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ABSTRACT 

 

 

       Microstructure and photonic crystal fibers with periodic as well as random refractive-index 

distributions are investigated. Two cases corresponding to fibers with one-dimensional (1D) 

radial index distributions and two-dimensional (2D) transverse index distributions are considered. 

For 1D geometries with an arbitrary number of cladding layers, exact analytical solutions of 

guided modes are obtained using a matrix approach. In this part, for random index distributions, 

the average transmission properties are calculated and the influence of glass/air ratio on these 

properties is assessed. Important transmission properties of the fundamental mode, including 

normalized propagation constant, chromatic dispersion, field distributions, and effective area, are 

evaluated. For 2D geometries, the numerical techniques, FDTD (Finite-Difference Time-Domain) 

method and FDM (Finite Difference Method), are utilized. First, structures with periodic index 

distributions are examined. The investigation is then extended to microstructure optical fibers 

with random index distributions.  

 

       Design of 2D microstructure fibers with random air-hole distributions is undertaken with the 

aim of achieving single-mode guiding property and small effective area. The former is a unique 

feature of the holey fiber with periodic air-hole arrangement and the latter is a suitable property 

for nonlinear fiber devices. Measurements of holey fibers with random air-hole distributions 

constitute an important experimental task of this research. Using a section of a holey fiber 

fabricated in the draw tower facility at Virginia Tech, measurements of transmission spectra and 

fiber attenuation are performed. Also, tests results for far-field pattern measurements are 

presented.  

 



 iii

       Another objective of this dissertation is to explore new applications for holey fibers with 

random or periodic hole distributions. In the course of measuring the holey fibers, it was noticed 

that robust temperature-insensitive pressure sensors can be made with these fibers. This offers an 

opportunity for new low-cost and reliable pressure fiber-optic sensors. Incorporating gratings into 

holey fibers in conjunction with the possibility of dynamic tuning offers desirable characteristics 

with potential applications in communications and sensing. Injecting gases or liquids in holey 

fibers with gratings changes their transmission characteristics. These changes may be exploited in 

designing tunable optical filters for communication applications or making gas/liquid sensor 

devices. 
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Chapter 1   

 

Introduction 
 

 

 

 

 

       Optical fibers have many important applications, particularly in communication systems, 

sensors, medical instrumentation, and many kinds of optical components. During the past three 

decades, a great deal of effort has been devoted to the development of new types of optical fibers 

with the aim of improving the performance and reducing the cost of fibers in these applications. 

A holey fiber is one of the most recent advances in fiber-optic technology that has attracted 

considerable interest from many researchers around the world. An important feature of a holey 

fiber is that it can be made of a single material, in contrast to all other types of optical fibers, 

which are manufactured with two or more materials.  

 

       Since the introduction of holey fibers, major research and development efforts have been 

launched to investigate their transmission properties, explore new applications for them, refine 

the manufacturing and production of these fibers, and make them cost effective. Because of their 

novel structure and unique properties that cannot be achieved from conventional step-index 

fibers, holey fibers continue to be an active area of research in the foreseeable future. Holey fibers 

have been studied theoretically and experimentally. While many important properties of holey 

fibers have been studied in recent years, researchers are still exploring ways of better 

understanding and are developing better tools for the analysis and design of these fibers. 

 

       Holey fibers may assume different geometries depending upon the desired applications. A 

well-known type of holey fiber consists of a solid core region and a cladding region with air holes 

along the fiber axis in a periodic hexagonal arrangement. The air holes are located at the center 
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and six corners of each hexagon. Strictly speaking, the holey fiber does not have a clear boundary 

between the core and cladding regions. However, the central part of holey fibers can be regarded 

as the core region. In such structures, the cladding might be viewed as a medium of lower average 

refractive index than the central region. Light propagation in this type of holey fibers is primarily 

due to the index difference effect. Holey fiber operating based on index difference effect can also 

be fabricated by drawing a solid silica rod surrounded by several rings of glass tubes. Another 

type of holey fiber has an air hole in the central region, in which light guidance is believed to be 

primarily due to the photonic bandgap effect. Holey fiber with higher core index, in which the 

core is made of doped glass, have also been fabricated. A literature survey on various types of 

holey fibers will be presented in Chapter 2. Also, background on photonic crystal structures, from 

which the holey fibers originated, will be discussed. 

 

       Holey fibers have been studied both theoretically and experimentally. Moreover, the 

theoretical analyses of these fibers have been carried out numerically as well as analytically. 

Clearly with their complex geometry, holey fibers, as two-dimensional photonic crystal 

structures, do not lend themselves to exact analytical solutions. An exception is one-dimensional 

photonic crystal waveguides for which such solutions exist. 

 

       The advantage of analytical solutions is that they provide much better physical insights than 

the numerical solutions. In order to gain an understanding of the fundamental properties of 

photonic crystal waveguides, one-dimensional cylindrical photonic crystal fibers will be studied 

in Chapter 3. Exact solutions for electromagnetic fields are obtained and essential properties such 

as dispersion and effective area are investigated. 

 

       Nearly the entire research work on holey fibers has been on the types with periodic hole 

distributions. However, by the virtue of index guiding mechanism, holey fibers with random hole 

distributions seem to be capable of guiding light and thus be able to offer most functionalities of 

holey fibers with periodic holes. Holey fibers with random hole distributions can be manufactured 

using low cost techniques. Recently, researchers at Virginia Tech have developed a sol gel 

technique for fabrication of holey fibers with random hole distributions. A comprehensive 

analysis of holey fibers with random hole distributions has not yet been reported in the open 

literature. One of the objectives of this research is to carry out a thorough investigation of 

propagation properties of this type of holey fibers.  
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       Since refractive index variations in holey fibers with random hole distributions are arbitrary, 

numerical techniques are best suited for the analysis of these fibers. Two numerical techniques 

are employed in this dissertation – FDTD (finite-difference time-domain) method and FDM 

(finite difference method). These methods have been widely utilized to solve electromagnetic 

problems numerically. Each technique has certain advantages; for example, in contrast to the 

FDM, the FDTD method does not generate spurious solutions (modes). Conversely, once the 

propagation constant of a mode is determined, the calculation of field components is more readily 

accomplished using the FDM. The utilization of two methods also allows for cross-checking the 

solutions and thus gaining confidence in the accuracy of results. The formulations of FDTD and 

FDM techniques are discussed in Chapter 4. Also, in this chapter solutions for holey fibers with 

periodic hole distributions are presented and compare with published data in order to be assured 

of the correctness of the formulations and related computer programs. The analyses of one- and 

two-dimensional holey fibers with random hole distributions are presented in Chapter 5. 

 

       Measurements of holey fibers with random air holes constitute an important experimental 

task of this research. In Chapter 6, measurements of transmission spectrum and absorption and 

scattering losses in straight fibers are addressed. Also, test results for far-field pattern 

measurements are presented in this chapter.  

 

       Another objective of this dissertation is to explore new applications for holey fibers with 

random hole distributions. In the course of measuring the holey fibers fabricated in the draw 

tower facility of Virginia Tech, we discovered that robust temperature-insensitive pressure 

sensors can be made with these fibers. Incorporating gratings into these holey fibers in 

conjunction with the possibility of dynamic tuning offers desirable characteristics with potential 

application in fiber-optic communication systems. Chapter 7 is devoted to discussing the novel 

applications of holey fibers. Finally, Chapter 8 summarizes the conclusions of this work and 

outlines the directions for further research. 
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Chapter 2 

 

Background Information and Literature Survey 
 

 

 

 

 

2.1 Introduction 
 

       Since the invention of photonic crystal fiber in mid 90’s, a great deal of interest in the optics 

and communication communities has focused on this new kind of optical fiber during the last 

several years. Basically, photonic crystal fibers are optical waveguides with two-dimensional 

periodic microstructures. If in an optical fiber uniform and identical air holes with some type of 

periodic arrangement run along the direction of wave propagation, such fiber is referred to as 

photonic crystal fiber (PCF). On the other hand, some investigators have suggested that the air 

hole arrangement, while maintaining a regular pattern, may not be periodic or may even be 

completely random in shape, size, and location and yet provide light guidance. This brings 

another, yet broader nomenclature, the “holey fiber.” 

 

       Because of its unique structure, which is different from those of the conventional step-index 

or graded-index fibers, a holey fiber can provide propagation properties not easily attainable from 

conventional fibers. For example, holey fibers can be designed to be single-mode over the entire 

wavelength range of interest in optical communications, provide small and nearly constant 

dispersion over a wide wavelength range, or be a highly nonlinear optical fiber. This novel fiber 

offers the potential for a variety of applications such as high-power lightguide with low loss, 

supercontinuum generation, grating-incorporated tunable filter, and polarization maintaining fiber. 

 



Chapter 2  Background Information and Literature Survey 
 

 5

       In the following sections, first some background information on photonic crystal structures is 

given. Then, a survey of literature on the analysis, design, measurements, and applications of 

holey fibers is presented.  

 

 

2.2 Background Information on Photonic Crystal Structures 
 

       A crystal is a periodic arrangement of atoms or molecules. If a small basic building block of 

atoms or molecules is repeated spatially, a crystal lattice will be formed. As is well known, 

semiconductor materials have a bandgap between the valence and conduction energy bands. 

Electrons are forbidden to occupy any energy level within the bandgap. Similarly, if the dielectric 

constant of a material changes periodically in space, the material is referred to as a photonic 

crystal. A photonic crystal possesses a forbidden frequency band in which propagation of 

electromagnetic waves is prohibited. According to the number of directions in which dielectric 

materials exhibit periodicity, one-, two-, or three-dimensional photonic crystal structures are 

possible. Scattering of light by photonic crystals can produce many of the analogous phenomena 

for photons to the atomic potential acting on electrons. 

 

       Photonic crystal structures are analogous to normal crystals in which atoms or groups of 

atoms are arranged in a repeating pattern, except that the repeat period is on the order of a micron 

rather than a fraction of a nanometer. In 1987, Yablonovitch suggested an application of photonic 

crystals in semiconductor lasers in order to control the spontaneous emission [1]. This was based 

on the idea that a photonic structure can be designed to introduce a frequency bandgap coinciding 

with the spectrum of the spontaneous emission. Other scientists have proposed applications of 

photonic crystal structures at millimeter and microwave frequencies in order to achieve desired 

performances for antennas [2-3] and waveguides [4]. 

 

       The photonic bandgap (PBG) can be defined as a range of frequencies for which photons are 

forbidden to travel through a photonic crystal in any direction of propagation. In analogy to 

electrons in a crystal, electromagnetic waves propagating in a structure with periodically varying 

dielectric constants are organized into photonic bands. For certain crystal structures, that have 
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high enough dielectric contrast ratios, these photonic bands are separated by (photonic) gaps in 

which propagating states are forbidden.  

 

 

2.2.1 One-Dimensional Photonic Crystal Structures 

 

       The refractive index in a one-dimensional photonic crystal varies along one direction only. 

An example of a one-dimensional photonic crystal (Chigrin’s Bragg stack) is shown in Figure 

2.1. The material is periodic in the z-direction with dielectric constants εr1=11.56 for gray and 

εr2=1.96 for blue, and is homogeneous in the xy-plane. The modes of propagation can be 

described in terms of k//, kz, and n, the wave vector in the transverse plane, the wave number in 

the z-direction, and the band number, respectively. 

 

 

 

                          Figure 2.1 One-dimensional photonic crystal structure 

 

       Computer simulation of a one-dimensional photonic crystal, with structural variations only in 

the longitudinal direction in a rectangular coordinate system, was performed using a program that 

was downloaded from the Internet [5]. Figure 2.2 illustrates the results, which agrees well with 

those obtained by another researcher [6]. The wave number along the y-axis (ordinate) is related 

to the incident angle of the light as will be discussed in the next section. The normalized 

frequency along the x-axis is defined by 

 

x

y

zx

y

z
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. ( ) ( )

( / )
Freq Hz Lattice constant mNormalized frequency

Speed of light m s
×

=   (2-1) 

 

In Figure 2.2, the transmission coefficients for TE and TM modes are shown in color scales. The 

red color corresponds to a transmission coefficient of 1, while the blue color represents zero 

transmission or total reflection. 

 

       If we examine, say, the normalized frequency regions around 0.2 and 0.4, we notice a 

frequency gap in which no mode can exist in the (photonic) crystal. Such a gap is known as a 

photonic bandgap. It can be verified by the electromagnetic variational theorem that the low-

frequency modes concentrate their energy in the high-ε regions and the high-frequency modes 

concentrate their energy in the low-ε regions [7]. Therefore, it is reasonable to state that a mode 

just below the gap has its power concentrated in the εr1=11.56 regions, while a mode just above 

the gap has most of its power in the εr2=1.96 regions.  

 

       Often the low-ε regions are air regions. For this reason, it is convenient to refer to the band 

above a photonic bandgap as the air band and the band below a gap as the dielectric band. This 

situation is analogous to the energy band structure of semiconductors, in which the conduction 

band and the valence band surround the forbidden band. 

 

 

2.2.2 Two-Dimensional Photonic Crystal Structures 

 

       A two-dimensional photonic crystal structure, which is the topic of interest for holey fibers, 

has a periodic geometry in two directions and is homogeneous in the third. A simple example of a 

two-dimensional photonic crystal is shown in Figure 2.3. The red column in Figure 2.3 (a) can be 

thought of as a defect in the photonic crystal, which will be discussed later in this section. 

Without the red column, Figure 2.3 (b) shows the top view in a unit cell framed in yellow. In this 

figure, Λ and r represent the lattice constant and the radius of a column, respectively. Figure 2.4 

illustrates two other examples of two-dimensional photonic crystals. 
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     (a) 

               
     (b) 

 

     Figure 2.2 Photonic bandgap diagram for Chigrin’s Bragg stack, (a) for TE modes,  

                      (b) for TM modes 
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(a) (b) 

 

       Figure 2.3 Simple examples of two-dimensional photonic crystal structures, 

                        (a) with a defect, (b) top view of a unit cell 

 

 

                                       
                                        (a)                                                   (b) 

 

       Figure 2.4 Two-dimensional photonic crystal structures, (a) without defect, 

                         (b) with defect 

 

       If no electromagnetic modes are allowed in the frequency bandgap, what happens when light 

with a frequency in the photonic bandgap is launched onto the face of the crystal from outside? 

Now, no purely real wave vector exists for any mode at that frequency. Instead, the wave vector 

is complex, k=kr+jki. The amplitude of the wave decays exponentially into the crystal and 

establishes evanescent modes. If a defect in the photonic crystal as in Figure 2.4 (b) has the 

proper size to support a mode in the band gap, then the light cannot escape and the mode will be 

guided through the defect. Here, it can be said that the periodic structure around the defect acts as 

Λ 

r



Chapter 2  Background Information and Literature Survey 
 

 10

a perfect mirror for light with a frequency within a sharply-defined gap. Such a perfect mirror 

could not be made without the structural periodicity of the photonic crystal. In Figures 2.3 and 

2.4, two-dimensional photonic crystal structures have a square lattice. Other types of two-

dimensional photonic crystal structures with a triangular or a honeycomb lattice are possible. 

Electromagnetic properties of two-dimensional photonic crystal structures can be tailored by 

changing the lattice constant Λ, radius r, and the dielectric constants.  

 

2.2.3 Three-Dimensional Photonic Crystal Structures 

 

       A dielectric structure that is periodic along all three orthogonal axes forms a three-

dimensional photonic crystal. Because there are three directions along which the variation of 

material is permitted, a variety of geometries for three-dimensional photonic crystals are possible. 

Figure 2.5 shows an example of a three-dimensional photonic crystal. The red balls represent 

dielectric spheres, which are located at the sites of a diamond lattice. This type of structure can be 

characterized using the lattice vectors, the dielectric constants of the spheres and the embedded 

material, and the radius of the spheres. Another types of  three-dimensional photonic crystals can 

be created by eliminating the red balls and connecting the sites with cylindrical dielectric tubes. 

To localize light in a plane or along a line in these types of photonic crystals, defects can be 

introduced according to the desired purpose. 

 

 

 

 

 

 

 

 

 

 

               Figure 2.5 An example of three-dimensional photonic crystal structure 
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2.3 Literature Review 
 

2.3.1 Theoretical Analysis 

 

       In order to analyze various types of holey fibers, several techniques have been investigated. 

Russell et al. employed a scalar-wave approximation to predict the propagation constant of the 

fundamental mode in holey fibers [8-10]. Then, realizing that guided modes are localized near the 

core region, they tried to improve their analysis by expressing each modal field as a sum of 

localized orthogonal functions [9]. They used Hermite-Gaussian functions as a set of orthogonal 

basis functions and calculated the group-velocity dispersion (GVD) and fields of guided modes. 

Later, Ferrando et al. used a full vector-wave method to investigate the electromagnetic properties 

of holey fibers [11-12]. In order to calculate the dispersion relations for guided modes, the two-

dimensional (2D) vector-wave equations that describe the electromagnetic propagation of modes 

in a cylindrical structure were rewritten as an eigensystem for the L operator and its adjoint L† 

acting on the magnetic (ht) and the electric (ēt) transverse field components, respectively.  

 

       Combining the best features of the scalar-wave approximation and the full vector-wave 

technique, Monro et al. introduced a hybrid approach [13-14]. Even though the scalar-wave 

approach takes advantage of the mode localization property, it cannot be accurate unless the 

refractive index is represented well. For example, the index profile needs to be described using 

orthogonal functions such as plane waves or the Hermite-Gaussian functions or stored in a 

calculation machine for evaluation of large numbers of two-dimensional overlap integrals. On the 

other hand, the full vector-wave technique can account for any types of complicated cladding 

structures, permitting accurate modeling of holey fibers. However, it is not efficient, because it 

does not utilize the localization of guided modes and requires a large number of terms for more 

accurate solutions. Also, this approach uses periodic boundary conditions to extend the structure 

to infinity in the transverse plane, thus restricting its applicability to holey fibers that have non-

periodic air-hole distributions. 

 

       Monro’s approach describes the central index defect and the transverse electric field in terms 

of localized Hermite-Gaussian functions and the air-hole lattice with a Fourier formulation of 

periodic cosine functions. In the vectorial eigenvalue equations for a transverse two-dimensional 
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crystal structure, the transverse wave number is a scalar. This technique is applied to determine 

such properties as mode-field area and waveguide dispersion in terms of the size or arrangement 

of the air holes. Broeng et al. also utilized Monro’s approach to analyze photonic crystal fibers 

[15-17]. They successfully calculated propagation constant, group-velocity dispersion, bending 

loss, and transverse field distributions. 

 

       Steel and Osgood used a plane-wave expansion method to calculate modal fields and 

dispersion characteristics [18]. They apply this technique to the vector Helmholtz wave equation 

with typically 216 transverse basis functions. The weak point of the method is that only the real 

part of the propagation constant can be calculated. The attenuation coefficient of leaky modes 

cannot be predicted from this approach. Ranka et al. utilized an imaginary-distance beam-

propagation method, which takes into account the polarization effect, to calculate waveguide 

dispersion and modal field distributions [19]. 

 

       Using an approach similar to the plane-wave expansion method, White et al. devised a 

multipole method to calculate modal characteristics of photonic crystal fibers [20]. They utilized 

a multipole expansion centered on each air hole to enforce boundary conditions accurately. This 

method alleviates the need for assuming that the periodic structure extends to infinity, which 

causes the confinement loss in transverse directions to be ignored. This method takes into account 

both the real and imaginary parts of the propagation constant of a mode. Their method also yields 

the axial propagation constant in terms of frequency that is an input parameter. Therefore, 

material dispersion can be readily accounted for. Building on the multipole approach, Fini 

proposed radial scattering decomposition for modeling microstructure optical fibers [21]. 

Kuhlmey et al. also utilized the multipole method to analyze the modal cutoff in photonic crystal 

fibers [22]. They found out that all propagation constants are complex and explained how the 

second mode undergoes behavioral change in the loss and effective area. 

 

       For the calculation of chromatic dispersion in photonic crystal fibers, Lægsgaard et al. 

applied a perturbation approach to account for the frequency dependency of dielectric constants 

[23]. They also investigated how well dispersion curves converge with respect to supercell size 

for the fundamental defect modes of both index-guiding and photonic bandgap fiber structures. 

They point out that a proper choice of the transverse part of the Bloch wave vector in a supercell 
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calculation can significantly enhance the convergence of dispersion results in terms of the 

supercell size.  

 

       Numerical techniques have also been widely used in the analysis and design of holey fibers. 

Kim et al. utilized the Galerkin’s method with trigonometric functions as basis functions to 

investigate dispersion characteristics of holey fiber [24]. In exploring the application of holey 

fiber as a dispersion-compensating fiber, Shen et al. designed photonic crystal fibers which 

exhibit large negative dispersion up to – 474.5 ps/nm-km [25]. They used a combination of vector 

solver for modal properties and a scaling approach for dispersion characteristics. Guan and 

coworkers employed a boundary element method in rigorous vector form, formulated in terms of 

transverse magnetic fields, to determine the dispersion relations of guided modes in holey fibers 

with one or two layers of holes [26]. Cucinotta et al. utilized the vector finite element method to 

analyze the effects of hole geometrical variations on propagation properties of holey fibers [27]. 

They concluded that small perturbations result in critical variations in the polarization status of 

modes but change the dispersion characteristics very little.  

 

2.3.2 Experimental Analysis 

 

       Holey fibers have also been studied experimentally [28-33]. Knight et al. made use of a 

vidicon camera to illustrate near- and far-field patterns of the guided modes [28]. First, they 

observed the near-field pattern at the output end of a holey fiber. Then, the near field was 

converted to the far-field pattern by means of Fourier transformation. They also performed an 

experiment to demonstrate how scattering properties are related to the air-filling factor (FF) of 

holey fibers [30]. They illuminated a holey fiber at visible wavelengths under the first-order 

Bragg condition. What they found was that, as FF becomes larger, the observed Bragg reflected 

signals get broader.  

 

       A fascinating property of holey fibers is that they support only one mode over a wide 

wavelength range. For this reason, holey fibers are sometimes referred to as endlessly single-

mode fibers. In order to verify if holey fibers guide only a single mode, Ranka et al. performed 

measurements to examine the spatial interference fringe pattern between the collimated output 

mode of a holey fiber and the output of a standard single-mode fiber [19, 33]. The observation of 

a clear fringe pattern confirmed the single-mode nature of the holey fiber. In the same papers, 
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they presented the results for group velocity dispersion by measuring the wavelength-dependent 

group delay of a 50-cm section of the holey fiber. Similar dispersion measurements have also 

been performed by Knight et al. [34]. Recently, Gerard et al. conducted near-field probing of an 

active optical component with photonic crystal structures [35]. They used scanning near-field 

microscopy to detect the photoluminescence at 1.55-µm wavelength and observed the guiding of 

the photoluminescence by the suspended membrane and the photonic bandgap effect, which 

provides the inhibition of the photoluminescence inside a photonic crystal structure. 

 

       It has been reported that photonic crystal fibers are able to provide ultra low losses. Recently, 

Tajima et al. fabricated photonic crystal fibers with high purity silica glass using a dehydration 

process to reduce the OH absorption loss. They also applied a polishing process to eliminate 

scratches, while carefully keeping hole positions and sizes uniform along the fiber axis [36-37]. 

Their holey fibers were measured to have optical losses of 1 dB/km at 1.55-µm wavelength and 2 

dB/km at 1.3-µm wavelength. The loss was further reduced to 0.37 dB/km at 1.55-µm 

wavelength for a 10-km length holey fiber. This loss is much closer to 0.2 dB/km at 1.55-µm 

wavelength, which is nowadays a typical loss for conventional single-mode fibers. Speaking of 

loss, Birks et al. studied the bending loss of a photonic crystal fiber by measuring the 

transmission spectrum in terms of radii of a single-turn bend [8]. Most recently, Zsigri et al. have 

performed experiment for penalty-free transmission of a 10 Gbit/s non-return-to-zero pulse code 

modulated signal at 1.55 µm over two 5.6-km photonic crystal fibers with 1.7-dB/km loss, 0.1 

ps/km polarization-mode dispersion, and 32 ps/km-nm chromatic dispersion [38].  

 

2.3.3 Applications 

 

       Motivated by the insights gained from the experimental and theoretical analyses of holey 

fibers, researchers have envisioned numerous novel applications for these fibers. For example, it 

has now been established that holey fibers with effective areas orders of magnitude larger or 

smaller than the conventional single-mode fibers can be designed. Large effective-area holey 

fibers are expected to find applications in high power laser delivery [39]. On the other hand, 

strong nonlinear effects take place in fibers with small effective areas. Potential applications of 

holey fibers in nonlinear optics include soliton generation and four-wave mixing [12], multimode 

phase matching [19], generation of ultra-broadband supercontinuum, and pulse compression [33]. 
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A number of researchers have demonstrated the generation of supercontinuum. Among them are: 

Wadsworth et al. who produced broadband continua extending from 400 nm to 1600 nm by 

launching femtosecond pulses into a holey fiber [40], and Coen and coworkers demonstrated the 

generation of a spatially single-mode white-light supercontinuum with a spectral width of more 

than 600 nm [41]. Broadband continua, which are associated with extremely short pulses, have 

been used to achieve ultra high-resolution optical tomography. In a case example, 1.3-µm 

longitudinal resolution in a biological tissue at a center wavelength of 1.1 µm was achieved [42].  

 

       Another important application of nonlinear holey fibers is in generation of solitons. 

Petropoulos et al. developed a single-mode lead silicate glass holey fiber with anomalous 

dispersion and a high nonlinearity of γ = 640 W-1km-1 [43]. Using this nonlinear fiber, they 

achieved a 10-fold pulse compression and Raman solitons at 1.55-µm wavelength. They also 

demonstrated the operation of a 2R-generative optical switch using only 3.3 meters of a holey 

fiber which has nonlinear figure of merit 30 times larger than that of a conventional dispersion-

shifted silica fiber [44]. The generation of tunable femtosecond soliton pulses by means of 

photonic crystal fibers in a wavelength range from 780 nm to 900 nm has been reported by 

Nishizawa et al. [45]. The temporal width of these soliton pulses is as short as 55 fs. They found 

out that the center wavelength of the soliton pulses can be shifted continuously above 1.1 µm by 

using much higher power and longer photonic crystal fibers. The delivery of femtosecond pulses 

by large-core holey fibers, with core diameters of 15 to 25 µm, has been investigated [46]. 

Although such large-core fibers are multimode, it has been observed that the excitation of 

fundamental mode is readily achieved and coupling to higher-order modes is weak. 

 

       In order to achieve polarization-preserving capability, a holey fiber with elliptical air holes 

has been proposed [18]. Because of the geometrical uniqueness, this type of holey fibers is 

reported to provide high birefringence. Hansen et al. evaluated the birefringence of a holey fiber 

by measuring the fringe envelope as a function of delay for the interference between two 

polarizations of the fundamental mode [16]. Kergabe et al. developed a method for dynamically 

tuning the birefringence [47]. They intentionally introduced asymmetry in the holey fiber by 

selectively filling the air holes with an index-tunable polymer. By changing the temperature 

around the fiber, the birefringence can be tuned. To enhance the interaction between the core 

mode and the tunable cladding, the polymer-infused holey optical fiber is tapered to a small 
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diameter. They report that the polarization beat length varies from 3.6 mm for the minimally 

tuned case to about 2.2 mm for the maximally birefringent case.  

 

       There have been attempts to incorporate Bragg gratings or long-period grating (LPG) into 

holey fibers.  Long-period gratings in holey fibers have been fabricated by micro-collapsing the 

air holes with heat using a CO2 laser [48]. To make such optical devices as tunable filters, 

attenuators, and switches, Kerbage et al. applied fluids along micro-capillary channels inside a 

holey fiber with long-period gratings in the core [49]. Tunability was achieved by means of 

dynamic temperature variation [50].  

 

       Tapered holey fibers can be used as high efficiency coupling devices. Youk et al. fabricated 

tapered holey fibers using a fusion splicer and measured the near-field image from the tapered 

end face with a CCD camera [51]. Tapered holey fibers may also be used for scaling and 

reshaping of guided mode-field distributions. The numerical analysis of tapered holey fibers has 

been carried out using the finite-difference time-domain method [52].   

 

       Photonic crystal fibers have been successfully applied to active components too. Hougaard et 

al. designed low pump-power optical amplifiers using photonic crystal fibers [53]. They 

demonstrated that such amplifiers can provide gains of more than 15 dB at 1.55 µm with optical 

pump power of less than 0.7 mW. Photonic crystal fiber lasers have received considerable 

attention in the past few years. Lee et al. demonstrated room-temperature opeation of such a laser, 

which is optically pumped by a vertical-cavity surface-emitting laser at 860 nm [54]. By the use 

of the photonic crystal membrane, a very small threshold pump power (2.4 mW) was required for 

the operation of the photonic crystal laser at 1609 nm.  

 

       Holey fibers may also be used as sensors. For example, allowing the interaction of light with 

a gas in the air holes of a holey fiber, one can make gas sensor [28]. Villa et al. developed a one-

dimensional photonic crystal sensor based on optical surface waves [55]. They found that a small 

optical thickness variation of the last layer may change strongly both the frequency and the 

intensity of the propagating wave. 
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Chapter 3 

 

Analysis of One-Dimensional Cylindrical Photonic 

Crystal Waveguides 

 

 

 

 

 

3.1 Introduction 
 

       One-dimensional cylindrical photonic crystal waveguides have periodic index variations in 

the radial direction only. These waveguides consist of a central core surrounded by a cladding 

composed of alternating-index and equal-thickness rings. Two cases corresponding to high-index 

core and low-index core are considered. The refractive index profiles for these two geometries are 

shown in Figure 3.1. An advantage of one-dimensional photonic crystal waveguides with index 

profiles as in Figure 3.1 is that exact analytical solutions exist for them. This allows more 

accurate simulations of transmission properties of such fibers. Furthermore, the index profile of 

Figure 3.1 (a) can serve as an approximate model for holey fibers whose cladding is formed by 

assembling a large number of thin glass tubes around a solid core. The analysis presented in this 

chapter will be later extended in Chapter 5 to the case where the cladding has random index 

variations. The analysis of one-dimensional photonic crystal waveguides with random cladding 

index variations, in fact, constitutes the first step toward the investigation of holey fibers with 

random hole distributions. 

 

       In the following sections, first exact solutions for the electromagnetic fields of guided modes 

are derived. Then, the eigenvalue equation, from which propagation constants of different modes 

can be calculated, is determined by imposing the boundary conditions. A matrix approach is used 
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in the derivation of eigenvalue equation. Important transmission properties of the fundamental 

mode such as normalized propagation constant, chromatic dispersion, field distributions, and 

effective area are examined for example cases. 

 

 

 

 

 

 

 

 

     (a) 

 

 

 

 

 

 

 

 

     (b) 

 

 Figure 3.1 Refractive index profiles of one-dimensional cylindrical photonic crystal waveguides, 

                  (a) high-index core, (b) low-index core 

 

 

3.2 Field Solutions 
 

       Since the refractive index difference between the alternating-index layers of the cladding can 

be large, it is necessary to employ a full vector-wave approach instead of a scalar-wave 

approximation to analyze a cylindrical photonic crystal waveguide. Let us consider one such 

optical waveguide consisting of N homogeneous, isotropic, linear, and circularly cylindrical 
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dielectric regions as indicated in Figure 3.1. The i-th region; i = 1, 2, · · ·, N, is characterized by a 

refractive index ni, an inner radius ri-1, and an outer radius ri. Since the index profile is periodic, ni 

can assume two values; either a high index (silica glass) or a low index (air) value. 

 

       Electromagnetic fields are solutions of the vector wave equation in a cylindrical coordinate 

system. For these waveguides exact analytical solutions for guided modes exist. The approach to 

obtaining field solutions involves the following steps: (a) A cylindrical coordinate system (r, ϕ, z) 

with the z-axis coinciding the axis of the waveguide is chosen, then the solutions for axial field 

components zE  and zH  are determined using the method of separation of variables. (b) 

Transverse field components Eϕ , Hϕ , rE , and rH  are calculated from the axial components. 

(c) Boundary conditions at N-1 boundaries are imposed. This step yield two sets of results, (1) an 

eigenvalue or characteristic equation from which modal propagation constants are obtained, (2) 

all field amplitude coefficients are expressed in terms of one chosen as an independent 

coefficient.  

 

       It is well established that for circularly cylindrical waveguides the radial dependence of 

electromagnetic fields is governed by the Bessel differential equation, hence the solutions are 

described in terms of the Bessel and the modified Bessel functions [56]. On the other hand, the 

dependence of the fields on the azimuthal coordinate ϕ is described in terms of sinusoidal 

functions cos(nϕ) and sin(nϕ) where n is an integer constant. For propagation in the positive z-

direction, the dependence of fields on the axial coordinate z is as exp(-jβz), where β is the axial 

propagation constant. This term is common to all field components and, for brevity, is dropped 

from field expressions. In fact, the attributes of field solutions are the same as those in multiple-

clad fibers with such large effective-area and dispersion-flattened fibers [57-58]. Accordingly, the 

solutions for the axial field components in the i-th region are summarized as 
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               2 2
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and 0 2k π λ=  is the free-space wave number, Jn and Yn are the Bessel functions of the first and 

the second kinds, respectively, In and Kn are the modified Bessel functions of the first and the 

second kinds, respectively, 0ϕ  is a constant which may be set equal to 0 or / 2π  to yield cos(nϕ) 

or sin(nϕ), and , ,i i iA B C , and iD are constant amplitude coefficients. 

 

       The solutions for the transverse field components (Er, Eϕ, Hr, and Hϕ) are readily determined 

using the relationships that describe transverse components in terms of axial components. The 

results are as summarized below: 
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In the central core region that includes the waveguide axis (r = 0), Yn and Kn functions must be 

excluded from the solution, because they are undefined when their arguments become zero. Also, 

in the outer cladding layer; i.e. when i=N, the solutions include only Kn functions to ensure that 

fields remain bounded as r approaches infinity.  

 

 

3.3 Boundary Conditions and Characteristic Equation 
 

       Once complete field solutions for both electric and magnetic fields are obtained, boundary 

conditions are applied. Boundary conditions in this problem amount to the continuity of 

tangential components of electric and magnetic fields at N-1 boundaries; namely, at r = ri; i = 1, 2, 

· · ·, N-1. In each layer, there are 4 tangential field components, , , ,z zE H Eϕ  and Hϕ , thus the 

imposition of boundary conditions results in 4(N-1) equations. These equations may be viewed as 

a homogeneous system of 4N-4 equations in terms of 4N amplitude coefficients. The boundary 

condition for the axial component zE  at r = ri yields, 

 

     , , 1 , 1 1 , 1( ) ( ) ( ) ( )i n i i i n i i i n i i i n i iA Z U B Z U A Z W B Z W+ + + ++ = +     (3-6) 

 

where i i iU k r=  and 1i i iW k r+= . Similarly, the boundary condition for Hz at r = ri results in 
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The corresponding boundary conditions for Eϕ and Hϕ at r = ri lead to 

 

  
, , 0 , ,

1 , 1 1 , 1 0 1 , 1 1 , 1
1 1

1 ( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( )

i n i i i n i i i n i i i n i i
i i i

i n i i i n i i i n i i i n i i
i i i

n A Z U B Z U Z C Z U D Z U
k U

n A Z W B Z W Z C Z W D Z W
k W

β
ν

β
ν + + + + + + + +

+ +

  ′ ′ + + +     
  ′ ′ = + + +     

 

           (3-8) 

 

  

2

, , , ,
0

2
1

1 , 1 1 , 1 1 , 1 1 , 1
1 1 0

1 ( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( )

i
i n i i i n i i i n i i i n i i

i i i

i
i n i i i n i i i n i i i n i i

i i i

n nA Z U B Z U C Z U D Z U
k Z U

n nA Z W B Z W C Z W D Z W
k Z W

β
ν

β
ν

+
+ + + + + + + +

+ +

  ′ ′  + + +    
  ′ ′  = + + +    

 

           (3-9) 

 

       Equations (3-6) to (3-9) can be viewed as a system of four equation and four unknowns. 

Considering the coefficients Ai+1, Bi+1, Ci+1, and Di+1 as unknowns, the solutions in terms of Ai, Bi, 

Ci, and Di can be expressed in a matrix form as follows: 
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       Successive application of (3-10) to boundaries at ri; i = 1, 2, · · ·, N-1, leads to the following 

expression which relates the amplitude coefficients for the outer cladding region to those for the 

central core, 
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However, in the outer cladding region 0N NA C= =  in order to prevent fields to increase 

exponentially, and in the central core 1 1 0B D= =  in order to ensure that the fields remain finite 

at r=0. Thus, only the following terms remain not to be zero: 

 

                      11 1 13 1 0b A b C+ =         (3-14a) 

                      31 1 33 1 0b A b C+ =         (3-14b) 

 

       For the above homogeneous system of equations to have nontrivial solutions, the determinant 

of coefficients must be zero. That is, 

 

                      11 33 31 13 0b b b b− =         (3-15) 

 

Equation (3-15) is indeed the characteristic (or eigenvalue) equation from which the axial 

propagation constant β  can be determined. This equation may be expressed as a function of 

waveguide parameters (radii and indices of various regions), wavelength λ, the azimuthal number 

n and the propagation constant as given below: 

 

                  1 0( , , , , , ; 1, 2, , 1) 0if n n n r i Nλ β = ⋅⋅⋅ − =      (3-16) 

 

where β  is the normalized propagation constant defined as 

 

                     0/ / 2kβ β βλ π= =        (3-17) 

 

       For a given light source powering the waveguide the wavelength of operation λ is known. 

Also, for a given waveguide the dimensions ri; i = 1, 2, · · ·, N-1 and refractive indices 1n  and 0n  

are known. Thus, upon selecting an integer value for the azimuthal number n (for example n =1 

for the fundamental 11HE  mode), (3-16) becomes an equation in which only β is unknown. 

Solving this equation the normalized propagation constant for a desired mode is obtained.    
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       Finally, the above analysis allows all field coefficients to be expressed in terms of one 

amplitude coefficient chosen as independent variable. For example, if 1A  is chosen as the 

independent coefficient from (3-14a), we will obtain 1 11 1 13/C b A b= − . Then, with successive 

applications of (3-10) amplitude coefficients for a particular mode in all layers of the waveguide 

can be calculated in terms of 1A .    

 

 

3.4 Numerical Results 
 

       Using the field solutions and the characteristic equation derived in the previous sections, 

electromagnetic properties of one-dimensional cylindrical photonic crystal waveguides are 

examined for some example cases. First, modal characteristics are investigated, which enable us 

to directly calculate chromatic dispersion for the fundamental mode. Next, the electric field 

components, particularly their radial distributions, are studied. Using the field solutions, the 

effective area that is a key parameter in nonlinear fiber optics is evaluated.  

 

3.4.1 Propagation Constant and Chromatic Dispersion 

 

       The normalized propagation constant β  is calculated by solving the characteristic equation 

given in (3-15) numerically. An example waveguide with dimensions r1 = 1.0 µm, da = 0.2 µm, 

and dg = 0.3 µm is considered for the numerical analysis. This set of parameters, as will be noted 

later, provides desirable results for chromatic dispersion and cutoff wavelength pertaining to the 

fundamental mode. It is assumed that the high-index material of this waveguide is pure fused 

silica (100 m/o SiO2) with refractive index 1n , while the low-index region is air. To account for 

the material dispersion effect of the glass, its refractive index is expressed as a function of 

wavelength according to the Sellmeier’s equation [59],  
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where Aj and λj are material constants, which for pure fused silica assume the following values: 

 

A1 = 0.6961663,  λ1 = 0.0684043 

A2 = 0.4079426,  λ2 = 0.1162414 

A3 = 0.8974794,  λ3 = 9.8961610 

 

       Figure 3.2 illustrates variations of the normalized propagation constant versus wavelength for 

the fundamental 11HE  mode in the example photonic crystal waveguide. The total number of 

layers, N, varies from 4 to 20. It is noted that the normalized propagation constant changes from 

about 1.32 to 1.41 over a wavelength range between 1.0 µm and 2.0 µm. Furthermore, it is 

observed that the normalized propagation constant when N = 8 is nearly the same as those when 

N = 10, 14, and 20. In other words, it seems that once the number of cladding layers is large 

enough, adding more cladding layers does not affect the propagation constant significantly. This 

behavior is attributed to the fact that fields decay exponentially in the cladding layers, and the 

layers beyond where the fields become sufficiently small have little influence on propagation 

properties.  

 

       In order to examine the wavelength range for single-mode operation, the normalized 

propagation constant of 01TE  mode, which is the second propagating mode, is calculated. It is 

emphasized that for this mode the azimuthal number (n) is zero. Figure 3.3 shows variations of 

normalized propagation constant versus wavelength for the second mode of the example 

waveguide. It is observed that β  values of the second mode are much lower than those of the 

first mode. The convergence of mode characteristics occurs more slowly for the same number of 

layers. This is expected, because for higher-order modes fields in the cladding region decay more 

slowly. However, for any mode beyond a certain number of layers propagation properties remain 

essentially unchanged. This ‘saturation’ number of layers ( satN ) is generally larger for higher-

order modes. 
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  Figure 3.2 Normalized propagation constant ( β ) versus wavelength (λ) of the mode for the  

                   fundamental mode of a one-dimensional cylindrical photonic crystal waveguide with  

                   high-index core and parameters  r1 = 1.0 µm, da = 0.2 µm, dg = 0.3 µm.  

 

       Another interesting observation from Figures 3.2 and 3.3 is that deviations of the normalized 

propagation constants with respect to the total number of layers, when the operating wavelength 

is shorter around 1 µm, are smaller than these of the normalized propagation constants, when the 

operating wavelength is longer around 2 µm. The reason is that when the operating wavelength is 

shorter, electromagnetic fields are more confined to the core region as discussed in the next 

section and only the core region has major impact on the propagation properties. On the other 

hand, when the operating wavelength is longer, fields spread more to the cladding region and the 

index profile of the cladding region has more influence on the normalized propagation constant. 
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  Figure 3.3 Normalized propagation constant versus wavelength of the mode for the second  

                   mode in waveguides with 4 to 20 layers. The geometry and parameters of the  

                   waveguide are the same as those in Figure 3.2.  

 

       Comparison of Figures 3.2 and 3.3 indicates that all the propagation characteristics curves for 

the fundamental mode are above the value 1.32, while all the characteristic curves for the second 

mode are located below this value in the wavelength range from 1.23 µm to 2.0 µm. Therefore, it 

may be said that the example photonic crystal waveguide under consideration here behaves as a 

single-mode waveguide in the wavelength range mentioned above. This wavelength range 

includes 1.3 µm and 1.55 µm, which are two widely utilized wavelengths in optical 

communications. 

 

       Next, we examine one-dimensional photonic crystal waveguides with a low-index core as in 

Figure 3.1 (b). The fields in the central core region of such waveguides is described by the 

modified Bessel function 1( )nI k r , whereas the corresponding fields in the high-index core 
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waveguides are expressed in terms of the Bessel function 1( )nJ k r . Let us consider an example of 

this type of waveguides with parameters r1 = 0.1 µm, r2 = 1.0 µm, da = 0.2 µm, and dg = 0.3 µm. 

Figures 3.4 (a) and (b) show the normalized propagation constants versus wavelength for the first 

mode and the second mode, respectively. It should be noted that the number of layers is odd 

instead of even because of structural nature of the waveguide. Comparison of Figures 3.4 (a) and 

3.2 shows that the normalized propagation constant of the fundamental mode at λ = 1.0 µm for 

the low-index core case is 0.01 below that for the high-index core waveguide. However, there is 

almost no difference between the characteristic curves of the second modes in both cases.  

 

       To examine the impact of the low-index core on propagation characteristics, 1r  is increased 

to 0.3 µm, while keeping the rest of the parameters unchanged (i.e., the same as those in Figure 

3.4). The normalized propagation constants for the first two modes in the waveguide with 1r =0.3 

µm are shown in Figures 3.5 (a) and (b). As seen from Figure 3.5 (a), the characteristic curves for 

the first mode are noticeably lowered, while those of the second mode have remained nearly 

unchanged. Therefore, it can be concluded that the fundamental mode is strongly affected by the 

core region, while the second mode is influenced negligibly. 
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     (a) 

           
     (b) 

 

  Figure 3.4 Normalized propagation constant ( β ) versus wavelength (λ) for (a) the fundamental 

                    mode and (b) the second mode in a one-dimensional cylindrical photonic crystal  

                    waveguide with low-index core and parameters  r1 = 0.1 µm, r2 = 1.0 µm, da = 0.2  

                    µm, dg = 0.3 µm.  
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     (a) 

           
     (b) 

 

  Figure 3.5 Normalized propagation constant ( β ) versus wavelength (λ) for (a) fundamental 

                   mode and (b) the second mode in a one-dimensional cylindrical photonic crystal  

                   waveguide with low-index core and parameters r1 = 0.3 µm, r2 = 1.0 µm, da = 0.2 µm, 

                   dg = 0.3 µm.   
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Dispersion: 
 

       Differentiating the normalized propagation constant of the fundamental mode with respect to 

wavelength, the chromatic dispersion is calculated using the following relationship, 

 

                            
2

2

dD
c d
λ β

λ
= −        (3-19) 

 

where c is the speed of light in free space. It is emphasized that with the wavelength dependence 

of the glass refractive index already built in the eigenvalue equation through the Sellmeier 

relationship, the dispersion expression in (3-19) accounts for both waveguide and material 

dispersion effects.  

  

       Figure 3.6 shows variations of dispersion versus wavelength for the photonic crystal 

waveguide of Figure 3.2. Similar to the propagation characteristics in Figure 3.2, the dispersion 

curves also tend to change very little when N becomes larger than 8. In other words, adding more 

layers to the cladding beyond a certain point will not affect the propagation constant, dispersion, 

and, in fact, all transmission properties of the waveguide. It is also worth noting that in the 1.55-

µm window the dispersion is small. To be more specific, the dispersion for N = 8 is – 3.8248 

ps/nm⋅km. Having a small dispersion around this wavelength is highly desirable in long-haul 

fiber-optic communication systems, because the minimum attenuation of glass also occurs at the 

same wavelength.   
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  Figure 3.6 Variations of chromatic dispersion versus wavelength for the photonic crystal  

                    waveguide of Figure 3.2 

 

 

3.4.2 Field Distributions 

 

       Figure 3.7 shows representative field profiles for the fundamental mode of the example 

photonic crystal waveguide with N=10 layers at λ = 1.55 µm. The parameters of the waveguide 

are the same as those in Figure 3.2. As noted, the transverse components, rE  and Eϕ , have their 

maxima on the waveguide axis (r=0), thus the power flow density is largest in the central core 

region. This should be expected from a high-index core photonic crystal waveguide. Figure 3.8 

illustrates field profiles for the Eϕ component of the same waveguide but with the different 

number of layers. Again, the field distributions remain essentially unchanged for N larger than a 

certain value, say N=8 in this example. 
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  Figure 3.7 Plots of electric field components Er, Eϕ, and Ez versus radial coordinate r at λ = 1.55  

                   µm for the fundamental mode of a photonic crystal waveguide with N=10 and  

                    parameters the same as those in Figure 3.2    
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  Figure 3.8 Plots of the electric field component Eϕ versus radial coordinate at λ = 1.55 µm for  

                   the fundamental mode of the high-index core photonic crystal waveguide.  

                   Waveguide parameters are the same as those in Figure 3.2. 

 

       For the low-index core photonic crystal waveguides, we expect dips at the center. Figures 3.9 

(a) and (b) show field profiles for the fundamental mode of the waveguides in Figure 3.4 (a) (r1 = 

0.1 µm) and Figure 3.5 (a) (r1 = 0.3 µm), respectively. For both waveguides, N=9 and the 

wavelength of operation is at λ = 1.55 µm. For larger r1, the dip at the center becomes more 

pronounced.  
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     (a) 

           
     (b) 

 

  Figure 3.9 Plots of electric field components Er, Eϕ, and Ez versus radial coordinate at λ = 1.55  

                   µm for the fundamental mode of a low-index core photonic crystal waveguide with  

                    N=9 and parameters the same as those in (a) Figure 3.4 (a), and (b) Figure 3.5 (a) 
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3.4.3 Effective Area 

 

       Apart from a linear term ( Ln ), the refractive index of glass has a nonlinear term ( NLn ) due to 

the weak dependence of the dielectric constant of silica on guided light intensity. Since the 

nonlinearity is proportional to the light intensity, it can be described as  

 

                                  2
NL

eff

n Pn
A

=        (3-20) 

 

where 2n  is a material property of glass, P is the power of optical signal propagating in the fiber, 

and Aeff is the effective area [58]. In order to achieve low nonlinearity, as in long-haul and high 

capacity optical fiber links, the fiber should have as large an effective area as possible. On the 

other hand, in order to achieve high nonlinearity, for example in switching applications, the 

effective area of the fiber should be as small as possible. Photonic crystal and holey fibers can be 

designed to achieve either extreme of effective areas. Holey fibers with effective areas as small as 

2.8 µm2 have been reported [60]. 

 

       The effective area can be calculated from the electric field vector using the following 

relation, 
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       Based on Eq. (3.20), effective areas for the 1D high-index core PCF when r1 = 1.0 µm, da = 

0.2 µm, and dg = 0.3 µm and the 1D low-index core PCF when r1 = 0.3 µm, r2 = 1.0 µm, da = 0.2 

µm, and dg = 0.3 µm are evaluated by changing the total number of layers. Figure 3.10 (a) shows 

effective areas for the 1D high-index core PCF and Figure 3.10 (b) shows effective areas for the 

1D low-index core PCF. As noticed, generally when the operating wavelength is longer, effective 

area tends to be larger. This is as expected because the electromagnetic fields spread further with 

longer wavelengths. Another interesting feature is that effective areas for the 1D high-index core 

PCF are smaller that those for the 1D low-index core PCF. This can be understood from the fact 

that the fields for 1D high-index core PCF as shown in Figure 3.8 are more tightly confined to its 

central core region than those for 1D low-index core PCF as shown in Figure 3.9. And it is also 

noticed that as the number of layers is increasing, the effective area is getting larger. But since 

there is enough number of layers, the effective areas remain about the same regardless of 

increasing any more. 

 

       Compared with effective areas of 50 – 100 µm2 that conventional optical fibers or dispersion-

shifted fibers have, 1D PCFs here have much smaller effective areas ranging from 2.45 µm2 for 

the 1D high-index core PCF at 1.3-µm wavelength to 5.25 µm2 for the 1D low-index core PCF at 

1.55-µm wavelength. Better nonlinearity with this smaller effective area may make it easier to 

invent devices using nonlinear optical fiber effects such as the generation of self-phase 

modulation (SPM), four-wave mixing, Raman scattering, and soliton generation. 
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     (a) 

           
     (b) 

  Figure 3.10 Effective area versus wavelength for the fundamental mode of 1D cylindrical  

                     photonic crystal waveguide with (a) high-index core and parameters, r1 = 1.0 µm,  

                     da = 0.2 µm, and dg = 0.3 µm and (b) low-index core and parameters, r1 = 0.3 µm,  

                     r2 = 1.0 µm, da = 0.2 µm, and dg = 0.3 µm with respect to the total number of layers 
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Chapter 4 

 
Analysis of Two-Dimensional Photonic Crystal 

and Holey Fibers 
 

 

 

 

 

4.1 Introduction 
 

       Two-dimensional photonic crystal fibers, often referred to as holey fibers, have complicated 

structures and thus cannot be analyzed easily using analytical techniques. A variety of numerical 

methods have been developed for the electromagnetic analysis of structures with complicated 

geometries. Among these methods the finite-difference time-domain method (FDTD) has gained 

considerable popularity in recent years, because this method provides robust solutions for 

Maxwell’s equations and can readily accommodate complex-valued material properties. Using 

the FDTD method, the continuous electromagnetic field in a finite volume of space is sampled at 

distinct points in a space lattice and at equally spaced sampling points in time. The sampled 

points are used for numerical calculations of allowed modes in a given waveguide.  

 

       Based on a FDTD algorithm, a computer code is developed to analyze the propagation 

characteristics of holey fibers. The FDTD formulation of Maxwell’s equations is presented in 

section 4.2. Despite being an effective technique for calculation of propagation constants of 

guided modes, the FDTD method is not well suited for the evaluation of individual mode field 

distributions. This is because the source is an impulse function in the time domain covering an 

infinite spectrum, thus field solutions are superposition of all possible modes. To alleviate this 

problem, individual mode field solutions are obtained using the finite difference method (FDM), 

which, with propagation constants available from FDTD, can quickly and conveniently provide 
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individual mode field solutions. A brief discussion of FDM is presented in section 4.3. In section 

4.4, test and comparison of FDTD and FDM techniques are addressed. Numerical results for 

example cases of holey fibers are presented in section 4.5. 

 

 

4.2 Finite-Difference Time-Domain (FDTD) Formulation of 

Maxwell’s Equations 
 

       The FDTD method was first introduced by Yee in 1966 [61]. Yee visualized the positions of 

the electric and magnetic field components in a unit cell of the FDTD lattice in Cartesian 

coordinates as shown in Figure 4.1. It is noted that each electric field component is surrounded by 

four circulating magnetic field components and vice versa. The adjacent field components are 

needed to generate another field component as time is marching. An arbitrary material object can 

be approximated by building up unit cells for which field component positions are disposed with 

the desired values of permittivity and permeability. Also, the arbitrary object may consist of 

different kinds of materials. Once the geometry of the object is specified in the calculation region, 

source condition is modeled somewhere in the region. Initially, it is assumed that all fields within 

the numerical simulation region are identically zero. Then, an incident wave is enforced to enter 

the simulation region.  

 

       Let us first consider a region of space which is source-free and lossless [62]. Using the MKS 

system of units, Maxwell’s curl equations are expressed as 

 

                                    
d
dt

µ∇× = −
HE        (4-1) 

                                    
d
dt

ε∇× =
EH        (4-2) 

 

where ε is the electrical permittivity constant in farads/meter and µ is the magnetic permeability 

constant in henrys/meter. Assuming that ε and µ are scalar quantities (that is, the medium is 

assumed to be isotropic), expanding the curl expressions in (4-1) and (4-2), and equating the like 

components yields the following system of equations, 
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                 Figure 4.1 A unit cell of the FDTD lattice in Cartesian coordinates 
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       The system of six coupled partial differential equations in (4-3) and (4-4) forms the basis for 

the FDTD analysis of electromagnetic wave interactions with general three-dimensional objects. 

It should be noted that the electric and magnetic field components (Ex, Ey, Ez, Hx, Hy, and Hz) are 

inter-related. Since these equations are functions of space and time, they can be discretized in the 

space and time domains and used to find field solutions numerically. Referring to Figure 4.1, we 

denote a grid point in the rectangular lattice as  

 

                           ( , , ) ( , , )i j k i x j y k z= ∆ ∆ ∆       (4-5a) 

 

and any function of space and time as  

 

                        ( , , ) ( , , , )nF i j k F i x j y k z n t= ∆ ∆ ∆ ∆      (4-5b) 

 

where ∆x, ∆y, and ∆z are, respectively, the lattice space increments in the x, y, and z coordinate 

directions and ∆t is the time increment, while i, j, k, and n are integers [63]. Using central finite 

difference approximation for space and time derivatives that are accurate to second order, the 

partial derivatives are expressed as 

 

            
1 1

22 2( , , ) ( , , )( , , ) ( )
n nn F i j k F i j kF i j k O x

x x
+ − −∂

= + ∆
∂ ∆

   (4-6a) 

            
1 2 1 2

2( , , ) ( , , ) ( , , ) ( )
n n nF i j k F i j k F i j k O t

t t

+ −∂ −
= + ∆

∂ ∆
    (4-6b) 

 

       Applying (4-6) to the space and time derivatives in (4-3a), (4-3b), and (4-4c), we obtain the 

following FDTD approximation as representative relations in a three-dimensional FDTD 

formulation 
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           (4-7a) 
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           (4-7b) 
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           (4-7c) 

 

It is understood from (4-7a) that Hx is located at 1 1
2 2( , , )i j k+ + , the H and E components are 

interleaved within the unit cell, and that the new value of a field vector component (Hx) at any 

lattice point depends only on its previous value and the previous values of the components of the 

other field vector at adjacent points. Then, the next computation of the field vector is continued as 

time is matching by a given time step. 

 

       It is generally assumed that fibers have no variations along the direction of propagation, and 

variations of material properties (such as refractive index) are limited to the transverse directions. 

Holey fibers that will be analyzed here are assumed to have geometries such that the refractive 

index is uniform along the z-axis. A schematic of a cross section of an example holey fiber is 

illustrated in Figure 4.2. Thus, instead of using a full-wave analysis based on (4-3) and (4-4) to 

numerically model the waveguide structures, we can take advantage of properties of the 

propagating modes to simplify the formulation. The components of electric and magnetic fields in 

waveguides with no variations along the direction of propagation (z-axis) can be expressed as 

 

                        ( , , ) ( , ) j zF x y z F x y e β−=       (4-8) 

 

where β is the axial propagation constant. Using (4-8) and employing the notations of space and 

time in FDTD, the adjacent electric and magnetic fields in the axial propagation direction are 

related as 
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               Figure 4.2 Schematic of a cross section of an example holey fiber 

 

                     ( , , 1) ( , , )n n j zE i j k E i j k e β∆± = ∓        (4-9a) 

                     ( , , 1) ( , , )n n j zH i j k H i j k e β∆± = ∓       (4-9b) 

 

       Now, the electric and magnetic fields become complex quantities based on phasor notations. 

The first-order partial derivatives with respect to z in the discretized space domain require two 

adjacent fields. The two adjacent fields can be represented by a field at the mid point between 

them. Furthermore, the first-order partial derivatives with respect to z in (4-3) and (4-4) are 

replaced with -jβ, because the z-dependence of fields is as exp(-jβz). Based on these two facts, 

the following expressions are obtained [64], 
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       Substituting the electric and magnetic field components from (4-10) into (4-7), the following 

two-dimensional FDTD expressions are obtained, 
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 (4-11c) 

 

Note that every term in the longitudinal direction is canceled out in (4-11). For example, 1
2k +  is 

no longer required in (4-11a), because there are no variations along the z-direction during the 

time marching. Hence, the basic equations for FDTD algorithm are set up in the two-dimensional 

space. Comparing the full-wave analysis based on (4-7) that requires complete modeling 

coverage along the longitudinal direction for at least several wavelengths with the compact two-

dimensional FDTD algorithm, significant reduction in the required computer memory allocation 

and running time can be achieved. Thus, for simulation of arbitrary waveguides that are uniform 

along the direction of wave propagation, only modeling of the cross sections of waveguides is 

sufficient. 

 

4.2.1 Perfectly Matched Layer (PML) 

 

       When an arbitrary electromagnetic object is analyzed numerically using FDTD, regions 

extending to infinity need to be modeled carefully. For example, in antenna analysis using FDTD, 

the antenna is surrounded by an infinite medium (usually air). Modeling infinite media, whether 
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they are modeled in one-, two-, or three-dimensional space, is practically impossible because of 

computer memory limitation even with the advanced current technology. This fact spells out the 

need for a special method to simulate regions extending to infinity. One way to model an infinite 

medium is to introduce an absorbing boundary condition (ABC) at the outer lattice boundary. 

Somehow, the outer boundary should be matched to an absorbing material medium. This is 

analogous to the physical treatment of the walls of an anechoic chamber. Ideally, the absorbing 

medium is only as thick as a few lattice cells, reflectionless to all impinging waves over their full 

frequency spectrum, highly absorbing, and effective in the near field of a source or a scatterer. 

 

       In 1994, Berenger introduced a highly effective ABC, which is designated as perfectly 

matched layer (PML) [65]. The innovation of Berenger’s PML is that plane waves of arbitrary 

incidence, polarization, and frequency are matched at the boundary. For this, Berenger derived a 

novel split-field formulation of Maxwell’s equations where each vector field component is split 

into two orthogonal components. Each of the 12 resulting components is then expressed as 

satisfying a coupled set of first-order partial differential equations. By choosing loss parameters 

consistent with a dispersionless medium, a perfectly matched planar interface is established. 

 

       In a continuous space, the PML absorber and the host medium are perfectly matched. 

However, in the discrete FDTD lattice, the electric and magnetic material parameters are 

represented in a piecewise-constant manner and are spatially staggered. This can result in 

discretization errors. Berenger proposed spatial scaling of the PML parameters to reduce the 

discretization errors at material interfaces. He also proposed means to reduce the discretization 

errors for the second-order FDTD scheme and to reduce the required PML thickness. 

 

       In order to show how to accommodate the PML, let us consider the Ez component. After 

transforming (4-4c) into the Fourier (phasor) domain, we have 

 

        
0 0 0

( ) ( ) 11 1 y xD D
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H Hx yj E
j j x y

σ σω
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    (4-12) 

 

where σD is the loss factor that increases gradually as it goes into the PML to cause Ez to be 

attenuated. Then, the left-hand-side (LHS) of (4-12) in the FDTD form becomes, 
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There is an approximation by omitting 2
0

( ) ( ) 1D D
z

i j E
j

σ σ
ε ω
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multiplication of the loss coefficient. On the other hand, referring to (4-11c), the right-hand-side 

(RHS) of (4-12) in the FDTD form becomes, 
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       Putting the LHS and RHS together, the following FDTD equation for the compact two-

dimensional algorithm with the PML incorporated is obtained, 
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           (4-14) 

 

where gi2 and gi3 (analogous to gj2 and gj3, respectively) are given by [66] 
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       By a similar treatment, (4-3b) can be transformed to 
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Then, the LHS of (4-16) is rewritten as 
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And the RHS becomes, 
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where  _ ( 1, ) ( , )n n
z zcurl e E i j E i j = + −  . It is noted that ( )1

jω  is regarded as an integration 

operation over time. Since there is no need of PML in the direction of wave propagation, PML 

term in the z direction is ignored.  
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       Putting together the LHS and RHS expressions, another FDTD equation with the PML 

incorporated for the compact two-dimensional algorithm is obtained, 
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where fj1, fi2, and fi3 are given by 
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      (4-20) 

 

       In programming the f and g expressions in the computer simulation, it is not necessary to 

actually vary the loss factor (σD). Instead, an auxiliary parameter, xn, is introduced so as to 

increase as it goes into the PML. The xn parameter can be calculated from [66] 
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It is worth noting that fi2 and fi3 are different from gi2 and gi3 only in that they are computed at 

the half intervals, i+1/2. Similarly, the only difference between fj2 (fj3) and gj2 (gj3) comes from 

the fact that calculation points are offset by the half intervals, j+1/2. Notice that the PML has no 

effect in the main calculation region of the problem space when fi1 and fj1 are equal to 0 and fi2, 

gi2, fi3, gi3, fj2, gj2, fj3, and gj3 are all equal to one. 

 

4.2.2 Parameters and Stability 

 

       There are several parameters to choose for FDTD computer simulation of dielectric 

waveguides. First, appropriate computer memory size for calculation needs to be prepared. 

Basically, larger calculation matrix size will produce better accuracy. But if the matrix is too 

large, the required time for simulation will be unnecessarily too long. With proper size of the 

simulation region, size of PML should be considered. We need to make sure that the cell size is 

adequate for perfectly matching to the outer boundary. Then, parameters that define geometry and 

material properties of a waveguide need to be considered. They can be the core radius or 

refractive index of a step-index fiber, the cladding refractive index, or the side length if a fiber to 

be simulated has square core. Using the parameters to define the cross section, one can create any 

type of optical fiber. Finally, we need to choose a reasonable value for 2 /kβ β πβ λ= ⋅ = . In 

other words, what we are trying to find in the FDTD simulation is the wavelength associated with 

the β value of the desired mode. 

 

       We also need to choose a parameter τ in defining a Gaussian pulse source, which excites the 

waveguide at one end. The expression describing the source is given as 

 

                           
2 2 2( ) 2x y

GaS e τ− += .       (4-22) 

 

Also, the number of time steps for sampling data need to be given. Since it is related to the fast 

Fourier transformation, we need to make sure enough number of data are sampled for good 

accuracy in the frequency domain. After choosing all appropriate parameters, the computer 

simulation proceeds by following the steps outlined in the flow chart in Figure 4.3. 
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       To ensure stability of the FDTD algorithm, so that numerical divergence can be avoided, an 

appropriate time constant (∆t) needs to be selected to satisfy the following stability condition 

[67],  

 

                        1
2

max 2 2 2
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1 1 1
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c
x y z

∆ ≤
 

+ + ∆ ∆ ∆ 

     (4.23) 

 

where cmax is the maximum wave phase velocity within a given model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Figure 4.3 FDTD simulation flow chart 
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4.3 Finite Difference Method (FDM) 
 

       The FDTD algorithm works well for finding out the propagation constants of modes as a 

function of wavelength or normalized frequency for any arbitrary optical waveguide that is 

uniform along the direction of propagation. In order to plot mode field distributions, however, 

FDTD seems not to be suitable. As mentioned earlier, a field component with Gaussian spatial 

distribution is used as the source of excitation. In the time domain, however, the source is an 

impulse function with a spectrum of constant amplitude in the frequency domain. This source if 

often referred to as white source.  

 

       Basically, the implementation of FDTD requires that light be launched at one fiber end and 

the data that we are interested in be collected at the other end. Since the source is white, the field 

distribution from the collected data is a composition of all the mode fields that are allowed in the 

given optical waveguide. After digital filtering of the data at a discrete point on the waveguide 

cross section, the amplitude of a mode allowed by the digital filter can be calculated. Repeating 

this process for every grid point results in total mode field distribution. This process is quite 

tedious and time consuming, because of the digital filtering and the repetition of filtering process 

over the entire grid points in the calculation lattice. 

 

       There is another method; namely, the finite difference method (FDM) that can be used to 

produce mode field distributions more easily and quickly. FDM is believed to be first developed 

by Thom [68] in 1920s for solving nonlinear hydrodynamic equations. Later, this technique was 

applied to electromagnetic field problems. 

 

       The functions used in FDM analyses may have several kinds of variables such as time, space, 

and temperature. The FDM used here, however, involves only functions of spatial variables, thus 

it can be implemented by replacing spatial derivatives with finite difference approximations. 

Starting with Maxell’s equations, the following vector wave equation for the transverse portion of 

electric field is obtained [69-70], 

 

            2 2 2 2 2
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       By rearranging the terms (4-24), one can write the above equation in a matrix form as 
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t tβ=PE E         (4-25) 
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The differential operators are defined as 
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       Let Ex(i,j), Ey(i,j), and n(i,j) represent the electric fields and the refractive index at the mesh  

(i, j) with mesh size ∆x and ∆y. The finite-difference expressions of (4-28a) and (4-28b) are: 
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Similarly, Pxy and Pyx are expressed as 
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           (4-29c) 
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           (4-29d) 

 

Since (4-29a) to (4-29d) are described only in terms of a given refractive index profile and an 

operating wavelength, the Ex and Ey field distributions can be found by matrix calculation after 

substituting (4-29) into (4-25). 

 

 

4.4 Test and Comparison of Methods 
 

       A test simulation of a conventional step-index dielectric waveguide is performed to see how 

well the FDTD and FDM algorithms work and agree with each other. The test waveguide has a 

core radius of 1 µm, core refractive index (n1) of 1.45, and cladding refractive index of 1.0. 

Figure 4.4 compares the normalized propagation constant of the fundamental mode obtained from 

the exact analytical solution, FDTD, and FDM numerical techniques. 

 

       By using the finite difference technique, transverse electric field distributions, Ex and Ey, can 

be obtained. Figure 4.5 shows the field distributions of the first two modes for the test waveguide 

at a wavelength of 1.3 µm. It should be mentioned that FDM solutions produce many numerical 

spurious modes [71]. Thus, we need somehow to differentiate between the true modes and the 

spurious ones. This can be done by examining the results obtained by FDTD or by looking at 

mode field distributions and noting that the magnitudes of true modes are much higher than those 

of spurious modes. The field plots in Figures 4.5 (a) and (b) resemble those of the HE11 and TE01 

modes, respectively [56]. For the operating wavelength of 1.3 µm, the normalized frequency is 

calculated as 
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  Figure 4.4 Comparison of normalized propagation constants of the fundamental mode in a test 

                    waveguide calculated from exact analytical method, FDTF, and FDM 

 

 

Therefore, it is reasonable to assume that at λ= 1.3 µm the test dielectric rod waveguide supports 

the first four modes below V=5.0749, as can be seen from the well-known mode chart for this 

waveguide [72]. 
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                                                                     (a)  

 

             
                                                                     (b)  

 

          Figure 4.5 Field distributions of the first two modes of the test waveguide 
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       Once the electric field has been determined, the effective area for the fundamental mode can 

be obtained using the following expression: 
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where ( , )E x y
G

is the electric field on a transverse plane. Table 4.1 summarizes the results for 

effective area at different wavelengths for the test waveguide. 

 

                        Table 4.1 Effective area for the test dielectric waveguide 

Operating wavelength [µm] Effective area [µm2] 

0.8 1.7925 

1.3 2.0624 

1.55 2.2148 

2.0 2.7066 

 

 

4.5 Numerical Results for Holey Fibers 
 

       So far, two numerical techniques, FDTD and FDM methods, have been formulated and tested 

for the analysis of axially uniform dielectric waveguides with arbitrary cross-sectional geometry. 

In this section, these techniques are utilized to perform the simulation of holey fibers.  

 

4.5.1 Propagation Constant 

 

       A holey fiber chosen for preliminary investigations has the following specifications. Each air 

hole has a radius of 0.7 microns. At first, only one ring of holes is considered around the central 

core region. This ring consists of six air holes and has a radius of 0.85 microns. The outer 

diameter of the holey fiber is assumed to be 20 microns. The glass portion of the holey fiber has a 



Chapter 4  Analysis of Two-Dimensional Photonic Crystal and Holey Fibers 
 

 61

refractive index of 1.45. Figure 4.6 illustrates the cross sectional view of the holey fiber. The 

yellow regions in Figure 4.6 are the air holes. Also, the outside region of the holey fiber is 

assumed to be air. 

 

            
                       Figure 4.6 Geometry of a holey fiber with one layer of air holes 

 

       Figure 4.7 shows the characteristic curves for several lower-order modes of the holey fiber. 

The red curve illustrates the normalized propagation constant for the first mode versus 

wavelength, while the blue and green curves show the normalized propagation constants for the 

second and the third modes, respectively. We now consider holey fibers with more air hole layers. 

The air holes are arranged in a hexagonal configuration as illustrated in Figure 4.8. With this 

arrangement of holes, the holey fiber geometry can be described with two parameters only, pitch 

length (Λ) and diameter (d). The pitch length is the distance between centers of two closest air 

holes. Since we can identify three layers of air holes in the structure shown in Figure 4.8, it is 

referred to as three-layer holey fiber. A small air hole at the center can be added or omitted to 

achieve some desired characteristics. Changing the parameters, Λ and d, a variety of 

performances can be obtained from the holey fiber. 
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  Figure 4.7 Normalized propagation constant versus wavelength for the first three modes in a  

                   holey fiber with one layer of air holes 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 4.8 Structure of a holey fiber with three layers of air holes in a hexagonal arrangement 
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       As another example, we analyze a holey fiber with a triangular air-hole lattice cladding 

structure, reported by Bjarklev et al. [73]. The fiber is defined by parameters Λ= 2.0 µm and d = 

1.2 µm. In the abscissa, the normalized frequency is defined the ratio of pitch length over the 

operating wavelength (Λ/λ). The core index, which is the same as the surrounding medium of the 

small air holes, is 1.45. The blue curve in Figure 4.9 represents the normalized propagation 

constant for the fundamental mode reported in [73]. 

 

       To see how closely the results obtained from FDM and FDTD techniques agree with that in 

Figure 4.9, a five-layer holey fiber is modeled and analyzed. The difference between the 

Bjarklev’s holey fiber and the five-layer holey fiber analyzed here is that the air-hole cladding 

structure in our model does not extend to infinity. The air-hole cladding in the five-layer model is 

surrounded by a dielectric material layer with an outer radius of 12 µm. The dielectric material 

everywhere in the five-layer model is assumed to have a refractive index of 1.45. Figure 4.9 also 

shows the results for the normalized propagation constant of the fundamental mode obtained from 

FDM and FDTD methods. Comparison of the three curves in Figure 4.9 shows that the results are 

in remarkably good agreement. In the course of calculations, it was noted that the holey fiber 

allows only a single mode over the entire frequency range. This fact has already been established 

by other researchers. 

 

       Another interesting point is that decreasing the number of layers of small air holes doesn’t 

affect the propagation constant significantly. This means that the layers close to the center of the 

holey fiber play a more significant role on its performance. This is demonstrated in Figure 4.10, 

which compares the results for 3-layer and 5-layer holey fibers with the same (12 µm) overall 

radius. When the normalized frequency is less than 1, which corresponds to operating 

wavelengths longer than 2.0 µm, the propagation constant for the 3-layer holey fiber is slightly 

larger than that for the 5-layer holey fiber. The reason is that the field at longer wavelengths 

actually sees more of the small air holes. 
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  Figure 4.9 Normalized propagation constant of the fundamental mode in a holey fiber with a  

                   triangular air-hole lattice cladding structure 

 

       Next, the effect of the thickness of the dielectric layer surrounding the air holes is examined. 

When the outer radius of the holey fiber is reduced from 12 µm to 9 µm, no significant change on 

the propagation constant occurs as shown in Figure 4.11. The propagation constants for the 12 

µm and 9 µm radius holey fibers calculated by the FDTD method are almost the same except for 

the longest wavelength. This is expected because the field of the fundamental mode is nearly 

entirely confined to a region of 9 µm radius over the wavelength range used in Figure 4.11. 

Another computer simulation is performed for a 3-layer holey fiber with an air hole at the center. 

Again the fiber radius is 12 µm. Figure 4.12 compares the results for propagation constants of 

holey fibers with and without the central air hole. The central air hole has a radius of 0.3 µm. As 

expected, the propagation constant for the fiber with central air hole is smaller than that without 

it.  
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  Figure 4.10 Comparison of normalized propagation constants of the fundamental mode in holey  

                     fibers with 3-and 5-layer air holes 

 

           
  Figure 4.11 Normalized propagation constants of 3-layer holey fibers with different radii 
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  Figure 4.12 Normalized propagation constants for 3-layer holey fibers with and without center  

                     air hole 

 

 

4.5.2 Mode Field Distributions 

 

       As mentioned before, the normalized propagation constant of the fundamental modes in 3-

layer and 5-layer holey fibers with 9 µm or 12 µm radius are very close because the mode field is 

largely confined to the central region. To appreciate the confinement of mode to the central 

region, mode field distributions are calculated using the FDM technique. For this purpose, the 3-

layer holey fiber with 9 µm radius is selected. Figure 4.13 shows the field distribution for the Ex 

component of the fundamental mode at 1.55 µm wavelength. Figure 4.6 (a) is the 3-dimensional 

view and Figure 4.13 (b) is the top view. Figures 4.14 (a) and (b) show two-dimensional profiles 

of the field on x=40 and y=40 planes, respectively. Here, each pixel has an area of 0.3x0.3 µm2. It 

is noticed that the field distribution appears to be largely Gaussian. However, when the operating 

wavelength becomes longer, the field assumes a distribution different from the usual Gaussian  
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                                                                    (a) 

           
                                                                    (b) 

 

  Figure 4.13 Field distribution for the Ex component of the fundamental mode at λ=1.55 µm in a  

                     holey fiber with parameters Λ= 2.0 µm and d = 1.2 µm and 3 layers of air holes.  

                     (a) 3-D view, (b) top view 



Chapter 4  Analysis of Two-Dimensional Photonic Crystal and Holey Fibers 
 

 68

 

           
                                                                      (a) 

           
                                                                      (b) 

 

  Figure 4.14  2-D field profiles at λ=1.55 µm on planes (a) x=40 and (b) y=40.  

                      Fiber parameters are the same as those in Figure 4.13. 
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shape. This can be seen in Figure 4.15, which depicts the distribution of Ex for the fundamental 

mode at 15.0 µm wavelength. It is noted that there are many peaks in the distribution. These 

peaks occur at the places where small air holes exist. 

 

       Next, we examine the field distribution of a holey fiber with a central air hole. Figure 4.16 

shows the field distribution for the Ex component of the fundamental mode in a holey fiber with a 

central air hole of 0.3 µm radius. It is observed that there is a dip at the center (on the fiber axis). 

This is due to the fact that fields tend to have larger concentrations in regions of higher refractive 

index.  
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                                                                    (a) 

           
                                                                    (b) 

 

  Figure 4.15 Field distribution for the Ex component of the fundamental mode at λ=15.0 

                     µm. Fiber parameters are the same as those in Figure 4.13. 
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                                                                  (a) 

           
                                                                  (b) 

 

  Figure 4.16 Field distribution for the Ex component of the fundamental mode in a holey fiber  

                     with a central air hole of 0.3 µm radius. Other parameters of the fiber are the same  

                     as those in Figure 4.13. 
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4.5.3 Effective Area 

 

       For the calculation of the effective area, (4-30) is once again utilized for a 3-layer holey fiber 

with Λ= 2.0 µm, d = 1.2 µm, and R = 9.0 µm. The results for the effective area of this fiber are 

summarized in Table 4.2. It is noted that the effective area tends to increase with the wavelength. 

This behavior, which was also observed in the step-index test waveguide, should be expected 

because at longer wavelengths fields spread more into the cladding region, resulting in larger 

values for the effective area. As noted from Table 4.2, the effective areas are quite small 

compared to those of the conventional step-index fibers (50 – 80 µm2) in the 1.5-µm wavelength 

region [74], indicating that these holey fibers are suitable for nonlinear device applications. 

 

                   Table 4.2 Effective area for a holey fiber with Λ= 2.0 µm,  

                                   d = 1.2 µm, R = 9.0 µm and three layers of air holes 

Operating wavelength [µm] Effective area [µm2] 

0.8 4.5325 

1.3 5.1019 

1.55 5.5042 

2.0 6.5031 

 

 

4.5.4 Chromatic Dispersion 

 

       The normalized propagation constant can be used to evaluate the waveguide dispersion. 

However, the chromatic dispersion in a single-mode fiber is sum of the waveguide dispersion and 

material dispersion. In order to directly account for the material dispersion, the glass refractive 

index is used as a function of wavelength through Sellmeier’s equation given in (3-18). The 

Sellmeier coefficients for pure fused silica have been provided in Chapter 3 (following (3-18)) 

and thus are not repeated here. It is mentioned that the FDTD algorithm does not easily 

accommodate the wavelength dependence of refractive indices, thus the FDM results for the 

normalized propagation constant are used in the evaluation of chromatic dispersion. Once the 

propagation constant is available, (3-19) can be used to calculate the chromatic dispersion.  
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       First, chromatic dispersion for the test dielectric rod is calculated using the FDM analysis and 

compared with the exact analytical results. Figure 4.17 shows the chromatic dispersion for the test 

dielectric rod waveguide. The blue curve is from the analytical solution, while the red curve is 

obtained for the FDM analysis. As noted, the two results agree well. This gives us confidence that 

FDM analysis can accurately predict chromatic dispersion in holey fibers.  

 

       Next, the holey fiber that was investigated in the previous section is chosen for further study 

of chromatic dispersion. This is a fiber with 5 layers of holes and parameters Λ= 2.0 µm and d = 

1.2 µm. Figure 4.18 shows both the chromatic dispersion and the waveguide dispersion (material 

dispersion not included). Compared with the waveguide dispersion that is about 70 ps/nm-km 

over the wavelength range from 0.7 µm to 1.7 µm, the chromatic dispersion changes more 

extensively from -140 to 85 ps/nm-km over the same wavelength range. It is noticed that the 

chromatic dispersion is zero-crossing around 0.9-µm wavelength.  

 

        
  Figure 4.17 Comparison of chromatic dispersions for the test dielectric rod waveguide  

                     calculated from exact analytical solution and the FDM analysis 
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  Figure 4.18 Waveguide and chromatic dispersions in a holey fiber with 5 layers of aire holes and  

                     parameters Λ= 2.0 µm and d = 1.2 µm 
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       Photonic crystal fibers with one- and two-dimensional periodic cladding index distributions 

were studied in chapters 3 and 4, respectively. In this chapter, the investigation is extended to 

cases with random cladding index distributions. Since the optical fibers under investigation here 

do not have periodicity, they are referred to as microstructure optical fibers instead of photonic 

crystal fibers. The goal is to find out if the microstructure optical fibers with random cladding 

index distributions have electromagnetic properties similar to those of photonic crystal fibers with 

periodic index distributions. First, microstructure optical fibers with one-dimensional random 

cladding index distributions in the radial direction are studied by using vector-wave analytical 

solutions. Then, holey optical fibers with random air-hole distributions are designed and analyzed 

numerically. 

 

 

5.1 Microstructure Optical Fibers with One-Dimensional  

Random Cladding Index Distributions 
 

       In Chapter 3, transmission properties of one-dimensional cylindrical photonic crystal 

waveguides, including mode characteristics, chromatic dispersion, field profiles, and effective 

area, were calculated using a systematic 4×4 matrix approach based on vector field analytical 

solutions. Now, the periodic radial cladding index distribution is changed to a random index 
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distribution in several of such fibers considered as reference waveguides. Table 5.1 summarizes 

the parameters of 5 reference fibers whose cladding index distributions will be randomized and 

then their properties studied. All reference fibers have a high-index core with radius of 1.0 µm as 

defined in Figure 3.1 (a). 

 

       The first reference fiber has a thickness of 0.3 µm for each air and glass layer with a total of 

12 layers (including the central core and the outer cladding region). Thus, with 10 inner cladding 

layers the cladding thickness ( cd ) is 3.0 µm, from 1r r=  to 1Nr r −= . All other reference fibers 

have about the same total inner cladding thickness, but have smaller thickness for individual glass 

and air layers. As a result the number of layers is larger, varying from 32 for fiber 2 to 150 for 

fiber 5 as indicated in Table 5.1. Since the fields of the fundamental mode in all reference fibers 

decay to negligible values beyond r> 3.0 µm, the choice of total cladding thickness of about 3.0 

µm is reasonable. 

 

               Table 5.1 Parameters of the 5 reference fibers, which are modified to assume  

                               random cladding index distributions 

 

Fiber da [µm] dg [µm] 

Number of cladding 

layers dc [µm] 

1    0.3    0.3 12    3.0 

2    0.1    0.1 32    3.0 

3    0.07    0.07 44    2.94 

4    0.04    0.04 76    2.96 

5    0.02    0.02 150    2.96 

 

 

       In each reference fiber, the inner cladding ( 1 1Nr r r −< < ) is replaced with the same number of 

alternating air/glass layers with random thickness such that cd ≈ 3.0 µm is maintained and at the 

same time the thickness ratio of glass/air remains unchanged. In doing so, first uniform random 

numbers ranging from 0 to 1 and with equal probability are generated. Then, these random 

numbers are scaled such that their sum becomes equal to about 3.0. For example to modify fiber 

1, such that its inner cladding assumes a random index distribution, 10 random numbers are first 
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generated. Then, since in fiber 1 the thickness ratio of glass/air is 1 and thus the sum of the total 

air layers should be 0.3x5=1.5 µm, the first 5 out of 10 random numbers are scaled in order to 

make their sum equal to 1.5. The same process is repeated for glass layers using the second set of 

5 random numbers. 

 

       Using the above-described procedure to create one-dimensional cylindrical microstructure 

optical fibers with random cladding index distributions, 10 different random fibers corresponding 

to each reference fiber in Table 5.1 are generated and their transmission properties evaluated. In 

particular, normalized propagation constant, chromatic dispersion, and effective area are 

calculated, and their average, minimum and maximum values are compared with those of the 

reference fibers.  

 

       Figures 5.1 to 5.5 show the results for one-dimensional microstructure optical fibers with 

random cladding index distributions. Plot (a) in each figure shows the normalized propagation 

constant ( β ) versus wavelength (λ) for the fundamental mode. In these figures, the red curves 

represent the normalized propagation constants for the reference fibers with parameters as in 

Table 5.1. The blue curves correspond to the average normalized propagation constants from 10 

different random fibers, while the green and the cyan (sky-blue color) curves illustrate the 

maximum and minimum values of the normalized propagation constants, respectively.  

 

       Plot (b) in each figure shows the chromatic dispersion, which is calculated using the results 

for the normalized propagation constant β  in (3-18). The color designations in these figures are 

identical to those used in parts (a) described above. The results for the average, minimum and 

maximum values of effective area are presented in part (c) in each figure. The calculation of 

effective areas is performed with the help of (3-20). It is noticed that deviation of the normalized 

propagation constants in shorter wavelength is smaller than that of the normalized propagation 

constants in longer wavelength as explained in section 3.4.  

 

       Comparison of results for the average values of normalized propagation constant, chromatic 

dispersion, and effective area with the corresponding results for the reference fibers indicates that 

they are generally in good agreement; however, the agreement gets better as the number of layers 

increases. In fact, for fiber 5 with 150 layers the average results for normalized propagation 
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   (a)      (b) 

 

      
          (c) 

 

  Figure 5.1 Comparison of (a) normalized propagation constants, (b) dispersions, and  

                   (c) effective areas for reference fiber 1 (r1 = 1.0 µm, da = dg = 0.3 µm, and N = 12) 

                    and its random variations 
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   (a)      (b) 

 

      
          (c) 

 

  Figure 5.2 Comparison of (a) normalized propagation constants, (b) dispersions, and  

                   (c) effective areas for reference fiber 2 (r1 = 1.0 µm, da = dg = 0.1 µm, and N = 32) 

                    and its random variations 
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   (a)      (b) 

 

      
          (c) 

 

  Figure 5.3 Comparison of (a) normalized propagation constants, (b) dispersions, and  

                   (c) effective areas for reference fiber 3 (r1 = 1.0 µm, da = dg = 0.07 µm, and N = 44) 

                    and its random variations 
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   (a)      (b) 

 

      
          (c) 

 

  Figure 5.4 Comparison of (a) normalized propagation constants, (b) dispersions, and  

                   (c) effective areas for reference fiber 4 (r1 = 1.0 µm, da = dg = 0.04 µm, and N = 76)  

                    and its random variations 
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   (a)      (b) 

 

      
          (c) 

 

  Figure 5.5 Comparison of (a) normalized propagation constants, (b) dispersions, and  

                   (c) effective areas for reference fiber 5 (r1 = 1.0 µm, da = dg = 0.02 µm, and N =150) 

                    and its random variations 
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constant and dispersion calculated after randomizing the cladding layers are essentially 

indistinguishable from those of the reference fiber as seen in Figures 5.5 (a) and (b). Many 

simulations have also been performed with layer thicknesses larger than 0.3 µm, but in these 

cases the differences between the average and reference values were substantial. Overall, it can be 

concluded that, in order to have close agreement between the average and reference results, the 

layer thicknesses should be about one-tenth of wavelength or smaller. The examination of 

minimum and maximum values in Figures 5.1 to 5.5 indicates that they are significantly different 

from the reference values. This, however, should not be of concern, because, first of all, the 

probability of occurrence for a minimum or maximum dispersion, effective area, or any other 

property is very small. Moreover, in practical microstructure waveguides/fibers with random 

cladding index distributions in the cross sectional plane as well as along the propagation 

direction, these are the average values of transmission properties which matter and not the 

properties of specific segments of the waveguide. 

 

       It is also interesting to note that the effective area in all fibers examined above is very small 

(2 – 3 µm2), indicating that these microstructure optical fibers are well suited for nonlinear optical 

devices. In fact, the need for low-cost and highly nonlinear optical fibers has been the prime 

motivation for the development of holey fibers with random-hole distributions. And Virginia 

Tech has been one of the main research institutes in this area. 

 

       Next, we examine the impact of the glass/air ratio on transmission properties of 

microstructure optical fibers. Considering the reference fiber 5 with N = 150, for which the 

agreement between the results pertaining to periodic and random cladding index distributions was 

better, the glass/air ratio in the cladding region is changed from 0.5/0.5 to 0.7/0.3 or 0.3/0.7. 

Figure 5.6 shows  (a) the normalized propagation constant, (b) chromatic dispersion, and (c) 

effective area for the case when the glass/air ratio is 0.7/0.3, while Figure 5.7 shows the three 

propagation properties when this ratio is 0.3/0.7. It is noted that there are still overall good 

agreements between the reference and the average results. One thing that is different from fiber 5 

is that the chromatic dispersion in Figure 5.6 is zero at about 1.43 µm. This is due to the increased 

glass portion in the cladding region. 

 

       For quantitative comparison of average and reference results of Figures 5.1 to 5.7, Table 5.2 

tabulates the percentage difference in dispersion and effective area at 1.3 µm and 1.55 µm. 
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   (a)      (b) 

 

      
          (c) 

 

  Figure 5.6 Comparison of (a) normalized propagation constants, (b) dispersions, and  

                   (c) effective areas for a microstructure fiber with glass/air ratio of 0.7/0.3  

                   (r1 = 1.0 µm, da = 0.012 µm, dg = 0.028 µm and N =150) and its random variations 
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   (a)      (b) 

 

      
          (c) 

 

  Figure 5.7 Comparison of (a) normalized propagation constants, (b) dispersions, and  

                   (c) effective areas for a microstructure fiber with glass/air ratio of 0.3/0.7  

                   (r1 = 1.0 µm, da = 0.028 µm, dg = 0.012 µm and N =150) and its random variations 
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First it is noticed that results of Figure 5.2 show the percentage difference less than 5 % between 

the average and reference in both dispersion and effective area. Only in terms of dispersion, 

results of Figure 5.5 indicate – 0.3-% and 0.7-% differences at 1.3 µm and 1.55 µm, respectively, 

which are negligible. And effective area results of Figures 5.6 and 5.7 show there are remarkable 

agreement between the average and reference. 

 

                      Table 5.2 Percentage difference in dispersion and effective area 

 

Dispersion [%] Effective area [%]  

Figure 
1.3 µm 1.55 µm 1.3 µm 1.55 µm 

5.1 -2.6558 14.7933 2.7357 3.7678 

5.2 -3.0961 1.2649 2.1207 2.3795 

5.3 5.14887 -3.2186 -1.2341 -1.1112 

5.4 3.2371 5.3564 2.6865 2.2879 

5.5 -0.3136 0.6929 5.4929 6.6932 

5.6 39.8875 19.2644 -0.2603 -0.7050 

5.7 0.2926 0.8628 0.4987 0.4169 

 

 

 

5.2 Holey Fibers with Random Air-Hole Distributions 
 

       In chapter 4, holey fibers with periodically arranged identical air holes in their claddings 

were investigated. However, the periodicity of air holes and their identical size are not necessary 

conditions for maintaining guided light propagation along the fiber. It is recalled that two 

mechanisms contribute to light guidance in photonic crystal fibers, (i) total internal reflection due 

to the difference between the core refractive index and the average cladding index, and (ii) 

constructive interference effect due to the periodic arrangement of identical air holes. When the 

air holes become random in size, location, or both, the second mechanism can no longer exist, but 

the index difference between the core and cladding can still provide light confinement and hence 

guidance of light along the fiber.  
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       Randomization of air holes may be achieved by randomly varying one or more of the 

following three parameters, 

 

(1)  radial coordinates of the centers of air holes, 

(2) azimuthal (φ) coordinates of the centers of air holes, 

(3) size (radii) of air holes. 

 

The first two parameters describe the location of air holes. Randomization may also be achieved 

by varying the shape of air holes, but this type of change cannot be easily implemented in the 

numerical analysis and thus is not considered here. Figure 5.8 illustrates a simplified visualization 

for the three random parameters. In this section, holey fibers in which all the above three 

parameters are varied randomly are analyzed. 

 

5.2.1 Simulation Results by FDTD Method 

 

       In order to examine transmission properties of holey fibers with random distributions of air 

holes, the FDTD method is utilized first. Using a random hole generator program, many holey 

fibers with random hole distributions were created and computer-simulated. Here several  

examples of holey fibers with random air hole distributions are given. Let us begin with the holey 

fiber with parameters Λ= 2.0 µm and d = 1.2 µm which was studied in chapter 4. If we imagine a 

circle formed by connecting the inner-most points to the center of the six-inner air holes, we can 

consider a fictitious circle as the core boundary of the holey fiber. The radius of this fictitious 

core is 1.4 µm. The random hole generator is programmed to make sure that silica glass fills 

inside of the core radius.  

 

       Figure 5.9 shows examples of holey fibers that guide a single mode in the wavelength range 

of 1.2 µm to 1.6 µm. The gray and dark regions correspond to silica glass and air holes, 

respectively. Figure 5.10 illustrates the spectrum of the holey fiber with 120 air holes as shown in 

Figure 5.9 (b). It is noticed that there is only one mode with high power spectral density at 1.4861 

µm. On the other hand, Figure 5.11 shows examples of holey fibers that can guide a few modes. 

The spectrum for the holey fiber of Figure 5.11 (b) is shown in Figure 5.12. Clearly, it is noticed 

that there are three modes at wavelengths 1.3716 µm, 1.4112 µm, and 1.4878 µm. 
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   Figure 5.8 Simplified visualization for randomly varying three parameters of air holes 

 

 

       Other holey fibers were also examined to see if the possibility of having only a single mode 

will be improved. For example, the number of air holes was increased to 150 from 120 in the 

fiber of Figure 5.9 and then to 400. However, it turned out that these fibers also support a few 

modes. In view of waveguide structures, no special distinction between microstructure optical 

fibers guiding a single mode or a few modes is observed. Nonetheless it is expected that air holes 

around the core region play important role for the mode characteristics. 
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                                     (a)                                                                        (b) 

 

     Figure 5.9 Cross-sectional view of holey fibers with (a) 80 air holes, and (b) 120 air holes,  

                      which guide only a single mode 

 

 

        
                    Figure 5.10 Spectrum for the holey fiber of Figure 5.9 (b) 
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                                    (a)                                                                   (b) 

     Figure 5.11 Cross-sectional view of holey fibers with (a) 80 air holes and (b) 120 air holes,  

                        which guide a few modes. 

 

 

        
                    Figure 5.12 Spectrum for the holey fiber of Figure 5.11 (b) 
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5.2.2 Simulation Results by FDM  

 

       Once the mode characteristics of random holey fibers are investigated by the FDTD method, 

other propagation properties including mode field profile, effective area, and chromatic 

dispersion are computed by using the FDM technique. In the study of the 1D cylindrical 

microstructure optical fibers, 10 different random fibers corresponding to each one of 5 different 

reference fibers were generated and their transmission properties evaluated in section 5.1. 

However, when it comes to the 2D microstructure optical fibers, it is rather difficult to do similar 

comparison between a reference fiber and random air-holed fibers, because not only maintaining 

the same area ratio of glass/air for random holey fibers as for a reference photonic crystal fiber is 

not easy process, but also computer-simulation for 2D microstructure optical fibers by FDTD and 

FDM over interesting wavelength region with fine resolution is very time-consuming. Therefore, 

first the procedure to find a holey fiber with random air-hole distributions that is providing a 

single mode is presented and the transmission properties of the holey fiber is evaluated in this 

section. It is noted that about the same size of the core region is maintained as that of the 2D 

periodic photonic crystal fibers in chapter 4. 

 

       Considering from the previous section that holey fibers with random air-hole distributions 

can provide a strong fundamental mode to be propagated, now the random hole generator 

program is employed to generate random air holes for holey fibers. Figure 5.13 shows an example 

that is generated by the program. Again, the radius of a fictitious core is set to be 1.4 µm, which 

is filled with silica glass. The area of air regions is 58.0 µm2. Based on FDTD simulation, this 

example fiber is turned out to provide a few modes around the wavelength range of 1.3 µm and 

1.55 µm. Several other holey fibers with random air-hole distributions with the radius of the core 

region 1.4 µm are created and analyzed, but all of them are guiding a few modes. 

 

       Therefore, computer-simulations are performed after reducing the radius of the fictitious core 

to 1.0 µm to try to have a single mode guiding. What is observed is that some cases are providing 

a single mode but most of cases are still providing a few modes. Figure 5.14 shows an example 

holey fiber with random air-hole distributions, out of 5 holey fibers generated, which is found to 

support a single mode. Here, 200 air holes are generated and the area of air regions is 53.76 µm2. 
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   Figure 5.13 A cross-sectional view of an example holey fiber with 200 air holes,  

                      which is guiding a few modes 

 

             
   Figure 5.14 A cross-sectional view of an example holey fiber with 200 air holes,  

                      which is guiding a single mode 
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       More investigations on the holey fiber of Figure 5.14 is performed by using FDM to find out 

a chromatic dispersion, a mode field distribution, and effective areas. Incorporating the material 

dispersion, the result of dispersion is shown in Figure 5.15. It is noticed that the fiber is providing 

the positive dispersion over the wavelength range between 1.1 µm and 1.55 µm. Particularly, the 

chromatic dispersion at 1.3 µm is 89.3254 ps/nm-km and at 1.55 µm 84.1994 ps/nm-km. Field 

distribution for the Ex component of the fundamental mode at 1.55-µm wavelength is shown in 

Figure 5.16 and is observed that most energy is confined within the core region. Weak ripples in 

the magnitude around the core come from the clustered regions of high refractive index, which 

are not observed in holey fibers with periodic air-hole distributions. Effective areas are also 

computed and tabulated in Table 5.3. It is noted that the effective areas are very small compared 

with those for the conventional step-index fiber, thus the holey fibers could be useful for 

applications to nonlinear devices. 

 

 

        
   Figure 5.15 Chromatic dispersion versus wavelength of the fundamental mode for a holey  

                      fiber with random air-hole distributions of Figure 5.14 
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              Table 5.3 The effective area for a holey fiber with random air-hole distributions,  

                              as shown in Figure 5.14 

 

Operating wavelength [µm] Effective area [µm2] 

0.8 3.6697 

1.3 4.1410 

1.55 4.4835 

2.0 6.3824 
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     (a) 

        
     (b) 

   Figure 5.16 Field distribution for the Ex component of the fundamental mode at λ=1.55 µm for 

a holey fiber with random air-hole distributions of Figure 5.14. (a) 3D view (b) top view 
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       Many holey fibers with random air-hole distributions were fabricated in the draw tower 

facility of the Fiber & Electro-Optic Research Center at Virginia Tech. The inner cladding region 

of these holey fibers is formed by a compound material that, when drawn into a fiber, will have 

many elongated air holes. Figure 6.1 shows the SEM (scanning electron micrograph) picture of 

the cross section of a sample of a fabricated holey fiber after removing the coating. The air holes, 

which correspond to dark regions, are, in fact, elongated air bubbles because they are not running 

from one end to the other end of the fiber, but over short distances on the order of several tens of 

centimeters. 

 

       The formation of holes in these holey fibers is unique in that they are formed in-situ, during 

the fiber fabrication process. First, in the preform preparation stage, a silica dielectric rod with a 

diameter of about 3 mm and a silica tube with an outer diameter of about 15 mm and an inner 

diameter of about 10 mm are fused together at one end on a prefrom lathe. Here, the silica rod is 

concentrically located inside the silica tube. Then, a dried mixture of GPP (gas producing 

powder) and pure fused silica powder is inserted to the gap inside the rod and the tube. The GPP 

is selected in such a way that after the fiber is drawn only pure fused silica would remain. The 

amount of air holes in drawn fibers can be controlled by the ratio of the GPP and fused silica 

powder. Finally, a holey fiber is drawn and coated with a polymer material as protective layer. 

 

       In this chapter, several measurement results are presented. In section 6.1, the transmission 

spectrum of a holey fiber that is subjected to pressure is measured and compared with the 
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spectrum of a conventional step-index multimode fiber under the same load condition. Loss 

measurement results are addressed in section 6.2. A far-field intensity pattern experiment is 

explained in section 6.3. Also, a computer-simulation result and its comparison with experimental 

results are presented in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 6.1 The SEM picture of the cross section of a holey fiber  

                                    with random air-hole distribution 

 

 

6.1 Transmission Properties 
 

       In exploring unique and potentially useful properties of holey fibers that were fabricated, we 

performed transmission measurements using a white light as input signal and an OSA (optical 

spectrum analyzer) as detector. The holey fiber is carefully connected to the white light source 
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and OSA to ensure accuracy of measurements. The blue line in Figure 6.2 illustrates variations of 

the received power versus wavelength. It is noticed that there are six intensity peaks in the 600-

1600 nm wavelength range. These peaks are part of the characteristic of the white light source 

and are not caused by the holey fiber. The dip around 1350 nm is attributed to the well-known 

OH absorption. 

 

       In a next experiment, we placed an object weighing about 10 Kg on the fiber and measured 

the transmission spectrum. The red line shows the intensity spectrum of the loaded holey fiber. 

Again, six peaks are observed as in the first experiment (blue curve). Comparison of the two 

spectra reveals an interesting feature; namely, that the signal is attenuated under the load 

condition, with the largest attenuation occurring around 700 nm (by more than 3 dB). This loss is 

due to the fact that when the fiber is compressed by the object, the signal experiences 

microbending losses. This phenomenon may be exploited in making pressure sensors with this 

type of holey fibers. 

 

       In order to better appreciate this property of the holey fiber, the same experiment was 

performed on a conventional multimode fiber. Figure 6.3 shows the transmission spectra for this 

experiment. In this figure, the blue and red curves correspond to no-load and 10 kg load cases, 

respectively. The green curve shows the transmission spectrum after removing the 10 Kg load 

from the fiber for repeatability check. It is noticed that there is a very small intensity change over 

the entire scanned wavelength range. Also, it is worth noting that there are five intensity peaks 

instead of six in the 600-1600 nm wavelength range. This is because of the fact that the dip 

around 1350 nm doesn’t happen, as the multimode fiber used in this experiment was deliberately 

manufactured to minimize the OH absorption. Without this dip, two peaks merge into one and 

only five peaks are observed. 
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       Figure 6.2 Transmission spectra of a holey fiber under no-load and load conditions 

 

 

           
       Figure 6.3 Transmission spectra of a conventional multimode fiber under  

                         no-load and load conditions  
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6.2 Loss Measurement 
 

       The loss of fabricated holey fibers was measured by the cut-back method. Using the same 

experiment setup as for the transmission spectra measurement, first the spectrum of the received 

light was measured for a 3-meter long holey fiber. The bottom curve in Figure 6.4 shows the 

transmission characteristic obtained from this measurement. Then, we cut out about 1 m from the 

fiber and performed the same measurement. The second bottom curve shows the results for this 

measurement. Subtracting the first bottom curve from the second one, the loss for the cut section 

(1 m) is obtained. The upper curve in Figure 6.4 shows the measured loss of the holey fiber in 

dB/m. As noted, the loss is about 12 dB/m. This is huge compared with the losses of about 0.2 

dB/km for conventional step-index fibers, indicating that the manufacturing process of holey 

fibers at Virginia Tech facility needs a significant amount of improvement. 

 

 

 Figure 6.4 Loss spectrum of a holey fiber fabricated in the draw tower facility of Virginia Tech 
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6.3 Mode Characteristics and Far-Field Measurement 
 

       Mode characteristics of the holey fiber that were fabricated are also investigated. Since the 

holey fiber that is shown in Figure 6.1 has a rather large core region (about 20 µm diameter), it is 

guiding multimode around the wavelength of 632.8 nm. Even though many recent articles are 

focusing on the fact that the holey fibers, especially with periodically arranged air holes, are 

guiding a single mode over a wide wavelength range, this multimode feature of fabricated fibers 

is desirable for sensor applications because of better coupling efficiency and more sensitivity to 

external disturbances. 

 

       In this section, the mode characteristics of a fabricated holey fiber is analyzed numerically. 

First, a micrograph of the complicated random-holed optical fiber is taken carefully using a 

scanning electronic microscope. The digital image of the SEM is mapped into digital data using 

digital image processing. Based on the digital data, numerical analysis is performed to predict 

mode characteristics of the random-holed optical fiber. For example in this study, FDTD (finite-

difference time-domain) method is utilized to determine whether a holey fiber with random air 

holes is single-mode or multimode. 

 

       From the SEM picture of Figure 6.1, it is noted that the outer diameter of the random-holed 

optical fiber is 108.5 µm (excluding the coating), which is a little smaller than that (125 µm) of 

the conventional step-index fiber. The dark regions between the central core and the outer solid 

cladding are air holes. The size of holes varies from about 2.5 micron radius to about 0.05 micron 

radius as measured by the SEM. Here, the space where the large and small pores are randomly 

distributed between the solid central core region and the solid outer tube region is designated as 

the pore band. Strictly speaking, the holey fiber does not have a clear boundary between the core 

and cladding regions. 

 

       Since the holey fiber in this study is composed of only two different materials (pure silica 

and air), digital image processing is employed to make a distinction between the two, based on 

the cross-sectional SEM micrograph. For example, pure silica can be mapped as 1 and air as 0. 

Once digital data is computed from the digital image, numerical analysis can be applied. 
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       To determine if the holey fiber is single-mode or multi-mode, a compact two-dimensional 

FDTD analysis of the fiber is carried out. The holey fiber is assumed to be uniform along the z-

axis, so that the 2D FDTD method becomes applicable. Since sampled points in a cross section of 

Figure 6.1 from the SEM micrograph provide refractive index information, the index data at the 

sampled points are utilized for numerical calculations of allowed modes. First, the continuous 

electromagnetic field at a distinct point in a given surface lattice is sampled at distinct equally 

spaced steps in time. Then the finite Fourier transform (FFT) is applied to obtain the mode 

spectrum as shown in Figure 6.5. Here, the cell size used for the 2D FDTD simulation is 0.302 

µm and the total number of cells is 410x410 including 16 perfectly matched layers (PML). 

 

          
  Figure 6.5 Mode spectrum around 632.8-nm wavelength for the holey fiber in Figure 6.1 

 

       The FDTD result shown in Figure 6.5 predicts that many modes are generated in the 

wavelength range between 600 nm and 700 nm. Clearly, the mode spectrum in Figure 6.5 

indicates that the holey fiber of Figure 6.1 is multimode at the 632.8-nm wavelength. In order to 

experimentally verify if the holey optical fiber under investigation actually support a single mode 

or multiple modes, a far-field measurement was also performed using a He-Ne laser, which is 

operating at the wavelength of 632.8 nm. An experimental setup around source point is shown in 
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Figure 6.6. Incident light from the source laser is carefully focused on one end of the holey fiber 

through a lens and output light from the other end of the fiber is illuminated on a thin white paper 

[75]. The fiber section tested was about 25 cm long, where most of the random air holes are 

continuous throughout this length of fiber. While changing the longitudinal path of the fiber a 

little by pressing or relocating, pictures of the far-field patterns projected on the paper are taken 

using a CCD (charge-coupled device) camera. Figure 6.7 shows some of the pictures, among 

which output patterns are observed different. Because the fiber is highly multimode-guiding at 

632.8-nm wavelength, interference between propagating modes occurs. As a consequence, lots of 

speckles are generated as expected from the FDTD simulation result. 

 

 

    
 

     Figure 6.6 Experimental setup around source point for far-field pattern measurement 
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                                         (a)                                                (b) 

 

                                          (c)                                               (d) 

 

         Figure 6.7 Far-field patterns due to interference among propagating modes  

  

 

 

 

 

 



Chapter 7  Applications of Holey Fibers 
 

 105

 

Chapter 7  

 

Applications of Holey Fibers 
 

 

 

 

 

       Holey fibers that have been analyzed and designed in this research turn out to provide a 

single-mode guiding and very small effective area in the wavelength range of 1.3 µm and 1.55 

µm for lightwave communications. Because of not only these remarkable properties but also the 

unique structures of holey fibers, which are quite different from the step-index or graded-index 

optical fibers, there is on-going investigation to find out applications of this new type of fiber. 

 

       Since the holey fibers basically constitute of air holes along the longitudinal direction, optical 

properties can be controlled rather easily by changing the structural parameters like the pitch 

length (Λ) and radius (r) of each air hole or the material inside of the small holes. For example, 

holey fibers incorporating gratings in the core region are designed as lightwave filter in section 

7.1. Also, an application of holey fiber as a pressure sensor is addressed in section 7.2. 

 

 

7.1 Grating-Incorporated Holey Fiber 
 

       As the telecommunication traffic increases due to the rapid growth in use of telephone, 

television, data transmission, and the Internet, the need for communication systems that could 

handle more and more information increases all over the world. Accordingly, more channels over 

wider bandwidth are required to fulfill the increased demand. Wavelength division multiplexing 

(WDM) to process multiple communication channels together in an optical link has been 

established as a promising solution for increased capacity. The WDM technique allows long-haul 
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point-to-point lightwave transmission systems to provide 4, 8, or more channels simultaneously 

in the 1.55-µm wavelength operation. 

 

       In a WDM communication system, one of the most essential components is the optical filter. 

Incorporating Bragg gratings in optical fibers, application-specific optical filters can be designed 

based on the well-developed grating theory [76]. In a cylindrical dielectric waveguide with an 

arbitrary cross section but uniform along the z-axis, the power reflection coefficient (R) at the 

input of a section of the waveguide where the grating is written can be found from the coupled 

mode theory [77]. Here the coefficient, R, measures how much power of the backward 

propagating mode is generated by the Bragg grating, compared with the power of the forward 

propagating mode.  

 

       As an example of the cylindrical dielectric waveguide with an arbitrary cross section, a holey 

fiber is considered in this section. The holey fiber is to be assumed longitudinally invariant and a 

perturbation of refractive index is introduced in the core region with the following expression, 

 

                  
2 2( ) ( ) 2 ( )r eff effz n n z n n n zε ε δ δ + ∆ = + +  �     (7-1) 

 

Here, the refractive index modulation of the grating is described by 

 

                 
2( ) 1 cos ( )eff effn z n z zπδ δ ν φ  = + +  Ω  

     (7-2) 

 

where effnδ  is the refractive index change averaged over a grating period, ν  is the fringe 

visibility of the index change, Ω  is the period of the grating perturbation, and ( )zφ  is the 

arbitrary spatially varying phase change to describe grating chirp. 

 

       If the grating is assumed uniform along the light propagation direction, effnδ  is a constant 

and 0d dzφ = . For a single-mode Bragg reflection grating, a “dc” (period-averaged) coupling 

coefficient, σ, and an “ac” coupling coefficient, κ, can be found by the following simple relation: 
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2

effnπσ δ
λ

=         (7-3) 

                         effnπκ νδ
λ

=         (7-4) 

 

where σ and κ now become constants for the uniform grating [76]. 

 

       After applying appropriate boundary conditions, the closed-form solution for the power 

reflection coefficient, R, of a uniform fiber grating of length L is found to be 
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2 2 2
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2 2 2
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σκ σ
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−
=

− −
      (7-5) 

 

where σ̂  is a “dc” self-coupling coefficient defined as 

 

                           σ̂ δ σ≡ +         (7-6) 

 

for the uniform grating. And the detuning term δ, which is independent of z for all grating, is 

defined as 

 

                          
1 12 eff

d

n

πδ β

π
λ λ

≡ −
Ω

 
= − 

 

       (7-7) 

 

where 2d effnλ = Ω  is the design wavelength for an infinitesimally weak grating of refractive 

index change ( )0effnδ → . 

 

       Figure 7.1 shows a schematic that is proposed in this research to realize the grating-

incorporated holey fiber. First, the pitch length (Λ) is chosen as 1.0 µm and the radius of the 



Chapter 7  Applications of Holey Fibers 
 

 108

small holes is 0.4 µm with 5 layers in order to accommodate more optical functionality around 

1.55-µm wavelength. Moreover, an induced refractive index change effnδ  is 8x10-4, a visibility 

ν  is 0.02, and a uniform grating length L is 70 mm. The small air holes of the fiber can be filled 

with any materials such as gas, liquid, or solid. Few researches have recently reported on holey 

fibers that are filled with liquid or solid-like polymers [78]. However, extensive survey reveals 

that there is no attempt on grating-incorporated holey fibers filled with gas. For the purpose of 

calculation of the reflectivity, R, of the proposed holey fiber with grating, effective refractive 

indexes for three different cases are obtained by FDM approach taking into account the material 

dispersion effect. Figure 7.2 shows variations of normalized propagation constants, when the 5 

layers of small holes are filled by air, carbon dioxide (CO2), or kerosene, which are represented 

by the red, green, and blue lines, respectively. It is found from a reference that the CO2 gas has 

the dielectric constant of 1.6 at 32°F and the kerosene liquid has the dielectric constant of 1.8 at 

70°F [79]. These values are used to get the effective refractive indices. 

 

       Once the effective refractive indices (1.2457 for air, 1.3339 for CO2, and 1.3721 for 

kerosene) are obtained at the design wavelength of 1.55 µm, the reflectivity spectrum can be 

calculated by using (7-5). The reflectivity spectra are plotted in Figure 7.3 for the cases when the 

5-layer holes are filled with air (red line), CO2 (green line), or kerosene (blue line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 7.1 A schematic to realize the grating-incorporated holey fiber 
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  Figure 7.2 Comparison of normalized propagation constants of the fundamental modes,  

                   when the 5 layers of small holes are occupied by air, carbon dioxide (CO2),  

                   or kerosene for a holey fiber with Λ= 1.0 µm and d = 0.8 µm 

 

In more details, the maximum reflectivities are 0.9582075 for air, 0.9582077 for CO2, and 

0.9582055 for kerosene, which are almost the same. The wavelength, λmax, at which maximum 

reflectivity occurs, is 1.550995 µm for air, 1.550930 µm for CO2, and 1.550903 µm for kerosene. 

And each has bandwidth of 4.24 GHz, 3.94 GHz, and 3.87 GHz, respectively, which are quite 

suitable for a channel allocation in the WDM transmission system. Here, the bandwidth is defined 

as the width between the first zeros on either side of the maximum reflectivity. 

 

       It is noticed that λmax is shifted as the refractive index inside of the small holes is changed. As 

a result, a tunable optical filter by inserting different gases or liquids can be an application of 

holey fibers to communications. Also, it is proposed that this grating-incorporated holey fiber can 

be used as gas or liquid sensor devices. 
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  Figure 7.3 Reflectivity spectra for the cases when the 5-layer holes of the holey fiber  

                   as in Figure 7.2 are filled with air (red line), CO2 (green line), or kerosene (blue line) 

 

 

7.2 Pressure Sensor Applications 
 

       As discussed in section 6.1, the holey fiber is sensitive to external pressure. In real situations 

where optical fibers are used as pressure sensor, it is required that they be sensitive to pressure 

but be insensitive to other physical quantities such as temperature. If a sensor responds to two 

parameters like pressure and temperature at the same time, it is difficult to separate the effect of 

individual parameters. 

 

       There are demands for pressure sensors that work in high-temperature environments. For 

example, in places where oil reservoirs are located far away inside from the earth surface, 

temperature can reach 200°C or higher. Also, temperatures in gas turbine engine or power 

generation systems can easily go over 400°C. In these high-temperature harsh environments, 
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appropriate pressure measurements are required to fit the purposes of applications without the 

temperature cross sensitivity.    

 

       Considering the harsh environment sensing applications, the holey fiber is proposed to be 

applied as a pressure sensor with temperature insensitivity. The conventional step-index or 

graded-index fibers have dopants such as germanium in the central core region, which precludes 

the fiber from high temperature applications by the rapid diffusion of germanium. However, the 

holey fiber doesn’t contain any dopant material as it consists of only pure silica (except for the 

impurities present), making it suitable for pressure sensing in high-temperature environments. In 

addition, because the holey fiber has small air holes running inside, force from outside of the fiber 

will change light propagation. Thus, signal from the output of a holey fiber will be changed. 

Based on this idea, the holey fiber is tested as an intensity-based pressure sensor as a preliminary 

work in this research. 

 

       As an extension of the measurement work that is presented in section 6.1, another section of 

the holey fiber about 2-meter long was inserted in a furnace (Thermolyne 47900), which provides 

temperatures as high as 1000°C. To ensure the heat inside of the furnace reaches the surface of 

cladding of the holey fiber, a process of burning out the coating was preceded. Then, one end of 

the holey fiber, after cleaving carefully to get a clean and flat end face, is connected to a white 

light source (MI-150) with 150W EKE quartz halogen lamp. And the other end is connected to an 

optical spectrum analyzer (OSA). 

 

       Figure 7.4 shows spectrum over the wavelength range between 400 nm and 1700 nm at 

different temperatures up to 1000°C. First, temperature starts from 23°C (room temperature). The 

blue line represents the light signal spectrum at one end. The green line represents the spectrum at 

400°C. And the red line does at 1000°C. Then, the furnace was cooled down. Of this half cycle, 

the spectrum at 600°C is scanned, which is plotted as the yellow line. Finally, the dark line 

represents the spectrum at 32°C after one cycle of temperature change. Here, it is noticed that 

there is almost no dependency of the holey fiber on the temperature variation up to 1000°C – less 

than 0.3-dBm variations in the wavelength range between 600 nm and 1500 nm. This might go to 

even higher temperature, even though this was not tested because of the furnace limitation. 
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  Figure 7.4 Temperature insensitivity of a holey fiber over the wavelength range between  

                   400 nm and 1700 nm 

 

       To ensure that this holey fiber with temperature insensitivity has pressure sensitivity, about 

2-kg weight was put on some part of the holey fiber outside the furnace. At 43°C, Figure 7.5 (a) 

shows how well the fiber responds to pressure. The blue line represents output spectrum when no 

weight is put on the fiber. And the red line represents output spectrum when the 2-kg weigh is put 

on the fiber. About 3-dB difference is noticed at 670-nm wavelength. Then, the output spectrum, 

after the weight is removed, is scanned as the green line. Clearly, it is shown that the fiber does 

not have any hysteresis in this test. The same experiment is repeated after increasing the furnace 

temperature to 1000°C. And about the same performance – about 3-dB difference at 670-nm 

wavelength and no hysteresis is observed as shown in Figure 7.5 (b). 

 

       One thing we can notice here is that the intensity, when a weight is on a section of a holey, is 

increased, which is different from the result in Figure 6.2. The reason is that the section used here 

is different from the one tested in section 6.1. Due to the structural difference, the intensity 

response is different. This is also observed in the next isostatic pressure test in which another 

different section of a holey fiber is utilized. 
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     (a) 

 

        
     (b) 

 

  Figure 7.5 Pressure sensitivity of a holey fiber over the wavelength range between 400 nm  

                   and 1700 nm at (a) 43°C and (b) 1000°C 
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       Another test that has been performed on the holey fiber is the isostatic pressure test. In the 

previous two tests in sections 6.1 and 7.2, weights are put on parts of the holey fiber. As a result, 

force from the weights cannot be distributed uniformly to the parts of the holey fiber. Thus, it is 

difficult to predict that how much force is actually affected on the holey fiber. This leads to carry 

out the isostatic pressure test. Test setup is illustrated in Figure 7.6. First, a part of the holey fiber 

is inserted into a metal tube and epoxy-cured at both ends of the metal tube. After the preparation, 

this metal tube is connected to APP (automated pressure processor) machine, which provides the 

isostatic pressure on the part of the holey fiber inside of the metal tube. A PC that is connected to 

the APP machine controls the isostatic pressure. 

 

 

 

 

 

 

 

 

 

 

                Figure 7.6 Setup schematic for isostatic pressure test 

 

       Figure 7.7 (a) shows how well the fiber responds to the isostatic pressure when 2000 PSI 

(Pounds per Square Inch) is applied by the APP machine at room temperature. The blue line 

represents output spectrum when zero PSI is applied on the fiber. And the red line represents 

output spectrum when 2000 PSI is applied. Here, about 2-dB difference is noticed at 670-nm 

wavelength. Then, the output spectrum, after the isostatic pressure is removed, is scanned as the 

green line. Again, it is clearly shown that the fiber does not have any hysteresis in this test. The 

same experiment is repeated after increasing the isostatic pressure to 4000 PSI. And about the 

same performance – about 2.5-dB difference at 670-nm wavelength and no hysteresis is observed 

as shown in Figure 7.7 (b). It should be mentioned that this time, the intensity of the source signal 

is lower. Thus the intensity of the output signal is lower and more noise is involved. 
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     (a) 

        
     (b) 

 

  Figure 7.7 Isostatic pressure sensitivity of a holey fiber over the wavelength range between  

                   400 nm and 1700 nm by forcing (a) 2000 PSI and (b) 4000 PSI at room temperature 
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       Towards exploring new types of optical fibers, with the aim of improving the performance 

and reducing the cost for applications in communication systems, sensor devices, medical 

instrumentation, and many kinds of optical components, the analysis and design of photonic 

crystal and microstructure optical fibers have been undertaken in this dissertation. In particular, 

two types of such fibers have been investigated: (i) one-dimensional (1D) cylindrical photonic 

crystal waveguides, and (ii) two-dimensional (2D) photonic crystal and microstructure fibers. 

 

       Measurements of holey fibers with random air holes, which were fabricated in the draw 

tower facility at Virginia Tech, have also been performed, opening the possibility of applications 

to pressure sensing. Grating-incorporated holey fibers were investigated, with potential 

applications in both sensor devices and fiber-optic communication systems. The important results 

and conclusions of this research work are summarized in section 8.1, and recommendations for 

future work are presented in section 8.2. 

 

 

8.1 Conclusions 
 

       First, one-dimensional cylindrical photonic crystal waveguides were analyzed using a 

systematic 4×4 matrix approach based on vector field analytical solutions. As an example case 

with desirable transmission properties, a 1D photonic crystal fiber with dimensions r1 = 1.0 µm, 
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da = 0.2 µm, and dg = 0.3 µm has been considered. It was found that once the number of cladding 

layers is large enough, adding more cladding layers does not affect the propagation properties 

significantly. This is due to the fact that fields decay exponentially in the cladding layers, and the 

layers beyond which fields become sufficiently small have little influence on propagation 

properties. This convergence behavior for the second and higher-order modes occurred more 

slowly for the same number of layers. This example 1D photonic crystal waveguide provides a 

chromatic dispersion of – 3.8248 ps/nm⋅km at 1.55 µm and very small effective areas (2 – 4 µm2). 

The low-index core PCFs provided somewhat lager effective areas (3 – 5.5 µm2). 

 

       This study was extended to microstructure optical fibers with 1D random cladding index 

distributions. Comparison of results for the average values of normalized propagation constant, 

chromatic dispersion, and effective area with the corresponding results for the reference fibers 

indicates that they are generally in good agreement. It was noted that this agreement becomes 

better as the thickness of glass/air becomes smaller. The effective area in all fibers examined is 

very small (2 – 3 µm2), indicating that these microstructure optical fibers are well suited for 

nonlinear optical devices. Results for a 1D microstructure optical fiber with da = dg = 0.1 µm and 

32 layers show percentage differences less than 5 % between the average and reference values of 

dispersion and effective area at 1.3 µm and 1.55 µm wavelengths. 

 

       The second of the work involved analysis and design of 2D holey fibers. To examine the 

propagation properties of holey fibers, the numerical techniques, FDTD method and FDM, were 

employed. The FDTD method allows reliable calculation of the normalized propagation constant, 

while the FDM can be used to efficiently compute field distributions. The FDM can also be used 

to calculate the propagation constant. But verifications of the results are required, because many 

spurious modes are generated in the FDM approach. It was noted that increasing the number of 

layers of small air holes beyond a certain point (at least 3 layers) does not affect the propagation 

properties significantly, which means that the layers close to the center of the holey fiber play a 

more significant role on its performance. The field distribution of the fundamental mode is nearly 

Gaussian in shape at shorter wavelengths.  

 

       The single-mode guiding property was also sought for the holey fibers with random air-hole 

distributions. This was achieved by increasing the number of small air holes with random sizes 
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and reducing the size of the core region. In doing so, it was found that a holey fiber with 1.0-µm 

radius for the core region and 200 random air holes supports a single mode over the wavelength 

range from 1.1 µm to 1.55 µm. Weak ripples in the field magnitude around the core were 

observed and the effective areas ranging from 4 to 5 µm2 over the above wavelength range were 

obtained.  

 

       To determine if fabricated holey fibers are guiding a single mode or multiple modes, 

refractive-index information were obtained from the SEM micrograph for each fiber cross 

section. Then, the index data at the sampled points were utilized for numerical calculations of 

allowed modes in the given waveguide. The FDTD method of analysis predicts many modes are 

generated over the wavelength range between 600 nm and 700 nm. This mode spectrum indicates 

that the holey fibers are multimode at the 632.8 nm wavelength. Far-field measurements, using a 

He-Ne laser with the operation wavelength of 632.8 nm, were also conducted. The measured 

results show that many speckles, generated due to interference between multi-propagating modes, 

exist. 

 

       As an initial attempt to see if the holey fiber can be used as a pressure sensor, about 2-kg 

weight was put on some part of the holey fiber, while another part of the fiber was heated in a 

furnace. A drop of about 3-dB in the transmitted power level was observed at 670-nm 

wavelength. No hystersis were observed and the power level did not change when the 

temperature varied from 43°C and 1000°C. For more precise measurements, an APP machine was 

used at room temperature. When 2000 PSI was applied, about 2-dB drop in power level was 

noticed at 670-nm wavelength. After increasing the isostatic pressure to 4000 PSI, the power drop 

reached to about 2.5-dB at the same wavelength.  

 

       As another application of the holey fiber, uniform grating for a holey fiber with Λ= 1.0 µm 

and d = 0.8 µm was incorporated and analyzed. When the grating-incorporated holey fiber was 

filled with three different materials (air, CO2, or kerosene), it was noticed that λmax is shifted. As a 

result, tunable optical filters can be realized by filling grating-incorporated holey fibers with 

different gases or liquids. Also, such holey fiber can be utilized as gas or liquid sensor devices. 
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8.2 Recommendations for Future Work 
 

       For 1D cylindrical photonic crystal waveguides, the investigation might be extended to find 

equivalent step-index fiber models for simpler and faster analysis and design work. With the core 

radius (r1) the same, the alternating-index cladding could be replaced by an equivalent cladding 

with a constant index, neq, making this new equivalent model behave like a step-index fiber. The 

equivalent cladding index is obviously a function of wavelength and parameters of the periodic 

cladding. 

 

       For the 2D microstructure optical fibers with random air-hole distributions, comparison of 

average values of propagation properties with those of the corresponding reference fiber with 

periodic hole arrangements is useful. This analysis, although intensely time-consuming, is 

straightforward. 

 

       For the pressure sensor development, more tests and measurements are required. Such effort 

will lead to more reliable and improved optical fiber sensors. The prospects for 

commercialization of such sensors in high temperature environments appear to be good. 
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