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Fluctuation Relations for Stochastic Systems far from Equilibrium

Sven Dorosz

Fluctuations are of great importance in systems of small length and energy scales. Measuring
the pulling of single molecules or the stationary flow of microspheres dragged through a vis-
cous media enables the direct analysis of work and entropy distributions. These probability
distributions are the result of a large number of repetitions of the same experiment. Due to
the small scale of these experiments, the outcome can vary significantly from one realization
to the next. Strong theoretical predictions exist, collectively called Fluctuation Theorems,
that restrict the shape of these distributions due to an underlying time reversal symmetry
of the microscopic dynamics. Fluctuation Theorems are the strongest existing statements
on the entropy production of systems that are out of equilibrium.

Being the most important ingredient for the Fluctuation Theorems, the probability distri-
bution of the entropy change is itself of great interest. Using numerically exact methods
we characterize entropy distributions for various stochastic reaction-diffusion systems that
present different properties in their underlying dynamics. We investigate these systems in
their steady states and in cases where time dependent forces act on them. This study al-
lows us to clarify the connection between the microscopic rules and the resulting entropy
production. The present work also adds to the discussion of the steady state properties of
stationary probabilities and discusses a non-equilibrium current amplitude that allows us to
quantify the distance from equilibrium. The presented results are part of a greater endeavor
to find common rules that will eventually lead to a general understanding of non-equilibrium
systems.

This work is supported by the PHD 2010 scholarship program of the Virginia Tech Graduate
School and by the NSF Grant DMR-0904999.
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Chapter 1

Introduction

The understanding of systems far from equilibrium is one of the most important challenges
of our time. Phenomena on very different length and energy scales exhibit constant change,
from biology and chemistry to geosciences and meteorology, see figure [T Understanding
these systems and their time evolution far from equilibrium has yet to be fully accomplished.
Our experience tells us that a system not exposed to external forces will ultimately relax
to its state of thermodynamic equilibrium. A cup of water, for example, will adapt to the
surrounding room temperature after a certain amount of time. A robust theory based on
a statistical description exists today that can successfully explain systems in their equilib-
rium state. It enables us to characterize systems with only a handful of parameters, mainly
temperature and pressure. The theory allows us in principle to calculate any system in equi-
librium. Now that research of equilibrium systems has reached a mature state we can use it
to go beyond its limitations.

Despite its usefulness, equilibrium statistical mechanics quickly breaks down if external
forces act upon the system. Most natural systems behave this way. In fact, life can only
exist far from equilibrium. Living organisms will not reach an equilibrium state because
there is a steady energy conversion of ATP to ADP that keeps the cellular processes out of
equilibrium. Only in the organism’s death will the equilibrium state be achieved.
Properties of materials change drastically out of equilibrium. A simple illustration would be
a metallic rod that is connected at its ends to two different temperatures. After the system
reached a steady state, we observe a constant heat flux through the system. Even though in
this case the current of energy through the system is homogeneous and time independent,
we cannot apply the theory of systems in equilibrium. We call this state a non-equilibrium
steady state. Extreme conditions produce materials with new and interesting properties.
Diamonds and impurities in crystals are interesting examples. Another class of materials are
glasses. Once quickly cooled from a melting to a solid phase, the supercooled liquid will relax
so slowly that it will never reach equilibrium. The examples given above are very diverse.
The dynamics out of equilibrium can reveal a very rich and complex behavior, beautiful
patterns, and structural self organization that are only possible far from equilibrium.
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Figure 1.1: Thermodynamic systems of different length and energy scales. The focus of the
work is set to small length and energy scales. Reprinted with permission from C. Bustamante,
J. Liphardt, and F. Ritort. The nonequilibrium thermodynamics of small systems. Physics
Today, 58(7):4348, 2005. Copyright 2005, American Institute of Physics.

A general theory that could explain the behavior of matter far from equilibrium is therefore
essential. If we were able to manipulate matter in a predictive way far from equilibrium we
could optimize a variety of processes in engineering. Harder, more flexible or completely new
materials could be designed. Even conversion and storage of energy could be made more
efficient. Therefore, it is crucial to advance our knowledge further in this field of research.
Much progress has been made in recent years but it is still patch work trailing a general
theory [115] [156], ©95].

In the last twenty years, important advances were made in the understanding of non-
equilibrium processes through the study of work and entropy relations. These mathemat-
ical exact results were collectively labeled Fluctuation Theorems. We will exploit different
stochastic systems that we can treat with numerically exact methods in order to analyze
their dynamics far from equilibrium and discuss their change in entropy. Either systems are
in a steady state or are forced out of a steady state by time dependent system parameters.
The microscopic rules of each system permits us to point out important features and relate
them to abstract properties of their configuration space. This allows us to investigate the
stationary states and the transient behavior on an abstract level and to draw general con-
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clusions that are adding to our understanding of systems far from equilibrium.

The thesis is organized in the following way. In chapter [2 we are going to introduce the most
prominent Fluctuation Relations and focus on their application in experiments. In chapter
we describe the mathematical description of the stochastic dynamics and define equilibrium
systems and non-equilibrium systems. Chapter [3] also covers the definition of the different
stochastic models and discusses different aspects in their individual dynamics, important for
the study of entropy production that will follow. Stationary properties that characterize the
stationary states are presented and discussed. In chapter [ we start with the discussion of
single steady states. We exploit exact results to characterize the distributions of entropy
change in time for non-equilibrium systems. This will be done for short measurement times
as well as in the long time limit. These two regimes will give us different information about
our systems. In the chapter [l we investigate transient properties of our systems. With a
given rate of change the systems are driven away from their stationary state and we analyze
the immediate response of the systems. This will lead to new results in the extreme case of
irreversible dynamics that can be realized in our systems. In the last chapter we give our
conclusion.



Chapter 2

Theoretical Background

This chapter presents the relevant fluctuation relations. We start out with the demonstra-
tions of the Jarzynski relation based on Hamiltonian dynamics [77]. In the second part
we present the derivation of the Crooks relation [29]. The second part ends with the dis-
cussion of the experimental results by Colin et al. [27] that verified the Crooks as well as
the Jarzynski relations. The third section discusses the steady state fluctuation relation for
stochastic dynamics that was presented by Lebowitz and Spohn [96]. We finish the discus-
sion of established fluctuation relations with the Hatano Sasa relation for systems driven out
of a non-equilibrium steady state [66] and the Seifert entropy relation [I39] as well as its
experimental verification by Tietz et al. [133].
The first reported symmetry of the entropy production was by Evans et al. [54] in 1993. In
this work, computer simulations were performed for a two dimensional sheared liquid and
the entropy production was calculated over small time intervals while the system was in its
steady state. Interestingly, with small probabilities, negative entropy changes were detected
on these time scales. By repeating this measurement a large number of times, they were able
to produce and analyze a histogram of entropy change. The surprising feature was a sym-
metry that related the probability of an increase of the entropy (P(AS)) to the probability
of a decrease of the entropy (P(—AS)), by a simple exponential

Pas) e~ (2.1)

P(—=AS)
where we set kg = 1. Relation (2.1]) shows that the probability to see a trajectories of the
system with negative entropy change decreases exponentially fast. This result was extended
in [T4, 55, [57] into a theory for dynamical systems. For dynamical systems the SRB measure
[125] 126, [127], named after Sinai, Ruelle, and Bowen, represents the steady state of the
system in phase space. It was possible to prove the fluctuation symmetry (2.1]) as a conse-
quence of the SRB measure if one assumes the chaotic hypothesis [57] which is the analog
to the ergodic hypothesis for equilibrium systems. This relation is asymptotically exact for
large times compared to the microscopic timescales of the system.

4
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Motivated by these results for dynamical systems, Kurchan demonstrated the fluctuation
relation for a stochastic system in 1998 [90]. For a stochastic system, the chaotic hypothesis
is not a requirement due to the coupling of the system to the environment which introduces
randomness. As a result, the trajectories cover the entire phase space and the fluctuation
symmetry holds. A more general result was established by Lebowitz and Spohn for Markov
systems in a single stationary non-equilibrium state [96]. In addition to the asymptotic
symmetry relation (Z1I), the Lebowitz Spohn fluctuation symmetry is exact for stochastic
systems for arbitrary times. For an overview of different aspects of fluctuation relations,
see [3 17, [64] [75) 101, 122, 142 158]. Following the theoretical predictions experimental
verifications of steady state fluctuation relations [7l, (111, 19, 26, 134 146, [153| 133] 159] and
theoretical extension and applications to a variety of systems [4} [5 [6] 23], 241 22, [43] [63], [58,
(74, [86, 130}, 129, 137, 138, 139, 140, 142] 145] were published.

A different fluctuation relation was established by Jarzynski [77, [76]. Here a system initially
in equilibrium is forced out of stationarity by an external mechanical force in a finite time.
If the experiment, i.e. same initial equilibrium state and same time dependent force, is re-
peated a large number of times, information about the free energy difference of the initial
and final states can be obtained by analyzing the histogram of the mechanical work. A vari-
ety of different experiments [27, 47, [85] confirmed the theoretical predictions. The Jarzynski

relation is stated as
(e™PWy = e PAE (1) (2.2)

where \(t) is a time varying parameter of the system. The average is calculated with respect
to the probability distribution of mechanical work and the free energy difference AF' is calcu-
lated between the initial and final states of the system. Following Jarzynski’s result, Crooks
discovered a more general statement that underlies Jarzynski’s result [29] [30] 31} [L00]. This
statement is based on time reversal symmetry of the microscopic dynamics. The trajectory
in phase space during the time dependent process has a corresponding reversed trajectory
that results from time inverting the external process. The comparison of a given trajectory
and its time reversed trajectory allows the calculation of increase in entropy during the pro-
cess, see [80, BTl O2] for an overview.

Both results were first proven for Hamiltonian dynamics, and have since been extended to
different classical as well as quantum systems [2], [8] (18, 25], [53] 01 [109] and illustrated explic-
itly for various models [32] 43| 52 [84], 107, [152],[157]. The Crooks relation was experimentally
verified in [0, 47, OF].

For systems that are initially in a non-equilibrium steady state, more general results exist,
namely the Hatano Sasa relation [66] and the Seifert entropy relation [139] [142]. Trepag-
nier et al. performed the first experimental verification of the Hatano Sasa relation [155]
by analyzing a trapped bead that is dragged through a liquid with varying velocity. The
Hatano-Sasa relation as well as the Seifert entropy relation reduce to the Jarzynski relation
in the case of detailed balance, see [64], [80], 142].
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2.1 Jarzynski Relation

The Jarzynski relation is a mathematically exact statement about the probability distribu-
tion of applied mechanical work on a system during a non-equilibrium process that allows
access to equilibrium properties of the system under consideration. As already mentioned
in the previous section, the Jarzynski relation formulated in [77] received great attention.
Since then, the relation was demonstrated for different dynamics including Hamiltonian dy-
namics, Master equations, and Langevin dynamics for classical systems [21] 64 [100] [116].
The Jarzynski relation is stated as follows:

The system S is initially in an equilibrium state described by an inverse temperature 3

P,(C) oc e PN, (2.3)

where Py(C') is the probability for the system to be in state C' described by the Hamiltonian
H. During a finite time interval 7 a parameter of the system A is varied from an initial
to a final value at an arbitrary rate. The external parameter A\ defines the non-equilibrium
process. During the time interval 7, work W is performed on the system due to the change
in \.

Now, the work W must be defined. Jarzynski himself uses the following illustration,

1 ideal

2 .;spring :
rubber band .

A

;\' ' ]

Figure 2.1: Illustration of the definition of work that enters the Jarzynski relation. Reprinted
with permission from C. Jarzynski, Nonequilibrium work relations, Boulder Lecture Notes-
Nonequilibrium Statistical Mechanics: Fundamental Problems and Applications, 2009.

see figure 2.I At fixed parameter value A, the rubber band is in equilibrium with the
environment at inverse temperature 3. If we change the parameter in a finite time interval 7
from a position A4 to a final value Ag we perform work on the system. In order to calculate
the work one needs to define the system of interest. Considering only the rubber band,
the work performed on the rubber band is the force acting on the rubber band times its
displacement, given by

WM - /FSpringdza (24>
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but if we include the change in the spring as well, we consider the force to be a result of the
change in A and the force on the rubber band is not directly controlled from the outside,

W= / FapringdA. (2.5)

It is the second definition that allows us to access the free energy difference AF'. The first
definition leads to an earlier result derived by Bochkov and Kuzovlev [13] [12],

(e=PWary — 1, (2.6)

This relation restricts the possible shapes of the distribution but does not relate to equilib-
rium quantities. For a more thorough discussion of the two work statements, we refer to
wibev)

The Jarzynski relation as demonstrated here comes from [77] and is based on Hamiltonian
dynamics. Consider a system S described by a Hamiltonian H(\). The external parameter A
is varied in time during a time interval 7. During this process, the amount of work recorded

is defined by
T ONOH

Here W depends on the initial configuration and its trajectory. If the same process is
repeated a large number of times, starting in the same initial equilibrium state, one obtains
the probability distribution of work done on the system. The distribution depends strongly
on the way the parameter \ is varied during the process. Independently of how the parameter
is varied during the process, the average value of the exponentiated work is a constant for
the same initial and final values of A,

(W) = e AP (). (2.8)

The free energy difference, AF = F(Af) — F();), of the system is considered between the
initial and final values of A\ and the average is calculated using the distribution of possible
work values W. Therefore the Jarzynski relation permits the measurement of equilibrium
properties of the system by performing a non-equilibrium process. Measuring equilibrium
properties was, up to this point, only possible if the system was assumed to be in intermediate
equilibrium states throughout the process. This constraint is due to the second law of
thermodynamics,

W > AF, (2.9)

with equality only in the case of an infinitely slow change in A. For this reason the Jarzynski
relation is an important alternative for measurements of free energy differences.

We are going to discuss the proof of the Jarzynski relation and its implications. Starting from
an initial equilibrium distribution, we calculate the average value (e="") for this process.
The average is taken over all possible trajectories f dX in phase space. In addition it is
assumed that the system is weakly coupled to the temperature reservoir, thus that over the
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time period 7 no heat can be exchanged with the environment. As a result the work done
on the system is equal to the change in internal energy,

W = AH. (2.10)

With these assumptions the proof of the Jarzynski relation is as follows:
(e™PWy = /dX Py (20, \o)e "W

—BH (zo,\
- /dIOeiwe—ﬁ(H(er)—H(xo)\o))
Zxo

1 Z
= dxge P @rAr) — T _ o=BAF, (2.11)

Z—Ao Z

0

If we use Jensen’s inequality [83] because AF is a convex function, the exact result includes
the second principle of thermodynamics,

(W) > AF.

Since the average value of the exponentiated work observable has to be computed, it is
important to have a detailed sampling of rare events. When calculating the average value of
e "W rare events with negative work values are amplified and carry important information
to the average value. A large sampling size is therefore necessary to obtain the rare events
of the work probability distribution in experiments and in computer simulations. Important
algorithms were developed to overcome this obstacle [10), 59, 6], [73 1111, 144l [166]. Since
the Jarzynski relation is a statement about the average value of the exponentiated work, it
is called an integral fluctuation theorem.

2.2 Crooks Fluctuation Theorem

The Crooks Fluctuation Theorem is a statement about an underlying symmetry of the
Jarzynski relation [29] [78], based on time reversal symmetry. Imagine a system S initially
in equilibrium with a temperature reservoir described by an inverse temperature . The
system parameter A is varied in time according to the sequence

Ar(t) = {Xos Aty ooy An—1, A}

This process is called the forward process. The probability distribution Pr(1V) is obtained
for the total amount of work during the time interval 7. Now imagine the system being in
equilibrium at the final value of A = \j; at the same inverse temperature 3. The reversed
process is defined by the time inverted sequence of the parameter A ending at \y. For the
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reversed process we obtain a second distribution of work, Pr(WW'). With these distributions
the Crooks fluctuation relation states

Pe(W) = Pr(=W)ePW=AE) (2.12)

The free energy difference AF' is obtained by comparing the distributions of the forward
and time reversed process of a non-equilibrium process. We denote with X a trajectory
in configuration space and with XT its time reversed trajectory. Pi(x,\) is the stationary
probability for the system to be in configuration x while the external parameter is at a value
A. For the proof of the Crooks relation we note, assuming the process is Markovian that,

PF(X) = Ps(l’o, )\0) H w(:vi — Tj+1, )‘H-l)
(2.13)

where w(x; — 41, A\ip1) is the transition rate to jump from configuration C; to configuration
C; while the external parameter is at value A\;11. It follows that we can rewrite the forward
trajectory as

M-1
Py(x0, Xo) H T — Tigp1, Nig1)
Ps xT7 T xl—l—l — Ty, )\i—l—l)

=0

Pr(X) = Pr(X")

g

Py(xi, Ai)

— T
PR(X ) PS(I“)\Z—H)

(2

(2.14)

Il
o

In the last equality we are exploiting the fact that the system fulfills detailed balance,

w(x; = Tig1, Ni)  Ps(@ig, M)

w(Tisr =z, N)  Po(a, N)

for all values of the parameter A\. This allows us to rewrite the ratio of transition rates
as a ratio of stationary probabilities. If we further use the Boltzmann distribution for the
stationary probabilities,

In Py(x,\) = =B(H(x,\) — F(\)), (2.15)

we obtain Jarzynski’s definition of work during the discrete time process,

xl, i) v — BIWr(X)—-AF]
H P (@, heet) = exp </62 (w5, A1) — (H (3, As)] ﬁAF()‘)> =€ :

The expression,
Pp(X) = Pr(X1)ePIWrX)-AF] (2.16)
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represents the symmetry on the level of single trajectories. In order to obtain the Crooks
relation on the level of work values, we need to integrate expression (2.I6]) over all possible
trajectories with a constraint on the value W:

Pr(W) = / X Pr(X)5(We(X) — W)
= / dX Pr(XT6(Wg(X) — W)ePWr(X)=AF]

= /dXTPR(XT)(S(WR(XT)+W)e—ﬁ[WR(X*)+AF]

= Pgr(—W)ePW-25), (2.17)

If we integrate the Crooks relation (Z.I7) over all possible values of W, the Jarzynski relation
is recovered:

/ dW Pp(W) = / AW Pr(—W)eW=AF)

/ dWe W Pp(W) = e PaF / dW Pr(—W)
(ePVy = e PBF. (2.18)

The power of the non-equilibrium work relations is best illustrated by a recent experiment
of mechanically pulling MRNA molecules by Collin et al. [27]. On the level of single MRNA
(Messenger RNA) molecules, the free energy landscape is dominated by two configurations,
the folded state and the unfolded state. The manipulation of a single molecule is realized
by chemically attaching the molecule between two plastic beads. Holding one of the plastic
beads fixed with the help of a micro pipette, the second plastic bead is displaced with the
help of a laser tweezer. An induced dipole moment pulls the plastic bead into the point of
strongest gradient of light intensity of the laser. For more information on how to realize
single molecule experiments, see [87], [124]. Changing the distance between the micro pipette
and the center of the laser tweezer, the molecule experiences different amounts of tension.
At a sufficiently large tension the molecule spontaneously unfolds, resulting in a drop in
the tension on the molecule. In the reversed process the distance between the two beads is
reduced, allowing the molecule to refold. Since this cyclic process shows hysteresis, we know
that the system is driven out of equilibrium. Different realizations show that the unfolding
and refolding process is stochastic, resulting in a distribution of work values for both the
forward and reversed processes.The experiment was done for two different types of MRNA.
The Crooks relation was shown to hold and we can read off the free energy difference at
the intersection of forward and reversed distributions, i.e. W = —W = 0. The ratio of the
two distributions validates the exponential relation predicted by the Crooks relation. The
experimental results can be found in [27]. This experiment is a successful confirmation of
the non-equilibrium work relations and the results for the free energy differences AF' agree
with formerly obtained results from the quasi stationary process by +4%.
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2.3 Lebowitz Spohn Relation

In this section the steady state fluctuation theorem, first proven for dynamical systems [57],
is presented as a symmetry of the entropy generating function for a Markov process. The
outline of the proof follows [96].
The dynamics is based on transition rates w(C; — C;) to jump from configuration C; to
C;. As a necessary condition of the proof, it has to be assumed that the reversed transition
is always possible, i.e. if w(C; — C;) > 0 then w(C; — C;) > 0. The probabilities evolve
according to the Master equation

OP(Cit) _ D w(Cy— CHP(Cyt) = > w(Ci — C))P(Ci t) = L'P(Ci,t),  (2.19)

ot o o

where L is the Liouville operator. Let X = {Cy, C1, .., Cy} be a trajectory of the stochastic
process in configuration space during a finite amount of time ¢ with M transitions happening.
Along the trajectory we evaluate the quantity

W(Cm Cl) W(CM—h CM)
W(Ch CO) o W(CM, CM—I)

Asp(t,{X,0 < t}) = In [ (2.20)

Here the assumption of reversible transitions is crucial in order to have As,, well defined.
Observable (2.20)) is called an action functional in [96] or medium entropy As,, in [142]. The
fluctuation theorem is stated in the following way:

Consider the expectation value (exp[—AAsy,(t)]) of Asy,(t) and define

1
lim —— In(e A2sm®) — ¢()). (2.21)

The fluctuation theorem states that the limit (2.2I]) exists with e(\) convex, where e(\)

obeys the symmetry
e(A) =e(1—N). (2.22)

To prove the fluctuation theorem, one defines the following function
g(Ci, t) = (e Aoem®) (2.23)

The expectation value restricts the system to be in configuration C; at time ¢ = 0. The time
evolution of ¢(C;,t) is given by

d o Gz
%g(ciat) = ) w(C— Cye " EFETIG(Cht) = > w(Cy — Cy)g(Cit)
Cj G
= ZW(Ci — ) w(C; — i) g(Cy 1) — ZW(Q’ — C;)g(Ci,t)
C; G

= (Lx)i;9(Cj, ). (2.24)
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At t = 0 the generating function has the initial condition g(C;,0) = 1. The general solution
can be written as

(e Dm0 Z Py(C))g(Ci,t) = Z P(C)) (e e e (2.25)

The Perron-Frobenius theorem [56] [T17] states that Ly has a unique maximal eigenvalue e(\)
that satisfies
Lyua(C;) = —e(M)ua(C) (2.26)

with vy (C};) being the corresponding eigenvector to e(A). Due to the existence of the greatest
eigenvalue, the limit in ([2.21]) exists. The two linear operators L, and L} have the same
largest eigenvalue. Using now the definition of the Liouville operator, we see that

Ly =Ly, (2.27)
Hence the maximal eigenvector wy of e(\) of L3 satisfies
L;U))\(CZ) = —6()\)’(1])\(01) = Ll_)\U))\(CZ'). (228)

Since L1_yv1_»(C;) = —e(1 — N)v1_A(C;), we conclude by uniqueness that wy, = v;_, and
e(A) = e(l — \). Equation (Z22)) implies a large deviation property for the probability
distribution p;(0) with o = As,(t)/t, i.e.

pi(o) = e, (2.29)

where (o) is the Legendre transform of e(\). x(o) is called the rate function of entropy
production. It is convex, x (o) > 0, and satisfies

x(0) = x(—=0) =o0. (2.30)

It was shown in [3} [06] that this general result reduces to the Green-Kubo relation [62] 89
and the Onsager reciprocity relation [114] for small driving forces.

This fluctuation symmetry can be extended to finite time intervals t. The trajectory in
configuration space is given by the following sequence

X(t) = {Ch, .., Cor}, (2.31)

with M the number of transitions during a fixed amount of measurement time t. The
trajectory has the following probability of occurrence

P(X) = Py(Co,0) [ ] w(Ci = Cip). (2.32)
The corresponding reversed trajectory X' exists if all transitions are reversible, given by,

P(X") = ﬁ w(Cip1 — C). (2.33)

i —1
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Therefore the forward and reversed trajectories are related by

P(X) = P(X")exp (Asm(X) +In gs((g;;)>) : (2.34)

Thus for As,,(X) +In % the fluctuation theorem holds even for finite M in the steady
Ps (CO)

state. In the long time limit the additional boundary term, In B.(Cap) CAN be neglected.

2.4 Hatano Sasa Relation

The Hatano Sasa relation is an integral fluctuation relation that measures the lag or excess
heat. Oono and Paniconi introduced the term excess heat [I15]. Excess heat is dissipated as
the result of driving the system at a finite rate of change of the external parameter A(¢). At
t = 0 the system is in its non-equilibrium steady state, given by the stationary probability
Py(C;), where C; is a configuration of the system. If we slowly vary the parameter A, the
system evolves through a continuous sequence of stationary states and the dissipated work is
at a minimum. If the parameter is varied at a greater rate of change, the system is not able to
stay in intermediate stationary states. If we are considering transitions between equilibrium
states, the lag is measured by the total entropy increase since no entropy is generated in the
steady state. For transitions between non-equilibrium steady states, Hatano and Sasa [66]
defined the observable ¢, which measures the additional entropy increase due to the rate of
change in A\. The excess heat ¢ is defined in the following way

T . PS
o= / alt)\(t)a (C(t), A(t)). (2.35)
0 )
In the case of a discrete change in A and a discrete configuration space this translates into
M-1
¢ = (Ps(Ci, Aisr) = Po(Ci A)). (2.36)
i=0

The value of ¢ for a single trajectory depends on both the external process A(¢) and the
system’s trajectory in configuration space. Because of the stochastic nature of the time evo-
lution, each realization of the process has a different value for ¢. The probability distribution

of ¢ obeys the following relation
(e7?) =1. (2.37)

The average is taken over the complete set of possible trajectories. We are not going to prove
the Hatano Sasa relation in this section since we are presenting the proof for the discrete
case in chapter @ Relation (2.37) implies

(p) > 1, (2.38)
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if we apply Jensen’s inequality [83]. If the dynamics obeys detailed balance, the Hatano
Sasa relation reduces to the Jarzynski relation and ¢ = W. We also want to mention that
the Hatano Sasa relation does not rely on reversible dynamics, since it is not comparing a
forward to its reversed trajectory. For a more detailed discussion, see [66] [64, [79] [113]. The
Hatano Sasa relation was successfully tested experimentally in [I55].

2.5 Seifert Entropy

The Seifert entropy theorem [139] is a fluctuation symmetry for the total entropy change
Asgos. Because entropy change is a trajectory dependent observable, Seifert promotes the
terminology of stochastic thermodynamics [I41]. The total entropy produced in a process is
divided into two contributions, the entropy change in the surrounding medium As,, and the
entropy change of the system As under consideration,

Asior = As,y, + As. (2.39)

Maes showed [I01] that a more general way of writing the Jarzynski integral fluctuation
theorem exists. If the dynamics are reversible, we can define the observable R to be

M—1
W(Cz' — Cig1, >\i+1) PO(CO> >\0)
R = In +In —————. 2.40

Zz_; W(Ci—i-l — C}, >\i+1) Pl(CM> )\M) ( )

Py and P; are two unspecified, normalized distributions and a system parameter \ is varied
during a finite time interval 7 at arbitrary rate. In this case a general integral fluctuation
relation exists for the observable R, stated as

M-1
() = Z Fo(Co, Ao) H w(Ci = Ciyr, Aipr)e "
Co,...Cnr =0

M-1
= Z Pl(CM, )\M) H W(Cz'—i-l — CZ', )‘i-i-l) =1. (241)

Co,...C1 =0

This relation implies that

(R) > 0. (2.42)

The conclusion drawn in [I139] is that infinitely many integral fluctuation relations exist that
imply an analog of the Clausius inequality (AS) > 0.

Seifert proposes P;(C) to be the solution of the time dependent process for the normalized
probability distribution, obtained from the Master equation or for continuous configuration
space, from the Fokker Planck equation [123].
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For this choice of P;(C') the observable R is identical to Asy, and its integral fluctuation
relation is stated as
(e Bster)y = 1. (2.43)

The stated integral fluctuation relation is valid for arbitrary initial conditions as well as
arbitrary length and strength of the driving out of equilibrium. If we are investigating the
system in its steady state, the observable As.; reduces to the finite time fluctuation relation
established in [90], see equation (234]). In this case the observable As; obeys in addition
to the integral fluctuation relation a detailed fluctuation relation

P(Asir) _ Aspot
P—Bsr) =ec ) (2.44)

As it was stated in [I39] the steady state detailed fluctuation theorem applies even for
periodic driving once the system settles in the steady state. Experiments in the context of
stochastic thermodynamics were performed by Tietz et al. [133, [I53] in order to test the
Seifert entropy relation.

The system considered in the experiment is an optically driven defect center in natural Ila-
type diamond. Two states of the defect exist. One of the two states results in an emitted
photon and is therefore called the bright state. The second one is called the dark state.
Stimulated by two different laser wavelengths, transitions occur between the bright and the
dark state with rate a resp. rate b:

0(dark) = 1(bright). (2.45)

Transition rate a is modulated in time a(t) = ag[l + v sin(27t/t,,)] due to a varying intensity
of green laser light. Transition rate b is held constant given by red laser light. After the
system settles into a steady state, single trajectories of the system are analyzed. This allows
the analysis of the entire distribution of total entropy change by measuring a large number
of realizations. With the distribution of the total entropy production the corresponding
detailed fluctuation theorem has been verified. The experimental results can be found in

[153].



Chapter 3

Interacting Many Body Systems

This chapter introduces the stochastic dynamics and the models under investigation. In the
first part we start with the definition of the stochastic dynamics that is used and define
stationary probabilities and non-equilibrium currents. Furthermore we characterize non-
equilibrium steady states through their stationary probabilities and non-equilibrium currents
[164]. Two possible definitions of the amplitude of the probability current K are discussed
that allow to quantify the distance from equilibrium. In the second part of this chapter, we
introduce the dynamic rules for different reaction-diffusion models and transport processes.
Differences in their dynamic properties are highlighted and their individual importance for
our general analysis is motivated. Their stationary probabilities Ps(C') and non-equilibrium
currents are discussed as a function of the system parameters. This allows us to interpret in
the following chapters signatures of entropy production.

3.1 General Setup of Markov Processes

The stochastic processes that are studied here are Markov processes [72]. Being a Markov
process, the evolution to a new state of the system is only function of the system’s current
state and is independent of its history. The underlying mathematical formalism that is used
to describe the time evolution of the stochastic systems is the Master equation. The Master
equation is a deterministic equation that allows us to calculate the time evolution of the sys-
tem of interest. To be more precise, we calculate the time evolution of the set of probabilities
to find the system in one of its possible states (configuration), denoted as C. The systems
we are considering are realized on a discrete lattice of finite size. The occupation number
is restricted to at most one particle per site. This allows us to calculate the properties of
the system based on a finite number of configurations. The total number of configurations
is 2V, where N is the number of sites in our system.

By the definition of the dynamic rules of the system, transitions occur with a certain prob-

16
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ability per time interval. For example, radioactive decay with a given half life evolves in
continuous time because a deterministic firing does not exist. In general, the transition rate
to go from configuration C; to C; is denoted by w(C; — C;). Such a transition is called
reversible if the reversed transition rate is w(C; — C;) > 0. As a result every trajectory in
configuration space has a time reversed trajectory. Later on we shall see that the existence
of the reversed trajectory is important to define entropy change. We talk about irreversible
processes if trajectories exist without the existence of the reversed trajectory.

Since the set of probabilities is calculated as a function of time, the Master equation has
to satisfy the conservation of probability at all times. This has implications onto the time
evolution operator that we will discuss. The discrete time evolution is given by

P(Ci,t+ At) — P(C;,t) = Z w(C; — C;)P(C),t) —w(C; — C;)P(Cy, t)] . (3.1)

J

In the present form, the Master equation is expressing the conservation of probability in the
form of a continuity equation. Therefore it is natural to talk about the right part of the
equation being the gradient of a current. In the long time limit, the system, if allowed to
relax, ends up in a final state where time translation invariance is present. In general, this
final state is called a stationary state and is conveniently subdivided in two separate groups
of system - equilibrium systems and non-equilibrium steady states. The left hand side of
equation (3] is zero then and we obtain

D [w(Cj — CPC;) = w(Ci — Cj)Py(Cy)] = 0. (3.2)

J
For later purposes, we are introducing the definition of the local probability current
Ks(Ci, C]) = (U(Cj — CZ)PS(C]) — W(CZ — C])PS(CZ) (33)

The expression local probability currents refers to currents across single bonds in configuration
space connecting a pair of configurations of the system. Ky is an antisymmetric matrix.
Expression (B2]) can be satisfied in two possible ways. If w(C; — C;)P(C;) — w(C; —
C;)Ps(C;) is equal to zero for every state C; and C}, the system is satisfying detailed balance.
One can also use the Kolmogorov criterion of closed loops in configuration space to prove
detailed balance and to construct the hamiltonian H [88]. For each pair of configurations
the net probability flow across their bond in configuration space is zero. In this case the
stationary state is an equilibrium state. This is not the case if non zero probability flow
exists across bonds and only the sum of all individual currents cancels to zero. In this case
the system is in a non-equilibrium stationary state. Notice that the condition for detailed
balance is very strong. It does not suffice to demand reversibility for every possible transition
as we have previously defined. Even though reversibility is present, the system might still
be in a non-equilibrium steady state.

As can be seen in equation ([BI), the Master equation is linear. This allows us to define a
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linear operator for the time evolution. The vector of probabilities (P(¢)) has components
given by P(t); = P(C;,t) and we write

P(t + At) = WP(¢), (3.4)

with W being the transition matrix. Due to the conservation of probability, every column
in the transition matrix adds up to 1. The time evolution of the vector of probabilities is
expressed by the Liouville operator, defined as

L=W-—1. (3.5)

As a consequence the Liouville operator adds up to zero in each column. The Perron-
Frobenius theorem [70] states at this point that all eigenvalues of the Liouville operator are
smaller or equal to zero and the zero eigenvalue is unique if the system is ergodic.

Before we go on with the discussion, we want to sum up the important points. The systems
that are analyzed throughout this work are defined by a transition matrix W. The elements of
the transition matrix are given by the reaction and diffusion rates connecting configurations.
This defines the reaction network. In the matrix representation the individual configurations
are identified with the basis vectors of the system. If the system is realized on a lattice, each
configuration is an ordered string of site occupation numbers 7;, where ¢ = 1,...N. In
our case the site occupation is restricted to at most one particle per site n; = {1,0}. The
eigenvector of the Liouville operator that corresponds to the zero eigenvalue is then a linear
combination of the basis elements. If detailed balance is satisfied for all possible transitions,
the system is in equilibrium and the set of stationary probabilities fully determines the one
time quantities in the steady state. This is not the case for systems in a non-equilibrium
steady state. If detailed balance is not satisfied, the stationary probabilities are not sufficient
to fully characterize the system because macroscopic particle or energy currents might exist.
A conjecture for a general characterization of the non-equilibrium steady states was proposed
in [I64] 165]. It is not the stationary probabilities alone but the stationary probabilities plus
the information about the non-equilibrium currents that should be taken into account to
describe the steady state of the system.

3.2 Full Characterization by P, and K,

Zia and Schmittmann [164, [165] conjectured that one can fully characterize the dynamic
properties of a system described by a Master equation through the knowledge of the set of
stationary probabilities Py(C;) and the set of stationary probability currents between two
configurations C; and C, defined as

KS(CZ', Cj) = W(Cj — CZ) PS(C]) — (U(CZ — Cj)Ps(CZ) (36)

One can illustrate for a very simple model, that the sole knowledge of the stationary probabil-
ities is not sufficient to determine whether the system is in equilibrium or out of equilibrium.
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The model we are considering is the asymmetric simple exclusion process (ASEP) with pe-
riodic boundary conditions. The system is realized on a discrete lattice with N sites on a
ring with n particles. A randomly chosen particle hops with probability p to the right and
probability q to the left as long as no particle is occupying the neighboring site. This type
of interaction is called hardcore repulsion. In the case of biased hopping rates, i.e. p > q,
the system has a non zero macroscopic current running along the ring. In the case of equal
hopping rates the system satisfies detailed balance. Independent of the actual values of p and
q, the stationary probabilities are uniform. Therefore the knowledge of just the stationary
probabilities is not sufficient.

In order to distinguish the two cases in a microscopic description, one needs to consider the
stationary probabilities P;(C;) and the non-equilibrium currents K (C;, C;). The conjecture,
given in [164] [I65] is even stronger and discusses possible transformations that leave the pair
{P;, K¢} invariant. This idea is in analogy to equilibrium systems. In order to calculate
a physical observable of a system that is independent of time and time differences, various
simulation techniques can be used. These techniques are very sophisticated and adapted to
different situations. For example, a spin system might be calculated with a Metropolis [104]
dynamics, heat bath [T05] or even with the help of cluster algorithms as the Swendsen-Wang
[160] or Wolff algorithms [162], see [94] for a general review on Monte Carlo algorithms.
These different simulation algorithms all satisfy the detailed balance relation with the same
stationary probabilities. But since the dynamics are different, a meaningful physical time is
not possible to assign to the update scheme. Autocorrelation functions thus depend explic-
itly on the simulation technique used.

The claim for non-equilibrium systems in their steady state is analogous. The configuration
space can be represented as a tree structure [132] to discuss the non-equilibrium current flow.
The transformations keep the stationary probabilities and the non-equilibrium currents in-
variant but as a result, the timescales of the dynamics change and two time quantities like
correlation functions change with these transformations. Even though this is a very impor-
tant ansatz, this aspect of the conjecture is not pursued in this work. The more important
point for our purposes is the idea of a distance from equilibrium. We use information given
by the non-equilibrium currents to characterize our systems. As discussed in the following,
the norm of the matrix Ky can serve as a metric to describe the distance to equilibrium.
Different ways to define a positive metric for the matrix Kg can be imagined. The euclidian
norm of the matrix Kg was proposed in [165], defined as

K2 =3 (@(C) = C) PA(Cy) = w(C; — C)P.(C)*. (3.7)
i,J
An alternative would be to define a metric by summing the absolute values of the individual
currents across bonds,

K = 3" [w(C) — C) BC)) — w(C, — CR(C)]. (3.8)

1,J
It was shown [I18] that the latter choice can directly be related to macroscopic currents in
the system and scales linear with the system size. We illustrate the two norms for the totally
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asymmetric exclusion process (TASEP) on a periodic ring. This system is the extreme case
of the ASEP with hopping rate p = 1 to the right and hopping rate ¢ = 0 to the left. A
characteristic current of particles exists due to the unidirectional hopping on the ring. For
any number of particles the stationary probabilities are uniform as it was mentioned before.
Let us start out with the calculation of the euclidian distance:

K = Z( (Ci, C)))?
= 22 w(C; — C?. (3.9)

We thereby use the fact that the transition rate w(C; — C;) are only equal to 0 or 1 such
that w(C; — ;)2 = w(C; — C;) and >, w(C; — Ci) = Nio(Cj), where Nio(C}) is the
number of particle-hole pairs in the state C';. So one has

K2 =2 Z )2 N10(C). (3.10)

On a ring, every configuration has the same probability, Pi(C;) = Py(C;) = 1/QF for all
C; and C;. We calculate the total number of possible configurations Q% for N sites with n
particles to be

N!

QY = N (3.11)

Finally, the expression (3.10) can be written as

2jN

with j being the current density on the ring. When taking the infinite volume limit the
quantity K in the euclidean norm vanishes exponentially fast.

The absolute value norm is calculated in the same way and leads to the following expression
for the probability current,

K = Z\K (C;, O]

= QZP w(C; — Cy)

= 22 )N1o(C5)

= 2J = 2Nj. (3.13)
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Figure 3.1: The non-equilibrium probability current amplitude calculated for the closed
TASEP on a one dimensional ring for the two quantities, Kz and K. The dependence on
the system size N is shown. The system considered, has a constant density of particles,

p=1/2.

This suggests dealing with the absolute value defined as K =}, . [K,(C},C;)| o< Nj. The
two quantities, K and Kpg, are presented in figure 3.I] as a function of the system size N
with a fixed number of particles n = N/2.

It can be shown even for more complicated systems, for example reaction-diffusion systems,
that the quantity K is extensive, i.e. growing linearly with the system size [118]. By
construction, K only vanishes in the case of detailed balance. We follow the idea of [164]
and characterize the stationary probabilities and their distances from equilibrium K for
different stochastic models.

3.3 Definition of the Stochastic Models

Reaction-diffusion models are a large family of models with different properties in their dy-
namics. They are used in a wide range of research areas, for example the study of chemical
reactions or aging phenomena [49] [68], as well as in problems in percolation [20, [69] and
in cell biology [16], [102]. The general setup includes at least one creation reaction that in-
creases the number of particles and a second reaction that decreases the number of particles.
But more complex reaction networks exist. The reaction rates, in the simplest case, are
uniform throughout the lattice. However the study of disordered systems is of great inter-
est [39]. Particles might also be allowed to diffuse across the lattice. Since no preferred
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direction exists, there is no net particle current in the steady state across the system that
could be associated to a net probability current. Nevertheless reaction-diffusion models are
paradigmatic models to study properties far from equilibrium. The intention of the present
analysis is to understand the steady state properties of various systems. Therefore we are
not including reaction schemes that possess a dynamical transition to an absorbing state.
The study of dynamical phase transitions to an absorbing state is drawing a lot of attention
[67, 112, T51], T06] but is not of concern in this work.

Another group of models under investigation are transport models in one dimension. In the
study of non-equilibrium systems transport models are of great importance [108] [135] [131]
[136]. These systems possess a directed current of particles or energy through the system.
Exact results for the stationary probabilities were obtained for closed systems [35] [36] [51]
as well as for open systems [34]. Here, the current can be induced at the boundaries with
homogeneous diffusion in the bulk [IT9] T48] or may result from biased hopping rates inside
the bulk that enhance the total current [I128]. A large number of variations of this model
exists with additional features, for example inhomogeneous hopping rates at different sites

[65], multiple lane systems [48] [161], slow sites [40], extended objects [93] 143] and systems
coupled to finite resources [II, 28]. Even extensions to systems with varying length are based

on this model [42] 110} 149] [150].

In the following two subsections we are going to define the dynamics of the models. The sta-
tionary probabilities and amplitudes of non-equilibrium currents are discussed as a function
of the system parameters. The individual probability currents across single bonds are not
presented explicitly but instead the absolute value norm of the Ky matrix is discussed.

3.3.1 Reaction-Diffusion Models

We consider one-dimensional systems made up of N sites with periodic boundary condi-
tions. Excluding multiple occupancy of a given lattice site, particles A jump to unoccupied
nearest neighbor sites with a diffusion rate D and undergo various reactions of creation and
annihilation. Therefore a total of 2V configurations exists. We present in the following four
different reaction schemes, see Table [3.1] that are labeled model 1, 2, 3, and 4. For all four
models the number of configurations is the same at constant system size, the models have
different properties in their connectedness of configurations, i.e. the topological properties
of the corresponding configuration space. The reaction schemes are set up to lack an ab-
sorbing state. Possessing non trivial stationary probabilities the models vary in the way
configurations are connected by possible transitions defined by the chemical reactions. This
property should play an important role if we look at the dynamics on short time intervals
with a small number of occurring transitions. Different flow patterns and closed loops of
probability currents between groups of configurations are the result. The time evolution of
the models is calculated by the Master equation, given by their transition matrix W.

For future discussions of entropy change it is essential to establish reversibility of all tran-
sitions which is not the case for model 2, 3, and 4. For this reason we are going to define a
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Table 3.1: The four reaction schemes. A new particle A can only be created at an empty
lattice site. Reactions are taking place on adjacent sites.

model 1 model 2 model 3 model 4
A+A%O+A A+ AN 04+ A A+AD 040 A4+ A+AD040+0
0 A 0L A 0 A

reversibility parameter 0 < € < 1. The parameter ¢ sets the amplitude of the reversed tran-
sition rate. The reader should remember that reversibility of the reactions is not sufficient
for detailed balance to be satisfied. Only in the case of a single pair of conjugate reactions,
detailed balance holds for any non zero value of the reaction rates.

Let us highlight the differences in the dynamic properties of the four models. For model

Table 3.2: The four reversible reaction schemes discussed in this thesis. A new particle can
only be created at an empty lattice site. For the purpose of the discussion we introduce
reversed reactions with rates eh and e\

model 1 model 2 model 3 model 4
A+A%0+A A+A%0+A A+A%0+O A+A+A%O+O+O
0= A 0 A 0 A
ch eh ch

1 and model 2, every transition increases or decreases the total number of particles by one.
In fact, the annihilation reaction is the same in both models. The difference between the
two models is the creation process with reaction rate h. For model 1, the creation rate is
actually the reversed, conjugate transition to the annihilation reaction. The system does
obey detailed balance and is therefore an equilibrium system. Model 2 is a non-equilibrium
system that possesses a non zero probability current K. Non reversible transitions exist for
configurations containing a small number of particles. For example, a new particle can be
created in the middle of three empty sites, 000 — 0AO with rate h, but to go back to the
configuration with three empty sites by destroying this isolated A particle is not allowed, as
we need to have one neighboring A particle for the annihilation process to take place. As
we discuss later, the limit of very large creation rate favors configuration of high density and
the distinction of the two reaction mechanisms A — 2A and 0 — A vanishes. In this limit
model 2 effectively reduces to an equilibrium system.

In model 3 and model 4, as long as ¢ = 0, microscopic reversibility is broken for all reac-
tions. The number of particles created in a single transition is not equal to the number of
particles annihilated in a single transition. The system is out of equilibrium as long as € # 1,
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because the system possesses two different reversible, conjugate, pairs of reactions instead of
one. In the case of model 1 and model 2, two reactions were needed to return to the initial
configuration. In the case of model 3, the return to the initial configuration requires three
and in the case of model 4, four reactions. This has an important implication on the current
structure in configuration space, see illustration 8.2l This is one of the main reasons we are

—» modellor2 ____ 2\ _____ :
_-» model 3 },,—”/ \‘\\
= LN n=5
n:3 ,—-h-~~ n 4 e \\D
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Figure 3.2: Schematic plot of the configuration space for models 1, 2, and 3 where configura-
tions are grouped by the number of particles in the system n. In a diffusion step the system
goes from one configuration to another in the same unit without changing the particle num-
ber. Passages between different units are due to reaction processes. For models 1 and 2,
An = £1. This is different for model 3 (and 4) where different changes in the number of
particles in the system is possible, An = +1, -2 (An = +1, —3).

including the four models in the further discussion. To investigate the consequences for the
entropy production of these models in a single steady state, see chapter M, and in transient
processes, see chapter Bl

3.3.2 Driven-Diffusive Systems

We are also investigating one dimensional transport models. The two relevant cases we will
study are the symmetric simple exclusion process (SSEP) [148] and the totally asymmetric
simple exclusion process (TASEP) [99] 147]. Both models are realized on a finite one di-
mensional lattice with N sites and open boundary conditions. Open boundary conditions
describe the interaction of the system’s boundaries with external particle reservoirs. For
our case, a one dimensional system, we are considering the first site of the system being in
contact with a particle bath A and the last site to the right being in contact with a particle
reservoir B. As a result, particles enter and leave at both sides with different probabilities
and a current of particles runs through the system. The boundary induced current can be
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enhanced by an external driving that biases the hopping rate in the bulk from pure diffusion,
equal probability to hop to the left or the right, to the extreme case of complete bias with
probability one to hop to the right. This is the case of infinite forcing due to the external
field. The complete dynamics is illustrated in figure B3l A parameter ¢ is introduced to
guarantee reversibility at the boundaries. The reversibility in the bulk is assured by the
hopping rates p,q > 0.

We shall discuss in more detail the case p = 1 in this part. In this case we are going to

P 1-p

a 1-p B
e U A ravea\
N

Q00
1-p

A A A
o0 L

Figure 3.3: Illustration of the dynamical rules for the general setup of the transport processes.
Particles are allowed to hop the right with probability p and to the left with probability
g = 1 — p, respecting exclusion. At the boundary particles can enter on the left with
probability a and leave with eae. On the right, particles leave with probability 4 and enter
with probability /.

ep
~

present the phase diagram for ¢ = 0 as a function of the entrance rate on the left a and exit
rate at the right [, see figure 3.4l Three different regimes are identified. The low density
phase (LD) where the density is equal to «, the high density phase (HD) with a mean density
equal to 1 — /3, and the max current phase (MC) where the mean density in the bulk is equal
to 1/2.

For more details of the general properties of the TASEP model, please refer to [34]. The
reason to discuss transport models in addition to the reaction-diffusion models is the fact
that we can distinguish in this model bulk and boundary properties. This was not the case
for reaction diffusion models since reactions were allowed to take place anywhere across the
system and no macroscopic current of particles exists in the system.

We investigate in the next section how the dynamical rules of the dynamics for the different
models influence the stationary probabilities and stationary currents.
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Figure 3.4: Phase diagram of the TASEP model as a function of the entrance rate to the left
a and the exit rate to the right §. The hopping rate to the right is p = 1. HD is the high
density, LD is the low density, and MC is the max current phase.

3.4 Stationary Probabilities and Currents

In the remainder of this chapter, we are discussing the properties of the stationary probabil-
ities and current amplitudes of the models in table and in figure B3], see also [46]. This
discussion will allow us to characterize the steady states resulting from the fixed reaction
rates of the different models. In addition, this prepares the reader for the discussion of en-
tropy production in the coming chapters.

The analysis is organized as follows. We start with the discussion of the stationary proba-
bilities of the reaction-diffusion models to understand the influence of the different reaction
schemes. The data is presented in the following form. We calculate, for a fixed number of
sites N, the complete set of probabilities for 2V configurations. In the figures, the configura-
tions are grouped by their total number of particles. On the left we present the probability
of the empty configuration and on the right the configuration that is fully occupied. Af-
terwards, the stationary probability currents K are discussed as a function of the reaction
rates. After the discussion of stationary probabilities and currents for the reaction diffusion
models, we repeat the analysis for the transport models. At the end of the section, we are
going to summarize our results.
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3.4.1 Reaction-Diffusion Models

The discussion is organized in the following way. In figure the stationary probabilities
for all four models are discussed simultaneously for different sets of the reaction rates at
constant system size N = 8. The annihilation rate is fixed to be A = 1 and the stationary
probabilities are calculated for two different creation rates h = 0.2 and h = 1.4. The
reversibility parameter ¢ is set to zero in this calculation.

The data for the two different values of the creation parameter shows qualitatively similar
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Figure 3.5: The stationary probabilities for (a) model 1, (b) model 2, (¢) model 3, and (d)
model 4 for a fixed annihilation rate A = 1. The creation rate is set to h = 0.2 (black)
and h = 1.4 (cyan). The data is calculated for systems with N = 8 lattice sites. The
reversibility parameter is € = 0 and the diffusion constant is set to D = 1. Reprinted with
permission from S. Dorosz and M. Pleimling. Characterizing steady-state and transient
properties of reaction-diffusion systems. Phys. Rev. E, 80(6):061114, Dec 2009. Copyright
2009, American Physical Society.

behavior for the four models. We see that groups of configurations with equal numbers of
particles have approximately the same stationary probability. In fact for model 1, satisfying
detailed balance, we notice very similar behavior as for model 2, 3, and 4. For the parameter
values investigated, the variation of probability seems to be the most important for model
1. Model 2 has a larger variation than model 3, which is counter intuitive because at these
parameter values, as we see later, model 3 has a larger amplitude of probability current than
model 2 and therefore is further away from equilibrium. We conclude that the stationary
probabilities are not sufficient to distinguish an equilibrium system from a non-equilibrium
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system.
A second analysis that takes place at this point concerns the influence of the reversibility
parameter € onto the stationary probabilities. Since the entropy compares the probability of
a given sequence of configurations to the probability of the reversed sequence, shown later, £
is directly related to the magnitude of entropy change in the system. We present in figure [3.0]
the influence on stationary probabilities of model 2 and model 3 for a given set of reaction
rates.

The stationary probabilities are marginally modified by the small parameter . Only for
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Figure 3.6: The stationary probabilities for (left) model 2 and (right) model 3 for two different
values of the reversibility parameter, ¢ = 0 (black) and ¢ = 0.01 (cyan). The creation rate
is set to h = 1.0 and the annihilation rate is set to A = 1. The data is obtained for systems
with IV = 8 lattice sites and the diffusion constant is set to D = 1.

very small probability amplitudes, the influence is visible. This assures us that we are not
modifying significantly the macroscopic observables as for example the mean particle density
or correlation functions. Let us continue the characterization of the reaction-diffusion models
with the distance from equilibrium calculated by the sum of the absolute values of the
probability currents,

K = |w(Cj — C;) P(Cy) — w(C; — C;)Py(Cy)] . (3.14)

Z‘?j

In figure B.7] the current amplitudes are calculated for all four models as a function of the
creation rate h and the reversibility parameter €.

For the chosen reaction rates, we see that model 1 has a zero probability current for all
values of the creation rate h. This supports our claim made in the last section, that model 1
is an equilibrium model. Model 3 and model 4 show a monotonous increase with increasing
reaction rate h. Model 3 is increasing slower than model 4. Model 2 has a qualitatively
different behavior. At some creation value h, the total probability current shows a maxima
and for larger values of h the amplitude of K is decreasing monotonously to zero. With
increasing creation rate the system becomes more and more filled with particles. In the limit
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Figure 3.7: The total probability current K (a) as a function of the creation rate h for models
1, 2, 3, and 4 with a set reversibility parameter ¢ = 0 and (b) as a function of € for models
2,3, and 4. In all cases A = 1 and D = 1. In (b) the creation rate is h = 2. The data are
for systems with N = 8 lattice sites.

of infinite creation rate, the creation reaction of model 2 is equal to the creation reaction of
model 1 and as a consequence model 2 satisfies detailed balance.

In figure B (right) the behavior for all three non-equilibrium models is analogous. With
increasing reversibility parameter ¢, the system approaches equilibrium. For € = 1, by def-
inition, all reaction-diffusion systems in table satisfy detailed balance. In this case all
stationary probabilities are equal for models 2, 3, and 4. The statement, that all configura-
tions are equiprobable is based on the construction of closed loops in the configuration space

[108].

3.4.2 Driven-Diffusive Systems

For the two different transport models, the stationary probabilities are investigated in figure
using different values of the entrance rate o and exit rate 3. The results for the SSEP
are displayed on the left and the results for the TASEP are on the right. The configurations
are sorted first in groups of equal number of particles and for groups of configuration with
equal number of particles we ranked the configurations due to their center of mass. Starting
with configurations with a center of mass close to the left side to configurations with a center
of mass to the right side. This helps us to understand the effect of broken symmetry due to
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the boundary conditions that induces the particle current through the system. This feature
was not present for reaction-diffusion systems. The stationary probabilities show a more
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Figure 3.8: The stationary probabilities for (a) SSEP with § = 0.5, (b) TASEP with g = 0.5,
(c¢) SSEP with 8 =1, and (d) TASEP with § = 1. The entrance rate « for all cases is 0.2
(black) and 0.7 (cyan). The data is calculated for systems with N = 8 lattice sites. The
reversibility parameter is set to ¢ = 0.1.

complex pattern than the reaction diffusion systems. In the case of symmetric bulk hopping
rates, figure B8(a) and (c), configurations with equal number of particles vary significantly
due to their center of mass. Configurations with a center of mass to the left end of the
system possess a larger stationary probability than configurations with a center of mass on
the right end of the system. This effect is comparable for the two different values of 5. The
probabilities are varying strongly with the entrance rate a. Since € = 0 the particles have to
cross through the system and will finally leave the system on the right but since the hopping
rate inside the bulk is symmetric, particles are interacting with the boundaries over a larger
distance. For this reason, the biased hopping transports the particles away from the left
boundary towards the right side of the system. Correlations due to the left boundary are
entering less into the system and the effect of the right boundary becomes more important.
This can be seen in the results from the TASEP in figureB.8(b) and (d). For a small entrance
rate, the center of mass is located further to the right end of the system. At large entrance
rate, the effect of the left boundary is still present. The influence of the right boundary is
important in the case of p = 1. These probabilities are varying with /3.

In figure the stationary probability currents are displayed for the SSEP and the ASEP.
For both models the current is presented as a function of the entrance rate « for different
values of the exit rate 3. For the SSEP a monotonous increase in the current as a function
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Figure 3.9: Stationary probability current of the transport model, (left) SSEP and (right)
TASEP. The parameters are N = 8 and the reversibility parameter is set to € = 0.1.

of the entrance rate exists. The final value at o = 1 is function of the exit rate 3. For larger
values of 3 the current rises to a larger final value of the probability current. The same
behavior can be seen for the TASEP but the amplitude of the current is larger by a factor
of 5, compared to the SSEP.

3.5 Summary

In this chapter, the Master equation was introduced that allows us to define important
observables as the stationary probabilities and the non-equilibrium currents. The time evo-
lution was presented and the Liouville operator was defined. The stochastic models were pre-
sented and motivated because of their differences in the dynamics resulting from the reaction
schemes that introduced different topological properties in configuration space. This allows
us to analyze the probability current loops and their consequences for the entropy produc-
tion. Transport processes were also introduced and discussed. Due to the open boundaries
at both ends of the system, a net particle current is present in these systems that permits
us to understand its influence on entropy production. Different models were characterized
by their stationary probabilities and amplitudes of stationary probability currents.



Chapter 4

Steady State Fluctuation Relation

Ever since the discovery of steady state fluctuation relations, experiments and computer
simulations were performed to analyze shapes of entropy distributions [153] 85| [75] [52] 4T],
43| 32). For a large number of systems it has been shown that the shape of the distributions
are not gaussian but have complex structures that are tied to the underlying dynamics.
At the same time an exponential relation involving the probability distributions of entropy
change in a single steady state is satisfied. Motivated by the rich and complex distributions
that were analyzed for different systems, we are going to study here the entropy distributions
for the stochastic systems discussed in chapter This work extends the characterization
of single steady states and allows us to discuss in further detail the steady states of the
stochastic systems. We have seen that the amplitude of probability current K in the steady
state is non zero for models 2, 3, and 4. Non zero probability currents in the Master equation
distinguish systems with general steady states from equilibrium systems, satisfying detailed
balance. In both cases time translation invariance is satisfied, and for the former case an
increase in entropy is observed.

The chapter is divided in two main parts. In the first part, the characteristics of the reaction-
diffusion systems for short times are discussed. In the second part we are characterizing the
rate function for the entropy creation which is defined in the long time limit and is time
independent. Both parts provide new insights into steady state properties of interacting
many particle systems.

4.1 Entropy Production at Short Time Scales

The change of entropy in a non-equilibrium steady state is on average linearly increasing
with time. Given an initial configuration, the system is evolving along a trajectory in con-
figuration space during a certain time interval 7, and along that given trajectory we are
recording the change in the proposed definition of entropy, see equation ([AT]). If we repeat

32
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the measurement a large number of times for the same fixed time interval 7, we obtain the
probability distribution of the entropy change. The distribution itself depends on the time
interval 7 and the microscopic dynamics of the model. The statement of linear growth is
true for the average value of entropy change but the distribution itself shows important fluc-
tuations for the small systems that we are investigating. The systems that are analyzed are
models 2, 3 and 4. During short time intervals the distribution of the change in entropy
should reveal signatures of the underlying dynamics. Indeed, as it was discussed in the pre-
vious chapter, the connectedness in configuration space is qualitatively different in the three
models. This should have significant impact on the properties of the distributions of total
entropy change.

4.1.1 Method

In order to obtain the distribution of entropy change As, in a single steady state the
complete ensemble of possible trajectories is analyzed. Along each trajectory we evaluate
the total entropy change,

CO C - CH—l)
Asiot = In In
St _'_ H H—l - C)

S(CO)

1
PO

+ As,, (4.1)

{i} labels the sequence of configurations of the trajectory, and the length of the sequence
grows with measurement time M. Due to the fact that we are looking at short times, we are
considering the boundary term, In IZS((CCIS)), for finite time in addition to the medium entropy
Asy,. The boundary term can only be neglected in the long time limit, see section 2.3

As it was shown, a detailed fluctuation relation exists in a single steady state, as long as
microscopic reversibility holds [96]:

P(Asor)
( Astot)

The probability distribution P is the histogram of the outcome of a large number of real-
izations. In section it was claimed that the fluctuation symmetry is a symmetry on the
level of rate functions defined in the long time limit, when the probability distribution of
entropy change can be written as

ettt (4.2)

P(Asgy) e ™) > 1 (4.3)

where h(0o) is called the rate function of entropy production. At short times the probability
distribution is not simply given by an exponentiated product of time ¢ with a time indepen-
dent rate function. For this reason, we calculate in the following the entropy as the integral
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over the measured time interval 7. Mathematically we define the integrated rate function as
X(Astot) = — ln P(Astot). (44)

We are going to discuss the integrated rate function and the average value of entropy change
(Asioy) for different measurement times M and different system sizes N. We thereby focus
our analysis of the dependence of the reaction rates on prominent features. This adds to the
discussion of stationary probabilities and current amplitudes in the previous chapter.

4.1.2 Variation in Time and System Size

Let us start with model 2. In figure 1] we are presenting for a fixed set of parameters
the dependence of X (Asi) on the measurement time M and on the system size N. The

X(Bs)

Astot

Figure 4.1: Integrated rate function of entropy increase X (Asgy) in the steady state of
model 2 as a function of the total measurement time M (left) and system size N (right).
The parameters are D =1, h = 0.5, A\ =1 and € = 0.01. (left) N = 8 and (right) M =38.

integrated rate functions for model 2 show modulations. The positions of the peaks neither
depend on the time interval M nor on the system size N. The dependence on other system
parameters is discussed in the next subsection. We also notice that the part of negative
entropy change stays invariant for larger M.

Let us go on to discuss model 3, see figure [£.21 We will not display the results for model
4 as they are very similar to those obtained for model 3. Model 3 shows a very irregular
distribution, mainly made up of single peaks. The same irregular shape is seen in the
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Figure 4.2: Integrated rate function of entropy increase X (Asgy) in the steady state of
model 3 as a function of the total measurement time M (left) and system size N (right).
The parameters are D = 1, h = 0.5, A = 1 and ¢ = 0.01. (left) N = 8 and and (right)
M =8.

distributions of model 4. We notice that the support of the rate function for model 3 (and
model 4) is greater than for model 2 by a factor of two. The distances between peaks in the
integrated rate function for model 3 and 4 are of comparable magnitude as for model 2 and
are also independent of the time interval and the system size as it was the case for model 2.
Using these distributions, we calculate the mean values of the total entropy change for all
three models, see figure [4.3l Interestingly, in all three models we are already in the regime
where the mean entropy change grows linear in both the system size N and the measurement
time M. The slope is far greater for model 3 and model 4 than for model 2 and shows
qualitatively the same hierarchy as inferred from the discussion of the probability currents.

4.1.3 Variation of the Reaction Rates

Let us go ahead and discuss the influence of the diffusion amplitude D and of the reversibility
parameter €. Both parameters should have a strong effect on the distributions. If the
amplitude of diffusion exceeds the reaction rates, then trajectories with small number of
reactions are favored and vice versa. The effect of varying diffusion constant D on the
integrated rate function is shown in figure [4.4] for model 2 and model 3.

We see that the modulations, present in all three models, are changing with the value of the
diffusion constant D. The peak at As;,, = 0 is not changing its position but the neighboring
peaks to the left and to the right are located at varying distances. From the data for model 2,
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Figure 4.3: Expectation value of the mean entropy increase in the steady state as a function
of the total measurement time 7 (left) and system size N (right). The parameters are D = 1,
h =0.5,A\=1and ¢ = 0.01. (left) N =8 and and (right) M = 8.

X(Bs)
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Asy,

Figure 4.4: Integrated rate function of entropy increase X (As;q) in the steady state of model
2 (left) and model 3 (right) as a function of the diffusion constant D. The parameters are
N=8 M=8 h=05 A=1and ¢ = 0.001.

see figure [L4left), we infer that the distance between the peaks for the values D =0.1,1,5
does not vary monotonously with the rate of diffusion. The smallest periodicity is present
in the case of D = 1. For the values D = 0.1 (not shown) and D = 5 the distance is larger
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than for D = 1. A simple mathematical relation to relate the periodicity of the peaks to the
changing diffusion amplitude D does not seem to exist.

In the next step the dependence on the reversibility parameter € is investigated, see figure
4.5l The decrease in ¢ has two important effects. On the one hand the probability of a
rare trajectory involving transitions multiplied by ¢ will decrease if we decrease €. On the
other hand the range of values for Asy is increasing since information about the degree
of non reversibility between the forward and the reversed trajectories enter the observable.
Transitions that are proportional to € cause either a large or a very small value for the ratio
of trajectories, and the entropy change then contains a term proportional to Ine which will
cause a larger variation in the possible measured values of the entropy change Asi., see
equation .11 below.

This expected behavior is confirmed for model 2 and model 3, and a strong dependence of the

10

X(Bs)
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ol L \
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Figure 4.5: Integrated rate function of entropy increase X (As;o) in the steady state of model
2 (left) and model 3 (right) as a function of the reversibility . The parameters are N = 8,
M=8 h=05,A=1and D =1.

modulations on the reversibility parameter ¢ exists. Both the amplitude of the modulations
as well as the periodicity are changing with decreasing value of . A simple relation to
superpose the distribution could not be found. The effect of ¢ and D is similar for all
models. The discussion of the distributions as a function of the reaction rates follows.

In figure both the creation rate h and the annihilation rate A are discussed for model
2 whereas models 3 and 4 are discussed in figures .7 and .8 The positions of the peaks
vary with the value of the reaction rates but the peaks are still equidistant. For model 2
the distances decrease for larger values of the creation rate, see figure [L.0](left), and increase
for larger values of the annihilation rate, see figure [L6l(right). The parameter regime that
corresponds to small values of h and large values of X is the low density regime which for
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X(As)

As

Figure 4.6: Integrated rate function of entropy increase X (As;o) in the steady state of model
2 as a function of the creation rate h (left) and annihilation rate A (right). The common
parameters are N = 8, M =6, D = 1, ¢ = 0.01. The annihilation rate is A = 1 (left) and
the creation rate is h = 1 (right).

model 2 corresponds to the largest values of the probability current amplitude K. The
extracted values for the distances are listed in table [Z11

For models 3 and 4 the distributions are very rough. Qualitatively we see for both models
that the distance between peaks is growing with increased creation rate as well as annihilation
rate. This result is different than that for model 2. In table [41] the mean distances for
different reaction rate combinations are listed, showing that in general the distances are
of the same order of magnitude as for model 2. A simple relation for the periodicity as a
function of the reaction parameters is difficult to obtain for models 3 and 4. Only for model 2
do the distances between neighbouring maxima in the integrated rate function have a linear
dependence on the reaction rates.

To finish this first section on the total entropy change in a single steady state, we are going

Table 4.1: Mean distance of the maxima in the rate function for models 2, 3, and 4 for
different values of annihilation rate A and creation rate h with D = 1, ¢ = 0.01. The system
size is N = 8 and the driving length is M = 6.

h | model 2 | model 3 | model 4 A | model 2 | model 3 | model 4
0.5 4.7 3.8 4.3 0.1 2.9 2.8 3.7
1.0 4.1 4.1 4.6 1.0 3.2 3.5 4.5
2.0 3.5 4.2 4.7 2.0 3.6 4.5 4.7
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Figure 4.7: Integrated rate function of entropy increase X (As;q) in the steady state of model
3 as a function of the creation rate h (left) and annihilation rate A (right). The common
parameters are N = 8 M =6, D = 1, ¢ = 0.01. The annihilation rate is A = 1 (left) and
the creation rate is h = 1 (right).
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Figure 4.8: Integrated rate function of entropy increase X (As;q) in the steady state of model
4 as a function of the creation rate h (left) and annihilation rate A (right). The common
parameters are N = 8 M =6, D = 1, ¢ = 0.01. The annihilation rate is A = 1 (left) and
the creation rate is h = 1 (right).
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to present the fluctuation relation [142] for the distributions that we have just analyzed.
As a result of the exact enumeration scheme of all possible trajectories, the exponential
relation that relates probabilities of positive to negative changes in the entropy is also exact,
see figure The irregular distributions we were discussing in this section are difficult to

20 ‘

10—

In P(Ast Ot)/P(-Ast Ot)

-10+—

R |
2(-)20 -10 0 10 20

AS;
Figure 4.9: Detailed fluctuation relation of the total entropy change in a single steady state
for models 2, 3, and 4. The parameters are N =8, M =6, D =1, =0.01, A = 1, and
h =0.5.

interpret. Immediate relations between the microscopic rules of the dynamics and features in
the distributions cannot be presented. The results therefore serve to complete the discussion
of characterizing steady states and will allow us to compare the short term behavior to the
long term behavior that is discussed in the following.

4.2 Rate Functions for Entropy Production

Large deviation functions (LDF) are of great importance in the description of equilibrium
as well as non-equilibrium systems. Their mathematical structure is the basis of the modern
approach to equilibrium statistical mechanics [33] 154] with the entropy of a given configura-
tion being the large deviation function. The field in mathematics of large deviation functions
was established by Ellis [50]. In the field of non-equilibrium statistical mechanics, steady
state fluctuation relations are an example of large deviation functions. For non-equilibrium
systems we are interested in the large deviation function in the long time limit. First explicit

discussions of large deviation functions for simple systems include for example biased random
walkers, overdamped particles, and the zero range process [36, 37, 38, 51, 59] (64, 96, (97 T42].
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It was argued in [96, 03] that model dependent and universal features need to be discussed
to extend our knowledge of non-equilibrium systems in the context of large deviation func-
tions of total entropy production. Large deviation functions are also called rate functions of
entropy production. In the next subsection we give a short review of the results presented
by Mehl et al. [103].

The mathematical approach that we are exploiting is based on the work by Lebowitz and
Spohn [96], already outlined in section Z3l Our goal is to extend the findings in [I03] and
discuss interacting many particle systems to understand in more detail what the universal
and what the model dependent features in the long time limit are. We discuss the mean
entropy production rate before we present the normalized entropy production rate functions.
The main emphasis is on the behavior of the kink at zero entropy production rate as pointed
out in [I03]. We then summarize our results.

4.2.1 Motivation and Outline

We here review the results that were obtained by Mehl et al. for the rate function of entropy
production [I03]. Their work discussed, for explicit examples, the shape of the rate functions.
The models that have been studied in their paper are the asymmetric random walker and a
single overdamped particle.The found kink at zero entropy production is related to the non
reversibility of the system and trajectories of the system with negative entropy change. In
the context of current distributions in driven systems’ kinks were already reported in the
long time limit in [97]. Tt was argued by the authors of [I03] that the kink should be analyzed
in more complex systems in order to better understand its origin.

This is the motivation of this section. For the stochastic models introduced in chapter
we are going to discuss as a function of the system parameters the kink at zero entropy
production that we numerically obtain for the reaction-diffusion as well as the transport
models. Following the demonstration of the steady state fluctuation relation in section 2.3]
we determine the deformed Liouville operator L,

Ly = Y w(C@ =) M5 - Y w(c - )
c’ c’
= ) w(@ =) (€ — ) =D w(C ). (4.5)
(o4 c’

This operator allows us to calculate the time evolution of the change of entropy in the
medium As,,,
W(Cz' - Oi—i—l)

As,, =1
’ ! (Ci—l—l - Ci)

4.
s (16)
{i}
In the long time limit, the largest eigenvalue e(p) of L, is allowing us to calculate the
asymptotic form of the generating function. The eigenvalue e(u), as it was demonstrated in
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section [Z3] obeys the fluctuation symmetry,

e(p) = e(l — p). (4.7)

Based on this relation we note that the eigenvalue is symmetric and possesses a maximum
at © = 0.5 and the eigenvalue is equal to zero at © = 0 and g = 1. The next step is to
calculate from the numerical data the Legendre transform [163] of the smallest eigenvalue

x(0) = max{e(p) = (sm)po}. (4.8)

where 0 = Asy,/ (t(sw)) is the normalized entropy production rate. Symmetry (A7) trans-
lates into

X(=0) = x(0) + (sm)0, (4.9)
and translates into the following symmetry for the probability distributions P(o),

lim Plo)

= el 4.1
t—o0 P(—O’) € ( 0>

4.2.2 Mean Entropy Production Rates

The variable o is divided by the expectation value of the entropy production rate (sp,). Due
to the normalization, the information of the mean entropy production rate is lost once we are
going to discuss explicitly the function y (o). For this reason we first analyze the expectation
value (s;,) to understand its dependence on the reaction and hopping rates. The different
models are going to be discussed one after the other.
Let us start with model 2. For different fixed values of the annihilation rate A, we calculate
the expectation value of the mean entropy creation rate as a function of the creation rate
h. In the limit of h — 0, we expect, for all values of A, that the mean entropy creation
rate goes to zero. Entropy cannot be created if the system stays empty and no particles are
added during the process. If h increases, the expectation value should increase. As we have
explained in section B3] model 2 actually is only out of equilibrium as long as the system is
at low densities. Therefore we expect that for large enough creation rates, the mean entropy
creation rate decreases back to zero because of detailed balance. Due to both limiting cases
at h = 0 and A > A\, a maximum has to exist at some A.(h). The numerical analysis, see
figure 10l confirms this expectation. The slope depends on the combination of A and A
and the maximum fulfills the relation A ~ 2.5h for the range of parameters investigated. It
is interesting to analyze the impact of this maximum on the rate function y (o) in the next
subsection, see figure [£I8 This maximum is a property that is inherent to model 2 and is
not found for the other models studied here.

Model 3 and model 4 are not effectively reducing to an equilibrium system for large creation
rates h because the change in the number of particles is not matching for individual creation
and annihilation transitions. We therefore expect a monotonous increase in the expectation
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Figure 4.10: The mean entropy production rate (sy,) of model 2 for different values of the
annihilation rate A as a function of the creation rate h. The calculation is done for D = 0.5,
€ =20.01, and N =8.
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Figure 4.11: The mean entropy production rate (s;,) for model 3 and 4 for different values
of the annihilation rate A as a function of the creation rate A. The calculation is done for
D =0.5,=0.01, and N = 8.



Sven Dorosz Chapter 4. Steady State Fluctuation Relation 44

value due to the increasing probability to destroy a pair or a triplet of particles. Figure
[A.17] displays the results for model 3 and model 4 for different values of the annihilation
rate A as a function of the creation rate h. For the investigated parameter range, the mean
entropy production rate is indeed monotonously growing. As it was the case for model 2, the
mean entropy production rate is zero at h = 0. For large values of h, however it converges
monotonously to a plateau value at very large h as can be seen in the case of A = 0.1 for
both models. For the same values of A model 3 converges faster to its plateau than model 4.
We also notice that the two curves cross each other at h =~ 0.6 and that for general A\ the
mean value of the two models cross at \*(h) = 0.18h. The reason for the crossover is the
nature of the annihilation process. The effectiveness of the annihilation depends on two key
features, the frequency of annihilation and the change of the stationary probabilities of the
two configurations before and after the transition. At very low values of the creation rate the
process 2A — 0 happens with higher frequency than the process 3A — 0. Therefore model
3 has a larger mean entropy creation rate. This changes for large values of h because the
frequency of annihilation is high for both models but the change of stationary probabilities
along the trajectory is more important for model 4. As a consequence the mean entropy
production rate is expected to be larger for model 4. In between these limiting regimes
the crossover has to be expected. In the case A = 1 the crossover cannot be seen for the
parameter range of h investigated and a plateau is not yet reached. A plateau is expected
for larger values of the creation rate. As we have seen from the analysis, the three reaction-
diffusion models behave differently as a function of the creation rate h, resp. h/A\.

We discuss also the effect of the reversibility parameter ¢ for a fixed set of reaction rates.
The value of the mean creation rate has to decrease to zero when the parameter ¢ reaches
one because detailed balance is then satisfied. In contrast, it should increase with decreasing
€ because of the increase of the degree of non reversibility. Let us present in figure the
results for all three models for a given set of reaction rates. We see that all three models
behave qualitatively in the same way. For small enough values of ¢, resp. large values of
—Ine, the increase is linear in all three models. The linear increase in the expectation value
is related to the logarithm of the transition rates that enter along a given trajectory. In
general terms the change in entropy can be written as

. w(Ci = Ci1)

— -1 i+1

$m(X) = Alir_l} (At)" In II W)
- A(X)+B(X)ln5 (4.11)

for each trajectory X where B is related to how many transitions occur that are weighted
by e. Since we are interested in the mean value of $,,, we need to average over all possible
trajectories X. The average over the trajectory dependent parameter B provides us with
the mean number of trajectories that carry information about €. For values —Ine — 0 the
linear relation does not hold anymore and a flattening towards zero is observed, with the
limit —Ine — 0 satisfying detailed balance.

For completeness, we are also analyzing mean entropy production rates for the two transport
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Figure 4.12: The mean entropy production rate (sy,) for models 2, 3, and 4 as a function of
the parameter —Ine. The calculation is done for h = 0.5, A =2, D = 0.5, and N = 8.

models defined in section B3l The varied parameter is the entrance rate . We calculate
the expectation value for the symmetric diffusion in the bulk (SSEP), i.e. the hopping rate
is p = 0.5, and the biased hopping to the right (ASEP) where p = 0.95. We expect the
amplitude in the case of biased hopping to be larger than in the case of symmetric hopping.
The results are presented in figure A.I3|(left). Starting out from (sp,,) = 0 for the case of zero
entrance rate the expectation value increases monotonously and for values @ — 1, i.e. for
large enough entrance rates, converges to a plateau. The convergence to the plateau value is
slower for larger p. This convergence can be explained by the fixed exit rate [ because the
system becomes more and more filled with particles for larger values of a.

In figure .I3|(right) we are discussing two additional values of the exit rate /3 for the case
of biased hopping p = 0.95. This permits us to discuss the parameter dependence of the
crossover to the plateau. We see that this crossover is varying with respect to the exit rate
. We also see that a kink is observed for the value # = 0.25, in contrast to the two larger
values of 3 which do not display this feature. We analyze this kink in more detail for the
biased bulk hopping in figure 4. 14] where we present a detailed analysis for a large number
of values #. To quantify the kink, we are looking at the first and second derivatives of the
expectation value with respect to the creation rate a. Since the kink is not observed for
the hopping rate p = 0.5, we are looking at the even greater biased case of p = 0.995 and
reversibility parameter ¢ = 0.001.

The kink in the limit of extremely biased hopping shows a second derivative with a maxi-
mum growing in amplitude for larger values of p. For a fixed value of p small values of the
exit rate  show a more important peak in the second derivative. The peak is located at
values 3 &~ « and vanishes for § — 1. We interpret this result as a signature of the transition



Sven Dorosz Chapter 4. Steady State Fluctuation Relation 46

8
6 -
AE
0o 4l
©
\
s—a p=0.5,3=0.5 o—o p=0.95,3=0.25
,L o—op=095p=05/| | s—s p=0.95,3=0.5 i
o—o p:095,B:075
=
o 1 ‘ 1 ‘ 1 ‘ Il ‘ Il 0 ‘ 1 ‘ 1 ‘ 1 ‘ Il
0 02 04 06 08 1 0 02 04 06 08 1

Figure 4.13: The mean entropy production rate (s;,) as a function of the entrance rate «
for (left) two different bulk hopping rates p at constant exit rate 5 and (right) for different
values of the exit rate 3 at constant hopping rate p. The calculation is done for ¢ = 0.01,
and N = 8.
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Figure 4.14: (top) The mean entropy production rate (s;,) as a function of the entrance
rate a, (middle) its first derivative with respect to o, and (down) its second derivative. The
column to the left has the parameters p = 0.95, ¢ = 0.01, and N = 8. The column on the
right has the parameters p = 0.995, ¢ = 0.001, and N = 8.
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line between the low density and high density phase, see illustration 3.4l This observation
is investigated further in the next subsection that discusses rate functions.

4.2.3 Rate Functions

We now go ahead and analyze the normalized rate function x (o) for the different models. The
presentation of the numerical results is the following in the different figures. The data for a
given set of parameters is arranged in a column. On the top, we are showing the dependence
of the largest eigenvalue of the Liouville operator e(u) as a function of the parameter pu.
In the middle of the column we calculate, starting from the eigenvalue e(u), its Legendre
transform x(o), the rate function of the entropy production. Generally as a result of the
normalization by the expectation value, the Legendre transform always presents a minimum
at ¢ = 1. This allows us to compare the support and the range of variation. In order to
discuss in more detail the appearance of a kink at ¢ = 0 we calculate the derivative of the
rate function x(o) at the bottom of the column. If a kink exists, its derivative at the origin
should have a discontinuity. The value of the discontinuity is then quantified and analyzed
in more detail.

Since we are interested in the kink at zero entropy production, we want to start out with
the system size dependence. We want to see if the kink becomes more important for larger
system sizes or if the kink is vanishing. The results are presented in figure for model 3.
The analysis of the numerically accessible system sizes shows the following relation for the
discontinuity at ¢ = 0 for the reaction-diffusion models:

model2 /(0%) — x/(07) = 0.026 - N (4.12)
model3  x'(07) —x'(07) =185- N (4.13)
modeld  x'(07) =X/ (07)=77-N (4.14)

The conclusion is that in all three models the discontinuity of the derivative is increasing
proportional to the system size and the factor of proportionality differs for the three models.
In figure we show our data for model 2. The dependence on the creation rate h for
two different values of the annihilation rate A is presented. In the case of A = 0.1(left) we
observe a flat plateau for the eigenvalue e(u) that is broadening with increasing creation
rate h. The maximum value at 4 = 0.5 is decreasing towards zero for larger values of h
and the drop-off at large values of the parameter u is constant. The rate function y(o) is
increasing less steeply with increasing creation rate and the jdiscontinuity in the derivative is
less pronounced. The results for the annihilation rate A = 5 show that the dependence of the
eigenvalue and rate function is not monotonous with increasing creation rate. This is based
on the same arguments we were already presenting in the discussion of the mean entropy
production rate. In figure L.I7 we discuss the amplitude of the discontinuity as a function
of h for two values of \. The important behavior seen in the figure is the non monotonic
dependence of the strength of the kink given by the discontinuity of the first derivative of
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Figure 4.15: The results of model 3 show the smallest eigenvalue e(y) of L, (up left), the rate
function of the entropy production x(o) (right), and its derivative with respect to o (down
left) for varying system size N. The parameters in this calculation are h = 1.0, A = 0.1,
D = 0.5, and € = 0.01.

the rate function. The parameter dependence on the amplitude of the kink does present a
maximum for the case A\ = 5 as it was already observed in the mean entropy production
rate. For the case A = 0.1 the evaluated creation rates were already too large to capture the
maxima and we therefore only see the decay to zero with increasing h.

The results for model 3 resp. model 4 can be seen in figure and 4191 The plateau in
the eigenvalue is larger for the annihilation rate A = 0.1(left) than for the value A = 1(right).
In the latter case we notice almost a quadratic function because the quadratic function is
invariant under the Legendre transformation.

To have a better understanding of the strength of the kink we are going to analyze the jump
of the derivative at the origin. The results are presented in figure for models 3 and 4
and two annihilation rates A = 0.1 and A = 5. For both models a strong kink is present, the
amplitude is increasing monotonously for larger creation rates. The magnitude of the peak
in figure is far greater than for model 2, see figure .20

Let us end this section with the analysis of the transport processes. We are going to discuss
the interesting parameter combinations that showed the kink in the mean entropy production
rate, see figure 14 We start the analysis by showing in figure E.21] the data for the
symmetric and the biased bulk hopping system for various entrance rates . We want to
understand the influence of different particle densities, directly related to the rate a;, on the
shape of the rate function. The symmetric hopping case L.2|(left) does not show the kink
in the large density, « — 1, limit. Even for very small values of a, the kink is small. The
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Figure 4.16: The results of model 2 show the smallest eigenvalue e(p) of L, (up), the rate
function of the entropy production x (o) (middle), and its derivative with respect to o (down).
Two different values of the annihilation rate A = 0.1 (left) and A = 5.0 (right) are evaluated
for different values of the creation rate h. The other parameters in this calculation are
D =0.5,=0.01, and N =8.

eigenvalue function is quadratic for large . We notice that the rate functions for the values
a larger than 0.5 are similar and a superposition is attained in both cases. In the right
column of figure [.21] a kink is present and the rate functions superpose for entrance rates
a larger than 0.5. The derivative of the rate function shows that a kink is present for all
values of a. We discuss the biased hopping for p = 0.95 and p = 0.995, the same values as
for the mean entropy production rate. Different pairs of the exit rate J and entrance rate «
are chosen that correspond to the kinks in the mean entropy creation rate.

The amplitude of the kink is growing for larger values of o = (3. To understand the limit of
vanishing jump amplitude of the first derivative of the rate function, we are discussing the
case of changing bias in the hopping rate as well as the case of decreased reversibility at the
boundaries, see figure Since the degree of non reversibility in the bulk is determined
by p we are studying the limit p — 1 and analyze the amplitude of the discontinuity, see
figure .23|(left). In figure d.23] (right) we study in more detail the jump of the first derivative
of the rate function as a function of the reversibility at the boundaries with homogeneous
hopping in the bulk.

We see that the amplitude in both cases increases as a function of decreased reversibility in
the bulk and at the boundaries. From the derivative of the rate function we are obtaining
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Figure 4.17: The amplitude of the discontinuity of the first derivative of the rate function
of model 2 as a function of the creation rate h. (left) the annihilation rate is set to A = 0.1
and (right) the annihilation rate is set to A = 5. The other parameters in this calculation
are D =0.5, e =0.01, and N = 8.

the following relation for the discontinuity at o = 0,
X' (0,6) =0.82+ 0.161Ine. (4.15)

The amplitude of the discontinuity as a function of the bulk hopping rate does not have a
simple relation. The amplitude is increasing rapidly and diverges for p — 1 but a theoretical
prediction can not be presented.

4.3 Summary

In chapter d] we discussed the distributions of total entropy change for reaction-diffusion
models and transport models in their non-equilibrium steady states. Important signatures
of the dynamics were present in the distributions at short times. We are able to identify
modulations in all three reaction diffusion systems. Even though the distributions are very
irregular, the steady state fluctuation relation was exact because of the exact enumeration of
all possible trajectories. In addition, already at short times we were able to show numerically
that the expectation value of the total entropy change is proportional to the system size and
measurement time.

In the second part, we showed that rate functions in the long time limit do not display
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Figure 4.18: The results of model 3 show the smallest eigenvalue e(p) of L, (up), the
rate function of the entropy production x(¢) (middle), and its derivative with respect to o
(down) for different values of the creation rate h. The other parameters in this calculation
are D =0.5, e =0.01, and N = 8.

modulations. All details of the underlying dynamics are reduced to a kink at zero entropy
change. The discontinuity of the first derivative of the rate function showed the same be-
havior as a function of the system parameters as the probability current amplitude and the
mean entropy production rate. The parameter ¢ allowed us to manipulate the strength of
the kink. This confirms that the existence of the kink is model independent and follows
even for interacting many particle systems with boundary induced currents and chemical
reactions. At this point no thorough understanding of the presence of the kink except that
a qualitative behavior related to the mean entropy production exists. The reaction diffusion
models will be investigated further in the future and analytical aspects for related models
can be added.
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Figure 4.19: The results of model 4 show the smallest eigenvalue e(p) of L, (up), the
rate function of the entropy production (o) (middle), and its derivative with respect to o
(down) for different values of the creation rate h. The other parameters in this calculation

are D =0.5, e =0.01, and N = 8.



Sven Dorosz Chapter 4. Steady State Fluctuation Relation 53

15

o—o model 3 |
=—u model 4

X(09)-x(0)

Figure 4.20: The amplitude of the discontinuity of the first derivative of the rate function
of model 3 and model 4 as a function of the creation rate h. (left) The annihilation rate is
set to A = 0.1 and (right) the annihilation rate is set to A = 5. The other parameters in this
calculation are D = 0.5, ¢ = 0.01, and N = 8.
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Figure 4.21: The smallest eigenvalue e(u) of L, (up), the rate function of the entropy
production x(o) (middle), and its derivative with respect to o (down) for different values of
the entrance rate « for two different bulk hopping rates p = 0.5 (left) and p = 0.95 (right).
The exit rate is = 0.5, N =8, and ¢ = 0.01.



Sven Dorosz Chapter 4. Steady State Fluctuation Relation 54

e

% 100
>

X'(0)

Figure 4.22: The results for the transport models show the smallest eigenvalue e(p) of L,
(up), the rate function of the entropy production x(o) (middle), and its derivative with
respect to o (down) for different values of the exit rate § and entrance rate a for two
different bulk hopping rates and reversibility parameters p = 0.95 and ¢ = 0.01 (left) and
p=10.995 and € = 0.001 (right). The system size is N = 8.
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Figure 4.23: The smallest eigenvalue e(u) of L, (up), the rate function of the entropy
production x(o) (middle), and its derivative with respect to ¢ (down) for different (left)
values of the bulk hopping rate and (right) different values of the reversibility parameters e.
The parameters are (left) « = 3 = 0.5, ¢ = 0.001, and (right) « = 8 = 0.5 and p = 0.5. The
system size is N = 8.



Chapter 5

Evaluating the Work Observable

In chapter dl we evaluated the steady state entropy production for the stochastic models
defined in chapter Bl The prominent features of the entropy distribution were shown to
characterize non-equilibrium steady states. In the definition of the dynamics of the models
a small parameter € was introduced to ensure reversibility of all reactions. This was a neces-
sary condition for the change of entropy to be well defined. In this chapter, time dependent
processes are analyzed by varying one of the reaction rates in a finite time interval. This is
done for the observable R which reduces to the Seifert entropy, As;, in the case of a single
steady state. If ¢ = 0, the observable R is not well defined, as we would measure an infinite
change in the change in entropy R. The observable that is finite even in the case of non
reversible reactions is the observable ¢ obeying an integral fluctuation theorem, shown in
[66].

In this chapter these two different observables are discussed and analyzed for the different
reaction-diffusion systems. As long as the reversibility parameter is non zero, the observable
R, resulting from the comparison of forward and reversed trajectory, is analyzed. We show
exact detailed fluctution relations for the different models and discuss their probability dis-
tributions. The second observable we study is the work observable ¢, whose distribution is
analyzed for all four models. Based on the distribution we can verify the Jarzynski [77] and
Crooks relations [29] for model 1, resp. the Hatano Sasa [66] and Seifert entropy relation
[T42] for the non-equilibrium systems. Recalling that for systems satisfying detailed balance
we have the identity ¢ = Wy, where Wy = W — AF is the dissipated heat of the process, it
is tempting to ask whether for ¢ an exact detailed fluctuation theorem like (2.12]) can also
be encountered for a system initially in a non-equilibrium steady state. In fact, this is not
the case: the absence of detailed balance in a non-equilibrium steady state entails non-zero
probability currents, and no simple relation like the relation (ZI2) exists for ¢ in this case.
As we shall discuss below, the corresponding fluctuation ratios yield systematic deviations
from the simple behavior encountered in systems with detailed balance. These deviations
containing non-trivial information on the non-equilibrium system at hand.

The chapter is organized in the following way. We first define the transient process, its time

26
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reversed process, and the observables ¢ and R. We then examine the relation between the
two observables and discuss exact fluctuation relations. In the next step, we motivate the
calculation of distributions for the work observable even though detailed balance is broken.
We discuss the probability distributions obtained and relate them to intrinsic properties of
the dynamics. The last section is devoted to fluctuation ratios for the distributions of ¢. We
discuss the arising modulations on top of an exponential relation and summarize our results.

5.1 Motivation and Setup

In this chapter transient processes are analyzed for the reaction-diffusion systems, models
1- 4. The system under consideration is prepared in its stationary state. During the time
interval 7 one of the reaction rates is varied in time. The stationary probabilities and non-
equilibrium currents carry therefore a time index that parametrizes the process. We are
no longer analyzing the system through its properties in a steady state but we are rather
analyzing how the system responds to arbitrary fast external driving protocol.
Experimentally, a change of rates of chemical reactions can be achieved by changing the
temperature, for example. In our protocol we change one of the rates r from an initial value
ro to a final value ), in M equidistant steps of length Ar, yielding for the reaction rate the
values 7; = ro + iAr with ¢ = 0,--- , M. We assume that at every step only one reaction or
diffusion process takes place.

Respecting the varying time index, we state here the observable R that relates the forward
to the reversed trajectory. Starting from a configuration Cj, the system is in the configura-
tion C; at step 7, such that after M steps the system has performed the following path in
configuration space:

X:CO—>01—>"'—>CM_1—>CM. (51)

The probability for this path is given by

P (X) == PS(C()) M_lu)(Ci — Ci+1) y (52)

1=0

where w(C; — Cj41) is the transition probability from configuration C; to configuration Cjy1.
Denoting the reversed path by

X=Cy—Cy_q— - —C, — C, (5.3)

one defines, for Markovian systems, the quantity

R _ hl C'07710 Z l C - Cz+17 T2+1) (54>

C’Ma'rM z—l—l - Cza'rz>
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where Py(Cy, ;) is the probability to find the configuration C; in the stationary state cor-
responding to the value r; of the reaction rate r and w(C; — Ciy1,741) is the transition
probability from C; to C;,q at step ¢ + 1. The observable R in a single steady state equals
the Seifert entropy [139] as well as the finite time action functional W in [96]

M—-1

C - Cz—i-l)
In 5.5
iz:: H—l - C) ( )

R, = IHL{() =
P(X)

The index ss indicates the entropy change in a single steady state. A closer look at the
observable R reveals that its definition requires that if w(C; — Cii1,7r:41) > 0 then w(Ciyq —
C;,r;) also has to be non zero. However, in some of our reaction-diffusion models this
condition is not fulfilled as microscopic reversibility is broken. We install reversibility in
the reaction schemes by the parameter ¢ > 0, see chapter Bl If ¢ = 0, we cannot use R to
study these systems. Hatano and Sasa [66] have proposed a different quantity, called ¢ in
the following, that is closely related to R. ¢ does not require microscopic reversibility in
order to be well defined.

By the definition of the models 2, 3, and 4, irreversible trajectories appear if ¢ = 0. Actually
all trajectories that involve a change in the number of particles would be non reversible for
model 3 and model 4. Irreversible dynamics can be realized in an experiment of chemical
reactions through a fast evacuation of some of the reaction products. This makes plausible a
possible future verification of the intriguing features that are revealed in this study. A brief
account of some of our results has been given previously [45] and a more detailed discussion

with additional analysis of the complete entropy observable in the case of transient processes
can be found in [44]. The observable ¢ is defined as

- Zl i) o0

The only information that enters the observable ¢ is the stationary probabilities that are
well defined even in the limit of irreversible reactions. The quantity ¢ has been called the
driving entropy production in [63].

For a system with microscopic reversibility we can derive a relation between R and ¢. With
the help of the probability current

Ks(Civ Ci+1,7“i+1) = w(Ci—l—l - Ci,Ti+1)Ps(Ci+177“i+1) - W(Cz‘ - Ci+17 7”2‘+1)Ps(0i77“i+1) )

(5.7)
we can write Eq. (B.0) for ¢ in the following form:
M—1
K (Ci, Cig1,7i41) w(Cit1 — Ci,1ig)
—R-S"In|- + , 5.8
¢ Z [ Pi(Cizr, i) w(Cipn — Ciyry) w(Ciy1 — Ci,1y) (5:8)

which reveals that the difference between R and ¢ is composed of terms which have very
different physical origins. The first term in the In in equation (58] is due to non-vanishing
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probability currents between different configurations and is therefore characteristic for non-
equilibrium states. The second term is non-trivial only in transient processes as it accounts
for a shift in the reversed transition probability. This term reduces to the trivial value 1 in
case one remains in a given steady state, with r;,1 = r; = ro for all 7. If this steady state
is in addition an equilibrium state, the probability currents are all vanishing, and one has
R=¢=0.

It is easy to show [60], 139, [63] that for transient processes both quantities fulfill an integral
fluctuation theorem. We demonstrate in both cases the integral fluctuation relation, (e= %) =
1 and (e~?) = 1, where the average is taken over all possible histories when driving the system
out of a general steady state:

M-1 C M 1 C ~C )
ey = (Co,0) [ (Cs — Cran, i+ 1) e —
< > C'OZ%M 0 g i CO, Ig) w Ck — Ck+1, k‘ + 1)
M-1
= Z CM; H w z—l—l - Czu )
Co,...Cp 1=
M—1
- ZP CM) HZW 2+1_>Cla )
Cp i=0 C;
= Y P(Cu, 1 (5.9)
Cm
The expectation value for the observable e~ is calculated to be
M—1 M—1
- Py(Cy, k)
(e ¢> = Z +(Co, 0) HwC—>C,+1,z—|—1)H—
Co,.-.Cnm k=0 PS(Cka k+ 1)
M-1 M—1
. P,(Cy, k)
= Z ZP Co, C(]Hcl, )) u)(CiHCZ'_H,Z—i‘l) H —_—
C1,..Cnp < i=1 k=1 PS(Ck’ k+ 1>
M—1 M—1
P
= > (ZP C1, 2)w(Cy — Cs, 2 ) [T~ Cunit 1) ] poatl)
Cs2,..Cnq \ C1 i=2 k=2 5( Ky o )
:Z ZPCMla Jw(Cr—1 — Car, M)
Cym \Cm-1
Cm

where at every step we need the relation ) . Ps(Cy, j)w(C; — Cjy, j) = P(Cj, 5).
The average value, (e=?) = 1, is the Hatano Sasa relation in the case of discrete dynamics
[66]. For a system that is initially in an equilibrium steady state the relation (e7¢) = 1
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reduces to the Jarzynski relation [77] because ¢ = S(W — AF), where W is the work done
on the system, AF' is the free energy difference between initial and final states, and [ is the
inverse temperature. The difference W, = W — AF is the dissipative work.

In the following we discuss mainly numerically exact results for small one-dimensional sys-
tems. This numerical exact approach is rather straightforward and is summarized in the
Appendix [Al Larger systems can be studied along the same lines through numerical simu-
lations, but this must be done with some care in order to guarantee a sufficient sampling of
rare events [44].

5.2 Probability Distributions

We shall first discuss the probability distributions themselves. Figures show typical
examples for the probability distributions of R and ¢ when changing the creation rate from
an initial value hy to a final value hy; in M steps. We only show the case of a varying
creation rate h, but the following discussion can be made along similar lines when changing
the value of the annihilation rate A\. A important range of values in the observable ¢ and
R can be obtained by varying significantly the stationary probabilities during the process.
This is done by changing the creation parameter h or the annihilation parameter \.

Figure shows the probability distributions of R for three cases that fulfill microscopic
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Figure 5.1: Probability distributions for the quantity R when the creation rate is changed
in M=6 equidistant steps from 0.2 to 1.4 (Pp(R), black curve) or from 1.4 to 0.2 (Pr(—R),
green (gray) curve). The data is obtained for a system with N = 8 sites, with D = 5 and
A = 1. (a) Model 1, (b) model 2 with ¢ = 0.01, and (c) model 3 with ¢ = 0.1. Reprinted
with permission from S. Dorosz and M. Pleimling. Characterizing steady-state and transient
properties of reaction-diffusion systems. Phys. Rev. E, 80(6):061114, Dec 2009. Copyright
2009, American Physical Society.

reversibility: models 1, 2, and 3 with ¢ = 0.01. As already mentioned in the previous
section, the quantity R is ill defined in absence of this reversibility parameter . These
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different probability distributions are not Gaussian and are characterized by a rather irregular
structure. Their shape depends on the dynamics of the different models, expressed by the
different reaction schemes. It is, however, not straightforward to relate specific features of
the probability distributions to the different reactions. It is important to note that the peaks
dominating these distributions do not have their origin in the noisiness of the numerical data,
but are real as we are using a numerically exact method. In addition, our numerically exact
method also allows us to circumvent any issues that might appear due to an insufficient
sampling of rare events. This is of importance in the next section when we discuss the ratios
of the forward and reversed probability distributions.

The probability distributions show a strong dependence on the system parameters. This is
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Figure 5.2: Probability distributions for the quantity R for model 3 for two different values
of the diffusion rate. (a) Pp(R) from the forward process and (b) Pr(—R) from the reversed
process. Reprinted with permission from S. Dorosz and M. Pleimling. Characterizing steady-
state and transient properties of reaction-diffusion systems. Phys. Rev. E, 80(6):061114,
Dec 2009. Copyright 2009, American Physical Society.

illustrated in figure 5.2l where we compare the distributions for model 3 obtained for different
values of the diffusion rate D. When we increase the diffusion rate, the general shape of the
probability distribution changes and, in addition, a large number of distinct peaks appear.

The probability distributions for ¢ differ markedly from those for R for model 2, 3, and
4, see figure (.3l This was expected as the main difference between both quantities are the
probability currents which are non-zero for a system that is out of equilibrium. It is only for
the equilibrium model 1 that the distributions for both quantities match. Interestingly, the
probability distributions for ¢ for both the forward and reversed processes are characterized
by the presence of prominent peaks. An increase of the diffusion constant strongly amplifies
these peaks but does not change the overall shape of the probability distributions. The fact
that the heights of the peaks depend on the value of the diffusion constant indicates that
these peaks are related to trajectories in configuration space that are dominated by diffusion
steps and not by reactions.

In figure 5.4 we verify for model 3 that the main contributions to the peaks for a drive of
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Figure 5.3: Probability distributions for the quantity ¢ when the creation rate h is changed
in M=6 steps from 0.2 to 1.4 (Pr(¢), black curve) or from 1.4 to 0.2 (Pr(—¢), green curve).
The data has been obtained for a system with N = 8 sites, with D = 5 and A = 1. (a)
Model 1, (b) model 2, (c) model 3, (d) model 2 with ¢ = 0.1, and (e) model 3 with e = 0.1.
Reprinted with permission from S. Dorosz and M. Pleimling. Characterizing steady-state
and transient properties of reaction-diffusion systems. Phys. Rev. E, 80(6):061114, Dec
2009. Copyright 2009, American Physical Society.

length M = 6 indeed come from the trajectories where only diffusion takes place such that
the number of particles is constant along these trajectories. The subleading contribution,
also shown in figure [5.4] comes from the trajectories where a single reaction takes place
which changes the number of particles in the system. Because the peaks are dominated by
trajectories with pure diffusion, the positions of the peaks are the same for the forward and
reversed processes, we are able to identify the leftmost peak as a result from the diffusion of
a single particle in the system, whereas the rightmost peak is due to the diffusion of a single
empty site in the system.

Before closing this section, we remark that in [63] similar peaks have been observed in
the probability distributions of the driving entropy production as well as of other related
quantities in a model for electron transport through a single level quantum dot because the
underlying dynamics is a stochastic counting process of events.
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5.3 Fluctuation Ratios

After the discussion the probability distributions of the quantities R and ¢, we move on
and study the fluctuation ratios formed by these probability distributions. For a system
driven out of an initial equilibrium state and fulfilling detailed balance, Crooks has shown
the exact relation (ZI2]) to exist between the probability distributions of the dissipative work
measured in the forward and time-reversed processes. This remarkable result can be extended
to systems that are still reversible microscopically but that do not fulfill detailed balance
any more [64]. As illustrated in figure for models 2 and 3, the ratios of the probability
distributions for R show a simple exponential dependence on R. The perfect exponential
obtained from our data nicely validates our numerical exact approach. Obtaining a plot of
similar quality through Monte Carlo simulations is difficult as rare events are then hard to
measure.

Even though in the absence of microscopic reversibility R is ill defined, this is different for
¢ as this quantity exclusively involves the steady-state probabilities, see equation (5.0). For
an equilibrium system ¢ fulfills an exact fluctuation theorem as it then reduces exactly to
the dissipative work. As shown in figure for model 1, an exponential relation is indeed
obtained for all parameter values as well as for different driving processes h(t).

However, for a system with non-equilibrium steady states no exponential detailed fluctuation

relation is expected for ¢ as this quantity does not contain the information on non-equilibrium
currents, see equation (B.8). We show in figure 5.7 ratios of the probability distributions
of ¢ for models 2 and 3. For model 2 the deviations from the exponential are random
and no pronounced dependence on system parameters, as for example the diffusion rate D,
is observed. For model 3, however, a qualitatively different behavior is encountered and
systematic deviations in the form of oscillations are observed. Similar oscillations are also
observed for model 4 where three neighboring particles are destroyed in the annihilation
process.
Interestingly, the amplitudes of these oscillations increase for increasing diffusion rates. At
first one might think that this increase in peak height when increasing D should be related
to the increase of the peaks in the probability distributions themselves, see the discussion
in the previous section. However this is too simplistic, as an increase of peak heights in the
probability distributions is also observed for models 1 and 2 for which we do not observe in
the corresponding behavior in the fluctuation ratios. There is a qualitative difference in the
dynamics between models 1 and 2 on the one hand and models 3 and 4 on the other hand.
For the former models any change in the forward and reversed probability distributions is
compensated when forming the ratio (this compensation is exact for model 1 and approximate
for model 2), whereas for the latter models this compensation is only partial, such giving
rise to peaks also in the fluctuation ratios.

Before discussing the origin of this difference, let us first have for model 3 a closer look at the
peaks in the fluctuation ratio. We first note that the positions of these peaks are not identical
to the positions of the extrema in the probability distributions (see for example figure [(5.7]).
In table Bl we compare the positions of the maxima and minima in the fluctuation ratio
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with the peak positions in the probability distributions. The observed offset means that
the peaks in the probability distributions for the forward and reversed processes compensate
each other when forming the ratio, but that the compensation is only partial away from the
peaks. Recalling that the peaks result from trajectories in configuration space with only
diffusion steps and that trajectories with reactions make up the part between the peaks, we
can conclude that reactions are responsible for the peaks in the fluctuation ratios.

In order to verify this assumption we analyzed the contributions to the fluctuation ratio
coming from the different types of trajectories. We show in figure that the observed
minima and maxima are indeed mainly due to the trajectories with a single reaction process.
For this we compare the fluctuation ratio with the quantity I1z(¢)/Ilg(—¢) where I1(¢) is
the probability distribution for all trajectories having (a) only diffusion steps or (b) exactly
one reaction process. Obviously, the peaks in the latter ratio coincide with the peaks in the
fluctuation ratio. As a second interesting observation we note that the oscillations in the

PD maxima | FR maxima | FR minima
—1.63 —1.78 —-1.5
—0.61 —0.72 —0.38
0.60 0.50 0.82
2.02 1.89 2.25
3.64 3.44 3.84

Table 5.1: Positions of the maxima in the probability distributions (PD) and of the maxima
and minima in the fluctuation ratio (FR) for model 3, with D =5, hy = 0.2, Ah = 1.2, and
A = 1. The system size is N = 8 and the driving length is M = 6.

fluctuation ratios are not restricted to cases where microscopic reversibility is broken but are
much more widespread. As is shown in figure 5.9 for model 3 with € > 0 (the same holds for
model 4 with € > 0) peaks in the fluctuation ratios also show up in some systems where all
reactions are reversible.

In order to understand the origin of these oscillations we need to go back to the different
reaction schemes summarized in table The configuration space of a reaction-diffusion
system can be thought to be composed of smaller units formed by the configurations with a
common number n of particles. A diffusion step conserves the number of particles, thereby
connecting two configurations in the same unit. A passage from one unit to another always
involves a change of particle number and is therefore exclusively due to a reaction process.
This is sketched in figure
Keeping this in mind, a fundamental difference emerges between models 1 and 2 on the one
hand and models 3 and 4 on the other hand. In the former systems every reaction changes
the particle number by 1, An = 41. In the latter systems, however, also larger changes
in the particle number happen in the annihilation process, with An = —2 for model 3 and
An = —3 for model 4. As a consequence, loops in configuration space that connect a unit
with constant n with itself and that involve reactions display an asymmetry in the number
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of creation and annihilation processes. Thus for model 3 the smallest loop contains two
creation processes and one annihilation. This effect is still present, even though in a weaker
form, when we add the backreactions and end up with a microscopically reversible model like
model 3 with € > 0 with a variable number of particles added or subtracted in the different
reactions. It is this difference in the number of particles created in a creation process or
destroyed in an annihilation event that yields contributions to the probability distributions
which are not compensated in the fluctuation ratio.

5.4 Summary

In chapter [ transient processes were analyzed for reaction diffusion models. We identified
two observables that were investigated in a numerical exact method and with Monte Carlo
simulations. The relationship between the two observables were presented. Whereas the
observable R reduces to the Seifert entropy that was analyzed in chapter 3l for single steady
states, the observable ¢ is equal to the work observable in the Jarzynski relation if detailed
balance is satisfied. The latter has the advantage that it is well defined even in the extreme
case of irreversible transitions that are present if € = 0.

The probability distributions for a linear increasing creation rate were analyzed. None of the
distributions had a gaussian like shape. The distributions were irregular with peaks arising
if trajectories become far more probable than others. In our case this was achieved with an
increased diffusion constant. Whereas a one to one correspondence was possible between the
amplified peaks and the number of particles for the observable ¢, this was not possible for
the complex shape of the distributions for the observable R.

We went on and confirmed for reversible reactions that the observable R fulfills an exact
detailed fluctuation for all parameter values. For the observable ¢ we also showed for model 1
that the Crooks relation holds exactly. This was also tested for different ways of changing the
creation rate in time. For models 2, 3 and 4 we then calculated the ratio of the forward and
reversed distributions. In this case deviations from the exponential relation were expected.
We found that in addition to an irregular pattern of scattering around the exponential for
model 2, regular patterns exist for model 3 and model 4. These patterns were modulations.
They are rooted in the unsuccesful compensation of peaks in the forward and reversed
distributions. For larger values of D, model 3 and model 4 had increased modulations. We
identified the main contribution coming from trajectories having the majority of transitions
due to diffusion and one or two reactions. The topology in configuration space is the reason
for this. Model 2 is not showing signatures in the ratio because only subgroups with a
difference of one particle are connected by reactions, whereas for model 3 and model 4 larger
changes in the total number of particles exist for a single reaction. Therefore we can see in the
ratio of the distributions the underlying reaction schemes by analyzing the work observable

0.
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Figure 5.4: Main contributions to the probability distributions for ¢ in the forward and
reversed processes. The black lines show the full probability distributions whereas the gray
lines show the contributions coming from (a,c) trajectories in configuration space with only
diffusion steps and no reactions and (b,d) from trajectories where exactly one reaction takes
place that changes the number of particles in the system. The data are for model 3 with
D =10, hg = 0.2, Ah =1.2, and A = 1. The system size is N = 8 and the driving length is
M = 6. Reprinted with permission from S. Dorosz and M. Pleimling. Characterizing steady-
state and transient properties of reaction-diffusion systems. Phys. Rev. E, 80(6):061114,
Dec 2009. Copyright 2009, American Physical Society.
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Figure 5.5: Fluctuation relation for the observable R for model 2 and model 3 for different
values of the parameter €. The parameters in this calculation are hg = 0.2, Ah = 1.2,
A =1,and D = 5. The system size is N = 8 and the driving length is M = 6. Reprinted
with permission from S. Dorosz and M. Pleimling. Characterizing steady-state and transient
properties of reaction-diffusion systems. Phys. Rev. E, 80(6):061114, Dec 2009. Copyright
2009, American Physical Society.
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Figure 5.6: Fluctuation relation for the observable ¢ for model 1 with (a) different values of
D and (b) different ways of changing the parameter h(t) with D = 1. The driving process
usually studied in this paper and which yields the data shown in (a) is h(t) ~ t. The
parameters used in these calculations are hg = 0.2, Ah = 1.2, and A = 1. The system size is
N = 8 and the driving length is M = 6. Reprinted with permission from S. Dorosz and M.
Pleimling. Characterizing steady-state and transient properties of reaction-diffusion systems.
Phys. Rev. E, 80(6):061114, Dec 2009. Copyright 2009, American Physical Society.
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Figure 5.7: Fluctuation ratios for the observable ¢ for (a) model 2 and (b) model 3 and
different values of the diffusion constant . Whereas in model 2 only random deviations
from a simple exponential behavior are observed, systematic deviations show up for model 3.
This is highlighted in (¢) and (d) where we subtract ¢ from the logarithm of the fluctuation
ratio. The light gray lines indicate a simple exponential dependence. The parameters used
in this calculation are hy = 0.2, Ah = 1.2, and A = 1. The system size is N = 8 and
the driving length is M = 6. Reprinted with permission from S. Dorosz and M. Pleimling.
Characterizing steady-state and transient properties of reaction-diffusion systems. Phys.
Rev. E, 80(6):061114, Dec 2009. Copyright 2009, American Physical Society.
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Figure 5.8: Comparison for model 3 of the fluctuation ratio (black line) with the ratio
IIr(¢)/Ir(—¢) (cyan line) where I1(¢) is the probability distribution of ¢ for all trajectories
with (a) only diffusion steps and (b) exactly one reaction process. Note that for trajectories
with only diffusion few values of ¢ can be realized. The common parameters are h = 0.2,
A=1,M =6and N =8 and D = 5. Reprinted with permission from S. Dorosz and M.
Pleimling. Characterizing steady-state and transient properties of reaction-diffusion systems.
Phys. Rev. E, 80(6):061114, Dec 2009. Copyright 2009, American Physical Society.
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Figure 5.9: Fluctuation relations for model 3 and different values of €. The values of the
parameters are D = 5, hg = 0.2, Ah = 1.2, and A = 1. The system size here is L = 10 and the
driving length is M = 10. These data have been obtained through Monte Carlo simulations.
Reprinted with permission from S. Dorosz and M. Pleimling. Characterizing steady-state
and transient properties of reaction-diffusion systems. Phys. Rev. E, 80(6):061114, Dec
2009. Copyright 2009, American Physical Society.



Chapter 6

Conclusion

Characterizing the out-of-equilibrium properties of interacting many-body systems remains
one of the most challenging tasks in contemporary physics. The recent advent of exact
fluctuation and work theorems yielded some excitement in the community as it indicated a
possible way of characterizing large classes of non-equilibrium systems.

In our work we try to characterize diffusion-limited reactions both in their non-equilibrium
steady state and in the transient state when the systems are driven out of stationarity. For
systems in their steady state we confirm the expectation that probability currents allow
to distinguish between equilibrium and non-equilibrium steady states. In addition, non-
equilibrium currents across bonds connecting two configurations allow to define a metric
that quantifies the distance to equilibrium. The probability current amplitude K was shown
to grow linearly with the system size and to approach zero in the case of detailed balance.
We were able to identify with the help of K the qualitative differences between the differ-
ent non-equilibrium reaction-diffusion models. This discussion showed that non-equilibrium
currents are needed in order to describe the stationary states of stochastic systems far from
equilibrium. It was further shown for transport models how the particle current running
through the system affects the stationary probabilities and the amplitude K. This way
of characterizing non-equilibrium steady systems remains valid even when microscopic re-
versibility is broken.

We further analyzed the steady states of the different reaction-diffusion models for different
system parameters. The reversibility parameter ¢ has to be greater than zero in this case be-
cause the definition of entropy would otherwise not be well defined. For short measurement
times we saw important modulations in the logarithm of the probability distributions of
total entropy change. These modulations are present for all values of the system parameters
and remain constant for different system sizes and measurement times. The distributions
themselves are irregular even though the algorithm used is exact. Even though the distri-
butions are very irregular, we find that the expectation values for the mean entropy change
is already growing linearly with system size and measurement time. The periodicity of the
modulations depends on the reaction rates, but a general relation to predict the positions of
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the maxima could not be obtained.

In the second part of the analysis of entropy production in single steady states we investigated
the long time limit. In this limit the rate function of entropy change is time independent
and a function of the normalized variable o. Previous results of asymmetric random walks
and overdamped particles were extended in this work to many particle systems in order to
understand the origin of a characteristic kink at zero entropy production. With the help of
the different reaction-diffusion and transport models we characterized the discontinuity in
the first derivative of the rate function. We find the same qualitative behavior as we have
seen for the amplitude of the probability current. The existence of the kink is therefore not a
model dependent feature but rather expresses the non-equilibrium properties of the system.
The calculation of the entropy production allowed us also to investigate the parameter depen-
dence of the mean entropy production rate (sy,). A general statement for reaction-diffusion
processes could not be made. For the transport models we saw a kink when the entrance
rate « is equal to the exit rate 3. Since the peak is decreasing in magnitude when o — 1
we interpret this anomaly as a signature of the coexistence line between the high and low
density phases of the irreversible TASEP model.

In chapter Bl we analyzed the stationary properties of the reaction-diffusion models by driv-
ing the system out of the stationary state. One of the reaction rates was varied in a finite
time interval and the change in entropy was recorded. Two observables were analyzed. The
observable R, see eq. (B.4)), relies on the reversibility of the dynamics. As long as the re-
versibility parameter € > 0, all models satisfy an exponential relation between forward and
reversed process. The distributions are non gaussian and have amplified peaks if the rate of
diffusion increases. A simple relation between the details of the distributions and the system
parameters does not seem to exist.

Since many of the reaction-diffusion models are irreversible, we focused on the analysis of
the observable ¢, called the driving entropy production, see eq. (5.0)), initially introduced
in [66, 63]. This quantity exclusively uses stationary probabilities and therefore remains
well defined even in the absence of microscopic reversibility. In the case of an equilibrium
reaction-diffusion model, satisfying detailed balance, the work observable ¢ shows an exact
exponential relation between the forward and reversed process. This allowed us to verify the
Crooks and Jarzynski relation for different protocols.

Whereas the driving entropy production always fulfills a global fluctuation theorem [66] [63],
it only fulfills a detailed fluctuation theorem for systems with equilibrium steady states. At
first look, this seems to strongly reduce the usefulness of his quantity for the characterization
of systems with non-equilibrium steady states. However, as we showed, the deviations of
the fluctuation ratios for ¢ from a simple exponential behavior do contain non-trivial infor-
mation on the trajectories in configuration space. Indeed, in cases where the change in the
number of particles is different for different reactions, we observe systematic deviations from
a simple exponential behavior. These deviations, which take the form of peaks superimposed
on an exponential, mainly result from trajectories in configuration space where exactly one
reaction takes place.

Based on the reaction schemes discussed in this work and given in Table 3.2] we expect the
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peaks to appear in the fluctuation ratios for ¢ for any reaction-diffusion system that allows
for a variable number of particles to be created or destroyed in the different reactions. This
also encompasses more complicated systems with two or more particle types. In addition,
signatures of the same type should also be observed for other system classes with a con-
figuration space topology that is similar to that of the the reaction-diffusion systems (i.e.,
composed by groups of configurations that are only connected in a very specific way) and
with a similar asymmetry in the configuration space trajectories.
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Appendix A

Numerical Algorithm

We discuss the numerical algorithm that was exploited in chapter dl and Bl In chapter (4] the
distributions for total entropy production in a steady state were evaluated. For short times
all possible trajectories were individually generated and the corresponding change in entropy
was recorded in a histogramm. The analog procedure was applied in chapter 5l The reaction
rates were now changing of time. Nevertheless the complete set of possible trajectories, this
time for a transient process, were analyzed one by one and the distribution was obtained.
We discuss in the following the calculation of these probability distributions in the case of
time dependent reaction rates. This includes the time independent case of chapter @l
During the time dependent process one of the reaction rates r is varied from its initial value
ro to the final value r; in M time steps. In the case of a linear variation in time, intermediate
reaction rates are calculated as r; = ry + %(T’M —r;), 1 =0,---M. The definition of the
observables ¢ requires the stationary probabilities for any value r;. This is easily done by
determining the unique eigenvector corresponding to the eigenvalue zero of the Liouville
matrix by standard numerical routines [121I] for every time step. We then need to generate
all possible sequences of configurations (paths in configuration space) X = Cy — C} —

- — Cy_1 — (), where only one reaction or diffusion takes place at every step.
This allows us to enumerate all possible trajectories and to obtain an exact exponential
relation between the forward and reversed processes. Starting form every possible initial
configuration, we have to built up a tree structure to all the configurations that can be reached
in M steps with non-zero probability. This is done recursively by a standard depth-first
search algorithm that ends when we reach the M step. We now have to attach a probability
to every one of these generated paths. For this we are multiplying the probability, Ps(Co, 7o),
to select the initial configuration Cy with the product of the M transition probabilities
W(Cz‘ — Ci+1,7“i+1) :

M-1
Pp (X) = Py(Co, o) H w(C; — Cig1,Tiy1) - (A.1)

1=

87
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Having now determined every path and its probability, we need in addition the values of ¢
along these different paths, which we obtain through the equation

M-1

¢(X) =Y (InP(Csyrizn) — I P(Cyy1y)) (A.2)

=0

where P,(Cj,r;) is the stationary probability to find the configuration C; at the value 7; of
the rate r. Putting everything together, the probability distribution is finally obtained by
summing over all trajectories, respecting the delta constraint, through the expression

Pr(6) =Y Pr(X) 6 (6(X) = ¢) . (A.3)

In addition to this forward process we also study the reversed process where we start in the
configuration C); with the rate ry; before changing the reaction rate in M steps to its final
value rg. The probability distribution for this process is

Pa(6) = > Pa(X) 8 (3(X) - ) (A4)
with e
Pr (X) = Ps(CM,TM) H W(CM—z' — CM—i—lJ’M—z’—l) . (A-5)

In chapter B we discuss not only the quantity ¢ but also the quantity R defined by Eq.
(54). For this second quantity the procedure is exactly the same, only the calculation of
the values of ¢ for the different paths has to be replaced by the values of R. This numerical
exact approach is limited to small system sizes N and few time steps M, as the number of
paths grows exponentially with both N and M, see figure [Al For example, for N = 6 the
number of paths increases from 404 for M = 2 to 8.6-10% for M = 9. As an alternative, one
can study larger systems with more steps through Monte Carlo simulations, which, however,
does yield rather noisy data. In order to discuss the probability distributions obtained from
Monte Carlo simulations, we compare in figure the exact results and the results obtained
from simulation both for the probability distribution, figure [A.2|(left), and the corresponding
fluctuation ratio, figure[A.2(right). For model 3 the distributions are overlapping. In contrast
the fluctuation ratio shows deviations for the extreme values of R that correspond to very
unlikely events. The magnitude of the deviations are of comparable size as for model 2 in
the case of the observable ¢, see figure (.7 This fact would have hidden the observation
of scattered points around the exponential that were due to non-equilibrium currents and
are a result of the exact calculations. For that reason we are relying in the discussion of
fluctuation ratios on the numerical exact results.

We want to address one more fact about the generation of trajectories. As we outlined, we
assume that in every time step one transition occurs. The external parameter is varied in
discrete time steps, and therefore only contributions to the observable ¢ enter if the reaction
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calculation time

7 8
timesteps M

Figure A.1: Exponential growth of the calculation time in function of the number of steps
for model 1, see chapter B, with N = 6 sites where the creation rate h was changed between
ho = 0.2 and hjy; = 1.4. For this calculation we set A = 1.0 and considered both vanishing
(D = 0) and non-vanishing (D = 1) diffusion rates.

100 —

T
0 [ |=— exact enumeration )
1 E | — MC simulation datg 3

10

In P(R)/P(-R)

-10

Figure A.2: Comparison of the numerical results obtained by exact enumeration and Monte
Carlo simulations. The calculation is done for model 3, see chapter Bl with N = 6 sites
where the creation rate h is kept constant for M = 6 time steps. For this calculation we set
A=1.0and D = 5.

rates are changing in time. The kinetic Monte Carlo algorithm that could be used as an
alternative in this analysis would produce a larger number of trajectories that would vary
in the number of configurations that were visited [I5], [60} 120]. Since an exact enumeration
would not be possible we choose to work with an exact enumeration scheme.
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