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Analysis And Compensation Of Imperfection Effects

In Piezoelectric Vibratory Gyroscopes

Philip Wayne Loveday

(ABSTRACT)

Vibratory gyroscopes are inertial sensors, used to measure rotation rates in a
number of applications. The performance of these sensorsislimited by imperfectionsthat
occur during manufacture of the resonators. The effects of resonator imperfections, in
piezoelectric vibratory gyroscopes, were studied.

Hamilton’s principle and the Rayleigh-Ritz method provided an effective approach
for modeling the coupled electromechanical dynamics of piezoelectric resonators. This
method produced accurate results when applied to an imperfect piezoelectric vibrating
cylinder gyroscope. The effects of elastic boundary conditions, on the dynamics of
rotating thin-walled cylinders, were analyzed by an exact solution of the Fliigge shell
theory equations of motion. A range of stiffnesses in which the cylinder dynamics was
sensitive to boundary stiffness variations was established. The support structure, of a
cylinder used in a vibratory gyroscope, should be designed to have stiffness outside of this
range. Variations in the piezoelectric material properties were investigated. A figure-of-
merit was proposed which could be used to select an existing piezoceramic material or to
optimize a new composition for use in vibratory gyroscopes.

The effects of displacement and velocity feedback on the resonator dynamics were
analyzed. It was shown that displacement feedback could be udigdrtate the natural
frequency errors, that occur during manufacture, of a typical piezoelectric vibrating
cylinder gyroscope. The problem of designing the control system to reduce the effects of
resonator imperfections was investigated. Averaged equations of motion, for a general
resonator, were presented. These equations provided useful insight into the dynamics of

the imperfect resonator and were used to motivate the control system functions. Two



control schemes were investigated numerically and experimentally. 1t was shown that it
is possible to completely suppress the first-order effects of resonator masy/stiffness
imperfections. Damping imperfections, are not compensated by the control system and
are believed to be the magjor source of residua error. Experiments performed on a
piezoelectric vibrating cylinder gyroscope showed an order of magnitude improvement,
in the zero-rate offset variation over a temperature range of 60°C, when the control

systems were implemented.
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Generalized coordinate conversion matrix for forces.
Generalized coordinate converson matrix for chargesat
electrodes.

Piezoceramic elasticity matrix at constant electrical field.
Piezoceramic capacitance matrix.

Electrical displacement vector (charge/area).
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Electrical differential operator.
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Electrical field rotation matrix.

Strain rotation matrix.

Strain vector.

Kinetic energy.
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Vector of mechanical displacements.
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Chapter 5

Nondimensionadlised axial, tangential, radia and rotational
boundary stiffnesses.

Cylinder length.

Axial mode number.

Number of circumferential waves.

Potential energy of the cylinder and boundaries.

Time.

Kinetic energy of the cylinder.

Components of displacement in the axial, tangential and radial
directions.
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Chapter One

I ntroduction

Vibratory gyroscopes are inertial instruments used to measure angular rotation
rate. Similar to conventional spinning-mass gyroscopes, these modern gyroscopes are
based on the Coriolis effect, which arises in a rotating frame of reference. The major
difference between the two types is that instead of the spinning wheel used in a
conventional gyroscope the momentum of a vibrating elastic body is used in avibratory
gyroscope. Thesolid-state nature of vibratory gyroscopes makesvarious unique features
possible. Because there are no motors or bearings, these sensors can be designed to be
extremely rugged and have effectively infinite service life without the need for
maintenance. Other advantagesinclude very short start-up times (Iess than one second),
low power consumption, small size and low cost.

Although one company has produced aninertial gradevibratory gyroscope, which
competeswith the most advanced ring laser gyroscopes[1], applicationsrequiring lower
performance have generally been targeted by vibratory gyroscope developers. Early
efforts were motivated by military applications. These included missile guidance and
stabilization, gun, camera and antenna stabilization, smart munitions including gun-fired
munitions and GPS augmented navigation. More recently, potential markets in the
automotive and consumer-goods industries have attracted significant efforts for purely
commercia applications. Commercial applications which have already used vibratory
gyroscopes include automobile navigation and ride stabilization, hand-held video camera
stabilization and underwater vehicle stabilization and navigation. As the technology
develops and vibratory gyroscopes become smaller, cheaper and perform better, many

more applications will become possible.

1.1 Principles of Operation of Vibratory Gyroscopes

In this section the operation of anideal vibratory gyroscope, operating intherate



mode is described. The effects of imperfections are introduced in section 1.3.

In vibratory gyroscopes an elastic body, or resonator, is forced to vibrate in a
flexiblemode. Whentheresonator isrotated about the sensitive axis, the vibration pattern
changes and this change is used as a measure of the applied rotation rate. More
specificaly, the resonator is excited to resonate in a particular mode of vibration. When
a rotation rate is applied, Coriolis forces couple energy from the primary mode of
vibration into a secondary mode. This transfer of energy provides a measure of the
applied rotation rate.

Resonators of various geometries have been presented in the literature. These
geometries are described in section 1.2. Broadly speaking, the resonators may be divided
into two classes depending on the modes of vibration that are used during operation as
agyroscope. Inthefirst class of resonatorsthe Coriolis coupling between two dissimilar
vibration modes of different natural frequency, ismeasured. Theresonatorsforming the
second class have two orthogonal vibration modes which have the same shape and
identical natural frequencies, in the absence of imperfections.

Thevibrating cylinder gyroscope, which istreated extensively in this dissertation,
falsinto the second class. In this class the bandwidth of the gyroscope is related to the
time it takes for the secondary mode to reach steady-state conditions after a step input
rotation rate. This time is dependent on the damping of the secondary mode which is
usually low, resulting in a gyroscope with alow bandwidth of typically 5to 10 Hz. To
increase the bandwidth, to a more useful 40 to 50 Hz, it is necessary to actively control
the secondary mode of vibration. Fig. 1.1 showsthe modes used in the vibrating cylinder
gyroscope and the control functions required to operate the resonator as a gyroscope.
The primary mode (cos 20) has antinodes at 0°, 90°, 180° and 270° therefore these
locations are chosen for the attachment of sensing and actuation piezoceramic elements.
The secondary mode (sifi)has the same form as the primary mode, but is rotated by 45°
with respect to the primary mode. The secondary mode has antinodes at 45°, 135°, 225°
and 315° at which piezoceramic elements are attached. The opposite piezoceramics are
electrically connected in pairs. The primary mode control excites the primary mode at 90°

(and 270°) and senses the response signal at 0° (and 180°). The function of the
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Figure1.1 Natural mode shapes and control system functions used in an ideal
vibrating cylinder gyroscope.




primary mode control is to excite the resonator at resonance and to produce a constant
amplitude of vibration. The secondary mode control is used to increase the bandwidth of
the gyroscope. Some designs which do not use secondary mode control have been
developed for applicationsrequiring small bandwidths. The output stagedemodulatesthe
signal in the secondary mode control loop and produces a dc signal proportional to the
applied rotation rate.

V arioustransduction methods have been applied to excite and sense the resonator
vibrations. These methods include electromagnetism, electrostatics and piezoelectricity.
Only piezoelectric actuation and sensing is considered in this dissertation.

As a vibratory gyroscope incorporates sensing and actuation linked by control
functions, it may be regarded as a “smart sensor”. It is not surprising therefore, that much
of the knowledge applied in the field of “smart material systems and structures” should

also be relevant in this research and vice versa.

1.2 Review of Vibratory Gyroscope Designs

The following review is intended to introduce the reader to the major
developments in the field of vibratory gyroscopes. The designs which have had a major
impact on the field, in the author’s opinion, are briefly described. This review is not
intended to be an exhaustive account of all the published literature but focuses rather on
practical developments. The designs are reviewed in order of increasing geometric
complexity rather than in historical order.

In 1851, Foucault demonstrated that a pendulum could be used to measure the
rotation of the earth [2]. Foucault’s pendulum was essentially the first example of a
vibratory gyroscope and for this reason it is often cited in the vibratory gyroscope
literature.

Quick [3] presented an analysis of a vibrating string angular motion sensor. The
string was fixed at one end and was excited in the first lateral mode by parametric
excitation applied along the string axis. As in the Foucault pendulum, this design was a
rotation angle sensor rather than an angular rate sensor. Stability conditions were derived

and the effects ofimportant imperfections, elastic and damping asymmetry, were analyzed.
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Unfortunately no actual device details or experimental results were presented.

Two very low-cost designsbased onvibrating beams have been produced in Japan.

Murata’s “Gyrostar” is based on a steel beam with triangular cross-section which is
actuated and sensed by attached piezoceramic elements [4]. The Tokin design uses a
piezoceramic cylindrical beam [5]. In both designs the beams vibrate in the first flexural
mode of a free-free beam and are supported at the nodes. These devices do not use
feedback control of the secondary mode.

Designs based on pendulums, vibrating strings or cantilever beams are sensitive to
linear accelerations. A simple balanced resonator can be formed by using a tuning-fork
in which the tines are forced to vibrate equally but in opposite directions. An early tuning-
fork design was described by Hunt and Hobbs [6]. In this design the Coriolis forces
caused a torsional oscillation of the stem of the tuning-fork, which was measured to
indicate the applied rotation rate. Feedback control of the torsional oscillation was used
to improve the response time of the gyroscope. Their design was large and expensive to
manufacture, but it did produce a zero-rate offset stability of better than 1 degree/h albeit
at constant temperature.

A micromachined tuning-fork gyroscope was successfully produced by Systron
Donner. The “Gyrochip” uses a single-crystal piezoelectric quartz resonator that
incorporates a torsion stem with a tuning-fork at each end. One tuning fork is excited so
that the tines vibrate towards and away from each other. When an angular rotation rate
is applied about the axis parallel to the tines, Coriolis forces produce a torsional moment
in the stem. The second tuning-fork responds to this twisting of the stem and the out-of-
plane deflection of the tines provides a measure of the rotation rate. The two modes of
vibration used in this design have different natural frequencies and no feedback control of
the secondary mode is used. A micromachined design which uses only one tuning-fork
without a torsion stem was investigated by Sdderkvist [7].

The effect of rotation on the vibration of thin-walled cylinders or bells was first
analyzed by Bryan in 1890 [8]. Researchers at General Motors Corporation made use of
this effect when they started development of a gyroscope based on a thin-walled

hemispherical resonator in the 1960's [9,10]. The hemispherical resonator gyroscope
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(HRG), comprises afused-quartz hemispherical resonator which is actuated and sensed
electrostaticaly. A seriesof patentshave been filed describing anumber of improvements

on the original idea. The original patents covered operation as an angular rate sensor.

Later patents by Loper and Lynch [11,12] described the operation as a rate integrating

sensor. In this mode the vibrating pattern is allowed to precess freely around the
circumference of the resonator. This “whole angle operation” had the unique advantage
that the device would continue to integrate the applied rotation during short electrical
power interruptions that could follow nuclear explosions. More recently, changing
between operation as a rate integrating sensor and operation as a rate sensor during a
mission has been described [13]. Devices based on resonators with Q-fact6rawé10
achieved inertial grade performance and compete with modern ring laser gyroscopes. The
HRG is clearly the most technologically advanced and impressive vibratory gyroscope
developed. Unfortunately, apart from the patents, there is not a great deal of in-depth
technical information available. This is probably due to the requirements of military
secrecy. Some of the main features of the HRG design are described by Loper and Lynch
[14].

It appears that much of the knowledge developed during the development of the
HRG was not applied by other researchers developing low cost designs because these
designs were rate sensors while the whole angle operation of the HRG was described in
the literature. The HRG proved that high performance is attainable with vibratory
gyroscopes. It appears that much of this technology will find application in commercial
markets through the development of a micromachined ring gyroscope being developed by
Delco [15]. This design makes use of many of the ideas developed for the HRG but
because it is micromachined it is small and can be mass produced at low cost.

Another device which stems from the work of Bryan is the vibrating cylinder
gyroscope. A design which used a steel thin-walled cylinder, closed at one end, with
discrete piezoceramic actuation and sensing elements was developed by Marconi (later
GEC-Marconi Avionics) [16]. Initially this design was aimed at military applications in
missiles and smart munitions. The ruggedness of the sensor was proven in shock tests up

to 25,000 g. The unique features of vibratory gyroscopes opened the way for commercial
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applications and this gyroscope was used in the active suspension system of the Formula

1 Team Lotus racing cars during 1987. Today this gyroscope is used as the yaw rate
sensor in the “Vehicle Dynamics Control System” manufactured by Robert Bosch GmbH
and is in mass production [17].

Instead of attaching piezoceramic elements to a steel cylinder it is possible to make
the cylinder from piezoceramic material. The feasibility of such a device was analyzed by
Burdess [18]. British Aerospace (Systems & Equipmenjted (BASE) developed and
produced the Vibrating Structure Gyroscope (VSG) based on such a resonator [19].
BASE has developed two newer designs based on rings. The first uses a steel ring and
electromagnetic excitation and capacitive sensing while the second uses a micromachined
ring with electromagnetic sensing and actuation.

Today the potential of micromachining technology is being applied in the
development of low cost designs by various universities and companies [20]. Strong
interest in micromachined designs is reflected by the number of presentations on these
designs at the recent Stuttgart and St. Petersburg conferences. A number of the
companies that were producing macromachined vibratory gyroscopes have started
developing or producing micromachined designs. Delco, who produced the HRG are now
developing the micromachined vibrating ring gyroscope [21]. Bosch who are producing
a vibrating cylinder gyroscope are currently developing a micromachined design based on
two oscillating masses [22]. BASE, who have produced piezoceramic cylinder vibratory
gyroscopes and a steel ring vibratory gyroscope are now producing a micromachined ring
design. Murata have graduated from the macromachined beam to a micromachined mass
supported by four thin beams using electrostatic actuation and capacitive sensing [23].
Draper Labs have done extensive development of a?micnomachined tuning fork
design which has two perforated masses (tines) which vibrate in the plane. Coriolis forces
cause an out-of-plane rocking motion which is sensed capacitively [24]. Researchers at
Berkley have demonstrated single and two axis micromachined designs. The two axis
design is based on a disk forced to oscillate rotationally about its axis. When rotations are
applied in the plane of the disk, Coriolis forces cause the disk to tilt. This provides a

measure of the two components of applied rotation [25,26]. These devices have been
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integrated with micromachined accelerometers to demonstrate very small inertia

measurement units [20].

1.3 Effects of Imperfections

The operation of vibratory gyroscopes as described earlier, did not consider the
effects of imperfections. Imperfections, which are always present during the manufacture
of vibratory gyroscope resonators, limit the performance of vibratory gyroscopes.
Manufacturing imperfections cause departures from theideal mass, stiffnessand damping
distributionsand therefore effect the resonator dynamics. The effects of imperfectionson
the resonator dynamics are readily observable. Especially in resonators designed to have
identical natura frequencies. These resonators show splitting of natural frequencies,
location of the two mode shapes and different damping factorsassociated with each mode.
A method of characterizing the resonator was described by Shatalov et al. [27].

After the manufacture of aresonator, it iscommon practice to test it and then to
mechanically balance the structure to reduce the effects of imperfections. This balancing
procedure generally involves the removal or addition of mass, aiming to minimize the
splitting of natural frequenciesand to align the natural modes with the sensor and actuator
positions. This balancing procedure is time consuming, and is usualy performed at only
one constant temperature. Theresonatorsalso often operateinavacuum but are balanced
at atmospheric pressure. The changes that occur in the dynamics of the resonator dueto
temperature changes and aging with time, make it pointless to balance the structure to
extreme accuracies. It is therefore more desirable to design the resonator and control
system to be as insengitive as possible to variations in the properties of the resonator.

The effects of imperfections when the resonator is operated as an angle sensor
have been investigated by various researchers. In this mode of operation the vibrating
pattern isallowed to precess and the angle of precession provides a measure of the angle
of applied rotation. Because of damping in the resonator, it is necessary to supply energy
to sustain the vibration amplitude without affecting the position of the vibration pattern.
These studies will be briefly reviewed before operation in the rate mode is described.

Theuse of avibrating string as arotation angle sensor was examined by Quick [3].
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In this sensor, the string was excited parametrically by a force applied aong the string
axis. The precession of the plane of the string vibration, relativeto the case, provided the
measure of the applied rotation angle. Effects of anisoelasticity (elastic asymmetry) and
damping asymmetry were considered. Anisoelasticity was shown to produce an orbital
vibration instead of oscillationin aplane. Nonlinear restoring forces then cause the orbit
to precess causing angle measurement errors.  Anisoelasticity was shown to be the
dominant source of drift. Theresult of damping asymmetry isthat the vibration planewill
drift towards the axis of lowest damping.

Friedland and Hutton [ 28] generalized the results of Quick. The motion of apoint
on the resonator was described as an €llipse in the Cartesian plane formed by the two
generalized coordinates associated with the two modes of vibration. When the resonator
isrotated, at low rotation rates, the motion of the point can be approximated by arotating
élipse. In order to eliminate the effects of anisoelasticity it is necessary to force the
liptical motion into astraight line. The effect of damping asymmetry was shown to be
insgparable from an input rotation rate. The result is that the magjor axis of the ellipse
rotates to align with the axis of minimum damping.

Loper and Lynch [14] described the operation and mgjor drift mechanismsin the
HRG. In the HRG, parametric excitation is used to provide energy to maintain the
amplitude of vibration without affecting the position of the vibrating pattern. The control
systemincluded “quadrature control” which used an “electrical spring” to suppress the
effects of anisoelasticity. The HRG used electrostatic sensing and actuation and the
“electrical spring” was formed by applying a dc voltage across selected electrode gaps.
The electrostatic force is proportional to the square of the gap distance. Therefore a
decrease in the gap size results in an increase in the electrostatic force and vice versa.
Because the variations in the gap size during operation are very small, the effect of the
electrostatic field may be represented (to first order) as a negative linear spring. The dc
voltage was continuously adjusted and in effect it forced the ellipse described by Friedland
and Hutton to be a straight line. It is perhaps more intuitive to think of the spring being
adjusted to maintain the alignment of one natural mode of vibration with the position of

the vibrating pattern. In this way the hemisphere is always vibrating in only one natural
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mode, even though the vibration is allowed to rotate around the circumference of the
hemisphere. Asymmetric damping, whichisone of the major sources of drift inthe HRG,

was described by two normal damping axes. The vibrating pattern tendsto drift towards

the axis of minimum damping, resulting in a case-oriented drift. The quadrature control

does not completely eliminate the quadrature signal at the nodes of the main vibration

pattern. The residual quadrature signal is at the second natural frequency and causes a
“residual quadrature-vibration drift”. This drift is compensated by using electrical springs
to make the natural frequencies of the two modes equal. The value of the springs as a
function of the vibration pattern angle is determined during a calibration procedure.

The use of the resonator as a rotation rate sensing element is more popular,
especially for low cost devices. In this mode of operation the vibration pattern does not
precess freely around the resonator and energypglied along one axis only. The
effects of imperfections on the performance of vibratory gyroscopes operating in the rate
mode, has received orlignited attention in the literature.

The problem of a point mass imperfection in vibrating cylinder gyroscopes, was
treated by Fox [29]. Fox showed that a point mass causes a split in natural frequencies
and also locates the two natural mode shapes. The response to externally applied linear
vibrations and off-input axis rotations was analyzed. The responses calculated are for the
open loop case, where the secondary vibration mode is not controlled. In a later paper
[30], Fox demonstrated that manufacturing imperfections such as wall thickness variations
and various discrete features can be represented by an “equivalent point mass” if we
consider the operational modes of vibration only. The general thickness variation was
represented as a Fourier series and it was shown that the fourth harmonic of thickness
variation needs to be considered when operating in the n=2 vibration modes. The fact that
general imperfections can be represented as an “equivalent point mass” means that the
effects ofimperfections on natural frequency split and the location of the mode shapes, can
be eliminated by introducing a second point mass during the balancing process. A method
of experimental characterization of vibratory gyroscope resonators was presented by
Shatalov et al. [27]. The method could identify the position and magnitude of a point

mass required to balance a resonator.
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A more general theory of errors was presented by Shatalov and Loveday [31].
Effects of thickness, density, elastic property and damping property variations combined

with linear vibrations and off-input axis rotations were analyzed. The various forces

present were classified and an expression for the open-loop drift was presented.

These analysesfocused on the resonator dynamicsand did not consider the effects

of imperfections in the closed loop system or the design of the control system to reduce

the effects of resonator imperfections.

1.4 Research Objectives

The specific objectives of this research on the effects of imperfections in

piezoelectric gyroscopes were:

To develop an approach for the modeling of piezoelectric resonators which
accurately describes the electromechanical coupling. Apply the method to a
piezoelectric vibrating cylinder gyroscope including various imperfections.

To analyze the effects of elastic boundary conditions on the dynamics of thin-
walled cylinders used as vibratory gyroscope resonators.

To determine the effects of feedback control on the resonator dynamics with the
intention of using feedback control to minimize the effects of imperfections.

To investigate the role of control system design in suppressing the effects of
resonator imperfections and thus improving performance.

To examine the effects of piezoelectric property variations on the performance of

vibratory gyroscopes.

1.5 Dissertation Layout

Chapter 1 presents a brief introduction to vibratory gyroscopes. The principles of

operation are described and various applications are listed. A number of the major

developments in the field are described and the literature on the analysis of the effects of

imperfections in these devices is reviewed.

Chapters 2 and 3 focus on the modeling of the resonators used in vibratory

gyroscopes. Modeling the coupled electromechanical behavior of piezoelectric resonators
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isaddressed in chapter 2, while the effects of elastic boundary conditions on the dynamics
of rotating thin-walled cylindersis analyzed in chapter 3. The models described in these
two chapters are used through out the rest of the dissertation.

The effects of feedback control on the resonator dynamics is investigated in
chapter 4. The more general problem of designing the control systems used in vibratory
gyroscopes to reduce the effects of imperfections is treated in chapter 5. The control
functions are motivated by inspection of the equations of motionin averaged variablesand
methods for the analysis of the closed loop system are illustrated.

Theeffects of piezoelectric property variations on the closed loop performance of
vibratory gyroscopes is analyzed in chapter 6, and rules for the selection or optimization
of piezoelectric materials are established.

In each chapter an attempt has been made to present the general theory first, and
then to demonstrate the theory by applying it to the piezoelectric vibrating cylinder
gyroscope. Where possible experimental results have been used to verify the theoretical
predictions. Each of the objectives listed above is treated in a separate chapter.
Conclusions are included in each chapter and a general summary of these conclusionsis

presented in chapter 7.
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Chapter Two

Piezoelectric Resonator Modeling

2.1 Introduction

The design and analysis of a vibratory gyroscope begins with a model of the
resonator dynamics. In the case of the piezoelectric resonator this model is required to
capture the dynamics of the resonator, the electromechanical coupling and the capacitive
nature of the piezoelectric ceramics. To be able to study the effects of imperfectionsit is
necessary to include typical manufacturing errors such as misplacement of the
piezoceramic elements.

The model of the resonator can be used to optimize the dimensions of the design
to achieve arequired natural frequency, or to maximize the actuator authority or strain
measurement sensitivity of the piezoceramic elements. |If imperfections are included, a
sengitivity analysis can be performed to determine the manufacturing tolerances which
need to be achieved. An understanding of the effects of imperfections is required when
selecting the form of compensation algorithm to be used in an inertial navigation system
based on vibratory gyroscopes. Finally agood model of the resonator isrequired for the
design of the control system.

In this chapter the derivation of a system of equations of motion for a electro-
elastic body is presented. The method is applied to a piezoelectric cylinder gyroscope
resonator, including imperfections. Comparison of the theoretical predictions with
experimental resultswas performed to verify the accuracy of themodel. The presentation

of the research here is similar to that published by Loveday [32].

2.2 Modeling a Coupled Electro-Elastic Structure
The derivation of coupled equations of motion of an elastic structure including
piezoceramic elementshas been comprehensively documented by Hagood, Chung and von

Flotow [33] and Hagood and Anderson [34]. Only a general outline of the procedure
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which is based on Hamilton’s principle and the Rayleigh - Ritz method, is presented here.
The aspects which are particular to the cylindrical geometry being modeled are described
in greater detail in section 2.3.

The procedure starts with Hamilton’s principle for coupled electromechanical

systems;

ﬁtz[a(T_U+We+Wn1)+aMdt =0 (2.1

1

The congtitutive equations for the piezoelectric material may be written:

ReeSR.  RpeRg

D E
= (2.2)
T |- RdeR. RJcERy|LS
The strain-displacement and field-potential relations may be written in the form:
S=L,ux and E = L(P(p(x) (2.3

The differential operator, L, isparticular to the elasticity problem being considered and
isgiven in the following section for the cylindrical shell being modeled. Inthe Rayleigh-
Ritz method, the displacement and potential distributions are represented by a

combination of assumed distributions each multiplied by a generalized coordinate.

r ()

uect) = .0t = [w, (9 - v, ] : (2.43)
0
v,(t)

P = YOOV = [y, () - v, (K] (2.4b)
V(1)
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Strain and electric field basis functions were defined:

S(xt) = N,(X)r(t) E(xt) = N,()v() (2.5)

where,

N,(¥) = L,¥.(x) N,() = L ¥ (x) (2.6)

After substituting these equationsinto Hamilton's principle and taking variations,

the following system of equations in the generalized coordinates is obtained,

(M+M)IF + (K+K)r - Ov = B, f (2.79)

Ot +Cv=B,q (2.7b)

where the mass and stiffness matrices for the structure and the piezoceramic are,

M= [, PIO0p.OT00V M= Vp‘I’rT(x)pp(x)lPr(x)dV 2.8)

T T T
K= fv N, c N dv Ko=[  N'Rgc ERN dV (2.9)
s P

and the capacitance matrix (C,), the piezoelectric coupling matrix (@) and the mechanical
and electrical forcing matrices are defined as:

T T
C,= prNV Re eSR.N dV (2.10)

- N, Rq eR.N dV (211)
VP
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W ) v 1)
(2.12)

W ) w04 )

\llvl T(Xq 1) h \llvl T(Xq nf)
. (2.13)

IACHIERACS

Equation 2.7 describes the dynamics of the coupled electro-elastic structure.
Equation 2.7aisreferred to asthe actuator equation while 2.7bisreferred to athe sensor

equation [33].

2.3 Application to the Vibrating Cylinder Gyroscope Resonator

Thegeometry and the coordinate system utilized inthismodel isshowninFig. 2.1.
Thetwo aspects of the procedure which are particular to the cylindrical geometry are the
selection of appropriate strain-displacement relations and the selection of suitable assumed
displacement and potential functions.

A number of different strain-displacement equationsare presented intheliterature
(seeLeissa, [35]). Theequationsthat are used in this chapter are those due to Love and
Timoshenko. The strain-displacement equations [36] are written in matrix form in

equation 2.14. This equation defines the differential operator, L, , used in equation 2.3.
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Figure 2.1 Vibrating cylinder gyroscope geometry and coordinate
system utilized in the resonator model.
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In equation 2.14, z is the distance from the mid surface of the shell, measured positive
outwards.

Fox [29] used the Rayleigh-Ritz method with the Lagrange equations to obtain
equations of motion of a cylinder closed at one end and open at the other. The assumed
displacements used, were based on a combination of a circumferential wave and the
cantilever beam functions. According to Warburton [36], the natura frequencies
predicted by this method agree reasonably accurately with solutions that satisfy the shell
theory equationsand all the boundary conditions. Theassumed displacement distributions
used here are essentially two assumed modes of vibration, onerotated by 45°with respect
to the other, and may be written as follows:

ux,0) = U H(xX)cos20 + U,H(x)sin26

V(x8) = V,F(x)sin20 + V,F(x)cos20 (2.15)
W(x,0) = W,F(X)cos26 + W,F(X)sin26

whereU,, U,, V,, V,, W, and W, are generdized coordinates and F(x) and H(x) are the

cantilever beam functions;
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F(X) = cosh A, X - cos A, X - o (sinh A, X - sin A,X)

H(x) = ddF sinh A,X - sSin A, X - o,(cosh A, X + €OS A,X)

1

(2.16)

For the case of a cantilever beai)l = 1.8751  awod = 0.7340955 [37].
The electrical potential is assumed to vary only in the radial direction, through the
thickness of the ceramics. A linear variation in electrical potential for each of the eight

ceramic elements may be represented as follows:

z - h/2
h

c

9zt = ( (D) (i-=1to8) (217)

The electrical potential at the inner radius of the ceramic element is zero and the
generalized coordinatev(t)  represents the electrical potential at the outer radius of the
ceramic.

The equations of motion are obtained by substitution of the equations in this
section into the equations of the previous section. The equations of motion of the coupled

system may be written in the following form:

]
U, Vi
v, Wy
M_+M_~ M W, e Kou o U, By, T
p coup
' T K KoKy =0,y | = | B f (2.18)
cop Mg, "M | 1U, T T
. -0, -0, -C W, - Byq
V2
Vi
WZ
Vg

19



In this chapter only the non-rotating cylinder istreated. In chapter 5 the control
system is analyzed. This requires the inclusion of Coriolis effects in the form of a
gyroscopic matrix. The derivation of the gyroscopic matrix , the mass matrix and asingle
term of the stiffness matrix is outlined in appendix A.

Mechanical coupling between the assumed modes of vibration occurs when there
isamechanical imperfection such as a point mass or a misplaced ceramic element. Inthe
ideal case the mechanical coupling matrices are zero and the natural modes of the system
correspond to the assumed modes. When imperfections are present the natural modes of
the system are linear combinations of the assumed modes. These equations of motion

were used to obtain the results presented in section 2.4.

2.4 Results

Thedimensionsused inthemodel areshowninFig. 2.2. Theexperimental devices
differ in certain details fromthe model. 1n practice, the ceramic elements are not curved,
but are rectangular blocks which are soldered onto flat spots machined on the cylinder.
The perfectly clamped boundary condition assumed in the model is obviously not
achievable in practice and thin wires are glued to the sides of the cylinder to make

electrical contact with the ceramics.
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Figure 2.2 Physical dimensions used in the resonator model.
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2.4.1 |deal Device

The natura frequency predicted by the model was 19.845 kHz. This is
significantly higher than the experimental resultswhich vary between 14 kHz and 16 kHz.
The main reasons for this error are believed to be flexibility in the "clamped” boundary
condition, which is investigated in chapter 3, and the decrease in stiffness caused by
machining theflat spotsonthe cylinder. The error in natural frequency does not severely
limit the usefulness of the model. The ratio of the generalized coordinates describes the
mode shape of the structure. Theratio U;: V;: W, was calculated to be -0.155:-0.493:1
which represents a ratio in the maximum displacements of -0.114:-0.493:1. It was
necessary to include damping in the model so that frequency response functions could be
calculated for direct comparison with experimental results. This damping wasincluded as
animaginary stiffnesscomponent. Measured frequency responsesindicated a Q-factor of
2400 and thisvalue was used to calculate the imaginary component of the stiffnessmatrix.
The measurement was performed in a partial vacuum (pressure less than 1 Pa) and
therefore acoustic radiation losses were negligible.

The calculated and measured electrical admittance of one ceramic element, with
the other seven elements open circuited, is shown in Fig. 2.3. The resonance appearsto
be more pronounced in the measured admittance than in the calculated admittance even
though the two curves have the same Q factor. An effective coupling coefficient for
piezoelectrictransducers based on the maximum and minimum admittancefrequenciescan
be defined as follows [ 38]:

max ~ 'min

kg = —o—— (2.19)
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Figure 2.3 Comparison of calculated and measured electrical admittance
of one piezoceramic element.
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Applying equation 2.19 to the calculated and measured data produces effective
coupling factorsof 0.0317 and 0.0321 respectively. Thisindicatesthat the model correctly
simulates the electromechanical coupling in the structure.

In the operation of the device, the two opposite ceramics (180° apart) are
commonly used asactuatorsand the pair of ceramic elements 90° away are used as sensors.

The voltage frequency response corresponding to this situation is easily calculated and
measured. TheseresultsareshowninFig. 2.4. The correlation between the calculated and
measured maximum amplitudesiswell within the range of experimental variation fromone
deviceto the next. The calculated maximum radial displacement for aone Volt excitation
was 0.5 um. It is interesting to note that even at this small amplitude some nonlinear

softening behavior was observed in the measured response.

2.4.2 Imperfect Device

The first imperfection considered was a point mass defect. A point mass situated
at the lip of the cylinder at an angletof O was included in the model. The effect of the
added mass was to decrease the natural frequencies of the two modes. The one natural
frequency is decreased more than the other, resulting in a separation of natural frequencies
which is undesirable for the operation of the device. Because the added mass is very small
compared to the mass of the structure, the changes in frequency are approximately linearly
dependent on the magnitude of mass addition. It was found that the natural frequency
separation is approximately 19 Hz per 1 mg of mass addition. In this case, the natural
mode shapes correspond to the two assumed displacement distributions described by
U1,V1,W1 and U2,V2,W2 respectively. If the point mass is located at antawtlere
the product of cos@ and sin(®) is non zero then coupling between the two assumed
displacement functions occurs in the mass matrix. This coupling causes the resultant mode
shapes to be a linear combination of the two assumed displacement functions. The
important result here is that the location of the point mass defect determines the position
of the two natural mode shapes. A nodal point, of radial motion, of the higher frequency
mode and an anti-nodal point of the lower frequency mode will coincide with the point

mass location. For example, a 1 mg point mass located &% resulted in a frequency
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difference of 19 Hz and produced natural modes with generalized displacements of
[ULV1W1,U2V2,W2] =[0.119;0.380;-0.769;0.069;-0.219;-0.444] and [0.069;0.219;-
0.444;-0.119;0.380;0.769].

To verify this effect experimentally apoint mass of 1.55 mg was added to adevice
at an angle of approximately 6 = 22.5°. The device had previously been fine-tuned, by
mechanical balancing, to have anatural frequency separation of lessthan 0.5 Hz. Voltage
frequency responses were measured before and after the mass addition. These responses
were measured by exciting one pair of ceramic elements and measuring the response at the
pair of ceramic elements located at 90° and at the pair at 45°. The mass addition was
included inthe model and responses analogousto the measured responseswere calculated.
The measured and calculated responses are shown in Figs. 2.5 and 2.6 respectively.

These measurementswere conducted in air and the measured Q factor of 1600 was
used in the model. The results clearly show the separation of natural frequencies and the
location of the natural mode shapes not coinciding with the ceramic locations. The
calculated responses are dightly larger than the experimental responses but it must be
remembered that the point mass is not the only imperfection present in the experimental
device. The presence of other imperfections is evident in the 45° response of the device
before the point mass was added. In a perfect device this response would only be due to
the presence of other modes and would not show these resonances. The model does not
include the effects of other modes so the 45° response, predicted for the perfect device,
was zero and was not plotted.

The second imperfection considered is the misplacement of a single ceramic
element. Thisimperfection may bethought of asacombination of point mass addition and
removal, point stiffness addition and removal and an error in the angle of forcing or
sensing. The effect of thisimperfection on the natural frequency separation between the
two modes was found to be 2.76 Hz per 1° of misplacement for small placement errors.
Inthiscaseevenavery small location error causesthe mode shapesto be orientated so that

anode and an anti-node are located at 22.5°.
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2.5 Conclusions

The application of Hamilton’s principle and the Rayleigh-Ritz method provided an
effective approach for modeling the dynamics of piezoelectric resonators. A coupled
electromechanical model of a piezoelectric vibrating cylinder gyroscope resonator was
developed. Ceramic location errors and point mass defects were included in the model to
simulate typical imperfections in these structures. Comparisons with experimental results
indicate that the model could be used to predict the mass modifications required to reduce
the effect of imperfections on production devices. The sensitivities to manufacturing
imperfections such as piezoceramic misplacement can be determined from this model, and
used to specify manufacturing tolerances. The model is suitable for use during design of

the control system.
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Chapter Three

Elastic Boundary Conditions

3.1 Introduction

A resonator used in a vibratory gyroscope requires a robust means of support
which does not interfere with the vibration of the resonator. The requirements that the
resonator be accurately aligned with the housing, rugged and lightly damped, places
demands on the design of the supporting structure. It is desirable that aslittle energy as
possible be transmitted from the resonator through the support because this represents a
damping loss. It is also necessary that changes in the gyroscope housing are not
transmitted viathe support to the resonator where these changes may cause performance
degradation. Although electrostatic suspension of aring resonator was patented by Stiles
[39] thishas not been successfully implemented in aproduct. A vibration node represents
an ideal location for mechanically mounting the resonator and this has been attempted in
beam resonators. Cylinder and hemisphere resonators are generally mounted on a stem.
Modelsof cylindrical resonators usually assumethat the closed end of the cylinder isrigid,
and a clamped boundary condition is applied. In the previous chapter it was found that
suchamodel produced asignificant error in resonant frequency prediction. Inthischapter
the free vibration of an elastically supported cylinder is studied. The effect of the
boundary tiffnesses on the natural frequency and the sensitivity to rotation are
investigated as these effects are of importance during resonator design. The research

reported here is essentially the same as that published by Loveday and Rogers [40].

3.2 Vibration of Rotating Thin Cylinders

The vibration of thin elastic shells has been studied by many researchers. The
results of many of these studies have been summarised by Leissa [35] and Blevins [41].
The literature contains numerous analyses of thin cylindrical shells with ideal boundary

conditions classed for example, as clamped, free, simply supported with axial constraint
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and simply supported without axial constraint. In reality, the perfect clamped boundary
condition cannot be achieved asthere will always be some flexibility in the support. The
effects of this flexibility are investigated in this chapter.

The effect of rotation onthevibration of acylinder wasfirst analysed by Bryan [8]

in 1890. Bryan showed that rotation causesthe nodes of astanding wave patternto rotate
relative to the cylinder. The vibrating pattern lags behind the rotation of the cylinder.
This effect, which is referred to as the Bryan effect, is used today in a class of angular
rotation rate sensorswhich are based on vibrating cylinders[16,18,29,32]. Theinfluence
of boundary conditions on the natural frequencies and sensitivity to rotation isimportant
in the design of these sensors.

Three methods are generally applied to the analysis of thin, cylindrical shell
vibration. An exact solution of waves propagating in infinite, hollow cylinders, based on
the three-dimensional theory of elasticity, was described by Armenakas et al. [42]. This
solution is also valid for simply supported shells and serves as a benchmark against which
results from analyses based on shell theories can be evaluated. Approximate analyses
based on various shell theories have been performed using the Rayleigh-Ritz method
[35,41]. An exact solution of the Fligge shell theory equations of motion has been
performed by various authors [43-46] in which different ideal boundary conditions were
analysed. The solutions achieved by this approach are accurate withimtthef the
shell theory used.

In this work the general analysis procedure presented by Warburton [44] is
adopted and extended to include elastic boundary conditions and rotation of the cylindrical
shell. The elastic boundary conditions are represented by distributed springs along the
edges of the cylinder. By varying the stiffness coefficients of these springs it is possible
to represent any of the ideal boundary conditions and also to investigate the effect of
departures from the ideal conditions. Using this method, the effect of elastic boundary

conditions on the free vibrations of cylindrical shells can be quantified.
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3.3 Theoretical Formulation

The derivation presented here follows that of Warburton [44], but includes the
elastic supports in the potential energy and the rotation rate in the kinetic energy. The
effect of centrifugal forces producing adeformed equilibrium position with stresseswhich
contribute to the potential energy has been neglected. Analysis of high rotation rates
requires the calculation of the stresses in the equilibrium position which is beyond the
scope of the present paper. Centrifugal forces arising from the kinetic energy, which are
proportional to the square of the rotation rate, have therefore also been neglected. The
analysis is therefore only valid for rotation rates well below the natural frequencies of
interest.

3.3.1 Kinetic and Potential Energy Expressions
The kinetic energy of the rotating cylinder may be written as follows:

5 f; ];(at] (at Qa W)] " Qv| dxdd (3.1

Thepotential energy of the systemisthe sum of the strain energy of thecylindrical
shell and the strain energy stored in the elastic boundaries. Fligge shell theory was used.
Therefore four distributed springs are required to represent the elastic boundary conditions

at each end of the cylinder as shown in Fig. 3.1.
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(b)

Figure 3.1 () Definition of coordinates and dimensions.
(b) Elastic boundary conditions shown on a segment of the cylinder.
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The potential energy of the cylinder and elastic boundary conditions may be

written as follows (note that the radial displacement is defined as positive outwards while

in [44] it was positive inwards):
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3.3.2 Equations of Motion and Boundary Conditions

The following equations of motion and boundary conditions were derived by
application of Hamilton’s principle using the above expressions for the potential and
kinetic energies. Terms proportional to the square of the rotation rate were omitted while
the Coriolis forces were retained. The equations of motion in the axial, tangential and

radial directions are presented in equation 3.3.
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At x = 0 the boundary conditions are:
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At x = L the boundary conditions are:
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The boundary conditions at the ends of the cylinder provide the conditions for
forceequilibrium. The boundary conditionsat each end of the cylinder areidentical except
for the sign difference in the distributed spring forces. Note that in the second boundary
condition at each end of the cylinder thereisafactor 3 in the term dependent on 8. This
factor was not present in[44] asthe actual shear forceinstead of the effective shear force,
was used in that work [45]. This difference has only a small influence on the resulting

natural frequencies.

3.3.3 Solution of the Equations of Motion
The general solution, used by Warburton, represents a standing wave and is
applicablefor thenon-rotating cylinder. For therotating cylinder it is necessary to usethe

more general travelling wave solution listed in equation 3.5.
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u = U, e*?cog(ng +wt)
v = V,e®sin(nd +ot) (3.5)

w = W e*cos(n¢ +wt)

Substitution of this general solution into the equations of motion (equation 3.3)
yields the following system of equations:
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+[1+B{o¢4—2a2n2+n4—2n2+1} +A2}W0 =0

where, the frequency factor, A = wam .

Nontrivial solutions of this system of equations are found by equating the
determinant to zero. For agiven cylinder, if the frequency factor (A), the rotation rate
(Q), and the number of circumferential waves (n) are specified, the determinant can be
written as a quartic in a2 In the calculation of the determinant the square and higher
powers of 3 were neglected. The roots of this equation yield the values of o that satisfy

the equations of motion and are the admissible axial wave numbers.
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The frequency factor for the infinite cylinder is given by Aé = B%

+
At frequencies greater than the natural frequency of an infinite cylinder the roots havethe
form +a,, iy, *(pxig) ,where o, v,, p and q arerea andpositive[44]. Oncethe
roots have been determined it is possible to use equation 3.6 to calculate the amplitude
ratios as was done in [44]. The equations required for this procedure, including the
gyroscopic terms, are included in Appendix B. The displacement functions can then be

written as follows:

04X 04X Y oX . YoX
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a a a a
(3.79)
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o, X o, X
U(X) = A,C,cosh——+AC,sinh— +A,C, cos Y2 - AC, sntZ
a a a a
+ePdal(A C +AC)cos® + (A C.-AC)snE (3.70)
a a

X

re Pa(AC +AC,) cosq;)‘ +(-A,Cy-AC,)S n%

where the amplitude ratios (A... , A ) are real constants, defined in Appendix B, and

the unknown coefficients (C... , G) depend on the boundary conditions.
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Substitution of the displacement functions (equation 3.7) into the boundary
conditions (equation 3.4) produces a homogeneous system of equationsin the unknown
displacement coefficients (C, , ..., Cg). Thissystem of equations may be writtenin matrix
form and the determinant of the matrix must once again be zero for nontrivial solutions.
For this determinant to be zero the correct frequency must be chosen at the beginning of
the procedure and it is necessary to iteratively search for the frequencies which produce
nontrivial solutions. These frequencies correspond to the natural frequencies of the
cylinder for the selected number of circumferential waves. Theindex miscommonly used
to number the axial modes starting from the lowest frequency mode (m=1). During each
iteration, the roots of the characteristic equation given by the determinant of equation 3.6

and the amplitude ratios defined in Appendix B, have to be computed.

3.3.4 The Influence of Rotation

If the cylinder is not rotating and a travelling wave solution with frequency o is
found there will also be a solution with frequency - o because the travelling wave can
travel in either direction around the cylinder. When arotation rate is applied, the positive
and negative travelling waves no longer have the same magnitude of frequency. For low

rotation ratesthe two travelling wave solutions have almost identical amplituderatiosand

may be combined and represented as a “standing wave” which rotates relative to the

cylinder [47]. The rotation rate of the “standing wave” may be related to the positive and

negative frequencies( andw,) by considering the combination of the two travelling

waves as follows [47]:

1 1
cos(ng +0)pt) +CoS(Ng +0)qt) = 2cogn(o +E(0)p+0)q)t/ n)]cosz(oap—oaq)t (3.8

This equation shows that the two travelling waves may be represented as a

“standing wave” with frequency%(oap—oaq) which rotates relative to the cylinder at a
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rate of %((meaq)/n . The ratio of this precession of the “standing wave” (relative to

the cylinder) to the angular rotation rate applied to the cylinder is called the Bryan Factor
and gives a measure of the sensitivity of the mode of vibration of the cylinder to rotation.
The Bryan Factor is defined as follows:

1
BF = —(o,+»
2nQ( 0, (3.9)

Bryan showed that for rings and infinite cylinders performing inextensional
oscillations this factor is equal to 2#11). Therefore the vibrating pattern will lag the
applied rotation rateQ by 0.42, 0.22 and 0.118 for n=2,3 and 4 respectively. The
decrease in Bryan Factor with increasing number of circumferential waves is one reason
that the n=2 mode is generally selected for use in vibratory gyroscopes.

For the low rotation rates being considered it is possible to calculate the Bryan

Factor from the displacement functions of the non - rotating cylinder as follows [31]:

“V()W(X)dX
BE - 2 f 0

n f “U(X)? + V(X)2 + W(X)2dx
0

(3.10)

For low rotation rates, equations 3.9 and 3.10 give the same result.

3.4 Results

To verify the analysis, various non-rotating cylinders with idealised boundary
conditions were analysed and compared to published results. These results, for a selection
of geometries and circumferential wave numbers, are listed in table 3.1. The results for
the clamped-free boundary conditions agree with the results presented in [45]. This
indicates that the numerical implementation of the algorithm is correct. The comparison
with results from the exact solution of the three dimensional elasticity problem [42] shows

the accuracy of the method, based on Fligge shell theory, for calculating natural
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frequencies of simply supported cylinders without axial constraint. It is noted that the
accuracy of the method decreases as the thickness-to-radius ratio increases, and also as
the number of waves around the circumference increases.

Theinfluence of boundary stiffnessesonthe natural frequenciesfor the case of two
circumferential waveswasinvestigated asthisvibrationmodeisgenerally used invibrating
cylinder gyroscopes. Firstly, acylinder supported at both ends with two circumferential
waves, was considered. The boundary stiffness in one direction was then varied at both
endswhilethe other stiffnesses had high valuesrepresenting rigid boundaries. The natural
frequency was calculated for each combination of boundary stiffnesses. For example, the
value of k, (the axial stiffness) was varied at both ends of the cylinder, while the other
stiffnesses were set to alarge constant value. Secondly, a cylinder supported at one end
and free at the other end was considered. At the free end the spring constants were set
to zero while at the supported end one spring constant was varied while the others were
kept high. The spring constants may be non-dimensionalized as follows:

K K e

K = N EAL En/L EnL

En/L K =

Theresults of the analysis of the cylinder with equal boundary conditions at either
end are shown in Fig. 3.2. In the figure the variation of the frequency factor with
boundary stiffness for the case of two waves around the circumference isillustrated. It
is seen that the tangential stiffness has alarge effect on the natural frequency. Theradia
and radial bending stiffnesses have a smaller influence, while reducing the axial stiffness
has a negligible effect. The case of a cylinder supported at one end and free at the other
isillustrated in Fig. 3.3. Here it isfound that the axia stiffness has an extremely large
influence on natural frequency while the other stiffnesses have a smaller influence.
Removing the axial constraint reduced the natural frequency of thismode by 75 %. Inall
cases increasing the boundary stiffnesses increased the natural frequency as expected.

Theinfluence of boundary stiffnesson Bryan Factor ispresented in Fig. 3.4 for the
cylinder supported at both endsand in Fig. 3.5 for the cylinder supported only at one end.

It is evident that the tangential stiffness tends to decrease the Bryan Factor significantly
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in the cylinder supported at both ends and to a lesser extent in the cylinder supported at
oneend. The axia restraint increased the Bryan Factor of the cylinder supported at one
end but decreased the Bryan Factor of the cylinder supported at both ends. In general the
Bryan Factor isgreater and isalso less sensitive to boundary stiffness variationswhenthe
cylinder is supported at only one end. The Bryan Factor of the short cylinder (L/a= 1)
clamped at one end was found to be 0.3556 which is only 11 % lower than the Bryan

Factor of aring or infinite cylinder.
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Table 3.1

Verification of calculated results by comparison with published results

L/a

h/a

Boundary

Conditions

AIiterature

1.14

0.05

Clamped -

Free

0.308 *

0.308

1.37

0.05

Clamped -

Free

0.245 *4!

0.245

0.05

Simply
Supported-
Simply
Supported

0.492 1“4

0.496

0.1

Simply
Supported-
Simply
Supported

0.752 1“4

0.779

0.05

Simply
Supported-
Simply
Supported

0.675

0.677

0.1

Simply
Supported-
Simply
Supported

0.738

0.747
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Equation 10 shows that the Bryan Factor is dependent on the product of the
tangential and radial displacements integrated over the length of the cylinder. It appears
that restraining the tangential motion of the ends of the cylinder (for the n=2 case) tends
to reduce the tangential motion and therefore reduces the Bryan Factor. The axial
displacement reduces the Bryan Factor and it is expected that the Bryan Factor of finite
cylinders will be less than that of rings or infinite cylinders, performing inextensional
vibrations, where the axial displacement is zero.

Finally, the case of n=4 was analysed following the same procedure as was used
inthen=2investigation. Althoughthismodeisnot generally used invibratory gyroscopes
it was studied to determine if the trends for the n=2 case are repeated. The results of this
analysisare showninFigs. 3.6 to 3.9. It wasfound that in the cylinder supported at both
ends the radial and the radial bending stiffnesses had the largest influence on the natural
frequency while in the cylinder supported at only one end the radial stiffness had the
largest influence followed by the axial and rotational stiffnesses. The Bryan Factor was
decreased by the axia restraint when both ends and when one end was supported. The
Bryan Factor was not influenced by the tangential stiffness when one end was supported
asit wasinthe n=2 case. The Bryan factor was close to that of aring (0.118) for both
cases and was not greatly reduced by supporting both ends as it was in the n=2 case.

The different trends observed in the resultsfor n=2 and n=4 make it impossible to
make general statements about the effects of the various boundary stiffnesses on the
frequency factors and Bryan Factors. It istherefore necessary to examine each mode of
interest and to draw conclusions for each mode separately.

It was observed that the changes in natural frequency and Bryan Factor occur
when the non-dimensionalized stiffness is between 102 and 10%. Thisindicatesthat it is
only necessary to consider the boundaries as elastic when they have stiffnesseswithin this
range. |If the boundaries have stiffnesses outside this range it is possible to treat the
boundary stiffnesses as either zero or infinite as is done in the idealised boundary

conditions.
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A cylinder which is to be used in a vibratory gyroscope, is required to have a
constant Bryan Factor in the presence of temperature changes. It is therefore desirable
to designthe cylinder and supporting meansto ensurethat the boundary stiffnessesare out

of the sengitive range.

3.5 Conclusions

Thefreevibrations of elastically supported cylindersincluding gyroscopic effects
may be calculated by the exact solution of the Fligge shell theory equations of motion.
The accuracy of Fligge shell theory was confirmed for a non-rotating cylinder with simply
supported boundary conditions, by comparison with an exact solution of the three-
dimensional elasticity problem.

Departures from ideal clamped boundary conditions were investigated for a
cylinder supported at both ends, and for a cylinder supported at one end only. The results
for the lowest frequency n=2 vibration mode are applicable to the design of vibrating
cylinder gyroscopes. The natural frequency of this mode was most sensitive to changes
in the tangential stiffness of the boundaries when both ends were supported, and to
changes in the axial stiffness of the boundary when only one end was supported. The
Bryan Factor was decreased by increasing the tangential stiffness of the boundaries. In
general the Bryan Factor is higher, and is also less sensitive to boundary stiffness
variations when only one end is supported.

The results for the lowest frequency n=4 vibration mode indicate that these trends
do not apply to all vibration modes. This makes it necessary to analyse all the modes of
interest in a particular cylinder with elastic boundary conditions.

If the non-dimensionalized stiffnesses of the boundaries are in the raftgel
it is necessary to consider the boundaries to be elastic. Stiffnesses out of this range may
be considered to be zero (free) or infinite (rigid). If the boundary conditions are designed
to have stiffnesses out of this range the free vibration of the cylinder will be practically

insensitive to small variations in the boundary stiffnesses.
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Chapter Four

Feedback Control Effects on Resonator Dynamics

4.1 Introduction

Inthischapter the use of feedback control to modify the dynamics of piezoelectric
resonatorsis discussed. This research was published in September 1998 [48].

Mechanical imperfections occur during the manufacture of the resonators used in
vibratory gyroscopes. Theseimperfectionscausethetwo vibration modesto havedlightly
different natural frequencies and determine the location of the mode shapes with respect
to the structure. The effect of these imperfections is usually minimized by a mechanical
balancing procedure. Thisbalancing proceduregenerally involvestheremoval or addition
of small amounts of mass from certain locations on the resonator so that the difference
between the two natura frequencies is reduced. This process is time consuming,
expensive, and is very difficult to perform on small micromachined designs. As this
process is performed once at a single temperature, changes in the dynamics of the
resonator over time or with temperature will not be accounted for. Also some of these
resonators operate in a partial vacuum but are balanced at atmospheric pressures. The
evacuation process can effect the dynamics of the resonator causing an increase in the
difference between the natural frequencies.

A novel method of adapting the resonator dynamicswasused intheHRG[14] and
later also applied in the micromachined ring gyroscope [49]. Electrostatic actuation and
sensing was used in these resonators, and “electrical springs” were produced by applying
DC voltages across the electrode gaps. The electrostatic force is proportional to the
square of the gap distance, therefore a decrease in the gap size results in an increase in the
electrostatic force and vice versa. Because the variations in gap size during operation are
very small, the effect of the electrostatic field may be represented (to first order) as a
negative linear spring. By adjusting the value of the DC voltage across the gap, the spring

constant may be varied. These electrical springs were adjusted to minimize the effects of
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manufacturing imperfections in the resonator structure.

It has been demonstrated intheliterature that the natural frequencies of cantilever
beam type structures containing piezoelectric actuators may be adjusted by feedback
techniques [50,51]. In this chapter it is demonstrated that in the case of a gyroscope
resonator with piezoelectric sensing and actuation, an “electrical spring” can be formed
by using displacement feedback and an “electrical damper” can be formed by applying
velocity feedback. The electrical springs can therefore be used to decrease the effect of
manufacturing imperfections on the performance of a piezoelectric vibratory gyroscope.
Large feedback gains would result in large signal amplitudes which are impractical. It is
therefore desirable to be able to predict the gains required. A method of calculating the
magnitude of the feedback gains required is presented. This method is applied to a
cylindrical resonator with discrete piezoelectric actuator and sensor elements and the

theoretical predictions are verified by measurement.

4.2 Analysis of the Effects of Feedback Control

In chapter 2 it was demonstrated that the equations of motion for a resonator,
excited by piezoelectric actuators and sensed by piezoelectric sensors, may be derived by
application of Hamilton’s principle to the coupled electromechanical system and
discretization by the Rayleigh-Ritz method. The set of equations, derived in this manner,

has the form:

Mi* + Kr - ®@v
O'r + va

B, f

5.0 (4.1)

These two equations are referred to as the actuator equation and the sensor
equation [32]. The sensor equation may be partitioned to separate the voltages at the

actuation electrodes from the voltages at the sensing electrodes as follows:

R
v, 0
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This equation can be rearranged to give the sensed voltage as a function of the

displacement and the applied voltage.

vy = ~Coal®lr + C v (4.3)

If we feed acombination of the sensed voltages back to the actuator ceramicsthis

can be regarded as displacement feedback and can be represented as follows:

v = Gg¥s
1T -1 44
- _Gdcpss®sr - Gdcpsscpsdvd (44
= —[I + G,CoeCprodl 'GyCre®cr

where, | is the identity matrix and G, is a matrix of displacement feedback gains. The

sensed voltage can then be written as:

Vo = ~Cral®; = Coll + GuCrCreil "Gy Cr@clT (4.5)

Substituting the actuation and sensing voltagesfromequations4.4 and 4.5 into the
actuator equation yields the undamped equations of motion for the system including
displacement feedback:

Mi + K*r = 0 (4.6)

where

K* = K + 0l + G,CpaCo] “G,Cpa0@]

+ QC 1[0 - Coull + Gdcp;cpsd]*le C..0!]

spss d ~’pss

(4.7)

Equation 4.7 shows that the effective stiffness of the system can be altered by
feeding back signals which are proportional to the displacement of the structure. An

“electrical spring” has therefore been constructed by using feedback control.
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If there is no capacitive coupling between the actuation and sensing ceramic electrodes

(Cpsd = 0) the equations of motion smplify to:

M + [K + ©,G,C,cOf + O,Coe®;]r = 0 (4.8)

Equation 4.8 shows that leaving the sensing ceramics with open circuit (or high
impedance) boundary conditions and feeding back signals from the sensing ceramics to
the actuation ceramics, both contribute to the effective stiffness of the structure.
Calculating the eigenvalues of thissystemfor different feedback gains, provides a method
of determining the influence of the displacement feedback gainsonthe natural frequencies
of the resonator.

If velocity feedback isincluded, the voltage applied to the actuation ceramics may
be expressed as.

vd = des + Gv‘.’ (4-9)

where G, is a matrix of velocity feedback gains.

Including an arbitrary viscous damping matrix (C) and again omitting capacitive
coupling between the sensing and actuation ceramics yields the following equations of
motion:

M + [C + ©,G,Coc@:]F + [K + ©,G,Coc®¢ + O.Coc@O]r =0 (4.10)

From this equation it is seen that the effect of velocity feedback isto modify the
damping characteristics of the system. It is therefore possible to construct an “electrical
damper” by feeding back a signal proportional to the velocity of the structure. The natural

frequencies and damping factors of this system may be calculated by transforming the

equations of motion to state space and then calculating the eigenvalues.
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4.3 Experimental Procedure

The feasbility of using feedback techniques to modify the dynamics of a
piezoelectric vibratory gyroscope resonator wastested for the case of avibrating cylinder
resonator. Thisparticular resonator comprises athin-walled, steel cylinder, closed at one
end, with eight discrete piezoelectric ceramics (PZT5A) bonded near the open end. The
resonator is shown schematically in Fig. 2.1 and dimensions are given in Fig. 2.2.

The radial displacement patterns of the two operational modes of vibration are
shown in Fig. 1.1 as viewed from the open end of the cylinder. During operation the
primary mode is excited to oscillate at the resonant frequency (approximately 14500 Hz)
at aconstant amplitude. When arotationis applied about the axis of the cylinder, energy
is coupled from the primary mode into the secondary mode and the vibrating pattern
appears to shift relative to the cylinder. The vibration of the secondary mode may be
suppressed by actively damping the structure in order to increase the bandwidth of the
gyroscope. Inaperfect resonator the primary and secondary mode would have identical
natural frequencies. Imperfections which occur during manufacture however, cause a
difference in natura frequency, and also locate the mode shapes relative to the structure
[29].

Theexperimental set-up selected to demonstrate the use of feedback to modify the
dynamics of the resonator isshown inFig. 4.1. A HP 3562A dynamic signal analyzer was
used to measure the frequency response of the resonator by applying random noise
excitation and measuring the response over a 100 Hz frequency range. The resonant
frequency and the Q factor of the primary mode of vibration were then extracted fromthe
measured frequency response function. The feedback gain and phase were varied so that
displacement and velocity feedback could be investigated.

4.4 Results and Discussion
The procedure for obtaining the coupled equations of motion for the vibrating
cylinder resonator was applied to the resonator as described in chapter 2. 1n chapter 2 the

resonator cylinder was assumed to have a clamped boundary condition at the closed end
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Figure4.1 Experimental set-up used to measure the effect of feedback
control on the resonator dynamics.
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of the cylinder. This assumption resulted in the model over-predicting the natural
frequencies. The model was extended to include flexibility in this boundary condition, as
described in chapter 3, thus making it possible to adjust the boundary condition until the
correct natural frequencies are obtained.

The piezoelectric ceramics were soldered to the cylinder at a temperature of
approximately 335°C and then polarized at a temperature of 120 °C. The value of the
piezoelectric coefficient (ey;) for the ceramics in this condition is not certain, so the
response of the resonator at a frequency of 1 kHz was used to calibrate this parameter.
It was found that decreasing this constant, by 15% from the catalogue value of -5.4
Coulomb/n? , gave good agreement at 1 kHz. The experiment described in section 4.3
was smulated using the theory presented in section 4.2. The predicted and measured
effect of displacement feedback on the resonant frequency of the primary mode is shown
inFig. 4.2. Theresultsindicate that by varying the feedback gain from -2 to 2, achange
in the resonant frequency of approximately 10 Hz can be produced. This change in
frequency is larger than the difference in frequency caused by manufacturing
imperfections.

The slope of the curve is dependent on the square of the piezoelectric coupling
coefficient of the piezoelectric ceramic material asthiscoefficient influencesthemagnitude
of the sensed voltage (through matrix @, ) and the effect of the drive voltage (through
matrix 0,).

Positive displacement feedback gains caused a decrease in the resonant frequency
rather than an increase, as would be expected. This occurs because, for the mode of
interest, thereisa 180° phase difference between the displacement of the structure at the
sensing ceramic element and the displacement of the structure at the actuation ceramic.

If the feedback control loop was disconnected so that both the sensing and
actuation ceramics had open circuit boundary conditions, the voltages generated at these
ceramics due to displacement of the primary mode, would be equal in magnitude but

would have opposite phase. Thissituationisidentical to connecting the feedback control

60



Frequency Change (Hz)

— Theoretical
Measured |

Figure 4.2

-1.5 -1 -0.5 0 0.5 1 1.5 2
Displacement Feedback Gain

Resonant frequency change caused by displacement feedback
demonstrating the concept of an “electrical spring”.
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loop with a displacement feedback gain of -1, and would therefore be expected to cause
the same change in resonant frequency. Thisexperiment was performed and it wasfound
that changing the electrical boundary condition of the actuation ceramic from closed
circuit to open circuit increased the resonant frequency by 2.5 Hz. Thisis equal to the
frequency shift that was obtained by applying a feedback with gain of -1 and istherefore
a very simple method of experimentally determining the slope of this curve without
performing any closed loop experiments.

The effect of velocity feedback is to modify the damping of the system. The
damping of aresonator is usually quantified by the Q factor which isinversely related to
the mechanical damping factor (¢) by the expresson Q =1/ 2¢ [52]. Fig. 4.3 showsthe
effect of changing the velocity feedback gain on the Q factor of the resonator. The
arbitrary viscous damping included in the model was adjusted to give agreement with the
experimental values when no feedback was applied. Positive velocity feedback gains
cause an increase in the Q factor (decrease in damping) because of the phase difference
between the velocities of the sense and actuation ceramics. Asthe velocity feedback gain
is increased, the total damping in the system tends towards zero, and the Q factor
increases rapidly towardsinfinity. Increasing the velocity feedback gain further resultsin
instability of the linear system. Applying a velocity feedback gain of -1 resulted in a
change in Q factor from 3300 to 1500 which represents a modification in the mechanical
damping factor from 0.00015 to 0.000334. Velocity feedback is commonly used to
increase the bandwidth of vibratory gyroscopes and the method presented here can be
used to determine the velocity feedback gain required for a particular bandwidth.

The difference between the theoretical and measured results can be amost
completely eliminated by decreasing the piezoelectric coupling coefficient by afurther 10
%. It appears that the method of calibrating this coefficient by using the response at 1
kHz has over-estimated this coefficient because the contribution of other vibration modes

to the response at 1 kHz has not been included in the model.
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the modification of the resonator damping properties.
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4.5 Conclusions

A method has been presented for calculating the modification to the dynamic
characteristics of a piezoelectric resonator which can be achieved by applying
displacement and velocity feedback. It was shown that displacement feedback modifies
the natural frequency while velocity feedback modifies the damping factor of the
resonator. Themethodwasappliedto avibrating cylinder resonator, with discrete sensing
and actuation piezoelectric ceramics, and the calculated results agreed with experimental
results thereby verifying the method. The cylindrical resonator considered here showed
achange in resonant frequency of approximately 2.5 Hz per unit displacement feedback
gain. This is sufficient for balancing of this type of resonator to be performed using
displacement feedback instead of the conventional mechanical massremoval. It wasalso
demonstrated that a simple experiment can be performed to determine the effect of
displacement feedback on the natural frequency of a resonator without the use of any
feedback electronics.

The “electrical spring” formed by displacement feedback could be adjusted
continuously, to suppress the effects of anisoelasticity, as was done in the HRG using
electrostatic “electrical springs”. This would however require the addition of a further

eight piezoceramic elements positioned between the existing eight piezoceramic elements.



Chapter Five

Control System Designto Reduce TheEffectsof | mperfections

5.1 Introduction

In chapters 2 and 3 the resonator dynamics were considered and in chapter 4 the
effects of feedback control on the resonator dynamics was analyzed. In this chapter the
design and analysis of the control system for a vibratory gyroscope operating in rate
sensor mode is described. Specific attention is given to the ability of the control system
to reduce the effects of resonator imperfections on the gyroscope output.

The design of the control systems, for vibratory gyroscopes, has not been well
documented in the literature. A good understanding of the effects of the control system
on the performance of the gyroscope is required during the conceptual design of the
resonator and control system.

Operation of a resonator as a rotation rate sensor generaly requires that one
vibration mode of the resonator is excited at resonance. When the resonator is rotated,
energy is coupled from this mode into a second vibration mode. This Coriolis coupling
causes a response in the second vibration mode which is used to measure the applied
rotationrate. Theresponse of thissecond modeis often controlled by aform of feedback
control. This control is usually motivated by the need to increase the bandwidth of the
gyroscope.

Theperformanceof vibratory gyroscopesislimited by the effects of imperfections,
in the resonator, which may be dependent on both time and temperature. The effects of
imperfectionsinvibratory gyroscopes operating asrotation angle sensorswere studied by
Quick [3], Friedland and Hutton [28] and Loper and Lynch [14]. The effects of
imperfections during operation asrotation rate sensorswere investigated by Fox [29,30],
Shatalov and Loveday [31] and Loveday [32]. These studies concentrated on the effects
of imperfections on the resonator dynamics and did not consider the design of the control

system specifically to reduce the effects of imperfections. Inthischapter the ability of the
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control system to suppress the effects of resonator imperfections is demonstrated.
Thetime averaged equations of motion for ageneral resonator with mass/stiffness
and damping imperfections are derived in the most natural form for analysis of angular
rate sensor operation. These equations are used to motivate the control functions
required for operation as an angular rate sensor. The effects of imperfections may be
understood qualitatively from these equations. Two control schemes are investigated
theoretically and experimentally to demonstrate the ability of the control systems to

reduce the effects of imperfections.

5.2 General Model of Resonator Dynamics

Themodel of the resonator isrequired to describe the dynamics of thetwo modes

of vibration and the Coriolis coupling between them. Such amodel may be derived by the
Rayleigh-Ritz method as in chapter 2 or can be obtained from a finite element analysis.
Because we consider only linear behavior and the resonators used are generally very
lightly damped the contributions of modes other than the operating modes may be
ignored. A model of the resonator with a large number of degrees of freedom can
therefore be reduced to atwo degree of freedom model representing only the operating
modes. Such atwo degree of freedom model provides a very genera starting point for
analysis of the control system.

The equations of motion of a “generic vibratory gyro” resonator are presented in
equation 5.1. This representation is very similar to that used by Lynch [53]. Mass and
stiffness imperfections cause a frequency difference between the two modes and also
locate the modes. In the model, the position of the lower frequency axis is specified and
it is assumed that the two mode shapes are orthogonal. The damping of the resonator is
described by two time constants representing an axis of minimum damping and an axis of
maximum damping. The excitation of the resonator is described by two forces which may

arise from any form of actuation.

66



%-2nky+(Z +A()cos 10 ) x+A(L) sinng y
T T T
+(0*- wAwcos 9 ) x- wAosinng, y=f 5.0)
yr2nkQx+A(L) sinne_x+(2-A(L) cos 10 )y '
T T T

- 0Aosin 206, x+(0®+ 0Awocos 28,)y=f,

This equation is the same as that presented by Lynch except that thenfactor
describing the number of circumferential waves has been included whil@the (angular
acceleration) andQ?  (centrifugal acceleration) terms have been omitted.

The particular case of an axisymmetric shell resonator operating in the n=2 mode
is shown in Fig. 5.1.

The equations of motion can be written in terms of the elements of a damping

matrix and a “natural frequency” matrix to simplify the following manipulations.

X-gQy+Cpy X+Cp, YKy X+kp, y=1,

. , , . 52
YHGQX+Cy X+Cp, Y +Ky X +Ky =1y (52)

The equations of motion for the piezoelectric resonator, derived in chapter 2, can easily

be reduced to the above form.
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B0 defines axis of lower natural frequency
O« defines axis of minimum damping

Figure 5.1 Vibration pattern representation and axis definitions used in the model.
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5.3 Averaged Equations of Motion

Averaged equations of motion, describing the dynamics of aresonator including
the effects of control loops, were derived by Lynch [53]. Canonical variables which are
very suitable for describing the operation of the HRG as an angle sensor were used in
theseequations. Inthissection, averaged equations of motion in variableswhicharemore

suitable for the analysis of angular rate sensor operation are derived.

5.3.1 Variation of Parameters

The dynamics of the resonator may be more efficiently described by transforming
the system of two second-order equations into a system of four first-order equations in
dowly varying parameters. Theequationsof motion (equation5.2), intherapidly varying
parameters x and y, may be transformed into equations in Slowly varying parameters, X,
Xo Ysand Y, , by the following transformation:

x=Xgsinvt+X cosvt

y=Ygsinvt + Y cosvt (5.3)
Differentiation of these two equations, with respect to time, yields:
X =v (X cosvt - X_sinvt) +X_sinvt + X cosvt (5.0

y=v(Y,cosvt - Y, sinvt)+Y sinvt + Y, cosvt

Because we have transformed the equations from two parameters to four
parameterswe can introduce two restrictionsin the new parameters[54]. Thefollowing
choice of restrictions is very advantageous.

X sinvt + X cosvt=0

o : (5.5
Y sinvt + Y, cosvt =0
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With these restrictions the velocities and accelerations become:

X=v (X cosvt - X _sinvt)

y=v(Y,cosvt - Y_sinvt) (5.6)

%= —v2(X_sinvt + X_cosvt) +v(X_cosit - X_sinvt) (5.7)
y= V2 (Y Sinvt + Y cost) +v (Y, cosvt - Y, sinvt) '

The velocities and accelerations are substituted into the equations of motion to
yield:
(ky, ~vA) (X sinvt+X cosit) +v(X_cosit - X_sinvt)
+(C,~gQ)v(YLost-Y sinvt) +c, v(X cosit-X sinvt)
+kp(Ysinvt+Y cost) =F, sinvt+F, cosnt
‘ ‘ (5.8)
(K,,~v)(YsSinvt+Y_cosit) +v(Y cost - Y, sinvt)
+(Cyy +gQ)v(X Lot - X sinvt) +C,,v(Y cosit-Y sinvt)
k(X sinvt+X cosit) =F, sinvt+F, cosit

The next step is to combine these equations with the restrictions in order to obtain
four equations each containing only one time derivative term. The prodessrated

for the first equation.

Multiplication of the first equation of motion (equation 5.8) I&M and
A%

adding the first restriction (equation 5.5) multiplied bginvt yields the following

equation:
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(ky;;~v?)
A%
~(C,,~9Q)(Y costvt-Y sinvt cosvt) -c,, (X costvt—X sinvt cosvt) (5.9)

(Xsinvtcosvt+X cosvt)

F F
—Q(Yssi nvtcosvt+Y,cosivt) + —=sinvtcosvt+—ccosvt
v v v

Similar combinations of equations 5.5 and 5.8 yield equationsfor X_,Y, and Y, .

5.3.2 Averaging
Equation’5.9 showsthat if theresonator islightly damped, hassmall imperfections,
is operating close to resonance and is subjected to small control forces (relative to the
operating frequency) the rate of change of X (Xs) will be smal. The same
conclusion can be drawn for X_,Y, and Y, . We can therefore assume that
X, X, Y, and Y, are constant over one period of oscillation. This permits us to
average the equations over one period of oscillation by applying the following

expressions.

lfTsinvtcos\/tdt:O
TJo

(5.120)
ichoszvtdtzifTsinzvtdtzE
TJo TJo 2
The resulting averaged equation, corresponding to equation 5.9 is then,
. C -v? c.,-gQ F
X = -y (g vy (279 )Y—@Y; % (5.11)

S22 v ¢ 2 5 2

A further three equations can be extracted in this manner giving the system of four first-
order equations, shown in equation 5.12. These equations describe the dynamics of the

resonator in the sowly varying parameters.
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i V2 c c..-gQ F
% - (kllzv )Xs_%xc+%Ys_( 1229 )Yc_ X,

5.12
. (Czj_+gQ) k21 C22 (k22 ( )
V=2 2y "2y -
S 2 2v 2 2v Ye

. Q -v?
q.- %X (021+29 )X; (kzzév Ay Sy

Theform of this system of equations appears similar to state-space equations but
these equationsinclude frequency and the frequency squared termswhich are not present
in a state space system. Thismeansthat state space methods of analyzing and designing
control systems cannot be applied to this system.

During operation the resonator is forced to vibrate at resonance at a constant
amplitude. Thislimit cycle can only exist in a nonlinear system which makes analysis of
the control system difficult. Because the averaged equations above are in the slowly
varying parameters, it is possible to use time integration to smulate the operation of the
closed loop system. Theaveraged equationsalso provide useful insightsinto the behavior

of the resonator which aid in the control system design.

5.4 Control System Functions

In this section the averaged equations of motion are used to motivate the control
system functions required for the resonator to operate as an angular rate sensor. The
equations of motion without imperfections are used to develop the control functions and
the implementation of these functions. The effects of resonator imperfections, on the
performance of the controlled system, are then analyzed in section 5.6.

Theaveraged equations of motion are simplified by the omission of imperfections.
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It is evident that in the perfect resonator the x and y vibration patterns are only
coupled when an angular rotationrate, Q, isapplied. We make use of this effect whenwe
usetheresonator asan angular rotation sensor or gyroscope. Intheideal casethe control
functionsmay be separated into those operating onthe primary vibration patternand those

operating on the secondary vibration pattern.

5.4.1 Control of the Primary Vibration Pattern
The equations of motion for the primary vibration pattern, in the absence of

applied rotation rate are,

(k-v)y
v ° 2

x - k9 ey T

C
c o S_EC 2

y; C
XS = - EXS_
(5.14)

The steady state response of the system is found by setting the time derivative

termsto zero.
5411 Fregquency Control

If we apply asinusoidal excitation f =sinvt , (F,=1andF,=0) at thefrequency
v=‘/@ then the coupling between X, and X, is zero and the response will be
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X=-—=,X=0. 1In other words, if we excite the structure at resonance the

response will be ninety degrees out of phase with the excitation. At frequencies of
excitation other than the resonant frequency the equations are coupled and there will be
sine and cosine response components. The damping, ¢, determines the amplitude of
response at steady state and also the speed with which thisamplitude changes. Note that
in the first-order approximation, the presence of damping does not effect the resonant
frequency. Neglecting this second-order effect is justified because vibratory gyroscope
resonators are designed to have very small damping.

The observation that there is a sine component response to asine excitation if the
excitation frequency does not coincide with the resonant frequency of the resonator
suggests a method of controlling the frequency of excitation to follow the resonant
frequency of the resonator. The sine component of the response (X,) can be used asthe
error signal in a phase locked loop which drives the resonator at resonance. This phase
locked loop includes a sine wave generator or voltage controlled oscillator (V CO) which
produces asine wave, the frequency of which is determined by the voltage applied to the
VCO. The sine wave is applied to the resonator and the response of the resonator is
demodulated by the excitation sine to produce the amplitudes of the components which
arein-phase (X,) and in phase quadrature (X,) to the excitation signal. Thisdemodulation
can be achieved by alock-inamplifier (L1A) whichisalaboratory instrument specifically
designed for thistask. The response component X, which isin-phase with the excitation
is used as an error signal which is filtered by a proportional-integral controller before
being fed back to control the frequency of the excitation signal generated by the VCO.

Thisimplementation is shown in Fig. 5.2.

54.1.2 Amplitude Control
The amplitude of response of the primary vibration pattern, when excited at

resonance, is determined by the amplitude of the excitation and the damping in the
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resonator. The Coriolis forces experienced by the secondary vibration pattern are
proportional to the sum of the velocity of vibration of the primary vibration pattern and
the applied rotation rate. The second function of the control system is to maintain the
amplitude of the vibration of the primary mode at a constant value. Because the
frequency control loop ensuresthat X iszero, the amplitude of the primary modeisgiven
by X, which is available from the lock-in amplifier used in the frequency control loop.

The difference between the actual amplitude of vibration and a set reference value forms
the error signal. Once again a proportional-integral controller can be used to ensure that
the steady-state error is zero. The output from the Pl controller is multiplied by the
excitation signal fromthe VVCO to control the amplitude of the signal applied to excitethe
resonator and thus the amplitude of the response of the resonator. The implementation

of amplitude control isillustrated in Fig. 5.3.
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5.4.2 Control of the Secondary Vibration Pattern

If we assume that the primary vibration pattern is excited to vibrate at resonance
with constant amplitude(X,=0 , X_= )ZC) inspection of equation 5.13 shows that there
will be a cosine respons¥] in the secondary vibration pattern when a constant rotation
rate is applied. The response of the secondary vibration pattern to a step input angular

rotation rate is easily calculated.

C

Y. =- gi (1-e 2) (5.15)

This open loop response of the secondary vibration pattern gives the steady state
amplitude which determines the scale factor of the gyroscope and also provides a measure
of the response time. The open loop bandwidth of typical resonators is usually too small
for most applications. The effective damping of the resonator (c) can be increased
electronically by applying velocity feedback (see chapter 4). This option is described in
the next section. It is also possible to null the response of the secondary vibration pattern
by applying a suitable forde, The control system used to supply this fordetiaen
determine the response time or bandwidth of the gyroscope. This method of control is
known as ‘force to rebalance’ because a force is applied which effectively balances the
Coriolis force acting on the secondary vibration pattern. Force to rebalance operation is

described in section 5.4.2.2.

5421 Damping Control Loop
The averaged equations show that damping can be added to the secondary
vibration pattern by applying,. proportional to ¥; andF, proportional toY,. This is

essentially velocity feedback and is expressed mathematically as:

F,=-KY,
Y p's
° (5.16)
F, =KV,
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Velocity feedback can be implemented with a simple analogue differentiator but
because the sensor and actuator are not collocated there is thditpaxshigher
frequency structural modes becoming unstable. Implementing the velocity feedback based
on the phase-locked loop approach overcomes this problem because only signals at the
operating frequency are applied to control the resonator. This implementation requires
the use of a second lock-in amplifier to extract the components of the response of the
secondary modeY( andY,). These components are then multiplied by cosine and sine
signals, available in the previous control loops, and fed back to the resonator. This
implementation is shown schematically in Fig. 5.4.

The response to step input angular rotation (without elastic imperfections) is now:

VL ek P (5.17)

The effect of the added damping is to increase the bandwidth of the gyroscope and
to decrease the scale factor which will degrade the signal to noise ratio and decrease the

resolution of the gyroscope.
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Figure 5.4 I mplementation of the damping control loop under the phase

locked loop approach.
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54.2.2 Force to Rebalance (FTR) Control Loop

The response of the secondary vibration pattern Y,, may be nulled by applying a
suitable force F. The bandwidth of the sensor is then determined by the controller used
to null Y; and the rotation rate information is stored in the signal F,, required to null the
response. In this scheme the secondary mode is not alowed to respond and the Coriolis
forces experienced by the secondary mode are balanced by the control force F.. Thisis
true closed-loop operation.

When imperfections are present there will be a sine response in the secondary
vibration pattern’Y,. Nulling the secondary vibration pattern requiresthat thiscomponent
isaso nulled. This case will be considered as we wish to later investigate the effects of
imperfections on the gyroscope performance. The forces F,, and F,. required to null Y,

and Y, respectively can beformed by two proportional-integral control systemsasfollows:

t
Fy, =~ (KeYoK, [l
\ (5.18)
Fy, =Kok [ et

It is noted that the proportional part of the controller is exactly the same as the
damping loop described earlier. Therefore this implementation of FTR is essentialy a
damping loop with the addition of integral control which nulls the steady state response
of the secondary vibration pattern. The use of FTR meansthat the Coriolisforces acting
onthe secondary mode are balanced by the control forcesand the position of the standing
wave pattern is maintained fixed relative to the cylinder. The choice of feedback control
coefficients determines the speed of response of the closed loop system and hence the
bandwidth of the gyroscope. As there is no displacement or velocity of the secondary
mode, changes in the damping factor c,, will also have no influence on the output. The
damping anisotropy c,, will still have an effect on the output of the gyroscope and thiswill
be the major source of error in the closed loop system. This implementation of aforce

to rebalance control systemiisillustrated in Fig. 5.5.
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5.5 Closed Loop System Simulation

Simulation of the closed loop operation is necessary during the design of the
control system. Predicting the transient behavior isimportant in applications requiring
short start-up times. The following section describes how the transient response can be
predicted numerically. Naturally the steady-state response can be predicted by performing
the transient analysis over along time period so that steady state operation is achieved.
This, however, isinefficient and it is moreinformative to solve the averaged equations of
motion with the constraints applied by the control system. The nonlinear equations can
be solved numerically and in some cases qualitative predictions can be made. The effects
of resonator imperfections on the steady-state performance are analyzed by this method

in section 5.6.

5.5.1 Transient Analysis

Because the averaged equations of motion are in the slowly varying parameters,
these equations and the control systems described in section 5.4 may be efficiently
smulated by time integration. The gains associated with conversion of voltage to
actuation force and from sensed voltage to generalized displacement must be included in
the analysis. The equations of motion for the piezoelectric vibrating cylinder gyroscope,
derived in chapter 2, where extended to include the effects of elastic boundaries. These
equations were reduced to two degrees of freedom, averaged and simulated in Matlab
Simulink. The Simulink model for the resonator operating withforceto rebalance control
isshowninFig. 5.6. Thevoltage controlled oscillator (V CO) wasassumed to haveafree-
running, or nominal frequency of 14.6 kHz. The frequency controller then modifiesthis
frequency until resonance is achieved (sine component of primary mode is zero). The
amplitude controller drives the cosine component of the primary mode to afixed voltage
level, inthiscase 1 Volt. The sinerebalance and cosinerebalanceloopsforcethesineand
cosine components, of the secondary mode, to zero. The magnitude of the signal required
to force the cosine component of the secondary mode to zero provides a measure of the
applied rotation rate. The start-up transient for this system, without rotation, is shown

in Figs. 5.7 and 5.8. The frequency control loop is seen to settle on the resonant
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frequency in approximately 0.6 s. As the frequency of excitation approaches resonance
both the sine and cosine components of the response grow rapidly until the frequency is
closeto the resonance frequency when the sine component decreasestowards zero. Once
the frequency of excitation coincides with the resonant frequency the amplitude control
loop has complete control over the amplitude and the desired level is achieved in
approximately 1.2 s. Because there is no applied rotation and the resonator has no
imperfectionsin thisanalysis, there is no response of the secondary mode. Thisresponse
is not optimal in any sense, but serves to illustrate the operation and simulation of the

control system in the time domain.
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5.5.2 Steady-State Analysis

In certain casesit is possible to directly calculate the steady state response of the
controlled system but in genera it was necessary to solve the nonlinear equations
numerically. The control functions were expressed mathematically as different sets of
conditions depending on the control functions being analyzed. For the primary modethis
impliesthat FXC =0; X;=0; X, :YC and we calculate the operating frequency v and the
required drive amplitude F,.. The conditions applied to the secondary mode depend on
the control loop selected. The prescribed conditions and the parametersto be calculated

are summarized in table 5.1.

5.6 Analysis of the Effects of Imperfections

In section 5.4 the control system functions were described for a perfect resonator
while the analysis of the closed loop operation was described in section 5.5. In this
section the effects of imperfections, on the steady state performance of the gyroscope, are
analyzed qualitatively, by inspection of the averaged equations of motion, and
guantitatively, by numerical solution of the nonlinear equations. The effects of frequency
and damping imperfections on the open loop performance are determined. The ability of

the control loopsto decreasethissengitivity to resonator imperfectionsisthen considered.
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Tableb5.1 Conditions used during steady-state solutions.

Primary Mode Conditions || Secondary Mode Secondary Mode Parameters
Set Calculate Control Set Calculate
F, =0 v Open Loop F, =F, =0 Y., Y.
X_=0 Py
X=X Damped F, = K.Y, Y., Y,
F, =KY,
FTR Yc:Ys:o Fy ! Fy
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5.6.1 Open Loop Operation

5.6.1.1 Freguency I mperfections

The effect of frequency split (mass/stiffness anisotropy) wasinvestigated. Elastic
imperfections result in coupling between X_ and Y, through k,, and then between Y, and
Y, because k,,#Vv* . The resulting response of Y, and Y, also couples back to the
equations for X, and X.. Therefore elastic anisotropy results in a complex coupling
between all four of the averaged equations of motion. The output of the gyroscope will
therefore be sensitive to variations in the elasticity of the resonator.

A resonator with natural frequencies of 15000 Hz and 15001 Hz was simulated
with the angular position of the lower frequency mode varied between 0° and 90°. The
scalefactor of the gyroscope was determined by introducing arotation rate and observing
the resultant Y,. The zero-rate offset, due to the frequency imperfection, Y, was then
converted to arotation rate in degrees/s and plotted in Fig. 5.9. It is noted that elastic
imperfections do not cause a zero-rate offset if the axis of minimum natural frequency

coincides with a ceramic location or is exactly between the ceramic locations.

5.6.1.2 Damping Imperfections

If we consider damping anisotropy we see that the terms c,,= c,, appear with the
Coriolis coupling terms. Therefore if the primary mode is excited so that X, is constant
then theterm c,, causes aresponsein Y, which appears as an applied rotation rate. This
meansthat there will be azero-rate offset that will be sensitive to changesin the damping
distribution of the resonator. The zero-rate offset and response to a step input angular

rate are now:

(5.19)
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Figure 5.9 Zero-rate offset of a 15 kHz resonator with a 1 Hz frequency
imperfection - open loop.
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Theeffectsof dampingimperfectionswereinvestigated by introducing two typical
damping time constants of 25 and 25.5 seconds. The maximum damping axiswasrotated
and the zero-rate offset calculated for the open loop case. The zero-rate offset is shown
inFig. 5.10. The result showsthat if the axis of minimum damping coincides with either
the primary or secondary mode of vibration, no zero-rate offset will result from this

imperfection.

5.6.1.3 Combined Frequency and Damping Imperfections

Finally the effect of combined elastic and damping imperfections needs to be
consdered. The zero-rate offset, due to elastic and damping imperfections acting
simultaneously, was calculated by solving the steady-state equations for different
combinations of damping axis angle and frequency axisangle. Thisresult isplotted asa
surface in Fig. 5.11. The zero-rate offset obtained by adding the zero-rate offsets
calculated when the imperfections act independently was calculated and was found to be
a good approximation of the zero-rate offset due to the imperfections acting
simultaneously. Also plotted in Fig. 5.11 isthe error caused by this approximation. This

error can be written symbolically as follows:

ERROR(0.0, ) = Drift(6_0, ) - (Drift(6.) + Drift(6,)) (5.20)

The effects of the small frequency and damping imperfections considered here are

therefore almost independent of each other.
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Figure5.10 Zero-rate offset of a 15 kHz resonator with a damping imperfection
defined by two time constants of 25 sand 25.5 s - open loop.
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Figure5.11 Calculated zero-rate offset due to the combined effect of frequency
(15 kHz resonator with 1 Hz frequency split) and damping
imperfections (time constants of 25 sand 25.5 s) - open loop.
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5.6.2 Damping Loop Control
The effects of frequency and damping imperfections when damping loop control

is applied, to the secondary vibration pattern, were investigated.

5.6.2.1 Freguency I mperfections

The same frequency imperfection as was considered in the open loop case was
analyzed for different values of damping control. Inthisanalysisthe gain of the feedback
loop is quantified by the amount of damping added to the resonator compared to the
inherent damping of the resonator. The zero-rate offset (in degrees/s) was calculated for
the open loop case and for three caseswith increasing active damping. The results of this
investigation are plotted in Fig. 5.12 and show that increasing the damping loop gain
decreases the gyroscope drift from this source.

Thiseffect canbeunderstood qualitatively fromthe averaged equationsof motion.
If the damping of the secondary mode doublesthein-phase response (Y,) of the secondary

mode, due to the coupling of k;,, will be halved. The response of the quadrature

component (Y,) of the secondary mode due to the coupling k,,-v* will then be one

quarter of the open loop case. The scale factor (sensitivity of Y, to input angular
rotations) will be halved by the addition of the damping therefore the zero-rate offset due
to an elastic imperfection will be halved by the addition of the damping. As the damping
is increased the zero-rate offset caused by elastic imperfections will decrease. This
gualitative description does not consider the elastic coupling of the secondary mode
response back to the primary mode which effects the frequency of operation dightly. A
comparison of the qualitative description and the exact solution of the steady state
equationsisshowninFig. 5.13 which showsthe zero-rate offset dueto aparticular elastic

imperfection as a function of the added damping.
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Figure5.12  Reduction of zero-rate offset due to frequency imperfection
(15 kHz resonator with 1 Hz frequency split) by damping
loop control.
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5.6.2.2 Damping Imperfections

The effect of damping imperfections were investigated by introducing the two
damping time constants of 25 and 25.5 seconds. The maximum damping axiswasrotated
and the drift calculated for the open loop case and with a damping loop that adds ten
times the resonator damping. The results of this analysis (Fig. 5.14) show that the drift
caused by damping imperfections is not reduced by the addition of the damping control
loop. The qualitative explanation of thisisthat thetermc,, is not effected by the addition
of damping and still appears as a equivalent rate input in equation 5.12.
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5.6.3 Force to Rebalance Control

The effect of using proportional-integral feedback to null the response of the
secondary mode, whenfrequency and damping imperfectionsare present, wasinvestigated
by solving the steady-state equations. The effect of nulling the in-phase and quadrature
components of the response separately and then simultaneously was considered to gain

deeper insight into the effects of FTR control.

5.6.3.1 Freguency I mperfections

I nspection of the averaged equations shows that frequency imperfections affect
the value of Y, only if Y, isnon zero. Y is non-zero dueto the term k,, coupling Y, to X..
Also, if Y, is non zero it couples back to the equation for X, and thus influences the
frequency of operation. Itistherefore advantageousto null the component Y, to eliminate
this coupling.

Figure 5.15 shows that nulling the in-phase component Y,, eliminated the drift
caused by elastic imperfections thus verifying the qualitative explanation given above.
When only the quadrature component Y,, is nulled the drift is not reduced from the open
loop case. The reason for nulling the quadrature component isto increase the bandwidth

of the gyroscope.

5.6.3.2 Damping Imperfections

The effect of damping imperfections was calculated in the analogous manner.
Figure 5.16 shows that force to rebalance control does not reduce the drift caused by
damping imperfections as represented in thisanalysis. Inspection of equation 5.12 shows

that the damping imperfection is indistinguishable from an applied rotation.
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5.7 Experimental Investigation

The zero-rate offset of a vibratory gyroscope is an important performance
parameter and isstrongly influenced by temperature. Thetemperatureinduced variations,
or drift, of this parameter, for a piezoelectrically sensed and actuated vibrating cylinder
gyroscope were investigated experimentally. Damping loop and force to rebalance
control wereimplemented and theresultswere compared to measurementswith openloop

control.

5.7.1 Experimental Setup

The resonator used in the experiments comprised a thin walled, steel cylinder,
closed at oneend, with eight discrete piezoelectric ceramic elementsbonded near the open
end as described in chapter 2. Opposite pairs of ceramic elements were electricaly
connected and two pairsfunctioned as actuatorswhile the remaining two pairsfunctioned
as sensors.  The resonator was enclosed in an evacuated housing to reduce acoustic
radiation damping.

The control systems described in section 5.4 were implemented using a
combination of digital and analog circuitry. 1nthese experimentsthe control systemwas
kept at room temperature while the resonator (with pre-amplifiers) was placed in an
environmental chamber on arate table. The scale factor (mV/deg/s) of the gyroscope,
with a particular control system, was measured at 20°C. The zero-rate offset of the
gyroscope was then measured as a function of temperature over a range of 0 to 60°C
using the temperature profile shown in Fig. 5.17. The measured voltage was then
converted to an equivalent rotation rate in °/s using the measured scale factor. Inthis way
it was possible to compare the variations in zero-rate offset of the gyroscope with

different control systems. All measurements were conducted on the same resonator.
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5.7.2 Experimental Results

5.7.2.1 Damping Loop Control

The amount of damping added to the resonator was measured by the reductionin
scalefactor that was obtained. The damping loop gain was varied from zero (open loop)
to avalue giving a large bandwidth. The measured zero-rate offsets are displayed, as
functions of time, in Fig. 5.18 and as functions of temperature in Fig. 5.19. These zero-
rate offsets were adjusted so that the minimum offset is zero in each case. This makesit
easy to comparethevariations of the offset over temperature. Thesefigures clearly show
the reduction in drift which results from increasing the damping of the secondary mode.
In this particular resonator the drift was decreased by an order of magnitude.

The gainsdisplayed in Figs. 5.18 and 5.19 are the ratios of the feedback voltage
to the sensed voltage and not the ratio of force to displacement. The amount of added
damping was estimated fromthe reduction in scale factor so that the maximum offset drift
could be plotted against the added damping aswasdonein Fig. 5.13. The added damping
is the damping added by the velocity feedback non-dimensionalized by dividing by the
damping inherent in the resonator. This information is plotted in Fig. 5.20 and the
experimental result is compared to the qualitative effect of adding damping. The
theoretical curve assumesthat there are no damping imperfectionswhilethe experimental
results are obvioudly effected by damping imperfections inherent in the resonator. The
correlation between the experimental and theoretical resultsisbelieved to be adequateto
confirm the theoretical predictions. This result indicates that the major source of offset
in the open loop operation, was the variation in frequency imperfection during the
temperaturecycle. Damping loop control produced an order of magnitude decreaseinthe

temperature induced zero-rate offset drift.
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Figure5.17 Temperature cycle applied to resonator during measurements.
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5722 Force to Rebalance Control

Measurements were performed to investigate the effect of force to rebalance
control on the temperature induced zero-rate offset. The results of these measurements
are shown in Figs. 5.21 and 5.22. Apart from the control system in which both
components of the secondary mode response are nulled, control systems where only one
component is nulled were also examined. The results show a dramatic decrease in the
drift when the in-phase component of the secondary mode is nulled. This result isin
agreement with the theory as by nulling the in-phase component the effects of elastic
imperfectionsare suppressed. Forceto rebalance control produced an order of magnitude

decrease in the temperature induced zero-rate offset drift.

5.8 Conclusions

A system of averaged equations describing the dynamics of avibratory gyroscope
resonator were presented. These equations are very convenient for analysis of control
systemsused to operatetheresonator asarotation rate sensor. The equations prompt the
form of control system required and also provide useful insight into the qualitative effects
of the resonator imperfections. Two feedback control schemes were considered namely,
damping loop control and force to rebalance control. The effects of frequency and
damping imperfections were analyzed for open loop and closed loop operation. It was
found that the control system can eliminate the first-order effects of frequency
imperfections. The effect of damping anisotropy is not reduced by the control systems
and this is believed to be the major source of error in the closed loop system.
Experimental measurements, of apiezoelectrically actuated and sensed resonator, over a
temperature range of 60 °C, showed that variation of the zero-rate offset was decreased
by an order of magnitude by both damping loop control and force-to-rebalance control.
The remaining drift is believed to be primarily due to damping imperfections. The

experimental results verify the theoretical predictions.
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Chapter Six

Effects of Piezoelectric Material Property Variations

6.1 Introduction

Piezoelectric ceramics are commonly used to actuate and sense the vibrations of
elastic bodies used as resonators in vibratory gyroscopes. It is well known that the
properties of these materials vary with time and temperature. The effects of mechanical
property variations (mass, stiffness and damping), of the resonator and attached
piezoceramic elements, were analyzed in chapter 5. Piezoelectric and electrical property
variations are considered in this chapter.

The piezoelectric gyroscope designer hasto choose among the available materials
fromanumber of different manufactures or develop anew compositionwhich hassuitable
properties. The selection or specification of amaterial requiresan understanding of which
material propertiesinfluencetheperformanceof the gyroscope. A secondrelated decision
iswhether voltage of charge amplifiers should be used to measure the sensed signals. The
objective of thischapter istoillustrate how the material properties effect the performance
of the gyroscope and thusto present ameasure which can be used either to select between
available materials or to optimize the composition of anew ceramic. The control system
design can also influence the sensitivity of the gyroscope to various material property
variations. In the analysis presented, the gyroscope is assumed to be operating in the

force to rebalance mode which was analyzed in chapter 5.

6.2 Analysis of Piezoelectric Gyroscope Operation

The analysis of the operation of a piezoelectric gyroscope begins with an
electromechanical model of the resonator. Thismodel is manipulated into aform which
makes available the electrical signals used in the control electronics. The control system
functionsarethenimposed onthismodel so that the effectsof material property variations

onthegyroscope performance, and not merely theresonator dynamics, can be established.
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6.2.1 Piezo€electric Resonator Dynamics
The dynamics of a piezoelectric vibratory gyroscope resonator may be expressed
by the following system of coupled electromechanical equations:

Mi+[C+G(Q)]r+Kr-@v =B f

Or+Cy-Bg (6.1)

These equations may be derived, for a particular resonator, by the Rayleigh-Ritz
method (as was done in chapter 2) or by application of ageneral finite element analysis.
If we partition the electrica and electromechanical matrices to separate the

elements used for sensing and actuation these equations may be written as follows:

MF+[C+G(Q)]F+Kr [0, @d]{:s}: B, f
d

6.2

C,. } {q} ©2
C =B,
py|(Vd Uy

where v, isthe vector of sensed voltagesand v, isthe vector of actuation or drive

[0,:0,]Tr+

voltages.
If we sense with ahighimpedance so that the charges ¢, areeffectively zero the

sensed voltages are given by:

V= —cp;lelr (6.3)

As no external mechanical forces are applied to the resonator the forces f=0 and the

above expression may be substituted into the equation of motion to yield:

Mi+[C+G(Q)]r+[K+O L O] =0y, (6.4)
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Generdly in vibratory gyroscopes only two vibration modes are used. The mode
shape vectorsdescribing thesetwo modesaredenoted y, and v, . Themode shapes
arefound by an eigensolution of the problem Mr'+[K+®SCpS’1®l]r:O and canbeused
to decouple the equations of motion and reduce the problem to two generalised

coordinates.

PMPLPT[C+G(Q)]PR+¥T[K +OC, O ¥x=¥"0,v, (6.5)

where, T:[‘I’l‘l’z] is the matrix containing the two operational mode shapes.

m, 0

The transformation decouples the mass matrix so that ¥ MY =m = om,

Inchapter 5it was shown that damping imperfectionshaveagreater influencethan
elastic imperfections, when operating in the force to rebalance mode. If we consider a
resonator whichis perfect except for the possibility of damping asymmetry the equations
may be reduced to:

$+[c+g(Q)]X+mix=m 1¥TO v, (6.6)

where,

c=m ¥TC¥ is the reduced damping matrix which is symmetric but not
necessarily diagonal.

9(Q)=m ¥'G(Q)¥ is the reduced gyroscopic matrix which is skew-
symmetric.

o-=m WK+ (DSCpS’l(Dl]‘I’ isa diagonal matrix containing the two natural
frequencies squared.
Wecan partitiontheelectrical termsinto actuation and sensing ceramicsoperating

on the primary and secondary modes as follows:
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CPdl
Va1 Qg1 c
Va qsl Pa1
v= = ®=10,0.0.0 C. = (6.7)
Vo q Uy [ d1Vs1Vd2 52] P Csz
v q
) ) CPsz

If we assume that the ceramics drive or sense only the primary or the secondary

mode then the actuator equations can be written as follows for the two modes:

. ; , .2 1T
X, +C11% +C1 % =0(Q) X, + 0 Xy =My "y Oy vy,

. , , , 2, 1T (6.8)
X+ Ca Xy +CyRo +Q(Q) X T X, = M, "Y,0 v,
The sensor equations are written for the sensing ceramics:
T
01X +Cp_ v =0
(6.9)

T
O X, +Cp_ v =0

These equations may be rearranged so that the sensed voltages measuring the
primary and secondary vibration modes may be written explicitly.
“1aT
Vg = _CPsi-eSl\Vle

AT (6.10)
Vo = _CPS;esz‘szz

The assumption that the sensors and actuators only sense and actuate either the
primary or secondary modes of vibration may be expressed mathematically as
@SlT\yZ:o; ®32T‘I’1:0? q{@dz:o; W;(adl:o . This assumption is only valid in

the limited case of a resonator with no errors in sensor and actuator location.

6.2.2 Control System Functions

The controlfunctions used in force to rebalance operation may be simply described
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asdriving the primary mode at it’s resonant frequency to a specified amplitude and nulling

any response in the secondary mode. Therefore the frequency and amplitude of
vy, (voltage applied to drive the primary mode) is continuously adjusted to give
v, (voltage sensed due to primary mode displacement) to beld®f phase and at

a prescribed amplitudev_Sl . Because the piezoelectric properties of the sensing

ceramics can change, with temperature and time, the amplitude of vibration which results

in a sensed voltagev_Sl can change. The amplitude of vibration is found from the

sensing equation for the primary mode:

_ -1y,
% =71C, Ogrwl v, (6.11)

This equation shows that variations in the capacitance or electromechanical
coupling of the sensing piezoceramics will cause variations in the amplitude of mechanical
vibration.

The motion in the secondary mode, measured/py , IS suppressed by applying

Vaz
must be zero ifv, isnulled. Ik, isforcedtozerothen  agd  willalso be zero

sothatv,, isnulled. The sensor equation for the secondary mode indicates that

and the equation of motion for the secondary mode reduces to,
5 . -1 T
Co %y +O(Q)%; =M, "B v (6.12)
The voltagev,, applied to null the motion of the secondary mode provides a measure
of the inertial angular rate which is the information required from the gyroscope.

Vo =My (W3845) Co X +A(Q)%) (6.13)

v o_ i 1 Ty, 1-1v
At steady state X, = J(D[CpSl ®sl v, Ve, therefore,
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T -
V20, l®slT‘l’1

vy, = —jom, Vg, (C1+9(Q)) (6.14)

This equation expresses the zero-rate drift and also the scale factor or sengtivity to

rotation rate of the gyroscope.

6.3 Piezoelectric Property Variations

At zero rotation rate there will be a voltage required to null the motion of the
secondary mode due to the damping asymmetry represented by c,, . Thestability of this
zero rate offset, over time and temperature, is of great importance in many gyroscope
applications. It istherefore of interest to determine how the material properties of the
piezoceramic material influence this offset. In the formulation used, the capacitance
meatrices are linearly dependent on the material parameter s§3 while the piezoelectric
coupling matrices are linearly dependent on the materia parameter e,, . Thereforethe
offset is a function of s§3/ e, and it isdesirable that this quantity should be as stable
as possible.

The scale factor of agyroscope relatesthe voltage output (proportional to v, )
to the applied rotation rate. The stability of the scale factor of the gyroscope, over time
and temperature, isanother important performance parameter of thegyroscope. Thescale
factor is a function of s§3/ e’ therefore it is important that this quantity remains as
constant as possible over time and temperature.

Theinfluence of theratio s§3/ e, onzero-rateoffset and scalefactor makethis
guantity a suitable figure-of-merit that should be used to select a piezoceramic material
for operation over temperature and time.

Inthisanalysisit was assumed that in practice, the displacements of the resonator
would be determined by measuring the voltages at the sensing ceramics with a high
impedance circuit. A second possibility isthat acharge amplifier (low impedance) isused
and the measured charge is proportional to the displacements. Repeating the above

analysis for this situation shows that the zero-rate offset and the scale factor are then
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dependent on the ratio  1/eZ, . Therefore in this situation the figure of merit for the

selection or optimization of piezoelectric materialswould be 1/e2 .

6.4 Conclusions

The effects of piezoelectric and electrical property variations of the piezoceramic
material used in vibratory gyroscopes was analyzed. Force to rebalance control was
assumed and damping imperfections were included in the analysis. It was shown that
when high impedance sensing electronics (buffer or voltage follower) is used, the zero-
rate offset and the scale factor of the piezoelectric vibratory gyroscope vary according to
the ratio e§3/ efl . When low impedance (charge amplifier) electronics is used the
ratio 1/e., describesthevariationof zero-rateoffset and scalefactor. Thesetwofigures
of merit should be evaluated when deciding on which form of electronic amplification to
use and also when selecting an existing piezoceramic material or optimizing a new

composition.
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Chapter Seven

Conclusions and Recommendations

The effects of imperfections in vibratory gyroscopes has been studied with
particular emphasison piezoelectrically actuated and sensed resonators. The study began
with considering the resonator dynamics and the effects of control on the resonator
dynamics. The more general problem of the effects of imperfections in the controlled
system was then analyzed. Conclusions for each part of the study are given in the
individual chapterstherefore only the conclusionsthat relate specifically to the objectives
of the study are repeated here.

Piezoelectric resonatorsused in vibratory gyroscopes may be effectively modeled
using Hamilton’s principle for the electromechanical system and the Rayleigh-Ritz
method. A cylindrical resonator, including imperfections, was modeled and the results
agreed well with experiment. This approach also made it possible to analyze the effects
of the control system on the resonator dynamics and the effects of piezoelectric material
property variations in general terms. The findings of this study were published in the
Journal of Intelligent Material Systems and Structures [32]. This was the first publication
which included imperfections in piezoelectric vibratory gyroscopes and which presented
direct comparison between theoretical and experimental results.

The effect of elastic boundaries on the dynamics of thin-walled rotating cylinders
was analyzed by an exact solution of the Fliigge shell theory equations of motion. It was
found that the natural frequency, of the operating mode of a cylinder supported at one end
only, is very sensitive to the axial stiffness of the support. Arange of boundary stiffnesses
in which the natural frequency and sensitivity to rotation (gyroscope scale factor) are
sensitive to boundary stiffness variations was determined. It is recommended that
cylinders be designed to have boundary stiffnesses outside this range as they will then be
practically insensitive to boundary stiffness variations. Only axisymmetric boundaries

were considered. This research was published as a general study of elastically supported
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thin cylindrical shell vibrations, in the Journal of Sound and Vibration [40]. Future work
on cylindrical resonator modeling could focus on the effects of non-axisymmetric
boundary conditions. The effects of dlight ovaling of a cylinder could also be analyzed.

The effects of displacement and velocity feedback on the resonator dynamicswas
analyzed. The method used is general but requires an electromechanical model of the
resonator. Experimental results confirmed the accuracy of the method. It was shownthat
‘electrical springs’ and ‘electrical dampers’ may be formed by displacement and velocity
feedback respectively. In the case of the cylinder vibratory gyroscope it was found that
the effect of displacement feedback was more than adequate to balance the effects of
typical manufacturing imperfections. A simple experimental method of determining the
effect of displacement feedback on the natural frequency was devised and verified. This
research contribution was published in the IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control [48].

The ability of the electronic control system to reduce the effects of resonator
imperfections was investigated. Averaged equations of motion derived from a general
model of a resonator were used to motivate the control system functions. This approach
has the advantage that only slowly varying components need be simulated numerically or
controlled electronically in practice. Excitation by a phase-locked loop was used to
ensure vibration at resonance of the primary mode. Control of the secondary mode is
usually motivated by a desire to increase the bandwidth of the gyroscope. Two control
schemes, acting on the secondary mode, were considered and it was shown that these
schemes reduce the effects of mass/stiffness imperfections leaving damping anisotropy as
the major source of error. The reduction of the effects of mass/stiffness imperfections is
therefore a major advantage of closed loop operation. This result is applicable to a wide
range of vibratory gyroscopes including micromachined designs. Experimental results
showed that both damping loop control and force to rebalance control reduced the zero-
rate offset variation over temperature by an order of magnitude. The major contribution
to knowledge of vibratory gyroscope control systems, was the explanation and
demonstration of the ability of the control system to reduce the effects of elastic

imperfections. This contribution will be published as a journal paper. Simple
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implementation of the electronic control system needs to be investigated as does design
for low noise.

Stability of the closed loop systems could be analyzed in future and nonlinearities
in the resonator could be included requiring a higher order approximation in the method
of averaging.

“Electrical springs”, formed by displacement feedback, could be used to reduce
the effects of mass/stiffness imperfections in the same way as has been done with
“electrical springs”, formed by electrostatic forces in the HRG. This approach would
require the construction of resonators with 16 piezoceramic elements but would not offer
any advantage over force to rebalance control.

The effect of piezoelectric material property variations were studied for a
piezoelectric resonator operating in force to rebalance mode. The effects of variations in
the piezoelectric and dielectric coefficients on the zero-rate offset and the scale factor
were determined. Two simple figures-of-merit were proposed for resonators in which
voltage or charge amplifiers are connected to the sensing elements. These figures of merit
should be used when selecting an existing piezoceramic material or when optimizing a
new composition for this application. The development of a simple, direct method of
measuring these figures-of-merit would be a useful contribution. The magnitude of the
damping imperfection introduced by different piezoceramic compositions needs to be
guantified in future and included in the material selection process. Analysis of other types
of sensing and actuation could be performed and the various methods compared to
determine which is most appropriate method of sensing and actuation for particular

resonator designs.
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APPENDI X A: Derivation of Matrix Terms Used in Resonator M odeling

A.1 MassMatrix and Gyroscopic Matrix

Simulationof therotating vibrating cylinder requiresthat we derivethegyroscopic
matrix. Both the mass matrix and the gyroscopic matrix are derived from the kinetic
energy so both can be derived simultaneously.

Thevelocity of apoint onthe mid surface of acylinder whichisrotating at angular

rotation rate Q about its axisis:

u
Vel = {\79(a+w)} (A.1)
wW+Qv

Thekinetic energy of the cylinder isfound by integrating over the volume of the cylinder,

1 ; ; ;
T = =p[[u? + V% + W? - 2Qv(a+w) + 2Qvwv
2*L) (arw) (A2)

+ Q%a? + 2aw + w?) + v2Q? dv

The kinetic energy of the piezoceramics has the same form with the integration being

performed over the volumeof the piezoceramics. If weconsider slowly rotating cylinders,

we can omit the terms of order Q2 . Subgtitution of the assumed displacement

distributions (equation 2.15) yields,

T - %p [ [U, H(X)2cos?(20) +U SH(x)2sin?(20) +2U,U,H(x)? cos(260)sin(26)
\%

+ V/F(X)2sin?(20) + V. F(x)2c0s%(26) +2V,V,F(x)? cos(20)sin(26)

+ W, F(X)2c0s%(26) + W2 F(x)? Sin?(26) + 2W, W, (x)? cos(20)sin(26)
20(V,F(x)asin(20) + V,W,F(x)?cos(20)sin(26) + V,W,F(x)?sir?(20) (A-3)
V,F(X)acos(20) + V,W,F(x)*cos?(20) + V,W,F(x)*cos(20)sin(20))

2Q (W, V,F(X)?cos(20) sin(20) + W,V,F(X)*cos*(20)

W,V F(x)?sin®(20) + W,V,F(X)?cos(20) sin(20))] dV

+

+

+

+
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After taking variations, integrating by parts and collecting terms in the first and

second derivative of the generalized coordinates the following mass and gyroscopic

matrices are found:

H(x)?cos’(26) 0 0 H(x)?cos(26)sin(26) 0
0 F(x)%sin¥(26) 0 0 F(x)%cos(26)sin(20)
M=o f 0 0 F(x)%cos%(26) 0 0
° H(x)%cos(26)sin(26) 0 0 H(x)%sin%(26) 0
0 F(x)%cos(26)sin(20) 0 0 F(x)%cos%(26)
0 0 F(x)%cos(26)sin(20) 0 0
0 0 0 0 0 0
0 0 -2F(x)%cos(20)sin(20) 0 0 -2F(X)%sin’(20)
0 2F(x)%cos(26)sin(26 0 0  F(x)%cosi(26 0
GSZPQfO ()008(0) (20) ° ° ()0() ° v
0 0 -2F(x)%cos(20) 0 0 -2F(x)%cos(26)sin(20)
0 2F(X)%sin’(20) 0 0 F(x)%cos(26)sin(26) 0

0
0
F(X)2008(20)5in(26)0
0
0
F(x)%5in?(26)

(A.5)

Note that the mass matrix derived here is the same as is obtained by substituting

the assumed displacement distributions into equation 2.8.

A.2 StiffnessM atrix

Thederivation of the stiffnessmatrix israther lengthy. Toillustratethe derivation

of this matrix only one of the terms in the piezoceramic stiffness matrix for the first

assumed mode (K,) is derived here.

The assumed displacement distributions for the first mode may be written in the

form of equation 2.4a.
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u(x,0,t) = q;rl(x,e)rl(t)
U
H(x)cos(26) | 1 (A6
= F(x)sin(20) V,
F(x)cos(20) W,
Thematrix N (x) , in equation 2.6, for this mode is.
aH(X) ——>2c05(20) 0 -Z 82=Fcos(26)
X %X
0 oL+ Z)F(x)cos(20) (L+4-Z)F(x)cos(20)
a a2 a 32
N, (x.6) = 0 0 0 (A.8)
0 0 0
0 0 0
—_H(x)sm(ze) (1+22 )aF(X)sm(ze) 42 ;ag(x)sn(ze)

The piezoceramic elements used in this application were polarized in the radial
direction so the rotation matrix in equation 2.9 may be omitted and the expression for the
piezoceramic stiffness matrix for the first assumed mode simplifiesto:

K erTC EerdV (Ag)

l VP

Thefirst element in this matrix is:

Ke (LD = [ cll(a';f(x)

P

Y’o0S(26) + Cygs H(Y?Sin?(26) dV (A.10)
a

where the integration is performed over the volume of al the ceramic elements.
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APPENDI X B: Calculation of Amplitude Ratios

Equation 3.6 can be used to write the ratios of the axial and tangentia
displacements to the radial displacements. In the following equations the small terms

containing p? have been neglected and v is assumed to be 0.3.

2
onB0.65(02-n?)2+1.40502-0.95n2+0,65-A 2 (0.7n+2.%)]
w n

U +0.350n+0.65c:nA +O.6£Ao¢
W - Q B0
0 np[-0.7¢:*+0.72°n2-0.35n 2~ 1.350°A +0.7-2An]
&
-0.35n3+0.805na%+nA +9A[O.7n 2-2(a?+A?)]
&
2
NB[0.65(c2-Nn2)2+1.40502-0.95n2+0.65+A 2(0.7n+2%)]
& n
+0.35n+0.65nA —O.GQA
Mo _ w (B.2)
W, B[0.350*-0.35n*+?A -0.350.2+0.35n ?A]
-0.35n 2—0.1050¢2+1.3n9A -0.3A
&

The amplitude ratios are then calculated by substituting the roots

( *ay, *iy,, *(pxig) )inequations(B.1) and (B.2), for a, asfollows:

A= (Vo W) with a = o,
A= (Uy/ W) with a = o,
A= (Vo W) with a = iy,
iA,= (Uy/ W) with a = iy,

Ag +iAg= (Vo/ W) witha =p +iq
A, +iAg= (Uy/ W,) witha =p +iq
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