrix of second-order RLT variables. While
our focus thus far has been on generating cuts to augment the RLT-1 relaxation for a given
problem, it is useful to also consider augmenting higher-level RLT relaxations in a similar
manner. For example, consider an RLT relaxation that includes fourth-order RLT variables ijklX
representing the product term nlkjixxxx lkji ≤≤≤≤≤∀ 1, . Let)2(X denote the vector

comprising all distinct 






 +
2

1n
 second-order RLT variables, and let)4(X be a matrix comprised

of the fourth-order RLT variables structured in the form L
TXXX][)2()2(

)4(≡ . Since)4(X must
be PSD, we can impose a class of SDP cuts in the same spirit as (3.5d) in the form

1 0])[(2
1

2
)2(

)4(=α∋∈α∀≥α≡αα







 +n

L
TT RXX . (3.15)

Then, given any)4(�X as part of a solution to the RLT relaxation, we can use the techniques of
Section 3.3 identically to derive SDP cuts of the type (3.15) involving the higher dimensional
variables.

A second-level RLT relaxation of the problem QP, for example, provides another way to
strengthen RLT-1(QP). Such a second-order RLT relaxation RLT-2 could be obtained by
multiplying (3.2b) by the quadratic bound-factors kjxx kj ≤∀≥ 0 . The variable ijkX would
then be defined to linearize the product terms of the form kji xxx . In order to have a unique
variable represent the product term kji xxx , regardless of the order in which the variables appear
in this term, we would define ijkX only for kji ≤≤ . Accordingly, for arbitrary indices i, j, and
k, let)(ijkX represent the appropriate RLT variable that represents the product of kji xxx and , , .
(This same convention is used on the double-subscripted variables as well.) This leads to the
following second-level RLT relaxation of QP.

Chapter 3: Enhancing RLT Formulations through Connections with SDP 52

RLT-2(QP): Minimize)()(∑∑
i j

ijij XC (3.16a)

 subject to ∑
i

ix = 1 (3.16b)

 ∑
i

ijX)(= jx , j∀ (3.16c)

 ∑
i

ijkX)(= jkX , kj ≤∀ (3.16d)

) , (kjiXji Xi,x ijkiji ≤≤∀≤∀∀ ≥ 0. (3.16e)

Note that Problem (3.16) can be viewed as imposing the additional constraints (3.16d) in terms
of the new variables ijkX on Problem (3.2). These additional constraints force each element Xjk
to equal the summation of several components of a three dimensional symmetric matrix. For
example, with n = 5 and (j,k) = (2,3), the associated constraint in (3.16d) requires X23 to be
computable as the sum of the following elements of][ijkX :

 23523423322312323 XXXXXX ++++= .

That is, Xjk is the sum of all terms of the three dimensional matrix that contain the subscripts j
and k. This type of constraint can be viewed as requiring that the two-dimensional matrix X can
be obtained by collapsing a three-dimensional symmetric matrix via a summation process.

 The semidefinite relaxation of Problem QP was developed by relaxing the variable
substitution constraint TxxX = to 0fX , noting that Txx is PSD. This concept led to the
equivalent class of RLT restrictions 0])([2 ≥α L

T x that were imposed on the first-level RLT
relaxation RLT-1(QP). Naturally, this same set of constraints is valid for the level-two relaxation
(3.16). Note that in this same spirit, similar additional classes of valid inequalities can be
generated to further enhance any odd-level RLT relaxation beyond level-one. For example,
consider the third-level RLT relaxation of QP. This relaxation contains all of the constraints in
(3.16) along with the constraints obtained by multiplying (3.16b) with the cubic bound-factors

lkjxxx lkj ≤≤∀≥ 0 . The linearization scheme would substitute the variable)(PX for the

product term ∏
∈ Pj

jx , where (P) orders the indices in P in nondecreasing order. The resulting

formulation is given as follows.

RLT-3(QP): Minimize)()(∑∑
i j

ijij XC (3.17a)

 subject to ∑
i

ix = 1 (3.17b)

 ∑
i

ijX)(= jx , j∀ (3.17c)

 ∑
i

ijkX)(= jkX , kj ≤∀ (3.17d)

Chapter 3: Enhancing RLT Formulations through Connections with SDP 53

 ∑
i

ijklX)(= ,jklX l ≤≤∀ kj

(3.17e)

), , (lkjiXkjiXji Xi,x ijklijkiji ≤≤≤∀≤≤∀≤∀∀ ≥ 0. (3.17e)

By defining lkjiijklA αααα= , and denoting ∑∑∑∑=•

i j k l
ijklijkl XAXA , we can validly

impose the semidefinite programming types of constraints 0≥• XA for any vector nR∈α .
This follows from the fact that L

T xXA])[(4α=• . For the first-order and second-order RLT
relaxations of QP, we imposed the semidefinite restrictions ,0])([)(2T ≥=• L

T xX ααα
1=∋∈∀ αα nR in constraint (3.5d). In addition, and in a higher-order extension of (3.5d), we

can now enhance the third-level RLT relaxation by dropping the substitution constraint
lkjiijkl xxxxX = as usual, but instead imposing the implied constraints

 1 ,0])([4 =α∋∈α∀≥α n
L

T Rx .

This results in augmenting RLT-3(QP) with the following semi-infinite sets of constraints.

L

T x])([2α ≥ 0, 1=α∋∈α∀ nR (3.18a)

L

T x])([4α ≥ 0, 1=α∋∈α∀ nR . (3.18b)

A similar procedure could be applied to any general RLT relaxation of level 12 −v , where the
additional constraints would correspond to ,1 ,0])[(2 =α∋∈α∀≥α n

L
rT Rx vr ,,1for K= . In

Section 3.3.1, a polynomial-time procedure was developed to generate an α for which (3.18a) is
violated or to verify that none exists. It remains to determine a similar separation routine to
systematically generate an α for which (3.18b) or any higher-order variant is violated. We
propose this task and related computational studies for future research.

3.6 Conclusions and Extensions

In this chapter, we have explored connections between semidefinite programming (SDP)
and the Reformulation-Linearization Technique (RLT), and we have used this insight to develop
a new class of cuts to enhance RLT relaxations. This concept has been illustrated on a class of
problems involving the minimization of a nonconvex quadratic function over a simplex. The
process of closing the gap between a first-level RLT relaxation and a semidefinite relaxation for
this problem was shown to yield an equivalent semi-infinite linear program in which the set of
infinite constraints comprised a particular class of RLT constraints that we called semidefinite
cuts (or SDP cuts). Based on this representation, a relaxation and row generation scheme was
devised, leading to a polynomial-time SDP cut generation procedure. Several cut generation
strategies, based on using the original or augmented matrix of second-order variables, in natural
or specially permuted form, were devised and tested. The SDP cut-enhanced relaxations not

Chapter 3: Enhancing RLT Formulations through Connections with SDP 54

only provided significantly tighter lower bounds, but also resulted in a substantial decrease in
both the number of nodes enumerated and in the overall computation effort when embedded
within a branch-and-bound framework to determine a global optimal solution (particularly for
more challenging problem instances). Of the proposed implementation strategies, the use of
multiple cuts clearly dominated the single-cut approach, and the permutation and augmented
matrix implementations also provided improved results for some problems. For the most
challenging problems, the best combined strategy by far used five rounds of SDP cuts at each
node, generated via the regular matrix of second-order RLT variables, rearranged using the
diagonal sort permutation strategy. Extensions of this research are readily evident. Future
research interests include extending the framework developed here to higher levels of RLT,
particularly in the hopes of deriving a cut generation procedure for such higher levels. In
addition, experiments should be performed in order to analyze the effectiveness of the proposed
algorithm on other classes of discrete or continuous nonconvex optimization problems.

55

Chapter 4: A Modified Benders� Partitioning
Strategy for Discrete Optimization Problems
 The focus of this chapter is to develop a Benders� decomposition strategy for discrete
optimization problems where both the inner and outer stage decisions might involve 0-1
variables. Although we derive the proposed method for a generic discrete optimization problem,
the discussion on stochastic integer programs in Chapter 2 elucidates that the technique is readily
applicable to two-stage stochastic programs with (mixed) integer recourse. In particular, due to
the large number of subproblems that are encountered therein, the proposed methodology could
greatly decrease the effort required to solve stochastic integer programs. Since the technique is
also applicable to general discrete optimization problems, however, we use the more generic
problem notation throughout the remainder of the chapter. As a point of special interest, we also
discuss certain specific modifications for exploiting dual-angular structures, such as those that
arise in the aforementioned context of stochastic programs.

This chapter is organized as follows. In Section 4.1, we provide the motivation for
developing the method. Section 4.2 contains a preliminary development of the methodology,
beginning in Section 4.2.1 with a relatively simpler conceptual case for which a suitable convex
hull representation can be constructed that permits a finite regular application of Benders�
methodology. Section 4.2.2 provides details for how the approach can be modified to take
advantage of dual angular structures, and Section 4.2.3 finishes the development for the case
where a complete convex hull representation is available. This lays the groundwork for the more
usual case discussed in Section 4.3, where such a representation is only partially generated in a
sequential fashion as needed within the context of a Benders� branch-and-cut approach. This
viewpoint facilitates the generation of valid inequalities during the solution of any given
subproblem in a form that renders them valid for any other subproblems by merely substituting
the revised first-stage decisions in a derived linear functional term, and also enables the
derivation of suitable Benders� cuts that induce finite convergence. Some numerical examples
are presented to illustrate the proposed methodology. Section 4.4 addresses finite convergence
issues related to the proposed cutting plane approach for solving the subproblems, and Section
4.5 contains conclusions and suggestions for future research.

4.1 Motivation

 While we derive the proposed methodology for any generic discrete optimization
problem, the main motivation for this research has been to develop a more effective solution
technique for stochastic programs with integer recourse. As mentioned in Chapter 2, stochastic
integer programs are among the most challenging optimization problems, since they involve
stochastic programs and integer programs, both of which are themselves difficult. Stochastic
linear programs are typically solved with the L-shaped algorithm, a direct extension of Benders�
partitioning, since the problems decompose naturally into first-stage and second-stage (or

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 56

recourse) problems. At each iteration of the L-shaped algorithm, we solve one master problem
to obtain a first-stage decision, followed by one subproblem for each possible realization of the
environment. When integer variables are involved in the subproblems, this implies that we must
solve a number of integer programs at each step of the L-shaped algorithm. Given any
reasonably sized problem, it is impractical to solve each of the subproblems with traditional IP
techniques such as branch-and-bound. As we demonstrate in the following section, if we had an
a priori explicit representation for the convex hull of certain suitable subsystems, we could
implement the traditional Benders� method or the L-shaped algorithm with the subproblems
being reduced to linear programs. The effort to obtain explicit representations for such convex
hulls, however, is generally prohibitive. Due to the number of times we re-solve the
subproblems for varying first-stage decisions, even partial convex hull representations that are
constructed sequentially can be of great computational benefit. In the following section, we will
verify that valid Benders� cuts can be obtained even if we only use certain partial convex hull
representations. Rather than a priori generating even such partial convex hull representations,
however, we propose to solve the subproblems through a cutting plane technique, where the cuts
are derived using the RLT process and are designed to construct relevant parts of the convex hull
representations in an as-needed fashion. Furthermore, we propose lifting mechanisms for
deriving these cuts as functions of the first-stage variables, enabling them to be re-usable in
subsequent visits to the subproblem solution stage, and facilitating the development of effective
valid Benders� cuts for the master problem.

4.2 Derivation of the Proposed Benders� Strategy

For the sake of wider applicability, we describe our development in terms of the generic
problem P that is given below in (4.1). Although this form does not specifically correspond to
the notation used for stochastic IPs, it should be evident from the foregoing discussion that the
structure of this problem subsumes this class of problems. (Note that in this context, it would be
computationally facile, but not necessary, to have constant technology and recourse matrices, as
variously assumed in the literature � for example, see Caroe and Tind (1997)).

 P: Minimize cx + dy (4.1a)
 subject to Ax + Dy ≥ b (4.1b)
 x ∈ X, x ∈ {0, 1}n , y ∈ Y (4.1c)

where X represents a nonempty polytope in Rn that is defined in terms of the binary variables x,
and Y is a compact subset of mR and represents some linear restrictions on the y-variables, in
addition to binary restrictions on a subset (say, pyy ,,1 K) of the variables. By appropriately
incorporating an artificial (interval-bounded) variable column within the y-variable set, we will
assume that P is feasible for any fixed x ∈ X , x binary, and moreover, we will also assume that
an optimum exists for P.

4.2.1 Benders� Cuts Given a Convex Hull Representation
In order to develop the proposed methodology, we first consider the case where we have an

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 57

explicit representation of the convex hull for the subproblem. In this respect, let us define
(denoting e as a compatible vector of ones)

 } ,0 ,:),{(YyexbDyAxyxconvZ ∈≤≤≥+= (4.2a)
 ≡ {(x, y) : Gx + Hy + Fw ≥ f}, say, (4.2b)

where for convenience, we have also absorbed any simple bound restrictions within the
inequalities describing (4.2b). Note that the description (4.2b) is assumed to be derived in a
higher dimensional space (including a set of new w-variables), as for example by using the RLT
process (see Sherali and Adams, 1990, 1994, 1999). Note also that aside from the bounding
constraints ex ≤≤0 on the x-variables, the other constraining restrictions Xx ∈ on these
variables are not included in the definition of Z. (This might be computationally advantageous in
deriving the convex hull representation for Z; also, see Proposition 4.2 below for details on how
this can be further exploited in the presence of dual-angular special structures.) Later, we will
discuss a sequential scheme for partially generating this system as needed, but for now, assume
that the entire description of Z is at hand.

Consider the problem

 ′ P : Minimize cx + dy (4.3a)
 subject to Gx + Hy + Fw ≥ f (4.3b)
 x ∈ X, x ∈ {0, 1}n . (4.3c)

Proposition 4.1. P ′ has an optimal solution, and moreover, it is equivalent to P in the sense that
if (x*, y*, w*) solves P ′ , where (y* , w *) is an extreme point optimum to P ′ for x fixed at x* ,
then (x*, y*) solves P.

Proof. By our assumptions on P, the set Z given by (4.2) is bounded and P ′ is feasible. Hence
P ′ has an optimum),,(*** wyx where),(** wy satisfies the condition stated in the proposition.
Moreover, since P ′ is a relaxation of P, and its constraints imply Ax + Dy ≥ b, x ∈ X , and the
linear constraints describing y ∈ Y , it is sufficient to show that y* satisfies the required binary
restrictions on its subcomponents. From (4.2), any extreme point (x , y) of Z satisfies y ∈ Y
(including the binary restrictions). Furthermore, if we define Z(x*) = Z ∩ {(x, y) : x = x*} ,
then since Z(x*) is a face of Z, any extreme point (x*, y) of Z(x*) has y ∈ Y as well. Noting
that Z(x*) defines the feasible region of P ′ when x is fixed at x* , and that (x*, y*) is a vertex of
Z(x*) , we have (x*, y*) is feasible, and therefore optimal, to P. This completes the proof. !

4.2.2 Specialized Modifications for Dual Angular Structures
 Before proceeding further, it is instructive to comment on a modified derivation of the
equivalent representation P ′ when the original problem P exhibits a dual-angular structure (as in
the special case of two-stage stochastic IPs). This analysis also lends further insights into the
flexibility of constructing only partial convex hull representations in deriving an equivalent
restatement of the problem to which Benders� decomposition method is applicable. Toward this

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 58

end, suppose that P possesses a dual-angular structure as revealed by the coefficient matrices
given in the form

















≡
SA

A
A M

1

 ,
















=
SD

D
D O

1

,
















≡
Sb

b
b M

1

, and
















≡
Sd

d
d M

1

, (4.4a)

where the vector y is also accordingly partitioned into components sy , for , S, s …= 1 , with
y ∈ Y being replaced by

 SsYy s
s ,,1 K=∀∈ . (4.4b)

Here, for , S, s …= 1 , each sY is assumed to impose certain polyhedral restrictions on the
(recourse) variables sy (pertaining to scenario s), including binary restrictions on a subset of
variables.

 Now, let us define for each , S, s …= 1 ,

 } ,0 ,:),{(s
ssssss

s YyexbyDxAyxconvZ ∈≤≤≥+= , (4.5a)

and let

 s
s ZyxyxZ ∈=′),(:),{(for each , S, s …= 1 }. (4.5b)

Note that in general, ZZ ′⊆ , and that it is relatively easier to characterize Z ′ than it is to
construct Z. Moreover, Z ′ retains the separability of the (recourse) variables sy ,

 , S, s …= 1 . The following result asserts that the equivalence of P ′ and P as stated in
Proposition 4.1 remains valid when Z is replaced by Z ′ under (4.4). In this context, similar to
(4.2b), the construction (4.5) would yield P ′ in the form given by (4.3) where the coefficient
matrices in (4.3b) would possess the structure

















≡
SG

G
G M

1

 ,
















=
SH

H
H O

1

,
















=
SF

F
F O

1

, and
















≡
Sf

f
f M

1

 (4.6)

and where the higher-dimensional vector w is also decomposed into the corresponding
components sw , , S, s …= 1 .

Proposition 4.2. Supposed that P has a dual angular structure as given by (4.4) , and let P ′ be
defined by replacing Z with the set Z ′ given by (4.5) and (4.6). Then P ′ is equivalent to P in
the sense asserted by Proposition 4.1.

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 59

Proof. Let (x*, y*, w*) solve P ′ , where (y* , w*) is as stated in the proposition. Note from (4.6)
that when we fix *xx = , the problem P ′ separates into S problems (by scenarios) given as
follows:

 minimize }),(:{ *
s

sss Zyxyd ∈ . (4.7)

Again, because (4.5) includes the hypercube restrictions ex ≤≤0 , we have that
}:),{()(** xxyxZxZ s

ss =∩≡ is a face of sZ , and therefore, its extreme points satisfy the
required binary restrictions on sy . Noting that)(*xZs is the feasible region of (4.7), this
completes the proof. !

 In what follows, for the sake of simplicity in notation and generality, we will assume that
the set Z conforms with Z ′ whenever we have the dual angular structure exhibited by (4.4), with
the system (4.2b) possessing the structure exhibited by (4.6). Hence, whenever we employ
(4.2b), or develop lower-level RLT relaxations for the system }{⋅ in (4.2a), we assume via
Proposition 4.2 that in the presence of a dual-angular structure, we respectively have the
structure (4.6), or that we correspondingly apply the lower-level RLT relaxation to the system

}{⋅ in (4.5a) for each , S, s …= 1 . We will periodically make some related comments in the
sequel to re-emphasize this feature.

4.2.3 Derivation of a Benders� Approach for Problem P′′′′

Assuming tentatively that we have explicitly constructed the equivalent formulation P′, we
can apply Benders� partitioning to solve this problem as follows.

 Minimize
x ∈ X∩{0,1}n

{cx + minimum {dy : Hy + Fw ≥ f − Gx}} (4.8a)

 i.e., Minimize
x ∈ X∩{0,1}n

{cx + maximum {π(f − Gx) : πH = d, πF = 0, π ≥ 0}}. (4.8b)

Since we have assumed that the inner problem in (4.8) is feasible and bounded for any fixed
x ∈ X ∩ {0, 1}n letting

 {πq, q = 1, ..., Q} ≡ vert(Λ) , where Λ ≡ {π : πH = d, πF = 0, π ≥ 0}, (4.9)

we obtain the following projected form of P ′ .

 Minimize z (4.10a)
 subject to z ≥ cx + πq (f − Gx) for q = 1, ..., Q (4.10b)
 nXx }1,0{∩∈ . (4.10c)

Recall that (4.10) is the Benders� (overall) master program, and the inner minimization problem
in (4.8a), or its dual in (4.8b), for any fixed x is referred to as the Benders� subproblem. This
subproblem generates the Benders’ cuts (4.10b) (along with upper bounds on the problem).

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 60

Note that in case we do not incorporate suitable artificial variable column(s) as needed to
ensure that the inner problem in (4.8a) is feasible for any fixed x ∈ X ∩ {0, 1}n , we would also
need to generate feasibility or extreme direction cuts in (4.10) of the following type, where rδ ,
r = 1, ..., R , are extreme directions of the polyhedron Λ that is defined in (4.9).

 δr (f − Gx) ≤ 0 for r = 1, ..., R . (4.11)

Remark 4.1. Note that in a practical implementation, we need not solve the relaxed Benders�
master programs to optimality at each iteration. Rather, a branch-and-cut approach could be
adopted, with the enumeration process set up only once, and with the current relaxed master
program (RMP, say) being used to determine lower bounds, the subproblem (SP, say) providing
upper bounds, and the (globally valid) Benders' cuts (4.10b) being generated as needed, i.e.,
whenever an incumbent solution to the current relaxed master program is found that has an
objective value less than the present upper bound on the overall problem. Geoffrion and
McBride (1978) and Adams and Sherali (1993) provide details for such an approach. Any actual
application of Benders' method discussed here can be adapted to follow such a scheme. !

Example 4.1. As an illustration, consider the following example.

 P: Minimize −x1 − 2y1 (4.12a)
 subject to −4x1 − 3y1 ≥ −6 (4.12b)
 (x1, y1) binary. (4.12c)

Figure 4.1 depicts the solution of this problem and identifies the set Z, along with the key facet
that describes this set. By (4.2), this set Z is given by

 Z = conv{(x1, y1) : −4x1 − 3y1 ≥ −6, 0 ≤ x1 ≤ 1, y1 binary}. (4.13)

Since there is only one y-variable for this problem, we can develop the complete RLT
representation of Z by multiplying each of the constraints in (4.13) by the two bound-factors
associated with 1y . This yields the following equivalent Problem P ′ as defined by (4.3):

 Minimize 11 2yx −− (4.14a)
 subject to 3y1 − 4w ≥ 0 (4.14b)
 −4x1 − 6y1 + 4w ≥ −6 (4.14c)
 01 ≥− wy (4.14d)
 x1 0≥− w (4.14e)
 −x1 11 −≥+− wy (4.14f)

 w ≥ 0 (4.14g)
 x1 binary. (4.14h)

Note that (4.14b) and (4.14c) are obtained by the RLT product of −4x1 − 3y1 ≥ −6 with y1 and
(1 − y1) , respectively, and (4.14d-g) are bound-factor RLT product constraints obtained via the

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 61

 y 1

1

Z

1
x 1

4 x 1 + y 1 ≤ 4

(1,) 2
3

(, 1) 3
4

optimum

Figure 4.1. Illustration for Example 4.1.

products of the bounding inequalities 0 ≤ x1 ≤ 1 with 1y and with)1(1y− . Observe that the
surrogate of (4.14b) and (4.14f) according to

 (3y1 − 4w) + 4(−x1 − y1 + w + 1) ≥ 0 (4.15a)

produces the required key facet of Z identified in Figure 4.1 as

 −4x1 − y1 ≥ −4 . (4.15b)

In essence, by projecting the region of (4.14) onto the (x1, y1) space (only for illustrative
purposes; this combinatorial step would not be performed in actual implementations), we get that
(4.14) can equivalently be written as follows.

 Minimize −x1 − 2y1 (4.16a)
 subject to −4x1 − y1 ≥ −4 (4.16b)
 x1 binary, 0 ≤ y1 ≤ 1. (4.16c)

We could now apply Benders� partitioning to solve (4.14), which in essence, would be
tantamount to applying this method to (4.16). For the sake of convenience, we apply it directly
to (4.16) and obtain the decomposition

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 62

 minimize
x1 ∈ {0,1}

{−x1 + maximum {π1(4x1 − 4) − π2 : −π1 − π2 ≤ −2, (π1, π2) ≥ 0}}. (4.17)

Noting that the extreme points of the inner maximization problem in (4.17) are (π1, π2) = (2, 0)
and (0, 2), and that (4.12) is feasible for any binary x1 , the complete Benders' master program is
derived as follows.

 Minimize z (4.18a)
 subject to z ≥ 7x1 − 8 (4.18b)
 z ≥ −x1 − 2 (4.18c)
 x1 binary. (4.18d)

The optimum to (4.18) (which would ultimately be generated via the usual process of applying
Benders� methodology) is given by x1

∗ = 0 and z∗ = −2. Solving (4.16) (or (4.14)) with x1
fixed at x1

∗ = 0 yields y1
∗ = 1 (and w ∗ = 0), with v(x1

∗) = z∗ = −2. Since the relaxed master
problem and subproblem have the same objective values, we have obtained an optimal solution
to (4.12). !

4.3 Benders� Partitioning Using a Sequential Partial Convex Hull
Constructive Process

 The approach (4.8)-(4.10) is based on an a priori generation of the convex hull
representation Z defined in (4.2) (or Z ′ defined by (4.5) and (4.6) under the structure (4.4)). If
the size of the problem permits this construction (in particular, if we have few y-variables, or
each partitioned constraint set in (4.5a) has a relatively simple structure), then this is a viable
option, and leads to a usual application of Benders� decomposition as per Remark 4.1.
Otherwise, we can generate a partial representation for Z as needed in a sequential
convexification process, as discussed below. The following remark first highlights a key concept
that is used in developing our proposed solution process.

Remark 4.2. Let Y denote the continuous relaxation of Y, and let J ∗ = {j : yj is restricted to
be binary in Y}. For any J ⊆ J ∗ , define

 Z J = conv{(x, y) : Ax + Dy ≥ b, 0 ≤ x ≤ e, y ∈ Y , }binary Jjy j ∈∀ . (4.19)

Note that ∅Z along with x ∈ X represents the continuous relaxation of (4.1), and Z ≡ Z J ∗ .
Since JZZ ⊆ for each ∗⊆ JJ , valid Benders� cuts can be derived from any such set Z J . In
fact, using the RLT process, we can construct a higher dimensional representation of Z J for any

∗⊆ JJ that could be characterized as a surrogate of the representation (4.2b) for Z using suitable
nonnegative multipliers (see Sherali and Adams 1990, 1994). Hence, Benders� cuts derived via
the relaxation Z J substituted in place of Z would correspond to cuts obtained via some feasible,
though not necessarily extreme point, solution to Λ . Likewise, Benders� cuts derived via lower-

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 63

level RLT applications to ∅Z (levels less than J for the case of Z J) based on considering
binariness on the variables jy for Jj ∈ , but not necessarily having constructed the entire
convex hull representation Z J , would be valid as well. Moreover, since the description of such a
lower level representation can be obtained by surrogating the constraints of Z J , and hence those
of Z, the resulting cuts can also be viewed as implicitly obtained from feasible, nonextremal
solutions to Λ . !

 Based upon these insights, we now develop a finitely convergent method for solving
Problem P, or Problem P ′ via (4.8)-(4.10), by sequentially constructing a partial convex hull
representation as needed. In this approach, for any fixed x , the corresponding Benders�
subproblem in (4.8b) that is reproduced below as

SP: }0,0,:)({maximize ≥==− ππππ FdHxGf , (4.20)

is solved implicitly via an RLT-based or lift-and-project cutting plane approach (see Balas et al.
(1993), and Sherali et al. (2000)). In the proposed method, we explicitly generate appropriate
surrogated versions of Z as needed to derive valid RLT or lift-and-project cutting planes as
needed for solving the subproblems. The key idea is that these generated cuts are characterized
as functions of x, and can therefore be updated and re-used for subsequent subproblems based on
the corresponding fixed value of x. Likewise, the Benders� cuts derived via the solution of the
subproblems using such a cutting plane approach recognize these cuts as function of x, and are
hence shown to be globally valid. This leads to an overall finitely convergent solution process.

Remark 4.3. To set ideas, let us first consider a preliminary rudimentary approach for solving
Problem P ′ via Benders� decomposition. This simple approach solves various restricted
versions of the subproblems (4.20) (or relaxed versions of its dual) as follows. For the first
instance of Problem SP, we let 0=k and take ∅=kJ . Using kJZ = ∅Z as the current RLT
representation within the inner minimization in (4.8a), we solve SP and generate the associated
Benders� constraint for the relaxed master problem. At each subsequent visit to SP, if the current
subproblem yields a binary y-solution, we use this solution to update the incumbent solution and
to generate a Benders� cut. Otherwise, we increment k and take }{1 jJJ kk ∪= − where jy is
restricted to be binary, but currently has a fractional value. We then construct kJZ as the updated
RLT representation using the scheme described in Sherali and Adams (1990, 1994), solve SP,
and generate the associated Benders� constraint for the relaxed master problem.

 Note that this process creates a nested sequence of sets L⊆⊆⊆ 210 JJJ leading up to
*J in the worst case. Within a finite number of visits to SP, this procedure generates cuts based

on Z via either a partial or full representation of this set, thereby deriving valid upper bounds
from each such SP, and resulting in an overall finitely convergent algorithm based on the
finiteness of the set X ∩ {0, 1}n . Alternatively, we could derive valid upper bounds from each
subproblem by continuing to expand the set kJ at each iteration k to include fractionating y-
variable indices until an integer feasible y-solution is obtained. This alternative is more in the
conceptual spirit of the proposed approach as explained below. !

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 64

 Clearly, the approach described in Remark 4.3 of sequentially generating approximations
leading up to Z is computationally intensive because of the potentially exponential size of these
(partial) convex hull representations. The procedure we propose below instead relies on
generating cuts as needed to solve each subproblem SP based upon its fractionating variables,
rather than generating full (partial) convex hull representations. More importantly, it
characterizes these cuts in a fashion that permits them to be re-used in a suitably modified form
for other subsequent subproblems. Furthermore, the cuts are generated in the original
dimensional space, and previously generated cuts can be retained or deleted as desired.

 As alluded above, the proposed method implicitly generates an appropriate surrogated
representation of Z as needed for each individual SP via an RLT cutting plane approach as
follows. Suppose that we are solving SP for a given x . In essence, we wish to solve

 v(x) = cx + minimum {dy : Dy ≥ b − Ax , y ∈ Y} (4.21)

but we conceive solving this (albeit implicitly) via the problem

 v(x) = cx + minimum {dy : Hy + Fw ≥ f − Gx } (4.22)

from (4.8a), so that we can derive a valid Benders' cut. (Note that in the presence of a dual
angular structure, (4.22) would yield a separable system as per (4.6).) Now suppose that we
adopt a sequential convexification lift-and-project type of cutting plane scheme to solve (4.21),
using RLT cuts based on enforcing binariness on one variable as in Balas et al. (1993), or on
multiple variables as in Sherali et al. (2000). (See Section 4.4 for details on the finite
convergence of such a cutting plane algorithm.) Suppose that we obtain the final cut-enhanced
problem that solves (4.21) as given by (4.23) below, where (4.23c) represents the continuous
relaxation Y , and where (4.23d) represents the set of RLT or lift-and-project cuts generated.

 v(x) = cx + minimum dy (4.23a)
 subject to Dy ≥ b − Ax (4.23b)
 Γy ≥ γ (4.23c)
 α ty ≥ βt − φtx for t = 1, ..., T . (4.23d)

Each of the cuts t = 1, ..., T in (4.23d) is derived via the following steps.

Step 1. Based on some current fractional solution y , generate an appropriate RLT enhancement
of Zφ given as follows (by enforcing binariness on one or more variables � see Section 4.4, and
in particular, Remark 4.5 given later for some additional details):

 Gt x + Ht y + Ftw ≥ ft . (4.24)

(In the presence of dual-angularity, this system would have a structure similar to that in (4.6).)

Step 2. Fix x = x , and determine dual multipliers πt ≥ 0 for (4.24) that solves the following
separation problem, where e is a conformable vector of ones, and where (4.25c) is a

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 65

normalization constraint (that can be imposed separably in the context of dual-angular
structures).

 Minimize πt (Ht y) − πt (ft − Gt x) (4.25a)
 subject to πt Ft = 0 (4.25b)
 1=⋅ te π (4.25c)
 πt ≥ 0 . (4.25d)

Note that by virtue of the RLT process, an appropriate representation (4.24) can be generated
that yields a negative value in (4.24). Let � π t be the solution of (4.24). Then we have that

)(~~ xGfyH ttttt −≥ ππ (4.26)

deletes the current fractional solution y . Furthermore, with the substitution

 ttttttttt GfH πφπβπα ~ and ,~,~ ≡≡≡ , (4.27)

we have that (4.26) is of the form (4.23d).

 The final representation (4.23) can be used to derive a valid Benders' cut, as shown in
Proposition 4.2. This leads to a finitely convergent algorithm, as demonstrated subsequently in
Proposition 4.3. Following this, we will comment on the re-use of previously generated cuts for
new subproblems (4.21)-(4.23) solved for revised values for x .

Proposition 4.2. Consider Problem (4.23), and let ψ1, ψ 2 , and (ψ 3t , t = 1, ..., T) be the optimal
nonnegative dual multipliers obtained for the constraints (4.23b), (4.23c), and (4.23d),
respectively. Then, noting (4.27), the inequality

 z ≥ cx + ψ 1(b − Ax) + ψ 2γ + ψ 3t
t =1

T

∑ (βt − φt x) (4.28)

is a valid Benders' cut.

Proof. Consider the system (4.3b) that is derived from (4.2). Since the original constraints in
(4.2a) are implied by (4.2b) via a suitable surrogation process, and noting the definition of
(4.23c), there exist nonnegative surrogate multiplier matrices τ 1 and τ 2 such that

 τ 1[G, H, F] = [A, D, 0], with τ 1 f ≥ b , and (4.29)
 τ 2[G, H, F] = [0, Γ , 0], with τ 2 f ≥ γ . (4.30)

Similarly, since any lower-level or partial RLT application such as (4.24) is implied by (4.3b) via
a surrogation process, there exist nonnegative surrogate multiplier matrices τ 3t , t = 1, ..., T , such
that

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 66

 τ 3t[G, H, F] = [Gt , Ht , Ft], with τ 3t f ≥ ft , ∀ t = 1, ..., T . (4.31)

Now, let us define

 π = ψ1τ 1 + ψ2τ 2 + ψ 3t
t =1

T

∑ � π tτ 3t (4.32)

where � π t is obtained as an optimum to (4.25) and satisfies (4.26). Note that π ≥ 0 , and from
(4.26), (4.29) � (4.32), we get

 π H = ψ1D + ψ 2Γ + ψ 3t
t =1

T

∑ � π tHt

 i.e. π H = ψ1D + ψ 2Γ + ψ 3t
t =1

T

∑ α t = d (4.33)

via duality in (4.23). Moreover, we have from (4.25b), (4.29) � (4.32) that

 π F = ψ1 (0) + ψ 2 (0) + ψ3t
t =1

T

∑ � π tFt = 0. (4.34)

Hence, π ∈ Λ as defined in (4.9), and so the constraint

 z ≥ cx + π (f − Gx) (4.35a)

is a valid Benders' inequality. But from (4.26), (4.29) � (4.32), we have,

 π (f − Gx) ≥ ψ1(b − Ax) + ψ 2γ + ψ 3t
t =1

T

∑ � π t (ft − Gt x)

 i.e. π (f − Gx) ≥ ψ1(b − Ax) + ψ 2γ + ψ 3t
t =1

T

∑ (βt − φtx) . (4.35b)

Noting (4.35a) and (4.35b), we have that (4.28) is a valid Benders� cut, and this completes the
proof. !

Remark 4.4. Note that the key insight above is that although the right-hand sides in (4.23) are
real numbers in the process of solving the underlying subproblem, the Benders' inequality
generated from its optimal dual solution via (4.28) needs to recognize the right-hand sides of
both (4.23b) and (4.23d) as functions of x, much as in the usual Benders approach. In particular,
we need to store the constant βt and the vector φt for each cut t = 1, ..., T in (4.23d). Note that
the parent matrices or RLT representations that generated these cuts need not be stored.
Furthermore, because of the global validity of the inequality

 α ty ≥ βt − φtx (4.36)

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 67

for any x by virtue of (4.24) and the surrogation of the type in (4.26), we can impose the
previously generated cuts of type (4.23d) in any subsequent subproblem solution, simply by
modifying its right-hand side according to the current x . This re-use opportunity can greatly
benefit the solution procedure. Section 4.4 further addresses the finite convergence issues
related to such a cutting plane process applied to any given subproblem. !

 Despite the fact that we might not be generating extreme points of Λ in the cuts (4.28),
the following result establishes finite convergence of the overall algorithm, assuming that each
subproblem is solved finitely (as discussed in Section 4.4 below).

Proposition 4.3. Suppose that we implement Benders� algorithm in the traditional fashion as
follows. At each iteration, we solve the relaxed master program (4.10), where the Benders� cuts
(4.10b) are replaced by the current set of cuts of type (4.28). Let (z , x) be an optimal solution to
this relaxed master program, where x ∈ X ∩ {0, 1}n . Next, we solve the subproblem (4.23) to
determine the value v(x) of Problem P when x is fixed at x , and accordingly, either terminate if
z ≥ v(x) (equivalently, z = v(x)), or else, generate a Benders� cut (4.28) if z < v(x) . Then,
this process will converge finitely with an optimum for Problem P.

Proof. Note that by the validity of (4.28) in Proposition 4.2, the result holds true if we show that
we will finitely obtain the termination criterion z ≥ v(x) . Observe that by duality in (4.23), the
right-hand side of (4.28) evaluated at x = x yields v(x). Hence, whenever a previous x is
regenerated by the master program, the termination criterion would hold true. Since there are
only a finite number of solutions in X ∩ {0, 1}n , this must occur finitely, and the proof is
complete. !

 As mentioned previously, an actual implementation would follow Remark 4.1. Figure
4.2 provides a flow-chart for such a process.

Example 4.2. Consider the problem of Example 4.1. To illustrate the concept of the proposed
approach, suppose that we have a relaxed master program RMP that currently has the Benders�
inequality (4.18c), but not (4.18b). This problem yields the solution 11 =x and 3−=z . We now

solve for v(x 1) via the following problem, using a cutting plane process in the spirit of (4.23).

 v(x 1) = −x 1 + minimum {−2y1 : −3y1 ≥ 4x 1 − 6, y1 binary}. (4.37)

The continuous optimum for (4.37) is y 1 = 2 / 3. At Step 1 of the cut generation process, let the
RLT constraints (4.24) be given by (4.14b) � (4.14g) as in Balas et al.�s (1993) lift-and-project
scheme. The corresponding separation problem (4.25) at Step 2 is given as follows, where (for
�t�= 1), π11, ..., π16 denote the surrogate multipliers with respect to the constraints (4.14b) �
(4.14g), respectively.

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 68

Solve the LP relaxation of P via Benders� algorithm. If the resulting continuous
solution satisfies all the required binary restrictions, then terminate with this
solution as an optimum. If an incumbent (integer) feasible solution is found in
this process, then let),(** yx represent this solution, and initialize the upper
bound UB with its corresponding objective value; else, let ∞=UB and let

),(** yx be null. Initialize a branch-and-bound/cut scheme to solve the current
relaxed master program (RMP) in the (z, x)-variable space, letting UB be the
starting upper bound on this problem.

Continue solving the current RMP via an LP-based branch-and-bound scheme
until such a time as a new incumbent solution),(xz is found for RMP such that

UB<z . If no such solution is found until optimality of RMP is achieved, then
the optimum to this relaxed master program has the same objective value as the
incumbent solution to P (of value UB), and so, terminate the process with the
latter solution as an optimum. Else, continue.

Fix xx = and solve the subproblem SP given by (4.23), using (any of) the
previously generated cuts (4.23d) with their right-hand sides modified according
to the current x , and generating additional RLT or lift-and-project cuts as needed
until optimality is attained for SP (see Section 4 for related convergence issues).
Once)(xv is determined, update UB and the incumbent solution),(** yx to P if
necessary. Also, using the optimal dual solution to (4.23) at termination, generate
the Benders� cut (4.28). Note that upon substituting xx = in the right-hand side
of this cut (4.28), we would obtain)(xvz ≥ as evident from (4.23). Hence, the
current upper bound on the revised RMP again coincides with UB.

Figure 4.2. Flow-chart of an Implementation for the Proposed Benders� Algorithm.

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 69

 Minimize 1514131211 3
2

3
222 πππππ −++−

 subject to −4π11 + 4π12 − π13 − π14 + π15 + π16 = 0
 π11 + π12 + π13 + π14 + π15 + π16 = 1
 (π11, ..., π16) ≥ 0 .

This problem yields the solution � π 11 =
1
5

, � π 15 =
4
5

, � π 12 = � π 13 = � π 14 = � π 16 = 0, with an

objective value of �2/15, thereby indicating that a cut is generated. From (4.27), this cut yields

 α1 = −
1
5

, β1 = −
4
5

, and φ1 = −
4
5

. (4.38)

The globally valid cut of type (4.32) is then given via (4.26) as

 −(1 / 5)y1 ≥ (−4 / 5) + (4 / 5)x1 (4.39)

which corresponds to the facet of Z depicted in Figure 4.1. The particular cut (4.23d) that is
incorporated within (4.37) is obtained by fixing x1 = x 1 ≡ 1 in (4.39). This yields the
inequality −y1 ≥ 0 , thereby producing (4.23) as

 v(x 1) = −x 1 + minimum −2y1 (4.40a)
 subject to −3y1 ≥ 4x 1 − 6 ≡ −2 (4.40b)
 −y1 ≥ −4 + 4x 1 = 0 (4.40c)
 10 1 ≤≤ y . (4.40d)

The optimal solution is given by y 1 = 0 , with the dual multipliers with respect to (4.40b,d)
being zeroes and with respect to (4.40c) being 2, yielding v(x 1) = −1 > z = −3. Hence, we
generate the Benders� cut (4.28) as

)44(2 11 xxz +−+−≥
 i.e. z ≥ 7x1 − 8. (4.41)

This produces the revised relaxed Benders� master program given by (4.18) as in Example 4.1,
which results in an optimal solution being detected as before.

4.4 Finite Convergence of a Cutting Plane Procedure for Solving
Subproblems

 In the foregoing section, we have developed a Benders partitioning approach for Problem
P of the type (4.1) based on the use of a suitable cutting plane approach for solving each
subproblem (4.21) via (4.23). The cuts derived via (4.24) � (4.27) were generated to be directly

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 70

valid for Z itself, but were then imposed on the current subproblem by fixing xx = , where x
corresponds to the given first-stage decision for the present subproblem. This not only permitted
their re-use for other subproblems, but also enabled the derivation of the required Benders� cuts
that induced an overall finitely convergent process. In this section, we now address the issue of
designing a finitely convergent cutting plane procedure of this type for computing)(xv defined
in (4.21) via (4.23). (As alluded variously in the foregoing section, in the context of dual-angular
structures, the separability of (4.21) and the partial convex hull requirement stipulated by
Proposition 4.2 can be exploited below with obvious modifications.)

 Note that in practice, one could use a variety of lift-and-project or RLT cuts as presented
in Balas et al. (1993) and Sherali et al. (2000) to implement (4.23). However, in order to ensure
that such a process finitely solves the underlying 0-1 mixed-integer program, some care needs to
be exercised while sequentially constructing the (partial) convex hull representation that is
necessary to solve this problem. As in Balas et al.�s (1993) lift-and-project cutting plane
algorithm, we rely on Jeroslow�s (1980) cutting plane game concept for facial disjunctive
programs. (Note that (4.21), and likewise Problem P given by (4.1), is a facial disjunctive
program in that it involves the conjunction of the disjunctions that 0≤jy or 1≥jy (in concert
with 10 ≤≤ jy) for each pj ,,1 K= , along with the facial property that the intersection of
either of these disjunctive restrictions with the continuous feasible region of (4.21) defines a face
of this region.) However, there is one important variation in the standard process that we need to
account for, in that we are generating cuts that are valid for Z of Equation (4.2) in our context,
and then imposing these cuts in (4.23) by fixing xx = . As Proposition 4.4 below establishes,
the key element that validates this variation is that for any binary feasible solution x , if we
denote the convex hull of the feasible region of the subproblem (4.21) as)(xZ and view this
region in the form

 } and , , :),{(conv)(xxYyAxbDyyxxZ =∈−≥= , (4.42a)

then we effectively have that

 } :),{()(xxyxZxZ =∩= (4.42b)

since the right-hand side in (4.42b) defines a face of Z because Z includes the restrictions
ex ≤≤0 in its definition. Consequently, we can derive the required description of the facial

structure of)(xZ given by (4.42a) that is necessary for solving the subproblem (4.21) by
generating appropriate valid inequalities for Z, and then restricting xx = . Figure 4.3 provides a
flow-chart for such a cutting plane process in the context of lift-and-project cuts of Balas et al.
(1993), and Remark 4.5 below provides comments on using more general RLT cuts along with
some implementation suggestions. The following result establishes finite convergence of the
procedure presented in Figure 4.3.

Proposition 4.4. The cutting plane procedure of Figure 4.3 finitely solves the subproblem (4.21)
via (4.23), yielding a family of valid inequalities (4.23d) that can be re-used for any other
subproblem by revising the corresponding first-stage decision x .

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 71

Figure 4.3. Cutting Plane Procedure for Solving any Subproblem.

N

Y

Initialize the solution of (4.21) via (4.23) using some (possibly empty) set of
cuts (4.23d) that are valid for the current first-stage decision x . Let

(4.23)} in usedcut initial an is :{0 xyt ttt φβατ −≥= .

Solve the current LP relaxation (4.23) to obtain a solution y .

pyy ,,1 K binary? Exit and generate a Benders�
cut as per Proposition 4.3.

Identify }fractional is :},,1{max{ jypjq K∈= .

Consider the following system extracted from the current version of (4.23):

 (4.43)

where :{1 xyt tttq φβατ −≥=− is a j-cut },1for −≤ qj and where a j-cut is one that has
been generated during a previous step of this type, when jy was identified as the largest
indexed fractional variable in the corresponding LP solution.

ex
tyx

y
bDyAx

qttt

≤≤

∪∈∀≥+
≥Γ

≥+

−

0
 10 ττβαφ

γ

Increment the cut index t. Use the RLT process of multiplying (4.43) by qy and)1(qy−
and linearizing to obtain the system of type (4.24) as in Step 1 of the cut generation process
described in Section 4.3, and follow this process to generate a new cut (4.26, 4.27) of the
form xy ttt φβα −≥ . Label this valid inequality as a q-cut, and add it to the current
subproblem representation (4.23).

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 72

Proof. First of all, note that the cut generation process of Section 4.3 is based on deriving valid
inequalities for relaxations of Z of the type (4.24), obtained by applying RLT while enforcing
binariness on a single variable qy to some system of type (4.43) (see Figure 4.3). Hence,
inductively, each inequality generated of the form ttt yx βαφ ≥+ is valid for Z, and therefore,
can be imposed for any subproblem by fixing the x-variables to the corresponding first-stage
decision values.

 Next, let us view the subproblem (4.21) that is to be solved in the following form
(augmented with an initial set of valid cuts), where x is declared to be a variable, but the
parameter M is assumed to be sufficiently large so that we necessarily have xx = at optimality
in this problem (4.44), as well as at its LP relaxation.

])1([minimum)(
1:0:

∑∑
==

−+++=
jj xj

j
xj

j xxMdyxcxv

 subject to

.1 }1,0{ ,0
 0

,p,iyex
tyx

y
bDyAx

i

ttt

K=∀∈≤≤
∈∀≥+

≥Γ
≥+

τβαφ
γ

 (4.44)

Now, suppose that we apply the lift-and-project cutting plane procedure described in

Balas et al. (1993) to Problem (4.44). By making M sufficiently large, we can assume that each
LP relaxation solved in the (finite) iterative process will continue to yield xx = , so that each of
these LP relaxations can effectively be solved via (4.23) by fixing xx = as in the flow-chart of
Figure 4.3. Note that if y is a resulting extreme point solution, then),(yx is a vertex of the
continuous relaxation to (4.44) augmented with any additional cuts, since xx = describes a face
of this latter region. Consequently, the procedure of Figure 4.3 is precisely the lift-and-project
cutting plane scheme that is proven in Theorem 3.1 of Balas et al. (1993) to converge finitely as
applied to Problem (4.44), and this completes the proof. !

Remark 4.5. Note that the lift-and-project cutting plane procedure of Balas et al. (1993) is
predicated on generating cuts based on enforcing binariness on 0-1 variables one at a time. A
more general RLT process of Sherali and Adams (1990, 1994) could be used to devise a cut
generation scheme that likewise enforces binariness on more than one variable at a time. In such
a process, the 0-1 variables can be grouped into batches containing one or more variables per
batch, perhaps based on the initial LP solution. A similar scheme as in Figure 4.3 could then be
followed, in which the relaxation (4.24) of Z is generated by applying RLT while enforcing
binariness on the highest indexed batch of variables that contains some fractionating variable(s),
to a system (4.43) that contains cuts generated previously for lower-indexed batches. The
convergence of such a problem would follow from Jeroslow�s (1980) cutting plane game as in
Proposition 4.4. Of course, the advantage of considering batches of cardinality one is that the
associated separation problems are relatively easier to solve. However, Sherali et al. (2000) have
recently demonstrated how stronger RLT cuts accruing from the simultaneous consideration of
multiple variables can be efficiently generated by using suitably restricted projections of the

Chapter 4: A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems 73

associated dual cone. Furthermore, in practical implementations, one could employ all the
retained cuts in (4.43) of the procedure of Figure 4.3 or consider the deletion of cuts based on
certain filtering criteria as well. In addition, as alluded in Remarks 4.2 and 4.3, and as evident
from the foregoing discussion, we could prematurely abort the solution of any particular
subproblem for a given xx = via the described cutting plane scheme, and generate a
corresponding valid Benders� cut. This might entail regenerating a previous x , while not yet
having solved Problem P. However, so long as complete subproblem solutions are enforced after
a finite number of iterations or even finitely often, we would obtain an overall finitely
convergent process. Investigations of this type require extensive computational
experimentations that we hope to pursue in future research. !

4.5 Summary and Conclusions

In this chapter, we have modified Benders� decomposition method using RLT and lift-
and-project cuts to develop a new method for solving discrete optimization problems that yield
0-1 mixed-integer subproblems, such as those encountered in stochastic programs with integer
recourse. Viewing the problem implicitly in the light of a suitably defined convex hull
representation, with appropriate modifications when the original problem exhibits a dual-angular
structure, we have demonstrated how cutting planes could be generated to derive a partial
description of this convex hull representation as needed in order to devise a finitely convergent
solution procedure. Importantly, the classes of cuts used in the subproblems were derived in
terms of functions of the first-stage x-variables, enabling them to be re-used in subsequent
subproblems simply by revising them according to the corresponding x-solutions. Additionally,
globally valid Benders� cuts were obtained by recognizing these cuts as functions of the first-
stage variables. The ability to re-use cutting planes from one subproblem to the next in this
fashion is useful from the viewpoint of potentially reducing the computational effort required to
solve the discrete subproblems, while providing globally valid Benders� cuts that enhance the
lower-bounding mechanism via the relaxed master program. The focus of this chapter has been
on developing the theory for such a modified Benders� approach. In order to gauge the
effectiveness of the proposed technique, a variety of computational test, particularly in the
context of stochastic programs with integer recourse, should be conducted, and we propose this
task for future research.

74

Chapter 5: Improved MIP Models and
Algorithms for the Facility Layout Problem

As discussed in Chapter 2, the facility layout problem is a challenging optimization
problem that arises in the context of many practical applications. Given the dimensions of a
rectangular building, the basic problem is to design a floor-plan comprised of rectangular
departments in order to minimize the total amount of travel (distance times the number of trips)
between the departments. The difficult nature of this optimization problem has led to a number
of construction and improvement heuristics, but very little research has focused on directly using
MIP formulations to solve the problem optimally. One notable exception is the paper by Meller
et al. (1999) that examines the MIP formulation originally proposed by Montreuil (1990) and
discusses several enhancements to improve and strengthen the model representation. While the
results presented by Meller et al. are promising, we describe in this chapter a series of significant
enhancements to the MIP model that lead to more accurate solutions, as well as decreased
solution effort.

The remainder of this chapter is organized as follows. Section 5.1 provides a
comprehensive overview of the MIP model (FLP2+) that was proposed by Meller et al., and
Section 5.2 presents computational results obtained using this model, as well as an experimental
design for evaluating our proposed enhancements. Sections 5.3 through 5.6 each outline a
specific enhancement to the basic FLP model and discuss related computational results. Section
5.3 addresses a new formulation for the nonlinear area constraints, Section 5.4 develops special
symmetry breaking valid inequalities, and Section 5.5 analyzes the effect of using several other
classes of valid inequalities. As a final enhancement, Section 5.6 discusses two new techniques
for modeling the disjunctive relationships that prohibit departments from overlapping and
explores the derivation of partial convex hull representations and valid inequalities from their
structure. After evaluating several combinations of proposed enhancements, we narrow our
focus to two promising formulations, which are used to solve three more challenging problem
instances in Section 5.7. We provide conclusions and directions for future research in Section
5.8.

5.1 Problem Overview

Given a set of departments },,1{ nK , the facility layout problem seeks to determine a
non-overlapping arrangement of the departments that minimizes the total travel between
departments as specified by ∑∑∑

<i j s

s
ijijdf , where the parameter ijf is a given amount of flow

between departments i and j, and where the variable s
ijd represents the rectilinear distance

between the respective centroids of departments i and j in the direction s. For notational
convenience, all dimensions, distance measures, and locations that are specified in terms of their

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 75

horizontal and vertical components are denoted by the superscripts x and y, respectively. The
overall building is assumed to be a rectangle of size yx LL × , and each department i is required to
be a rectangle with target area ia . For each department i, the parameter)1(≥iα , known as the
aspect ratio, delineates the maximum permissible ratio between the longest and shortest sides;
i.e., ii

s
iyxs

s
iyxs

∀≤
==

,}{min/}{max
,,

αll . There are four decision variables for each department i,

namely, the half-length and half-width),(y
i

x
i ll , and the centroidal location),(y

i
x
i cc . In order to

guarantee that each department i is contained within the building, we impose the bounds
s
i

ss
i

s
i Lc ll −≤≤ for each s on the placement of its centroid. In addition, we denote any valid

implied upper and lower bounds on s
il as s

ibl and s
iub , respectively. (We note that, although

not computationally effective, some previous formulations for the facility layout problem have
taken sbb i

s
i ∀= ll . In Section 5.2.1, we derive tight values for s

ibl and s
iub by considering the

bounds in direction x and y separately.) A generic version for the facility location problem can
then be stated as follows.

 FLP: Minimize ∑∑
<

+
i j

y
ij

x
ijij ddf)((5.1a)

 subject to Departmental Area Constraints (5.1b)
 Overlap Prevention (or Separation) Constraints (5.1c)
 dij

s = ci
s − cj

s ∀ i < j, s (5.1d)
 l i

s ≤ ci
s ≤ Ls − l i

s ∀ i, s (5.1e)
 lbi

s ≤ li
s ≤ ubi

s ∀ i, s . (5.1f)

In addition to the constraints listed in (5.1), appropriate restrictions can be added to
accommodate the case where some departments are given fixed locations or when certain areas
of the building are not permitted to be occupied by any department.

5.2.1 The FLP2 Model
Throughout the remainder of this chapter, we will propose enhancements to the best

existing MIP formulation of the facility layout problem that was presented as FLP2 in Meller et
al. (1999). Before proceeding with this endeavor, we first review the notation of the FLP2
model. For ease in notation, we define P as the set of department pairs having positive flow
interaction; that is, }0:),,{(><= ijfjijiP . We also denote the set F as the departments with
fixed size and location, while its complement F contains all of the departments with variable
size and location. (In the present context, we do not consider departments that are fixed with
respect only size or location, although this modification could also be accommodated in a
straightforward manner.) Using the aspect ratios for each department, Meller et al. derive
implied upper and lower bounds on the half-sides of each non-fixed department, which we
denote as iub and ibl , respectively. These bounds are given by

2/}}{max,min{ s

siii Laub α= and)4/(iii ubab =l Fi ∈∀ ,

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 76

and are used to constrain the department dimensions via the restrictions

siLubb s
i

s
ii ,},2/,min{ ∀≤≤ ll .

Accordingly, the centroid of each department Fi ∈ is bounded as sbLcb i
ss

ii ∀−≤≤ ll . (We
note here that Meller et al. use the same lower and upper bounding values for the half-width and
half-length of department i (i.e., yxsububbb i

s
ii

s
i , and =∀== ll), but we will develop tighter

bounds in Section 5.3 by considering each dimensional separately.)

One of the major difficulties in modeling the MIP facility problem is to derive a suitable
approximation for the nonlinear area constraints, i

y
i

x
i a=ll4 , for each department Fi ∈ .

Toward this end, Meller et al. propose an approximation that uses a parameter f (empirically
taken to be 0.95 in their computations), and the maximum departmental half-side denoted by

}{max
,

max s
iyxsi ll

=
= . In order to ensure that departments do not overlap, Meller et al. propose

several disjunctive statements that are linearized using binary variables, s
ijz , to indicate relative

locations, where 1=s
ijz if department i is forced to precede department j in the direction s.

Given this notation, Problem FLP2 of Meller et al. can be stated as follows, where throughout
the formulation, i and j represent the indices for the n departments, and s is an indicator
representing the two directions (x and y).

 FLP2: Minimize ∑ ∑
∈ =Pji yxs

s
ijijdf

),(,

 (5.2a)

 subject to Fifa ii
y
i

x
i ∈∀×+≥+ max23)(4 lll (5.2b)

 sFis
ii ,,max ∈∀≥ ll (5.2c)

 sjizz
y

xs

s
ji

s
ij ,1)(<∀≥+∑

=

 (5.2d)

 sjizz s
ji

s
ij ,1 <∀≤+ (5.2e)

 sjizLcc s
ij

ss
j

s
j

s
i

s
i ,)1(≠∀−+−≤+ ll (5.2f)

 sPjiccd s
j

s
i

s
ij ∀∈∀−= ,),((5.2g)

 sFiLc s
i

ss
i

s
i ,∈∀−≤≤ ll (5.2h)

 sFiLubb s
i

s
ii ,},2/,min{ ∈∀≤≤ ll (5.2i)

 sic s
i ,0 ∀≥ (5.2j)

 sPjid s
ij ,),(0 ∈∀≥ (5.2k)

 sjiz s
ij ,}1,0{ ≠∀∈ (5.2l)

 sFic s
i

s
i , fixed),(∈∀l . (5.2m)

In terms of the notation of problem (5.1), constraints (5.2b) and (5.2c) capture the

departmental area requirements, while (5.2d-f, l) prevent departmental overlaps. Specifically,

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 77

the constraints (5.2b) approximate the nonlinear area constraints (iai
y
i

x
i ∀=ll4) by forcing the

actual perimeter of each department, given as the left-hand side of (5.2b), to be at least equal to
an empirically determined function of ia and max

il (as defined by (5.2c)) that exceeds the

perimeter ia4 of a square department having area ia . The motivation behind this approach is
to make the area restrictions more faithful as departments become more non-square. Constraints
(5.2d) and (5.2e), together with constraints (5.2f), force each pair of departments to be separated
in at least one direction, and hence prevent departments from overlapping. Meller et al.
demonstrated that the constraints (5.2e) are unnecessary, and that a tighter formulation can be
found by making constraint (5.2d) an equality, which enables branching based on specially
ordered set (SOS) constraints. Using (5.2d) as an equality constraint also reduces problem
symmetry by curtailing alternative z-solutions that pertain to the same layout. Constraints (5.2m)
address the set of fixed departments, forcing the respective locations and sizes equal to the
corresponding given values. Although not displayed in (5.2), we note that it is also
straightforward to adapt FLP2 to include constraints that require certain departments to be placed
away from each other by at least some given distance.

The remainder of the model represents the constraints (5.1d-f). Note that the absolute
values in (5.2g) can be linearized through either of two common techniques. The first option is
to replace s

j
s
i

s
ij ccd −= with the two inequalities s

j
s
i

s
ij ccd −≥ and s

i
s
j

s
ij ccd −≥ . The second

option is to define two nonnegative variables, +s
ijd and −s

ijd , to represent the difference

relationship as s
j

s
i

s
ij

s
ij ccdd −=− −+ and then use the substitution −+ += s

ij
s
ij

s
ij ddd . (In their

computational experiments, Meller et al. implemented the first option.) The departments are
required to be contained within the building through the constraints (5.2h). Finally, constraints
(5.2i) impose the derived bounds on the dimensions based on area and aspect ratio
considerations, and (5.2j - 5.2l) represent logical restrictions. This completes the basic FLP2
model.

5.2.2 The FLP2+ Model
After presenting this basic model, Meller et al. then strengthen FLP2 by developing a

series of valid inequalities with the motivation of increasing the bound obtained from the linear
programming relaxation of FLP2 (and any of its subsequent restrictions in a branch-and-bound
framework). Typically, the LP relaxation sets the s

ijz variables to fractional values, allowing the
departments to overlap one another, and locates the centroid of each department at a common
coordinate. This allows the s

ijd variables to take on values of zero, and thus, the objective of the

LP solution at the root node is equal to zero. In order to force the s
ijd variables to take on non-

zero values, Meller et al. develop transitivity constraints, lower bounding constraints for distance
variables, and centroid separation constraints. The resulting enhanced model is referred to as
FLP2+, and is shown below in complete form.

FLP2+: Minimize ∑ ∑
∈ =Pji yxs

s
ijijdf

),(,

 (5.3a)

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 78

 subject to Fifa ii
y
i

x
i ∈∀×+≥+ max23)(4 lll (5.3b)

 sFis
ii ,,max ∈∀≥ ll (5.3c)

 sjizz
y

xs

s
ji

s
ij ,1)(<∀=+∑

=

 (5.3d)

 sjizLcc s
ij

ss
j

s
j

s
i

s
i ,)1(≠∀−+−≤+ ll (5.3e)

 sPjiccd s
j

s
i

s
ij ∀∈∀−≥ ,),((5.3f)

 sPjiccd s
i

s
j

s
ij ∀∈∀−≥ ,),((5.3g)

 skjizzz s
ik

ss
jkij

,,,1 ∀+≤+ (5.3h)

 Pjidd ji
s

s
j

s
i

y
ij

x
ij ∈∀−−+≥+ ∑),()(maxmax llll (5.3i)

 sPjizzbbd s
ji

s
ijji

s
ij ,),())((∈∀++≥ ll (5.3j)

 sPjizzLububd s
ji

s
ij

s
ji

s
j

s
i

s
ij ,),()1}(,min{)(∈∀−−+−+≥ ll (5.3k)

 sjikPjizzbzzbbd s
kj

s
ikk

s
ji

s
ijji

s
ij ∀≠∈∀−++++≥ ,,,),()1(2))((lll (5.3l)

 sjikPjizzbzzbbd s
jk

s
kik

s
ji

s
ijji

s
ij ∀≠∈∀−++++≥ ,,,),()1(2))((lll (5.3m)

sjikPjizzLub

zzLububd
s
kj

s
ik

s
k

s
k

s
ji

s
ij

s
ji

s
j

s
i

s
ij

∀≠∈∀−−−

+−−+−+≥

,,,),()2}(,2min{

2)1}(,min{)(lll
 (5.3n)

sjikPjizzLub

zzLububd
s
jk

s
ki

s
k

s
k

s
ji

s
ij

s
ji

s
j

s
i

s
ij

∀≠∈∀−−−

+−−+−+≥

,,,),()2}(,2min{

2)1}(,min{)(lll
 (5.3o)

sjikPjizzLub

zzbbd
s
kj

s
ik

s
k

s
k

s
ji

s
ijji

s
ij

∀≠∈∀−−−

+++≥

,,,),()2}(,2min{

2))((lll
 (5.3p)

sjikPjizzLub

zzbbd
s
jk

s
ki

s
k

s
k

s
ji

s
ijii

s
ij

∀≠∈∀−−−

+++≥

,,,),()2}(,2min{

2))((lll
 (5.3q)

 skjizLczzbc s
ij

ss
j

s
j

s
kj

s
ikk

s
i

s
i ∀≠≠∀−+−≤−+++ ,)1()1(2 lll (5.3r)

 sjizbc s
ijk

s
j

s
j ,2 ≠∀≥− ll (5.3s)

 sjizbLc s
ij

s
j

ss
i

s
i ,2 ≠∀−≤+ ll (5.3t)

 sjizLubc s
ij

s
i

s
i

s
j

s
j ,)]1}(2/,min{[2 ≠∀−−≥− ll (5.3u)

 sjizLubLc s
ij

s
j

s
j

ss
i

s
i ,)]1}(2/,min{[2 ≠∀−−−≤+ ll (5.3v)

 sLc ss
q ∀≤ 2/ (5.3w)

 sFiLubb s
i

s
ii ,},2/,min{ ∈∀≤≤ ll (5.3x)

 sic s
i ,0 ∀≥ (5.3y)

 sPjid s
ij ,),(0 ∈∀≥ (5.3z)

 sjiz s
ij ,}1,0{ ≠∀∈ (5.3aa)

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 79

 sFic s
i

s
i , fixed),(∈∀l . (5.3ab)

 We now briefly comment on the derivation of the valid inequalities (5.3h) � (5.3w) that
Meller et al. used to strengthen the basic FLP2 model. The transitivity constraints (T3) given by
(5.3h) enforce logical relationships about the relative locations for any triplet of departments.
The dmin constraint, shown in (5.3i), forces the rectilinear distance between departments i and j to
be at least as large as }{min}{min s

js

s
is

ll + . In addition, Meller et al. enforce bounds on the

distance between the centroids of departments 1i and ki , given that the sequence ,,,1 kii K
nk ≤≤2 holds along direction s. Using the lower bounds, the variables themselves, and a

combination of both, Meller et al. have developed distance bound constraints (Bka and Bkb),
variable distance constraints (Vka and Vkb), and bound-variable distance constraints (BVka and
BVkb), respectively. (We note that when 2=k , B2bB2a ≡ and V2bV2a ≡ , with BV2a and
BV2b being redundant.) While these constraints can be developed for any value of k such
that nk ≤≤2 , Meller et al.�s computational analysis included constraints for only 3,2=k in
order to control the size of the problem. The constraints (5.3j) � (5.3q) correspond to Meller et
al.�s B2, V2, B3a, B3b, V3a, V3b, BV3a, and BV3b. An additional series of constraints (Ska
and Skb) was developed to increase the separation of the centroids of departments i and j, given
any cycle ,,,,: 11 iiiCk kK for nk ≤≤2 . In their computational analysis, Meller et al. included
only S3a, displayed in (5.3r), noting that when 2=k , the S3a constraints reduce to (5.2f). The
final set of valid inequalities are linearizations of the constraints

 sjizLczc s
ij

s
j

ss
i

s
i

s
ij

s
i

s
j

s
j ,2and2 ≠∀−≤+≥− llll . (5.4)

The nonlinear terms s
ij

s
i zl are linearized by using s

iji zbl in (5.3s,t) and by using

)1}(2/,min{ s
ij

s
i

s
i zLub −−l in (5.3u,v). Note that these constraints subsume (5.2h). As a final

enhancement, Meller et al. implement a scheme to reduce problem symmetry, displayed in
(5.3w), by forcing the centroid of some key department q to be positioned in the southwest
corner of the building. The results presented in Meller et al. indicate that the additional
inequalities of the enhanced model (FLP2+) provide significant computational advantages as
compared to using the basic FLP2 model. Their computational experience revealed several test
cases that were solved to optimality with FLP2+ yet could not be solved using model FLP2 .
(We will discuss the effect of these constraints in more detail in Section 5.2.3.)

Although Meller et al. were able to strengthen the model FLP2, several significant
improvements in the model formulation are yet possible. In the remaining sections of this
chapter, we present various such enhancements that serve to tighten the model formulation and
thereby decrease solution effort. We begin with a set of constraints that allow the nonlinear area
constraints to be specified to any given accuracy, and we then address issues such as reducing
problem symmetry more definitively, and deriving tighter representations of the inherent
disjunctive relationships. In order to gauge the effectiveness of our proposed enhancements, we
first evaluated the performance of the FLP2+ model on a series of problems that were presented
in Meller et al. The results are described in the next section. We will subsequently use these
same test problems to evaluate our proposed enhancements.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 80

5.2 Experimental Design

 In our computational analysis, we focused on the set of test problems that were presented
in Meller et al. The problems range in size from three to nine departments, with either one or no
fixed departments, and with aspect ratios ranging from three to five. Some properties of these
test problems are summarized in Table 5.1. Here, as in Meller et al., we define flow density as
the number of departmental pairs having positive flow interactions as a percentage of the
maximum possible number of pairs; i.e., %100*])2/)1(/[(−nnP . We define layout
compactness as the percentage of available space occupied by the departments; that is,

%100*)/(
1








 ×∑
=

yx
n

i
i LLa . We also list the aspect ratio for each problem, where Fii ∈∀= αα .

The FO problems correspond to flowshop versions of the O problems, where each flow intensity
in an O problem instance is replaced by a unit value in the corresponding FO problem. We note
that Meller et al. did not report results for problem M5 since their model FLP2+ declared this
instance to be infeasible. Instead, they constructed the more relaxed problems M5-1 (with
decreased area for each department) and M5-2 (with an increased aspect ratio for each
department) and reported the error in area with respect to the original target values in M5.
Although problems O7 and FO7 were not found to be infeasible using the FLP2+ model, Meller
et al. employed a similar relaxation strategy for these problems to create the corresponding
instances O7-1, O7-2, FO7-1, and FO7-2. However, using our more accurate modeling
strategy as discussed below, we detected that M5 was indeed feasible, and so for the sake of
consistency, we treat all these problems as separate test cases, and report on them individually
with respect to their associated modified input parameters.

The performance of all proposed models was evaluated using an AMPL interface with
CPLEX version 6.5.3 on a SUN Ultra-2 Workstation. Limits on time, number of nodes, and tree
memory were set at 86,400 seconds (24 hours), 10 million nodes, and 390MB, respectively. For
each problem, we report the best known integer solution (zMIP) and the percentage optimality
gap, (zMIP � zLB)/ zMIP*100, where zLB is the lower bound at termination of the search.
Additionally, we display the number of nodes and the solution time in CPU seconds. For each
optimal solution, we also report the maximum error in department areas (due to the
approximation employed in the area representations), calculated as %100*/4max ii

y
i

x
i

Fi
aa−

∈
ll .

The computational results of the FLP2+ analysis are presented in Table 5.2. We note that
the results in Table 5.2 are similar to those presented in Meller et al., although there is a general
reduction in computational effort which we attribute to advances in computing power and
software technology. This reduced effort has led to tighter bounds for some problems that were
not solved to optimality in Meller et al. We also note that there are some differences regarding
the maximum error in department size since we report this statistic with respect to the given
input parameters for each individual problem, rather than considering some problems as
approximations of other instances.

Throughout the remainder of this chapter, we will evaluate the performance of alternative
models for the facility layout problem. In order to assess the effect of each of our proposed

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 81

Table 5.1: Characteristics of the Test Problems.
Number of

Departments Problem
Name Total Fixed

Aspect
Ratio α

Flow
Density

(%)

Layout
Compactness

(%)
M3 3 0 3 66.67 88.00
M4 4 1 3 66.67 92.00
M5 5 1 3 50.00 100.00
M5-1 5 1 3 50.00 98.00
M5-2 5 1 5 50.00 100.00
M6 6 0 4 26.67 98.67
M7 7 0 4 23.81 99.00
FO7 7 0 4 28.57 99.98
FO7-1 7 0 4 28.57 97.48
FO7-2 7 0 5 28.57 99.98
FO8 8 0 4 25.00 99.98
FO9 9 0 4 22.22 100.00
O7 7 0 4 42.86 99.98
O7-1 7 0 4 42.86 97.48
O7-2 7 0 5 42.86 99.98
O8 8 0 4 53.57 99.98
O9 9 0 4 41.67 100.00

Table 5.2: Computational Results for the FLP2+ Model.

Problem zMIP
Optimality

Gap (%) Time Nodes
Max. %

Error
M3 3938.88 0 0.26 7 6.15
M4 5299.76 0 0.33 7 6.15
M5 Infeasible n/a 2.9 163 n/a
M5-1 6370.34 0 2 85 5.50
M5-2 7621.58 0 4.4 301 10.32
M6 9412.90 0 40 518 4.17
M7 12971.30 0 670 5757 5.83
FO7 24.67 0 10000 79557 6.51
FO7-1 20.09 0 3700 21790 4.76
FO7-2 17.69 0 1500 7357 10.32
FO8 26.25 0 66000 215483 7.13
FO9 20.98 10.14 86400* 66386 4.76
O7 113.56 0 60000 393187 5.59
O7-1 96.00 0 17000 113396 4.76
O7-2 92.13 0 10000 62740 7.14
O8 182.40 26.45 86400* 107334 4.96
O9 166.66 40.00 86400* 50442 7.14

 * Prematurely terminated after 24 hours of computation.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 82

enhancements, we evaluate them in a sequential manner, starting with the basic FLP2 model and
replacing the area constraints with our proposed representation. After determining the level of
approximation in our area constraints that performs best, we then investigate new symmetry
breaking constraints, followed by an analysis of the valid inequalities proposed by Meller et al.
We conclude our development by examining several alternative formulations for the inherent
disjunctive relationships that prevent departmental overlaps. In the process of evaluating our
proposed enhancements in all these experiments, we consider only those problems that were
solved to optimality by the model FLP2+. Following this, we then solve the remaining problems
(FO9, O8, and O9) using some of the most promising strategies, as determined by our
experimentation on the previous problems.

5.3 Improved Representation of the Nonlinear Area Constraints

One of the more challenging aspects of the facility layout problem arises in representing
the nonlinear constraints that require each department to maintain a given area. Rather than
relying on approximations based upon properties of rectangles, we propose an outer-linearization
of the area constraints that can yield as tight an approximation as desired.

5.3.1 Development of the Area Constraints

Consider any department i of half-length x
il and half-width l i

y that is to have an area of
ai with an aspect ratio of α i , leading to the restrictions

 i
y
i

x
i

x
ii

y
i

y
ii

x
i a=≤≤ llllll 4and,, αα . (5.5)

Figure 5.1 illustrates the combinations of l i
x and l i

y that are feasible to (5.5). These
combinations lie on the hyperbolic curve between the depicted points A and B. Note that the
coordinates of A and B are given by

2

and
2
/

 where),,(),,(ii
i

ii
iiiii

a
ub

a
bbubBubbA

αα
=≡≡≡ lll . (5.6)

We can additionally impose the constraints

 2li
x ≤ Lx and 2l i

y ≤ Ly . (5.7)

Consequently, we can tighten the upper bounds on l i
x and l i

y to ubi
x and ubi

y , respectively,
where

 ubi
x = min{

aiα i

2
,

Lx

2
} and ubi

y = min{
aiα i

2
,

Ly

2
}. (5.8a)

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 83

l i
x

 l i
y

A

B

Figure 5.1. Depiction of Area Constraints.

Since 4li
xli

y = ai must hold true, this correspondingly yields lower bounds lbi
x and lbi

y on l i
x

and l i
y , respectively, as

lbi

x =
ai

4(ubi
y)

 and

lbi

y =
ai

4(ubi
x)

. (5.8b)

Hence, we can impose the bounds stated below as given by (5.8a, b):

 lbi
s ≤ li

s ≤ ubi
s for s = x, y, ∀ i . (5.8c)

It is important to note that these bounds are tighter than the bounds),(ii ubbl proposed by
Meller et al., who take the maximum of Lx and Ly to bound both 2li

x and 2li
y , in lieu of our

bounding scheme in (5.8). More importantly, Meller et al. then derive an empirical
approximation for the area constraints that can be significantly improved, leading to a more
accurate and stronger representation.

While Meller et al. approximate the nonlinear area restrictions for each department with
the constraints (5.2b,c), we propose instead to derive a polyhedral outer-approximation of the
area constraints. Consider the hyperbolic curve between ′ A and ′ B , where ′ A and ′ B refer to the

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 84

appropriate end-points (that replace A and B, respectively, in Figure 5.1) on the valid portion of
this curve based on the modified values for the bounds as given by (5.8). The coordinates of
these end-points ′ A and ′ B are given by

 ′ A = (lbi
x , ubi

y) and ′ B = (ubi
x , lbi

y).

In place of the nonlinear area constraints (5.5), we propose a polyhedral approximation that is
comprised of the affine concave envelope that passes through ′ A and ′ B , along with a suitable
number of affine supports to the convex hyperbolic curve between ′ A and ′ B . The former
concave envelope of this segmented function yields the valid inequality

 l i
x (ubi

y − lbi
y) + li

y (ubi
x − lbi

x) ≤ ubi
xubi

y − lbi
xlbi

y . (5.9)

Furthermore, the convex envelope (which is described by the function itself) yields the set of
valid approximating linear inequalities (based on tangential supports to the curve l i

y = ai /4li
x at

various points x , where lbi
x ≤ x ≤ ubi

x) given by

 





 −−+≥ 24

)(
4 x

ax
x

a ix
i

iy
i ll

 i.e. x
i

x
ii

y
i

x
ii ubxbxaxa ≤≤∀≥+ lll 24 2 . (5.10)

For example, we can use values of x equal to

 2integer selectedany for ,1,,1,0)(
)1(

≥∆−∆=∀−
−∆

+= Kll λλ x
i

x
i

x
i bubbx . (5.11)

Note that unlike the piecewise linearization used in Lacksonen (1994), this approximation
is purely linear and does not involve any binary variables. Furthermore, it can provide as tight a
representation as desired unlike the approximation used in Meller et al., assuming that by the
linearity of the problem, the ultimate values of),(y

i
x
i ll turn out to be vertices of the

corresponding outer approximating polytope for each i. This is likely to be the case (as borne out
by our results) since the problem tendency is naturally to underestimate the areas. We also note
that Meller et al. quote maximum error values for their area approximation, but these are actually
only errors stemming from an under-representation of the area under consideration. However,
their approximation can have significant errors in over-representing the areas. For example, with
α i = 4 and (lbi , ubi) = (ai /4, ai) from (5.6), if we take l i

x = l i
y = ai , this satisfies

(5.2b), but yields an error of 100[(4ai − ai) / ai] = 300%. The role of (5.9) above is to reduce
such an over-representation (the solution l i

x = l i
y = ai violates this constraint, for example).

5.3.2 Effect of the Proposed Area Constraints
In order to determine the effect of the proposed area constraints, we evaluated the

performance of the FLP2 model with the area constraints (5.2b,c) replaced by (5.9) - (5.11). As

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 85

in Meller et al.�s analysis, we eliminated constraint (5.2e) and changed (5.2d) to an equality, and
we modeled the absolute value constraints through a pair of inequalities. We did not, however,
include any of the symmetry breaking techniques or valid inequalities that were proposed by
Meller et al., as we will study these features of the model in subsequent sections. For each of the
test problems, we varied the number of discretization points ∆ for the tangential supports from
five to fifty, and the results of these runs are compared to those obtained for FLP2+ in Tables 5.3
and 5.4.

In examining Tables 5.3 and 5.4, we first note that the optimal solution values of several
test problems vary significantly when solved by the FLP2+ model as opposed to the FLP2 model
with our proposed area constraints. In the case of problem M5, for instance, an optimal solution
was found using our proposed area constraints, while the problem was declared to be infeasible
using the FLP2+ model. For most problems, our proposed area constraints lead to a noticeably
improved optimal solution value, while in two instances (FO7-1 and FO7-2), they lead to a
slightly higher optimal value. This can be explained by recalling that the FLP2+ model
approximates the nonlinear area constraints based upon relationships between the perimeter and
the area of a rectangle. These approximations frequently add unnecessary restrictions to the
problem and needlessly increase the optimal solution value, as evidenced by our computational
results. At times, however, they admit optimal solutions to the approximating model that
significantly violate the area constraints that they purport to represent, thus producing solutions
that are actually infeasible to the given original problem. In contrast, our proposed area
constraints model the underlying nonlinear area restrictions in a consistent manner. As the
number of tangential supports increases, the solutions are forced to more closely approximate the
actual nonlinear area constraints (because of the natural tendency of underapproximate the
areas), thus increasing the optimal solution value. Furthermore, the results for some problems
show a leveling-off effect as the number of supports increases, indicating that we are
approaching solutions that exactly satisfy the nonlinear area constraints.

This increase in accuracy can also be seen by examining the maximum error for each
problem. Tables 5.3 and 5.4 indicate that the proposed area constraints are quite effective in
decreasing the error with respect to departmental area constraints. While each of the test
problems exhibited a maximum error of greater than 4% (as high as 10% for some problems)
when solved using the FLP2+ model, our proposed area constraints decreased this error to less
than 1% with the use of just ten tangential supports for each department. Furthermore, as
expected, increasing the number of supports led to an even greater reduction in departmental
errors. Overall, the FLP2+ model produced an average maximum error of 6.45% while our
proposed area constraints reduced this average maximum error to 2.28%, 0.37%, 0.19%, 0.05%,
0.04%, and 0.03% when using 5, 10, 20, 30, 40, and 50 supports, respectively.

Perhaps the most (pleasantly) surprising result, however, is the dramatic decrease in
solution time achieved through the use of the more accurate proposed area constraints. In
several problem instances, the solution time was decreased by over 95%. We note that the times
presented in Tables 5.3 and 5.4 were obtained using simply the model FLP2 with the new area
constraints. That is, this model does not include any symmetry breaking constraints or valid
inequalities, while the results from FLP2+ included both of these enhancements. A possible
explanation of this phenomenon is that a tighter control on the dimensions of each department

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 86

Table 5.3: Effect of Area Constraints on M Problems.

 Model FLP2+ FLP2 with Proposed Area Constraints
Problem Supports 0 5 10 20 30 40 50
M3 zMIP 3938.88 3750.86 3774.77 3778.09 3779.30 3779.51 3779.79
 Time 0.26 0.05 0.06 0.04 0.07 0.09 0.06
 Nodes 7 6 6 4 6 6 4
 Max. Error 6.15 1.08 0.62 0.09 0.08 0.02 0.02
M4 zMIP 5299.76 5078.98 5103.28 5106.39 5107.94 5108.25 5108.50
 Time 0.33 0.04 0.04 0.06 0.06 0.1 0.08
 Nodes 7 7 7 7 7 7 7
 Max. Error 6.15 1.08 0.62 0.09 0.08 0.02 0.02
M5 zMIP Infeasible 6131.43 6172.16 6170.89 6174.22 6174.15 6174.88
 Time 2.9 0.14 0.16 0.24 0.22 0.28 0.35
 Nodes 163 21 21 27 20 21 27
 Max. Error n/a 1.08 0.06 0.09 0.02 0.02 0.01
M5-1 zMIP 6370.34 5068.31 5088.03 5094.98 5095.27 5095.75 5095.92
 Time 2 0.12 0.13 0.16 0.22 0.24 0.27
 Nodes 85 18 18 20 18 18 19
 Max. Error 5.50 1.07 0.53 0.07 0.04 0.03 0.01
M5-2 zMIP 7621.58 5155.78 5214.41 5226.93 5225.35 5226.03 5227.23
 Time 4.4 0.19 0.22 0.22 0.29 0.31 0.4
 Nodes 301 46 33 30 46 43 45
 Max. Error 10.32 3.19 0.76 0.75 0.09 0.08 0.02
M6 zMIP 9412.90 8166.68 8212.04 8222.32 8224.13 8224.30 8224.73
 Time 40 0.94 0.37 1.2 1.3 0.82 1.8
 Nodes 518 212 60 210 185 93 200
 Max. Error 4.17 3.45 0.37 0.23 0.04 0.05 0.05
M7 zMIP 12971.30 10592.50 10658.40 10672.10 10673.40 10673.70 10674.40
 Time 670 0.78 1 2.3 2.2 2.1 1.9
 Nodes 5757 180 266 466 328 304 261
 Max. Error 5.83 3.45 0.37 0.23 0.04 0.05 0.05

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 87

Table 5.4: Effect of Area Constraints on FO and O Problems.

 Model FLP2+ FLP2 with Proposed Area Constraints
Problem Supports 0 5 10 20 30 40 50
FO7 zMIP 24.67 20.92 20.94 20.95 20.95 20.95 20.95
 Time 10000 1900 2100 3600 3500 2700 2300
 Nodes 79557 462695 444119 632642 519886 331524 245210
 Max. Error 6.51 0.44 0.12 0.05 0.01 0.00 0.01
FO7-1 zMIP 20.09 20.21 20.23 20.25 20.25 20.25 20.25
 Time 3700 2200 1100 2900 2900 3600 2200
 Nodes 21790 544105 235159 528733 381646 435804 277196
 Max. Error 4.76 3.68 0.11 0.31 0.06 0.06 0.06
FO7-2 zMIP 17.69 17.70 17.75 17.75 17.75 17.75 17.75
 Time 1500 410 450 340 440 980 990
 Nodes 7357 105852 101608 59747 62869 133340 122631
 Max. Error 10.32 1.01 0.02 0.01 0.04 0.05 0.01
FO8 zMIP 26.25 22.22 22.27 22.31 22.37 22.38 22.38
 Time 66000 3900 4700 5100 6900 12000 7100
 Nodes 215483 734723 759959 596769 861074 1311596 728357
 Max. Error 7.13 0.91 0.57 0.40 0.04 0.02 0.03
O7 zMIP 113.56 98.16 98.44 98.49 98.51 98.52 98.51
 Time 60000 5400 5500 8900 7700 8800 5500
 Nodes 393187 1252617 1063177 1615783 1187869 1077777 596892
 Max. Error 5.59 0.81 0.24 0.05 0.02 0.01 0.01
O7-1 zMIP 96.00 89.79 90.68 90.76 90.84 90.85 90.84
 Time 17000 1200 720 1300 3200 2800 4000
 Nodes 113396 290059 145045 197815 482342 373823 481320
 Max. Error 4.76 2.83 0.14 0.27 0.04 0.00 0.02
O7-2 zMIP 92.13 84.61 90.54 90.57 90.59 90.59 90.60
 Time 10000 1600 2900 1700 2100 5200 2700
 Nodes 62740 3525087 614357 280844 320777 691973 304978
 Max. Error 7.14 6.20 0.95 0.15 0.12 0.10 0.07

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 88

works favorably in concert with the disjunctive separation constraints, and admits a more
effective scheme for fathoming inferior solutions. Table 5.5 provides a summary of the average
factor of improvement (given by the corresponding FLP2+ value divided by our value) for each
number of supports. We observe that on average, when at least twenty supports are used, our
model yields solutions that are over 100 times more accurate than the FLP2+ solution, while
curtailing effort in comparison with the FLP2+ model by a factor of over 27 times. We further
note that the dramatic decrease in solution time associated with using our area constraints is seen
across all problem types and sizes, and it is obtained while simultaneously providing more
accurate solutions, frequently with a lower optimal objective value.

 While we have demonstrated that our proposed area constraints provide increasingly
accurate solutions as the number of tangential supports increases, this also entails an increase in
solution effort, as evidenced by Figures 5.2 and 5.3. Our computational experience indicates that
a minimum of 10 supports are clearly necessary in order to achieve a reasonable degree of
accuracy in representing the area constraints. As the number of supports increases to 50 for each
department, this error approaches zero. Throughout the remainder of this chapter, we will
propose several additional strategies for enhancing the solvability of the facility layout model.
These enhancements will not alter the objective value or the accuracy of the optimal solution, but
are intended simply to further decrease solution effort. For this reason, we will evaluate each of
the remaining enhancements using a fixed number of tangential supports for the area constraints
of each department. For our purposes, we determined to use the minimum number of supports
necessary to achieve an acceptable level of average maximum error, which we selected to be
0.25%. At such a level, for instance, the maximum amount of error corresponds to a six by six
inch square for a department with a target area of 100 square feet. Accordingly, we opted to
conduct all remaining experiments using 20 supports, which led to an average maximum error of
0.18%.

Table 5.5: Factor of Improvement in Solution Time and Error.

Number of
Supports Solution Time Maximum Error

5 68.98 5.39
10 60.54 59.33
20 28.31 113.95
30 27.74 201.64
40 28.95 763.20
50 29.71 390.91

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 89

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

Number of Supports

So
lu

tio
n

T
im

e
(s

ec
.)

Figure 5.2. Average Solution Time versus Number of Supports.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

Number of Supports

M
ax

im
um

 %
 E

rr
or

Figure 5.3. Average Maximum Error versus Number of Supports.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 90

5.4 Reducing Problem Symmetry

 As noted in Meller et al., the solution of FLP2 can be significantly slowed by the large
degree of symmetry in the problem. While Meller et al. incorporated a symmetry breaking
constraint as embodied by (5.3w) to reduce this effect, we propose and test two alternative
symmetry breaking strategies.

5.4.1 Development of Alternative Symmetry Breaking Strategies
 In order to reduce the solution effort consumed by searching for symmetrical solutions,
Meller et al. incorporated the following symmetry-breaking constraint in their implementation:

 cq
s ≤ Ls /2 for s = x, y , for some key department q. (5.12)

This tends to eliminate the symmetry with respect to 180º flips in the x or y directions. However,
as depicted for the solution in Figure 5.4, this might not always help or serve the intended
purpose. Observe that constraint (5.12) continues to hold true when the layout is flipped 180º in
either the x or y directions. We now propose two alternative classes of symmetry-breaking
constraints that turn out to be more definitive in ameliorating symmetry effects. We first note
that, in general, symmetry breaking techniques are not valid in the presence of departments with
fixed locations, as frequently the problem symmetry is already eliminated by forcing certain
departments to be placed at specific locations. However, if the fixed departments are themselves
symmetric with respect to flips in either the x or y directions, then the corresponding symmetry
breaking constraints could additionally be incorporated.

1 2

4 5

L y / 2

L y / 2

Lx /2 L x/ 2

2 2 2 2

2

2

2

 q = 3

Figure 5.4. Symmetry Considerations.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 91

As shown in Sherali and Smith (1999), the generation of suitable hierarchical constraints
to curtail the symmetry inherent in many applications can greatly benefit the model
representation and its consequent solvability. We now propose a set of hierarchical symmetry
breaking constraints for the facility layout problem. Our first symmetry breaking method
requires the orientation of the encompassing rectangle with respect to 180º flips in the x or y
direction to be such that a particular hierarchy is established in a specified function value when
applied along, versus in reverse to, each axis direction. For example, taking this function to be

the sum of centroids weighted by their indices, we can impose

 i
i =1

n

∑ ci
s ≤ i

i =1

n

∑ (Ls − ci
s) for s = x, y , (5.13)

 i.e., 4 i
i =1

n

∑ ci
s ≤ n(n + 1)Ls for s = x, y . (5.14)

For the example in Figure 5.4, when s ≡ x , the inequality (5.14) is violated since 4[1(3) + 2(5)
+ 3(4) + 4(3) + 5(5)] = 248 > (5) (6) (8) = 240. Hence, we would need to flip the layout 180º in
the x-direction in order to satisfy (5.14). Furthermore, it can be verified that the layout satisfies
(5.14) in the y-direction, but not if it is flipped in this direction.

For the second type of symmetry-breaking constraint, we consider a pair of departments p
and q based on a maximum total interaction and/or area-based criterion, and we then require the
centroid of p to be south and west of the centroid of q. For example, with p = 4, and q = 3, we
(uniquely) obtain the configuration of Figure 5.4. However, with p = 1 and q = 2, flipping in the
y-direction yields an alternative acceptable configuration. As such, we can impose

 cp
s ≤ cq

s for s = x, y . (5.15)

We can further tighten the model of Meller et al. under (5.15) by accordingly restricting

 },min{)(and ,0 y
q

y
p

x
q

x
p

s
p

s
q

y

xs

y
qp

x
qp bbbbcczz llll ++≥−== ∑

=

. (5.16)

5.4.2 Effect of Symmetry Breaking Constraints
In this section, we discuss the effect of three symmetry breaking techniques for the

facility layout problem. The results of our computational analysis are presented in Tables 5.6
through 5.8. The first of these three alternatives is the hierarchical constraints of (5.14), which
we refer to in our analysis simply as hierarchy. The second alternative that we considered was
using constraints (5.15) � (5.16), referred to as position p-q. In our experimentation, we selected
departments p and q as a pair having the largest flow; that is, ijPjipq ff

∈
=

),(
max . In the case of ties,

we selected a pair among such ties having the maximum total area. (We note here that several
other methods were explored for selecting departments p and q, but the variations performed
similarly, and in many cases, selected the same two departments as did the foregoing strategy.)

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 92

Table 5.6: Effect of Symmetry Breaking Techniques on M Problems.

Problem Symmetry Time Nodes
M3 None 0.04 4

 Hierarchy 0.05 4
 Position p-q 0.03 1
 Position q 0.03 3

M6 None 1.20 210
 Hierarchy 1.10 149
 Position p-q 0.50 34
 Position q 0.76 93

M7 None 2.30 466
 Hierarchy 1.90 326
 Position p-q 0.73 86
 Position q 1.40 243

The final alternative that we evaluated, referred to as position q, is the strategy proposed by
Meller et al. and displayed in (5.12). We applied each of the aforementioned strategies to the
FLP2 model, using our proposed area constraints (5.9) - (5.11) with 20 tangential supports for
each department. No additional valid inequalities were included at this stage. (As noted earlier,
since these symmetry breaking techniques are only valid for problems having no fixed
departments, we did not implement these strategies on problems M4, M5, M5-1, and M5-2.)

The results indicate that by using symmetry breaking techniques, we dramatically
decrease the solution effort, both in terms of solution time and the number of nodes enumerated,
for nearly all problem instances. It is also clear that the hierarchical symmetry breaking
constraints do not perform as well as the other two alternatives, noting that in the last two
problem instances, the solution time actually increased over the model with no symmetry
reduction techniques. We believe that this stems from the dense nature of the hierarchical
constraints, which may interfere with the special structures of the model that are exploited by
CPLEX throughout the branch-and-bound process. In contrast, the other two symmetry breaking
alternatives consist of sparse constraints having unit coefficients, and do not adversely affect the
problem structure.

 While problem effort decreases with the position p-q and position q strategies, our
computational results do not indicate that either method is clearly superior to the other. For
example, in terms of solution time, position p-q is best on four problems, position q is best on
five, and one problem is solved equally quickly by both options. Table 5.8 displays the average
decrease in solution effort (as compared to using no symmetry breaking techniques) for each of
the proposed methods. This table confirms that the hierarchical constraints are outperformed by
the other alternatives, which perform competitively with respect to each other. For this reason,
we will investigate how each of these two latter strategies perform in conjunction with the valid
inequalities explored in the following section.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 93

Table 5.7: Effect of Symmetry Breaking Techniques on FO and O Problems.

Problem Symmetry Time Nodes
FO7 None 3600 632642

 Hierarchy 1200 174605
 Position p-q 830 126741
 Position q 740 124046

FO7-1 None 2900 528733
 Hierarchy 1500 255507
 Position p-q 380 62512
 Position q 790 147831

FO7-2 None 340 59747
 Hierarchy 310 49240
 Position p-q 170 29112
 Position q 180 32413

FO8 None 5100 596769
 Hierarchy 4000 450287
 Position p-q 2000 284944
 Position q 1700 219929

O7 None 8900 1615783
 Hierarchy 3800 534090
 Position p-q 2700 452488
 Position q 1800 285649

O7-1 None 1300 197815
 Hierarchy 1700 272910
 Position p-q 1400 252366
 Position q 630 98751

O7-2 None 1700 280844
 Hierarchy 2900 446433
 Position p-q 1300 224042
 Position q 820 136410

Table 5.8: Average % Decrease in Solution Effort

Symmetry Type Time Nodes
 Hierarchy 10.20 19.53
 Position p-q 51.17 57.67
 Position q 54.98 57.37

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 94

Before concluding this section, we take a moment to reflect on why the position p-q
strategy did not clearly dominate the Meller et al. strategy, although the position p-q has been
shown to eliminate symmetrical cases that are not eliminated by the position q method. The
reason for this is that the position p-q strategy also introduces additional valid inequalities (5.16).
While these inequalities assist by tightening the relaxation, the compromise between obtaining
tighter bounds and expending more effort in this process does not turn out to be uniformly
favorable. Note that the position q approach does nothing to eliminate the relaxed solution that
locates all the departments at a common location, and often yields a root node relaxation value of
zero. The position p-q strategy, however, eliminates this possibility by including the centroid
separation constraints in (5.16). (The root node analysis of the following section contains results
to support this argument.) However, as we shall see subsequently, when suitable additional valid
inequalities are added to the model, the position p-q strategy begins to more strongly dominate
the position q alternative.

5.5 Additional Valid Inequalities

As discussed in Chapter 2, the derivation of problem-specific valid inequalities can
greatly increase the strength of a (mixed) integer program. Section 5.2.2 provided an overview
of the valid inequalities incorporated by Meller et al. in the FLP2+ model. In the following
sections, we discuss the effect of including only certain subsets of the valid inequalities, (5.3h)-
(5.3v), used in FLP2+. We wish to evaluate the effect of these valid inequalities when applied to
the FLP2 model using our proposed area constraints with 20 tangential supports per department,
in combination with each of the competitive symmetry breaking methods: position p-q and
position q. We note that when appending these valid inequalities to our model, we replace the
bounds ibl and iub , respectively, by our tighter bounds s

ibl and s
iub .

5.5.1 Root Node Analysis
In early computational experiments, it became quite evident that the addition of all the

valid inequalities proposed by Meller et al. led to a drastic increase in overall solution effort.
Although the proposed inequalities did reduce the number of nodes enumerated, the trade-off
between better bounds and increased solution effort was not favorable. To demonstrate this
effect, we display the solution effort for a sample of smaller problem instances in Table 5.9.
Rather than continuing to solve the remaining problems using a solution technique that was
clearly not effective, we instead conducted an analysis of how the valid inequalities performed
with respect to the LP relaxation at the root node itself. Our hope was to determine a subset of
the proposed inequalities that served to provide a substantial tightening of the LP relaxation,
without encumbering the associated solution effort. By solving the root node LP relaxation
using various subsets of the valid inequalities proposed by Meller et al., we were able to
determine that the best results were obtained by incorporating only the constraints B2 and V2
displayed in (5.3j) and (5.3k), respectively. We display the results pertaining to the objective
value at the root node in Table 5.10 and to the solution time in Table 5.11.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 95

Table 5.9: Solution Effort for Several Smaller Problems.

 Symmetry Valid M6 M7 FO7-2
 Breaking Inequalities Time Nodes Time Nodes Time Nodes
 Position p-q None 0.5 34 0.73 86 170 29112
 Position p-q All 2.6 9 4.3 8 1100 4314
 Position q None 0.76 93 1.4 243 180 32413
 Position q All 2.7 10 4.1 6 1500 5736

Table 5.10: Objective Value at the Root Node Using Various Valid Inequalities.

Valid Inequalities None All B2 and V2 Only
Symmetry Pos. p-q Pos. q Pos. p-q Pos. q Pos. p-q Pos. q
 M3 2038.66 0.00 3778.09 3778.09 3778.09 3778.09
 M4 1374.70 1374.70 5092.96 5092.96 5021.45 5021.45
 M5 1406.77 1406.77 5156.55 5156.55 5053.52 5053.52
 M5-1 1389.12 1389.12 5027.21 5027.21 4927.23 4927.23
 M5-2 1405.95 1405.95 5138.81 5138.81 5053.96 5053.96
 M6 3734.85 0.00 7954.14 7921.83 7921.28 7921.28
 M7 3734.85 0.00 10473.98 10448.08 10376.04 10376.04
 FO7 2.50 0.00 11.88 11.88 11.88 11.88
 FO7-1 2.47 0.00 11.72 11.72 11.72 11.72
 FO7-2 2.28 0.00 10.76 10.76 10.76 10.76
 FO8 3.00 0.00 14.76 14.76 14.76 14.76
 O7 15.00 0.00 44.73 44.66 44.64 44.64
 O7-1 14.81 0.00 44.09 44.03 44.00 44.00
 O7-2 13.67 0.00 41.00 40.89 40.85 40.85

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 96

Table 5.11: Solution Time at the Root Node Using Various Valid Inequalities.

Valid Inequalities None All B2 and V2 Only
Symmetry Pos. p-q Pos. q Pos. p-q Pos. q Pos. p-q Pos. q
 M3 0.02 0.01 0.01 0.03 0.01 0.00
 M4 0.02 0.02 0.04 0.04 0.02 0.01
 M5 0.03 0.03 0.07 0.08 0.02 0.03
 M5-1 0.03 0.03 0.07 0.08 0.03 0.03
 M5-2 0.01 0.02 0.09 0.08 0.01 0.01
 M6 0.03 0.01 0.43 0.43 0.06 0.04
 M7 0.03 0.04 0.40 0.56 0.05 0.04
 FO7 0.08 0.07 1.80 2.00 0.12 0.11
 FO7-1 0.06 0.05 1.70 2.20 0.13 0.11
 FO7-2 0.05 0.06 2.20 2.40 0.14 0.13
 FO8 0.10 0.07 4.00 3.80 0.15 0.14
 O7 0.04 0.05 2.90 2.60 0.17 0.17
 O7-1 0.06 0.05 3.10 2.60 0.14 0.15
 O7-2 0.05 0.05 2.70 2.50 0.13 0.16

 First of all, note that the results support the hypothesis of the previous section that the
position p-q symmetry breaking strategy increases the value of the LP relaxation, while in some
cases, also increases the required solution effort. Note that when using the position q symmetry-
breaking strategy with no valid inequalities, the objective value of the root node is zero for all
problems having no fixed departments, indicating that the centroids of all the departments are
placed at a single location. In contrast, the position p-q symmetry-breaking strategy yields
strictly positive solution values for all problems by enforcing a centroidal separation for at least
the two key departments. (In the case of fixed departments, the symmetry tends to be broken by
the fixed departments themselves, and no additional symmetry-breaking measures are
employed.) Even when using all the valid inequalities, there are several problem instances for
which the position p-q strategy continues to provide strictly better bounds than the position q
strategy.

 The results also indicate that by including all of the valid inequalities proposed by Meller
et al., the lower bound is substantially increased over that obtained without using any valid
inequalities. We note, however, that this increase comes at quite an expense. For example, each
of the O problem instances experience an increase in solution time of over 5000% as compared
to when no valid inequalities are used. At the same time, however, the increase in the lower
bounds averages only 198%. On the other hand, note that the use of only two of the proposed
valid inequalities (B2 and V2) yields nearly the same increase in the lower bound at only a
fraction of the computational cost. On average, using only B2 and V2 achieves a bound equal to
99.38% of that obtained using all the proposed inequalities, and takes only 16.64% of
computational effort. If we omit the relatively simple M problems from this analysis, the
average bound increases to 99.92% of that obtained using all the proposed inequalities, and the
time decreases to 5.57% on average. Given such a promising performance in the root node

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 97

relaxation, we then examined the effect of including only the B2 and V2 constraints on the
overall branch-and-bound search process.

5.5.2 Effect of Valid Inequalities on the Branch-and-Bound Process
 Table 5.12 displays the overall solution effort when incorporating only the classes of
valid inequalities B2 and V2. For convenience, we also display in Table 5.12 the cpu time and
the number of nodes enumerated when no valid inequalities were included. For the problems
having no fixed departments, this data corresponds to the information displayed in Tables 5.6
and 5.7. Since no symmetry breaking constraints were investigated for the cases having fixed
departments, we report the corresponding solution effort obtained in both the columns pertaining
to the two symmetry breaking strategies for problems M4, M5, M5-1, and M5-2.

 The results of Table 5.12 show that the valid inequalities B2 and V2 are effective at
decreasing both solution time and the number of nodes for nearly all problem instances. A
notable exception is Problem O7. For this problem, the inclusion of inequalities B2 and V2 led
to a substantial increase in effort for both types of symmetry-breaking constraints. These results
are not surprising, given the performance of B2 and V2 at the root node for Problem O7. When
using the position p-q symmetry-breaking technique, the root node lower bound increased by
197.6% with the inclusion of B2 and V2, but the solution time increased by 325%, indicating
that the gains made by introducing B2 and V2 were not worth the computational expense. We
note that, under the position p-q symmetry breaking approach, Problem O7 is the only instance
in this test set for which the percentage increase in the lower bound is lower than the percentage
increase in time at the root node, thereby helping to explain why using the valid inequalities B2
and V2 performed much differently on this particular problem. In practice, when solving a new
instance of the facility location problem, conducting a quick analysis of how B2 and V2 affect
the performance at the root node might help the user determine such instances when B2 and V2
will be detrimental to the overall search process. (We note that when the position q strategy is
used and no departments are fixed, the lower bound for the root node relaxation is always zero,
which precludes the foregoing type of analysis.)

 We therefore will disregard Problem O7 for the remainder of the analysis in this section
pertaining to determining the effect of adding B2 and V2. In addition, we will focus only on
problems having seven or more departments, since the smaller problems are easily solved under
any of the methods considered. Focusing on the remaining seven problems, we note that the B2
and V2 constraints are particularly effective when used in conjunction with the position p-q
strategy, reducing both the number of nodes and solution time in every problem instance. When
B2 and V2 are used with the position q strategy, the number of nodes enumerated decreases in all
problem instances except for O7-2, while the solution time increases for problems FO8 and for
all the O problems. We also note that when constraints B2 and V2 are used, five of the seven
problems are solved faster under the position p-q strategy than under the position q alternative.
Additionally, when using constraints B2 and V2, the seven problems are solved in 3491 seconds
with the position p-q technique, but require a total of 7181 seconds with the position q method.
Furthermore, the 3491 second total solution time is by far the lowest of the four studied methods
thus far, with the position q method using no valid inequalities coming in second with a total of
4862 seconds. Given these results, coupled with the fact that using the position p-q strategy

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 98

Table 5.12: Effect of Valid Inequalities on the Overall Branch-and-Bound Process.

 Valid Position p-q Position q
Problem Inequalities Time Nodes Time Nodes
M3 None 0.03 1 0.03 3
 B2 and V2 0.04 0 0.04 0
M4 None 0.09 7 0.09 7
 B2 and V2 0.03 3 0.05 3
M5 None 0.09 27 0.09 27
 B2 and V2 0.19 18 0.2 18
M5-1 None 0.07 20 0.07 20
 B2 and V2 0.18 17 0.16 17
M5-2 None 0.75 30 0.75 30
 B2 and V2 0.16 21 0.15 21
M6 None 0.5 34 0.76 93
 B2 and V2 0.39 23 0.38 19
M7 None 0.73 86 1.4 243
 B2 and V2 0.67 51 0.8 88
FO7 None 830 126741 740 124046
 B2 and V2 790 79539 510 66292
FO7-1 None 380 62512 790 147831
 B2 and V2 270 32141 400 49987
FO7-2 None 170 29112 180 32413
 B2 and V2 120 15137 180 21045
FO8 None 2000 284944 1700 219929
 B2 and V2 320 26613 2300 204989
O7 None 2700 452488 1800 285649
 B2 and V2 10000 1322262 4600 530465
O7-1 None 1400 252366 630 98751
 B2 and V2 790 103656 690 84619
O7-2 None 1300 224042 820 136410
 B2 and V2 1200 152607 3100 413497

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 99

permits a simple root node analysis to determine the effectiveness of including valid inequalities,
we will focus on only the position p-q strategy for symmetry breaking for the remainder of this
chapter. Furthermore, the additional enhancements proposed in Section 5.6 will be used to
augment the current best model revealed thus far, which uses our proposed area constraints (with
20 tangential supports per department), the position p-q symmetry breaking strategy, and the
valid inequalities B2 and V2.

5.5.3 Effect of Valid Inequalities on the FLP2+ Model
We now take a brief aside to explore the effect of the inequalities proposed by Meller et

al. on the basic FLP2 model. Given that superior results were attained with our model when we
used only constraints B2 and V2, as a point of interest, we next performed a small experiment to
see if a similar result would have occurred without using our proposed area constraints. Toward
this end, we constructed the basic FLP2 model of (5.2), retaining the area constraints proposed
by Meller et al., and replacing (5.2d,e) with the single equality (5.3d). To this model, we added
only the inequalities B2 and V2, in place of the entire set proposed in FLP2+. In addition, we
evaluated using both the position p-q and position q symmetry-breaking approaches. Table 5.13
displays the results obtained, where we have focused on only three problems (M7, FO7, and O7).
We note that the performance of FLP2+ corresponds to the first line for each problem, in which
problem symmetry was broken using the position q method, and all valid inequalities were
included. The striking result is that for each of the three problems we investigated, the FLP2+
model performed the worst out of the five alternatives that we explored. The best performance
seems to come from using the position p-q symmetry breaking technique with no valid
inequalities, although including B2 and V2 also performed well for FO7. We recall that the B2
and V2 inequalities were already shown to be rather ineffective on Problem O7 in the previous
section, yet their inclusion still significantly reduces computational effort as compared to using
all the proposed valid inequalities of FLP2+. The results also demonstrate a significant reduction
in the number of nodes enumerated for the position p-q over the position q method in all
instances. Given that Meller et al. demonstrated significant computational gains when using
FLP2+ over FLP2, we conclude that even more improvement would have been realized had they
explored the effect of using only a subset of their proposed inequalities, as well as alternative
methods for reducing problem symmetry. However, for each of these three problems, their
model would still have led to solutions having a maximum error in departmental area of over
5%. Furthermore, as demonstrated previously, our proposed area constraints produce a structure
that results in a dramatic decrease in solution effort over that when using the area approximation
constraints of Meller et al.

5.6 Convex Hull Representations of the Separation Constraints

 In this section, after reviewing the traditional constructs for preventing departmental
overlaps, we propose two new methods for modeling the associated disjunctive relationships.
We then show that these formulations exhibit partial convex hull properties. Additionally, we
consider several implementation strategies for each of these modeling approaches, in order to
ascertain computationally favorable options for solving the overall facility layout problem.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 100

Table 5.13: Effect of Valid Inequalities on FLP2+.

Problem Symmetry
Valid
Inequalities Time Nodes

 Position q All 670 5757
 Position p-q None 96 32508
M7 Position q None 230 58802
 Position p-q B2, V2 210 364188
 Position q B2, V2 470 647774
 Position q All 10000 79557
 Position p-q None 1900 732686
FO7 Position q None 5000 1185908
 Position p-q B2, V2 1800 507030
 Position q B2, V2 9500 1796613
 Position q All 60000 393187
 Position p-q None 8300 2900017
O7 Position q None 26000 5230940
 Position p-q B2, V2 25000 6299996
 Position q B2, V2 39200* 2244477*

 * This problem ran out of memory with an 18% integrality gap.

5.6.1 Traditional Formulation of the Separation Constraints
 Traditionally, the departmental separation constraints have been modeled through (5.2d),
(5.2f), (5.2i), and (5.2l). In order to infer some of the properties associated with this set of
constraints, we first introduce the following notation:

 θij
s = cj

s − ci
s and φij

s = li
s + l j

s for s = x, y, ∀ i < j . (5.17)

Now, the separation disjunction characterized by (5.2d) at equality, (5.2f), (5.2i), and (5.2l) for
any i < j can be equivalently modeled as:

 szL s
ij

ss
ij

s
ij ∀−≥)-(1 φθ (5.18a)

 szL s
ji

ss
ij

s
ij ∀−≥−)-(1 φθ (5.18b)

 sububbb s
j

s
i

s
ij

s
j

s
i ∀+≤≤+)()(φll (5.18c)

 ∑
=

=+
yxs

s
ji

s
ij zz

,

1)((5.18d)

 z binary. (5.18e)

We show in Proposition 5.1 that in the case when sLubub ss

j
s
i ∀≤+ 2/ , the continuous

relaxation of (5.18) yields the convex hull of feasible solutions. However, if this condition is not
satisfied, then additional tightening can be achieved.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 101

Proposition 5.1. If sLubub ss
j

s
i ∀≤+ 2/ , then the continuous relaxation of (5.18) defines its

convex hull.

Proof. It is sufficient to show that the extreme points of the set X , defined as the set of feasible
solutions to (5.18) when (5.18e) is replaced by 0≥z , have binary z-values. To prove this, we
will show that under the stated condition, given any linear objective function zfff 321 ++ φθ
that yields a unique optimum for the problem }),,(:max{ 321 Xzzfff ∈++ φθφθ , we have that
z is binary valued in this optimal solution. The foregoing problem can be re-stated as

)]}cb,a,18.5(:[max{max 21,30),d18.5(
φθ

φθ
ffzf

z
++

≥
. (5.19)

For any fixed z feasible to the outer optimization problem, the inner problem is given by

 maximize φθ 21 ff + (5.20a)
 subject to szLzL s

ji
ss

ij
s

ij
s
ij

ss
ij ∀+≤≤−)-(1-)-(1 φθφ (5.20b)

 sububbb s
j

s
i

s
ij

s
j

s
i ∀+≤≤+)()(φll (5.20c)

Given that sLubub ss

j
s
i ∀≤+ 2/ , for any φ feasible to (5.20c), the constraint (5.20b) always

provides feasible bounds for s
ijθ ; that is,

 szLzL s
ji

ss
ij

s
ij

ss
ij ∀+≤−)-(1-)-(1 φφ . (5.21)

To see this, note that after regrouping terms, (5.21) corresponds to the restriction that

 szzL s
ij

s
ji

s
s
ij ∀+≤)](-[2

2
φ . (5.22)

Given that sLubub ss

j
s
i ∀≤+ 2/ and noting (5.20c), we have that

 szzLLubub s
ij

s
ji

s
ss

j
s
i

s
ij ∀+≤≤+≤)](-[2

2
2/φ ,

where the right-most upper bound is satisfied since 0≥z and z is feasible to (5.18d).
Consequently, we can rewrite (5.19) as follows:

)]}(max[max{max 1b)a,18.5(:2c)18.5(:30),d18.5(
θφ

θφ
ffzf

z
++

≥
. (5.23)

 Note that we can solve (5.23) by setting s
ijθ for each s equal to its appropriate bound given in

(5.18a,b), noting the coefficients of 1f and then setting s
ijφ for each s equal to its appropriate

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 102

bounds based upon the resulting objective coefficients. This reduces the problem (5.23) to
effectively maximizing an affine function 54 fzf + , say, subject to (5.18d) and 0≥z , as stated
below:

 }0,1)(:max{(
,

54 ≥=++ ∑
=

zzzfzf
yxs

s
ji

s
ij . (5.24)

By assumption, the solution to (5.19) (and therefore (5.24)) is unique, indicating that the solution
lies at an extreme point of the feasible region of (5.24). Since (5.24) has purely binary vertices,
this completes the proof. !

We emphasize that the separation embodied in (5.23) would not be possible without the
assumption that sLubub ss

j
s
i ∀≤+ 2/ , since otherwise, values of φ feasible to (5.20c) alone

could lead to inconsistent bounds for θ in the innermost optimization problem. In the next
section, we develop a model for the separation constraints that retains the convex hull properties
without such an assumption.

5.6.2 Alternative Formulation of the Separation Constraints
 As we have shown in the previous section, the continuous relaxation of (5.18) can be
tightened in certain situations. In this section, we consider an alternate set of separation
constraints whose continuous relaxation captures the convex hull regardless of whether

2/ss
j

s
i Lubub ≤+ . Toward this end, let us use the notation of (5.17) and consider the separation

disjunction for any i < j:

 ∨
s = x

y
(θij

s ≥ φij
s) ∨ (−θij

s ≥ φij
s) , (5.25)

where

−(Ls − lbi

s − lbj
s) ≤ θij

s ≤ (Ls − lbi
s − lbj

s) and

(lbi

s + lbj
s) ≤ φij

s ≤ (ubi
s + ubj

s) for s =
x, y. Defining

Ms = Ls + (ubi

s − lbi
s) + (ubj

s − lbj
s) for s = x, y, (5.26)

we can model this disjunction as follows:

 θij
s ≥ φij

s − Ms (1 − zij
s) for s = x, y (5.27a)

 −θij
s ≥ φij

s − Ms (1 − zji
s) for s = x, y (5.27b)

−(Ls − lbi

s − lbj
s) ≤ θij

s ≤ (Ls − lbi
s − lbj

s) for s = x, y (5.27c)

 (lbi
s + lbj

s) ≤ φij
s ≤ (ubi

s + ubj
s) for s = x, y (5.27d)

 (
s=x

y

∑ zij
s + z ji

s) = 1 (5.27e)

 z binary. (5.27f)

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 103

We can now use the GUB structured RLT process described in Sherali et al. (1998) to

construct the convex hull of (5.27). Let us define the following set of continuous variables,
given any i < j.

 cij
s , cji

s , lij
s , l ji

s , ∆ij
s , and δij

s , for s = x, y. (5.28)

Applying conditional logic, along with an aggregation that maintains the convex hull
representation, yields a reformulation of (5.27) shown below in (5.29). Propositions 5.2 and 5.3
below verify the validity and convex hull property of this representation, which introduces
6n(n − 1) new (continuous) variables. For convenience, because of several equivalent
reductions involved in deriving (5.29), we provide a self-contained proof independent of RLT
constructs.

l ij

s ≤ cij
s ≤ (Ls − lbi

s − lbj
s)zij

s for s = x, y (5.29a)

 l ji
s ≤ cji

s ≤ (Ls − lbi
s − lbj

s)zji
s for s = x, y (5.29b)

(lbi

s + lbj
s)zij

s ≤ l ij
s ≤ (ubi

s + ubj
s)zij

s for s = x, y (5.29c)

(lbi

s + lbj
s)zji

s ≤ l ji
s ≤ (ubi

s + ubj
s)z ji

s for s = x, y (5.29d)

)1)(()1)((s

ji
s
ij

s
j

s
i

ss
ij

s
ji

s
ij

s
j

s
i

s zzbbLzzbbL −−−−≤∆≤−−−−− llll

for s = x, y (5.29e)

)1)(()1)((s
ji

s
ij

s
j

s
i

s
ij

s
ji

s
ij

s
j

s
i zzububzzbb −−+≤≤−−+ δll for s = x, y (5.29f)

 θij
s = cij

s − cji
s + ∆ij

s for s = x, y (5.29g)
 φij

s = l ij
s + l ji

s + δij
s for s = x, y (5.29h)

 (zij
s + z ji

s) = 1
s=x

y

∑ (5.29i)

 z binary. (5.29j)

Proposition 5.2. Let ξ represent the set of variables listed in (5.28), and let θ, φ and z be vectors
of the corresponding subscripted variables. Then, (5.27) and (5.29) are equivalent in the sense
that for any (θ, φ, z) feasible to (5.27), there exists a ξ such that (θ, φ, z, ξ) is feasible to (5.29).
Conversely, given any (θ, φ, z, ξ) feasible to (5.29), we have that (θ, φ, z) is feasible to (5.27).

Proof. Consider any (θ, φ, z) feasible to (5.27). Noting (5.27e), assume that zij
x = 1 and

zji
x = zij

y = z ji
y = 0. (The other three cases are similar.) Hence, from (5.27a), we have

 θij
x ≥ φij

x . (5.30)

Now, in (5.29), let us select

 cij
x = θij

x, l ij
x = φij

x, cji
x = cij

y = cji
y = l ji

x = l ij
y = l ji

y = ∆ij
x = δij

x = 0 , ∆ ij
y = θij

y, and δij
y = φij

y .

Then it is readily verified that (θ, φ, z, ξ) is feasible to (5.29), noting (5.30) and (5.27c,d).

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 104

Conversely, consider any feasible solution (θ, φ, z, ξ) to (5.29). Again, let us assume that
zij

x = 1 and z ji
x = zij

y = z ji
y = 0 , with the other three cases of 0-1 assignments to the z-variables

via (5.29i) being similar. From (5.29c, d), we get

(lbi

x + lbj
x) ≤ l ij

x ≤ (ubi
x + ubj

x), while l ji
x = lij

y = l ji
y = 0. (5.31)

Consequently, from (5.29a, b), we have

l ij

x ≤ cij
x ≤ (Ls − lbi

x − lbj
x), while cji

x = cij
y = cji

y = 0. (5.32)

Furthermore, (5.29e, f) yield that ∆ ij
x = δij

x = 0 , while

)()(and)()(y
j

y
i

y
ij

y
j

y
i

y
j

y
i

sy
ij

y
j

y
i

s ububububbbLbbL +≤≤+−−≤∆≤−−− δllll . (5.33)

Finally, (5.29g, h) assert, using (5.30), (5.31) and (5.32), that

 θij
x = cij

x and φij
x = l ij

x , while θij
y = ∆ij

y and φij
y = δij

y . (5.34)

From (5.29i, j) and (5.31)-(5.34), we have that (5.27c-f) are satisfied. Moreover, (5.32) and
(5.34) assert that (5.27a) holds true when xs = , while the remaining constraints in (5.27a,b)
which require that φij

x + θij
x ≤ Mx , and φij

y ± θij
y ≤ My are implied by the bounds (5.27c, d).

This completes the proof. !

Proposition 5.3. The continuous relaxation of (5.29) defines the convex hull of feasible
solutions to (5.27).

Proof. Given the assertion of Proposition 5.2, it is sufficient to show that the extreme points of
the set X, defined by (5.29a-i) along with z ≥ 0, have binary values of z. Toward this end, we
will show that the maximization of any linear objective function over X that yields a unique
optimum (θ *, φ*, z* , ξ*) in the notation of Proposition 5.2, necessarily has 0-1 values for z* .
Given any such linear program to maximize g1θ + g2φ + g3z + g4ξ , say, subject to (θ, φ, z, ξ) in
X, we can rewrite this problem as

)}}h29.5()a29.5(:{maximize{maximize 421),,(3)i21.5(,0
−+++

≥
ξφθ

φθ
gggzg

zz
. (5.35)

The inner maximization problem can be solved as follows. First, using (5.29g,h), we can
substitute θ and φ out of the problem. Next, note that ∆ ij

s and δij
s , for s = x, y, can be set at their

appropriate bounds in (5.29e,f), depending on the signs of the resulting objective coefficients.
The remaining problem is separable in the sets of variables (cij

s , lij
s) and (cji

s , l ji
s) for s = x, y,

where the corresponding constraints in (5.29a-d) for each of these subproblems have all their
right-hand sides scaled by zij

s or z ji
s , respectively. Hence, by LP duality, s

ji
s
ji

s
ij

s
ij cc ll ,,, for s = x, y,

can each be obtained as linear functions of the z-variables. This means that the inner

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 105

maximization problem in (5.35) can be reduced to a linear function g5z , say, of z. Consequently,
(5.35) reduces to the problem

maximize{(g3 + g5) ⋅ z : (zij
s

s =x

y

∑ + zji
s) = 1, z ≥ 0}. (5.36)

The optimum value z* is therefore given by the solution to (5.36), which under the hypothesis of
uniqueness and noting that (5.36) has binary vertices, asserts that z* is binary valued. This
completes the proof. !

We will investigate the computational effectiveness of this method after detailing an
alternative formulation for the separation constraints in the next section. Throughout the
remainder of the chapter, we refer to the model obtained by replacing (5.2f) with (5.29) as DJ1.

Remark 5.1. We note that by using the tighter bounds sL , we could have directly constructed
the convex hull of (5.18) to yield a tighter, though larger, representation than (5.29). This convex
hull could have been derived by applying the GUB-specialized RLT process described in Sherali
et al. (1998), but in this case, the simplification yields a larger representation than (5.29).
Therefore, we postpone the task of evaluating this formulation for future research.

 Observe also by the proof of Proposition 5.1 that if we had formulated (5.18) by using the
weaker bounds sM given by (5.26) in lieu of sL , then the continuous relaxation of (5.18) would
yield the convex hull representation whenever

sLbbubub ss
j

s
i

s
j

s
i ∀≤+++ 2/ll . (5.37)

However, whether (5.37) holds true or not, the representation (5.27) is tighter than (5.18) with sL
replaced by sM since (5.27c) is not then implied by the latter. (Actually, (5.27) is related to
(5.18) in the manner of having added (5.27c) that is implied by the continuous relaxation to
(5.18), but then replacing sL by sM in (5.18a,b). However, (5.29) then tightens the resulting
formulation by creating its convex hull representation.) Thus, we might expect (5.29) to be
perhaps beneficial over (5.18), particularly when (5.37) does not hold true. !

5.6.3 A Distance-Based Formulation of the Separation Constraints
We now present an additional enhancement of the model FLP2 that uses the distance

relationships themselves to develop a disjunctive formulation that would prevent departments
from overlapping. Rather than beginning from the traditional FLP2 formulation presented in
(5.2), we instead consider the basic FLP model presented in (5.1). For the Area Constraints in
(5.1b), we continue to use the outer-linearization presented in Section 5.3. We focus here on an
alternative representation of (5.1c) and (5.1d).

First, let us consider the Separation Constraints (5.1c), assuming that (5.1d) has been
modeled as an equality, in contrast with the pair of inequalities

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 106

 dij
s ≥ ci

s − cj
s and dij

s ≥ cj
s − ci

s ∀ i < j, s . (5.38)

In this case, we can model (5.1c) directly in terms of the dij
s -variables themselves via the

disjunction

 (dij
x ≥ li

x + l j
x) ∨ (dij

y ≥ l i
y + l j

y) ∀ i < j . (5.39)

For each i < j, let us define the binary variable

 



=
direction- thealong enforced is separation theif 0,

direction- thealong enforced is and between separation theif 1,
y

xji
wij (5.40)

and let

 Qij
s = minimum{Ls, ubi

s + ubj
s} ∀ i < j, s . (5.41)

Consider the following modeling of (5.39), ∀ i < j , which is readily verified to be valid.

 x
ijij

x
j

x
i

x
ij Qwd)1(−−+≥ ll (5.42a)

 y
ijij

y
j

y
i

y
ij Qwd −+≥ ll . (5.42b)

Suppose that given any i < j, we define ss

j
s
i

s
ij ∀+= llφ as in (5.17), and construct the set

 x
ijij

x
ij

x
ijij

y
ij

x
ij

y
ij

x
ijij QwdwddX)1(:),,,,{(−−≥= φφφ (5.43a)

 y
ijij

y
ij

y
ij Qwd −≥ φ (5.43b)

 ij
s
ij

s
ij

s
ij wsdsQ ,0,0 ∀≥∀≤≤ φ binary}. (5.43c)

Let us denote X ij to be the continuous relaxation of Xij in which the binary restriction on ijw is

replaced by 10 ≤≤ ijw . Proposition 5.4 asserts that conv(Xij) = X ij , and so, any further
tightening of (5.42) would need to involve more relationships than inherent within the
representation (5.43). In essence, this would expand to the development of the foregoing section.
Consequently, we model the separation constraints (5.1c) via (5.43) here, along with binary
restrictions on the w-variables.

Proposition 5.4. Conv(Xij) = X ij .

Proof. It is sufficient to show that ijw is binary at each vertex of X ij . Toward this end, let us
divide (5.43a) and (5.43b) by Qij

x and Qij
y , respectively, and accordingly, define dij

′ s = dij
s / Qij

s
and sQ s

ij
s

ij
s
ij ∀=′ /φφ . This yields an equivalent representation of X ij via the constraints

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 107

 ij
y

ij
y

ijij
x

ij
x
ij wdwd −≥−−≥ ′′′′ φφ),1((5.44a)

 10,0,10 ≤≤≥∀≤≤ ′′
ij

s
ij

s
ij wdsφ . (5.44b)

Noting the total unimodularity (see Bazaraa et al., 1990) of the constraint set (5.44), we have that

ijw is binary at each extreme point, and this completes the proof. !

Remark 5.2. Recall that one of the two particularly effective valid inequalities from the FLP2+
model was the constraint referred to as V2, reproduced here for convenience.

)1}(,min{ s
ji

s
ij

ss
j

s
i

s
j

s
i

s
ij zzLububd −−+−+≥ ll . (5.45)

Noting the definitions in (5.40) and (5.41), we can see that (5.45) directly corresponds to our
representation (5.42). Since we have shown that (5.42) captures the convex hull of feasible
solutions for the disjunction in (5.39) in the sense of Proposition 5.4, we have gained insight into
why the constraint set V2 was particularly helpful in tightening the FLP2 formulation.
Furthermore, the constraint set B2, which was also effective in tightening the FLP2 formulation,
can also be stated in terms of ijw as follows:

 ij
x
j

x
i

x
ij wbbd)(ll +≥ (5.46a)

)1)((ij
y
j

y
i

y
ij wbbd −+≥ ll . (5.46b)

Therefore, we can also include this constraint set in the proposed model. !

Next, let us proceed to model (5.1d). Toward this end, for each i < j, let us define the binary
variables sy s

ij ∀ as





≥
≤

= s
j

s
i

s
j

s
is

ij cc
cc

y
 if 0,
 if 1,

 (5.47)

with the choice of 0 or 1 being inconsequential when ci
s = cj

s . Furthermore, let us define an
upper bound on dij

s as

 Uij
s = Ls − lbi

s − lbj
s ∀ s . (5.48)

Then, for each i < j, and each s = x, y, consider the following representation of (5.1d), where we
have introduced a set of new continuous variables Dij

s .

 s
ij

s
j

s
i

s
ij Dccd 2+−= (5.49a)

)1()(0 s
ij

s
ij

s
j

s
i

s
ij yUccD −≤−+≤ (5.49b)

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 108

 s
ij

s
ij

s
ij yUD ≤≤0 (5.49c)

 s
ijy binary. (5.49d)

Proposition 5.5. For each i < j, and each s = x, y, the constraints (5.49) yield a valid
representation of the relationship (5.1d).

Proof. When 1=s
ijy , we have from (5.49b) that Dij

s = (c j
s − ci

s), which gives from (5.49a, c)

that s
ij

s
i

s
j

s
ij Uccd ≤−=≤)(0 . Similarly, when 0=s

ijy , we obtain Dij
s = 0 from (5.49c), and

(5.49a, b) yield 0 ≤ dij
s = ci

s − cj
s ≤ Uij

s . Hence, (5.49) is a valid representation of (5.1d). This
completes the proof. !

 Next, let us define θij
s = cj

s − ci
s as in (5.17), and consider the following set based on

(5.49).

 :),,,{(s
ij

s
ij

s
ij

s
ij

s
ij yDd θχ =

 dij
s = 2Dij

s − θij
s

 (5.50a)
)1(0 s

ij
s
ij

s
ij

s
ij yUD −≤−≤ θ (5.50b)

 s
ij

s
ij

s
ij yUD ≤≤0 (5.50c)

 s
ijy binary}. (5.50d)

Then, the following result motivates the (unconventional) representation (5.49) of (5.1d), where
χ ij

s is given by (5.50) with (5.50d) being replaced with 10 ≤≤ s
ijy .

Proposition 5.6. s
ij

s
ijConv χχ =)(.

Proof. Consider the nonsingular linear transformation

 α = Dij
s / Uij

s , β = (Dij
s − θij

s) / Uij
s , and γ = dij

s / Uij
s . (5.51a)

This has an inverse given by

 Dij
s = αUij

s , θij
s = (α − β)Uij

s , and dij
s = γUij

s . (5.51b)

Consequently, under (5.51), χ ij
s is equivalently transformed into the following set, where there is

a one-to-one preservation of extreme points because of the nonsingularity of (5.51).

 :),,,{(s
ij

s
ij yγβαχ =

 −α − β + γ = 0 (5.52a)
 1≤+ s

ijyβ (5.52b)

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 109

 α � 0≤s
ijy (5.52c)

 }10,0),(≤≤≥ s
ijyβα . (5.52d)

Noting the total unimodularity (see Bazaraa et al., 1990) of (5.52), we have that s

ijy is binary at
all extreme points of χ ij

s , and this completes the proof. !

 Upon eliminating the variables s
ijD using (5.49a) and noting the definitions in (5.40) and

(5.46), the complete representation of the proposed model can be obtained as (5.53) below,
where the subscripts p and q refer to the two departments whose orientation is fixed in order to
reduce problem symmetry. Naturally these related constraints are omitted whenever we have
any fixed departments, and also in this case, the corresponding centroidal variables are fixed in
value. We refer to this model as DJ2.

 DJ2: Minimize ∑
∈

+
Pji

y
ij

x
ijij ddf

),(

)(

 jiQwd x
ijij

x
j

x
i

x
ij <∀−−+≥)1(ll (5.53a)

 jiQwd y
ijij

y
j

y
i

y
ij <∀−+≥ ll (5.53b)

 sjiyUccd s
ij

s
ij

s
j

s
i

s
ij ,)1(20 <∀−≤−+≤ (5.53c)

 sjiyUccd s
ij

s
ij

s
j

s
i

s
ij ,20 <∀≤+−≤ (5.53d)

 jiwbbd ij
x
j

x
i

x
ij <∀+≥)(ll (5.53e)

 jiwbbd ij
y
j

y
i

y
ij <∀−+≥)1)((ll (5.53f)

 scc s
q

s
p ∀≤ (5.53g)

 },min{)(y
q

y
p

x
q

x
p

s
p

s
q

y

xs
bbbbcc llll ++≥−∑

=

 (5.53h)

 l i
s ≤ ci

s ≤ Ls − l i
s ∀ i, s (5.53i)

 lbi
s ≤ li

s ≤ ubi
s ∀ i, s (5.53j)

 sjid s
ij ,0 <∀≥ (5.53k)

 sjiy s
ij ,binary <∀ (5.53l)

 jiwij <∀binary . (5.53m)

 Note that the formulation in (5.53) yields 3n(n − 1) / 2 binary variables, which is similar
to the formulation of Meller et al. when (5.2d) is written as an equality and one of the four binary
variables is eliminated for each i < j. Furthermore, it contains the same number of continuous
variables. However, our model representation captures certain partial convex hull
characterizations and imparts a different structure that is worth evaluating computationally.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 110

5.6.4 Computational Analysis of the Alternative DJ1 and DJ2 Formulations
 We initially evaluated the performance of using the DJ1 and DJ2 formulations in their
entirety as presented in the foregoing sections. Very early on, however, it became quite clear
that these formulations would lead to a dramatic increase in solution time as compared with the
model that uses only the valid inequalities B2 and V2, in combination with our proposed area
and symmetry breaking constraints. For example, in considering the total solution time for all of
the FO problems, the solution time increased over eight times when using DJ1 and over thirty
times when using DJ2. We attribute this dramatic increase to the large increase in problem size
for DJ1. For DJ2, however, we suspect that the elimination of the SOS constraints (5.3d) from
the model formulation, which most solvers exploit to make more efficient specialized branching
decisions, is responsible for the increase in solution effort.

We therefore considered several alternative strategies in order to impart some of the
tightness accruing from these new formulations, while limiting the increase in problem size and
retaining the SOS constraints of the previous models. As noted earlier, (5.29) presents a tighter
formulation of the disjunctive constraints presented in (5.2f), and therefore the constraints (5.2f)
are replaced by the constraints (5.29) in the model DJ1. Rather than using the complete
representation DJ1, we considered the option of using (5.29) only for one pair of departments,
taken as the positively interacting (non-fixed) pair having the largest total area, and retaining
(5.2f) for all other pairs. Similarly, we implemented the representation DJ2 for only one pair of
departments. That is, using the traditional FLP2 model, we replaced the distance relationships in
(5.2g) with those in (5.53) (including the valid inequalities (5.53e,f)) for only one pair of
departments. In so doing, we defined the variables ijw and s

ijy only for the key),(ji pair for

which (5.53) is constructed, while the variables s
ijz were defined and used to represent the

separation relationships for all the other),(ji pairs as before. We note that this model defines
the variables s

ijd for only those pairs Pji ∈),(, and also retains the SOS structure of the model
for all but the single pair of departments identified above for implementing (5.53).

 As an additional alternative to DJ2, we considered translating the implied upper bounds
on the s

ijd variables in (5.53c,d) to conform with the definitions of the s
ijz variables in order to

derive a new class of valid inequalities. Recalling the definitions (5.47) and (5.48), constraints
(5.53c,d) induce the derivation of the following relationships that can be readily verified to be
valid.

 sjizUccd s
ji

s
ij

s
j

s
i

s
ij ,)1(2 <∀−+−≤ (5.54a)

 sjizUccd s
ij

s
ij

s
i

s
j

s
ij ,)1(2 <∀−+−≤ . (5.54b)

We refer to this class of upper bounding valid inequalities as UB inequalities, and we discuss
below its effect when incorporated within the previously derived models.

 Tables 5.14 and 5.15 present the results of our computational analysis. We note that all
of the M problems continued to be solved in under one second for each of the studied
alternatives. For this reason, we focus only on the FO and O problems in this analysis. Table

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 111

Table 5.14: Effect of the New Disjunctive Formulations and the UB Inequalities on the
Solution Effort.

 UB-Inequalities
 None All
Problem Model Time Nodes Time Nodes
 No DJ 790 79539 430** 40175
FO7 DJ1 for 1 pair 320* 32604 760 66182
 DJ2 for 1 pair 480 54947 460 52371
 No DJ 270 32141 200** 22715
FO7-1 DJ1 for 1 pair 240 29144 280 32629
 DJ2 for 1 pair 190* 24993 330 42798
 No DJ 120 15137 65* 8099
FO7-2 DJ1 for 1 pair 91 12006 87 10670
 DJ2 for 1 pair 80** 11270 83 11364
 No DJ 320* 26613 450** 33837
FO8 DJ1 for 1 pair 510 47535 800 68014
 DJ2 for 1 pair 810 88097 750 72872
 No DJ 10000 1322262 3000** 313585
O7 DJ1 for 1 pair 3800 466459 3600 378341
 DJ2 for 1 pair 6100 820029 2500* 320297
 No DJ 790* 103656 900 103903
O7-1 DJ1 for 1 pair 830** 91152 1700 160084
 DJ2 for 1 pair 1200 161309 1500 188576
 No DJ 1200** 152607 3900 488526
O7-2 DJ1 for 1 pair 1400 166682 1500 168688
 DJ2 for 1 pair 890* 126146 2200 266564

* Minimum solution time for this problem instance.
** Second smallest solution time for this problem instance.

Table 5.15: Total Time and Total Ranking for Disjunctive Models.
 UB-Inequalities
 None All

Model
Solution

Time
Time

Ranking
Solution

Time
Time

Ranking
No DJ 13490 26 8945 19+
DJ1 for 1 pair 7191* 21++ 8727 32
DJ2 for 1 pair 9750 22 7823** 27

* Minimum total solution time. + Minimum total rank-sum.
** Second smallest total solution time. ++ Second smallest total rank-sum.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 112

5.14 compares the results for each problem using each of the six techniques composed by using
neither DJ1 nor DJ2 (referred to as No DJ), DJ1 for the single identified pair, and DJ2 for the
single identified pair, each with or without the class (5.54) of UB inequalities. Here we have
used the position p-q symmetry breaking technique for each of the disjunctive models, and the
results for the No DJ - No UB inequalities case correspond to the results displayed previously in
Table 5.12. The results indicate that, in general, the disjunctive enhancements are effective in
decreasing the solution effort, although some of the disjunctive techniques are not as effective as
others. Note that each of the disjunctive enhancements succeeded in significantly reducing the
solution time for problem O7, which had previously exhibited a substantial increase in effect
upon including the valid inequalities B2 and V2. Of the proposed disjunctive methods, we see
that using DJ1 for one pair of departments has the lowest total solution time, while using the UB
inequalities along with the No DJ option provides the lowest total rank-sum when the methods
are ranked in increasing order of solution times. For this reason, we will focus on only these two
methods in the evaluation of the three challenging problems (O8, FO9, O9) that we analyze in
the next section.

 However, before proceeding, it might be instructive to reflect on why the class of UB
inequalities proves to be effective, although the objective function is attempting to minimize the
weighted sum of distances. The reason for this is that in concert with the other problem
constraints and valid inequalities that impose lower bounds on these distance variables, the
UBinequalities induce additional relationships that must be satisfied (so that the lower bounding
expressions are less than or equal to the corresponding upper bounding expressions). Evidently,
these additional implied relationships help further tighter the model representation.

5.7 Computational Results for the Most Challenging Test Problems

 Throughout the previous sections, we have outlined and evaluated a series of proposed
enhancements for the MIP formulation of the facility layout problem. At this point, we turn our
attention to the three larger problems that remained previously unsolved in the literature using
the FLP2+ model. Having narrowed our focus to only two potential models, we now solve these
three problems with each of these models. In both of the proposed models, we use the proposed
area constraints along with 20 tangential supports, include the valid inequalities B2 and V2, and
reduce problem symmetry using the position p-q approach. In the first model, we employ the
disjunction DJ1 for one pair of departments as identified in Section 5.6.4, while for the other
model we include the class of UB-inequalities with no other disjunctive enhancements. The
results of this analysis are presented in Table 5.16, where for the sake of comparison, we also
display the results obtained using the previously best FLP2+ model.

 We first note that both of our proposed models were able to solve Problem FO9, using a
0.01% optimality tolerance, within the allowable limits on time (24 hours) and tree memory (390
MB), even though this problem had been previously unsolved in the literature. Furthermore,
both of our models obtained optimal solutions that had a maximum error in departmental area of
0%. That is, each of the departments exactly met the proposed area requirements. On the other
hand, the FLP2+ model was terminated (upon reaching the 24-hour time limit) with a 10.14%
optimality gap, and its best-known integer solution had a maximum error of 4.62% with respect

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 113

Table 5.16: Accuracy and Solution Effort for the More Challenging Test Problems.

Problem Model
Best Integer
Solution

Optimality
Gap (%)

Maximum
Error (%)

Solution
Time

Number
of Nodes

FO9 FLP2+ 23.35 10.14 4.76 86400* 66386
 DJ1 for 1 pair 23.46 0.00 0.00 5900 407779
 UB-Inequalities 23.46 0.00 0.00 11000 625275
O8 FLP2+ 248.00 26.45 4.96 86400* 107334
 DJ1 for 1 pair 251.65 15.32 0.04 37060+ 2423000
 UB-Inequalities 257.52 22.34 0.03 36000+ 2039034
O9 FLP2+ 277.76 40.00 7.14 86400* 50442
 DJ1 for 1 pair 269.49 32.92 0.03 33000+ 1985589
 UB-Inequalities 270.71 35.06 0.10 32000+ 1890026

 * Terminated due to 24-hour time limit.
 + Terminated when memory requirements for the search tree reached 390 MB.

to departmental areas. In addition to having a lower quality of solution as compared to our
proposed models, we observe that the FLP2+ had a solution time of over fourteen times that
obtained when using the model with DJ1 for one pair of departments, and this time would have
been even larger if not for the time limit that we imposed.

While neither of our proposed models could solve Problems O8 and O9 to exact
optimality, they did substantially reduce the optimality gap at termination. We note that both of
our models were terminated due to the amount of memory required for the search tree, while the
FLP2+ model was terminated due to the 24-hour time limit. As such, the FLP2+ model was run
for an average of 2.5 times as long as the proposed models. Nonetheless, the model using the
UB Inequalities reduced the optimality gap of the FLP2+ solution by an average of 13.93%,
while the model using DJ1 for one pair of departments reduced the gap by 29.65%. (The
optimality gaps for FLP2+ for the problems O8 and O9 were 26.45% and 40%, respectively,
while the optimality gaps for these test instances using the better of methods (DJ1 for once pair
of departments) were 15.44% and 32.92%, respectively, at termination.) Furthermore, both of
our proposed models led to a dramatic reduction in the maximum error for departmental areas.
Therefore, even for the problems that could not be solved to optimality, both of our proposed
models still demonstrated significant advantages over the FLP2+ model.

Upon examining the results for the three more challenging problems, it is clear that the
model using DJ1 for one pair of departments outperforms the model using the UB Inequalities.
While each of these models solved Problem FO9 to optimality, the UB-Inequalities solution time
was nearly twice that of the DJ1 model. For each of the two problems (O8 and O9) that could
not be solved to optimality, the DJ1 model provided tighter bounds at termination than the UB-
Inequalities model. Considering the performance on these more challenging problems, coupled
with the results exhibited on the previous test problems, we recommend the model using DJ1 for
one pair of departments as the most effective of our proposed models. We conclude by noting
that the initial evaluation of the complete DJ1 model led to very discouraging results. Only upon
experimenting with its implementation by applying it to only one pair of departments was the
strength of this formulation realized.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 114

5.8 Conclusions

In this chapter, we have developed a variety of enhancements for an MIP formulation of
the facility layout problem. Through a series of computational tests performed on a set of
problems from the literature, we have shown that our proposed enhancements are very effective
in increasing the accuracy of solutions while simultaneously decreasing solution effort. Our
computational analysis has demonstrated that the proposed area constraints systematically drive
the maximum error in departmental area to zero as the number of tangential supports increase.
Additionally, we have proposed a new symmetry breaking approach that reduces computational
effort, particularly when employed in conjunction with effective valid inequalities and
disjunctive models. We have also conducted a thorough analysis of previously proposed valid
inequalities for this problem, which has revealed that retaining only a limited subset of these
inequalities can significantly decrease the solution time. Finally, we have examined several
alternative methods for modeling the disjunctive relationships that prevent departments from
overlapping, and we have shown that these characterizations capture certain partial convex hull
properties and induce additional useful classes of valid inequalities.

Our computational analysis indicates that the best performance was obtained using the
model DJ1 for one pair of departments. This model used the tightened bounds (5.8) on the half-
length and half-width of each department, as well as the area constraints (5.9) � (5.11) with 20
tangential supports per department. The symmetry of the problem was reduced using the
Position p-q strategy as presented in (5.15) - (5.16), and the valid inequalities B2 and V2 (5.3j,k)
were included for all positively interacting pairs of departments. In addition, the disjunctive
relationship of (5.29) was included for one key pair of departments, taken as the positively
interacting pair having the largest total area. The next most effective model, denoted as UB
Inequalities, used the same area constraints, symmetry breaking approach, and valid inequalities
as the foregoing model. However, rather than including the DJ1 representation for one pair of
departments, this model included the UB inequalities (5.54) for all positively interacting
departments. Recalling that these UB inequalities were derived from the disjunctive
representation DJ2, we see that the two best performing models were obtained by experimenting
with alternative representations for the DJ1 and DJ2 formulations, which each led to increased
solution time when applied in their original form.

As a final comparison between the performance of our proposed model (DJ1 for one pair
of departments) and FLP2+, Table 5.17 summarizes the factor of improvement (corresponding
FLP2+ value divided by our model value) in the optimal objective value, the maximum error,
and the solution time for all the test problems. Note that in some cases, our proposed model
leads to an increase in the optimal objective value, since the optimal solution produced by the
FLP2+ turns out to be infeasible to our more accurate area constraints. However, the maximum
departmental error and solution time of our proposed model are dramatically smaller than those
achieved using the FLP2+ model. Considering all of the test problems evaluated throughout this
chapter, the solutions obtained using the FLP2+ model have maximum errors of 13 to 904
timesas large as those obtained using our proposed model. Additionally, for all problems that
were solved by FLP2+ within the 24-hour time limit, the solution time for the FLP2+ model was
cut by a factor of 6 to 1456 times using our proposed model.

Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem 115

Table 5.17: Factor of Improvement over FLP2+.

Problem Objective Error
Solution

Time
M3 1.04 71.62 8.67
M4 1.04 71.62 6.60
M5 n/a1 n/a1 13.811
M5-1 1.25 75.58 14.29
M5-2 1.46 13.71 27.50
M6 1.14 18.38 102.56
M7 1.22 25.69 1456.52
FO7 1.18 137.61 31.25
FO7-1 0.99 15.52 15.42
FO7-2 1.00 904.46 16.48
FO8 1.18 18.00 129.41
FO9 1.00 n/a2 2.33
O7 1.15 112.98 15.79
O7-1 1.06 17.50 20.48
O7-2 1.02 46.66 7.14
O8 0.99 124.09 2.33
O9 1.03 278.91 2.62

 1 This problem was found infeasible by FLP2+ but not with our model.
 2 Using our proposed method, the solution had a maximum error of 0%.

 Our computational analysis has amply demonstrated that the proposed enhancements for
FLP2 provide a dramatic decrease in solution effort while providing a more accurate
representation of the underlying problem. We note that although substantial computational
advances have been made, several moderately large sized problems cannot yet be solved to
optimality within a reasonable amount of time. For this reason, we believe that further research
breakthroughs are needed in this area. Although our improved model representation can enable
the solution of larger instances to reasonable tolerances of optimality, further improvements can
reduce the latter total for relatively larger sized problems. Throughout this chapter, we have
considered a series of proposed enhancements in a sequential manner. We recommend that any
future research into this or other difficult MIP problems should take a similar approach, since our
computational analysis revealed that many previously proposed valid inequalities led to an
increase in computational effort, rather than the decrease that was surmised, and other
approaches that could have been dismissed when applied as developed within our framework,
turned out to be beneficial when implemented in a modified or reduced fashion.

116

Chapter 6: Conclusions and Future Research
While efficient solution techniques for linear and convex programming are well-known,

the most pressing challenge to the optimization community is to develop efficient solution
techniques for the class of nonconvex optimization problems. These problems remain difficult to
solve to optimality, despite advances in computer processing speed and memory. Typically, both
continuous and discrete types of nonconvex problems are solved through the same types of
enumerative techniques. Without tight bounds, the search process would hopelessly continue to
explore vast extents of non-improving areas of the solution space and thereby dramatically
increase computational effort. Therefore, it is imperative to employ both general-purpose and
problem-specific techniques, in conjunction with existing methods, to develop tight model
formulations for all classes of nonconvex optimization problems.

This dissertation has focused on a set of general and specific problems in nonconvex
optimization, providing theoretical developments that, in turn, have led to more efficient
solution techniques. This dissertation can generally be separated into three major areas, each
dealing with a different type of nonconvex optimization problem. Each of these endeavors has
sought to combine traditional and modern optimization techniques in novel ways in order to
create even more efficient solution strategies. The first portion on this research uses concepts
from the recently emerging field of semidefinite programming to develop a new class of cutting
planes that can be used to enhance general RLT formulations. The second area combines
traditional Benders� decomposition techniques with modern RLT and lift-and-project cutting
planes in order to develop a solution technique for stochastic integer programs and other suitable
discrete optimization problems. The final part of this dissertation uses the concepts of outer-
linearizations, symmetry breaking techniques, and disjunctive programming to tighten an MIP
formulation for the facility layout problem. Throughout each of these endeavors, we have relied
on problem-specific and general purpose approaches, in combination with a variety of
optimization techniques, in order to develop solution methodologies that significantly advance
the state-of-the-art.

The first part of the dissertation develops a mechanism to tighten RLT-based relaxations
by importing concepts from semidefinite programming (SDP), leading to a new class of
semidefinite cutting planes. Given an RLT relaxation, the usual nonnegativity restriction on the
matrix of RLT product variables is replaced by a constraint that the matrix of variables remain
positive semidefinite. Instead of relying on specific SDP solvers, the definition of positive
semidefiniteness is used to re-write the semidefinite restriction as an infinite set of linear
restrictions. This enables the problem to be written as a (semi-infinite) linear programming
representation, which can be solved using traditional optimization software. This research
represents the first time that the semidefinite restriction has been used to derive valid linear
inequalities, thereby providing the tightness of an SDP formulation in a framework that is more
amenable to optimization techniques. In addition, this research provides a theoretical extension
of the semidefinite concept to matrices of dimension greater than two for the first time in the
published literature.

Chapter 6: Conclusions and Future Research 117

In order to implement the semidefinite cutting plane solution strategy, the infinite set of
constraints is initially relaxed, and members of this set are generated as needed via a polynomial
time separation routine. In essence, this process yields an RLT relaxation that is augmented with
valid inequalities, which we call semidefinite cuts. The general concept of the proposed solution
strategy is specialized for the problem of minimizing a nonconvex quadratic objective function
over a simplex. The algorithm has been implemented in C++, using CPLEX callable routines to
solve the linear programming problems. In addition, two types of semidefinite restrictions have
been explored, along with several implementation strategies, to further improve the solution
technique. In an experiment to evaluate the effectiveness of the cuts in tightening the lower
bound, the semidefinite cuts were shown to provide up to a 65% increase in the bound provided
by using RLT alone. When implemented within a branch-and-bound framework to find a global
optimum, the semidefinite cuts led to dramatic improvements over the performance of using
RLT alone. In problems containing 10, 20, and 30 variables, the semidefinite cuts reduced the
size of the enumeration tree by 95%, 94%, and 94%, while the overall solution time was reduced
by 67%, 64%, and 55%, respectively. Furthermore, while both the RLT and semidefinite cut
techniques were able to solve all of the 10-variable problems to optimality, there were several
larger problem instances that were solved to optimality when using the semidefinite cuts, but
could not be solved when using RLT alone. Overall, the computational results indicated that the
cutting plane algorithm provides a significant tightening of the lower bound obtained by using
RLT alone. Moreover, when used within a branch-and-bound framework, the proposed
methodology significantly reduce the effort required to obtain globally optimal solutions. As
such, the results of this research suggest a new technique that can be used to enhance solvability
for many classes of nonconvex optimization problems.

 The second part of the dissertation develops a modification of Benders� decomposition
method, using concepts from RLT and lift-and-project cuts, in order to design a solution strategy
for discrete optimization problems, such as those that arise in the case of two-stage stochastic
programs with integer recourse. Stochastic programs are linear programs where the set of first-
stage decisions is made before a realization of the environment is revealed, where the latter
occurs according to some probabilistic distribution. The second-stage variables determine the
best action to compensate for the ensuing effect of the environment. Stochastic programs that
contain purely continuous variables are typically solved using Benders� decomposition, an
iterative strategy in which information is passed back and forth between a master problem
(which involves only first-stage variables) and a set of subproblems (which couple the first- and
second- stage variables for each possible outcome of the environment). In the presence of
(mixed-) integer second-stage variables, however, Benders� decomposition cannot be applied in
the traditional sense. This research suitably modifies Benders� decomposition to be applicable
for the case of problems that decompose into discrete subproblems. The proposed procedure is
based on sequentially generating cutting planes to approximate the solution of the subproblems
in the process of deriving valid Benders� cuts for the master problem. In addition, the procedure
is modified to perform even more efficiently in the case of stochastic programs, by exploiting the
dual angular structure that they possess. The key idea is to solve the subproblems using an RLT
or lift-and-project cutting plane scheme, and to generate and store the cuts as functions of the
first-stage variables. Hence, these cutting planes can be re-used from one subproblem solution
to the next simply by updating the values of the first-stage decisions. The proposed Benders�
cuts also recognize these RLT or lift-and-project cuts as functions of the first-stage variables, and

Chapter 6: Conclusions and Future Research 118

are hence shown to be globally valid, thereby leading to an overall finitely convergent solution
procedure. This research represents the first proposed methodology for solving stochastic
integer programs with mixed-integer recourse. Furthermore, it is the first time that Benders’
decomposition has been effectively modified for handling discontinuous, nonconvex value
functions. This method is expected to provide a seminal and viable solution technique for a class
of problems that has not previously been adequately solved in the literature.

 The final part of the dissertation focuses on an improved mixed-integer programming
(MIP) representation for the facility layout problem. Given a rectangular building and area (as
well as certain aesthetic) requirements for each department, the problem is to determine the
dimensions and location of each (rectangular) department within the building in order to
minimize a total travel measure (number of trips times the distance) between all the departments.
The distance between pairs of departments is measured as the rectilinear distance between the
departmental centroids. Although the facility layout problem can be stated rather simply, it is
extremely difficult to solve to optimality, for even small problem instances. The difficulty in this
problem arises from the nonlinear area constraints for each department and the disjunctive
constraints that no two departments can overlap. This research develops several model
enhancements to produce more accurate solutions while decreasing the solution effort required.
In order to approximate the area constraints, tangential supports are used to derive a polyhedral
outer approximation of the nonlinear constraints, and this representation is shown to provide as
tight an approximation as desired. In addition, valid inequalities are used to reduce problem
symmetry and to impose implied upper bounds on the centroidal separations. Finally, several
different formulations are developed for the disjunctive constraints that prohibit the departments
from overlapping. These proposed enhancements have been evaluated, using an AMPL interface
with CPLEX, and compared with published results to gauge their effectiveness. The improved
area constraints have yielded solutions that are within 0.5% of the target areas, while previously
published models led to errors as high as 10%. Furthermore, as compared with previously
published models, the new area constraints admitted solutions to some test problems that could
not previously be solved, while reducing solution time by a factor of 1.28 to 291.3 for other
problem instances. The additional improvements in the model have provided even greater
reductions in computational effort, thereby yielding tremendous improvements in the solvability
of this class of problems. The overall solution effort was reduced by a factor of 2.33 to 2.62 for
the three most challenging problems and by a factor of 6.6 to 1456.5 for the remaining problems.

 Throughout this dissertation, we have developed a variety of novel solution techniques
for several classes of nonconvex optimization problems. There are several ways in which the
various concepts exposed in this research can be extended in the future. In the case of
semidefinite cuts, it would be most interesting to develop and evaluate a technique for generating
SDP cuts corresponding to higher level RLT relaxations. Additionally, we look forward to
investigating how SDP cuts might impact the solution of other types of nonconvex optimization
problems, such as polynomial programs and integer programming problems. It would also be
beneficial to investigate the possibility of generating certain classes of SDP constraints a priori,
rather than through cutting plane generation separation routine. The proposed Benders�
methodology for discrete optimization problems also provides future research opportunities. The
most important step following the proposed theoretical development is to conduct computational
experiments to gauge the effectiveness of the proposed technique, particularly as applied to

Chapter 6: Conclusions and Future Research 119

stochastic integer programs with recourse. It would also be instructive to explore special
structures that might be particularly amenable to our proposed approach. In the case of the
facility layout problem, while we have demonstrated significant computational gains, the
solution to even moderately large sized problems remains rather challenging. A further analysis
into the polyhedral structure of these problems might provide additional computational benefits.
Moreover, it might be worthwhile to learn from the successes in developing solution techniques
for the facility layout problem, particularly with respect to the disjunctive formulations, and
extend these ideas to other similar classes of mixed-integer programming formulations.

In conclusion, although we have developed some very promising solution techniques for
several classes of nonconvex optimization problems, many more problems cannot yet be solved
efficiently. The development of tight model representations and effective solution techniques for
such classes of challenging problems along the lines exposed in this dissertation, offers a rich
and exciting arena for future research.

 120

References
W.P. Adams and H.D. Sherali, �Mixed-Integer Bilinear Programming Problems,� Mathematical
Programming, 59(3): 279-305, 1993.

S. Ahmed, M. Tawarmalani and N.V. Sahindis, �A Finite Branch and Bound Algorithm for Two-
Stage Stochastic Integer Programs,� Working Paper, School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA, 2000.

F. Alizadeh, �Interior Point Methods in Semidefinite Programming with Applications to
Combinatorial Optimization,� SIAM Journal of Optimization, 5(1): 13-51, 1995.

C. Audet, P. Hansen, B. Jaumard and G. Savard, �Branch and Cut Algorithm for Nonconvex
Quadratically Constrained Quadratic Programming,� Mathematical Programming, 87(1): 131-
152, 2000.

E. Balas, �Disjunctive Programming: Properties of the Convex Hull of Feasible Points,�
Technical Report MSRR-348, Management Sciences Research Group, Carnegie-Mellon
University, Pittsburgh, PA, 1974.

E. Balas, �Disjunctive Programming: Cutting Planes from Logical Conditions,� in Nonlinear
Programming, Academic Press, New York, NY, 1975.

E. Balas, �Disjunctive Programming: Properties of the Convex Hull of Feasible Points,� Discrete
Applied Mathematics, 89: 3-44, 1998.

E. Balas, S. Ceria and G. Cornuejols, �A Lift-and-Project Cutting Plane Algorithm for Mixed 0-
1 Programs,� Mathematical Programming, 58: 295-324, 1993.

E. Balas and R.G. Jeroslow, �Strengthening Cuts for Mixed Integer Programs,� Technical Report
MSRR-359, Management Sciences Research Group, Carnegie-Mellon University, Pittsburgh,
PA, 1975.

P. Banerjee, B. Montreuil, C.L. Moodie and R.L. Kashyap, �A Modeling of Interactive Facilities
Layout Designer Reasoning Using Qualitative Patterns,� International Journal of Production
Research, 30: 433-453, 1992.

M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming Theory and Applications,
2nd Edition, John Wiley & Sons. Inc., New York, NY, 1993.

J. Benders, �Partitioning Procedures for Solving Mixed-Variables Programming Problems,�
Numerische Mathematik, 4: 238-252, 1962.

References 121

S. Benson, Y. Ye and X. Zhang, �Mixed Linear and Semidefinite Programming for
Combinatorial and Quadratic Optimization,� Working Paper, Applied Mathematics and
Computer Science, University of Iowa, Iowa City, IA 52242, 1998.

D. Bertsimas and Y. Ye, �Semidefinite Relaxations, Multivariate Normal Distributions, and
Order Statistics,� Handbook of Combinatorial Optimization, Du and Pardalos (eds.), 3: 1-19,
1998.

J.R. Birge and M.A.H. Dempster, �Stochastic Programming Approaches to Stochastic
Scheduling,� Journal of Global Optimization, 9(3-4): 417-451, 1996.

J.R. Birge and F.V. Louveaux, �A Multicut Algorithm for Two-Stage Stochastic Linear
Programs,� European Journal of Operational Research, 34(3): 384-392, 1988.

J.R. Birge and F.V. Louveaux, Introduction to Stochastic Programming, Springer, New York,
NY, 1997.

S. Burer and R. Monteiro, �A Nonlinear Programming Algorithm for Solving Semidefinite
Programs via Low-rank Factorization,� Presented at the ISMP Conference, Atlanta, GA, 2000.

D.R. Carino, T. Kent, D.H. Meyers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe and W.T.
Ziemba, �The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance
Company Using Multistage Stochastic Programming,� Interfaces, 24(1): 29-49, 1994.

C.C. Caroe and R. Schultz, �Dual Decomposition in Stochastic Integer Programming,�
Operations Research Letters, 24(1): 37-45, 1999.

C.C. Caroe and J. Tind, �A Cutting-Plane Approach to Mixed 0-1 Stochastic Integer Programs,�
European Journal of Operational Research, 101(2): 306-316, 1997.

C.C. Caroe and J. Tind, �L-Shaped Decomposition of Two-Stage Stochastic Programs with
Integer Recourse,� Mathematical Programming, 83(3): 451-464, 1998.

S. Chittratanawat and J.S. Noble, �An Integrated Approach for Facility Layout, P/D/ Location
and Material Handling System Design,� International Journal of Production Research, 37(3):
683-706, 1999.

R. Dakin, �A Tree Search Algorithm for Mixed Integer Programming Problems,� Computer
Journal, 8: 250-255, 1965.

H. Delmaire, A. Langevin and D. Riopel, �Skeleton-Based Facility Layout Design Using Genetic
Algorithms,� Annals of Operations Research, 69: 85-104, 1997.

Y. Ermoliev and R. J.-B. Wets, eds., Numerical Techniques for Stochastic Optimization,
Springer-Verlag, New York, NY, 1988.

References 122

A. Geoffrion and R. McBride, �Lagrangean Relaxation Applied to Capacitated Facility Location
Problems,� AIIE Transactions, 10(1): 40-47, 1978.

M.C. Georgiadis, G. Schilling, G.E. Rotstein and S. Macchietto, �A General Mathematical
Programming Approach for Process Plant Layout,� Computers and Chemical Engineering, 23:
823-840, 1999.

F. Glover, �Polyhedral Annexation in Mixed Integer Programming,� Bulletin of the Operations
Research Society of America, 22 supp. 1: B123, 1974.

M. Goemans and D. Williamson, �Improved Approximation Algorithms for Maximum Cut and
Satisfiability Problems Using Semidefinite Programming,� Journal of the Association for
Computational Machinery, 42(6): 1115-1145, 1995.

R. Gomory, �An Algorithm for the Mixed Integer Problem,� RM-2597 Rand Corporation, July
1960.

C. Helmberg and F. Rendl, �Solving Quadratic (0-1)-Problems by Semidefinite Programs and
Cutting Planes,� Mathematical Programming, 82(3): 291-315, 1998.

S. Heragu and A. Kusiak, �Efficient Models for the Facility Layout Problem,� European Journal
of Operational Research, 53: 1-13, 1991.

J.L. Higle and S. Sen, �Stochastic Decomposition: An Algorithm for Two-Stage Linear
Programs with Recourse,� Mathematics of Operations Research, 16(3): 650-669, 1991.

J.L. Higle and S. Sen, �Conditional Stochastic Decomposition: An Algorithmic Interface for
Optimization and Simulation,� Operations Research, 42(2): 311-322, 1994.

J. Higle and S. Sen, Stochastic Decomposition: A Statistical Method for Large Scale Stochastic
Linear Programs, Kluwer Academic Publishers, Boston, MA, 1996.

J.L. Higle and S. Sen, �The C3 Theorem and a D2 Algorithm for Large Scale Stochastic Integer
Programming: Set Convexification,� Working Paper, Department of Systems and Industrial
Engineering, The University of Arizona, Tucson, AZ 85721. (Also presented at the 17th
International Symposium on Mathematical Programming, Atlanta, GA, August 7-11, 2000.)

K. Hoffman and M. Padberg, �Improving LP-representations of zero-one linear programs for
branch-and-cut,� Operations Research, 3: 121-134, 1991.

R.G. Jeroslow, �Cutting-Plane Theory: Disjunctive Models,� Annals of Discrete Mathematics,
1:293-330, 1977.

R.G. Jeroslow, �A Cutting Plane Game for Facial Disjunctive Programs,� SIAM Journal on
Control and Optimization, 18(3): 264-280, 1980.

References 123

P. Kall and S.W. Wallace, Stochastic Programming, John Wiley & Sons, Chichester, England,
1994.

W.K. Klein Haneveld, L. Stougie and M.H. van der Vlerk, �An Algorithm for the Construction
of Convex Hulls in Simple Integer Recourse Programming,� Annals of Operations Research, 64:
67-81, 1996.

W.K. Klein Haneveld and M.H. van der Vlerk, �Stochastic Integer Programming: General
Models and Algorithms,� Annals of Operations Research, 85: 39-57, 1999.

K.L. Hoffman and M. Padberg, �LP-Based Combinatorial Problem Solving,� Annals of
Operations Research, 4:145-194, 1985.

M. Kojima and A. Takeda, �Complexity Analysis of Successive Convex Relaxation Methods for
Nonconvex Sets,� Research Report B-350, Dept. of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Meguro, Tokyo 152-8552, Japan, 1999.

M. Kojima and L. Tuncel, � Discretization and Localization in Successive Convex Relaxation
Methods for Nonconvex Quadratic Optimization,� Research Report B-341, Dept. of
Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-
8552, Japan, 1999.

T.A. Lacksonen, �Static and Dynamic Layout Problems with Varying Areas,� Journal of the
Operations Research Society, 45: 59-69, 1994.

A. Land and A. Doig, �An Automatic Method of Solving Discrete Programming Problems,�
Econometrica, 28(3): 497-520, 1960.

A. Langevin, B. Montreuil and D. Riopel, �Spine Layout Design,� International Journal of
Production Research, 32� 429-442, 1994.

G. Laporte and F.V. Louveaux, �The Integer L-Shaped Method for Stochastic Integer Programs
with Complete Recourse,� Operations Research Letters, 13(3): 133-142, 1993.

G. Laporte, F.V. Louveaux and H. Mercure, �The Vehicle Routing Problem with Stochastic
Travel Times,� Transportation Science, 26(3): 161-170, 1992.

G. Laporte, F.V. Louveaux and L. van Hamme, �Exact Solution of a Stochastic Location
Problem by an Integer L-Shaped Algorithm,� Transportation Science, 28(2): 95-103, 1994.

R.D. Meller and K.Y. Gau, �The Facility Layout Problem: Recent and Emerging Trends and
Perspectives,� Journal of Manufacturing Systems, 15: 351-366, 1996.

R.D. Meller, V. Narayanan and P.H. Vance, �Optimal Facility Layout Design,� Operations
Research Letters, 23: 117-127. 1999.

References 124

B. Montreuil, �A Modeling Framework for Integrating Layout Design and Flow Network
Design,� Proceedings of the Materials Handling Research Colloquium (Hebron, KY), 43-58,
1990.

B. Montreuil, U. Venkatadri and H.D. Ratliff, �Generating a Layout from a Design Skeleton,�
IIE Transactions, 25: 3-15, 1993.

F.H. Murphy, S. Sen and A.L. Soyster, �Electric Utility Capacity Expansion Planning with
Uncertain Load Forecasts,� AIIE Transactions, 14: 52-59, 1982.

G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley &
Sons, New York, NY. Mathematical Programming, 6: 48-61, 1988.

I. Nowak, �Some Heuristics and Test Problems for Nonconvex Quadratic Programming Over a
Simplex,� Preprint 98-17, Humboldt University Berlin, 1998a. (Also available online at
http://www-iam.mathematik.hu-berlin.de/~ivo/ivopages/work.html.)

I. Nowak, �A Global Optimality Criterion for Nonconvex Quadratic Programming Over a
Simplex,� Preprint 98-18, Humboldt University Berlin, 1998b. (Also available online at
http://www-iam.mathematik.hu-berlin.de/~ivo/ivopages/work.html.)

I. Nowak, �A New Semidefinite Programming Bound for Indefinite Quadratic Forms Over a
Simplex,� Journal of Global Optimization, 14: 357-364, 1999.

M. Padberg and G. Rinaldi, �Optimization of a 532-City Travelling Salesman Problem by
Branch-and-Cut,� OR Letters, 6:1-8, 1987.

C.C. Paige and M.A. Saunders, �Solution of Sparse Indefinite Systems of Linear Equations,�
SIAM Journal on Numerical Analysis, 12(4): 617-629, 1975.

R.G. Parker and R.L. Rardin, Discrete Optimization, Academic Press, Inc., Boston, MA, 1988.

M. Ramana and A.J. Goldman. �Some Geometric Results in Semidefinite Programming,�
Journal of Global Optimization, 7: 33-50, 1995.

M. Ramana and P. Pardalos, �Semidefinite Programming,� Interior Point Methods of
Mathematical Programming, Terlaky (ed.), 369-398, 1996.

A. Ruszczynski, �Some Advances in Decomposition Methods for Stochastic Linear
Programming,� Annals of Operations Research, 85: 153-172, 1999.

R. Schultz, �On Structure and Stability in Stochastic Programs with Random Technology Matrix
and Complete Integer Recourse,� Mathematical Programming, 70(1): 73-90, 1995.

R. Schultz, L. Stougie and M.H. van der Vlerk, �Two-Stage Stochastic Integer Programming: A
Survey,� Statistica Neerlandica, 50(3): 404-416, 1996.

References 125

R. Schultz, L. Stougie and M.H. van der Vlerk, �Solving Stochastic Programs with Integer
Recourse by Enumeration: A Framework using Grobner Basis Reductions,� Mathematical
Programming, 83(2): 229-252, 1998.

H.D. Sherali, �Disjunctive Programming,� Encyclopedia of Optimization, C.A. Floudas and P.M.
Pardalos (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

H.D. Sherali and W.P. Adams, �A Hierarchy of Relaxations Between the Continuous and
Convex Hull Representations for Zero-One Programming Problems,� SIAM Journal on Discrete
Mathematics, 3(3): 411-430, 1990.

H.D. Sherali and W.P. Adams, �A Hierarchy of Relaxations and Convex Hull Characterizations
for Mixed-Integer Zero-One Programming Problems,� Discrete Applied Mathematics, 52(1): 83-
106, 1994.

H.D. Sherali and W.P. Adams, �Computational Advances Using the Reformulation-
Linearization Technique (RLT) to Solve Discrete and Continuous Nonconvex Problems,�
Optima, 49: 1-6, 1996.

H.D. Sherali and W.P. Adams, A Reformulation-Linearization Technique for Solving Discrete
and Continuous Nonconvex Problems, Kluwer Academic Publishing, Boston, MA, 1999.

H.D. Sherali, W.P. Adams and P.J. Driscoll, �Exploiting Special Structures in Constructing a
Hierarchy of Relaxations for 0-1 Mixed Integer Problems,� Operations Research, 46(3): 396-
405, 1998

H.D. Sherali and P.J. Driscoll, �Evolution and State-of-the-Art in Integer Programming,�
Journal of Computational and Applied Mathematics, special issue on “The State of the Art in
Numerical Analysis,” ed. Layne T. Watson, 124: 319-340, 2000.

H.D. Sherali, Y. Lee and Y. Kim, �Partial Convexification Cuts,� Manuscript, Grado
Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061. (Also presented at the 17th International Symposium on
Mathematical Programming, Atlanta, GA, August 7-11, 2000.)

H.D. Sherali and C.M. Shetty, �On the Generation of Deep Disjunctive Cutting Planes,� Naval
Research Logistics Quarterly, 27(3): 453-475, 1980.

H.D. Sherali and C.M. Shetty, Optimization with Disjunctive Constraints, from the series Lecture
Notes in Economics and Mathematical Systems, Volume 181, Springer-Verlag, Berlin, 1980.

H.D. Sherali and J.C. Smith, �Improving Discrete Model Representations Via Symmetry
Considerations,� Working Paper, Grado Department of Industrial and Systems Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, 1999.

References 126

H.D. Sherali and C.H. Tuncbilek, �A Global Optimization Algorithm for Polynomial
Programming Problems Using a Reformulation-Linearization Technique,� Journal of Global
Optimization, 2: 101-112, 1992.

H.D. Sherali and C.H. Tuncbilek, �A Reformulation-Convexification Approach for Solving
Nonconvex Quadratic Programming Problems,� Journal of Global Optimization, 7:1-31, 1995.

H.D. Sherali and C.H. Tuncbilek, �New Reformulation-Linearization/Convexification
Relaxations for Univariate and Multivariate Polynomial Programming Problems,� Operations
Research Letters, 21(1): 1-10, 1997.

H.D. Sherali and H. Wang, �Global Optimization of Nonconvex Factorable Programming
Problems,� Mathematical Programming, 89(3): 459-478, 2001.

N.Z. Shor, Nondifferentiable Optimization and Polynomial Problems, Kluwer Academic
Publishing, Boston, MA, 1998.

A. Takeda, Y. Dai, M. Fukuda and M. Kojima, �Towards the Implementation of Successive
Convex Relaxation Method for Nonconvex Quadratic Optimization Problems,� Research Report
B-347, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Meguro,
Tokyo 152-8552, Japan, 1999.

M.J. Todd, Semidefinite Programming: Applications, Duality, and Interior-Point Methods,
presented at the Fall INFORMS meeting, Seattle, WA, 1998. Also available online at
http://www.orie.cornell.edu/~miketodd/todd.html.

R.M. Van Slyke and R. Wets, �L-Shaped Linear Programs with Applications to Optimal Control
and Stochastic Programming,� SIAM Journal of Applied Mathematics, 17(4), 638-663, 1969.

L. Vandenberghe and S. Boyd, �Semidefinite Programming,� SIAM Review, 38(1): 49-95, 1996.

R.J. Vanderbei and H.Y. Benson, �On Formulating Semidefinite Programming Problems as
Smooth Convex Nonlinear Optimization Problems,� Working Paper, Department of Operations
Research and Financial Engineering, Princeton University, Princeton, NJ, 2000.

H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming:
Theory, Algorithms, and Applications, Kluwer Academic Publishers, Boston, MA, 2000.

 127

Vita
In May 2001, Barbara M. P. Fraticelli completed her Ph.D. studies in Industrial and

Systems Engineering at Virginia Tech with a 3.95 GPA. Studying under the direction of Dr.
Hanif D. Sherali, Barbara�s research focused on extensions of the Reformulation-Linearization
Technique (RLT) of Sherali and Adams for nonconvex optimization problems. Barbara was
named as a finalist for the Paul E. Torgersen Research Excellence Awards (given by the Virginia
Tech College of Engineering) for this research effort, which has resulted in three archival
publications. At Virginia Tech, Barbara was funded through the Charles E. Minor and Pratt
fellowships, and as a research assistant on a National Science Foundation (NSF) project. In
addition, for her first year at Virginia Tech and for her Master�s work at Penn State, she was
funded by an NSF Graduate Research Fellowship. Barbara worked under the direction of Dr.
Tom Cavalier and Dr. El-Amine Lehtihet for her undergraduate honors� and Masters� theses,
both of which used optimization techniques to improve discrete parts manufacturing. This
research resulted in two papers published in the International Journal of Production Research.
As an undergraduate, Barbara was selected as University Marshall for the Penn State College of
Engineering, recognizing her as the highest-ranking student in the College with a perfect 4.0
GPA.

Barbara has remained active at Virginia Tech and in the community. She held a two-year
term as Chief Justice of the Graduate Honor System and on the Commission on Graduate Studies
and Policies. For three years, she also served on the College of Engineering Graduate Student
Committee, which organizes an annual seminar for professional development and administers
awards for excellence in graduate research. At Penn State, she served as President of the
Newman Club and treasurer of the INFORMS chapter. Since May 1996, Barbara has been
married to Thomas Darin Fraticelli, who currently serves as the Local Sales Manager at WDBJ-7
TV in Roanoke. The couple is very active at St. Mary�s Catholic Church in Blacksburg.

	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1:	Introduction and Motivation
	Chapter 2:	Literature Review
	
	2.2.1	Cutting Planes
	2.2.2	Enumerative Methods
	2.2.3	Benders’ Decomposition
	2.2.4	Disjunctive Programming
	2.2.5	Reformulation-Linearization Technique (RLT)
	2.2.6	Semidefinite Programming (SDP)
	2.3.1 Stochastic Programming Problems
	2.3.2	Facility Layout Problems

	Chapter 3:	Enhancing RLT Formulations through Connections with Semidefinite Programming
	
	3.3.1	Basic SDP Cut Generation
	3.3.2	Enhancing the Basic SDP Cut Generation Strategy
	3.3.3	SDP Cuts Using an Augmented Matrix
	3.4.1	Root Node Performance
	3.4.2	Overview of the Branch-and-Bound Procedure
	3.4.3	Branch-and-Bound Results

	Chapter 4:	A Modified Benders’ Partitioning Strategy for Discrete Optimization Problems
	
	4.2.1	Benders’ Cuts Given a Convex Hull Representation
	4.2.2 Specialized Modifications for Dual Angular Structures
	4.2.3 Derivation of a Benders’ Approach for Problem P(

	Chapter 5: Improved MIP Models and Algorithms for the Facility Layout Problem
	
	5.2.1	The FLP2 Model
	5.2.2	The FLP2+ Model
	5.3.1	Development of the Area Constraints
	5.3.2 Effect of the Proposed Area Constraints
	5.4.1	Development of Alternative Symmetry Breaking Strategies
	Effect of Symmetry Breaking Constraints
	5.5.1	Root Node Analysis
	5.5.2	Effect of Valid Inequalities on the Branch-and-Bound Process
	5.5.3	Effect of Valid Inequalities on the FLP2+ Model
	5.6.1	Traditional Formulation of the Separation Constraints
	5.6.2	Alternative Formulation of the Separation Constraints
	5.6.3	A Distance-Based Formulation of the Separation Constraints
	5.6.4 Computational Analysis of the Alternative DJ1 and DJ2 Formulations

	Chapter 6:	Conclusions and Future Research
	References
	Vita

