Chapter 8

Distribution of Displacement Magnitudes on Lateral Spreads

8.1. Variation in Horizontal and Vertical Displacements.

Horizontal and vertical displacements vary in magnitude across the area of a lateral
spread. Movements tend to be larger in the central area of a slide and in the vicinity of a free
face, but also change from place to place due to variations in surface topography and subsurface
soil conditions. As discussed in Section 5.4, the EPOLLS model is designed to predict the
average and standard deviation of the horizontal and vertical displacements. Statistical
distributions (probability density functions) are employed to represent the variation in
displacement magnitudes across the surface of a slide. Using the EPOLLS model to first predict
the average and standard deviation of the horizontal or vertical displacements, these distributions
can then be used to estimate maximum displacements.

In this chapter, well-documented EPOLLS case studies are examined to find suitable
probability density functions to represent the variation in movements on a lateral spread. As
illustrated in Figure 8.1, the measured displacements are plotted in histograms and candidate
statistical distributions are considered for representing the observed variation. Based on statistical
goodness-of-fit tests, the gamma distribution is found to give the best representation of horizontal
displacements in a lateral spread, while the normal distribution is chosen for the vertical
displacements. Reasonable estimates of maximum displacements can be made using percentile
values of the gamma and normal distributions as discussed in Section 8.5.

The use of statistical distributions with the EPOLLS model is not intended to model the
pattern of displacements along section lines or to predict movements at specific points on the
surface of a lateral spread. Instead, statistical distributions represent the relative frequency with
which a certain displacement magnitude might occur. For example, the EPOLLS model might
be used to predict that 90% of the measurable horizontal displacements on a lateral spread will
be less than 1.5 m. On the other hand, the EPOLLS model could not predict where the 10% of
larger displacements (exceeding 1.5 m) will occur on the slide area. The EPOLLS model is
designed only to predict the severity of potential lateral spreading deformations (average and
maximum displacements) as opposed to predicting the movement of specific points on the ground
surface.
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The use of probability density functions in the EPOLLS is not meant for modeling the
pattern of displacements imparted to a pipeline crossing a lateral spread. When a buried pipeline
crosses a lateral spread perpendicular to the direction of movement, the pattern of ground
displacements are needed to compute the forces imparted to the pipe. Along any line traversing
the slide area, displacements vary from zero at the slide boundary to a maximum value
somewhere in the middle. Mathematical equations have been used to represent these patterns of
horizontal displacement, including cosine functions (Kobayashi et al. 1989; O'Rourke 1989) and
a modified beta distribution (O'Rourke and Lane 1989). However, these equations represent the
pattern of displacements along a given traverse of the slide area. This is fundamentally different
from the use of stochastic distributions in the EPOLLS model to represent the relative frequency
of displacements across the entire surface area of the lateral spread.

To identify areas subject to the largest movements on a lateral spread, knowledge of the
site topography and geology can be used. For example, maximum settlements can be expected
in areas where the liquefied deposit is thickest. When a free face is present, larger horizontal
movements can be expected in vicinity of the face. In the empirical model developed by Bartlett
and Youd (1992a; 1992b; 1995), horizontal displacementsin alateral spread are seen to decrease
with increasing distance behind a free face (see Equation 4.9 in Section 4.4). In Kobe, Japan, a
consistent pattern of horizontal displacements were observed that decreased with distance behind
large quay walls damaged by liquefaction in the 1995 earthquake (Hamada et al. 1996; Ishihara
et al. 1996). Although failure of the massive walls in Kobe do not conform to the EPOLLS
definition of alateral spread, this data suggests that the distance from a free face might be used
to model the pattern of deformations on a lateral spread. Obviously, this approach could not be
used to model displacement patterns on a lateral spread without a free face. While deformations
over a substantial portion of a slide might be affected by a free face, this influence probably does
not extend across the entire slide areain atypical lateral spread, because the face height is much
smaller than the length of the slide area. For the forty-one EPOLLS case studies where both
values are known, the face height is, on average, just 3% of the slide length.

To investigate the distribution of displacement magnitudes in a lateral spread, the
EPOLLS case studies listed in Tables 8.1 and 8.2 were examined. In these selected case studies,
the displacement field is believed to be represented adequately by the available displacement
measurements. The case studies in Tables 8.1 and 8.2, used in the analyses that follow, meet the
following criteria:

» At least ten horizontal or vertical displacements were measured on the surface of the
lateral spread. However, in the evaluation of candidate statistical distributions (Sections

8.3 and 8.4), only those lateral spreads with at least twenty measurements were used.

Twenty measurements are assumed to be the minimum necessary to sufficiently define

the distribution of displacements.

» The displacement measurements are reasonably well dispersed across the surface of each

lateral spread. While this may not be rigorously true for every case study in Tables 8.1
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and 8.2, the available displacement vectors at these sites tend to be located across the
entire slide surface including the center, head, toe, and sides. Case studies with
displacements measured in only a small part of the slide, or measured along only one or
two cross sections, were not used.
For these lateral spreads, the measured horizontal and vertical displacements are treated as
random variables that follow some probability density function.

Twenty-nine lateral spreads, listed in Table 8.1, were analyzed for the distribution of
horizontal displacements. Twenty-six of these case studies are from Japan where horizontal
displacements were determined mainly from comparisons of aerial photographs taken before and
after the earthquake. At three sitesin California, displacements were determined mostly from the
offsets of street curbs and other reference points. The number of measurements as well as the
average, standard deviation, and maximum reported horizontal displacements for each lateral
spread are given in Table 8.1. For those case studies with more than twenty measured horizontal
displacements, histograms are plotted in Figures 8.2a-c. Similarly, nineteen case studies (thirteen
from Niigata, Japan), listed in Table 8.2, were used to study the distribution of vertical
displacements. Histograms of the vertical displacements, for those case studies with more than
twenty measurements, are plotted in Figures 8.3a-b.

8.2. Statistical Distributions and Tests for Goodness-of-Fit.

Three statistical distributions were considered for representing the histograms of the
measured displacements: normal, lognormal, and gamma distributions. The probability density
functions for these three distributions are specified in Table 8.3. The probability density function,
f(x), indicates the relative frequency with which a value of x occurs in a data population. Note
that the lognormal distribution is, in essence, the normal distribution fit to the natural logarithms
of the data (Scheaffer and McClave 1990). The general shape of the probability density functions
for the normal, lognormal, and gamma distributions are shown at the bottom of Figure 8.1.

Aninfinite number of displacement vectors could be measured in alateral spread, but only
a fairly small sample of the displacement field is available for the EPOLLS case studies. The
mathematical equations in Table 8.3 are thus fit to a specific site using the mean and standard
deviation of the available, finite sample of displacements. The relationship between the sample
statistics and the distribution parameters are given in the last column of Table 8.3. For the gamma
distribution, simple "modified moment estimators" are used for A and 3 instead of "maximum
likelihood estimators” (Johnson et al. 1994). In theory, this simpler approach is a less accurate
means of fitting the gamma distribution, but the effort required for the more complicated
estimators is not justified for this analysis. Moreover, the "modified moment estimators' for the
gamma distribution can be computed directly from the mean and standard deviation of the
displacements, consistent with predicted values from the EPOLLS model.
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The fitted distributions are superimposed on the histograms in Figure 8.2 to give a rough
indication of how well each function represents the observed displacement patterns. A class of
statistical tests known as goodness-of-fit tests give a more objective measure of how well a
particular distribution fits this data. Good reviews of goodness-of-fit testing are given by
Scheaffer and McClave (1990) and Conover (1971), and more detailed discussions are given in
D'Agostino and Stephens (1986). Goodness-of-fit tests are formally based on a null hypothesis
that the sample data is taken from a larger population that follows a given mathematical
distribution. If the null hypothesis is accepted at a given level of significance (o), then we can
believe the statistical distribution fits the sample data. The higher the significance level at which
the hypothesis is accepted, the more confident we can be that the distribution fits the data. In
analyzing the EPOLL S displacements, alevel of significance of a=2.5% was deemed appropriate
for judging the fit of each statistical distribution. Viewed another way, this implies a 97.5%
confidence that the fit of a given distribution has not been erroneously rejected. In a strict sense,
accepting the fit in a goodness-of-fit test indicates only that the hypothesized distribution is a
reasonable approximation of the population from which the sample data was taken.

The chi-squared test is probably the most familiar goodness-of-fit statistical test.
Calculated from histograms of the sample data, the chi-squared test is based on the difference
between the histogram and a given probability density function. The chi-squared test is easily
employed with data having only discrete values (for example, the number of faulty components
produced in a factory, which can only be whole number values). For non-discrete or continuous
data (like measured displacements), the chi-squared tests requires grouping the sample data into
arbitrary histogram cells. The selection of these cell limits has a direct impact on the results of
the chi-squared test. Consequently, the chi-squared test is not preferred for testing goodness-of-fit
with continuous data (D'Agostino and Stephens 1986).

More powerful goodness-of-fit testsfor continuous data are based on cumul ative frequency
plots like those in Figure 8.4. Eight of the histograms in Figure 8.2 are re-plotted in Figure 8.4
as empirical density functions (EDFs) that represent the cumulative frequency of the measured
displacement magnitudes. The EDFs of the sample data are overlain with cumulative density
functions (CDFs) for each of the candidate statistical distributions. The CDF, denoted
mathematically as F(x), indicates the frequency of occurrence of values less than or equal to x
in the data population and is computed as the integral of the probability density function up to
the value of x. Small vertical departures between the EDF and CDF in Figure 8.4 indicate a good
fit between the data and a particular distribution. Goodness-of-fit tests based on EDF statistics
are discussed in Conover (1971) and D'Agostino and Stephens (1986). Two EDF goodness-of -fit
tests were chosen for this analysis, the Kolmogorov-Smirnov "D" test and the Cramér-von Mises
"W test.

The Kolmogorov-Smirnov "D" test statistic is based on the single, maximum vertical
offset between the EDF and CDF over the range of the sample data. The maximum offset will
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always occur just to the left or right of an observation point on the EDF. Thus, the value of D
can be computed with the equation:

D= max(

Fx) ‘—1‘ , ‘F(x,-) i
n n

) 8.1)

where n is the sample size, x; is the sample data arranged in ascending order, and F(x,) is the
cumulative density function at x; for the statistical distribution under consideration. The first term
in Equation 8.1 is the vertical offset between the EDF and CDF to the left of x;, while the second
term is the offset to the right of x;. The value of D is the maximum of all offsets computed for
the entire sample. On the other hand, the Cramér-von Mises "W*" test statistic is computed from
all of the departures between the EDF and CDF over the full range of the sample data
Consequently, W? is usually considered to yield a more powerful goodness-of-fit test than D
(D'Agostino and Stephens 1986). The W? statistic is computed with:

, _ 1 +" _2i-1Y 8.2
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where the variables are defined the same as for Equation 8.1. For both D and W?, smaller values
indicate a closer fit of the hypothesized distribution to the sample data.

To test the hypothesis that a certain distribution fits the sample data, critical values of the
test statistic are needed for a given level of significance (a). When the parameters for the
population distribution are estimated from sample data, as done in this analysis, these critical
values depend on the distribution tested. Stephens (1974) developed critical values of D and W?,
which depend on the size of the data sample, for testing the normal distribution with estimated
parameters. Because the CDF of the lognormal distribution at "x" is equal to the CDF of the
normal distribution at "In(x)", critical values of the test statistics for the normal distribution can
be used to test the fit of the lognormal distribution. For testing the fit of the gamma distribution
with estimated parameters, D'Agostino and Stephens (1986) give critical W? values, however,
critical values of the D statistic are not available for testing the fit of the gamma distribution. The
available critical values of D and W? for a significance level of 1 to 10% are reproduced here in
Table 8.4.

Testing the fit of a hypothesized distribution to the horizontal or vertical displacements
in a lateral spread is done in five steps:
(1) Compute the mean and standard deviation of the measured displacements and fit the
chosen distribution using the estimated parameters as indicated in Table 8.3.
(2) Arrange the measured displacements in ascending order.
(3) Compute the cumulative density function for the hypothesized distribution at each data
point.
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(4) Compute the test statistic, D or W?, using Equations 8.1 or 8.2.
(5) If the computed test statistic is less than the critical value for a=2.5% from Table 8.4,
conclude that the hypothesized distribution fits the data to a 2.5% level of significance.
Goodness-of-fit tests for the candidate statistical distributions, based on the D and W? statistics,
are discussed in Sections 8.3 and 8.4 for the horizontal and vertical displacements, respectively,
measured in the EPOLLS case studies.

8.3. Distribution of Horizontal Displacements.

Histograms of the observed horizontal displacements, for twenty-three case studies with
more than twenty measurements, are shown in Figures 8.2a through 8.2c. Inspection of these
histograms reveals that many are skewed toward the smaller magnitudes. This tendency is
strongly evident in Figure 8.2a for Slide Nos. 9 and 26, and less so for Slide Nos. 6 and 29.
Although this trend could result from occasional, anomalously large displacements, the larger
vectors are often found in groups at these sites. Consistent with the discussion above, the skew
of the displacement distributions seem to result from larger displacements occurring in smaller,
central areas of a lateral spread, or in zones closer to a free face. In addition, the displacement
histograms from lateral spreads with or without a free face do not appear to be significantly
different.

In Figures 8.2a-c, the fitted normal, lognormal, and gamma distributions are shown on the
histograms of the measured horizontal displacements. While the normal distribution is symmetric
about the mean value, both the lognormal and gamma distributions are non-symmetric. Hence,
the apparent skew of the histograms is better represented with the lognormal or gamma
distributions. More significantly, both the lognormal and gamma distributions are defined only
for positive values of displacement whereas the normal distribution extends to values less than
zero. Since all horizontal displacements are positive by definition, the normal distribution is not
a good choice for modeling this data.

Goodness-of-fit tests, based on the D and W? statistics, were performed on the EPOLLS
case studies with more than twenty measured horizontal displacement vectors (considered the
minimum sample size needed for this analysis). The fit of the normal, lognormal, and gamma
distributions were tested. The Kolmogorov-Smirnov D test results are given in Table 8.5, with
the Cramér-von Mises W? results presented in Table 8.6. For each case study, computed values
of D and W? are paired with the appropriate critical values for alevel of significance (o) of 2.5%.
In the adjacent columns labeled "Fit?", "yes" entries signify that the computed test statistic is less
than the critical value, which is interpreted to mean that the distribution fits the data reasonably
well. In general, the results of these tests are mixed and none of the three distributions tested are
accepted for all cases in Tables 8.5 and 8.6. However, the W? test for the gamma distribution
gives a positive result, at a=2.5%, in nineteen of twenty-three (83%) cases. By the same criteria,
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the lognormal and normal distributions are accepted in only fifteen (65%) and ten (43%) of the
case studies, respectively. Therefore, the Cramér-von Mises W tests suggest that, for the majority
of the lateral spreads investigated, the horizontal displacements follow a gamma distribution.

Moreover, the fit of the three candidate distributions to the sample data can be ranked
using the D and W? statistics. Smaller values of the D or W? test statistics indicate a closer match
between the EDF of the data and the CDF of a given distribution. For each case study, the
statistical distribution that best fits the observed displacements yields the lowest value of D or
W2, Hence, as indicated in the last two columns of Tables 8.5 and 8.6, the distributions yielding
the best and second-best fits to the data can be identified from the numerical values of D and W2
However, no single distribution emerges as the best-fit for the majority of the lateral spreads
studied. On the other hand, the gamma distribution is the first or second choice (based on either
D or W?) in the greatest number of cases. Also, the normal distribution yields the best or second-
best fit in only eight cases; that is, the normal distribution gives the worst match in two-thirds
of the cases. This clearly indicates that the normal distribution is not a good choice for
representing the pattern of horizontal displacements in a lateral spread.

The goodness-of-fit tests yield mixed results for the three distributions considered, which
may be related to the small number of measured displacements in the available case studies.
However, the Cramér-von Mises W? tests indicate that the gamma distribution fits the measured
horizontal displacements (to a 2.5% significance level) in the majority of the case studies. In
addition, the gamma distribution gives the best or second best fit to the data in the greatest
number of cases. The normal distribution is clearly a poor choice for modeling the observed
horizontal displacements because the normal distribution is symmetric, extends to values less than
zero, and gives the worst match to the data in the majority of the case studies.

8.4. Distribution of Vertical Displacements.

Histograms of the measured vertical displacements are shown in Figure 8.3a-b. Unlike the
horizontal displacements, the observed vertical displacements follow a more symmetric
distribution with no pronounced skew. Recall also that settlement is defined as a positive vertical
displacement while heaving or uplift is measured as a negative vertical displacement. Unlike the
horizontal displacements, the distribution of vertical displacements extends to values less than
zero.

These observations suggest that the normal distribution would be a good choice for
modeling the vertical displacementson alateral spread. The two-parameter lognormal and gamma
distributions, as defined in Table 8.3, are incapable of modeling both positive and negative
vertical displacements. On the other hand, three-parameter lognormal or gamma distributions
could be used to overcome this deficiency (the third parameter shifts the minimum value of the
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distribution). However, employing a third parameter to model the distribution of vertical
displacements would add complexity to the EPOLLS model and is probably not warranted.
Hence, only the normal distribution was considered for representing the observed vertical
displacements on lateral spreads.

Results of the goodness-of-fit tests for the normal distribution and the measured vertical
displacements, based on the Kolmogorov-Smirnov D and the Cramér-von Mises W? statistics, are
presented in Table 8.7. As done for the evaluation of horizontal displacements, only those case
studies with more than twenty measured displacements were considered in this analysis. Again
using a level of significance of 2.5%, the Kolmogorov-Smirnov D test indicates that the normal
distribution fits the data in nine of thirteen cases as shown in Table 8.7. The Cramér-von Mises
W? test consistently indicates a positive fit of the normal distribution in eight of thirteen cases.
Therefore, based on the available data, it appears that the normal distribution is well-suited for
representing the distribution of vertical displacements on the surface of a lateral spread.

8.5. Prediction of Maximum Displacements.

In the EPOLLS model, probabilistic distributions are used to forecast maximum likely
displacements from the predicted mean and standard deviation. The statistical distributions
considered above were thus evaluated in predicting the maximum observed displacements. For
each of the lateral spreads in Tables 8.1 and 8.2, maximum horizontal and vertical displacement
were computed using the statistical distributions fit with the mean and standard deviation of the
measured displacements. The predicted maximum displacement was then compared to the
maximum measured displacement. Note that the true maximum deformation may not have been
measured on each lateral spread; hence, somewhat conservative over-predictions of the maximum
measured displacement are desired.

Predictions of the maximum horizontal displacement were made at the 99.0, 99.5, and
99.9 percentiles of the normal, lognormal, and gamma distributions. In Figure 8.5, histograms of
the resulting "error" (difference between the predicted and observed maximum displacement) are
shown for each distribution and percentile level. From Figure 8.5, it appears that 99.5 percentile
predictions from the normal and gamma distributions yield reasonable, conservative estimates of
maximum horizontal displacement. That is, the maximum displacement is over-predicted by less
than 2 meters for most of the cases and is under-predicted in only a few cases. More
significantly, the lognormal distribution tends to produce several excessively large predictions of
the maximum displacement (>4 m error even at the 99.0 percentile). This indicates that the
lognormal distribution is a poor choice for estimating maximum horizontal displacements in a
lateral spread.

In Figure 8.6, errors in the predicted maximum settlement are plotted as histograms for
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the 99.0, 99.5, and 99.9 percentiles of the normal distribution. Here, it appears that the 99.5
percentile of the normal distribution gives a reasonably conservative estimate of the maximum
settlement. To predict the maximum uplift, the 0.5, 1.0, and 1.5 percentiles of the normal
distribution were evaluated with histograms of the resulting errors plotted in Figure 8.7. Because
uplift is defined as a negative displacement, an over-prediction of the maximum uplift produces
a negative "error" (predicted minus observed uplift) in Figure 8.7. From these histograms, it
appears that the 1.0 percentile of the normal distribution gives a reasonable estimate of the
maximum uplift.

8.6. Summary.

The normal, lognormal, and gamma distributions were evaluated for representing the
pattern of deformations in the EPOLLS lateral spreads. The gamma distribution was found to be
the best choice for representing the distribution of horizontal displacements on a lateral spread.
This conclusion is based on the following:

(1) By definition, displacements are non-negative and the gamma distribution is defined only
for positive values. The normal distribution, which is defined for negative values, is a
poor choice for modeling horizontal displacements.

(2) According to the W? goodness-of-fit test, the gamma distribution fits the sample data in
83% of the cases to a 2.5% level of significance.

(3) Based on both the Kolmogorov-Smirnov D and Cramér-von Mises W? statistics, the
gamma distribution yields the best and second-best fit to the sample data in the greatest
number of cases. The normal distribution gives the worst fit in the majority of cases.

(4) The lognormal distribution produces excessively large over-predictions of the maximum
horizontal displacement and is thus a poor choice for modeling horizontal displacements.

Conservative, yet reasonable, estimates of the maximum horizontal displacement were obtained
at the 99.5 percentile of the gamma distribution.

The normal distribution was found to provide a satisfactory representation of the measured
vertical displacements. The lognormal and gamma distributions were rejected because neither
could model both positive settlement and negative uplift. Reasonable predictions of the maximum
settlement were obtained at the 99.5 percentile, while good estimates of the maximum uplift were
obtained at the 1.0 percentile, of the normal distribution.

To estimate maximum movements on a lateral spread using statistical distributions,
predictions of the mean and standard deviation of the displacements are made first. The gamma
distribution is then fit by computing the parameters A and 3, as shown in Table 8.3, using the
predicted mean and standard deviation of the horizontal displacements. For the vertical
displacements, the normal distribution is fit directly with the predicted mean and standard
deviation. Maximum displacements are then forecast using the cumulative density function (CDF)
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of the fitted gamma or normal distribution.

Values of the cumulative density functions, for either the normal or gamma distributions,
can not be computed from simple equations. Instead, good approximations of the normal and
gamma CDF values can be obtained from statistical tables or from a variety of computer software
packages, including many spreadsheet programs. In Tables 8.8 through 8.10, values of the CDF
for the 99.5 percentile of the gamma and normal distribution, as well as the 1.0 percentile of the
normal distribution, are given in ranges suitable for use in predicting maximum displacements
on a lateral spread. Satisfactory estimates of maximum displacement can be obtained by
interpolating the appropriate values in Tables 8.8 through 8.10.
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Table 8.1. EPOLLS case studies used to investigate the distribution of horizontal displacements.
Horizontal Displacements (m)
Slide
No. Location Number Standard _
Measured Average Deviation Maximum
6 Fukui, Japan 24 1.96 0.84 4.00
7  Fukui, Japan 25 1.89 0.99 4.30
8 Fukui, Japan 36 1.69 0.71 3.40
9 Fukui, Japan 24 1.56 0.65 3.69
*25 Niigata, Japan 14 3.75 2.45 9.25
26 Niigata, Japan 75 3.94 2.97 11.81
27 Niigata, Japan 24 3.76 1.94 8.72
28 Niigata, Japan 38 2.08 1.21 6.49
29 Niigata, Japan 46 421 1.98 8.82
30 Niigata, Japan 26 4.78 2.64 10.15
31 Niigata, Japan 37 1.22 0.41 2.07
32 Niigata, Japan 72 2.34 1.01 4.65
*34 Niigata, Japan 16 0.98 0.64 2.16
35 Niigata, Japan 22 4.59 2.66 10.55
37 Niigata, Japan 63 3.23 1.55 6.46
38 Niigata, Japan 66 474 2.10 8.34
39 Niigata, Japan 84 2.76 1.43 7.64
40 San Fernando, California 26 1.02 1.19 3.69
41 San Fernando, California 79 0.90 0.58 1.82
43 Imperial Valley, California 33 1.40 1.19 4.24
45 Noshiro, Japan 28 1.47 0.66 2.92
46  Noshiro, Japan 34 1.46 0.43 2.72
47 Noshiro, Japan 59 1.58 0.83 4.01
48 Noshiro, Japan 57 1.26 0.42 2.65
49 Noshiro, Japan 187 1.55 0.58 3.25
*109  Shiribeshi-toshibetsu River, Japan 11 1.38 1.06 3.91
*110  Shiribeshi-toshibetsu River, Japan 17 0.68 0.35 1.40
*116  Shiribeshi-toshibetsu River, Japan 11 0.67 0.27 1.10
*117  Shiribeshi-toshibetsu River, Japan 13 1.36 0.90 3.39

* Case studies with < 20 measured displacements not used to evaluate fit of statistical distributions.
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Table 8.2. EPOLLS case studies used to investigate the distribution of vertical displacements.
Vertical Displacements (m)
S,l:g_e L ocation Number Standard | Maximum | Maximum
Measured ‘ Average ‘ Deviation ‘ Settlement ‘ Uplift
*25 Niigata, Japan 14 0.27 0.44 1.07 -0.54
26 Niigata, Japan 71 0.65 0.64 3.45 -0.68
27 Niigata, Japan 23 1.23 0.59 2.24 0.00
28 Niigata, Japan 37 0.14 0.61 1.82 -0.78
29 Niigata, Japan 45 1.13 0.87 2.87 -0.81
30 Niigata, Japan 26 1.14 1.03 3.78 -0.87
31 Niigata, Japan 37 0.04 0.47 1.11 -0.98
32 Niigata, Japan 64 1.04 0.61 2.96 -0.37
*34 Niigata, Japan 16 1.40 1.00 3.16 0.00
35 Niigata, Japan 22 0.61 0.62 2.03 -0.80
37 Niigata, Japan 63 0.08 0.59 1.39 -1.05
38 Niigata, Japan 63 0.52 0.78 1.85 -0.92
39 Niigata, Japan 82 0.29 0.50 2.10 -0.76
41 San Fernando,
Cdlifornia 84 0.25 0.24 0.86 -0.44
56 Watsonville,
Cdlifornia 52 0.08 0.07 0.24 -0.02
*109 Shiribeshi-toshibetsu
River, Japan 11 0.55 0.18 0.84 0.00
*110 Shiribeshi-toshibetsu
River, Japan 18 0.43 0.29 0.97 -0.27
*116 Shiribeshi-toshibetsu
River, Japan 12 0.27 0.28 0.54 -0.25
*117 Shiribeshi-toshibetsu
River, Japan 13 0.14 0.23 0.45 -0.25

* Case studies with < 20 measured displacements not used to evaluate fit of statistical distributions.
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Table 8.3. Candidate statistical distributions for representing observed displacements on a

lateral spread.
Distribution Parameters
Probability Density Function, f(x) estimated from a finite
sample of the total population
BYES Y
Normal fx) = 1 e E(T) K, = mean of sample x
Distribution Ox v2m 0, = standard deviation
of sample x
1100 - Py |
Lognormal fx) S S e 5("—@:) M, = mean of sample In(x)
Distribution ¥ Oy V2m 0, = Standard deviation
(for x > 0) of sample In(x)
P! X A =pllo?
Gamma fx) = B* T(2) e’ B =0y,
Distribution o
(for x = 0) I'@) = f”l_l e™ du 1, = mean of sample x
’ 0, = standard deviation
I"(A\) = gamma function of sample x

See Figure 8.1 for a comparison of the probability density function shapes for these distributions.
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Table 8.4. Critical values of D and W? statistics for goodness-of-fit tests.
Distribution and Critical Value Level of Significance, a (%)
EDF Test Statistic (n = sample size)
1.0 25 5.0 10.0
P ——
Normal Distribution: c
K ol mogorov-Smirnov criieat Vn-0.01+(0.85//n)
"D" Statistic c’ 1.035 [0.955 | 0.895 | 0.819
(Stephens 1974)
Normal Distribution: .
W3 ical = ¢
Cramér-von Mises e 1+ (0.5/m)
"W Statistic c’ 0.179 [ 0.148 | 0.126 | 0.104
(D'Agostino and
Stephens 1986)
Gamma Distribution:
Kolmogorov-Smirnov [critical values not available]
"D" Statistic
Gamma Distribution: A= 1 0.196 | 0.162 | 0.136 | 0.111
W2 for: = 2 0.187 | 0.155 | 0.131 | 0.107
Cramér-von Mises A= 3 0.184 | 0.153 | 0.129 | 0.106
"W?" Statistic 4 0.183 | 0.152 | 0.128 | 0.105
A = estimated shape 5 0.182 | 0.151 | 0.128 | 0.105
parameter for 6 0.181 | 0.151 | 0.128 | 0.105
gamma distribution 8 0.181 | 0.150 | 0.127 | 0.104
10 0.180 | 0.150 | 0.127 | 0.104
(D'Agostino and 12 0.180 | 0.150 | 0.127 | 0.104
Stephens 1986) 15 0.180 | 0.149 | 0.127 | 0.104
20 0.180 | 0.149 | 0.126 | 0.104
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Table 8.5. Results of Kolmogorov-Smirnov goodness-of-fit tests for three distributions and
measured horizontal displacements.

Slide| Normal distribution | Lognormal distribution| Gamma distribution Best Second
ol 5 critp Fir? D CritD Fit? D CritD Fit? fit best fit
= == —_—————
610126 0189 vyes | 0121 0.189 vyes | 0.104 -- -- Gamma Lognorm
710177 018 yes | 0101 0.185 yes | 0.109 -- -- Lognorm Gamma
81 0.162 0.156 no 0.084 0.156 yes | 0.107 -- -- Lognorm Gamma
91018 0189 yes | 0122 0.189 vyes | 0.133 -- -- Lognorm Gamma
26 | 0.218 0.109 no 0.102 0.109 yes | 0.120 -- -- Lognorm Gamma
2710156 0189 yes | 0194 0.189 no 0.187 -- -- Normal Gamma
28 1 0.190 0.152 no 0.093 0.152 yes | 0.155 -- -- Lognorm Gamma
2910131 0138 yes | 0.098 0.138 yes | 0.080 -- -- Gamma Lognorm
3010115 0182 yes | 0153 0.182 vyes | 0.131 -- -- Normal Gamma
310099 0.154 yes | 0.170 0.154 no 0.125 -- -- Normal Gamma
32 (0144 0.111 no 0.173 0.111 no 0.171 -- -- Normal  Gamma
3510135 0196 yes | 0130 0.196 yes | 0.101 -- -- Gamma Lognorm
3710.094 0119 vyes | 008 0.119 vyes | 0.087 -- -- Lognorm Gamma
38 ] 0.127 0.116 no 0.153 0.116 no 0.161 -- -- Normal Lognorm
39 ] 0.061 0103 yes | 0.116 0.103 no 0.097 -- -- Normal Gamma
40 | 0.266 0.182 no 0.133 0.182 yes | 0.153 -- -- Lognorm Gamma
41 | 0.161 0.106 no 0.178 0.106 no 0.173 -- -- Normal  Gamma
43 1 0.156 0.162 yes | 0148 0.162 yes | 0.121 -- -- Gamma Lognorm
451 0.141 0.175 vyes | 0.184 0.175 no 0.167 -- -- Normal Gamma
46 |1 0.148 0.160 vyes | 0125 0.160 vyes | 0.114 -- -- Gamma Lognorm
47 1 0.148 0.123 no 0.123 0.123 yes | 0.112 -- -- Gamma Lognorm
48 | 0.177 0.125 no 0.125 0.125 vyes | 0.136 -- -- Lognorm Gamma
49 |1 0.094 0.070 no 0.081 0.070 no 0.057 -- -- Gamma Lognorm

D = Kolmogorov-Smirnov test statistic
Crit D = critical value of D for 2.5% level of significance
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Table 8.6. Results of Cramér-von Mises goodness-of-fit tests for three distributions and
measured horizontal displacements.

Slide| Normal distribution | Lognormal distribution| Gamma distribution Best Second
No L we critwe Ei? | we critwe Fio | W critw? Fit? fit best fit
= —_—
610064 0145 vyes | 0046 0.145 vyes | 0.040 0.151 yes | Gamma Lognorm
710161 0.145 no 0.031 0145 vyes | 0.048 0.152 yes |Lognorm Gamma
81 0.160 0.146 no 0.033 0146 yes [ 0.050 0.151 yes |Lognorm Gamma
91 0.237 0.145 no 0.074 0145 vyes |[0.129 0.151 yes |Lognorm Gamma
26 | 1.009 0.147 no 0.240 0.147 no 0.339 0.157 no |Lognorm Gamma
2710082 0145 yes | 0.153 0.145 no 0.130 0.152 yes | Norma Gamma
28 1 0.367 0.146 no 0.073 0146 yes | 0.141 0.153 yes |Lognorm Gamma
2910128 0146 yes | 0072 0.146 vyes | 0.057 0.151 yes | Gamma Lognorm
30 [ 0048 0.145 yes | 0.110 0.145 yes [ 0.070 0.153 yes | Norma Gamma
310048 0146 yes | 0.165 0.146 no 0.090 0.150 vyes | Norma Gamma
32 | 0.350 0.147 no 0.421 0.147 no 0.472 0.151 no Normal Lognorm
3510071 0145 yes | 0049 0.145 vyes | 0.031 0.153 yes | Gamma Lognorm
3710124 0147 yes | 0114 0.147 yes | 0.094 0.152 yes | Gamma Lognorm
38 | 0.236 0.147 no 0.387 0.147 no 0.380 0.151 no Normal Gamma
39 ]10.051 0.147 yes | 0302 0.147 no 0.135 0.152 vyes | Norma Gamma
40 | 0.451 0.145 no 0.101 0145 vyes | 0.135 0.162 yes |Lognorm Gamma
41 | 0.586 0.147 no 0.535 0.147 no 0.731 0.154 no |(Lognorm Normal
431 0.130 0.146 yes | 0111 0.146 yes | 0.053 0.159 yes | Gamma Lognorm
451 0.117 0.145 vyes | 0.118 0.145 yes | 0.125 0.151 yes | Norma Lognorm
46 | 0.149 0.146 no 0.086 0.146 yes [ 0.089 0.150 yes |Lognorm Gamma
47 |1 0.380 0.147 no 0.101 0.2147 yes | 0.125 0.152 yes |Lognorm Gamma
48 | 0.276 0.147 no 0.104 0.147 yes |[0.136 0.150 yes |Lognorm Gamma
49 |1 0.282 0.148 no 0.172 0.148 no 0.125 0.150 yes | Gamma Lognorm

W = Cramér-von Mises test statistic
Crit W? = critical value of W? for 2.5% level of significance
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Table 8.7.

Results of goodness-of-fit tests for the normal distribution and measured vertical

displacements.

Slide | Kolmogorov-Smirnov Test Cramér-von Mises Test
No. D CritD  Fit? W? Crit W*»  Fit?
26 0.173 0.112 no 0.414 0.147 no
27 0.112 0.192 yes 0.038 0.145 yes
28 0.108 0.154 yes 0.079 0.146 yes
29 0.065 0.140 yes 0.023 0.146 yes
30 0.119 0.182 yes 0.061 0.145 yes
31 0.078 0.154 yes 0.031 0.146 yes
32 0.081 0.118 yes 0.058 0.147 yes
35 0.159 0.196 yes 0.117 0.145 yes
37 0.073 0.119 yes 0.056 0.147 yes
38 0.107 0.119 yes 0.201 0.147 no
39 0.138 0.104 no 0.430 0.147 no
41 0.130 0.103 no 0.248 0.147 no
56 0.233 0.130 no 0.673 0.147 no

D = Kolmogorov-Smirnov test statistic

Crit D = critical value of D for 2.5% level of significance

W2 = Cramér-von Mises test statistic
Crit W? = critical value of W? for 2.5% level of significance
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Table 8.8.  Values of the gamma distribution at the 99.5 percentile.
B
)\ 020 040 060 080 100 120 140 160 180 200
0.20 0.55 1.10 1.65 2.20 2.75 3.31 3.86 441 496 551
0.40 0.72 1.44 2.16 2.88 3.60 4.32 5.05 5.77 649 7.21
0.60 0.85 1.70 2.55 3.40 4.25 5.09 5.94 6.79 764 849
0.80 0.96 1.92 2.88 3.84 4.80 5.76 6.72 7.68 8.64 9.60
1.00 1.06 212 3.18 4.24 5.30 6.36 7.42 8.48 9.54 10.60
1.20 1.15 231 3.46 4.61 5.76 6.92 8.07 9.22 10.38 11.53
1.40 1.24 2.48 3.72 4.96 6.21 7.45 8.69 9.93 1117 1241
1.60 1.33 2.65 3.98 5.30 6.63 7.95 9.28 10.60 11.93 13.26
1.80 141 2.81 4.22 5.63 7.04 8.44 9.85 1126 12.66 14.07
2.00 1.49 2.97 4.46 5.94 7.43 892 1040 1189 1337 14.86
2.20 1.56 3.13 4.69 6.25 7.81 9.38 1094 1250 14.07 15.63
2.40 1.64 3.28 491 6.55 8.19 9.83 1147 1310 1474 16.38
2.60 1.71 3.42 5.13 6.85 856 10.27 1198 1369 1540 17.12
2.80 1.78 3.57 5.35 7.14 8.92 10.70 1249 1427 16.05 17.84
3.00 1.85 3.71 5.56 7.42 9.27 11.13 1298 1484 16.69 1855
3.20 1.92 3.85 5.77 7.70 9.62 1155 1347 1540 1732 19.25
3.40 1.99 3.99 5.98 7.97 9.97 1196 1396 1595 1794 19.94
3.60 2.06 4.12 6.19 825 10.31 1237 1443 1649 1856 20.62
3.80 2.13 4.26 6.39 852 10.64 1277 1490 17.03 19.16 21.29
4.00 2.20 4.39 6.59 8.78 10.98 13.17 1537 1756 19.76 21.96

Note: A = (mean)?/ (standard deviation)? ; B = (standard deviation)?/ (mean)
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Table 8.9. Values of the normal distribution at the 99.5 percentile.
Standard Deviation

Mean 010 020 030 040 050 060 070 080 090 1.00
0.10 0.36 0.62 0.87 1.13 1.39 1.65 1.90 2.16 242  2.68
0.20 0.46 0.72 0.97 1.23 1.49 1.75 2.00 2.26 252 278
0.30 0.56 0.82 1.07 1.33 1.59 1.85 2.10 2.36 262 288
0.40 0.66 0.92 1.17 1.43 1.69 1.95 2.20 2.46 272 298
0.50 0.76 1.02 1.27 1.53 1.79 2.05 2.30 2.56 282 3.08
0.60 0.86 1.12 1.37 1.63 1.89 2.15 2.40 2.66 292 318
0.70 0.96 1.22 1.47 1.73 1.99 2.25 2.50 2.76 3.02 3.28
0.80 1.06 1.32 157 1.83 2.09 2.35 2.60 2.86 312 338
0.90 1.16 1.42 1.67 1.93 2.19 2.45 2.70 2.96 3.22 348
1.00 1.26 1.52 1.77 2.03 2.29 2.55 2.80 3.06 3.32 3.58
1.10 1.36 1.62 1.87 2.13 2.39 2.65 2.90 3.16 342 3.68
1.20 1.46 1.72 1.97 2.23 2.49 2.75 3.00 3.26 352 378
1.30( 156 182 207 233 259 28 310 336 362 388
1.40 1.66 1.92 2.17 243 2.69 2.95 3.20 3.46 3.72 3.98
1.50 1.76 2.02 2.27 2.53 2.79 3.05 3.30 3.56 3.82 4.08
1.60 1.86 212 2.37 2.63 2.89 3.15 3.40 3.66 392 418
1.70 1.96 2.22 247 2.73 2.99 3.25 3.50 3.76 402 4.28
1.80 2.06 2.32 2.57 2.83 3.09 3.35 3.60 3.86 412 438
1.90 2.16 242 2.67 2.93 3.19 3.45 3.70 3.96 422 448
2.00 2.26 2.52 2.77 3.03 3.29 3.55 3.80 4.06 432  4.58
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Table 8.10. Values of the normal distribution at the 1.0 percentile.
Standard Deviation
Mean 010 020 030 040 050 060 070 080 090 1.00
0.10| -0.13 -037 -060 -083 -106 -130 -153 -1.76 -1.99 -2.23
0.20| -0.03 -0.27 -050 -0.73 -09 -120 -143 -166 -1.89 -2.13
0.30 0.0r -0.17 -040 -063 -086 -110 -133 -15 -1.79 -2.03
0.40 0.17 -007 -030 -053 -0.76 -100 -123 -146 -1.69 -1.93
0.50 0.27 003 -020 -043 -066 -090 -113 -1.36 -159 -1.83
0.60 0.37 013 -010 -033 -056 -080 -1.03 -126 -149 -1.73
0.70 0.47 0.23 0.00 -023 -046 -070 -093 -116 -1.39 -1.63
0.80 0.57 0.33 010 -013 -036 -060 -083 -106 -1.29 -153
0.90 0.67 0.43 020 -0.03 -026 -050 -0.73 -096 -119 -1.43
1.00 0.77 0.53 0.30 0.07 -0.16 -040 -063 -086 -1.09 -1.33
1.10 0.87 0.63 0.40 0.17 -006 -030 -053 -0.76 -099 -1.23
1.20 0.97 0.73 0.50 0.27 0.04 -020 -043 -066 -089 -1.13
1.30 1.07 0.83 0.60 0.37 014 -010 -033 -056 -0.79 -1.03
1.40 1.17 0.93 0.70 0.47 0.24 0.00 -023 -046 -069 -0.93
1.50 1.27 1.03 0.80 0.57 0.34 010 -013 -036 -059 -0.83
1.60 1.37 1.13 0.90 0.67 0.44 020 -003 -026 -049 -0.73
1.70 1.47 1.23 1.00 0.77 0.54 0.30 0.07 -0.16 -0.39 -0.63
1.80 157 1.33 1.10 0.87 0.64 0.40 0.17 -0.06 -0.29 -0.53
1.90 1.67 1.43 1.20 0.97 0.74 0.50 0.27 0.04 -0.19 -043
2.00 1.77 1.53 1.30 1.07 0.84 0.60 0.37 0.14 -0.09 -0.33
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Figure 8.1. Modeling the variation in displacement magnitudes on a lateral spread
using statistical distributions.
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Figure 8.2b. Histograms of measured horizontal displacements with fitted statistical

distributions.
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Figure 8.5. Histograms of errors in the maximum horizontal displacement predicted at

various percentiles of three statistical distributions.
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