RESUME OF THE DEPARTMENT OF STATISTICS OF VIRGINIA POLYTECENIC INSTITUTE

by
\section*{Luis E. Ramírez}

Thesis submitted to the Graduate Faculty of Virginia Polytechnic Institute in candidacy for the degree of

MASTER OF SCIENCE
in
Statistics

APPROVED:

Chairman, Dr. Boyd Harshbarger

TABLE OF CONTENTS

Chanter Page
I INTRODUCTION 8
I.1 Statistics 8
1.2 Statistics and the scientific method 9
1.3 The statistician's work and career 10
II ORGANIZATION AND FUNCTIONS OF THE DEPART- NENT OF STATISTICS AT VPI 13
2.1 History 13
2.2 Purpose and organization. 16
2.3 Facilities 20
2.4 Teaching 20
2.5 Consulting and computing service 24
2.6 Research 34
III COMPUTATIONAL PROCEDURES FOR ANALYZIIGG CERTAIN TYPES OF EXPERIMENTS 36
3.1 Mathematical models 36
3.2 Analysis of variance schemes 38
IV THE COMPUTING CENTER. 124
V ACKNOWLEDGEMENTS 127
VI BIBLIOGRAPHY. 128
VII VITA 131

LIST OF TABLES

Table Page
2.5.1 Types of Analysis of Variance. 30
3.2.1 One-way Classification 44
3.2.2 One-way Classification with unequal numbers of observations per treatment 45
3.2.3 Two-way Classification with one observation per cell 46
3.2.4 Two-way Classification with n observations per cell 47
3.2.5 Two-way Classification with n observations per cell and equal sampling 48
3.2.6 Two-way Classification with unequal numbers of observations per cell. 49
3.2.7 Three-way Classification with one observa- tion per cell 53
3.2.8 Three-way Classification with n observations per cell 55
3.2.9 Three-way Classification with n observations per cell and equal sampling 57
3.2.10 Multi-way Classification with one observa- tion per cell 59
3.2.11 Multi-way Classification with n observa- tions per ceil 61
3.2.12 Malti-way Classification with equal sub- sampling 63
3.2.13 Two-stage Nested Classification with equal samples 65
3.2.14 Two-stage Nested Classification with un- equal samples 66
Table Page
3.2.15 Three-stage Nested Classification with equal subsamples 67
3.2.16 Randomized Complete Block Design 68
3.2.17 Randomized Complete Block Design with sampling 69
3.2.18 Randomized Complete Block Design with subsampling 71
3.2.19 Group of Randomized Complete Block Desings. 72
3.2.20 Group of Randomized Complete Block Designs with sampling 73
3.2.21 Two-way Classified group of Randomized Complete Block Designs 74
3.2.22 axb Factorial in Randomized Complete Block Design 76
3.2.23 axb Factorial + additional treatments in Randomized Complete Block Design. 77
3.2.24 axb Factorial in Randomized Block Design with sampling 79
3.2.25 axb Factorial in Randomized Block Design with subsampling 80
3.2.26 Group of axb Factorials in Randomized Block Designs 82
3.2.27 axbxc Factorial in Randomized Block Design... 84
3.2.28 axbxc Factorial + additional treatments in Randomized Block Design 86
3.2.29 axbxc Factorial in Randomized Block Design with sampling 88
3.2.30 Multi-Factorial in Randomized Block Design. 90
3.2.31 Latin Square Design 92
3.2.32 Group of Latin Square Designs 93
Table Page
3.2.33 Split-plot Design 94
3.2.34 Split-Plot Design considering interac- tions between Repetitions and each of the two Factors 95
3.2.35 Split-Plot Design with sampling 96
3.2.36 Split-Plot Design with sampling considering interactions between Repetitions and each of the two Factors 98
3.2.37 Group of Split-plot Designs 100
3.2.38 Split-plot design with axb Factorial on the whole plots 102
3.2.39 Split-plot design with axb Factorial on the Whole plots, considering interactions between Repetitions and components of the axbxc Factorial 104
3.2.40 Split-Plot design with axb Factorial on the whole plots with sampling 106
3.2.41 Solit-plot Design with axb Factorial on the whole plots with sampling. Interactions be- tween Repetitions and components of the axbxc Factorial 108
3.2.42 Split-Plot design with bxc Factorial on the sub plots 110
3.2.43 Split-split-plot design 112
3.2.44 Split-split-plot design, considering inter- actions between repetitions and components of the axbxc Factorial 114
3.2.45 Split-split-plot design with sampling 116
3.2.46 Split-split-plot design. Interactions be- tween repetitions and components of the axbxc Factorial with sampling 118
3.2.47 Split-split-plot design with cxd Factorial on the sub-subplots 121
Table Page
3.2.48 Incomplete Block Designs, case of a Simple Lattice 123
LIST OF CHARTS
Chart Page
1 The Department of Statistics in the organiza- tional Structure of VPI. 17

CHAPTER I

INTRODUCTION

1.1 Statistics

Statistics is a young and vital branch of science. It is difficult to mention a field of science, agriculture, engineering, business, industrial operations, and government work in which statistics is not gaining greater acceptance and use. It is young because most of the presently used statistical techniques have been developed in this century.

The "average person" thinks of statistics as the columns of figures on the business section of newspapers, illustrated with "zig-zag graphs", or as records of births and deaths, etc. This may have been a good interpretation of statistics years ago. It is true that in the beginning statistics was concerned with the collection and compilation of data, for instance census taking. There are many records of census in most of the countries of the world from early times (e.g. in ancient Egypt a census was taken about 3050 years B.C.) But today, besides being descriptive in nature, statistics provides tools for making decisions when conditions of uncertainty prevail. We shall describe statistics as a branch of science which is concerned with the development and application of efficient techniques for the
collection, orsanization analysis, and interpretation of information (which can be stated in numerical form) in such a way that the uncertainty of inductive inferences may be evaluated in terms of probability statements.

1.2 Statistics and the scientific method

The scientist may use different ways of obtaining knowledge. Most of these procedures include the following steps:

1. Review of facts, theory and proposals related
to the problem raised.
2. Formulation of a logical hypothesis.
3. Objective evaluation of the hypothesis, by means of
a. Investigations (surveying)
b. Experiments.
4. Inference, analysis and interpretation of the results of the objective evaluation of the hypothesis.

In general there is no way of deciding when a step ends and the next starts. Their continuous sequence is circular, because the fourth step will open new theories and proposals leading to the first step again.

The scientist cannot observe all the conceivable events related to a given problem. Thus he has to use inductive inference, in other words he has to derive general propositions from the evidence of specific cases under con-
ditions of uncertainty. This process will enable him to draw conclusions about his hypothesis, but he will need to have an idea about the degree of uncertainty of these conclusions. Thus statistics becomes a vital tool of the scientific method.

The application of statistics falls in many aspects of the scientific method. From the initial plan until the collection of data, which calls for appropriate designs of experiments or surveys, and ways of taking observations, and from the tabulations of the data to evaluating the uncertainty of possible inferences to be drawn, which calls for appropriate methods of analysis of the data by means of the theory of probability.

1.3 The statistician's work and career

During the last fifty years, the rapid development of statistical research, especially in England, India and the United States, has produced a large number of fundamental techniques which are being used very profitably in diverse fields of research, to mention a few of them: forecast and improvement of crops, physics including astro-physics and rocket research, production and operations research, medical and biological research, engineering including testing materials and location of factories, etc. Automatic data processing certainly has received its first impetus from statisticians.

In the last three decades, the marked advances in electronic computers has aided considerably the advance of statistics. High speed electronic computers now make it possible to handle extensive numerical analyses.

Therefore there is an ever increasing demand for mathematical and applied statiscians, and for scientists or engineers with statistical training. In almost all major industries and research organizations the statistician is a highly respected and urgently needed specialist. Graduates with advanced statistical training find abundance of opportunities for highly rewarding and well paid work. In 1963 (6) the estimated salary for a graduate with advanced statistical training ranged from $\$ 8,000.00$ to $\$ 12,000$ per year.

Today many universities in the United States offer special curricula in statistics, and some have departments or institutes, which offer programs leading to advanced degrees (M.A., M.S., Ph.D.) in statistics, which are engaged in consulting and research work, and which also offer supporting courses for graduate students of other departments. More and more universities are adopting undergraduate instruction in statistical methods.

In many of the so called land-grant universities, with the expansion of the agricultural and engineering experimentation came the need for adequate statistical services. As a consequence they had to organize departments or
institutes of statistics. This was the case also at Virginia Polytechnic Institute, where its Department of Statistics has been providing extensive consulting and computing services to the Virginia Agricultural Experiment Station, Virginia Engineering Experiment Station, federal and state agencies, and to the University as a whole.

The objective of this thesis is to give an outline of the organization, importance and objectives of the Department of Statistics of Virginia Polytechnic Institute. Special emphasis is put on the consulting and computing service that the Department of Statistics through its Statistical Laboratory has been providing since its initial organization until September 1966. As the computational work of the Department has considerable aid from the University High-Speed Computer Center, we shall mention briefly its organization and functions.

CHAPTER II

ORGANIZATION AND FUNCTIONS OF THE DEPARTMENT
OF STATISTICS AT VPI

2.1 History

The Virginia Polytechnic Institute is one of the socalled land-grant universities organized under the provisions of the Morrill Act passed by the National Congress and approved on July 2, 1862. Virginia - and every other state was apportioned 30,000 acres of public land (without mineral deposits) for each senator and representative in Congress according to representation based on the 1860 census, (32).

In March, 1872, Governor Gilbert C. Walker signed the bill establishing the Virginia Agricultural and ifechanical College at Blacksburg. Following some of the words of the Morrill Act, the purpose of the new college was stated as: "The curriculum of the Virginia Agricultural and Mechanical College shall embrace such branches of learning as relate to agriculture and mechanic arts, without excluding other scientific and classical studies, and including military tactics". In 1896, the name of the college was changed to make it the Virginia Agricultural and Mechanical College and Polytechnic Institute, as a consequence of the beginning of its great growth. In 1944, the "Agricultural and Mechanical" was dropped and the legal name became the Virginia

Polytechnic Institute (VPI).
Professors in the early days of land-grant colleges soon learned that teaching in the traditional way from textbooks was not enough. Because they had to have more information, they conducted scientific experiments.

The Agricultural Experiment Station was established at VPI in 1887, only 15 years after the university opened its doors, under the federal Hatch Act. And in 1921, the Engineering Experiment Station was established at VPI.

During the 1920's, there was a considerable expansion of the work of the Asricultural Experiment Station, and with it came a need for adequate statistical and computing services, and the training of professional statisticians.

During the early 1930's, two separate installations with tabulating card processing equipment arrived on campus, one to serve the primary need of the Agricultural Experiment Station. It consisted of basic unit record installation with card punches, verifiers, sorters, reproducers, and tabulators. The other was primarily used by the business offices of VPI.

In 1946, undergraduate and graduate offerings in statistics were first announced in the curriculum of the Department: Agricultural Economics, Rural Sociology, and Statistics.

In 1948, a statistical laboratory was organized as a
part of the Virginia Agricultural Experiment Station. Dr. Boyd Harshbarger was invited to organize the laboratory with the help of one assistant.

In 1949, the Department of Statistics was established in the School of Applied Science and Business Administration, and was authorized to offer a curriculum leading to the M.S. degree in statistics. In 1952 it added a curriculum leading to the Ph.D. degree. More recently it has offered selected courses for undergraduates in various departments, and since 1957, has a curriculum leading to the B.S. degree with a major in statistics.

In 1957 the Department of Statistics substantially expanded its present program with the aid of a grant from the National Institute of Health which provides for assistance to students as well as the staff.

In 1963, the Department of Statistics, in cooperation with the Department of Civil Engineering-Sanitary Engineering, initiated a training program in Environmental Engineering statistics.

Since 1963, the Department of Statistics belongs to the College of Arts and Sciences.

2.2 Pumose and organization
 2.2.1 Thurpose

The purposes of the Department of Statistics are:

1) To provide educational programs leading to careers in statistics, and to provide applied courses for research workers and students majoring in other fields.
2) To provide consulting and computing services in applied statistics.
3) To provide statistical research toward the development and extension of basic theory as well as the application of existing statistical techniques to applied problems in various fields.
2.2.2 The Department of Statistics in the organizational structure of VPI

The situation of the Department of Statistics within the present organizational structure of the Virginia Polytechnic Institute is shown by means of the chart No. 1.(29) The Department includes its faculty and the Statistical Laboratory.

Chart 1. The Department of Statistics in the organizational Structure of VPI.

2.2.3 The faculty

The faculty of the Dapartment consists of mathemathical and applied statisticians who participate in teaching, research in statistical theory and methodology, and consulting service in applied statistics.

Below we list the present faculty members with a short biography and major field of interest.

Major Field
of Interest

Leac of the Denartment of Statisties
Doẏ harshbarger, B.A.,M.S.,M.A.,Ph.D., D.Sc.
Design of Experiments

Visiting Professor

Jerome Ii, B.S., Ph.D. \quad| Design of |
| :--- |
| Experiments |

Professors of statistics
Brian W. Comolly, B.A., M.A.

Clyde Y. Kramer, B.S., M.S., Ph.D.

Associate Professors of Statistics
James P. Barrett, B.S., M.S., Ph.D.

Whitfield Cobb, A.B., A.M., Ph.D.

Klaus Hinkelmann, B.A., Ph.D.

Forestry and Sampling

Teaching Applied Statistics

Statistical Genetics

Major Field
of Interest
Richard G. Krutchkoff, A.B., A.M., Ph.D.

Raymod H. Myers; B.S., M.S., Ph.D.

Whitney L. Johnson, B.S., M.S.
Use of Priori Information in Statistics

Application to Engineering problems-Design and Analysis, Response Surface methods.

Digital Com- puting and Biostatistical Applications

Assistant Professors of Statistics
D. R. Jensen, B.S., M.S., Ph.D.

James Pickands, III, B.A., Ph.D.

Instructor of Statistics

Waldemar E. Heinzelman, B.S.
High speed computing

2.2.4 The Statistical Laboratory

The Statistical Laboratory consists of four trained computers, who provide clerk assistance for the faculty of the Department, the Virginia Agricultural Experiment Station, the Virginia Engineering Experiment Station, other Departments of VPI, Virginia Truck Station and other state and federal agencies. It is supervised by one statistician of
> the faculty. At the present time Dr. Clyde Kramer is in charge of the Statistical Laboratory.

2.3 Eacilities

The Department of Statistics and the Statistical Laboratory occupy the fourth floor of flutchinson Hall and Smith Hall, where they have offices for administration, staff, secretaries and graduate assistants, classrooms and the Statistical Laboratory.

The Statistical Laboratory is equipped with 4 full automatic desk calculators and one Mathatron electronic calculator, for a direct computing serve; 10 full automatic desk calculators for the use of staff and graduate assistants; and 19 non-full automatic desk calculators for student use.

The Department of Statistics also occupies two rooms of the second floor of the old Elementary School Building. This space is devoted to study desks for graduate students, and it is provided with two full automatic desk calculators.

2.4 Teaching

2.4.1 Courses

At first the Department of Statistics was authorized to offer a curriculum leading to the M.S. degree in statistics, and courses for graduate students majoring in other fields. In 1952 it added a curriculum leading to the Ph.D.
degree in statistics. More recently it has offered selected courses for undergraduates in various departments, and since 1957, has a curriculum leading to a B.S. degree with a major in statistics.

The following courses are offered by the Department of Statistics (27,31)

Courses for Undergraduates
201* Introductory statistics
202 Statistical Laboratory
301 Forestry statistics
302* Computer programming
310 Elementary statistics
313,323 Biological statistics
Courses for sraduates and undergraduates
401 Educational statistics
402* Sample Survey methods
403* Experimental designs
404 Elementary econometrics
408* Digital computer techniques
410,420* Statistical methods
415,425,435 Statistics. for engineers
419,429,439* Theoretical statishics
Courses for graduates only
5010 Linear Programing
5011 Advanced Econometrics

5012
Computing Techniques in Research
5013 Statistical Methods in Epidemiology
503** Statistical Inference
504** Theory of Linear Hypothesis
505**
507 The Statistics of Biological Assay
508 Sample Survey Theory
516,220\%* Applied Statistics
517,527 Statistical Theory of Signal Detection
518,528,538 Graduate Seminar.
535\%\% Design and Analysis of Experiments
599** Research and Thesis
600 Directed Study
6010 Queuing Theory
601 Methods of Valtivariate Aralysis
602 Theory of Multivariate Aralysis
603 Theory of Sequential Methods
604 Advanced Statistical Inference
605 Analysis of Variance
606 Nonparametric Statistics
607 The Theory and Application of Stochastic Processes
608 Advanced Analysis
609 Order Statistics
610 Response Surfaces
611,621 Statistical Genetics

Courses indicated with one asterisk $\%$ are included in the requirements for a B.S. program majoring in statistics. Courses indicated with two asterisks $* *$ are those from which selections are usually made for a M.S. program in statistics.

References (27), (30), (3I) give more fully descriptions of the courses indicated above.

Reference (27) gives information about the undergraduate cirriculum, which provides the necessary preparation for students who after graduation expect to work on the master's or doctor's degree in statistics.

Students who expect to specialize in graduate work in statistics are advised to study as much mathematics as possible during their undergraduate work, but some experience in an area of application (physical sciences, agriculture, engineering, economics, biology, or psychology) is also highly desirable. As a rule, graduate students in statistics will have either a full minor in mathematics or a split minor in mathematics and some field of application. (30)

The requirements that a Master of Science and a Doctor of Philosophy program of study must meet are indicated below. (3I)

Study Work	Credit hours required
	MeSe \quad Phe D_{2}
Research and Thesis	9-18
Research and Dissertation(599 \&799)	50-70
Courses numbered 500 or higher (excluding courses in "Directed study", numbered 600)	18 50
Courses numbered 400 and above (including a maximum of 6 hours of Direct Study "600") (including a maximum of 9 hours of "Direct Study" "600")	18
Total Minimum Credit hours required	45135
2.5 Consulting and Computing Servic	
2.5.1 $\frac{\text { organizations for which consulting and computing }}{\text { service is provided }}$	
The Department of Statistics, through the Statistical	
Laboratory, provides both consulting and computing services to the following research organizations ($26,28,29,30$)	
(1) The Virginia Agricultural Experiment Station of VPI, which includes the following Departments:	
Agricultural Economics	
Agricultural Engineering	
Agronomy	
Animal Science	

```
Biochemistry and NutriEion
Biolozy
Clothing, Textiles, and Related Arts
Daizy Science
Entomology
Earcutry and Wildlife
Horticulture
Euman Nutrition and Foods
Plant Pathology and Physiology
Poultry Science
Veterinary Science
and the following Research Stations located in several
places of the state of Virginia:
Beef Cattie Research Station, Front Royal
Eastern Virginia Research Station, Warsaw
Northern Virginia Pasture Research Station, Middle-
burg
Piedmont Research Laboratory, Charlottesville
Piedmont Research Station, Orange
Shenandoah Vailey Research Station, Steeles Tavern
Southside Virginia Research Station, Charlotte
Southwest Virginia Research Station, Glade Spring
Tidewater Research Station, Hoiland
Tobacco Disease Research Station, Chatham
Virginia State College Research Station, Petersburg
Winchester Research Laboratory, Winchester Station
```

(2) The Virginia Engineering Experiment Station of VPI which includes the following Departments

Civil-San:tary Enzincering
Chemical Engineering
Electrical Engineering
Engincering Mechanics
Industrial Engineering
Materials Ergincering Science
Wood Construction
Kotals and Comamic Engineering
Mechanical Engineering
(3) Other Departments of the Virginia Polytechnic Institute (included in the Engineering Experiment Station)

Chemistry
Physics and Nuclear Science
Vocational Education
Psychology and Sociology
Economics
Political Science
Business
(4) The Virginia Truck Experiment Station of Norfolk, although not an integral part of VPI is closely affiliated. The director there is a member of the VPI resident iaculty.
(5) And other stace and federal agencies, like

The National Ins"itutes of Health
U.S. Ammy Rosearch Office (Durham)

Scate Kighway Department
State Industiaial Division
U.S. Department of Agriculture

2.5.2 Consultation

As we said, the use of statistics as a tool in the scientific method starts from the very beginning of the planning oit the experiments, thus much of the consulting service given by the faculty of the Department consists of:

1) Discussing the objectives of the research worker's experiments
2) Assisting in setting up a suitable design of the experiment which will furnish answers to the research workez's questions
3) Setting up appropriate plans for surveys
4) Eielping in finding the appropriate statistical techniques for the analysis of the data
5) Discussing the results of the statistical analysis with the research worker
6) Assisting the research worker in writing his report and preparing technical papers.

2.5.3 Comoting service of the Statistical Laboratory

The Statistical Laboratory provices clerical assistance for the staff of the Departaent of Statistics, the Virginia Aoricultural Experimental Station, the Virginia Engineerino Experiment Station, and all other organizations mentioned in 2.5.2. This assistance is provided in order to process data from research experiments and surveys, which recuire the use of fill automatic desk calculators and involve time-consuming computarions procedures for the research wozkers. The computation consist of analysis (rnost of them analysis of variance) of non-large quantities of data with non-complicated procedures, that can be done easily with the use of ceskcaculators rather than with elaborate special high-speed computer programs.

The Statistician in charge of the Statistical Laboratory and the Director of the Computer Center help the research woiker in deciding where to send this data for computing service.

Requests for computation service are made directly to the Statistician in charge of the Statistical Laboratory, who reserves the right to approve of the methods of analysis. Most of the request are made by personal interview especially if the rescarch worker is from VPI.

Once an analysis is appoved, the Statistician in charge of the Statistical Laboratory outines the necessary
compatations to be done and hands it to one of the computere. The result of the computations are written in dupiiccte on special sheets. The original roviscd copy is sent directly to the research worker and the copy is kept in the files of the laboratory.

The Statistical Laboratory does not keep records of the date when each stacistical analysis was Einished. This thesis incluces a relation of the analyses computed in 1965 and the Eirst seven months of 2966, approximately. Most of the analysis were analysis of variance. In Tabie 2.5.1 we are listing the differcht types of analysis of variance computeci and their amount cxpressed in percentage over 3,327 analysis of variances accounted.

The percentage of proportion of each analysis expressed in Tabie 2.5.1 does not give a complete picture of the amount of work needed for each type, because some of them although few in number demanded more and complicated computations. In order to see this, we are indicating in the next chapter the corresponding model and scheme of analysis associated with each of these analyses of variance.

About 2% of the total number of analyses of variance comptited included missing value techniques. In general, for the case of several missing values, the general method described in (10) was applied.

As a generai practice, ateer computing the analysis
of variance according to the procedures for each design, treatment comparisons, when necessary, were carried out by using "Duncan's Multiple Range Test" procedure (8).

Also we found records of computations of the followins statistical analyses:

Estimation and test of coefficients of correlations
Estimation of means, standard deviations
t test for paired data
Simple linear regression analysis
Combining ability analysis.

TABLE 2,5.1

Analysis of variance

Percentage ofanalyses

1 One-way Classification 4.40
(Completely Randomized Design)
One-way Classification with unequal num-
bers of observations per treatment
3 Two-way Classification with one Observation per cell
0.90

4 Two-way Classification with n observations per cell(axb Factorial in Completely Randomized Design)
2.83

5 Two-way Classification with n observations per cell and equal sampling (s samples/observation)
2.86

6 Two-way Classification with urequal numbers of observations per cell:
a) Case of proportional frequencies
2.56

	Analysis of variance	Percentage of analyses
	b) "Fitting Constants" method	0.63
	c) "Weishted Squares of means" method	0.27
7	Three-way Classification with one observation per cell	0.36
8	Three-way Classification with n observations per cell (axbzc Factorial in Completely Randomized Design)	9.77
9	Tnree-way Classification with n observations per cell and equal sampling(s samples/observation)	0.48
10	Nulti-way Classification with one observation per cell(highest Interaction negligible)	0.12
11	Multi-way Classification with r observations per cell	0.03
12	Multi-way Classification with equal subsampling	0.18
13	Two-stage iNested Classification with equal samples	0.78
14	Two-stage Nested Classification with unequal samples	4.04
15	Three-stage Nested Classification with equal subsamples	0.03
16	Randomized Complete Block Design	
17	Randcmized Complete Block Design with sampling	3.19
18	Randomized Complete Block Design with subsampling	0.12
19	Group oif Randomized Complete Block Designs (each with a diffecent level of a fixed faccor)	7.51

	Analysis of variance	Percentage of analyses
20	Group of Randomized Complete Block Designs with sampling	0.12
21	Two-way Classified group of Randomized Complete Block Designs	0.30
22	axb Factorial in Randomized Complete Block Design	9.38
23	axb Factorial : Additional treatments in Randomized Complete Block Design	1.08
24	axb Factorial in Randomized Block Design with sampling	0.39
25	axb Factorial in Randomized Block Design with subsampling	0.24
26	Group of axb Factorials in Randomized Block Designs	0.30
27	axbxc Factorial in Randomized Block Design	0.78
28	axbsc Factorial + additional treatments in Randomized Blook Design	0.18
29	axbice Factorial in Randomized Block Design with sampling	0.69
30	Multi-Factorial in Randomized Block Design	0.15
31	Latin Square Design	0.45
32	Group of Latin Square Designs	0.15
33	Split-Plot Design	2.29
34	Split-Plot Design considering interactions between Repetitions and each of the two Factors	1.84
35	Split-Plot Design with sampling	0.12

	Analysis of variance	Percentage of analyses
36	Split-Plot Design with sampling considering interactions between Repetitions and each of the two Factors	0.75
37	Group of Split-Plot Designs	0.60
38	Split-Plot design with axb Factorial on the winole plots	0.96
39	Split-Plot design with axb Factorial on the whole plots, considering interactions between Repetitions and each component of the axbxc Factorial	0.21
40	Split-plot design with axb Factorial on the whole plots with sampling	0.81
41	Split-plot Design with axb Factorial on the whole plots with sampling. Interactions between Repetitions and each component of the axbxc Factorial	0.21
42	Split-Plot design with bxe Factorial on the sub-plots	0.21
43	Split-split-plot design	1.39
44	Split-split-plot design, considering interactions between Repetitions and each of the components of the axbxc Factorial	0.18
45	Split-split-plot design with sampling	0.36
46	Split-split-plot design. Interactions between Fepetitions and each of the components of the axbxc Factorial with sampling	0.12
47	Split-split-plot design with cxd Factorial on the sub-subplots	0.06
48	Lattice designs	0.63

2.6 Research

The Department and Laboratory of Statistics are engaged in fundamental and applied research for the purpose of promoting use of efficient statistical techniques in diverse fields of research and advancing statistics by developing new procedures by theoretical investigation (28).

Among recent research conducted by the Department were projects concerning (28)

- The reliability program of the Redstone missine, (the first missile to send an American into space)
- Allocation of cancer patients to different treatments under comparison
- Relationships between the number and types of accidents and the number of types of physical conditions clinically diagnosed
- Statistical analysis of nutritions clinically diagnosed
- Statistical analysis of nutrition studies of preadolescent children
- Analysis of household food expenditures, collection of data on supplies, demands and shipments of livestock within the southern region and comparison of these data with those of other regions
- Simulation of nuclear reactors
- Development and tabulation of statistical functions
- Watershed drainage investigations
- Analyses of economic production functions
- Statistical techniques for the analysis of agricultural experiments
- Environmental Engineering Statistics, etc.

CHAPTER III
 CONPUTATIONAL PROCEDURES FOR ANALYZING CERTAIN TYPES OF EXPERIIENTS

3.1 Mathematical Models

We shall now briefly indicate some of the basic concepts and notations used in the following tables in which we outiine the analysis of the experiments considered in this thesis.

Model.s. Since early times, scientists have been using models to describe, demonstrate and predict events in the universe. Using mathenarical models is one way of finding the relations between measurements which depend on several kinds of effects operating simultaneously.

Mathematical Models. Following Graybill's (11) definition, a mathematical model is an equation involving random variables, mathematical variables and parameters.

Ininear Model. When the mathematical model is linear in the parameters and random variables then we have the so called Inear model. This is the kind of model we shall be concemed with.

With regard to the analyses of variance, covariance and regression computed by the Statistical Laboratory, it was assumed that the experimental observations are random variables, which can be expressed in terms of a linear model
of the following general form:

$$
\begin{equation*}
Y_{j}=\sum_{i=1}^{p} \theta_{i} X_{i j}+\epsilon_{j} \tag{1}
\end{equation*}
$$

where $Y_{j}=j$-th observation ($j=1,2, \cdots, n$)

```
    \(\theta_{i}=\) parameter (unknown quantity) ( \(i=1,2, \cdots, p\) )
\(X_{i j}=m a t h e m a t i c a l\) variable associated with the ub-
    servation \(Y_{j}\) and the parameter \(\theta_{i}\) (in classi- fication models as used in this thesis the \(X_{i j}\) take on only the value of 1 or 0 )
```

$\varepsilon_{j}=$ error, asscciated with the $j-$ th observation
and it was assumed that the ϵ_{j} are random variables, distributed independently with mean zero and common variance σ_{ε}^{2}. For test of significance they are assumed to follow the nozmal distribution.

For purposes of drawing inferences from the analysis of variance one has to distinguish between three types of linear models:

Fixed efiect models are those models for which the parameters in(1) are assumed to represent fixed effects or unkrown constants.

Random effect models are those models for which the parameters in (I), except the general mean μ, are assumed to represent random efiects or random variables.

Mixed effect models are those modcls for which the paramcters in (I) can be divided into two sets one of which contains parameters representing fixed effects and the other contains parameters representing random effects.

3.2 Analysis of variance schemes

In the following tables we indicate for special types OE iinear models the analysis of variance scheme including sums of squares, degrees of freedom, and expected mean squares corresponding to different factors or sources of variation considered in the model.

Much has been published on the techniques of analysis of variance and for many of the indicated experimental designs part or all of the analysis of variance scheme can be found in many well known books, like those by Anderson \& Bancroft(1), Beyer(2), Bennett \& Franklin(3), Brownlee(4), Cochian \& Cox(5), Davies(6), Federer(9), Graybill(11), Goulcen(12), Hald(13), Ficks(14), Huitson(15), Johnson \& Leone (16), Kempthorne(17), Li(18), Ostle(20), Rao(21,22), Scheffe(23), Snedecor(24), Steel \& Torrie(25), Wine(34), etc. But as Wilk and Kempthorne(33) mention, we will find sometimes that they do not agree with respect to certain rules and results conceming the expectations of mean squares and the choice of crror terms, largely because explicit and objective methods for obtaining the appropiriate model are not
generally available.
For the analyses accounted here and the underlying models we shall state whether each parameter was assumed to be fixed or random. These assumptions determine the corresponding expected mean squares, and consequently the research worker can obtain estimates and tests of hypotheses regarding fixed effects or estimates and tests of hypotheses of variance components regarding random effects.

As we shall see, most of the models are of the mixed type, where fixed effects are related to "treatment effects" of those sources of variation of direct interest to the research worker, and random effects are related to sources of variation like repetitions, sampling, subsampling, etc. It should be noted here that the choice of model, i.e., the choice of assumptions concerning the parameters in the model, depends on the actual experimental situation.

The sums of squares are not affected by the assumptions whether the parameters are fixed or random. The same computing formulae can be used in both cases. However, changing the assumptions changes the expected mean squares, and it may well be that the experimental situation calls for assumptions other than those we have used for each analysis.

Gensral motation

$$
\begin{aligned}
Y_{i j \ldots t}= & \text { individuai observation or measurement where } \\
& \text { ij...t ropioscnt m subscripts, each of them } \\
& \text { inaicates a particuiar level of each of the } \\
& m \text { fectors, under which the observation was } \\
& \text { iaken. } \\
\mu= & \text { general mean (population mean). } \\
\epsilon_{i j \ldots t}= & \text { experimental error, deviation of the actual } \\
& \text { value of the observation Y } \\
& \text { true value, due to measurement error and/or } \\
& \text { other sources or variation not considered in } \\
& \text { the model (always considered as fandom } \\
& \text { variable). }
\end{aligned}
$$

Greek letters (other than μ and ε) are used to denote parameters that express the effect of factors under study, i.e.
$\alpha_{i}, \xi_{j}, \gamma_{k}$, etc. denote parameters that express the effect of i-th,j-th,k-th, etc., ievels of factors A, B, C, etc., respectively.
$(\alpha \beta)_{i j}$ denotes parameters that express the effect of interaction between the i-th level of factor A and j-th level of factor B. $(\alpha \beta \gamma)_{h i j}$ denotes the effect of interaction between h-th, i-th, and j-th levels of factors A, B, and C zespectively.

$$
\begin{aligned}
& \text { etc. } \\
& \text { Source }=\text { Source of Variation } \\
& \text { d.E. }=\text { degrees of freedom } \\
& \text { S.S. }=\text { sum of squares } \\
& \text { M.S. }=\text { mean square } \\
& E\left(\text { M.S. }^{\text {S. }}\right.=\text { expected mean square }
\end{aligned}
$$

To denote the number of observations for particular factor levels or level combinations we use the following general notation:

$$
n_{i j \ldots t}=1
$$

$n_{\dot{i} \ldots}=\sum_{j, \ldots, t}^{n}{ }_{i j \ldots t}=$ number of observations for the i-th level of factor A.
$n_{i j \ldots}=\sum_{k, \ldots, t} n_{i j k \ldots t}=$ number of observations for the i-th level of factor A and the $j-t h$ level of factor B. etc.

$$
\begin{aligned}
& \begin{aligned}
N= & \sum n_{i, j, \ldots, t} \quad= \\
& \text { total number of obser- } \\
& \text { vations. }
\end{aligned} \\
& \text { vaEions. }
\end{aligned}
$$

In most cases, however, we shall use a simpler notation as incicated for every model. Surn of Squares Notation. In defining the sum of squares (S.S.) we shall use the following notation. If an in-
dividual observation is denoted by $Y_{i j k . . . t}$, where ijk...t represent m subscripts, then any particular mean taken over a subset of q subscripts ($q \leq m$) is denoted by a lower case y omitting these q subscripts, but retaining the $m-q$ subscripts. For example, if an individual observation is denoted by $Y_{i j}$, then

$$
\begin{aligned}
y_{i} & =\sum_{j} Y_{i j} / n_{i} \\
y & =\sum_{i} \sum_{j} Y_{i j} / N
\end{aligned}
$$

if the individual observation is denoted by $Y_{\text {hijk }}$, then

$$
\begin{aligned}
& y=\sum_{h} \sum_{i} \sum_{j} \sum_{k} Y_{h i j k} / N \\
& y_{j}=\sum_{h} \sum_{i} \sum_{k} Y_{h i j k} / n \cdot j \cdot \\
& y_{i k}=\sum_{h} \sum_{j} Y_{h i j k} / n \cdot i \cdot k \\
& \text { etc. }
\end{aligned}
$$

The greek letter Σ will denote the summation over the ranges of ail subscripts defining an observation Y in the model.

Experted Mean Sauares Notation. In the expression for the expected mean squares (E(M.S.)); Σ will denote the sumation over the ranges of the subscripts defining the respective factors or source of variation. Further,

$$
\begin{aligned}
& \sigma_{c}^{2}=\text { experimental error variance } \\
& \sigma_{\beta}^{2}=\text { variance of the random variables } \beta_{j}(j=1,2, \cdots, b) \\
& \sigma_{\alpha \beta}^{2}=\text { variance of the random variables }(\alpha \beta)_{i j} \\
& \quad(i=1,2, \cdots, a ; j=1,2, \cdots, b)
\end{aligned}
$$

etc.

TABLE 3.2.1

one-way classification

Model:

$$
\begin{gathered}
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \\
(i=1,2, \cdots, a ; j=1,2, \cdots, n) \\
\text { where } \alpha_{i}=f i x e d \text { effect }
\end{gathered}
$$

Analysis of variance:

TABLE 3.2.2

Ge-why clnssifiention with veaund
 observations per treatment

ModeI:

$$
\begin{gathered}
Y_{i j}=\mu+\alpha_{i}+c_{i j} \\
\left(i=1,2, \ldots, a ; j=1,2, \cdots, n_{i}\right) \\
\text { where } \alpha_{i}=\text { fixed effect }
\end{gathered}
$$

An=lusis of voriamoe:

Source	d.E.	S.S.	E(M.S.)
Among treatments	a-1	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\sum n_{i} \alpha_{i}^{2} /(a-1)$
Eetween treatments	$\mathrm{N}-\mathrm{a}$	$\Sigma\left(Y_{i j}-y_{i}\right)^{2}$	σ_{ε}^{2}
Total	$\mathrm{N}-1$	$\Sigma\left(Y_{i j}-y\right)^{2}$	

TABLE 3.2 .3

Tro-wey classification with one observation ner cell negligible interaction

Mode 1:

$$
\begin{gathered}
Y_{i j}=\mu+\alpha_{i}+\beta, \beta_{i j} \\
(i=1,2, \cdots, a ; j=1,2, \cdots, b) \\
a_{i}, \beta_{j}=\text { fixed effects }
\end{gathered}
$$

Analusis of varience:

Sourse	d.f.	S.S.	$E\left(M . S_{0}\right)$
A	(a-1)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{e}^{2}+b \Sigma \alpha_{i}^{2} /(a-1)$
E	$(3-1)$	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\varepsilon}^{2} \dot{* a \Sigma \beta_{j}^{2} /(b-1)}$
Erroz	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2}$	σ_{ε}^{2}
Total	$a b-1$	$\Sigma\left(Y_{i j}-y\right)^{2}$	

TABLE 3.2.4

Model:

$$
\begin{gathered}
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{i j k} \\
(i=1,2, \ldots, z ; j=1,2, \ldots, j ; k=1,2, \cdots, n) \\
\alpha_{i}, \beta_{j},(\alpha \beta)_{i j}=\text { fixed effects }
\end{gathered}
$$

Analysis of variance:
Source

Sn.

SSS.
$E\left(M_{2} S.\right)$

A	$(a-1)$	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+b n \Sigma \alpha_{i}^{2} /(a-1)$
B	$(b-1)$	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+a n \Sigma \beta_{j}^{2} /(b-1)$

$\begin{array}{lll}A B & (a-1) \\ \cdot(b-1)\end{array} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{c}^{2}+n \Sigma(\alpha \beta)_{i j}^{2} /(a-1)(b-1)$
Error $\quad a b(n-1) \quad \Sigma\left(Y_{i j k}-y_{i j}\right)^{2} \quad \sigma_{c}^{2}$
Tots

$$
\overline{a b r-1} \overline{\Sigma\left(Y_{i j k}-y\right)^{2}}
$$

and equel sompting

Model:

$$
Y_{i j k l}=\mu+\alpha_{i}+\beta_{j}+(a \beta)_{i j}+\varepsilon_{i j k}^{+\infty}{ }_{i j k l}
$$

($i=1,2,3, \cdots, a ; j=1,2, \cdots, b ; k=1,2, \ldots, n ; 1=1,2, \cdots, s)$

$$
\begin{aligned}
\alpha_{i}, \beta_{j},(\alpha \beta)_{i j} & =\text { fixod effects } \\
\varepsilon_{i j k}, \varphi_{i j k l} & =\text { random effects }
\end{aligned}
$$

Ans ysis of variance:

Sounce + $S_{L_{2}}$ ESMS.

A	$(a-1)$	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\infty}^{2}+s \sigma_{\varepsilon}^{2}+b n s \frac{\Sigma a_{i}^{2}}{(a-1)}$
B	$(b-1)$	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\infty}^{2}+s \sigma_{\varepsilon}^{2}+a n s \frac{\Sigma \beta_{j}^{2}}{(b-1)}$
$A B$	$(a-1)$ $\cdot(b-1)$	$\Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2}$	$\sigma_{\infty}^{2}+s \sigma_{\varepsilon}^{2}+n s \frac{\Sigma(a \beta)_{i j}^{2}}{(a-1)(b-1)}$

$\begin{aligned} & \text { Rop. within } \\ & \text { coll } \\ & a b(n-1) \Sigma\left(y_{i j k}-y_{i j}\right)^{2} \quad \sigma_{\omega}^{2}+s \sigma_{\varepsilon}^{2}\end{aligned}$
$\begin{array}{ccc}\begin{array}{c}\text { Sample } \\ \text { Within rep. }\end{array} & \text { abn(s-1) } & \Sigma\left(Y_{i j k 1}-Y_{i j k}\right)^{2} \\ \text { Total } & \text { abns-1 } & \Sigma\left(Y_{i j k 1}-y\right)^{2}\end{array}$

TABLE 3.2.6

Two-way classification with unequal

numbers of ohsorvations per cell

Mod el:

$$
\begin{gathered}
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{i j k} \\
\left(i=1,2, \ldots a ; j=1,2, \ldots, b ; k=1,2, \ldots, n_{i j}\right) \\
\alpha_{i}, \beta_{j},(\alpha \beta)_{i j}=\text { fixed effects }
\end{gathered}
$$

a) Method of noonortionate subclass numbers*
(where it is assumed $n_{i j}=n_{i,} n_{. j} / n \ldots$)

Analysis of variance:

Source def. S.S.
$A \quad(a-1) \quad \Sigma \pi_{i j}\left(y_{i}-y\right)^{2}$
$\sigma_{\varepsilon}^{2}+\frac{\Sigma n_{i .} \alpha_{i}^{2}}{(a-1)}$

B

$$
(b-1) \quad \Sigma n_{i j}\left(y_{j}-y\right)^{2}
$$

$$
\sigma_{\varepsilon}^{2}+\frac{\Sigma n \cdot j^{\beta_{j}^{2}}}{(b-1)}
$$

$A B$

$$
\begin{array}{ll}
(a-1) \\
\cdot(b-1) & \sum n_{i j}\left(y_{i j}-y_{i}\right. \\
\left.-y_{j}+y\right)^{2}
\end{array}
$$

Error	$N-a b$	$\sum\left(Y_{i j k}-y_{i j}\right)^{2}$
Total	$\frac{N-I}{\Sigma\left(Y_{i j k}-y\right)^{2}}$	

[^0](Table 3.2.6 continued.)
b) Method of fitting constants

Analysis of variance: 1

$\underset{\text { (unadjusted) }}{B}(b-1) \quad \Sigma\left(y_{j}-y\right)^{2}$

$\begin{aligned} & \text { Between } \\ & \text { cells }\end{aligned} \quad(a b-1) * \quad \Sigma\left(y_{i j}-y\right)^{2}$.
$\begin{array}{cc}\text { Error } & (N-a b) * \\ \text { Total } & \Sigma\left(Y_{i j k}-y_{i j}\right)^{2} \\ \Sigma\left(Y_{i j k}-y\right)^{2}\end{array}$

Analysis of variance: 2

*Unless one or more cells are empty.
**When Interaction $A B$ is found to be negligible.
(Table 3.2.6 continued.)
(Analysis of variance: 2 continued.)

Source	d.f.	S.S.		E(M.S.)
Between cells	(ab-1)*	$\Sigma\left(y_{i j}-y\right)^{2}$		
Error	($N-a b$)*	$\Sigma\left(Y_{i j k}-y_{i j}\right)^{2}$	σ_{ε}^{2}	
Total	$\mathrm{N}-1$	$\Sigma\left(Y_{i j k}-y\right)^{2}$		

where:

$$
\begin{aligned}
& Q=\sum_{i} \hat{\alpha}_{i} g_{i} \\
& \hat{\alpha}_{i} \text { is solution of } C \hat{\underline{\alpha}}=\underline{G} \\
& \hat{\alpha}^{\prime}=\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \ldots, \hat{\alpha}_{a}\right) \\
& \underline{G}^{\prime}=\left(g_{1}, \delta_{2}, \ldots, \delta_{a}\right) \\
& g_{i}=Y_{i \ldots}-\sum_{j}\left(n_{i j} Y_{. j \cdot} / n_{\cdot j}\right) \\
& c=\left[c_{i i l}\right] \\
& c_{i i}=\delta_{i i} \prime^{n_{i}}-\sum_{t}\left(n_{i t} n_{i \prime} t^{\prime} n_{t}\right), \quad(t=1,2, \ldots, b) \\
& I=S . S \cdot(\text { Between cells })^{-S . S} \cdot{ }_{A}(\text { adj. })^{-S . S} \cdot{ }_{B} \text { (unadj.) } \\
& R=S . S \cdot(\text { Between cells })^{-S . S} \cdot A(\text { unadj. })^{-I}
\end{aligned}
$$

*Unless one or more cells are empty.
(Table 3.2.6 continued.)

> c) Method of Weighted Squares of means

Analysis of variance:

Source d. fe S.S.

$$
A x B \quad \underset{\cdot(b-1)}{(a-1)} \quad \sum y_{i j}^{2},-\sum Y_{i} . . \hat{\alpha}_{i}-\sum\left(Y_{j}^{2}, j \cdot / n \cdot j\right)
$$

$$
\begin{aligned}
& \text { Between } \\
& \text { cells }
\end{aligned} \quad a b-1 \quad \Sigma\left(y_{i j}-y\right)^{2}
$$

$$
\begin{array}{ccc}
\text { Error } & N-a b & \Sigma\left(Y_{i j k}-y_{i j}\right)^{2} \\
\text { Total } & \overline{N-1} & \Sigma\left(Y_{i j k}-y\right)^{2}
\end{array}
$$

where:

$$
\begin{aligned}
& w_{i}=1 / \sum_{i}\left(1 / n_{i j}\right) \\
& v_{j}=1 / \sum_{j}\left(1 / n_{i j}\right) \\
& \hat{\alpha}_{i}=a \text { solution of } C \hat{\alpha}=Q \\
& (C, \hat{\alpha} \text { and } Q \text { are the same as in the Fitted constant } \\
& \text { method. })
\end{aligned}
$$

$$
\begin{aligned}
& A \quad(a-1) \quad b^{2} \sum_{i} w_{i}\left(\sum y_{j}, / b\right)^{2}-\frac{\left(\sum w_{i}\left(\sum y_{j} y_{j} / b\right)\right)^{2}}{\sum_{i} w_{i}} \\
& \text { B } \quad(b-1) \quad a^{2} \sum_{j} v_{j}\left(\sum y_{i j} / a\right)^{2}-\frac{\left(\sum v_{j}\left(\sum y_{i j} / a\right)\right)^{2}}{\sum_{j} v_{j}}
\end{aligned}
$$

TABIE 3.2.7
Three-way classification with one observation per cell

Model:

$$
\begin{gathered}
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+(\alpha \beta)_{i j}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k}+c_{i j k} \\
\quad(i=1,2, \cdots, a ; j=1,2, \cdots, b ; k=1,2, \cdots, c)
\end{gathered}
$$

$$
\alpha_{i}, \beta_{j}, \gamma_{k},(\alpha \beta)_{i j},(\alpha \gamma)_{i k},(\beta \gamma)_{j k}=\text { fixed effects }
$$

(Table 3.2.7 continued.)
Analysis of variance:

TABLE 3.2 .8

Three-way classification with on observations per cell

$$
\begin{aligned}
\text { Model: } & Y_{h i j k}=\mu+\alpha_{h}+\beta_{i}+\gamma_{j}+(\alpha \beta)_{h i}+(\alpha \gamma)_{h j}+(\beta \gamma)_{i j}+(\alpha \beta \gamma)_{h i j}+\varepsilon_{h i j k} \\
& (h=1,2, \ldots, a ; i=1,2, \ldots, b ; j=1,2, \ldots, c ; k=1,2, \cdots, n) \\
& \alpha_{h}, \beta_{i}, \gamma_{j},(\alpha \beta)_{h i},(\alpha \gamma)_{h j},(\alpha \beta \gamma)_{h i j}=\text { fixed effects }
\end{aligned}
$$

(Table 3.2 .8 continued.)
Analysis of variance:

Source
d.f.e

Sc.
$\Sigma\left(y_{h}-y\right)^{2}$
$\Sigma\left(y_{i}-y\right)^{2}$
$c \quad(c-1) \quad \Sigma\left(y_{j}-y\right)^{2}$
$A B \quad \begin{aligned} & (a-1) \\ & \cdot(b-1)\end{aligned} \quad \Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2}$
$A C \quad \begin{array}{ll}(a-1) \\ \cdot(c-1)\end{array} \quad \Sigma\left(y_{h j}-y_{h}-y_{j}+y\right)^{2}$
$B C \quad(b-1)$
-($c-1$)
(a-1)

$$
\cdot(b-1)
$$

$$
\text { - }(c-1)
$$

$$
\begin{aligned}
& \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \\
& \Sigma\left(y_{h i j}-y_{h i}-y_{h j}-y_{i j}\right. \\
& \left.+y_{h}+y_{i}+y_{j}-y\right)^{2}
\end{aligned}
$$

$$
\sigma_{\varepsilon}^{2}+n \frac{\sum(\alpha \beta \gamma)_{h i j}^{2}}{(a-1)(b-1)(c-1)}
$$

Error $\frac{\operatorname{abc}(n-1)}{\text { Total } \frac{\sum\left(Y_{h i j k}-y_{h i j}\right)^{2}}{\sum\left(Y_{h i j k}-y\right)^{2}} \quad \sigma_{\epsilon}^{2}, 1}$

TABLE 3.2.9
Three-way Classification with n observations
per cell and equal samples
Model:

$$
\begin{gathered}
Y_{h i j k I}=\mu+\alpha_{h}+\beta_{i}+\gamma_{j}+(\alpha \beta)_{h i}+(\alpha \gamma)_{h j}+(\beta \gamma)_{i j}+(\alpha \beta \gamma)_{h i j}+c_{h i j k}+\varphi_{h i j k l} \\
(h=1,2, \cdots, a ; i=1,2, \cdots, b ; j=1,2, \cdots, c ; k=1,2, \cdots, n ; 1=1,2, \ldots, s) \\
\alpha_{h}, \beta_{i}, \gamma_{j},(\alpha \beta)_{h i},(\alpha \gamma)_{h j},(\beta \gamma)_{i j},(\alpha \beta \gamma)_{h i j}=f i x e d \text { effects } \\
\epsilon_{h i j k}, \varphi_{h i j k l}=\text { random effects }
\end{gathered}
$$

(Table 3.2.9 continued.)
Analysis of variance:

Source
d.fe
$(a-1) \quad \Sigma\left(y_{h}-y\right)^{2}$
$(b-1) \quad \Sigma\left(y_{i}-y\right)^{2}$
(c-1) $\quad \Sigma\left(y_{j}-y\right)^{2}$

$$
\begin{array}{ll}
(a-1) & \Sigma\left(y_{h i}-y_{h}-y_{i}\right. \\
\cdot(b-1) & +y)^{2}
\end{array}
$$

$A C \quad(a-1) \quad \sum\left(y_{h j}-y_{h}-y_{j}\right.$

$$
\text { -(c-1) }+y)^{2}
$$

$B C \quad(b-1) \quad \sum\left(y_{i j}-y_{i}-y_{j}\right.$

- $(c-1)+y)^{2}$
-(b-I)

$$
\text { -(c-1) } \left.{ }_{-y}^{-y}\right)^{2}+y_{h}+y_{i}+y_{j}
$$

$E\left(M, S_{2}\right)$
$\sigma_{\varphi}^{2}+s \sigma_{\varepsilon}^{2}+\frac{n s b c}{(a-1)} \sum \alpha_{h}^{2}$
$\sigma_{\varphi}^{2}+s \sigma_{\varepsilon}^{2}+\frac{n s a c}{(b-1)} \Sigma \beta_{i}^{2}$
$\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}+\frac{n s a b}{(c-1)} \sum \gamma_{j}^{2}$
$\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}$

$$
+\frac{n s c}{(a-1)(b-1)^{\Sigma(\alpha \beta)^{2}}}
$$

$$
\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}
$$

$$
+\frac{n s b}{(a-1)(c-1)^{\Sigma(\alpha \gamma)^{2}}}{ }_{h j}^{2}
$$

$$
\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}
$$

$$
+\frac{n s a}{\left.(b-1)(c-1)^{\Sigma(\beta \gamma}\right)}{ }_{i j}^{2}
$$

TABLE 3.2.10

Multiple-way classification with one observation per cell

(Highest interaction negligible)

Model:

$$
\begin{aligned}
& Y_{g h \cdots m n p}=\mu+\alpha_{g}+\beta_{h}+\cdots+\varphi_{p}+(\alpha \beta)_{g h}+\cdots+(\lambda \varphi)_{n p}+(\alpha \beta \gamma)_{g h i}+\cdots \\
& +\left(\delta \lambda_{\varphi}\right)_{\mathrm{mnp}^{+}} \cdots+\left(\beta \gamma \cdots \lambda_{\varphi}\right)_{h i \cdots p^{+\varepsilon}}^{g h \cdots n p} \\
& (g=i, 2, \ldots, a ; h=1,2, \ldots, b ; i=1,2, \ldots, c ; \ldots ; m=1,2, \ldots, v ; n=1,2, \\
& \cdots, w ; p=1,2, \cdots, z \text {) } \\
& \text { ghi...mnp are a set of } t \text { subscripts, } \\
& \text { (twnumber of factors) } \\
& \alpha_{g}, \beta_{n}, \cdots, \varphi_{p},(\alpha \beta)_{g h}, \cdots,\left(\lambda_{\varphi}\right)_{n p},(\alpha \beta \gamma)_{g h i}, \cdots,\left(\beta \gamma \cdots \lambda_{\varphi}\right)_{h i \cdots n p} \\
& \text { = fixed effects. }
\end{aligned}
$$

Analysis of variance:

Source
defer
$S_{S_{1}}$

$$
(a-1) \quad \Sigma\left(y_{g}-y\right)^{2}
$$

$(z-1) \quad \Sigma\left(y_{p}-y\right)^{2}$
$\sigma_{\varepsilon}^{2}+\frac{b \cdots w z \Sigma \alpha_{g}^{2}}{(a-1)}$
$\stackrel{\rightharpoonup}{-}$
$\sigma_{\varepsilon}^{2}+\frac{a \cdot \cdots w \sum \varphi_{p}^{2}}{(z-1)}$
$\begin{aligned} & (a-1) \\ & -(b-1)\end{aligned} \quad \Sigma\left(y_{g h}-y_{g}-y_{h}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+\frac{c \cdots w z \Sigma(\alpha \beta)_{g h}^{2}}{(a-1)(b-1)}$
-

$$
\begin{array}{ccc}
(w-1) \\
\bullet(z-1) & \sum\left(y_{n p}-y_{n}-y_{p}+y\right)^{2} & \sigma_{\epsilon}^{2}+\frac{a \cdot \cdots u v \Sigma(\lambda \varphi)_{n p}^{2}}{(w-1)(z-1)}
\end{array}
$$

(Table 3.2.10 continued.)

BC...VWZ

Error

$$
\begin{aligned}
& \text { (a-1) } \quad \Sigma\left(Y_{g h} \ldots n p^{-y_{g h}} \ldots n^{\sigma^{2}}\right. \\
& \cdots(w-1) \quad \cdots-y_{h} \ldots n p \\
& \text { - }(z-1)+y_{g h \ldots n^{+\cdots}} \\
& +_{\text {i. . .np }}{ }^{-\cdots} \\
& \left.+(-1) t_{y}\right)^{2}
\end{aligned}
$$

Total
ab...z-1 $\Sigma\left(Y_{g h \ldots n p}-y\right)^{2}$

TABLE 3.2.11

Multiple-vay classification with ramples nee cell

Model:

$$
\begin{aligned}
& Y_{g h \ldots m n p q}= \mu+\alpha_{g}+\beta_{h}+\ldots+\varphi_{p}+(\alpha \beta)_{g h}+\ldots+(\lambda \varphi)_{n p}+(\alpha \beta \gamma)_{g h i}+\ldots \\
&+(\delta \lambda \varphi)_{m n p}+\ldots+(\alpha \beta \gamma \ldots \delta \lambda \varphi)_{g h \ldots n p}+\varepsilon_{g h \ldots n p q} \\
&(g=1,2, \ldots, a ; h=1,2, \ldots, b ; i=1,2, \ldots, b ; \ldots ; m=1,2, \ldots, v ; n=1,2, \\
&\ldots, w ; p=1,2, \ldots, z ; q=1,2, \ldots, r)
\end{aligned}
$$

ghi...mnp are a set of t subscripts ($t=$ number of factors) $\alpha_{g}, \beta_{h}, \ldots, \varphi_{p},(\alpha \beta)_{g h}, \ldots,\left(\lambda_{\varphi}\right)_{n p},(\alpha \beta \gamma)_{g h i}, \ldots,\left(\alpha \beta \gamma \ldots \delta \lambda_{\varphi}\right)_{g h} . . n p$ = fixed effects.

Analysis of variance:

Source	d.fe	$\underline{S . S}$	E(M,S.)
A	(a-1)	$\Sigma\left(y_{g}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+\frac{r b \ldots w z \sum \alpha_{g}^{2}}{(a-1)}$
-	-	-	-
$\stackrel{\square}{\bullet}$	$\stackrel{\square}{\bullet}$	$\stackrel{\square}{\bullet}$	$\cdots{ }^{-}$
z	(z-1)	$\Sigma\left(y_{p}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+\frac{r a \ldots w \Sigma \varphi_{p}^{2}}{(z-1)}$
AB	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\Sigma\left(y_{g h}-y_{g}-y_{h}+y\right)^{2}$	$\sigma_{\varepsilon}^{2}+\frac{r c \ldots w z \Sigma(\alpha \beta)_{g h}^{2}}{(a-1)(b-1)}$
-	-	-	
-	-	-	

(Tabie 3.2.11 continued.)
Sourse
WZ
defe S.S.
$(n-1)$
$\cdot(z-1)$$\quad \sum\left(y_{n p}-y_{n}-y_{p}+y\right)^{2}$ (a-1)
$-(b-1)$$\quad \Sigma\left(y_{g h i}-y_{g h}-y_{g i} \quad \sigma_{\varepsilon}^{2}+\frac{r d \ldots w z \Sigma(a \beta \gamma)_{g h i}^{2}}{(a-1)(b-1)(c-1)}\right.$
ABC

$$
\begin{array}{ll}
(a-1) & \Sigma\left(y_{g h i}-y_{g h}-y_{g i}\right. \\
\cdot(b-1) & -(c-1) \\
-y_{h i}+y_{g}+y_{h}+y_{i} \\
& -y)^{2}
\end{array}
$$

\bullet
\bullet
VWZ

$$
\begin{array}{ll}
(v-1) & \Sigma\left(y_{m n p}-y_{m n}-y_{m p}\right. \\
\cdot(w-1) & -(z-1) \\
& -y_{n p}+y_{m}+y_{n}+y_{p} \\
& -y)^{2}
\end{array}
$$

ABC...VWZ

$$
\sigma_{\varepsilon}^{2}+\frac{r \Sigma(\alpha \ldots \varphi)_{g h \ldots p}^{2}}{(\mathrm{a}-1) \ldots(z-1)}
$$

Error abc...wz $\Sigma(Y$

σ_{ϵ}^{2}

Total abc..wzr $\Sigma\left(Y_{g h \ldots n p q}-y\right)^{2}$

$$
\begin{aligned}
& \begin{array}{l}
(\mathrm{a}-1) \\
\cdot(\mathrm{b}-1) \\
\quad \Sigma\left(y_{g h} \ldots n p\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. }(z-1) \quad-y_{h . . . n p^{+y}}^{g h . . . m} \\
& +\ldots+y_{i \ldots n p} \\
& \left.-\ldots+(-1)^{t} y\right)^{2}
\end{aligned}
$$

TABLE 3.2.12

Multiple-gay classification with equal subsampling

indel:

$$
\begin{aligned}
Y_{g h \ldots} \ldots \operatorname{mnpqk}= & \mu+\alpha_{g}+\ldots+\varphi_{p}+(\alpha \beta)_{g h}+\ldots+\left(\lambda_{g \varphi}\right)_{n p}+(\alpha \beta \gamma)_{g h i}+\ldots \\
& +\left(\delta \lambda_{\rho \varphi}\right)_{\operatorname{mnp}}+\ldots+\left(\alpha \beta \gamma \ldots \delta \lambda_{\varphi}\right)_{g h \ldots} \ldots{ }^{n}+\ldots \varepsilon_{g h} \ldots \text { pq } \\
& +\theta_{g h \ldots p q k}
\end{aligned}
$$

$$
\begin{aligned}
& (g=1,2, \ldots, a ; h=1,2, \ldots, b ; i=1,2, \ldots, c ; \ldots ; m=1,2, \ldots, v ; n=1, \\
& 2, \ldots, w ; p=1,2, \ldots, z ; q=1,2, \ldots, r ; k=1,2, \ldots, s) \\
& \alpha_{g}, \hat{p}_{h}, \ldots, \varphi_{p},(\alpha \beta)_{g h}, \ldots,(\lambda \varphi)_{n p},(\alpha \beta \gamma)_{g h i}, \ldots,\left(\alpha \beta \gamma \ldots \delta \lambda_{\varphi}\right)_{g h \ldots n p} \\
& =\text { fixed effects }
\end{aligned}
$$

$\epsilon_{g h \ldots p q}, \theta_{\text {gh....pqk }}=$ random effects

Analysis of variance:

Source

d.f.

S.S.

E(M,S.)

A	(a-1)	$\Sigma\left(y_{g}-y\right)^{2}$	$\sigma_{\theta}^{2}+s \sigma_{\epsilon}^{2}+\frac{r s b \ldots w z \Sigma \alpha_{g}^{2}}{(a-1)}$
-	-	-	-
\bullet	\bullet	-	
2	(z-1)	$\Sigma\left(y_{p}-y\right)^{2}$	$\sigma_{\theta}^{2}+s \sigma_{\epsilon}^{2}+\frac{r s a \ldots w \delta \varphi_{p}^{2}}{(z-1)}$
$A B$	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\Sigma\left(y_{g h}-y_{g}-y_{h}+y\right)^{2}$	$\sigma_{\theta}^{2}+s \sigma_{\epsilon}^{2}+\frac{r 3 c \ldots w z \Sigma(\alpha \beta)_{g h}^{2}}{(a-1)(b-1)}$
-	-	-	
-	-	-	

(Tabie 3.2.12 continued.)

Source d .feres.
$W Z \quad \begin{aligned} & (w-1) \\ & \cdot(z-1)\end{aligned} \quad \Sigma\left(y_{n p}-y_{n}-y_{p}+y\right)^{2}$
ABC
\bullet
$\dot{\mathrm{V}} \mathrm{WZ}$

$$
\begin{array}{ll}
(a-1) & \Sigma\left(y_{g h i}-y_{g h}-y_{g i}\right. \\
\cdot(b-1) & -(c-1) \\
\cdot\left(y_{h i}+y_{g}+y_{h}+y_{i}\right. \\
& -y)^{2}
\end{array}
$$

Sampling Error
$A B C . . . V W Z$

$$
{ }^{+y_{g h}} \ldots n^{+\ldots}
$$

$$
+y_{i} \ldots n p-\ldots
$$

$$
\left.+(-1) t_{y}\right)^{2}
$$

$\begin{array}{ccc}\text { Experimental ab...wz } & \Sigma\left(y_{\text {gh...npq }}\right. \\ & \cdot(\mathrm{r}-i) & \\ & \left.-y_{\text {gh. }}\right)^{2}\end{array}$ ab...WZr $\Sigma(Y$

Total abc....wzrs-1 $\Sigma\left(Y_{g h \ldots p q k}-\ldots\right)^{2}$

$$
\begin{aligned}
& \left.\cdot(\dot{s}-i) \quad{ }_{-y}{ }^{\text {gh...pqk }}\right)^{2} \\
& \left.{ }^{-\mathrm{y}}{ }_{\mathrm{gh} . . . \mathrm{pq}}\right)^{2}
\end{aligned}
$$

E(M.S.)

$\sigma_{\theta}^{2}+s \sigma_{\epsilon}^{2}+\frac{\operatorname{rsa} \ldots \operatorname{uv} \Sigma(\lambda \varphi)_{n p}^{2}}{(w-1)(z-1)}$
$\sigma_{\theta}^{2}+s \sigma_{\epsilon}^{2}$

$$
+\frac{{ }^{\varepsilon}{ }_{(a-1)(b-1)(c-1)}}{\left(a z \Sigma(\alpha \beta \gamma)_{g h i}^{2}\right.}
$$

$$
\dot{\sigma}_{\theta}^{2}+s \sigma_{\epsilon}^{2}
$$

$$
+\frac{\text { rsa...uL }\left(\delta \lambda_{\varphi}\right)_{\text {mnp }}^{2}}{(v-1)(w-1)(z-1)}
$$

$\sigma_{\theta}^{2}+s \sigma_{\varepsilon}^{2}$
σ_{θ}^{2}

TABLE 3.2.13

Tro-stage nested classiffertion with equal sampling

Model:

$$
\begin{aligned}
& Y_{h i j}=\mu+\alpha_{h}+\beta_{h i}+\gamma_{h i j} \\
&(h=1,2, \ldots, a ; i=1,2, \ldots, b ; j=1,2, \ldots, c) \\
& \alpha_{h}=\text { fixed effect } \\
& \beta_{h i}, \gamma_{h i j}=\text { random effects }
\end{aligned}
$$

Analysis of variance:

Source	d.f.	S.S.	$E(M, S$.
A	a-1	$\Sigma\left(y_{h}-y\right)^{2}$	$\sigma_{\gamma}^{2}+c \sigma_{\beta}^{2}+\frac{b c}{a-1} \Sigma \alpha_{i}^{2}$
B within A	$a(b-1)$	$\Sigma\left(y_{h i}-y_{h}\right)^{2}$	$\sigma_{\gamma}^{2}+c \sigma_{\beta}^{2}$
C within B	$a b(c-1)$	$\Sigma\left(Y_{h i j}-y_{h i}\right)^{2}$	σ_{γ}^{2}
Total	$a b c-1$	$\Sigma\left(Y_{h i j}-y\right)^{2}$	

TABLE 3.2.14

Two-stage nested classification with unequal subsample Model:

$$
\begin{aligned}
Y_{h i j} & =\mu+\alpha_{h}+\beta_{h i}+\gamma_{h i j} \\
(h=1,2, \ldots, a ; i & \left.=1,2, \ldots, b ; j=1,2, \ldots, n_{i j}\right) \\
\alpha_{h} & =\text { fixed effect } \\
\beta_{h i}, \gamma_{h i j} & =\text { random effects }
\end{aligned}
$$

Analysis of variance:
Source defer S.S.
$A \quad(a-1) \quad \Sigma\left(y_{h}-y\right)^{2}$
B within A $a(b-1) \quad \Sigma\left(y_{h i}-y_{h}\right)^{2} \quad \sigma_{\gamma}^{2}+k_{1} \sigma_{\beta}^{2}$
$\begin{array}{cc}C \text { within } B & N-a b \\ \text { Total } & \frac{\Sigma\left(Y_{h i j}-Y_{h i}\right)^{2}}{\Sigma\left(Y_{h i j}-Y\right)^{2}}\end{array}$
where

$$
\begin{aligned}
& k_{1}=\left[\sum_{i j} n_{i j}-\sum_{i}\left(\sum_{j} n_{i j}^{2} / \sum_{j} n_{i j}\right)\right] / a(b-1) \\
& k_{2}=\left[\sum_{i}\left(\sum_{j} n_{i j}^{2} / \sum_{j} n_{i j}\right)-\sum_{i j} n_{i j}^{2} / \sum_{i j} n_{i j}\right) /(a-1)
\end{aligned}
$$

TABLE 3.2.15
Thron-stese nested classification with equal sub-samples

Mode?:

$$
\begin{aligned}
& Y_{h i j k}=\mu+\alpha_{h}+\beta_{h i}+\gamma_{h i j}+\delta_{h i j k} \\
&(h=1,2, \cdots, a ; i=1,2, \cdots, b ; j=1,2, \cdots, c ; k=1,2, \cdots, n) \\
& \alpha_{h}=\text { fixed effect } \\
& \beta_{h i}, \gamma_{h i j}, \delta_{h i j k}=\text { random effects }
\end{aligned}
$$

Analysis of variance:
Source

$$
d_{1}
$$

SIS.
EMS.)
A a-1 $\quad \Sigma\left(y_{h}-y\right)^{2} \quad \sigma_{\delta}^{2}+n \sigma_{\gamma}^{2}+c n \sigma_{\beta}^{2}+b c n \frac{\sum \alpha_{i}^{2}}{(a-1)}$
B within A $a(b-1) \quad \Sigma\left(y_{h i}-y_{h}\right)^{2} \quad \sigma_{\delta}^{2}+n \sigma_{\gamma}^{2}+c n \sigma_{\beta}^{2}$
C within $B \quad a b(c-1) \quad \Sigma\left(y_{h i j}-y_{h i}\right)^{2} \quad \sigma_{\delta}^{2}+n \sigma_{\gamma}^{2}$

Total aben-1 $\Sigma\left(Y_{h i j k}-y\right)^{2}$

TABLE 3.2 .16

Randomized CompleteBlock Desizn

Model:

$$
\begin{gathered}
Y_{i j}=\mu+\alpha_{i}+p_{j}+\epsilon_{i j} \\
(i=1,2, \cdots, a ; j=1,2, \cdots, r) \\
\alpha_{i}=\text { fixed effect } \\
\rho_{j}=\text { random effect }
\end{gathered}
$$

Analysis of yariance:

Scurce	d, f.	$S^{\text {S }}$	$E(M, S$,
Repetitions	($r-1$)	$\Sigma\left(y_{j}-y\right)^{2}$	
Treatments	($a-1$)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+r \frac{\sum \alpha_{1}^{2}}{a-1}$
Error	$\begin{aligned} & (r-1) \\ & \cdot(a-1) \end{aligned}$	$\Sigma\left(Y_{i j}-y_{i}-y_{j}+y\right)^{2}$	σ_{ϵ}^{2}
Total	ra-1	$\Sigma\left(Y_{i j}-y\right)^{2}$	

TABLE 3.2.17.a
Randomized Complete Block Design with sampling

Model:

$$
\begin{gathered}
Y_{i j k}=\mu+\alpha_{i}+\rho_{j}+(\alpha \rho)_{i j}+\varphi_{i j k} \\
(i=1,2, \cdots, a ; j=1,2, \cdots, r ; k=1,2, \cdots, s) \\
\alpha_{i}, \rho_{j},(\alpha \rho)_{i j}, \varphi_{i j k}=\text { random effects }
\end{gathered}
$$

Analysis of variance:

Source $\quad \underline{d, f e} \quad \underline{S_{2}}$
Repetitions $(x-1) \quad \Sigma\left(y_{j}-y\right)^{2}$
Treatments $\quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2} \quad \sigma_{\rho}^{2}+s \sigma_{\alpha \rho}^{2}+s r \sigma_{\rho}^{2}$
$\underset{\text { Error }}{\operatorname{Experiment}} \underset{-(\mathrm{a}-1)}{(r-1)} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{\varphi}^{2}+s \sigma_{\alpha \rho}^{2}$

TABLE 3.2.17.b
 Randomized Complete Block design with sampling

Model:

$$
\begin{gathered}
Y_{i j k}=\mu_{i}+\alpha_{j}^{+c}{ }_{i j}+\varphi_{i j k} \\
(i=1,2, \cdots, a ; j=1,2, \cdots, r ; k=1,2, \cdots, s) \\
\rho_{j}, \epsilon_{i j}, \varphi_{i j k}
\end{gathered}=\text { random effects } \quad \begin{gathered}
\alpha_{i}=\text { fixed effect }
\end{gathered}
$$

Analysis of variance:

TABLE 3.2.18

Randomized Complete Block Design with subsampling
Model:

$$
\begin{gathered}
Y_{i j k l}=\mu+\alpha_{i}+\rho_{j}+\epsilon_{i j}+\varphi_{i j k}+\delta_{i j k l} \\
(i=1,2, \cdots, a ; j=1,2, \cdots, r ; k=1,2, \cdots, s ; 1=1,2, \cdots, v) \\
\rho_{j}, \varphi_{i j k}, \delta_{i j k l}, \varepsilon_{i j}=\text { random effects } \\
\alpha_{i}=\text { fixed effect }
\end{gathered}
$$

Analysis of variance:

Rep. $\quad(r-1) \quad \Sigma\left(y_{j}-y\right)^{2}$
$A \quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2}$

$$
\begin{aligned}
& \sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}+v s \sigma_{\varepsilon}^{2} \\
& \quad+r v s \sum \alpha_{i}^{2} /(a-1)
\end{aligned}
$$

$\underset{\text { Error }}{\text { Experimental }} \underset{-(\mathrm{a}-1)}{(\mathrm{r}-1)} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}+v s \sigma_{\epsilon}^{2}$
$\underset{\text { Error }}{\text { Sampling }} \quad \stackrel{\text { ra }}{\cdot(s-1)} \quad \Sigma\left(y_{i j k}-y_{i j}\right)^{2} \quad \sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}$
$\underset{\text { Error }}{\text { Subsampling }} \underset{\cdot(v-1)}{\text { mas }} \quad \Sigma\left(Y_{i j k 1}-y_{i j k}\right)^{2} \quad \sigma_{\delta}^{2}$
Total rasv-1 $\overline{\Sigma\left(Y_{i j k l}-y\right)^{2}}$

TABLE 3.2.19

Group of Randomized Complete Block Designs*
Mode1:

$$
\begin{aligned}
& Y_{i j k}=\mu+\alpha_{i}+\rho_{i j}+\beta_{k}+(\alpha \beta)_{i k}+\varepsilon_{i j k} \\
&(i=1,2, \cdots, a ; j=1,2, \cdots, r ; k=1,2, \cdots, b) \\
& \rho_{i j}=\text { random effect } \\
& \alpha_{i}, \beta_{k},(\alpha \beta)_{i k}=\text { fixed effects }
\end{aligned}
$$

Analysis of variance:

Source	d, ${ }_{\text {den }}$	$\mathrm{S}_{\text {S }}$	E(M.S.)
A	(a-1)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+b \sigma_{\rho}^{2}+\frac{b r}{(a-1)} \sum \alpha_{i}^{2}$
Rep.within A	$a(r-1)$	$\Sigma\left(y_{i j}-y_{i}\right)^{2}$	$\sigma_{\epsilon}^{2}+b \sigma_{\rho}^{2}$
B	$(b-1)$	$\Sigma\left(y_{k}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{a r}{(b-1)^{\Sigma}} \beta_{k}^{2}$
$A B$	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\sum\left(y_{i k}-y_{i}-y_{k}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{r}{(a-1)(b-1)^{\Sigma}(\alpha \beta)_{i k}^{2}}$
Error	$\begin{aligned} & a(r-1) \\ & \cdot(b-1) \end{aligned}$	$\Sigma\left(Y_{i j k}-y_{i j}-y_{i k}+y_{i}\right)^{2}$	σ_{ϵ}^{2}
Total	$a b r-1$	$\Sigma\left(Y_{i j k}-y\right)^{2}$	

*Each R C B design has only one level of factor A.

TABLE 3.5.20

Group of Randomized Complete Block design with sampling

Model:

$$
\begin{aligned}
& Y_{i j k I}=\mu+\alpha_{i}+\rho_{i j}+\beta_{k}+(\alpha \beta)_{i k}+\varepsilon_{i j k}+\varphi_{i j k l} \\
& (i=1,2, \cdots, a ; j=1,2, \cdots, r ; k=1,2, \cdots, b ; 1=1,2, \cdots, s) \\
& \rho_{i j}, \varepsilon_{i j k}, \varphi_{i j k I}=\text { random effects } \\
& \alpha_{i}, \beta_{k},(\alpha \beta)_{i k}=\text { fixed effects }
\end{aligned}
$$

Analysis of variance:

Source	d, $f_{\text {e }}$	$\underline{S, S_{\text {e }}}$
A	$(a-1)$	$\Sigma\left(y_{i}-y\right)^{2}$

Rep. within A $a(r-1) \quad \Sigma\left(y_{i j}-y_{i}\right)^{2}$
B $\quad(b-1) \quad \Sigma\left(y_{k}-y\right)^{2}$
$A B$

$$
\underset{-(b-1)}{(a-1)} \quad \underset{i k}{\left(y_{i k}-y_{i}-y_{k}\right.}
$$

Sampling
error

$$
a b r
$$

$\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}$

$$
\Sigma\left(y_{i j k}-y_{i j}-y_{i k}+y_{i}\right)^{2} \sigma_{\varphi}^{2}+\delta \sigma_{\varepsilon}^{2}
$$

$\underset{\text { error }}{\operatorname{Experimental}} \underset{\cdot(b-1)}{a(r-1)} \quad \Sigma\left(y_{i j k}-y_{i j}-y_{i k}+y_{i}\right)^{2} \sigma_{\varphi}^{2}+\delta \sigma_{\epsilon}^{2}$

$$
\cdot(s-1)
$$

$$
\Sigma\left(Y_{i j k l}-y_{i j k}\right)^{2}
$$

$$
\Sigma\left(Y_{i j k l}-y\right)^{2}
$$

Total abrs-1 $\left.\quad \sum_{i j k i}-y\right)^{2}$

E(M.S.)
$\sigma_{\varphi}^{2}+s \sigma_{\varepsilon}^{2}+b s \sigma_{\rho}^{2}+\frac{b r s}{(a-1)^{2}} \alpha_{i}^{2}$
$\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}+b s \sigma_{\rho}^{2}$
$\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}+\frac{\mathrm{ars}}{(\mathrm{b}-1)^{2}} \sum_{k}^{2}$

$$
+\frac{r s}{(a-1)(b-1)^{\sum(\alpha \beta)}}{ }_{i k}^{2}
$$

TABLE 3.2.21
Two-way classified group of Randomized Complete Block designs

Model:

$$
\begin{gathered}
Y_{h i j k}=\mu+\alpha_{h}+\beta_{i}+(\alpha \beta)_{h i}+\rho_{h i j}+\gamma_{k}+(\alpha \gamma)_{h k}+(\beta \gamma)_{i k}+(\alpha \beta \gamma)_{h i k}+\varepsilon_{h i j k} \\
(h=1,2, \cdots, a ; i=1,2, \cdots, b ; j=1,2, \cdots, r ; k=1,2, \cdots, c) \\
\alpha_{h}, \beta_{i},(\alpha \beta)_{h i}, \gamma_{k},(\alpha \gamma)_{h k},(\beta \gamma)_{i k},(\alpha \beta \gamma)_{h i k}=\text { fixed effects } \\
\rho_{h i j}=\text { random effect }
\end{gathered}
$$

(Table 3.2.21 continued.)
Analysis of variance:

TABLE 3.5.22
axb factorial in Randomized Complete Block design
Model:

$$
\begin{gathered}
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\rho_{k}+\varepsilon_{i j k} \\
(i=1,2, \cdots, a ; j=1,2, \cdots, b ; k=1,2, \cdots, r) \\
\rho_{k}=\text { random effect } \\
\alpha_{i}, \beta_{j},(\alpha \beta)_{i j}=\text { fixed effects }
\end{gathered}
$$

Analysis of variance:
Source \quad d, S. $_{\text {S. }}$ E(M,S.)

Rep. (Blocks) ($x-1$) $\quad \Sigma\left(y_{k}-y\right)^{2}$
A (a-1)
$\sum\left(y_{i}-y\right)^{2}$
$\sigma_{\varepsilon}^{2}+b r \frac{\sum \alpha_{i}^{2}}{(a-1)}$
B
(b-1)
$\Sigma\left(y_{j}-y\right)^{2}$
$\sigma_{\varepsilon}^{2}+a r \frac{\Sigma \beta^{2}}{(b-1)}$
$A B \quad \begin{array}{ll}(a-1) \\ \cdot(b-1)\end{array} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{\varepsilon}^{2}+r(a-1)(b-1)$
$\begin{array}{ccc}\text { Error } & \begin{array}{l}(a b-1) \\ -(r-1)\end{array} & \Sigma\left(y_{i j k}-y_{i j}-y_{k}+y\right)^{2} \\ \text { Total } & \sigma_{\varepsilon}^{2} \\ \text { abr-1 } & \Sigma\left(Y_{i j k}-y\right)^{2}\end{array}$

TABLE 3.2 .23

axb Factorial + additional treatments in Randomized Complete Block design

General Model for any individual observation:

$$
\begin{aligned}
& Y_{h 1}=\mu+\rho_{h}+T_{1}+\varepsilon_{h 1} \\
& (h=1,2, \ldots, r ; 1=1,2, \ldots, t) \\
& t=a b+d \\
& d=\text { number of additional treatments }
\end{aligned}
$$

Model for individuals receiving factorial treatments:

$$
\begin{aligned}
& Y_{h i j}=\mu+\rho_{h}+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{h i j} \\
& (h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b)
\end{aligned}
$$

Model for individuals receiving additional treatments:

$$
\begin{aligned}
& Y_{h g}=\mu+\rho_{h}+T_{g}+\varepsilon_{h g} \\
& (g=1,2, \ldots, d) \\
& \rho_{h}=\text { random effect } \\
& T_{1}, \alpha_{i}, \beta_{j},(\alpha \beta)_{i j}=\text { fixed effects }
\end{aligned}
$$

(Table 3.2 .23 continued.)
Analysis of variance:
Source Jefe S.S. E(M,S.)

Reps. $\quad(r-1) \quad \Sigma\left(y_{h}-y\right)^{2}$
$I \quad(t-1) \quad \Sigma\left(y_{1}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+\frac{r}{(t-1)^{\Sigma T_{1}^{2}}}$
$A \quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2} \quad \sigma_{\varepsilon}^{2}+\frac{r b}{(a-1)^{\sum \alpha_{i}^{2}}}$
B $\quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2}$
$\sigma_{\varepsilon}^{2}+\frac{r a}{(b-1)} \Sigma \beta_{j}^{2}$
$A B$

Residual

$$
\begin{array}{cl}
\stackrel{(a-1)}{(b-1)} & \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \\
d & \Sigma\left(y_{1}-y\right)^{2} \\
& -\Sigma\left(y_{i j}-y\right)^{2}
\end{array}
$$

$\sigma_{\varepsilon}^{2}+\frac{\Gamma}{(a-1)(b-1)^{\Sigma(\alpha \beta)}}{ }_{1 j}^{2}$

Error
where:
φ includes differences in effects between the ax treatment combinations and the d additional treatments, and differences in effects amon s additional treatments.

TABLE 3.2.24

asp Factorial in Randomized Complete

Block design with sampling
Model:

$$
\begin{aligned}
& Y_{h i j k}=\mu+\rho_{h}+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{h i j}+\varphi_{h_{i j k}} \\
&(h=1,2, \cdots, r ; i=1,2, \cdots, a ; j=1,2, \cdots, b ; k=1,2, \cdots, s) \\
& \rho_{h}, \varepsilon_{h i j}, \varphi_{h i j k}=\text { random effects } \\
& \alpha_{i}, \beta_{j},(\alpha \beta)_{i j}=\text { fixed effects }
\end{aligned}
$$

Analysis of variance:
Source Jefe S.S. E(M,S.)

Reps. $\quad(r-1) \quad \Sigma\left(y_{h}-y\right)^{2}$
$\sigma_{\varphi}^{2}+s \sigma_{\sigma}^{2}+s a b \sigma_{\rho}^{2}$
$A \quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2} \quad \sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}+r s b_{i} \frac{\Sigma \alpha_{i}^{2}}{(a-1)}$
B $\quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2} \quad \sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}+r s a \frac{\Sigma \beta_{j}^{2}}{(b-1)}$
$A B \quad \begin{aligned} & (a-1) \\ & -(b-1)\end{aligned} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}+r s \frac{\Sigma(\alpha \beta)_{i j}^{2}}{(a-1)(b-1)}$
$\underset{\text { Error }}{\text { Experimental }} \underset{\cdot(\mathrm{ab}-1)}{(\mathrm{r}-1)} \quad \Sigma\left(y_{h i j}-y_{h}-y_{i j}+y\right)^{2} \sigma_{\varphi}^{2}+s \sigma_{\varepsilon}^{2}$

Total $\overline{\text { rabs-1 }} \overline{\Sigma\left(Y_{h i j k}-y\right)^{2}}$

axb Factorial in a Randomized Complete Block Design

with subsampling

Model: $\quad Y_{h i j k I}=\mu+\rho_{h}+\alpha_{i}+\beta_{j}+\langle\alpha \beta)_{i j}+\varepsilon_{h i j}+\varphi_{b i j k}+\delta_{h i j k l}$

$$
(h=1,2, \cdots, x ; i=1,2, \cdots, a ; j=1,2, \cdots, b ; k=1,2, \cdots, s ; 1=1,2,
$$

. . • , v)

Analysis of variance:

Source	d,fe	S.S.	E(MES.2)
Rep.	($\mathrm{r}-1$)	$\Sigma\left(y_{h}-y\right)^{2}$	$\sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}+v s \sigma_{\epsilon}^{2}+a b v s \sigma_{\rho}^{2}$
A	($\mathrm{a}-1$)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}+v s \sigma_{\epsilon}^{2}+r b v s \frac{\Sigma \alpha_{i}^{2}}{(a-1)}$
B	(b-1)	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}+v s \sigma_{\epsilon}^{2}+r a v s \frac{\sum \beta_{j}^{2}}{(\mathrm{~b}-1)}$

$A B \quad \begin{array}{lll}(a-1) & \Sigma\left(y_{i j}-y_{i}-y_{j}\right. & \sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}+v s \sigma_{\epsilon}^{2} \\ \cdot(b-1) & +y)^{2} & +\operatorname{lvs} \frac{\Sigma(\alpha \beta)_{i j}^{2}}{(a-1)(b-1)}\end{array}$

(Table 3.2.25 continued.)

Source	d.fe	Sose	E(MeSN)
Sampling Error	$\begin{aligned} & \text { rab } \\ & \cdot(s-1) \end{aligned}$	$\Sigma\left(y_{h i j k}-y_{h i j}\right)^{2}$	$\sigma_{\delta}^{2}+v \sigma_{\varphi}^{2}$
Subsampling Error	$\begin{aligned} & \text { rabs } \\ & \cdot(v-1) \end{aligned}$	$\Sigma\left(Y_{h i j k l}-y_{h i j k}\right)^{2}$	σ_{8}^{2}
Total	rabsv-1	$\Sigma\left(Y_{h i j k l}-y\right)^{2}$	

TABLE 26
Group of axb factorial Randomized Complete Block designs
Model:

$$
\begin{gathered}
Y_{g h i j}=\mu+\alpha_{g}+\rho_{g h}+\beta_{i}+\gamma_{j}+(\beta \gamma)_{i j}+(\alpha \beta)_{g i}+(\alpha \gamma)_{g j}+(\alpha \beta \gamma)_{g i j}+\varepsilon_{g h i j} \\
(g=1,2, \cdots, a ; h=1,2, \cdots, r ; i=1,2, \cdots, b ; j=1,2, \cdots, c) \\
\rho_{g h}, \varepsilon_{g h i j}=\text { random effects } \\
\alpha_{g}, \beta_{i}, \gamma_{j},(\beta \gamma)_{i j},(\alpha \beta)_{g i},(\alpha \gamma)_{g j},(\alpha \beta \gamma)_{g i j}=\text { fixed effects }
\end{gathered}
$$

(Table 26 continued.)
Analysis of variance:

TABLE 3.2.27
axbxc factorial in Randomized Complete Block design

Model:

$$
\begin{gathered}
Y_{h i j k}=\mu+\rho_{h}+\alpha_{i}+\beta_{j}+\gamma_{k}+(\alpha \beta)_{i j}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k}+(\alpha \beta \gamma)_{i j k}+\varepsilon_{h i j k} \\
(h=1,2, \ldots, r ; i=1,2, \cdots, a ; j=1,2, \cdots, b ; k=1,2, \ldots, c) \\
\rho_{h}, \varepsilon_{h i j k}=\text { random effects } \\
\alpha_{i}, \beta, \gamma_{j},(\alpha \beta)_{i j},(\alpha \gamma)_{i k},(\beta \gamma)_{j k},(\alpha \beta \gamma)_{i j k}=\text { fixed effects }
\end{gathered}
$$

(Table 3.2.27 continued.)

Analysis of variance:

Source	d, f.	S.S.	E(M.S.)
Reps.	(r-1)	$\Sigma\left(y_{h}-y\right)^{2}$	
A	(a-1)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+r b c \frac{\sum \alpha_{i}^{2}}{(a-1)}$
B	(b-1)	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+r a c \frac{\Sigma \beta^{2}}{(b-1)}$
C	(c-1)	$\Sigma\left(y_{k}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+r a b \frac{\Sigma \gamma_{k}^{2}}{(c-1)}$
$A B$	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+r c \frac{\Sigma(\alpha \beta)_{i j}^{2}}{(a-1)(b-1)}$
AC	$\begin{aligned} & (a-1) \\ & \cdot(c-1) \end{aligned}$	$\Sigma\left(y_{i k}-y_{i}-y_{k}+y\right)^{2}$	$\sigma_{\varepsilon}^{2}+r b \frac{\Sigma(\alpha \gamma)_{1 k}^{2}}{(a-1)(c-1)}$
BC	$\begin{aligned} & (b-1) \\ & \cdot(c-1) \end{aligned}$	$\Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2}$	$\sigma_{\varepsilon}^{2}+r a \frac{\Sigma(\beta \gamma)_{j k}^{2}}{(b-1)(c-1)}$
ABC	$\begin{aligned} & (a-1) \\ & \cdot \\ & \cdot(b-1) \\ & \cdot(c-1) \end{aligned}$	$\begin{gathered} \Sigma\left(y_{i j k}-y_{i j}-y_{i k}-y_{j k}\right. \\ \left.+y_{i}+y_{j}+y_{k}-y\right)^{2} \end{gathered}$	$\sigma_{\epsilon}^{2}+r \frac{\Sigma(\alpha \beta \gamma)_{i j k}^{2}}{(a-1)(b-1)(c-1)}$

Error $\quad \begin{array}{ll}(a b c-1) \\ \cdot(r-1)\end{array} \quad \Sigma\left(Y_{h i j k}-y_{i j k}-y_{h}+y\right)^{2} \quad \sigma_{\varepsilon}^{2}$
Total abcr-1 $\Sigma\left(Y_{\text {hijk }}-y\right)^{2}$

TABLE 3.2 .28

axbxc Factorial + additional treatments in
 Bandomized Complete Block design

General model for any individual observation:

$$
\begin{aligned}
& Y_{h 1}=\mu+\rho_{h}+T_{1}+\varepsilon_{h 1} \\
& (h=1,2, \ldots, r ; 1=1,2, \ldots, t) \\
& t=\text { abc+d } \\
& d=\text { number of additional treatments }
\end{aligned}
$$

Model for individuals receiving factorial treatments:

$$
\begin{aligned}
Y_{h i j k}= & \mu+\rho_{h}+\alpha_{i}+\beta_{j}+\gamma_{k}+(\alpha \beta)_{i j}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k}+(\alpha \beta \gamma)_{i j k} \\
& +\varepsilon_{h i j k}
\end{aligned}
$$

Model for individuals receiving additional treatments:

$$
Y_{h g}=\mu+\rho_{h}+T_{g}+\epsilon_{h g},(g=1,2, \ldots, d)
$$

Analysis of Variance:

Source	d.fer	S.	E(M,S.)
Reps.	($r-1$)	$\Sigma\left(y_{h}-y\right)^{2}$	
T	(t-1)	$\Sigma\left(y_{1}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\mathrm{r} \mathrm{\Sigma T} \mathrm{~T}_{1}^{2}}{(\mathrm{t}-1)}$
A	(a-1)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{r b c \sum \alpha_{i}^{2}}{(a-1)}$
B	$(b-1)$	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\operatorname{rac}^{2} \beta_{j}^{2}}{(b-1)}$

(Table 3.2.28 continued.)

Source	defer	S.	E(M,S.)
C	(c-1)	$\Sigma\left(y_{k}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\operatorname{rab\Sigma } \gamma_{k}^{2}}{(c-1)^{2}}$
$A B$	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\operatorname{rc\sum (\alpha \beta)_{ij}^{2}}}{(a-1)(b-1)}$
$A C$	$\begin{aligned} & (a-1) \\ & \cdot(c-1) \end{aligned}$	$\Sigma\left(y_{i j}-y_{i}-y_{k}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\operatorname{rb\Sigma (\alpha \gamma)_{ik}^{2}}}{(a-1)(c-1)}$
BC	$\begin{aligned} & (b-1) \\ & \cdot(c-1) \end{aligned}$	$\Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\operatorname{ra\Sigma (\beta \gamma)_{jk}^{2}}}{(b-1)(c-1)}$
ABC	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \\ & \cdot(c-1) \end{aligned}$	$\begin{aligned} & \Sigma\left(y_{i j k}-y_{i j}-y_{j k}\right. \\ & -y_{i k}+y_{i}+y_{j}+y_{k} \\ & -y)^{2} \end{aligned}$	$\sigma_{\epsilon}^{2}+\frac{r \Sigma(\alpha \beta \gamma)_{i j k}^{2}}{(a-1)(b-1)(c-1)}$
Residual	d	$\Sigma\left(y_{1}-y\right)^{2}-\Sigma\left(y_{i j}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+f(\varphi)$
Error	$\begin{aligned} & (r-1) \\ & \cdot(t-1) \end{aligned}$	$\Sigma\left(Y_{h 1}-y_{h}-y_{1}+y\right)^{2}$	σ_{ϵ}^{2}
Total	rt-1	$\Sigma\left(Y_{h}-y\right)^{2}$	

where:
φ includes differences in effects between the axbxc treatment combinations and the d additional treatments, and differences in effects among additional treatments.

TABLE 3.2.29
axbxc Factorial in Randomized Complete Block design with sampling

Model:
$Y_{h i j k I}=\mu+\rho_{h}+\alpha_{i}+\beta_{j}+\gamma_{k}+(\alpha \beta)_{i j}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k}+(\alpha \beta \gamma)_{i j k}+\varepsilon_{h i j k}$ $t_{\text {hijkI }}$
$(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b ; k=1,2, \ldots, c ; 1=1,2, \ldots, s)$

$$
\rho_{h}, \varepsilon_{h i j k}, \varphi_{h i j k l}=\text { random effects }
$$

$\alpha_{i}, \beta_{j}, \gamma_{k},(\alpha \beta)_{i j},(\alpha \gamma)_{i k},(\beta \gamma)_{j k},(\alpha \beta \gamma)_{i j k}=$ fixed effects
Analysis of variance:
Source

> Sc.

EMS.)
Reps. $\quad(r-1) \quad \Sigma\left(y_{h}-y\right)^{2}$

(Table 3.2.29 continued.)
Source d.fe S.S.
E(M,SN)

$$
\begin{array}{lcc}
\begin{array}{ll}
\text { (b-1) } \\
-(c-1)
\end{array} & \Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2} & \sigma_{\varphi}^{2}+\delta \sigma_{\epsilon}^{2}+\frac{\operatorname{ras} \Sigma(\beta \gamma)_{j k}^{2}}{(b-1)(c-1)} \\
& & \sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2} \\
& & r s \Sigma(\alpha \beta \gamma)_{i j k}^{2} \\
\begin{array}{lll}
(a-1) & \Sigma\left(y_{i j k}-y_{i j}-y_{i k}\right. & +(a-1)(b-1)(c-1) \\
-(c-1) & -y_{j k}+y_{i}+y_{j}+y_{k} & \\
& -y)^{2}
\end{array}
\end{array}
$$

$A B C \quad \begin{aligned} & (a-1) \\ & \cdot(b-1)\end{aligned} \quad \sum\left(y_{i j k}-y_{i j}-y_{i k}\right.$

Experimental
Error
(abc-1)
$\Sigma(y$

$$
\sigma_{\varphi}^{2}+s \sigma_{\epsilon}^{2}
$$

$\begin{aligned} \text { Sampling } & \text { abcr } \\ \text { Error } & (\mathrm{s}-1)\end{aligned} \quad \sum\left(Y_{h i j k 1}-y_{h i j k}\right)^{2} \quad \sigma_{\varphi}^{2}$
Total abcrs-1 $\Sigma\left(Y_{h i j k 1}-y\right)^{2}$

TABLE 3.2.30

Multiple factorial in Randomized Comnlete Block design

Model:

$$
\begin{aligned}
& \begin{aligned}
& Y_{g h \ldots m p}= \mu+\rho_{\mathcal{S}}+\alpha_{h}+\beta_{i}+\ldots+\varphi_{p}+(\alpha \beta)_{h i}+\ldots+(\lambda \varphi)_{n p}+(\alpha \beta \gamma)_{h i j}+\ldots \\
&+(\delta \lambda \varphi)_{m n p}+\ldots+\left(\beta \gamma \ldots \lambda_{\varphi}\right)_{i j \ldots n p}+\epsilon_{g h \ldots n p} \\
&(g=1,2, \ldots, x ; h=1,2, \ldots, a ; i=1,2, \ldots, b ; j=1,2, \ldots, c ; \ldots ; m=1, \\
&2, \ldots, v ; n=1,2, \ldots, w ; p=1,2, \ldots, z)
\end{aligned} \\
& \text { ghi...mnp are a set of } t \text { subscripts, }(t=\text { number of factors }) \\
& \rho_{h}= \text { random effect } \\
& \alpha_{h}, \xi_{i}, \ldots, \varphi_{p},(\alpha \beta)_{h i}, \ldots,(\lambda \varphi)_{n p},(\alpha \beta \gamma)_{h i f}, \ldots,(\alpha \gamma \ldots \lambda \varphi)_{h i} \ldots n p \\
&= \text { fixed effects }
\end{aligned}
$$

Analysis of variance:

Source	d.fer	$\mathrm{S}_{\text {S }}$	E(M,Se)
Rep.	($r-1$)	$\Sigma\left(y_{g}-y\right)^{2}$	
A	(a-1)	$\Sigma\left(y_{h}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{r b \ldots w z \alpha_{h}^{2}}{(a-1)}$
-	-	-	-
-	-		
Z	$(z-1)$	$\Sigma\left(y_{p}-y\right)^{2}$	$\sigma_{\varepsilon}^{2}+\frac{r a \ldots w \Sigma \varphi_{p}^{2}}{(z-1)}$
$A B$	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{r c . . W z \Sigma(\alpha \beta)_{h i}^{2}}{(a-1)(b-1)}$
-	-		
-	-		

(Table 3.2.30 continued.)

Error

$$
\begin{aligned}
& \frac{-1)^{-1}}{\text { rab...z-1 }} \frac{\left.-y_{h i} \ldots n p+y\right)^{2}}{\sum\left(Y_{g h \ldots n p}-y\right)^{2}}
\end{aligned}
$$

TABLE 3.2.31

Latin Square design

Model:

$$
\begin{aligned}
& Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\varepsilon{ }_{i j k} \\
& (i, j, k=1,2, \cdots, r) \\
& \alpha_{i}, \beta_{j}, \gamma_{k}=\text { fixed effects }
\end{aligned}
$$

Analysis of variance:

Source	d, fe	$\underline{S . S}$.	$E(M, S$.
A (Rows)	(r-1)	$\sum\left(y_{i}-y\right)^{2}$	$\sigma_{c}^{2}+\frac{\sum \alpha_{i}^{2}}{(r-1)}$
B (Columns)	($\mathrm{r}-1$)	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{c}^{2}+\frac{\Sigma \beta_{j}^{2}}{(r-1)}$
C(Treatments)	($r-1$)	$\Sigma\left(y_{k}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\Sigma \gamma_{k}^{2}}{(r-1)}$
Error	$\begin{aligned} & (r-1) \\ & \cdot(r-2) \end{aligned}$	$\begin{gathered} \Sigma\left(y_{i j k}-y_{i}-y_{j}\right. \\ \left.-y_{k}+2 y\right)^{2} \end{gathered}$	σ_{ϵ}^{2}
Total	$r^{2}-1$	$\Sigma\left(Y_{i j k}-y\right)^{2}$	

TABLE 3.2 .32

Group of s Latin Square designs

Model:

$$
\begin{gathered}
Y_{h i j k}=\mu+\delta_{h}+\rho_{h(i)}+\gamma_{h(j)}+T_{k}+(\delta T)_{h k}+\varepsilon_{h i j k} \\
(h=1,2, \ldots, s ; i, j, k=1,2, \ldots, r) \\
\rho_{h(i)}, \gamma_{h(j)}=\text { random effects } \\
\delta_{h}, T_{k},(\delta T)_{h k}=\text { fixed effects }
\end{gathered}
$$

Analysis of variance:

Source Safe S.S. E(M,S.)
Squares (s-1) $\Sigma\left(y_{h}-y\right)^{2}$
Rows within
squares $s(r-1) \quad \Sigma\left(y_{h i}-y_{h}\right)^{2}$
$\underset{\text { within }}{\text { Columns }} \quad s(r-1) \quad \Sigma\left(y_{h j}-y_{h}\right)^{2}$
squares
Treatments ($r-1$) $\Sigma\left(y_{k}-y\right)^{2} \quad \sigma_{\varepsilon}^{2}+B r \Sigma T_{k}^{2} /(r-1)$
$\begin{array}{ll}\text { Squares } x \\ \text { Treatments } & (8-1) \\ \cdot(r-1)\end{array} \quad \Sigma\left(y_{h k}-y_{h}-y_{k}+y\right)^{2} \quad \sigma_{\varepsilon}^{2}+r \Sigma(\delta I)_{i k}^{2} /(s-1)(r-1)$
Error $\quad \begin{aligned} & s(r-1) \\ & \bullet(r-2)\end{aligned} \quad \Sigma\left(Y_{h i j k}-y_{h i}-y_{h j} \quad \sigma_{\varepsilon}^{2}\right.$

$$
\left.-y_{h k}+2 y_{h}\right)^{2}
$$

Total $\overline{s r^{2}-1} \overline{\sum\left(Y_{h i j k}-y\right)^{2}}$

TABLE 3.2.33

Split-plot design
Model:

$$
\begin{gathered}
Y_{h i j}=\mu+\rho_{h}+\alpha_{i}+\varphi_{h i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{h i j} \\
(h=1,2, \cdots, r ; i=1,2, \cdots, a ; j=1,2, \ldots, b) \\
\rho_{h}=\text { random effect } \\
\alpha_{i, \beta_{j}}=\text { fixed effects }
\end{gathered}
$$

Analysis of variance:

Error (a)

$$
\begin{aligned}
& (r-1) \\
& \cdot(\mathrm{a}-1)
\end{aligned} \quad \Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+b \sigma_{\varphi}^{2}
$$

B $\quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+\frac{a r}{(b-1)^{\sum \beta}}{ }_{j}^{2}$
$A B \quad \begin{aligned} & (a-1) \\ & \cdot(b-1)\end{aligned} \quad \sum\left(y_{i j}-y_{i}^{-y_{j}}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+\frac{r}{(a-1)(b-1)^{\Sigma(\alpha \beta)_{i j}^{2}}}$
$\begin{array}{clll}\text { Error } & a(b-1) & \Sigma\left(Y_{h i j}-y_{h i}-y_{h j}\right. & \sigma_{c}^{2}\end{array}$

Total

$$
\frac{+y)^{2}}{\sum_{\text {abr-1 }}^{\left.\sum_{h i j}-y\right)^{2}}}
$$

TABLE 3.2.34
Split-olot design, considering_interactions between repetitions and each of the two factors

Model:

$$
\begin{gathered}
Y_{h i j}=\mu+\rho_{h}+\alpha_{i}+(\rho \alpha)_{h i}+\beta_{j}+(\rho \beta)_{h j}+(\alpha \beta)_{i j}+\varepsilon_{h i j} \\
(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b) \\
\rho_{h},(\rho \alpha)_{h i},(\rho \beta)_{h j}=\text { random effects } \\
\alpha_{i}, \beta_{j},(\rho \beta)_{h j}=\text { fixed effects }
\end{gathered}
$$

Analysis of variance:
Source

defer

Sc.

$$
(r-1) \quad \Sigma\left(y_{h}-y\right)^{2}
$$

$$
(a-1) \quad \Sigma\left(y_{i}-y\right)^{2}
$$

$$
\begin{aligned}
& (r-1) \\
& -(a-1)
\end{aligned} \quad \sum\left(y_{h i}-y_{h}-y_{i}+y\right)^{2}
$$

$$
(b-1) \quad \Sigma\left(y_{j}-y\right)^{2}
$$

$$
\underset{(b-1)}{(r-1)} \quad \Sigma\left(y_{h j}-y_{h}-y_{j}+y\right)^{2}
$$

$$
\underset{\cdot(b-1)}{(a-1)} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2}
$$

$$
\begin{aligned}
& (\mathrm{r}-1) \\
& \cdot(\mathrm{a}-1)
\end{aligned} \quad \Sigma\left(Y_{h i j}-y_{h i}-y_{h j} \quad \sigma_{\varepsilon}^{2}\right.
$$

$$
-(b-1) \quad-y_{i j}+y_{h}+y_{i}+y_{j}
$$

$$
\text { rab-1 } \Sigma\left(Y_{h i j}-y\right)^{2}
$$

Total rab-1 $\quad \Sigma\left(Y_{h i j}-y\right)^{2}$

TABLE 3.2.35
Split-plot design with sampling

Model:

$$
\begin{gathered}
Y_{h i j k}=\mu+\rho_{h}+\alpha_{i}+\varphi_{h i}+\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{h i j}+\lambda_{h i j k} \\
(h=1,2, \cdots, r ; i=1,2, \cdots, a ; j=1,2, \cdots, b ; k=1,2, \ldots, s) \\
\rho_{h}, \varphi_{h i}, \epsilon_{h i j}, \lambda_{h i j k}=\text { random effects } \\
\alpha_{i}, \beta_{j},(\alpha \beta)_{i j}=\text { fixed effects }
\end{gathered}
$$

(Table 3.2.35 continued.)

Analysis of variance:

Source	d.f.	S.S.	$E(M, S, 2)$
Rep.	(r-1)	$\Sigma\left(y_{h}-y\right)^{2}$	
A	(a-1)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\lambda}^{2}+\mathrm{s} \sigma_{\epsilon}^{2}+\mathrm{sb} \sigma_{\varphi}^{2}+\frac{s b r}{(a-1)} \sum_{i}^{2}$
Error (a)	$\begin{aligned} & (r-1) \\ & \cdot(a-1) \end{aligned}$	$\Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2}$	$\sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+s b \sigma_{\oplus}^{2}$
B	($b-1$)	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\lambda}^{2}+8 \sigma_{c}^{2}+\frac{a r_{s}}{(b-1)^{L \beta}}{ }_{j}^{2}$
$A B$	$\begin{aligned} & (a-1) \\ & \cdot(b-1) \end{aligned}$	$\begin{gathered} \Sigma\left(y_{i j}-y_{i}-y_{j}\right. \\ +y)^{2} \end{gathered}$	$\begin{aligned} & \sigma_{\lambda}^{2}+8 \sigma_{\varepsilon}^{2} \\ & \quad+\frac{s r}{(a-1)(b-1)^{\Sigma(\alpha \beta)_{i j}^{2}}}{ }_{i}^{2} \end{aligned}$
Error (b)	$\begin{aligned} & a(b-1) \\ & \cdot(r-1) \end{aligned}$	$\begin{gathered} \Sigma\left(y_{h i j}-y_{h i}-y_{i_{j}}\right. \\ \left.+y_{i}\right)^{2} \end{gathered}$	$\sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}$
Sampling error	abr $(s-1)$	$\Sigma\left(Y_{h i j k}-y_{h i j}\right)^{2}$	σ_{λ}^{2}
Total	abrs-1	$\Sigma\left(Y_{h i j k}-y\right)^{2}$	

TABLE 3.2 .36
Split-plot design with sampling considering interactions between repetitions and each of the two factors

Model:

$$
\begin{array}{r}
Y_{h i j k}=\mu+\rho_{h}+\alpha_{i}+(\rho \alpha)_{h i}+\beta_{j}+(\rho \beta)_{h j}+(\alpha \beta)_{i j}+(\rho \alpha \beta)_{h i j}+\varepsilon_{h i j k} \\
(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b ; k=1,2, \ldots, s) \\
\rho_{h},(\rho \alpha)_{h i},(\rho \beta)_{h j},(\rho \alpha \beta)_{h i j}, \varepsilon_{h i j k}=\text { random effects } \\
\alpha_{i}, \beta j,(\rho \beta)_{h j}=\text { fixed effects }
\end{array}
$$

Analysis of variance:
Source
defer
SE.

$$
E(M, S N)
$$

Rep. $\quad(x-1) \quad \Sigma\left(y_{h}-y\right)^{2}$

$$
\begin{aligned}
& \text { A } \quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+s b \sigma_{o \alpha}^{2}+\frac{s r b}{(a-1)^{\sum}} \alpha_{i}^{2} \\
& R A \quad \begin{array}{lll}
(r-1) \\
\cdot(a-1)
\end{array} \quad \Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+s b \sigma_{\rho \alpha}^{2} \\
& \text { B } \quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2} \quad \sigma_{\varepsilon}^{2}+s a \sigma_{\rho \beta}^{2}+\frac{s r a}{(b-1)^{2}} \Sigma \beta_{j}^{2} \\
& R B \quad \underset{-(b-1)}{(r-1)} \quad \Sigma\left(y_{h j}-y_{h}-y_{j}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+s a \sigma_{\rho \beta}^{2} \\
& A B \quad \begin{array}{ll}
(a-1) \\
-(b-1)
\end{array} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{\varepsilon}^{2}+\sigma_{\rho \alpha \beta}^{2}+\frac{8 \Sigma}{(a-1)(b-1)} \\
& \text { - } \Sigma(\alpha \beta)_{i j}^{2}
\end{aligned}
$$

(Table 3.2.36 continued.)

Source
RAB
d.fer S.S.

$$
\begin{array}{ll}
(r-1) & \Sigma\left(y_{h i j}-y_{h i}-y_{h j}\right. \\
-(a-1) & (b-1) \\
-\left(y_{i j}+y_{h}+y_{i}+y_{j}\right. \\
-y)^{2}
\end{array}
$$

Sampling Error

Total rabs-1 $\overline{\Sigma\left(Y_{h i j k}-y\right)^{2}}$

TABLE 3.2.37
Group of split-plot designs.
Model:

$$
\begin{gathered}
Y_{i j k 1}=\mu^{\left.\mu+\alpha_{i}+\rho_{i(j}\right)}+\beta_{k}+(\alpha \beta)_{i k}+\varepsilon_{i j k}+\gamma_{1}+(\alpha \gamma)_{i 1}+(\beta \gamma)_{k 1}+(\alpha \beta \gamma)_{i k 1} \\
\quad+\varphi_{i j k 1} \\
\quad(i=1,2, \ldots, a ; j=1,2, \cdots, r ; k=1,2, \cdots, b ; 1=1,2, \cdots, c) \\
\alpha_{i}, \beta_{k},(\alpha \beta)_{i k}, \gamma_{1},(\alpha \gamma)_{i 1},(\beta \gamma)_{k 1},(\alpha \beta \gamma)_{i k 1}=\text { fixed effects } \\
\rho_{i(j)}, \varepsilon_{i j k}, \varphi_{i j k 1}=\text { random effects }
\end{gathered}
$$

Analysis of variance:
Source
def
-

$$
(a-1) \quad \Sigma\left(y_{i}-y\right)^{2}
$$

Repent. within $a(x-1) \quad \Sigma\left(y_{i j}-y\right)^{2}$
B $\quad(b-1) \quad \Sigma\left(y_{k}-y\right)^{2}$
$A B \quad \begin{aligned} & (a-1) \\ & -(b-1)\end{aligned} \quad \Sigma\left(y_{i k}-y_{i}-y_{k}+y\right)^{2} \quad \sigma_{\varphi}^{2}+c \sigma_{\epsilon}^{2}+\frac{r c \Sigma(\alpha \beta)_{i k}^{2}}{(a-1)(b-1)}$

$$
\sigma_{\varphi}^{2}+c \sigma_{\epsilon}^{2}+b c \sigma_{\rho}^{2}+\frac{r b c \sum \alpha_{i}^{2}}{(\mathrm{a}-1)}
$$

$$
\sigma_{\varphi}^{2}+c \sigma_{\epsilon}^{2}+b c \sigma_{\rho}^{2}
$$

$$
\sigma_{\varphi}^{2}+c \sigma_{\epsilon}^{2}+\frac{\operatorname{rac\Sigma \beta _{k}^{2}}}{(b-1)}
$$

$\begin{array}{ccc}\text { Error } \\ \text { Among Plots } & \begin{array}{l}a(r-1) \\ \cdot(b-1)\end{array} \quad \begin{array}{c}\Sigma\left(y_{i j k}\right. \\ \left.+y_{i}\right)^{2}\end{array}\end{array}$
c (c-1) $\quad \Sigma\left(y_{1}-y\right)^{2} \quad \sigma_{\varphi}^{2}+\frac{\operatorname{rab} \Sigma \gamma_{1}^{2}}{(c-1)^{2}}$

$$
A C \quad \begin{aligned}
& (a-1) \\
& \cdot(c-1)
\end{aligned} \quad \Sigma\left(y_{i 1}-y_{i}-y_{1}+y\right)^{2} \quad \sigma_{\varphi}^{2}+\frac{r b \Sigma(\alpha \gamma)_{i 1}^{2}}{(a-1)(c-1)}
$$

(Table 3.2.37 continued.)
Source

d.f.e.
 S.S.

E(M.S.S)
BC $\quad \begin{aligned} & (b-1) \\ & -(c-1)\end{aligned} \quad \Sigma\left(y_{k 1}-y_{k}-y_{1}+y\right)^{2} \quad \sigma_{\varphi}^{2}+\frac{\operatorname{ra\Sigma }(\beta \gamma)_{k 1}^{2}}{(b-1)(c-1)}$

-(c-1) $\quad-y_{k 1}+y_{i}+y_{k}+y_{1}$
$-y)^{2}$
$\begin{array}{lll}\text { Error } \\ \text { Within plots } \cdot(c-1) & a b(r-1) & \Sigma\left(Y_{i j k 1}-y_{i j k}\right.\end{array} \quad \sigma_{\varphi}^{2}$

$$
\left.-y_{i j 1}+y_{i j}\right)^{2}
$$

Total

$$
\text { abrc-1 } \quad \Sigma\left(Y_{i j k l}-y\right)^{2}
$$

TABLE 3.2.38

Split-nlot design with

axb factorial on the whole plots

Model:

$$
\begin{gathered}
Y_{h i j k}= \\
\mu_{h}+\rho_{h}+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varphi_{h i j}+\gamma_{k}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k} \\
\\
+(\alpha \beta \gamma)_{i j k}+\epsilon_{h i j k} \\
(h=1,2, \cdots, r ; i=1,2, \ldots, a ; j=1,2, \cdots, b ; k=1,2, \cdots, c) \\
\rho_{h}, \epsilon_{h i j k}, \varphi_{h i j}=\text { random effects } \\
\alpha_{i}, \beta_{j},(\alpha \beta)_{i j}, \gamma_{k},(\alpha \gamma)_{i k},(\beta \gamma)_{j k},(\alpha \beta \gamma)_{i j k}=\text { fixed effects }
\end{gathered}
$$

Analysis of variance:
Source \quad defer $S_{e} S_{e}$ E(M,S Ne)

Rep. $\quad(r-1) \quad \Sigma\left(y_{h}-y\right)^{2}$
$A \quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+c \sigma_{\varphi}^{2}+\frac{b c r}{(a-1)^{\Sigma}} \alpha_{i}^{2}$
$B \quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+c \sigma_{\varphi}^{2}+\frac{a c r}{(b-1)^{\Sigma}}{ }_{j}^{2}$
$A B$

$$
\begin{array}{lll}
(a-1) & \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} & \sigma_{\epsilon}^{2}+c \sigma_{\varphi}^{2} \\
\cdot(b-1) & & \frac{c r}{(a-1)(b-1)^{\Sigma(\alpha \beta)_{i j}^{2}}}
\end{array}
$$

$\operatorname{Error}(a) \quad \underset{(a b-1)}{(r-1)} \quad \Sigma\left(y_{h i j}-y_{i j}-y_{h} \quad \sigma_{\epsilon}^{2}+c \sigma_{\varphi}^{2}\right.$
(Table 3.2.38 continued.)
Source

E(M.S.)
c (c-1) $\quad \Sigma\left(y_{k}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+\frac{a b r}{(c-1)^{\Sigma \gamma_{k}}}$
AC $\quad \underset{-(a-1)}{(a-1)} \quad \Sigma\left(y_{i k}-y_{i}-y_{k}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+\frac{b r}{(a-1)(c-1)^{\Sigma}}{ }^{\Sigma(a \gamma)_{i k}^{2}}$
$B C$

$$
\begin{aligned}
& \begin{array}{l}
(b-1) \\
-(c-1)
\end{array} \quad \Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2}
\end{aligned} \sigma_{\varepsilon}^{2}+\frac{a r}{(b-1)(c-1)^{\Sigma(\beta \gamma)^{2}}}{ }_{j k}
$$

ABC

$$
\begin{array}{lll}
\text { (a-1) } & \Sigma\left(y_{i j k}-y_{i j}-y_{i k}\right. & \sigma_{\varepsilon}^{2}+\frac{r}{-(b-1)} \\
\cdot(a-1)(b-1)(c-1) & -y_{j k}+y_{i}+y_{j}+y_{k} & \cdot \Sigma(a \beta \gamma)_{i j k}^{2}
\end{array}
$$

Error (b)

$$
\begin{gathered}
\underset{\cdot(\mathrm{c}-1)}{\operatorname{ab}(\mathrm{r}-1)} \quad \Sigma\left(Y_{h i j k}-y_{h i j}-y_{i j k} \sigma_{\varepsilon}^{2}\right. \\
\left.+y_{i j}\right)^{2}
\end{gathered}
$$

$$
\text { Total abrc-1 } \quad \Sigma\left(Y_{h i j k}-y\right)^{2}
$$

TABLE 3.2.39
Split-plot design with arb factorial on whole plots,
Interactions between repetitions and components of the axbxc factorial

Model:

$$
\begin{aligned}
& Y_{h i j k}= \mu+\rho_{h}+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varphi_{h i j}+\gamma_{k}+(\rho \gamma)_{h k}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k} \\
&+(\alpha \beta \gamma)_{i j k}+(\rho \alpha \gamma)_{h i k}+(\rho \beta \gamma)_{h j k}+\varepsilon_{h i j k} \\
&= \mu+\rho_{h}+T_{i j}+(\rho T)_{h i j}+\gamma_{k}+(\rho \gamma)_{h k}+\left(\tau_{\gamma}\right)_{i j k}+\varepsilon_{h i j k} \\
& \begin{array}{c}
(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b ; k=1,2, \ldots, c) \\
\text { where: }
\end{array} \\
& T_{i j}=\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j} \\
& T_{i j}, \gamma_{k},(T \gamma)_{i j k}=\text { fixed effects } \\
& \rho_{h}, \varphi_{h i j},(\rho \gamma)_{h k}=\text { random effects }
\end{aligned}
$$

Analysis of variance:

Source	$\frac{d_{2} f_{2}}{S_{2} S_{2}}$	
Reps.	$(r-1)$	$\Sigma\left(y_{h}-y\right)^{2}$

$T \quad(a b-1) \quad \Sigma\left(y_{i j}-y\right)^{2}$

$$
\sigma_{\varepsilon}^{2}+c \sigma_{\rho}^{2} \mathbb{I}^{+} \frac{r c}{a b-1} \Sigma \mathbb{T}_{i j}^{2}
$$

$A \quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2}$

$$
\sigma_{\varepsilon}^{2}+c \sigma_{\rho \tau}^{2}+\frac{r b c}{(a-1)^{2}} \alpha_{i}^{2}
$$

B $\quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2}$

$$
\sigma_{\varepsilon}^{2}+c \sigma_{\rho}^{2} \mathbb{T}+\frac{\mathrm{rac}}{(\mathrm{~b}-1)^{\Sigma \beta}}{ }_{j}^{2}
$$

$A B \quad \begin{array}{lll}(a-1) \\ -(b-1)\end{array} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{\varepsilon}^{2}+c \sigma_{\rho I}^{2}$

$$
+\frac{r c}{(a-1)(b-1)^{\Sigma(\alpha \beta)_{i j}}}
$$

(Table 3.2.39 continued.)

Source	d.f.e	Ses.	E(M.S.)
RT	$\begin{aligned} & (r-1) \\ & (a b-1) \end{aligned}$	$\Sigma\left(y_{h i j}-y_{h}-y_{i j}+y\right)^{2}$	$\sigma_{\varepsilon}^{2}+c \sigma_{\rho T}^{2}$
C	($c-1$)	$\Sigma\left(y_{k}-y\right)^{2}$	$\sigma_{\epsilon}^{2}+a b \sigma_{\rho \gamma}^{2}+\frac{a b x}{(c-1)^{\Sigma}} \gamma_{k}^{2}$
RC	$\begin{aligned} & (r-1) \\ & (c-1) \end{aligned}$	$\Sigma\left(y_{h k}-y_{h}-y_{k}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+a b \sigma_{\rho \gamma}^{2}$
TC	$\begin{aligned} & (a b-1) \\ & \cdot(c-1) \end{aligned}$	$\Sigma\left(y_{i j k}-y_{i j}-y_{k}+y\right)^{2}$	$\sigma_{\epsilon}^{2}+\frac{\Sigma}{\left.(a b-1)(c-1)^{\Sigma(T \gamma}\right)_{i j k}^{2}}$
RTC	$\begin{aligned} & (r-1) \\ & \cdot(a b-1) \\ & \cdot(c-1) \end{aligned}$	$\begin{gathered} \Sigma\left(Y_{h i j k}-y_{i j k}-y_{h k}\right. \\ -y_{h i j}+y_{h}+y_{i j}+y_{k} \\ -y)^{2} \end{gathered}$	σ_{ε}^{2}
Total	rabc-1	$\Sigma\left(Y_{h i j k}-y\right)^{2}$	

TABLE 3.2 .40

Split-plot design with ax factorial

on whole plots and sampling

Model:
$Y_{h i j k I}=\mu+\rho_{h}+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\delta_{h i j}+\gamma_{k}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k}+(\alpha \beta \gamma)_{i j k}$

$$
+\varepsilon_{h i j k}+\lambda_{h i j k I}
$$

$$
(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, c ; k=1,2, \ldots, s)
$$

$\rho_{h}, \delta_{h i j}, \varepsilon_{h i j k}, \lambda_{h i j k l}=$ random effects
$\alpha_{i},(\alpha \beta)_{i j}, \gamma_{k},(\alpha \gamma)_{i k},(\beta \gamma)_{j k},(\alpha \beta \gamma)_{i j k}=$ fixed effects

Analysis of variance:

$\operatorname{Error}(a) \underset{(x-1)}{(a b-1)} \quad \sum\left(y_{h i j}-y_{i j}-y_{h}+y\right)^{2} \quad \sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+s c \sigma_{\delta}^{2}$
(Table 3.2.40 continued.)

Source

defer

SecS.

E(M.S.2)

$c \quad(c-1) \quad \Sigma\left(y_{k}-y\right)^{2}$
$\sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+\frac{\mathrm{rabs}}{(c-1)^{2}} \Sigma \gamma_{k}^{2}$
AC
$\begin{aligned} & (\mathrm{a}-1) \\ & \cdot(c-1)\end{aligned} \quad \Sigma\left(y_{i k}-y_{i}-y_{k}+y\right)^{2} \quad \sigma_{\lambda}^{2}+\delta \sigma_{\varepsilon}^{2}$

$$
+\frac{r b s}{(a-1)(c-1)^{\Sigma(\alpha \gamma)_{i k}^{2}}}
$$

BC

$$
\begin{array}{ll}
\begin{array}{ll}
(b-1) \\
-(c-1)
\end{array} & \Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2}
\end{array} \sigma_{\lambda}^{2}+8 \sigma_{\varepsilon}^{2} .
$$

ABC

$$
\begin{array}{lll}
\begin{array}{l}
\text { (a-1) } \\
\cdot(b-1) \\
\cdot(c-1)
\end{array} & \Sigma\left(y_{i j k}-y_{i j}-y_{i k}\right. & \sigma_{\lambda}^{2}+s \sigma_{\varepsilon}^{2} \\
& -y)^{2}+y_{i}+y_{j}+y_{k} & +\frac{r s}{(a-1)(b-1)(c-1)} \\
& & \cdot \Sigma(\alpha \beta \gamma)_{i j k}^{2}
\end{array}
$$

Error (b)

$$
\begin{array}{ll}
a b(r-1) & \Sigma\left(y_{h i j k}-y_{h i j}\right. \\
\cdot(c-1) & \\
& \left.-y_{i j k}+y_{i j}\right)^{2}
\end{array}
$$

$\begin{array}{ll}\text { Sampling } & \underset{\text { Error }}{\text { abri }} \quad(\mathrm{s}-1)\end{array} \quad \Sigma\left(Y_{h i j k I}-y_{h i j k}\right)^{2} \quad \sigma_{\lambda}^{2}$

Total abrcs-1 $\Sigma\left(Y_{h i j k i}-y\right)^{2}$

TABLE 3.2.41

Split-plot design with axb factorial on whole plots with sampling, interactions between repetitions and comnonents of the axbxe factorial

Model:

$$
Y_{h i j k l}=\mu+\rho_{h}+T_{i j}+(\rho T)_{h i j}+\gamma_{k}+(\rho \gamma)_{h k}+(T \gamma)_{i j k}+(\rho T \gamma)_{h i j k}+\lambda_{h i j k I}
$$

where:

$$
T_{i j}=\alpha_{i}+\beta+(\alpha \beta)_{i j}
$$

$$
(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b ; k=1,2, \ldots, c ; 1=1,2, \ldots, s)
$$

$$
\begin{aligned}
T_{i j}, \gamma_{k},(T \gamma)_{i j k} & =\text { fixed effects } \\
\rho_{h},(p T)_{h i j},(\rho Y)_{h k},(p T \gamma)_{h i j k} & =\text { random effects }
\end{aligned}
$$

Analvsis of variance:

Source	d.f.	$S_{0} S_{k}$
Reps.	$(r-1)$	$\Sigma\left(y_{h}-y\right)^{2}$

$T(a b-1) \quad \Sigma\left(y_{i j}-y\right)^{2}$

$$
\sigma_{\lambda}^{2}+\operatorname{cs} \sigma_{\rho}^{2} T+\frac{r c s}{(a b-1)^{\Sigma T}}{ }_{i j}^{2}
$$

$A \quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2}$

$$
\sigma_{\lambda}^{2}+c \cos \sigma_{\rho}^{2}+\frac{r c s b}{(a-1)} \Sigma \alpha_{i}^{2}
$$

$B \quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2}$

$$
\sigma_{\lambda}^{2}+\operatorname{cs} \sigma_{\rho}^{2}+\frac{\operatorname{racs}}{(b-1)^{\Sigma \beta}}{ }_{j}^{2}
$$

$A B$

$$
\begin{array}{ll}
\underset{-(b-1)}{(a-1)} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} & \sigma_{\lambda}^{2}+c \sigma_{p T}^{2} \\
& +\frac{\operatorname{ccs}}{(a-1)(b-1)^{\Sigma}} \Sigma
\end{array}
$$

(Table 3.2 .41 continued.)
Source
d.f. $\quad S_{s,} S_{\text {e }}$

E(M.S.)
RxT
$\underset{-(a b-1)}{(r-1)} \quad \Sigma\left(y_{h_{i j}}-y_{h}-y_{i j}+y\right)^{2} \quad \sigma_{\lambda}^{2}+c s \sigma_{\rho T}^{2}$
$c \quad(c-1) \quad \Sigma\left(y_{k}-y\right)^{2}$
$\sigma_{\lambda}^{2}+s a b \sigma_{\rho \gamma}^{2}+\frac{\mathrm{rabs}}{(c-1)^{\Sigma}}{ }_{k}^{2}$
RC

$$
\begin{aligned}
& (r-1) \\
& -(c-1)
\end{aligned} \quad \Sigma\left(y_{h k}-y_{h}-y_{k}+y\right)^{2} \quad \sigma_{\lambda}^{2}+s a b \sigma_{\rho \gamma}^{2}
$$

TxC

$$
\underset{(c-1)}{(a b-1)} \quad \Sigma\left(y_{i j k}-y_{i j}-y_{k}+y\right)^{2}
$$

$$
\sigma_{\lambda}^{2}+s \sigma_{\rho T \gamma}^{2}+\frac{\Sigma s}{(a b-1)(c-1)}
$$ - $\Sigma(T Y)_{i j k}^{2}$

RxTxC

$$
\begin{array}{ll}
\stackrel{(r-1)}{-(a b-1)} \\
\cdot(c-1) & \Sigma\left(y_{h_{i j k}}-y_{h i j}-y_{h k}\right. \\
& -y_{i j k}+y_{h}+y_{i j}+y_{k} \\
-y)^{2}
\end{array}
$$

TABIE 3.2 .42
Split-plot desion with bxc Eactorial on subplots
Mocel:

$$
\begin{gathered}
Y_{h i j k}=\mu+\rho_{h}+\alpha_{i}+\delta_{h i}+\beta_{j}+\gamma_{k}+(\beta \gamma)_{j k}+(\alpha \beta)_{i j}+(\alpha \gamma)_{i k}+(\alpha \beta \gamma)_{i j k}+\epsilon_{h i j k} \\
(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b ; k=1,2, \ldots, c) \\
\rho_{h}, \delta_{h i}, \epsilon_{h i j k}=\text { random effects } \\
\alpha_{i}, \beta_{j}, \gamma_{k},(\beta \gamma)_{j k},(\alpha \beta)_{i j},(\alpha \gamma)_{i k},(\alpha \beta \gamma)_{i j k}=\text { fixed effects }
\end{gathered}
$$

Amaiysis of verifence:

$E\left(M, S_{2}\right)$
(Table 3.2.42 continued.)
SOUR
BC

$$
\text { d.fe } \quad \text { S.S. }
$$

$$
\begin{aligned}
& \substack{(b-1) \\
(c-1)}
\end{aligned} \quad \sum\left(y_{j k}-y_{j}-y_{k}+y\right)^{2}
$$

$$
\begin{gathered}
E\left(M_{\rho} L_{2}\right. \\
\operatorname{ar\Sigma (\beta \gamma)_{jk}^{2}} \sigma_{\varepsilon}^{2}+\frac{b-1)(c-1)}{}
\end{gathered}
$$

ABC

$$
\begin{array}{ll}
(a-1) & \Sigma\left(y_{i j k}-y_{i j}-y_{i k}\right. \\
-(b-1) & -(c-1) \\
& -y_{j k}+y_{i}+y_{j}+y_{k} \\
& -y)^{2}
\end{array}
$$

$$
\sigma_{\varepsilon}^{2}+\frac{r \Sigma(\alpha \beta \gamma)_{i j k}^{2}}{(a-1)(b-1)(c-1)}
$$

Error (b)

$$
\begin{aligned}
& \begin{array}{l}
a(r-1) \\
\cdot(b c-1)
\end{array} \\
& \begin{array}{c}
\sum\left(Y_{h i j k}-y_{h i}\right. \\
\left.-y_{i j k}+y_{i}\right)^{2}
\end{array} \\
& \hline \text { rabc-1 } \\
& \Sigma\left(Y_{h i j k}-y\right)^{2}
\end{aligned}
$$

TABLE 3.2.43

Split-split-plot design

Model:

$$
\begin{gathered}
Y_{h i j k}=\mu+\rho_{h}+\alpha_{i}+\delta_{h i}+\beta_{j}+(\alpha \beta)_{i j}+\varphi_{h i j}+\gamma_{k}+(\alpha \gamma)_{i k}+(\beta \gamma)_{j k}+(\alpha \beta \gamma)_{i j k} \\
+\epsilon_{h i j k} \\
(h=1,2, \ldots, \Sigma ; i=1,2, \ldots, a ; j=1,2, \ldots, b ; k=1,2, \ldots, c) \\
\rho_{h}, \delta_{h i}, \varphi_{h i j}, \varepsilon_{h i j k}=\text { random effects } \\
\alpha_{i}, \beta_{j}, \gamma_{k}=\text { fixed effects }
\end{gathered}
$$

Analysis of variance:
Source

d. E_{2}

SoS.
$E(M, S$,
Rep. $\quad(x-1) \quad \Sigma\left(y_{h}-y\right)^{2}$
A

$$
(a-1) \quad \Sigma\left(y_{i}-y\right)^{2}
$$

$\sigma_{\epsilon}^{2}+c \sigma_{\varphi}^{2}+b c \sigma_{\delta}^{2}+\frac{b c r}{a-1} \Sigma a_{i}^{2}$

Error (a)

$$
\begin{array}{ll}
(\mathrm{r}-1) \\
(\mathrm{a}-1)
\end{array} \quad \Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2}
$$

$\sigma_{\epsilon}^{2}+c \sigma_{\varphi}^{2}+b c \sigma_{\delta}^{2}$

$$
B \quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+c \sigma_{\varphi}^{2}+\frac{a c r}{(b-1)^{\Sigma \beta}}{ }_{j}^{2}
$$

$A B$

Error (b)

$$
\begin{array}{ll}
a(r-1) & \Sigma\left(y_{h i j}-y_{h i}-y_{i j} \quad \sigma_{\varepsilon}^{2}+c \sigma_{\varphi}^{2}\right. \\
\left.+y_{i}\right)^{2}
\end{array}
$$

$$
\text { c } \quad(c-1) \quad \Sigma\left(y_{k}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+\frac{a b r}{(c-1)^{2}} \Sigma \gamma_{k}^{2}
$$

(Table 3.2.43 continued.)
Source

 S.S.

E(M,S.)

AC

$$
\begin{aligned}
& (a-1) \\
& (c-1)
\end{aligned} \quad \sum\left(y_{i k}-y_{i}-y_{k}+y\right)^{2}
$$

$$
\sigma_{\epsilon}^{2}+\frac{b s}{(a-1)(c-1)^{\Sigma(\alpha \gamma)}}{ }_{i k}^{2}
$$

$B C$

$$
\begin{aligned}
& (b-1) \\
& \cdot(c-1)
\end{aligned} \quad \Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2}
$$

$$
\sigma_{\epsilon}^{2}+\frac{2 x}{(b-1)(c-1)^{\Sigma}(\beta \gamma)_{j k}^{2}}
$$

$A B C$

$$
\begin{array}{ll}
(a-1) & \Sigma\left(y_{i j k}-y_{i j}-y_{i k}\right. \\
\cdot(b-1) & -y_{j k}+y_{i}+y_{j}+y_{k} \\
& -y)^{2}
\end{array}
$$

Error (c)

Total

$$
\begin{aligned}
& \begin{array}{l}
a b(c-1)
\end{array} \quad \sum\left(Y_{h i j k}{ }^{-y_{h i j}}\right. \\
& \left.-y_{i j k}+y_{i j}\right)^{2} \\
& \text { abrc-1 } \sum\left(Y_{h i j k}-y\right)^{2}
\end{aligned}
$$

TABLE 3.2 .44

Solit-split-plot dosign-interactions between

renetitions and each component of axbxc Factorial

Mode 1:

$$
\begin{aligned}
& Y_{h i j k}=\mu+\rho_{h}+\alpha_{i}+(\alpha \rho)_{h i}+\beta_{j}+(\beta \rho)_{h j}+(\alpha \beta)_{i j}+(\rho \alpha \beta)_{h i j}+\gamma_{k}+(\rho \gamma)_{h k} \\
& +(\alpha \gamma)_{i k}+(\rho \alpha \gamma)_{h i k}+(\beta \gamma)_{j k}+(\rho \beta \gamma)_{h j k}+(\alpha \beta \gamma)_{i j k}+\varepsilon_{h i j k} \\
& (h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \cdots, b ; k=1,2, \ldots, c) \\
& \rho_{h},(\alpha \rho)_{h i},(\rho \beta)_{h j},(\rho \alpha \beta)_{h i j},(\rho \gamma)_{h k},(\rho \alpha \gamma)_{h i k},(\rho \beta \gamma)_{h j k}, \varepsilon_{h i j k}= \\
& \alpha_{i}, \beta_{j}, \gamma_{k},(\alpha \beta)_{i j},(\alpha \gamma)_{i k},(\beta \gamma)_{j k},(\alpha \beta \gamma)_{i j k}=\text { fixed effects }
\end{aligned}
$$

Analysis of variance:

Source	$\frac{S_{2} f_{2}}{\text { Reps. }}$	$(r-1)$
	$\Sigma\left(y_{h}-y\right)^{2}$	

A $\quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2} \quad \sigma_{\varepsilon}^{2}+b c \sigma_{\rho \alpha}^{2}+\frac{r b c}{(a-1)^{2}}{ }_{i}^{2}$
$R A \quad \begin{aligned} & (r-1) \\ & \cdot(a-1)\end{aligned} \quad \Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2} \quad \sigma_{\sigma}^{2}+b c \sigma_{\rho \alpha}^{2}$
$B \quad(b-1) \quad \Sigma\left(y_{j}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+a c \sigma_{\rho \beta}^{2}+\frac{r a c}{(b-1)^{2 \beta}}{ }_{j}^{2}$
$\mathrm{KB} \quad \begin{aligned} & (r-1) \\ & \cdot(b-1)\end{aligned} \quad \Sigma\left(y_{h j}-y_{h}-y_{j}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+a c \sigma_{\rho \beta}^{2}$
$A B$

$$
\begin{array}{lll}
(a-1) & \Sigma\left(y_{i j}-y_{i}-y_{j}\right. & \sigma_{\varepsilon}^{2}+\sigma_{\rho \alpha \beta}^{2} \\
\cdot(b-1) & +y)^{2} & +\frac{\alpha c}{(a-1)(b-1)^{\Sigma(\alpha \beta)_{i j}^{2}}}
\end{array}
$$

(Table 3.2.44 continued.)

TABLE 3.2 .45

Split-solit-plot desjon with sampling

Mode 1:

$$
\begin{aligned}
& Y_{h i j k l}= \mu+\rho_{h}+\alpha_{i}+\delta_{h i}+\beta_{j}+(\alpha \beta)_{i j}+\varphi_{h i j}+\gamma_{k}+(\alpha \gamma)_{i k}+(\alpha \beta \gamma)_{i j k} \\
&+\varepsilon_{h i j k}+\lambda_{h i j k l} \\
&(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \ldots, b ; 1 k=1,2, \ldots, c ; 1=1,2, \ldots, s) \\
& \rho_{h}, \delta_{h i}, \varphi_{h i j}, \epsilon_{h i j k}, \lambda_{h i j k l}=\text { random effects } \\
& \alpha_{i}, \beta_{j},(\alpha \beta)_{i j}, \gamma_{k},(\alpha \gamma)_{i k},(\alpha \beta \gamma)_{i j k}=\text { fixed effects }
\end{aligned}
$$

Analysis of variance:

Source

def.

SOS.
$E\left(M_{2} S_{2}\right)$
Rep.
$(x-1) \quad \Sigma\left(y_{h}-y\right)^{2}$
A $\quad(a-1) \quad \Sigma\left(y_{i}-y\right)^{2}$

$$
\begin{gathered}
\sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+s c \sigma_{\varphi}^{2}+s b c \sigma_{\delta}^{2} \\
+\frac{a b c \varepsilon}{(a-i)^{\Sigma \alpha_{i}}}
\end{gathered}
$$

$\operatorname{Error}(a) \quad \begin{aligned} & (r-1) \\ & \cdot(a-1)\end{aligned} \quad \Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2} \quad \sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+\operatorname{sco} \sigma_{\varphi}^{2}+\operatorname{sbc} \sigma_{\delta}^{2}$
B

$$
\begin{aligned}
(b-1) \quad \Sigma\left(y_{j}-y\right)^{2} & \sigma_{\lambda}^{2}+s \sigma_{\varepsilon}^{2}+s c \sigma_{\varphi}^{2} \\
& +\frac{\operatorname{sac} \varepsilon^{2}}{(b-1)^{2}}{ }_{j}^{2}
\end{aligned}
$$

$A B$

$$
\begin{aligned}
& \begin{array}{l}
(\mathrm{a}-1) \\
(\mathrm{b}-1)
\end{array} \quad \Sigma\left(y_{i j}-y_{i}-y_{j}+y\right)^{2} \quad \sigma_{\lambda}^{2}+\operatorname{s\sigma _{\varepsilon }^{2}+\operatorname {sc}\sigma _{\varphi }^{2}} \\
& +\frac{8 c j}{(a-1)(b-1)^{\Sigma(\alpha \beta)^{2}}}
\end{aligned}
$$

Error (b)

$$
\underset{-(r-1)}{a(b-1)} \quad \Sigma\left(y_{h i j}-y_{h i}-y_{i j} \quad \sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+s c \sigma_{\varphi}^{2}\right.
$$

(Table 3.2.45 continued.)

Source

defe
 S.S.

E(M,S.)
0

$$
(c-1) \quad \sum\left(y_{k}-y\right)^{2}
$$

$$
\sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+\frac{\operatorname{sab} x}{(c-1)^{2}} \gamma_{k}^{2}
$$

AC

$$
\begin{array}{ll}
(a-1) \\
\cdot(c-1)
\end{array} \quad \Sigma\left(y_{i k}-y_{i}-y_{k}+y\right)^{2} \quad \sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+\frac{s b r}{(a-1)(c-1)}
$$

BC

$$
\begin{array}{ll}
(b-1) \\
\cdot(c-1)
\end{array} \quad \Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2} \quad \sigma_{\lambda}^{2}+s \sigma_{\epsilon}^{2}+\frac{s a r}{(b-1)(c-1)}
$$

$A B C$

$$
\begin{array}{lll}
\begin{array}{l}
\text { (a-1) } \\
\cdot(b-1) \\
\cdot(c-1)
\end{array} & \Sigma\left(y_{i j k}-y_{i j}-y_{i k}\right. & \sigma_{\lambda}^{2}+s \sigma_{\varepsilon}^{2} \\
& +y_{j k}+y_{i}+y_{j} & +(a-1) \frac{s \gamma}{(b-1)(c-1)} \\
& & \cdot \Sigma(\alpha \beta \gamma)_{i j k}^{2}
\end{array}
$$

Error (c)

$$
\begin{array}{rr}
\operatorname{ab}(r-1) & \Sigma\left(y_{h i j k}-y_{h i j}\right. \\
.(c-I) & \left.-y_{i j k}+y_{i j}\right)^{2}
\end{array}
$$

Total abcrs-1 $\Sigma\left(Y_{h i j k l}-y\right)^{2}$

TAELE 3.2 .46

Split-split-olot design-interactions between repetitions and each component of exbxc Factorial with sampling

Morel:
$Y_{h \dot{j} j k}=\mu+\rho_{h}+\alpha_{i}+(\alpha \rho)_{h i}+\beta_{j}+(\beta \rho)_{h j}+(\alpha \beta)_{i j}+(\rho \alpha \beta)_{h i j}+\gamma_{k}+(\rho \gamma)_{h k}$

$$
+(\alpha \gamma)_{i k}+(\rho \alpha \gamma)_{h i k}+(\beta \gamma)_{j k}+(\rho \beta \gamma)_{h j k}+(\alpha \beta \gamma)_{i j k}+\varepsilon_{h i j k}
$$

$T_{h i j k i}$
$(h=1,2, \ldots, r ; i=1,2, \ldots, a ; j=1,2, \cdots, b ; k=1,2, \ldots, s)$
$\rho_{h},(\alpha p)_{h i},(\rho \beta)_{h j},(\rho \alpha \beta)_{h i j},(\rho \gamma)_{h k},(\rho \alpha \gamma)_{h i k},(\rho \beta \gamma)_{h j k}, \varepsilon_{h i j k}$,
and $O_{\text {hijkI }}=$ random effects
$\alpha_{i}, \beta{ }_{j}, \gamma_{k},(\alpha \beta)_{i j},(\alpha \gamma)_{i k},(\beta \gamma)_{j k},(\alpha \beta \gamma)_{i j k}=$ fixed effects Analysis of vaxiance:

Source	Q.f.	S.S.	$E(M, S$,
Reps.	($x-1$)	$\Sigma\left(y_{p}-y\right)^{2}$	
A	(a-1)	$\Sigma\left(y_{i}-y\right)^{2}$	$\sigma_{\varphi}^{2}+s b c \sigma_{p \alpha}^{2}$
			$+\frac{s r b c}{(a-1)} \Sigma \alpha_{i}^{2}$
RA	$\begin{aligned} & (r-1) \\ & \cdot(a-1) \end{aligned}$	$\Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2}$	$\sigma_{\varphi}^{2}+s b c \sigma_{\rho \alpha}^{2}$
B	($b-1$)	$\Sigma\left(y_{j}-y\right)^{2}$	$\sigma_{\varphi}^{2}+\operatorname{saco}_{\rho \beta}^{2}$
			$+\frac{\operatorname{srac}}{(b-1)^{\Sigma \beta^{2}}} \frac{2}{j}$
$2 B$	$\begin{aligned} & (r-1) \\ & (v-1) \end{aligned}$	$\Sigma\left(y_{h j}-y_{h}-y_{j}+y\right)^{2}$	$\sigma_{\varphi}^{2}+\operatorname{acs} \alpha_{\rho \beta}^{2}$

(Table 3.2 .46 continued.)
source

$$
E\left(r_{2}, S_{2}\right)
$$

$A B$

$\sigma_{\varphi}^{2}+c s \sigma_{\rho \alpha \beta}^{2}$

$$
+\frac{\operatorname{rcs}}{(a-1)(b-1)^{\Sigma(\alpha \beta)}}{ }_{i j}^{2}
$$

RAB

$$
\begin{array}{ll}
(r-1) \\
\cdot\left(\begin{array}{ll}
(\mathrm{a}-i) & \Sigma\left(y_{h i j}-y_{h i}-y_{h j}\right. \\
\cdot(b-1) & -y_{i j}+y_{h}+y_{i}+y_{j} \\
& -y)^{2}
\end{array}\right.
\end{array}
$$

$$
(c-1) \quad \sum\left(y_{k}-y\right)^{2}
$$

$$
\sigma_{\varphi}^{2}+s a b \sigma_{\rho Y}^{2}
$$

$$
+\frac{s r a b}{(c-1)} \Sigma \gamma_{k}^{2}
$$

RC

$$
\begin{array}{lll}
(r-1) \\
\cdot(c-1)
\end{array} \quad \Sigma\left(y_{h k}-y_{h}-y_{k}+y\right)^{2} \quad \sigma_{\varphi}^{2}+s a b \sigma_{\rho \gamma}^{2}
$$

$$
\begin{array}{lll}
(a-1) \\
\cdot(c-1)
\end{array} \quad \Sigma\left(y_{i k}-y_{i}-y_{k}+y\right)^{2} \quad \sigma_{\varphi}^{2}+s b \sigma_{\rho \alpha \gamma}^{2}
$$

$$
+\frac{r b s}{(a-1)(c-1)^{\Sigma(a y)_{i k}^{2}}}
$$

RAC
$B C$

$$
\begin{array}{ll}
(r-1) & \Sigma\left(y_{h i k}-y_{h i}-y_{h k}\right. \\
-(c-1) & -(c-1) \\
-\left(y_{i k}+y_{h}+y_{i}+y_{k}\right. \\
& -y)^{2}
\end{array}
$$

$$
\begin{array}{lll}
(b-1) \\
\cdot(c-1)
\end{array} \quad \Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2} \quad \sigma_{\varphi}^{2}+a s \sigma_{\rho \beta \gamma}^{2}
$$

$$
+\frac{\text { ars }}{(b-1)(c-1)^{\varphi}} \sum(\beta \gamma)_{j k}^{2}
$$

RBC

$$
\begin{array}{ll}
(r-1) & \Sigma\left(y_{h j k}-y_{h j}-y_{h k}\right. \\
\cdot(b-1) \\
\cdot(c-1) & -y_{j k}+y_{h}+y_{j}+y_{k} \\
& -y)^{2}
\end{array}
$$

(Table 3.2.46 continued.)

$\underset{\text { Error }}{\text { Sampling }} \underset{\cdot(s-1)}{\text { abc }} \quad \Sigma\left(Y_{h i j k 1}-y_{h i j k}\right)^{2} \quad \sigma_{\varphi}^{2}$

Total rabcs-1 $\Sigma\left(Y_{h i j k I}-y\right)^{2}$
$(\rho)=\Sigma\left(y_{h i j k}-y_{h i j}-y_{h i k}-y_{h j k}-y_{i j k}+y_{h i}+y_{h j}+y_{h k}+y_{i j}+y_{i k}\right.$

$$
\left.+y_{j k}-y_{h}-y_{i}-y_{j}-y_{k}+y\right)^{2}
$$

TABLE 3.2.47

Split-split-plot design with cod factorial

on the sub-subplots

Model:

$$
\begin{aligned}
Y_{g h i j k}= & \mu+\rho_{g}+\alpha_{h}+\theta_{g h}+\beta_{i}+(\alpha \beta)_{h i}+\varphi_{g h i}+T_{j k}+(\alpha T)_{h j k}+(\beta T)_{i j k} \\
& +(\alpha \beta T)_{h i j k}+\varepsilon_{g h i j k}
\end{aligned}
$$

where:

$$
T_{j k}=\gamma_{i}+\delta_{j}+(\gamma \delta)_{i j}
$$

$$
(8=1,2, \ldots, r ; h=1,2, \ldots, a ; i=1,2, \ldots, b ; j=1,2, \ldots, c ; k=1,2, \ldots, d)
$$

$$
\rho_{g}, \theta_{g h}, \varphi_{g h i}, \varepsilon_{g h i j k}=\text { random effects }
$$

$\alpha_{h}, \beta_{i},(\alpha \beta)_{h i}, T_{j k},(\alpha T)_{h j k},(\beta T)_{i j k},(\alpha \beta T)_{h i j k}=$ fixed effects
Analysis of variance:
Source \quad def.

Rep. $\quad(r-1) \quad \Sigma\left(y_{g}-y\right)^{2}$
$A \quad(a-1) \quad \Sigma\left(y_{h}-y\right)^{2} \quad \sigma_{\epsilon}^{2}+c d \sigma_{\varphi}^{2}+b c d \sigma_{\theta}^{2}+\frac{r b c d \Sigma \alpha_{h}^{2}}{(a-1)}$
$\operatorname{Error}(a) \quad \underset{-(a-1)}{(r-1)} \quad \sum\left(y_{g h}-y_{g}-y_{h}+y\right)^{2} \quad \sigma_{\varepsilon}^{2}+c d \sigma_{\varphi}^{2}+b c d \sigma_{\theta}^{2}$

B

$$
(b-1) \quad \Sigma\left(y_{i}-y\right)^{2}
$$

$$
\sigma_{\epsilon}^{2}+c d \sigma_{\varphi}^{2}+\frac{\operatorname{racd\Sigma } \beta_{i}^{2}}{(b-1)}
$$

$A B \quad \begin{aligned} & (a-1) \\ & \cdot(b-1)\end{aligned} \quad \Sigma\left(y_{h i}-y_{h}-y_{i}+y\right)^{2} \quad \sigma_{\epsilon}^{2}+c d \sigma_{\varphi}^{2}+\frac{\operatorname{rcd} \Sigma(\alpha \beta)_{h i}^{2}}{(a-1)(b-1)}$
Error (b) $\quad \begin{aligned} & a(b-1) \\ & \cdot(r-1)\end{aligned} \quad \Sigma{\left(y_{g h i}\right.}^{-y_{g h}}{ }_{g h i} \quad \sigma_{\varepsilon}^{2}+c d \sigma_{\varphi}^{2}$

$$
\left.+y_{h}\right)^{2}
$$

(Table 3.2.47 continued.)

Source
$T \quad(c d-1) \quad \Sigma\left(y_{j k}-y\right)^{2}$

$$
(c-1) \quad \Sigma\left(y_{j}-y\right)^{2}
$$

$$
\text { (d-1) } \quad \Sigma\left(y_{k}-y\right)^{2} \quad \sigma_{\varepsilon}^{2}+\frac{r a b c \Sigma \delta_{k}^{2}}{(d-1)}
$$

$C D \quad \begin{aligned} & (c-1) \\ & \cdot(d-1)\end{aligned} \quad \Sigma\left(y_{j k}-y_{j}-y_{k}+y\right)^{2}$

AT

BT $\quad \begin{aligned} & (b-1) \\ & (c d-1)\end{aligned} \Sigma\left(y_{i j k}-y_{i}-y_{j k} \quad \sigma_{\varepsilon}^{2}+\frac{r a \Sigma(\beta T)_{i j k}}{(b-1)(c d-1)}\right.$ +y) ${ }^{2}$

ABT

$$
\begin{array}{ll}
(a-1) & \Sigma\left(y_{h i j k}-y_{h j k}\right. \\
-(b-1) & (c d-1) \\
-y_{h i}-y_{i j k}+y_{h} \\
& \left.+y_{i}+y_{j k}-y\right)^{2}
\end{array}
$$

Error (c) ab($x-1$) $\quad \Sigma\left(Y^{1}-y\right.$

$$
\begin{array}{ll}
\mathrm{ab}(\mathrm{cd-1}) & \Sigma\left(\mathrm{Y}_{\mathrm{ghijk}}{ }^{-y} \mathrm{~g}_{\mathrm{ghi}}\right. \\
\left.-\mathrm{y}_{\mathrm{hi} j \mathrm{k}}+\mathrm{y}_{\mathrm{hi}}\right)^{2}
\end{array}
$$

$$
\left.-y_{h i j k}+y_{h i}\right)^{2}
$$

Total rabcd-1 $\Sigma\left(\mathrm{Y}_{\mathrm{ghijk}}-\mathrm{y}\right)^{2}$

$$
\begin{aligned}
& \underset{-(a-1)}{(a-1)} \quad \Sigma\left(y_{h j k}-y_{h}-y_{j k} \quad \sigma_{\varepsilon}^{2}+\frac{r b \Sigma(a T)_{h j k}^{2}}{(a-1)(c d-1)}\right. \\
& +y)^{2} \\
& \sigma_{\varepsilon}^{2} \frac{r b \Sigma(\alpha T)_{h j k}^{2}}{(a-1)(c d-1)}
\end{aligned}
$$

E(M.S. 2
$\sigma_{\varepsilon}^{2}+\frac{{ }^{\mathrm{rab} \Sigma \mathrm{T}_{j k}^{2}}}{(\mathrm{~cd}-1)}$
$\sigma_{\varepsilon}^{2}+\frac{r a b d \Sigma \gamma_{j}^{2}}{(c-1)}$
$\sigma_{\varepsilon}^{2}+\frac{\operatorname{rab} \Sigma(\gamma \delta)_{j k}^{2}}{(c-1)(d-1)}$
$\sigma_{\varepsilon}^{2}+\frac{r \Sigma(\alpha \beta T)_{h i j k}^{2}}{(a-1)(b-1)(c d-1)}$
σ_{ϵ}^{2}
table 3.2.48

Incomplete Block Desirns

case of a Simple Lattice

Mode1:

$$
\begin{gathered}
Y_{i j q}=\mu+\rho_{i}+\beta_{i}(j)+T_{q}+\varepsilon_{i j q} \\
\left(i=1,2 ; j=1,2, \ldots, k ; q=1,2, \ldots, k^{2}\right) \\
\rho_{i}, \beta_{i}(j)=\text { random effects } \\
I_{q}=\text { fixed effect }
\end{gathered}
$$

Enalysis of variance:

Source	defe	S.S.	E(M.S.2)
Replications	1	$\Sigma\left(y_{i}-y\right)^{2}$	
Blocks within rep. (adj.)	$2(k-1)$	S.S. ${ }_{B}$	$\sigma_{\varepsilon}^{2}+\frac{k}{2} \sigma_{\bar{\prime}}^{2}$
Treatments (unadj.)	$\mathrm{k}^{2}-1$	$\Sigma\left(y_{q}-y\right)^{2}$	
Intra-block error	$(k-1)^{2}$	S.S. ${ }_{\text {E }}$	σ_{ε}^{2}
Total	$2 k^{2}-1$	$\Sigma\left(Y_{i j q}-y\right)^{2}$	

where:

$$
\begin{aligned}
& \text { S.s. }_{B}=\frac{\sum c_{i j}^{2}}{2 k}-\frac{\sum R_{i}^{2}}{2 k^{2}} \\
& C_{i j}=\left[\begin{array}{c}
\text { in blolock (over all rij)-th }]^{2}-2 B_{i j} \\
B_{i j}
\end{array}=\text { total of block } i j\right. \\
& R_{i j}=\text { total of replicate i-th. } \\
& \text { S.s. }_{E} \text { by subtraction }
\end{aligned}
$$

Chapter IV

THE COMPUTING CENTER

4.1 Organization

In the chart No. I we can see the situation of the computer center within the present organizational structure of VPI(29).

The center consists of a Director (reporting to the Vicepresident for administration) with responsibility for an administration of all computing equipment and all personnel associated with this equipment on campus. It also includes one Assistant Director, one staff consultant, two full-time programmers, one system analyst, three operators, one in charge of key-punchers, four key-punchers, three part-time programmers, three to four part-time key-punchers.

4.2 Facilities

The computing center(29) occupies the Building \#1365 of VPI. It consists of an IBM 7040 with 32,768 words of magnetic core memory, eight 729 Model II Tape Drives on channel A, and a 1622 Card Read Punch Unit. Associated with this central computer is an IBM 1401 with 8,000 characters of memory, a 1402 Read Punch Unit, and 1403 Printer. The 1401 can be operated in an on-line mode with the 7040. Four of the tape drives are switchable on an individual basis
to the 1401. Both the 7040 and the 1401 have a large array of extended performance options available. A complete array of unit record equipment including eight key punchers, two verifiers, two sorters, one producer, one collator, and a tabulator are available to support this operation.

For administrative use in the basement of Burrus Hall, there is a similarly equipped IBM 1401 except that the four tape drives are 1330's. The unit record equipment associated with the 1401 includes three key punchers, one verifier, two sorters, one producer, one collator, one interpreter, and a tabulator.

The Virginia Polytechnic Institute, like some other universities in the South, has easy access to high-speed computing machines of the Oak Ridge National Laboratory and the Langley Research Center.

4.3 Computing service

The computer center offers data processing service for education and research purposes. It offers ample computing tool for staff research and graduate theses.

We shall list some of the classical programs commonly used in their computing service:

Paired Comparisons
*Simple Correlation

```
*Multiple regression
*idultiway Balanced ANOVA
    Completely Unbalanced Nested ANOVA
    Paired and Pooled t-test
*One-way ANOVA
    Probit analysis
*Simple data description
    Factor analysis
    Multiple range
*Stepwise regression
*General Least Squares
*Frequency tabulation and Cross tabulation
    Guttman scale
    Discriminant analysis
*Diallel Analysis
*Lattice
With an asterisk * we indicate those programs that are most frequently used.
```


V ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Professor Dr. Boyd Harshbarger for his suggestions and continued encouragement throughout this work.

Sincere appreciation is also expressed to Dr. Klaus Hinkelmann for his reading of the manuscript and helpful suggestions.

The author is likewise indebted to Dr. Clyde Y. Kramer for his contributions to my understanding of many of the statistical analyses computed at the Statistical Laboratory. To Mrs. S. Crews, Mrs. 2. Poe, Mrs. F. Price, and Mrs. B.J. Bailey for their help in providing information on the statistical analyses.

Appreciation is due to Prof. W.L.Johnson for his help in providing information on the Computer Center.

Sincere appreciation is expressed to Agency for International Development/North Carolina University at Raleigh, N.C.: Servicio de Investigacion y Promocion Agraria, Peru; for financial support through my graduate work at Virginia Polytechnic Institute. Appreciation is also expressed to Universidad Agraria LaMolina, Peru, for financial support during the first year of my graduate work.

Finally, the author wishes to thank Mrs. Claude Boyd Loadholt for her diligence and patience in preparing the final copies for presentation.

VI BIBLIOGRAPHY

1. Anderson, R. L. and Bancroft. T. A. (1952). Statistical theory in research. McGraw Hill Book Co. New York.
2. Beyer, W. H. (1966). Handbook of tables for probability and statistics. The Chemical Rubber Co., Cleveland, Ohio.
3. Bennett, C. A. and Franklin, N. L. (1954). Statistical analysis in chemistry and the chemical industry. John Wiley and Sons, Inc., New York.
4. Brownlee, K. A. (1960). Statistical theory and methodology in science and engineering. 2nd. ed. John Wiley and Sons, Inc., New York.
5. Cochran, N. G. and Cox, G. M. (1957). Experimental designs. 2nd. ed. John Wiley and Sons, Inc., New York.
6. Comnittee of Presidents of Statistical Societies (1963). Career in Statistics. 2nd. ed.
7. Davies, O. L. (1956). Design and analysis of industrial experiments. Hafner Publishing co., New York.
8. Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics II, 1-42.
9. Federer, W. R. (1955). Experimental Design. MčMillan Co., New York.
10. Glenn, W. A. and Kramer C. (1958). Analysis of Variance of Randomized Block Designs with missing observations. Applied statistics Vol VII, No. 3.
11. Graybill, F. A. (1961). An introduction to linear statistical models. Vol I. McGraw -Hill Book Co., New York.
12. Goulden, C. H. (1952). Methods of Statistical Analysis. John Wiley and Sons, Inc., New York.
13. Hald, A. (1952). Statistical Theory and Engineering Applications. John Wiley and Son, Inc., New York.
14. Hicks, C. R. (1964). Fundamental Concepts in Design of Experiments. Holt, Rinehart and Wiston, New York.
15. Huitson, A. (1966). The Analysis of Variance. Hafner Publishing Co., New York.
16. Johnson, N. L. and Leone, F. C. Statistics and Experimental Design in Engineering and the Physical Sciences. Vol I. John Wiley and Sons, Inc., New York.
17. Kempthorne, O. (1952). The Design and Analysis of Experiments. John Wiley, New York.
18. Li, J. C. R. (1964). Statistical Inference. Vols I and II. Edwards Brothers, Inc. Ann Arbor, Michigan.
19. Kramer, C. Y. (1953). On the analysis of variance of a multiway classification with unequal subclass numbers. M. S. Thesis. Virginia Polytechnic Institute.
20. Ostle, B. (1963). Statistics in Research. 2nd. ed. The Iowa State University Press, Ames, Iowa.
21. Rao, C. R. (1952). Advanced Statistical Methods in Biometrics Research. John Wiley and Sons, New York.
22.

_(1965). Linear Statistical Inference and its applications. John Wiley and Sons, New York.
23. Scheffé, H. (1959). The Analysis of Variance. John Wiley and Sons, New York.
24. Snedecor, G. W. (1956) Statistical Methods. Fifth ed. The Iowa State University Press, Ames, Iowa.
25. and Cox, G. M. (1935). Disproportionate Subclass Numbers in Tables of Multiclassification. Research Bulletin No. 180. Agricultural Experiment Station, Iowa State College of Agriculture and Mechanic Arts, Ames, Iowa.
26. Virginia Agricultural Experiment Station, Blacksburg (1965). Agricultural Progress. Va. Agr. Exp. Sta. Research Report 102.
27. Virginia Polytechnic Institute, Blacksburg. Catalog 1967-68. Bull. VPI, Vol 59, No. 10.
28. Virginia Polytechnic Institute, Blacksburg, (1965). Research at Virginia Polytechnic Institue. Bull. VPI, VoI 58, No. 12.
29. Office of the University Self Study, Virginia Polytechnic Institute, Blacksburs. Virginia Polytechnic Institute Self Study, 1965-66, Vol I.
30. Virginia Polytechnic Institute, Blacksburg. (1963). The Department oi Statistics and the Statistical Iaboratory. Eull. VPI. Vol 58, No. 12.
31. Virginia Polytechnic Institute, Blacksburg. (1966). The Graduate School, Virginia Polytechnic Institute, Catalog 1967068. Bull. VPI, Vol 60, INo. 3.
32. Virginia Polytechnic Institute, Blacksburg. (1964). VPI historical data book. Bull. VPI, Vol 57, No. 3.
33. Wilk, M. B. and Kempthorne, O. (1955). Fixed, mixed, random models. Journal of American Statistical Association, Vol 50: 1144-1167.
34. Wine, R. I. (1964). Statistics for Scientists and Engineers. Prentice-Hall, Inc. Englewood Cliffs, N. J.

The two page vita has been removed from the scanned document. Page 1 of 2

The two page vita has been removed from the scanned document. Page 2 of 2

RÉSUMÉ OF THE DEPARTIENT OF STATISTICS OF VIRGINIA POLYTECHNIC INSTITUTE

by

Iuis E. Ramírez, Ing. Agr.

ABSTRACT

This thesis gives an outline of the organization, importance and objectives of the Department of Statistics of Virginia Polytechnic Institute.

In 1949, the Department of Statistics was established at VPI. Now it offers curriculums leading to a B.S. degree with a major in statistics, and to M.S. and Ph.D. degrees in statistics. It also offers courses for students majoring in other fields.

The Department and its statistical laboratory are engaged in fundamental and applied research toward the development and extension of basic theory as well as the application of existing statistical techniques to applied problems in various fields.

The Department, through its statistical laboratory provides both consulting and computing service to the Virginia Agricultural Experiment Station, Virginia Engineering Experiment Station, other Departments of VPI, Virginia Truck

Experiment Station, and other state and federal research agencies.

Because of the importance of the consulting and computing services, a particular type of analysis of experiments, the analysis of variance, is discussed. To indicate the amount of work needed for such analysis, the computational procedures for 48 different experimental situations and mathematical models are given. The corresponding analysis of variance tables include S.S.,d.I. and E(M.S.).

The Institute's Computer Center gives considerable aid to the computational work of the Department, especially in handing extensive numerical analysis. It includes an IBM 7040/1401 Data processing system and related equipment.

[^0]: \% reference (19) indicates a χ^{2} test for testing this proportionality.

