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Analysis And Compensation Of Imperfection Effects

In Piezoelectric Vibratory Gyroscopes

Philip Wayne Loveday

(ABSTRACT)

Vibratory gyroscopes are inertial sensors, used to measure rotation rates in a

number of applications.  The performance of these sensors is limited by imperfections that

occur during manufacture of the resonators.  The effects of resonator imperfections, in

piezoelectric vibratory gyroscopes, were studied.

Hamilton’s principle and the Rayleigh-Ritz method provided an effective approach

for modeling the coupled electromechanical dynamics of piezoelectric resonators.  This

method produced accurate results when applied to an imperfect piezoelectric vibrating

cylinder gyroscope.  The effects of elastic boundary conditions, on the dynamics of

rotating thin-walled cylinders, were analyzed by an exact solution of the Flügge shell

theory equations of motion.  A range of stiffnesses in which the cylinder dynamics was

sensitive to boundary stiffness variations was established.  The support structure, of a

cylinder used in a vibratory gyroscope, should be designed to have stiffness outside of this

range.  Variations in the piezoelectric material properties were investigated.  A figure-of-

merit was proposed which could be used to select an existing piezoceramic material or to

optimize a new composition for use in vibratory gyroscopes.

The effects of displacement and velocity feedback on the resonator dynamics were

analyzed.  It was shown that displacement feedback could be used to eliminate the natural

frequency errors, that occur during manufacture, of a typical piezoelectric vibrating

cylinder gyroscope.  The problem of designing the control system to reduce the effects of

resonator imperfections was investigated.  Averaged equations of motion, for a general

resonator, were presented.  These equations provided useful insight into the dynamics of

the imperfect resonator and were used to motivate the control system functions.  Two
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control schemes were investigated numerically and experimentally.  It was shown that it

is possible to completely suppress the first-order effects of resonator mass/stiffness

imperfections.  Damping imperfections, are not compensated by the control system and

are believed to be the major source of residual error.  Experiments performed on a

piezoelectric vibrating cylinder gyroscope showed an order of magnitude improvement,

in the zero-rate offset variation over a temperature range of 60EC, when the control

systems were implemented. 
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Chapters 2,4 and 6

Bf  Generalized coordinate conversion matrix for forces.

Bq Generalized coordinate conversion matrix for charges at

electrodes.

cE Piezoceramic elasticity matrix at constant electrical field.

CP Piezoceramic capacitance matrix.

D Electrical displacement vector (charge/area).

e Matrix of piezoelectric constants (stress/electrical field).

E Electrical field vector (volts/meter).

f Vector of applied forces.

fmax Frequency of maximum admittance.

fmin Frequency of minimum admittance.

F(x), H(x) Cantilever beam functions.

G Gyroscopic matrix.

Gd Matrix of displacement feedback gains.

Gv Matrix of velocity feedback gains.

h Wall thickness of cylinder.

hc Thickness of piezoceramic elements.

keff Effective electromechanical coupling coefficient.

KS, KP Structure and piezoceramic stiffness matrices.

Lu Elastic differential operator.

L
n
 Electrical differential operator.

MS, MP Structure and piezoceramic mass matrices.

N Matrix of differentiated distribution functions.

q Vector of charges applied at the electrodes.

r(t) Vector of mechanical generalized coordinates.



vii

RE Electrical field rotation matrix.

RS Strain rotation matrix.

S Strain vector.

T Kinetic energy.

T Stress vector.

u(x) Vector of mechanical displacements.

u, v, w Displacements in the axial, tangential and radial directions.

U Strain energy.

v(t) Vector of electrical generalized coordinates.

VS, VP Volume of structure and piezoceramic.

W Work function.

We Electrical energy.

Wm Magnetic energy.

 Electromechanical coupling matrix.

S, P Structure and piezoceramic densities.

n(x) Scalar electrical potential.
S Matrix of dielectric constants at constant strain.

Chapter 3

a Mean radius of cylinder.

A1  , ... , A8 Amplitude ratios defined in Appendix B.

C1 , ... , C8 Displacement coefficients.

E Young’s modulus. 

h Cylinder wall thickness.

Axial, tangential, radial and rotational boundary stiffnesses at x=0.k 0
u , k 0
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w, k 0
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Axial, tangential, radial and rotational boundary stiffnesses at x=L.k L
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boundary stiffnesses.

L Cylinder length.

m Axial mode number.

n Number of circumferential waves.
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t Time.

T Kinetic energy of the cylinder.

u, v, w Components of displacement in the axial, tangential and radial

directions.
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Chapter 5 
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n Number of circumferential waves.
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x Displacement of the  vibrating pattern.cos(2 )
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Force applied to the  vibrating pattern.fx cos(2 )

Force applied to the  vibrating pattern.fy sin(2 )
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Chapter One

Introduction 

Vibratory gyroscopes are inertial instruments used to measure angular rotation

rate.  Similar to conventional spinning-mass gyroscopes, these modern gyroscopes are

based on the Coriolis effect, which arises in a rotating frame of reference.  The major

difference between the two types is that instead of the spinning wheel used in a

conventional gyroscope the momentum of a vibrating elastic body is used in a vibratory

gyroscope.  The solid-state nature of vibratory gyroscopes makes various unique features

possible.  Because there are no motors or bearings, these sensors can be designed to be

extremely rugged and have effectively infinite service life without the need for

maintenance.  Other advantages include very short start-up times (less than one second),

low power consumption, small size and low cost.  

Although one company has produced an inertial grade vibratory gyroscope, which

competes with the most advanced ring laser gyroscopes [1], applications requiring lower

performance have generally been targeted by vibratory gyroscope developers.  Early

efforts were motivated by military applications.  These included missile guidance and

stabilization, gun, camera and antenna stabilization, smart munitions including gun-fired

munitions and GPS augmented navigation.  More recently, potential markets in the

automotive and consumer-goods industries have attracted significant efforts for purely

commercial applications.  Commercial applications which have already used vibratory

gyroscopes  include automobile navigation and ride stabilization, hand-held video camera

stabilization and underwater vehicle stabilization and navigation. As the technology

develops and vibratory gyroscopes become smaller, cheaper and perform better, many

more applications will become possible.

1.1 Principles of Operation of Vibratory Gyroscopes

In this section the operation of an ideal vibratory gyroscope, operating in the rate



2

mode is described.  The effects of imperfections are introduced in section 1.3.    

In vibratory gyroscopes an elastic body, or resonator, is forced to vibrate in a

flexible mode.  When the resonator is rotated about the sensitive axis, the vibration pattern

changes and this change is used as a measure of the applied rotation rate.  More

specifically, the resonator is excited to resonate in a particular mode of vibration.  When

a rotation rate is applied, Coriolis forces couple energy from the primary mode of

vibration into a secondary mode.  This transfer of energy provides a measure of the

applied rotation rate.  

Resonators of various geometries have been presented in the literature.  These

geometries are described in section 1.2.  Broadly speaking, the resonators may be divided

into two classes depending on the modes of vibration that are used during operation as

a gyroscope.  In the first class of resonators the Coriolis coupling between two dissimilar

vibration modes of different natural frequency, is measured.  The resonators forming the

second class have two orthogonal vibration modes which have the same shape and

identical natural frequencies, in the absence of imperfections.  

The vibrating cylinder gyroscope, which is treated extensively in this dissertation,

falls into the second class.  In this class the bandwidth of the gyroscope is related to the

time it takes for the secondary mode to reach steady-state conditions after a step input

rotation rate.  This time is dependent on the damping of the secondary mode which is

usually low, resulting in a gyroscope with a low bandwidth of typically 5 to 10 Hz.  To

increase the bandwidth, to a more useful 40 to 50 Hz, it is necessary to actively control

the secondary mode of vibration.  Fig. 1.1 shows the modes used in the vibrating cylinder

gyroscope and the control functions required to operate the resonator as a gyroscope.

The primary mode (cos 2 ) has antinodes at 0°, 90°, 180° and 270° therefore these

locations are chosen for the attachment of sensing and actuation piezoceramic elements.

The secondary mode (sin 2) has the same form as the primary mode, but is rotated by 45°

with respect to the primary mode.  The secondary mode has antinodes at 45°, 135°, 225°

and 315° at which piezoceramic elements are attached.  The opposite piezoceramics are

electrically connected in pairs.  The primary mode control excites the primary mode at 90°

(and 270°) and senses the response signal at 0° (and 180°).  The function of the 
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Secondary Vibration Mode
Sin (2 )

Primary Vibration Mode
Cos (2 )

Primary Mode
Control

Secondary Mode
Control

Output
Stage

Figure 1.1 Natural mode shapes and control system functions used in an ideal
vibrating cylinder gyroscope.
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primary mode control is to excite the resonator at resonance and to produce a constant

amplitude of vibration.  The secondary mode control is used to increase the bandwidth of

the gyroscope.  Some designs which do not use secondary mode control have been

developed for applications requiring small bandwidths.  The output stage demodulates the

signal in the secondary mode control loop and produces a dc signal proportional to the

applied rotation rate.    

Various transduction methods have been applied to excite and sense the resonator

vibrations.  These methods include electromagnetism, electrostatics and piezoelectricity.

Only piezoelectric actuation and sensing is considered in this dissertation.

As a vibratory gyroscope incorporates sensing and actuation linked by control

functions, it may be regarded as a “smart sensor”.  It is not surprising therefore, that much

of the knowledge applied in the field of “smart material systems and structures” should

also be relevant in this research and vice versa.

1.2  Review of Vibratory Gyroscope Designs

The following review is intended to introduce the reader to the major

developments in the field of vibratory gyroscopes.  The designs which have had a major

impact on the field, in the author’s opinion, are briefly described.  This review is not

intended to be an exhaustive account of all the published literature but focuses rather on

practical developments.  The designs are reviewed in order of increasing geometric

complexity rather than in historical order.

In 1851, Foucault demonstrated that a pendulum could be used to measure the

rotation of the earth [2].  Foucault’s pendulum was essentially the first example of a

vibratory gyroscope and for this reason it is often cited in the vibratory gyroscope

literature. 

Quick [3] presented an analysis of a vibrating string angular motion sensor.  The

string was fixed at one end and was excited in the first lateral mode by parametric

excitation applied along the string axis.  As in the Foucault pendulum, this design was a

rotation angle sensor rather than an angular rate sensor.  Stability conditions were derived

and the effects of important imperfections, elastic and damping asymmetry, were analyzed.
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Unfortunately no actual device details or experimental results were presented.

Two very low-cost designs based on vibrating beams have been produced in Japan.

Murata’s “Gyrostar” is based on a steel beam with triangular cross-section which is

actuated and sensed by attached piezoceramic elements [4].  The Tokin design uses a

piezoceramic cylindrical beam [5].  In both designs the beams vibrate in the first flexural

mode of a free-free beam and are supported at the nodes.  These devices do not use

feedback control of the secondary mode.

Designs based on pendulums, vibrating strings or cantilever beams are sensitive to

linear accelerations.  A simple balanced resonator can be formed by using a tuning-fork

in which the tines are forced to vibrate equally but in opposite directions.  An early tuning-

fork design was described by Hunt and Hobbs [6].  In this design the Coriolis forces

caused a torsional oscillation of the stem of the tuning-fork, which was measured to

indicate the applied rotation rate.  Feedback control of the torsional oscillation was used

to improve the response time of the gyroscope.  Their design was large and expensive to

manufacture, but it did produce a zero-rate offset stability of better than 1 degree/h albeit

at constant temperature.  

A micromachined tuning-fork gyroscope was successfully produced by Systron

Donner.  The “Gyrochip” uses a single-crystal piezoelectric quartz resonator that

incorporates a torsion stem with a tuning-fork at each end.  One tuning fork is excited so

that the tines vibrate towards and away from each other.  When an angular rotation rate

is applied about the axis parallel to the tines, Coriolis forces produce a torsional moment

in the stem.  The second tuning-fork responds to this twisting of the stem and the out-of-

plane deflection of the tines provides a measure of the rotation rate.  The two modes of

vibration used in this design have different natural frequencies and no feedback control of

the secondary mode is used. A micromachined design which uses only one tuning-fork

without a torsion stem was investigated by Söderkvist [7].

The effect of rotation on the vibration of thin-walled cylinders or bells was first

analyzed by Bryan in 1890 [8].  Researchers at General Motors Corporation made use of

this effect when they started development of a gyroscope based on a thin-walled

hemispherical resonator in the 1960's [9,10].  The hemispherical resonator gyroscope
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(HRG), comprises a fused-quartz hemispherical resonator which is actuated and sensed

electrostatically.  A series of patents have been filed describing a number of improvements

on the original idea.  The original patents covered operation as an angular rate sensor.

Later patents by Loper and Lynch [11,12] described the operation as a rate integrating

sensor.  In this mode the vibrating pattern is allowed to precess freely around the

circumference of the resonator.  This “whole angle operation” had the unique advantage

that the device would continue to integrate the applied rotation during short electrical

power interruptions that could follow nuclear explosions.  More recently, changing

between operation as a rate integrating sensor and operation as a rate sensor during a

mission has been described [13].  Devices based on resonators with Q-factors of 107 have

achieved inertial grade performance and compete with modern ring laser gyroscopes.  The

HRG is clearly the most technologically advanced and impressive vibratory gyroscope

developed.  Unfortunately, apart from the patents, there is not a great deal of in-depth

technical information available.  This is probably due to the requirements of military

secrecy.  Some of the main features of the HRG design are described by Loper and Lynch

[14].  

It appears that much of the knowledge developed during the development of the

HRG was not applied by other researchers developing low cost designs because these

designs  were rate sensors while the whole angle operation of the HRG was described in

the literature.  The HRG proved that high performance is attainable with vibratory

gyroscopes.  It appears that much of this technology will find application in commercial

markets through the development of a micromachined ring gyroscope being developed by

Delco [15].  This design makes use of many of the ideas developed for the HRG but

because it is micromachined it is small and can be mass produced at low cost. 

Another device which stems from the work of Bryan is the vibrating cylinder

gyroscope.  A design which used a steel thin-walled cylinder, closed at one end, with

discrete piezoceramic actuation and sensing elements was developed by Marconi (later

GEC-Marconi Avionics) [16].  Initially this design was aimed at military applications in

missiles and smart munitions.  The ruggedness of the sensor was proven in shock tests up

to 25,000 g.  The unique features of vibratory gyroscopes opened the way for commercial
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applications and this gyroscope was used in the active suspension system of the Formula

1 Team Lotus racing cars during 1987.  Today this gyroscope is used as the yaw rate

sensor in the “Vehicle Dynamics Control System” manufactured by Robert Bosch GmbH

and is in mass production [17].

Instead of attaching piezoceramic elements to a steel cylinder it is possible to make

the cylinder from piezoceramic material.  The feasibility of such a device was analyzed by

Burdess [18].  British Aerospace (Systems & Equipment) Limited (BASE) developed and

produced the Vibrating Structure Gyroscope (VSG) based on such a resonator [19].

BASE has developed two newer designs based on rings.  The first uses a steel ring and

electromagnetic excitation and capacitive sensing while the second uses a micromachined

ring with electromagnetic sensing and actuation.

Today the potential of micromachining technology is being applied in the

development of low cost designs by various universities and companies [20].  Strong

interest in micromachined designs is reflected by the number of presentations on these

designs at the recent Stuttgart and St. Petersburg conferences.  A number of the

companies that were producing macromachined vibratory gyroscopes have started

developing or producing micromachined designs.  Delco, who produced the HRG are now

developing the micromachined vibrating ring gyroscope [21].  Bosch who are producing

a vibrating cylinder gyroscope are currently developing a micromachined design based on

two oscillating masses [22].  BASE, who have produced piezoceramic cylinder vibratory

gyroscopes and a steel ring vibratory gyroscope are now producing a micromachined ring

design.  Murata have graduated from the macromachined beam to a micromachined mass

supported by four thin beams using electrostatic actuation and capacitive sensing [23].

Draper Labs have done extensive development of a 1mm2 micromachined tuning fork

design which has two perforated masses (tines) which vibrate in the plane.  Coriolis forces

cause an out-of-plane rocking motion which is sensed capacitively [24].  Researchers at

Berkley have demonstrated single and two axis micromachined designs.  The two axis

design is based on a disk forced to oscillate rotationally about its axis.  When rotations are

applied in the plane of the disk, Coriolis forces cause the disk to tilt.  This provides a

measure of the two components of applied rotation [25,26].  These devices have been
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integrated with micromachined accelerometers to demonstrate very small inertial

measurement units [20].     

1.3 Effects of Imperfections

The operation of vibratory gyroscopes as described earlier, did not consider the

effects of imperfections.  Imperfections, which are always present during the manufacture

of vibratory gyroscope resonators, limit the performance of vibratory gyroscopes.

Manufacturing imperfections cause departures from the ideal mass, stiffness and damping

distributions and therefore effect the resonator dynamics.  The effects of imperfections on

the resonator dynamics are readily observable. Especially in resonators designed to have

identical natural frequencies.  These resonators show splitting of natural frequencies,

location of the two mode shapes and different damping factors associated with each mode.

A method of characterizing the resonator was described by Shatalov et al. [27].   

After the manufacture of a resonator, it is common practice to test it and then to

mechanically balance the structure to reduce the effects of imperfections.  This balancing

procedure generally involves the removal or addition of mass, aiming to minimize the

splitting of natural frequencies and to align the natural modes with the sensor and actuator

positions.  This balancing procedure is time consuming, and is usually performed at only

one constant temperature.  The resonators also often operate in a vacuum but are balanced

at atmospheric pressure.  The changes that occur in the dynamics of the resonator due to

temperature changes and aging with time, make it pointless to balance the structure to

extreme accuracies.  It is therefore more desirable to design the resonator and control

system to be as insensitive as possible to variations in the properties of the resonator.  

The effects of imperfections when the resonator is operated as an angle sensor

have been investigated by various researchers.  In this mode of operation the vibrating

pattern is allowed to precess and the angle of precession provides a measure of the angle

of applied rotation.  Because of damping in the resonator, it is necessary to supply energy

to sustain the vibration amplitude without affecting the position of the vibration pattern.

These studies will be briefly reviewed before operation in the rate mode is described.

The use of a vibrating string as a rotation angle sensor was examined by Quick [3].
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In this sensor, the string was excited parametrically by a force applied along the string

axis.  The precession of the plane of the string vibration, relative to the case, provided the

measure of the applied rotation angle.  Effects of anisoelasticity (elastic asymmetry) and

damping asymmetry were considered.  Anisoelasticity was shown to produce an orbital

vibration instead of oscillation in a plane.  Nonlinear restoring forces then cause the orbit

to precess causing angle measurement errors.  Anisoelasticity was shown to be the

dominant source of drift.  The result of damping asymmetry is that the vibration plane will

drift towards the axis of lowest damping. 

Friedland and Hutton [28] generalized the results of Quick.  The motion of a point

on the resonator was described as an ellipse in the Cartesian plane formed by the two

generalized coordinates associated with the two modes of vibration.  When the resonator

is rotated, at low rotation rates, the motion of the point can be approximated by a rotating

ellipse.  In order to eliminate the effects of anisoelasticity it is necessary to force the

elliptical motion into a straight line.  The effect of damping asymmetry was shown to be

inseparable from an input rotation rate.  The result is that the major axis of the ellipse

rotates to align with the axis of minimum damping.

Loper and Lynch [14] described the operation and major drift mechanisms in the

HRG.  In the HRG, parametric excitation is used to provide energy to maintain the

amplitude of vibration without affecting the position of the vibrating pattern.  The control

system included  “quadrature control” which used an “electrical spring” to suppress the

effects of anisoelasticity.  The HRG used electrostatic sensing and actuation and the

“electrical spring” was formed by applying a dc voltage across selected electrode gaps.

The electrostatic force is proportional to the square of the gap distance.  Therefore a

decrease in the gap size results in an increase in the electrostatic force and vice versa.

Because the variations in the gap size during operation are very small, the effect of the

electrostatic field may be represented (to first order) as a negative linear spring.  The dc

voltage was continuously adjusted and in effect it forced the ellipse described by Friedland

and Hutton to be a straight line.  It is perhaps more intuitive to think of the spring being

adjusted to maintain the alignment of one natural mode of vibration with the position of

the vibrating pattern.  In this way the hemisphere is always vibrating in only one natural
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mode, even though the vibration is allowed to rotate around the circumference of the

hemisphere.  Asymmetric damping, which is one of the major sources of drift in the HRG,

was described by two normal damping axes.  The vibrating pattern tends to drift towards

the axis of minimum damping, resulting in a case-oriented drift.  The quadrature control

does not completely eliminate the quadrature signal at the nodes of the main vibration

pattern.  The residual quadrature signal is at the second natural frequency and causes a

“residual quadrature-vibration drift”.  This drift is compensated by using electrical springs

to make the natural frequencies of the two modes equal.  The value of the springs as a

function of the vibration pattern angle is determined during a calibration procedure.

The use of the resonator as a rotation rate sensing element is more popular,

especially for low cost devices.  In this mode of operation the vibration pattern does not

precess freely around the resonator and energy is supplied along one axis only.  The

effects of imperfections on the performance of vibratory gyroscopes operating in the rate

mode, has received only limited attention in the literature.  

The problem of a point mass imperfection in vibrating cylinder gyroscopes, was

treated by Fox [29].  Fox showed that a point mass causes a split in natural frequencies

and also locates the two natural mode shapes. The response to externally applied linear

vibrations and off-input axis rotations was analyzed.  The responses calculated are for the

open loop case, where the secondary vibration mode is not controlled.  In a later paper

[30], Fox demonstrated that manufacturing imperfections such as wall thickness variations

and various discrete features can be represented by an “equivalent point mass” if we

consider the operational modes of vibration only.  The general thickness variation was

represented as a Fourier series and it was shown that the fourth harmonic of thickness

variation needs to be considered when operating in the n=2 vibration modes.  The fact that

general imperfections can be represented as an “equivalent point mass” means that the

effects of imperfections on natural frequency split and the location of the mode shapes, can

be eliminated by introducing a second point mass during the balancing process.  A method

of experimental characterization of vibratory gyroscope resonators was presented by

Shatalov et al. [27].  The method could identify the position and magnitude of a point

mass required to balance a resonator.
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A more general theory of errors was presented by Shatalov and Loveday [31].

Effects of thickness, density, elastic property and damping property variations combined

with linear vibrations and off-input axis rotations were analyzed.  The various forces

present were classified and an expression for the open-loop drift was presented.

These analyses focused on the resonator dynamics and did not consider the effects

of imperfections in the closed loop system or the design of the control system to reduce

the effects of resonator imperfections.   

 

1.4 Research Objectives

The specific objectives of this research on the effects of imperfections in

piezoelectric gyroscopes were:

• To develop an approach for the modeling of piezoelectric resonators which

accurately describes the electromechanical coupling.  Apply the method to a

piezoelectric vibrating cylinder gyroscope including various imperfections.

• To analyze the effects of elastic boundary conditions on the dynamics of thin-

walled cylinders used as vibratory gyroscope resonators.

• To determine the effects of feedback control on the resonator dynamics with the

intention of using feedback control to minimize the effects of imperfections.

• To investigate the role of control system design in suppressing the effects of

resonator imperfections and thus improving performance.

• To examine the effects of piezoelectric property variations on the performance of

vibratory gyroscopes.

1.5 Dissertation Layout

Chapter 1 presents a brief introduction to vibratory gyroscopes.  The principles of

operation are described and various applications are listed.  A number of the major

developments in the field are described and the literature on the analysis of the effects of

imperfections in these devices is reviewed.  

Chapters 2 and 3 focus on the modeling of the resonators used in vibratory

gyroscopes.  Modeling the coupled electromechanical behavior of piezoelectric resonators
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is addressed in chapter 2, while the effects of elastic boundary conditions on the dynamics

of rotating thin-walled cylinders is analyzed in chapter 3.  The models described in these

two chapters are used through out the rest of the dissertation.  

The effects of feedback control on the resonator dynamics is investigated in

chapter 4.  The more general problem of designing the control systems used in vibratory

gyroscopes to reduce the effects of imperfections is treated in chapter 5.  The control

functions are motivated by inspection of the equations of motion in averaged variables and

methods for the analysis of the closed loop system are illustrated.  

The effects of piezoelectric property variations on the closed loop performance of

vibratory gyroscopes is analyzed in chapter 6, and rules for the selection or optimization

of piezoelectric materials are established.  

In each chapter an attempt has been made to present the general theory first, and

then to demonstrate the theory by applying it to the piezoelectric vibrating cylinder

gyroscope.  Where possible experimental results have been used to verify the theoretical

predictions.  Each of the objectives listed above is treated in a separate chapter.

Conclusions are included in each chapter and a general summary of these conclusions is

presented in chapter 7.
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Chapter Two

Piezoelectric Resonator Modeling

2.1 Introduction

The design and analysis of a vibratory gyroscope begins with a model of the

resonator dynamics.  In the case of the piezoelectric resonator this model is required to

capture the dynamics of the resonator, the electromechanical coupling and the capacitive

nature of the piezoelectric ceramics.  To be able to study the effects of imperfections it is

necessary to include typical manufacturing errors such as misplacement of the

piezoceramic elements.  

The model of the resonator can be used to optimize the dimensions of the design

to achieve a required natural frequency, or to maximize the actuator authority or strain

measurement sensitivity of the piezoceramic elements.  If imperfections are included, a

sensitivity analysis can be performed to determine the manufacturing tolerances which

need to be achieved.  An understanding of the effects of imperfections is required when

selecting the form of compensation algorithm to be used in an inertial navigation system

based on vibratory gyroscopes.  Finally a good model of the resonator is required for the

design of the control system.

In this chapter the derivation of a system of equations of motion for a electro-

elastic body is presented. The method is applied to a piezoelectric cylinder gyroscope

resonator, including imperfections.  Comparison of the theoretical predictions with

experimental results was performed to verify the accuracy of the model.  The presentation

of the research here is similar to that published by Loveday [32]. 

2.2  Modeling a Coupled Electro-Elastic Structure

The derivation of coupled equations of motion of an elastic structure including

piezoceramic elements has been comprehensively documented by Hagood, Chung and von

Flotow [33] and Hagood and Anderson [34].  Only a general outline of the procedure
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which is based on Hamilton’s principle and the Rayleigh - Ritz method, is presented here.

The aspects which are particular to the cylindrical geometry being modeled are described

in greater detail in section 2.3.

The procedure starts with Hamilton’s principle for coupled electromechanical

systems:

The constitutive equations for the piezoelectric material may be written:

The strain-displacement and field-potential relations may be written in the form:

The differential operator, LU  is particular to the elasticity problem being considered and

is given in the following section for the cylindrical shell being modeled.  In the Rayleigh-

Ritz method, the displacement and potential distributions are represented by a

combination of assumed distributions each multiplied by a generalized coordinate.
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Strain and electric field basis functions were defined:

where,

After substituting these equations into Hamilton’s principle and taking variations,

the following system of equations in the generalized coordinates is obtained,

where the mass and stiffness matrices for the structure and the piezoceramic are,

and the capacitance matrix (Cp), the piezoelectric coupling matrix ( ) and the mechanical

and electrical forcing matrices are defined as:
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Equation 2.7 describes the dynamics of the coupled electro-elastic structure.

Equation 2.7a is referred to as the actuator equation while 2.7b is referred to a the sensor

equation [33].

2.3 Application to the Vibrating Cylinder Gyroscope Resonator

The geometry and the coordinate system utilized in this model is shown in Fig. 2.1.

The two aspects of the procedure which are particular to the cylindrical geometry are the

selection of appropriate strain-displacement relations and the selection of suitable assumed

displacement and potential functions.  

A number of different strain-displacement equations are presented in the literature

(see Leissa, [35]).  The equations that are used in this chapter are those due to Love and

Timoshenko.  The strain-displacement equations [36] are written in matrix form in

equation 2.14.  This equation defines the differential operator, LU , used in equation 2.3.
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Figure 2.1 Vibrating cylinder gyroscope geometry and coordinate
system utilized in the resonator model.
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u(x, ) ' U1H(x)cos2 % U2H(x)sin2
v(x, ) ' V1F(x)sin2 % V2F(x)cos2
w(x, ) ' W1F(x)cos2 % W2F(x)sin2

(2.15)

In equation 2.14, z is the distance from the mid surface of the shell, measured positive

outwards.

Fox [29] used the Rayleigh-Ritz method with the Lagrange equations to obtain

equations of motion of a cylinder closed at one end and open at the other.  The assumed

displacements used, were based on a combination of a circumferential wave and the

cantilever beam functions.  According to Warburton [36], the natural frequencies

predicted by this method agree reasonably accurately with solutions that satisfy the shell

theory equations and all the boundary conditions.  The assumed displacement distributions

used here are essentially two assumed modes of vibration, one rotated by 45o with respect

to the other, and may be written as follows:

where U1, U2, V1, V2, W1 and W2  are generalized coordinates and F(x) and H(x) are the

cantilever beam functions:
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For the case of a cantilever beam and [37].1l ' 1.8751 1 ' 0.7340955

The electrical potential is assumed to vary only in the radial direction, through the

thickness of the ceramics.  A linear variation in electrical potential for each of the eight

ceramic elements may be represented as follows:

The electrical potential at the inner radius of the ceramic element is zero and the

generalized coordinate represents the electrical potential at the outer radius of thei(t)

ceramic.

The equations of motion are obtained by substitution of the equations in this

section into the equations of the previous section.  The equations of motion of the coupled

system may be written in the following form:
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In this chapter only the non-rotating cylinder is treated.  In chapter 5 the control

system is analyzed.  This requires the inclusion of Coriolis effects in the form of a

gyroscopic matrix.  The derivation of the gyroscopic matrix , the mass matrix and a single

term of the stiffness matrix is outlined in appendix A.   

Mechanical coupling between the assumed modes of vibration occurs when there

is a mechanical imperfection such as a point mass or a misplaced ceramic element.  In the

ideal case the mechanical coupling matrices are zero and the natural modes of the system

correspond to the assumed modes.  When imperfections are present the natural modes of

the system are linear combinations of the assumed modes.  These equations of motion

were used to obtain the results presented in section 2.4.

2.4 Results

The dimensions used in the model are shown in Fig. 2.2.  The experimental devices

differ in certain details from the model.  In practice, the ceramic elements are not curved,

but are rectangular blocks which are soldered onto flat spots machined on the cylinder.

The perfectly clamped boundary condition assumed in the model is obviously not

achievable in practice and thin wires are glued to the sides of the cylinder to make

electrical contact with the ceramics.  
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0.25 mm

2 mm

Figure 2.2 Physical dimensions used in the resonator model.
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2.4.1  Ideal Device

The natural frequency predicted by the model was 19.845 kHz.  This is

significantly higher than the experimental results which vary between 14 kHz and 16 kHz.

The main reasons for this error are believed to be flexibility in the "clamped" boundary

condition, which is investigated in chapter 3, and the decrease in stiffness caused by

machining the flat spots on the cylinder.  The error in natural frequency does not severely

limit the usefulness of the model.  The ratio of the generalized coordinates describes the

mode shape of the structure.  The ratio U1: V1: W1 was calculated to be -0.155:-0.493:1

which represents a ratio in the maximum displacements of -0.114:-0.493:1.  It was

necessary to include damping in the model so that frequency response functions could be

calculated for direct comparison with experimental results. This damping was included as

an imaginary stiffness component.  Measured frequency responses indicated a Q-factor of

2400 and this value was used to calculate the imaginary component of the stiffness matrix.

The measurement was performed in a partial vacuum (pressure less than 1 Pa) and

therefore acoustic radiation losses were negligible. 

The calculated and measured electrical admittance of one ceramic element, with

the other seven elements open circuited, is shown in Fig. 2.3.  The resonance appears to

be more pronounced in the measured admittance than in the calculated admittance even

though the two curves have the same Q factor.  An effective coupling coefficient for

piezoelectric transducers based on the maximum and minimum admittance frequencies can

be defined as follows [38]:
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Figure 2.3 Comparison of calculated and measured electrical admittance
of one piezoceramic element.
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Applying equation 2.19 to the calculated and measured data produces effective

coupling factors of 0.0317 and 0.0321 respectively.  This indicates that the model correctly

simulates the electromechanical coupling in the structure.

In the operation of the device, the two opposite ceramics (180E apart) are

commonly used as actuators and the pair of ceramic elements 90o away are used as sensors.

The voltage frequency response corresponding to this situation is easily calculated and

measured.  These results are shown in Fig. 2.4.  The correlation between the calculated and

measured maximum amplitudes is well within the range of experimental variation from one

device to the next.  The calculated maximum radial displacement for a one Volt excitation

was 0.5 µm.  It is interesting to note that even at this small amplitude some nonlinear

softening behavior was observed in the measured response.

2.4.2 Imperfect Device

The first imperfection considered was a point mass defect.  A point mass situated

at the lip of the cylinder at an angle of  = 0 was included in the model.  The effect of the

added mass was to decrease the natural frequencies of the two modes.  The one natural

frequency is decreased more than the other, resulting in a separation of natural frequencies

which is undesirable for the operation of the device.  Because the added mass is very small

compared to the mass of the structure, the changes in frequency are approximately linearly

dependent on the magnitude of mass addition.  It was found that the natural frequency

separation is approximately 19 Hz per 1 mg of mass addition.  In this case, the natural

mode shapes correspond to the two assumed displacement distributions described by

U1,V1,W1 and U2,V2,W2 respectively.  If the point mass is located at an angle  where

the product of cos(2) and sin(2) is non zero then coupling between the two assumed

displacement functions occurs in the mass matrix.  This coupling causes the resultant mode

shapes to be a linear combination of the two assumed displacement functions.  The

important result here is that the location of the point mass defect determines the position

of the two natural mode shapes.  A nodal point, of radial motion, of the higher frequency

mode and an anti-nodal point of the lower frequency mode will coincide with the point

mass location.  For example, a 1 mg point mass located at  = 15o  resulted in a frequency
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Figure 2.4 Calculated and measured voltage response functions
illustrating the accuracy of the amplitude prediction.
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difference of 19 Hz and produced natural modes with generalized displacements of

[U1,V1,W1,U2,V2,W2] = [0.119;0.380;-0.769;0.069;-0.219;-0.444] and [0.069;0.219;-

0.444;-0.119;0.380;0.769].

To verify this effect experimentally a point mass of 1.55 mg was added to a device

at an angle of approximately  = 22.5o .  The device had previously been fine-tuned, by

mechanical balancing, to have a natural frequency separation of less than 0.5 Hz.  Voltage

frequency responses were measured before and after the mass addition.  These responses

were measured by exciting one pair of ceramic elements and measuring the response at the

pair of ceramic elements located at 90o and at the pair at 45o.  The mass addition was

included in the model and responses analogous to the measured responses were calculated.

The measured and calculated responses are shown in Figs. 2.5 and 2.6 respectively. 

These measurements were conducted in air and the measured Q factor of 1600 was

used in the model.  The results clearly show the separation of natural frequencies and the

location of the natural mode shapes not coinciding with the ceramic locations.  The

calculated responses are slightly larger than the experimental responses but it must be

remembered that the point mass is not the only imperfection present in the experimental

device.  The presence of other imperfections is evident in the 45o response of the device

before the point mass was added.  In a perfect device this response would only be due to

the presence of other modes and would not show these resonances.  The model does not

include the effects of other modes so the 45o  response, predicted for the perfect device,

was zero and was not plotted.

The second imperfection considered is the misplacement of a single ceramic

element.  This imperfection may be thought of as a combination of point mass addition and

removal, point stiffness addition and removal and an error in the angle of forcing or

sensing.  The effect of this imperfection on the natural frequency separation between the

two modes was found to be 2.76 Hz per 1o of misplacement for small placement errors.

In this case even a very small location error causes the mode shapes to be orientated so that

a node and an anti-node are located at 22.5o. 
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Figure 2.5 Splitting of resonant frequencies caused by the point mass
addition - measured voltage response functions.
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Figure 2.6 Predicted splitting of resonant frequencies caused by the
point mass addition - calculated voltage response functions.
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2.5 Conclusions

The application of Hamilton’s principle and the Rayleigh-Ritz method provided an

effective approach for modeling the dynamics of piezoelectric resonators.  A coupled

electromechanical model of a piezoelectric vibrating cylinder gyroscope resonator was

developed.  Ceramic location errors and point mass defects were included in the model to

simulate typical imperfections in these structures.  Comparisons with experimental results

indicate that the model could be used to predict the mass modifications required to reduce

the effect of imperfections on production devices.  The sensitivities to manufacturing

imperfections such as piezoceramic misplacement can be determined from this model, and

used to specify manufacturing tolerances.  The model is suitable for use during design of

the control system.
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Chapter Three

Elastic Boundary Conditions

3.1 Introduction

A resonator used in a vibratory gyroscope requires a robust means of support

which does not interfere with the vibration of the resonator. The requirements that the

resonator be accurately aligned with the housing, rugged and lightly damped, places

demands on the design of the supporting structure.  It is desirable that as little energy as

possible be transmitted from the resonator through the support because this represents a

damping loss.  It is also necessary that changes in the gyroscope housing are not

transmitted via the support to the resonator where these changes may cause performance

degradation.  Although electrostatic suspension of a ring resonator was patented by Stiles

[39] this has not been successfully implemented in a product.  A vibration node represents

an ideal location for mechanically mounting the resonator and this has been attempted in

beam resonators.  Cylinder and hemisphere resonators are generally mounted on a stem.

Models of cylindrical resonators usually assume that the closed end of the cylinder is rigid,

and a clamped boundary condition is applied.  In the previous chapter it was found that

such a model produced a significant error in resonant frequency prediction.  In this chapter

the free vibration of an elastically supported cylinder is studied.  The effect of the

boundary stiffnesses on the natural frequency and the sensitivity to rotation are

investigated as these effects are of importance during resonator design.  The research

reported here is essentially the same as that published by Loveday and Rogers [40].  

3.2 Vibration of Rotating Thin Cylinders

The vibration of thin elastic shells has been studied by many researchers.  The

results of many of these studies have been summarised by Leissa [35] and Blevins [41].

The literature contains numerous analyses of thin cylindrical shells with ideal boundary

conditions classed for example, as clamped, free, simply supported with axial constraint
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and simply supported without axial constraint.  In reality, the perfect clamped boundary

condition cannot be achieved as there will always be some flexibility in the support.  The

effects of this flexibility are investigated in this chapter.

The effect of rotation on the vibration of a cylinder was first analysed by Bryan [8]

in 1890.  Bryan showed that rotation causes the nodes of a standing wave pattern to rotate

relative to the cylinder.  The vibrating pattern lags behind the rotation of the cylinder.

This effect, which is referred to as the Bryan effect, is used today in a class of angular

rotation rate sensors which are based on vibrating cylinders [16,18,29,32].  The influence

of boundary conditions on the natural frequencies and sensitivity to rotation is important

in the design of these sensors.  

Three methods are generally applied to the analysis of thin, cylindrical shell

vibration.  An exact solution of waves propagating in infinite, hollow cylinders, based on

the three-dimensional theory of elasticity, was described by Armenàkas et al. [42].  This

solution is also valid for simply supported shells and serves as a benchmark against which

results from analyses based on shell theories can be evaluated.  Approximate analyses

based on various shell theories have been performed using the Rayleigh-Ritz method

[35,41].  An exact solution of the Flügge shell theory equations of motion has been

performed by various authors [43-46] in which different ideal boundary conditions were

analysed.  The solutions achieved by this approach are accurate within the limits of the

shell theory used.  

In this work the general analysis procedure presented by Warburton [44] is

adopted and extended to include elastic boundary conditions and rotation of the cylindrical

shell.  The elastic boundary conditions are represented by distributed springs along the

edges of the cylinder.  By varying the stiffness coefficients of these springs it is possible

to represent any of the ideal boundary conditions and also to investigate the effect of

departures from the ideal conditions.  Using this method, the effect of elastic boundary

conditions on the free vibrations of cylindrical shells can be quantified. 
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3.3  Theoretical Formulation

The derivation presented here follows that of Warburton [44], but includes the

elastic supports in the potential energy and the rotation rate in the kinetic energy.  The

effect of centrifugal forces producing a deformed equilibrium position with stresses which

contribute to the potential energy has been neglected.  Analysis of high rotation rates

requires the calculation of the stresses in the equilibrium position which is beyond the

scope of the present paper.  Centrifugal forces arising from the kinetic energy, which are

proportional to the square of the rotation rate, have therefore also been neglected.  The

analysis is therefore only valid for rotation rates well below the natural frequencies of

interest.  

3.3.1 Kinetic and Potential Energy Expressions

The kinetic energy of the rotating cylinder may be written as follows:

The potential energy of the system is the sum of the strain energy of the cylindrical

shell and the strain energy stored in the elastic boundaries.  Flügge shell theory was used.

Therefore four distributed springs are required to represent the elastic boundary conditions

at each end of the cylinder as shown in Fig. 3.1.
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Figure 3.1 (a)  Definition of coordinates and dimensions.  
(b) Elastic boundary conditions shown on a segment of the cylinder.
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The potential energy of the cylinder and elastic boundary conditions may be

written as follows (note that the radial displacement is defined as positive outwards while

in [44] it was positive inwards):

3.3.2 Equations of Motion and Boundary Conditions

The following equations of motion and boundary conditions were derived by

application of Hamilton’s principle using the above expressions for the potential and

kinetic energies.  Terms proportional to the square of the rotation rate were omitted while

the Coriolis forces were retained.  The equations of motion in the axial, tangential and

radial directions are presented in equation 3.3.
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At x = 0 the boundary conditions are:
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At x = L the boundary conditions are:

The boundary conditions at the ends of the cylinder provide the conditions for

force equilibrium.  The boundary conditions at each end of the cylinder are identical except

for the sign difference in the distributed spring forces.  Note that in the second boundary

condition at each end of the cylinder there is a factor 3 in the term dependent on .  This

factor was not present in [44] as the actual shear force instead of the effective shear force,

was used in that work [45].  This difference has only a small influence on the resulting

natural frequencies.

3.3.3 Solution of the Equations of Motion

The general solution, used by Warburton, represents a standing wave and is

applicable for the non-rotating cylinder.  For the rotating cylinder it is necessary to use the

more general travelling wave solution listed in equation 3.5.
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Substitution of this general solution into the equations of motion (equation 3.3)

yields the following system of equations:

where, the frequency factor, .) ' Ta D(1&<2)/E

Nontrivial solutions of this system of equations are found by equating the

determinant to zero.  For a given cylinder, if the frequency factor ( ), the rotation rate

( ), and the number of circumferential waves (n) are specified, the determinant can be

written as a quartic in 2.  In the calculation of the determinant the square and higher

powers of  were neglected.  The roots of this equation yield the values of  that satisfy

the equations of motion and are the admissible axial wave numbers.  
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The frequency factor for the infinite cylinder is given by  .2
R '

n 2(n 2
&1)2

n 2
%1

At frequencies greater than the natural frequency of an infinite cylinder the roots have the

form , where are real and positive [44].  Once the± 1, ±i 2, ±(p± iq) 1, 2, p and q

roots have been determined it is possible to use equation 3.6 to calculate the amplitude

ratios as was done in [44].  The equations required for this procedure, including the

gyroscopic terms, are included in Appendix B. The displacement functions can then be

written as follows:

where the amplitude ratios (A1 , ... , A8 ) are real constants, defined in Appendix B, and

the unknown coefficients (C1 , ... , C8) depend on the boundary conditions.
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cos(n % pt)%cos(n % qt) ' 2cos[n( %

1
2

( p% q)t/n)]cos 1
2

( p& q)t (3.8)

Substitution of the displacement functions (equation 3.7) into the boundary

conditions (equation 3.4) produces a homogeneous system of equations in the unknown

displacement coefficients (C1 , ... , C8).  This system of equations may be written in matrix

form and the determinant of the matrix must once again be zero for nontrivial solutions.

For this determinant to be zero the correct frequency must be chosen at the beginning of

the procedure and it is necessary to iteratively search for the frequencies which produce

nontrivial solutions.  These frequencies correspond to the natural frequencies of the

cylinder for the selected number of circumferential waves.  The index m is commonly used

to number the axial modes starting from the lowest frequency mode (m = 1).  During each

iteration, the roots of the characteristic equation given by the determinant of equation 3.6

and the amplitude ratios defined in Appendix B, have to be computed.

3.3.4 The Influence of Rotation

If the cylinder is not rotating and a travelling wave solution with frequency  is

found there will also be a solution with frequency -  because the travelling wave can

travel in either direction around the cylinder.  When a rotation rate is applied, the positive

and negative travelling waves no longer have the same magnitude of frequency.  For low

rotation rates the two travelling wave solutions have almost identical amplitude ratios and

may be combined and represented as a “standing wave” which rotates relative to the

cylinder [47].  The rotation rate of the “standing wave” may be related to the positive and

negative frequencies (p and q) by considering the combination of the two travelling

waves as follows [47]:

This equation shows that the two travelling waves may be represented as a

“standing wave” with frequency which rotates relative to the cylinder at a1
2

( p& q)
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rate of .  The ratio of this precession of the “standing wave” (relative to1
2

( p% q)/n

the cylinder) to the angular rotation rate applied to the cylinder is called the Bryan Factor

and gives a measure of the sensitivity of the mode of vibration of the cylinder to rotation.

The Bryan Factor is defined as follows:

Bryan showed that for rings and infinite cylinders performing inextensional

oscillations this factor is equal to 2/(n2+1).  Therefore the vibrating pattern will lag the

applied rotation rate,  by 0.4 , 0.2  and 0.118  for n=2,3 and 4 respectively.  The

decrease in Bryan Factor with increasing number of circumferential waves is one reason

that the n=2 mode is generally selected for use in vibratory gyroscopes.

For the low rotation rates being considered it is possible to calculate the Bryan

Factor from the displacement functions of the non - rotating cylinder as follows [31]:

For low rotation rates, equations 3.9 and 3.10 give the same result. 

3.4 Results

To verify the analysis, various non-rotating cylinders with idealised boundary

conditions were analysed and compared to published results.  These results, for a selection

of geometries and circumferential wave numbers, are listed in table 3.1.  The results for

the clamped-free boundary conditions agree with the results presented in [45].  This

indicates that the numerical implementation of the algorithm is correct.  The comparison

with results from the exact solution of the three dimensional elasticity problem [42] shows

the accuracy of the method, based on Flügge shell theory, for calculating natural
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frequencies of simply supported cylinders without axial constraint.  It is noted that the

accuracy of the method decreases as the thickness-to-radius ratio increases, and also as

the number of waves around the circumference increases.  

The influence of boundary stiffnesses on the natural frequencies for the case of two

circumferential waves was investigated as this vibration mode is generally used in vibrating

cylinder gyroscopes.  Firstly, a cylinder supported at both ends with two circumferential

waves, was considered.  The boundary stiffness in one direction was then varied at both

ends while the other stiffnesses had high values representing rigid boundaries.  The natural

frequency was calculated for each combination of boundary stiffnesses.  For example, the

value of ku (the axial stiffness) was varied at both ends of the cylinder, while the other

stiffnesses were set to a large constant value. Secondly, a cylinder supported at one end

and free at the other end was considered.  At the free end the spring constants were set

to zero while at the supported end one spring constant was varied while the others were

kept high.  The spring constants may be non-dimensionalized as follows:

The results of the analysis of the cylinder with equal boundary conditions at either

end are shown in Fig. 3.2.  In the figure the variation of the frequency factor with

boundary stiffness for the case of two waves around the circumference is illustrated.  It

is seen that the tangential stiffness has a large effect on the natural frequency.   The radial

and radial bending stiffnesses have a smaller influence, while reducing the axial stiffness

has a negligible effect.  The case of a cylinder supported at one end and free at the other

is illustrated in Fig. 3.3.  Here it is found that the axial stiffness has an extremely large

influence on natural frequency while the other stiffnesses have a smaller influence.

Removing the axial constraint reduced the natural frequency of this mode by 75 %.  In all

cases increasing the boundary stiffnesses increased the natural frequency as expected. 

The influence of boundary stiffness on Bryan Factor is presented in Fig. 3.4 for the

cylinder supported at both ends and in Fig. 3.5 for the cylinder supported only at one end.

It is evident that the tangential stiffness tends to decrease the Bryan Factor significantly
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in the cylinder supported at both ends and to a lesser extent in the cylinder supported at

one end.  The  axial restraint increased the Bryan Factor of the cylinder supported at one

end but decreased the Bryan Factor of the cylinder supported at both ends.  In general the

Bryan Factor is greater and is also less sensitive to boundary stiffness variations when the

cylinder is supported at only one end.  The Bryan Factor of the short cylinder (L/a = 1)

clamped at one end was found to be 0.3556 which is only 11 % lower than the Bryan

Factor of a ring or infinite cylinder. 
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Table 3.1 Verification of calculated results by comparison with published results

L/a h/a n m Boundary

Conditions

literature

1.14 0.05 2 1 Clamped -

Free

0.308 [45] 0.308

1.37 0.05 4 1 Clamped -

Free

0.245 [45] 0.245

1 0.05 4 1 Simply

Supported-

Simply

Supported

0.492 [42] 0.496

1 0.1 4 1 Simply

Supported-

Simply

Supported

0.752 [42] 0.779

1 0.05 2 1 Simply

Supported-

Simply

Supported

0.675 [42] 0.677

1 0.1 2 1 Simply

Supported-

Simply

Supported

0.738 [42] 0.747
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Figure 3.4  The significant influence of boundary stiffness on Bryan Factor
of a steel cylinder supported at both ends.  ����, varying ku

*; �
�  �, varying kv

*; � ·  � ·  �, varying kw
*; · · · · , varying kw’

*.  (L/a
= 1, h/a = 0.05, a = 6.25 mm, n = 2)
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Figure 3.5 The relatively small influence of boundary stiffness on Bryan
Factor of a steel cylinder supported at one end.  ����, varying
ku

*; �  �  �, varying kv
*; � ·  � ·  �, varying kw

*; · · · · , varying
kw’

*.  (L/a = 1, h/a = 0.1, a = 6.25 mm, n = 2)
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Equation 10 shows that the Bryan Factor is dependent on the product of the

tangential and radial displacements integrated over the length of the cylinder.  It appears

that restraining the tangential motion of the ends of the cylinder (for the n=2 case) tends

to reduce the tangential motion and therefore reduces the Bryan Factor.  The axial

displacement reduces the Bryan Factor and it is expected that the Bryan Factor of finite

cylinders will be less than that of rings or infinite cylinders, performing inextensional

vibrations, where the axial displacement is zero.

Finally, the case of n=4 was analysed following the same procedure as was used

in the n=2 investigation.  Although this mode is not generally used in vibratory gyroscopes

it was studied to determine if the trends for the n=2 case are repeated.  The results of this

analysis are shown in Figs. 3.6 to 3.9.  It was found that in the cylinder supported at both

ends the radial and the radial bending stiffnesses had the largest influence on the natural

frequency while in the cylinder supported at only one end the radial stiffness had the

largest influence followed by the axial and rotational stiffnesses.  The Bryan Factor was

decreased by the axial restraint when both ends and when one end was supported.  The

Bryan Factor was not influenced by the tangential stiffness when one end was supported

as it was in the n=2 case.  The Bryan factor was close to that of a ring (0.118) for both

cases and was not greatly reduced by supporting both ends as it was in the n=2 case.

The different trends observed in the results for n=2 and n=4 make it impossible to

make general statements about the effects of the various boundary stiffnesses on the

frequency factors and Bryan Factors.  It is therefore necessary to examine each mode of

interest and to draw conclusions for each mode separately. 

It was observed that the changes in natural frequency and Bryan Factor occur

when the non-dimensionalized stiffness is between 10-2 and 102.  This indicates that it is

only necessary to consider the boundaries as elastic when they have stiffnesses within this

range.  If the boundaries have stiffnesses outside this range it is possible to treat the

boundary stiffnesses as either zero or infinite as is done in the idealised boundary

conditions.  
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Figure 3.6 Influence of boundary stiffness on frequency factor of a steel
cylinder supported at both ends.  ����, varying ku

*; �  �  �,
varying kv

*;           � · � · �, varying kw
*; · · · ·, varying kw’

*.
(L/a = 1, h/a = 0.05, a = 6.25 mm,   n = 4)
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Figure 3.7 Influence of boundary stiffness on frequency factor of a steel
cylinder supported at one  end.  ����, varying ku

*; �  �  �,
varying kv

*;           � · � · �, varying kw
*; · · · ·, varying kw’

*.
(L/a = 1, h/a = 0.1, a = 6.25 mm,   n = 4)
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Figure 3.8 Influence of boundary stiffness on Bryan Factor of a steel
cylinder supported at both ends.  ����, varying ku

*; �  �  �,
varying kv

*; � · � · �, varying kw
*; · · · ·, varying kw’

*.  (L/a = 1,
h/a = 0.05, a = 6.25 mm, n = 4)
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Figure 3.9 Influence of boundary stiffness on Bryan Factor of a steel
cylinder supported at one end.  ����, varying ku

*; �  �  �,
varying kv

*; � · � · �, varying kw
*; · · · ·, varying kw’

*.  (L/a = 1,
h/a = 0.1, a = 6.25 mm, n = 4)
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A cylinder which is to be used in a vibratory gyroscope, is required to have a

constant Bryan Factor in the presence of temperature changes.  It is therefore desirable

to design the cylinder and supporting means to ensure that the boundary stiffnesses are out

of the sensitive range. 

3.5 Conclusions

The free vibrations of elastically supported cylinders including gyroscopic effects

may be calculated by the exact solution of the Flügge shell theory equations of motion.

The accuracy of Flügge shell theory was confirmed for a non-rotating cylinder with simply

supported boundary conditions, by comparison with an exact solution of the three-

dimensional elasticity problem.

Departures from ideal clamped boundary conditions were investigated for a

cylinder supported at both ends, and for a cylinder supported at one end only.  The results

for the lowest frequency n=2 vibration mode are applicable to the design of vibrating

cylinder gyroscopes.  The natural frequency of this mode was most sensitive to changes

in the tangential stiffness of the boundaries when both ends were supported, and to

changes in the axial stiffness of the boundary when only one end was supported.  The

Bryan Factor was decreased by increasing the tangential stiffness of the boundaries.  In

general the Bryan Factor is higher, and is also less sensitive to boundary stiffness

variations when only one end is supported.

The results for the lowest frequency n=4 vibration mode indicate that these trends

do not apply to all vibration modes.  This  makes it necessary to analyse all the modes of

interest in a particular cylinder with elastic boundary conditions.

If the non-dimensionalized stiffnesses of the boundaries are in the range 10-2 to 102

it is necessary to consider the boundaries to be elastic.  Stiffnesses out of this range may

be considered to be zero (free) or infinite (rigid).  If the boundary conditions are designed

to have stiffnesses out of this range the free vibration of the cylinder will be practically

insensitive to small variations in the boundary stiffnesses.
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Chapter Four

Feedback Control Effects on Resonator Dynamics

4.1 Introduction

In this chapter the use of feedback control to modify the dynamics of piezoelectric

resonators is discussed.  This research was published in September 1998 [48].

Mechanical imperfections occur during the manufacture of the resonators used in

vibratory gyroscopes.  These imperfections cause the two vibration modes to have slightly

different natural frequencies and determine the location of the mode shapes with respect

to the structure.  The effect of these imperfections is usually minimized by a mechanical

balancing procedure.  This balancing procedure generally involves the removal or addition

of small amounts of mass from certain locations on the resonator so that the difference

between the two natural frequencies is reduced.  This process is time consuming,

expensive, and is very difficult to perform on small micromachined designs.  As this

process is performed once at a single temperature, changes in the dynamics of the

resonator over time or with temperature will not be accounted for.  Also some of these

resonators operate in a partial vacuum but are balanced at atmospheric pressures.  The

evacuation process can effect the dynamics of the resonator causing an increase in the

difference between the natural frequencies.  

A novel method of adapting the resonator dynamics was used in the HRG [14] and

later also applied in the micromachined ring gyroscope [49].  Electrostatic actuation and

sensing was used in these resonators, and “electrical springs” were produced by applying

DC voltages across the electrode gaps.  The electrostatic force is proportional to the

square of the gap distance, therefore a decrease in the gap size results in an increase in the

electrostatic force and vice versa.  Because the variations in gap size during operation are

very small, the effect of the electrostatic field may be represented (to first order) as a

negative linear spring. By adjusting the value of the DC voltage across the gap, the spring

constant may be varied.  These electrical springs were adjusted to minimize the effects of
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manufacturing imperfections in the resonator structure.  

It has been demonstrated in the literature that the natural frequencies of cantilever

beam type structures containing piezoelectric actuators may be adjusted by feedback

techniques [50,51].  In this chapter it is demonstrated that in the case of a gyroscope

resonator with piezoelectric sensing and actuation, an “electrical spring” can be formed

by using displacement feedback and an “electrical damper” can be formed by applying

velocity feedback.  The electrical springs can therefore be used to decrease the effect of

manufacturing imperfections on the performance of a piezoelectric vibratory gyroscope.

Large feedback gains would result in large signal amplitudes which are impractical.  It is

therefore desirable to be able to predict the gains required.  A method of calculating the

magnitude of the feedback gains required is presented. This method is applied to a

cylindrical resonator with discrete piezoelectric actuator and sensor elements and the

theoretical predictions are verified by measurement.  

4.2 Analysis of the Effects of Feedback Control

In chapter 2 it was demonstrated that the equations of motion for a resonator,

excited by piezoelectric actuators and sensed by piezoelectric sensors, may be derived by

application of Hamilton’s principle to the coupled electromechanical system and

discretization by the Rayleigh-Ritz method.  The set of equations, derived in this manner,

has the form:

These two equations are referred to as the actuator equation and the sensor

equation [32].  The sensor equation may be partitioned to separate the voltages at the

actuation electrodes from the voltages at the sensing electrodes as follows:
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This equation can be rearranged to give the sensed voltage as a function of the

displacement and the applied voltage.

If we feed a combination of the sensed voltages back to the actuator ceramics this

can be regarded as displacement feedback and can be represented as follows:

where, I is the identity matrix and Gd is a matrix of displacement feedback gains.  The

sensed voltage can then be written as:

Substituting the actuation and sensing voltages from equations 4.4 and 4.5 into the

actuator equation yields the undamped equations of motion for the system including

displacement feedback:

where

Equation 4.7 shows that the effective stiffness of the system can be altered by

feeding back signals which are proportional to the displacement of the structure.  An

“electrical spring” has therefore been constructed by using feedback control.  
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If there is no capacitive coupling between the actuation and sensing ceramic electrodes

 the equations of motion simplify to:( Cpsd ' 0)

Equation 4.8 shows that leaving the sensing ceramics with open circuit (or high

impedance) boundary conditions and feeding back signals from the sensing ceramics to

the actuation ceramics, both contribute to the effective stiffness of the structure.

Calculating the eigenvalues of this system for different feedback gains, provides a method

of determining the influence of the displacement feedback gains on the natural frequencies

of the resonator.

If velocity feedback is included, the voltage applied to the actuation ceramics may

be expressed as:

where Gv is a matrix of velocity feedback gains.

Including an arbitrary viscous damping matrix (C) and again omitting capacitive

coupling between the sensing and actuation ceramics yields the following equations of

motion:

From this equation it is seen that the effect of velocity feedback is to modify the

damping characteristics of the system.  It is therefore possible to construct an “electrical

damper” by feeding back a signal proportional to the velocity of the structure.  The natural

frequencies and damping factors of this system may be calculated by transforming the

equations of motion to state space and then calculating the eigenvalues.
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4.3 Experimental Procedure

The feasibility of using feedback techniques to modify the dynamics of a

piezoelectric vibratory gyroscope resonator was tested for the case of a vibrating cylinder

resonator.  This particular resonator comprises a thin-walled, steel cylinder, closed at one

end, with eight discrete piezoelectric ceramics (PZT5A) bonded near the open end.  The

resonator is shown schematically in Fig. 2.1 and dimensions are given in Fig. 2.2.

The radial displacement patterns of the two operational modes of vibration are

shown in Fig. 1.1 as viewed from the open end of the cylinder.  During operation the

primary mode is excited to oscillate at the resonant frequency (approximately 14500 Hz)

at a constant amplitude.  When a rotation is applied about the axis of the cylinder, energy

is coupled from the primary mode into the secondary mode and the vibrating pattern

appears to shift relative to the cylinder.  The vibration of the secondary mode may be

suppressed by actively damping the structure in order to increase the bandwidth of the

gyroscope.  In a perfect resonator the primary and secondary mode would have identical

natural frequencies.  Imperfections which occur during manufacture however, cause a

difference in natural frequency, and also locate the mode shapes relative to the structure

[29].  

The experimental set-up selected to demonstrate the use of feedback to modify the

dynamics of the resonator is shown in Fig. 4.1. A HP 3562A dynamic signal analyzer was

used to measure the frequency response of the resonator by applying random noise

excitation and measuring the response over a 100 Hz frequency range.  The resonant

frequency and the Q factor of the primary mode of vibration were then extracted from the

measured frequency response function. The feedback gain and phase were varied so that

displacement and velocity feedback could be investigated.

4.4 Results and Discussion

The procedure for obtaining the coupled equations of motion for the vibrating

cylinder resonator was applied to the resonator as described in chapter 2.  In chapter 2 the

resonator cylinder was assumed to have a clamped boundary condition at the closed end
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Figure 4.1 Experimental set-up used to measure the effect of feedback 
control on the resonator dynamics.
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of the cylinder.  This assumption resulted in the model over-predicting the natural

frequencies.  The model was extended to include flexibility in this boundary condition, as

described in chapter 3, thus making it possible to adjust the boundary condition until the

correct natural frequencies are obtained.  

The piezoelectric ceramics were soldered to the cylinder at a temperature of

approximately 335 oC and then polarized at a temperature of 120 oC.  The value of the

piezoelectric coefficient (e31) for the ceramics in this condition is not certain, so the

response of the resonator at a frequency of 1 kHz was used to calibrate this parameter.

It was found that decreasing this constant, by 15% from the catalogue value of -5.4

Coulomb/m2 , gave good agreement at 1 kHz.  The experiment described in section 4.3

was simulated using the theory presented in section 4.2.  The predicted and measured

effect of displacement feedback on the resonant frequency of the primary mode is shown

in Fig. 4.2.  The results indicate that by varying the feedback gain from -2 to 2, a change

in the resonant frequency of approximately 10 Hz can be produced.  This change in

frequency is larger than the difference in frequency caused by manufacturing

imperfections.

The slope of the curve is dependent on the square of the piezoelectric coupling

coefficient of the piezoelectric ceramic material as this coefficient influences the magnitude

of the sensed voltage (through matrix  ) and the effect of the drive voltage (throughs

matrix  ).  d

Positive displacement feedback gains caused a decrease in the resonant frequency

rather than an increase, as would be expected.  This occurs because, for the mode of

interest, there is a 180o phase difference between the displacement of the structure at the

sensing ceramic element and the displacement of the structure at the actuation ceramic.

If the feedback control loop was disconnected so that both the sensing and

actuation ceramics had open circuit boundary conditions, the voltages generated at these

ceramics due to displacement of the primary mode, would be equal in magnitude but

would have opposite phase.  This situation is identical to connecting the feedback control



61

Figure 4.2 Resonant frequency change caused by displacement feedback
demonstrating the concept of an “electrical spring”.
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loop with a displacement feedback gain of -1, and would therefore be expected to cause

the same change in resonant frequency.  This experiment was performed and it was found

that changing the electrical boundary condition of the actuation ceramic from closed

circuit to open circuit increased the resonant frequency by 2.5 Hz.  This is equal to the

frequency shift that was obtained by applying a feedback with gain of -1 and is therefore

a very simple method of experimentally determining the slope of this curve without

performing any closed loop experiments.  

The effect of velocity feedback is to modify the damping of the system.  The

damping of a resonator is usually quantified by the Q factor which is inversely related to

the mechanical damping factor ( ) by the expression Q = 1 / 2   [52].  Fig. 4.3 shows the

effect of changing the velocity feedback gain on the Q factor of the resonator.  The

arbitrary viscous damping included in the model was adjusted to give agreement with the

experimental values when no feedback was applied.  Positive velocity feedback gains

cause an increase in the Q factor (decrease in damping) because of the phase difference

between the velocities of the sense and actuation ceramics.  As the velocity feedback gain

is increased, the total damping in the system tends towards zero, and the Q factor

increases rapidly towards infinity.  Increasing the velocity feedback gain further results in

instability of the linear system.  Applying a velocity feedback gain of -1 resulted in a

change in Q factor from 3300 to 1500 which represents a modification in the mechanical

damping factor from 0.00015 to 0.000334.  Velocity feedback is commonly used to

increase the bandwidth of vibratory gyroscopes and the method presented here can be

used to determine the velocity feedback gain required for a particular bandwidth.

The difference between the theoretical and measured results can be almost

completely eliminated by decreasing the piezoelectric coupling coefficient by a further 10

%.  It appears that the method of calibrating this coefficient by using the response at 1

kHz has over-estimated this coefficient because the contribution of other vibration modes

to the response at 1 kHz has not been included in the model.
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Figure 4.3 Q factor change caused by velocity feedback demonstrating 
the modification of the resonator damping properties.
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4.5 Conclusions

A method has been presented for calculating the modification to the dynamic

characteristics of a piezoelectric resonator which can be achieved by applying

displacement and velocity feedback. It was shown that displacement feedback modifies

the natural frequency while velocity feedback modifies the damping factor of the

resonator.  The method was applied to a vibrating cylinder resonator, with discrete sensing

and actuation piezoelectric ceramics, and the calculated results agreed with experimental

results thereby verifying the method.  The cylindrical resonator considered here showed

a change in resonant frequency of approximately 2.5 Hz per unit displacement feedback

gain.  This is sufficient for balancing of this type of resonator to be performed using

displacement feedback instead of the conventional mechanical mass removal.  It was also

demonstrated that a simple experiment can be performed to determine the effect of

displacement feedback on the natural frequency of a resonator without the use of any

feedback electronics. 

The “electrical spring” formed by displacement feedback could be adjusted

continuously, to suppress the effects of anisoelasticity, as was done in the HRG using

electrostatic “electrical springs”.  This would however require the addition of a further

eight piezoceramic elements positioned between the existing eight piezoceramic elements.
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Chapter Five

Control System Design to Reduce The Effects of Imperfections

5.1 Introduction

In chapters 2 and 3 the resonator dynamics were considered and in chapter 4 the

effects of feedback control on the resonator dynamics was analyzed.  In this chapter the

design and analysis of the control system for a vibratory gyroscope operating in rate

sensor mode is described.  Specific attention is given to the ability of the control system

to reduce the effects of resonator imperfections on the gyroscope output.

The design of the control systems, for vibratory gyroscopes, has not been well

documented in the literature.  A good understanding of the effects of the control system

on the performance of the gyroscope is required during the conceptual design of the

resonator and control system.  

Operation of a resonator as a rotation rate sensor generally requires that one

vibration mode of the resonator is excited at resonance.  When the resonator is rotated,

energy is coupled from this mode into a second vibration mode.  This Coriolis coupling

causes a response in the second vibration mode which is used to measure the applied

rotation rate.  The response of this second mode is often controlled by a form of feedback

control.  This control is usually motivated by the need to increase the bandwidth of the

gyroscope. 

The performance of vibratory gyroscopes is limited by the effects of imperfections,

in the resonator, which may be dependent on both time and temperature.  The effects of

imperfections in vibratory gyroscopes operating as rotation angle sensors were studied by

Quick [3], Friedland and Hutton [28] and Loper and Lynch [14].  The effects of

imperfections during operation as rotation rate sensors were investigated by Fox [29,30],

Shatalov and Loveday [31] and Loveday [32].  These studies concentrated on the effects

of imperfections on the resonator dynamics and did not consider the design of the control

system specifically to reduce the effects of imperfections.  In this chapter the ability of the
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control system to suppress the effects of resonator imperfections is demonstrated.

The time averaged equations of motion for a general resonator with mass/stiffness

and damping imperfections are derived in the most natural form for analysis of angular

rate sensor operation.  These equations are used to motivate the control functions

required for operation as an angular rate sensor.  The effects of imperfections may be

understood qualitatively from these equations.  Two control schemes are investigated

theoretically and experimentally to demonstrate the ability of the control systems to

reduce the effects of imperfections.

5.2 General Model of Resonator Dynamics

The model of the resonator is required to describe the dynamics of the two modes

of vibration and the Coriolis coupling between them.  Such a model may be derived by the

Rayleigh-Ritz method as in chapter 2 or can be obtained from a finite element analysis.

Because we consider only linear behavior and the resonators used are generally very

lightly damped the contributions of modes other than the operating modes may be

ignored.  A model of the resonator with a large number of degrees of freedom can

therefore be reduced to a two degree of freedom model representing only the operating

modes.  Such a two degree of freedom model provides a very general starting point for

analysis of the control system.

The equations of motion of a “generic vibratory gyro” resonator are presented in

equation 5.1.  This representation is very similar to that used by Lynch [53].  Mass and

stiffness imperfections cause a frequency difference between the two modes and also

locate the modes.  In the model, the position of the lower frequency axis is specified and

it is assumed that the two mode shapes are orthogonal.  The damping of the resonator is

described by two time constants representing an axis of minimum damping and an axis of

maximum damping.  The excitation of the resonator is described by two forces which may

arise from any form of actuation.



67
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This equation is the same as that presented by Lynch except that the factor n

describing the number of circumferential waves has been included while the (angular0

acceleration) and (centrifugal acceleration) terms have been omitted.2

The particular case of an axisymmetric shell resonator operating in the n=2 mode

is shown in Fig. 5.1.

The equations of motion can be written in terms of the elements of a damping

matrix and a “natural frequency” matrix to simplify the following manipulations.

The equations of motion for the piezoelectric resonator, derived in chapter 2, can easily

be reduced to the above form.



68

Figure 5.1 Vibration pattern representation and axis definitions used in the model.
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y'Yssin t%Yccos t (5.3)
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(5.4)

0Xssin t% 0Xc cos t'0
0Yssin t% 0Yc cos t'0

(5.5)

5.3 Averaged Equations of Motion

Averaged equations of motion, describing the dynamics of a resonator including

the effects of control loops, were derived by Lynch [53].  Canonical variables which are

very suitable for describing the operation of the HRG as an angle sensor were used in

these equations.  In this section, averaged equations of motion in variables which are more

suitable for the analysis of angular rate sensor operation are derived.

5.3.1 Variation of Parameters

The dynamics of the resonator may be more efficiently described by transforming

the system of two second-order equations into a system of four first-order equations in

slowly varying parameters.  The equations of motion (equation 5.2), in the rapidly varying

parameters x and y, may be transformed into equations in slowly varying parameters, Xs,

Xc, Ys and Yc , by the following transformation:

Differentiation of these two equations, with respect to time, yields:

Because we have transformed the equations from two parameters to four

parameters we can introduce two restrictions in the new parameters [54].  The following

choice of restrictions is very advantageous:
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ÿ' & 2 (Ys sin t%Yccos t)% ( 0Ys cos t& 0Ycsin t)
(5.7)

(k11&
2)(Xssin t%Xccos t)% ( 0Xs cos t& 0Xc sin t)

%(c12&g ) (Yscos t&Ycsin t)%c11 (Xscos t&Xcsin t)
%k12(Yssin t%Yccos t)'Fxs

sin t%Fxc
cos t

(k22&
2)(Yssin t%Yccos t)% ( 0Ys cos t& 0Yc sin t)

%(c21%g ) (Xscos t&Xcsin t)%c22 (Yscos t&Ycsin t)
%k21(Xssin t%Xccos t)'Fys

sin t%Fyc
cos t

(5.8)

With these restrictions the velocities and accelerations become:

The velocities and accelerations are substituted into the equations of motion to

yield:

The next step is to combine these equations with the restrictions in order to obtain

four equations each containing only one time derivative term.  The process is illustrated

for the first equation.

Multiplication of the first equation of motion (equation 5.8) by  andcos t

adding the first restriction (equation 5.5) multiplied by yields the followingsin t

equation:
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Similar combinations of equations 5.5 and 5.8 yield equations for and .0Xc , 0Ys
0Yc

5.3.2 Averaging

Equation 5.9 shows that if the resonator is lightly damped, has small imperfections,

is operating close to resonance and is subjected to small control forces (relative to the

operating frequency) the rate of change of  will be small.  The sameXs ( 0Xs )

conclusion can be drawn for  and . We can therefore assume that0Xc , 0Ys
0Yc

and are constant over one period of oscillation.  This permits us toXs , Xc ,Ys Yc

average the equations over one period of oscillation by applying the following

expressions:

The resulting averaged equation, corresponding to equation 5.9 is then,

A further three equations can be extracted in this manner giving the system of four first-

order equations, shown in equation 5.12.  These equations describe the dynamics of the

resonator in the slowly varying parameters.
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The form of this system of equations appears similar to state-space equations but

these equations include frequency and the frequency squared terms which are not present

in a state space system.  This means that state space methods of analyzing and designing

control systems cannot be applied to this system.  

During operation the resonator is forced to vibrate at resonance at a constant

amplitude.  This limit cycle can only exist in a nonlinear system which makes analysis of

the control system difficult.  Because the averaged equations above are in the slowly

varying parameters, it is possible to use time integration to simulate the operation of the

closed loop system.  The averaged equations also provide useful insights into the behavior

of the resonator which aid in the control system design.

5.4 Control System Functions

In this section the averaged equations of motion are used to motivate the control

system functions required for the resonator to operate as an angular rate sensor.  The

equations of motion without imperfections are used to develop the control functions and

the implementation of these functions.  The effects of resonator imperfections, on the

performance of the controlled system, are then analyzed in section 5.6.

The averaged equations of motion are simplified by the omission of imperfections.
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It is evident that in the perfect resonator the x and y vibration patterns are only

coupled when an angular rotation rate, , is applied.  We make use of this effect when we

use the resonator as an angular rotation sensor or gyroscope.  In the ideal case the control

functions may be separated into those operating on the primary vibration pattern and those

operating on the secondary vibration pattern.

5.4.1 Control of the Primary Vibration Pattern

The equations of motion for the primary vibration pattern, in the absence of

applied rotation rate are,

The steady state response of the system is found by setting the time derivative

terms to zero. 

5.4.1.1 Frequency Control

If we apply a sinusoidal excitation , (Fxs=1 and Fxc=0)  at the frequencyfx'sin t

then the coupling between Xc and Xs is zero and the response will be' k11
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.  In other words, if we excite the structure at resonance theXc'&

Fxs

c11

, Xs'0

response will be ninety degrees out of phase with the excitation.  At frequencies of

excitation other than the resonant frequency the equations are coupled and there will be

sine and cosine response components.  The damping, c, determines the amplitude of

response at steady state and also the speed with which this amplitude changes.  Note that

in the first-order approximation, the presence of damping does not effect the resonant

frequency.  Neglecting this second-order effect is justified because vibratory gyroscope

resonators are designed to have very small damping.  

The observation that there is a sine component response to a sine excitation if the

excitation frequency does not coincide with the resonant frequency of the resonator

suggests a method of controlling the frequency of excitation to follow the resonant

frequency of the resonator.  The sine component of the response (Xs) can be used as the

error signal in a phase locked loop which drives the resonator at resonance.  This phase

locked loop includes a sine wave generator or voltage controlled oscillator (VCO) which

produces a sine wave, the frequency of which is determined by the voltage applied to the

VCO.  The sine wave is applied to the resonator and the response of the resonator is

demodulated by the excitation sine to produce the amplitudes of the components which

are in-phase (Xs) and in phase quadrature (Xc) to the excitation signal.  This demodulation

can be achieved by a lock-in amplifier (LIA) which is a laboratory instrument specifically

designed for this task.  The response component Xs which is in-phase with the excitation

is used as an error signal which is filtered by a proportional-integral controller before

being fed back to control the frequency of the excitation signal generated by the VCO.

This implementation is shown in Fig. 5.2.

5.4.1.2 Amplitude Control

The amplitude of response of the primary vibration pattern, when excited at

resonance, is determined by the amplitude of the excitation and the damping in the
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resonator.  The Coriolis forces experienced by the secondary vibration pattern are

proportional to the sum of the velocity of vibration of the primary vibration pattern and

the applied rotation rate.  The second function of the control system is to maintain the

amplitude of the vibration of the primary mode at a constant value.  Because the

frequency control loop ensures that Xs is zero, the amplitude of the primary mode is given

by Xc which is available from the lock-in amplifier used in the frequency control loop. 

The difference between the actual amplitude of vibration and a set reference value forms

the error signal.  Once again a proportional-integral controller can be used to ensure that

the steady-state error is zero.  The output from the PI controller is multiplied by the

excitation signal from the VCO to control the amplitude of the signal applied to excite the

resonator and thus the amplitude of the response of the resonator.  The implementation

of amplitude control is illustrated in Fig. 5.3.
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Figure 5.2 Frequency control of primary vibration pattern excitation
by the phase locked loop approach.

Figure 5.3 Amplitude control of primary vibration pattern.
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5.4.2 Control of the Secondary Vibration Pattern  

If we assume that the primary vibration pattern is excited to vibrate at resonance

with constant amplitude inspection of equation 5.13 shows that there(Xs'0 , Xc' X̄c )

will be a cosine response (Yc) in the secondary vibration pattern when a constant rotation

rate is applied.  The response of the secondary vibration pattern to a step input angular

rotation rate is easily calculated.

This open loop response of the secondary vibration pattern gives the steady state

amplitude which determines the scale factor of the gyroscope and also provides a measure

of the response time.  The open loop bandwidth of typical resonators is usually too small

for most applications.  The effective damping of the resonator (c) can be increased

electronically by applying velocity feedback (see chapter 4).  This option is described in

the next section.  It is also possible to null the response of the secondary vibration pattern

by applying a suitable force Fs.  The control system used to supply this force will then

determine the response time or bandwidth of the gyroscope.  This method of control is

known as ‘force to rebalance’ because a force is applied which effectively balances the

Coriolis force acting on the secondary vibration pattern.  Force to rebalance operation is

described in section 5.4.2.2.  

5.4.2.1 Damping Control Loop

The averaged equations show that damping can be added to the secondary

vibration pattern by applying Fyc  proportional to -Ys and Fys proportional to Yc.  This is

essentially velocity feedback and is expressed mathematically as:
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Velocity feedback can be implemented with a simple analogue differentiator but

because the sensor and actuator are not collocated there is the possibility of higher

frequency structural modes becoming unstable.  Implementing the velocity feedback based

on the phase-locked loop approach overcomes this problem because only signals at the

operating frequency are applied to control the resonator.  This implementation requires

the use of a second lock-in amplifier to extract the components of the response of the

secondary mode (Ys and Yc).  These components are then multiplied by cosine and sine

signals, available in the previous control loops, and fed back to the resonator.  This

implementation is shown schematically in Fig. 5.4. 

 The response to step input angular rotation (without elastic imperfections) is now:

The effect of the added damping is to increase the bandwidth of the gyroscope and

to decrease the scale factor which will degrade the signal to noise ratio and decrease the

resolution of the gyroscope.
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Figure 5.4 Implementation of the damping control loop under the phase 
locked loop approach.
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5.4.2.2 Force to Rebalance (FTR) Control Loop

The response of the secondary vibration pattern Yc, may be nulled by applying a

suitable force Fys.  The bandwidth of the sensor is then determined by the controller used

to null Yc and the rotation rate information is stored in the signal Fys, required to null the

response.  In this scheme the secondary mode is not allowed to respond and the Coriolis

forces experienced by the secondary mode are balanced by the control force Fys.  This is

true closed-loop operation.

When imperfections are present there will be a sine response in the secondary

vibration pattern Ys.  Nulling the secondary vibration pattern requires that this component

is also nulled.  This case will be considered as we wish to later investigate the effects of

imperfections on the gyroscope performance.  The forces Fys and Fyc required to null Yc

and Ys respectively can be formed by two proportional-integral control systems as follows:

It is noted that the proportional part of the controller is exactly the same as the

damping loop described earlier.  Therefore this implementation of FTR is essentially a

damping loop with the addition of integral control which nulls the steady state response

of the secondary vibration pattern.   The use of FTR means that the Coriolis forces acting

on the secondary mode are balanced by the control forces and the  position of the standing

wave pattern is maintained fixed relative to the cylinder. The choice of feedback control

coefficients determines the speed of response of the closed loop system and hence the

bandwidth of the gyroscope. As there is no displacement or velocity of the secondary

mode, changes in the damping factor c22 will also have no influence on the output.  The

damping anisotropy c12 will still have an effect on the output of the gyroscope and this will

be the major source of error in the closed loop system.   This implementation of a force

to rebalance control system is illustrated in Fig. 5.5.  
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Figure 5.5 Force to rebalance control loop implementation shown with the 
primary mode control loops.
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5.5 Closed Loop System Simulation

Simulation of the closed loop operation is necessary during the design of the

control system.  Predicting the transient behavior is important in applications requiring

short start-up times.  The following section describes how the transient response can be

predicted numerically.  Naturally the steady-state response can be predicted by performing

the transient analysis over a long time period so that steady state operation is achieved.

This, however, is inefficient and it is more informative to solve the averaged equations of

motion with the constraints applied by the control system.  The nonlinear equations can

be solved numerically and in some cases qualitative predictions can be made.  The effects

of resonator imperfections on the steady-state performance are analyzed by this method

in section 5.6.

5.5.1 Transient Analysis

Because the averaged equations of motion are in the slowly varying parameters,

these equations and the control systems described in section 5.4 may be efficiently

simulated by time integration.  The gains associated with conversion of voltage to

actuation force and from sensed voltage to generalized displacement must be included in

the analysis.  The equations of motion for the piezoelectric vibrating cylinder gyroscope,

derived in chapter 2, where extended to include the effects of elastic boundaries.  These

equations were reduced to two degrees of freedom, averaged and simulated in Matlab

Simulink.  The Simulink model for the resonator operating with force to rebalance control

is shown in Fig. 5.6.  The voltage controlled oscillator (VCO) was assumed to have a free-

running, or nominal frequency of 14.6 kHz.  The frequency controller then modifies this

frequency until resonance is achieved (sine component of primary mode is zero). The

amplitude controller drives the cosine component of the primary mode to a fixed voltage

level, in this case 1 Volt.  The sine rebalance and cosine rebalance loops force the sine and

cosine components, of the secondary mode, to zero.  The magnitude of the signal required

to force the cosine component of the secondary mode to zero provides a measure of the

applied rotation rate.  The start-up transient for this system, without rotation, is shown

in Figs. 5.7 and 5.8.  The frequency control loop is seen to settle on the resonant
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frequency in approximately 0.6 s.  As the frequency of excitation approaches resonance

both the sine and cosine components of the response grow rapidly until the frequency is

close to the resonance frequency when the sine component decreases towards zero.  Once

the frequency of excitation coincides with the resonant frequency the amplitude control

loop has complete control over the amplitude and the desired level is achieved in

approximately 1.2 s.  Because there is no applied rotation and the resonator has no

imperfections in this analysis, there is no response of the secondary mode.  This response

is not optimal in any sense, but serves to illustrate the operation and simulation of the

control system in the time domain. 
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Figure 5.6 Simulink model of a resonator with FTR control.
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Figure 5.7 Frequency during simulated start-up transient showing the response 
of the frequency control loop.
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Figure 5.8 Primary mode sensed voltage during start-up transient showing the 
frequency  control loop and then the amplitude control loop reaching 
steady state conditions.
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5.5.2 Steady-State Analysis

In certain cases it is possible to directly calculate the steady state response of the

controlled system but in general it was necessary to solve the nonlinear equations

numerically.  The control functions were expressed mathematically as different sets of

conditions depending on the control functions being analyzed.  For the primary mode this

implies that and we calculate the operating frequency  and theFxc
'0 ; Xs'0 ; Xc'Xc

required drive amplitude Fxs.  The conditions applied to the secondary mode depend on

the control loop selected.  The prescribed conditions and the parameters to be calculated

are summarized in table 5.1.

5.6 Analysis of the Effects of Imperfections

In section 5.4 the control system functions were described for a perfect resonator

while the analysis of the closed loop operation was described in section 5.5.  In this

section the effects of imperfections, on the steady state performance of the gyroscope, are

analyzed qualitatively, by inspection of the averaged equations of motion, and

quantitatively, by numerical solution of the nonlinear equations.  The effects of frequency

and damping imperfections on the open loop performance are determined.  The ability of

the control loops to decrease this sensitivity to resonator imperfections is then considered.
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Table 5.1 Conditions used during steady-state solutions.

Primary Mode Conditions Secondary Mode

Control

Secondary Mode Parameters

Set Calculate Set Calculate

Fxc
'0

Xs'0

Xc'Xc

Fxs

Open Loop Fyc
'Fys

'0 Ys , Yc

Damped Fyc
'&KpYs

Fys
'KpYc

Ys , Yc

FTR Yc'Ys'0 Fys
, Fyc
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5.6.1 Open Loop Operation

5.6.1.1 Frequency Imperfections

The effect of frequency split (mass/stiffness anisotropy) was investigated.  Elastic

imperfections result in coupling between Xc and Ys through k21 and then between Ys and

Yc because .  The resulting response of Ys and Yc also couples back to thek22û
2

equations for Xs and Xc.  Therefore elastic anisotropy results in a complex coupling

between all four of the averaged equations of motion.  The output of the gyroscope will

therefore be sensitive to variations in the elasticity of the resonator.

A resonator with natural frequencies of 15000 Hz and 15001 Hz was simulated

with the angular position of the lower frequency mode varied between 0E and 90E.  The

scale factor of the gyroscope was determined by introducing a rotation rate and observing

the resultant Yc.  The zero-rate offset, due to the frequency imperfection, Yc was then

converted to a rotation rate in degrees/s and plotted in Fig. 5.9.  It is noted that elastic

imperfections do not cause a zero-rate offset if the axis of minimum natural frequency

coincides with a ceramic location or is exactly between the ceramic locations.

5.6.1.2 Damping Imperfections

If we consider damping anisotropy we see that the terms c12 = c21 appear with the

Coriolis coupling terms.  Therefore if the primary mode is excited so that Xc  is constant

then the term c21 causes a response in Yc which appears as an applied rotation rate.  This

means that there will be a zero-rate offset that will be sensitive to changes in the damping

distribution of the resonator.  The zero-rate offset and response to a step input angular

rate are now:
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Figure 5.9 Zero-rate offset of a 15 kHz resonator with a 1 Hz frequency 
imperfection - open loop.
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ERROR( , )'Drift( , )& (Drift( )%Drift( )) (5.20)

The effects of damping imperfections were investigated by introducing two typical

damping time constants of 25 and 25.5 seconds.  The maximum damping axis was rotated

and the zero-rate offset calculated for the open loop case.  The zero-rate offset is shown

in Fig. 5.10.  The result shows that if the axis of minimum damping coincides with either

the primary or secondary mode of vibration, no zero-rate offset will result from this

imperfection.   

5.6.1.3 Combined Frequency and Damping Imperfections

Finally the effect of combined elastic and damping imperfections needs to be

considered.  The zero-rate offset, due to elastic and damping imperfections acting

simultaneously, was calculated by solving the steady-state equations for different

combinations of damping axis angle and frequency axis angle.  This result is plotted as a

surface in Fig. 5.11.  The zero-rate offset obtained by adding the zero-rate offsets

calculated when the imperfections act independently was calculated and was found to be

a good approximation of the zero-rate offset due to the imperfections acting

simultaneously.  Also plotted in Fig. 5.11 is the error caused by this approximation.  This

error can be written symbolically as follows:

The effects of the small frequency and damping imperfections considered here are

therefore almost independent of each other.
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Figure 5.10 Zero-rate offset of a 15 kHz resonator with a damping imperfection 
defined by two time constants of 25 s and 25.5 s - open loop.
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Figure 5.11 Calculated zero-rate offset due to the combined effect of frequency 
(15 kHz resonator with 1 Hz frequency split) and damping 
imperfections (time constants of 25 s and 25.5 s) - open loop.
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5.6.2 Damping Loop Control

The effects of frequency and damping imperfections when damping loop control

is applied, to the secondary vibration pattern, were investigated.  

5.6.2.1 Frequency Imperfections

The same frequency imperfection as was considered in the open loop case was

analyzed for different values of damping control.  In this analysis the gain of the feedback

loop is quantified by the amount of damping added to the resonator compared to the

inherent damping of the resonator.  The zero-rate offset (in degrees/s) was calculated for

the open loop case and for three cases with increasing active damping. The results of this

investigation are plotted in Fig. 5.12 and show that increasing the damping loop gain

decreases the gyroscope drift from this source.  

This effect can be understood qualitatively from the averaged equations of motion.

If the damping of the secondary mode doubles the in-phase response (Ys) of the secondary

mode, due to the coupling of k12, will be halved.  The response of the quadrature

component (Yc) of the secondary mode due to the coupling will then be onek22&
2

quarter of the open loop case.  The scale factor (sensitivity of Yc to input angular

rotations) will be halved by the addition of the damping therefore the zero-rate offset due

to an elastic imperfection will be halved by the addition of the damping.  As the damping

is increased the zero-rate offset caused by elastic imperfections will decrease.  This

qualitative description does not consider the elastic coupling of the secondary mode

response back to the primary mode which effects the frequency of operation slightly.  A

comparison of the qualitative description and the exact solution of the steady state

equations is shown in Fig. 5.13 which shows the zero-rate offset due to a particular elastic

imperfection as a function of the added damping.  
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Figure 5.12 Reduction of zero-rate offset due to frequency imperfection 
(15 kHz resonator with 1 Hz frequency split) by damping 
loop control.
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Figure 5.13 Effect of damping loop gain on zero-rate offset caused by 
frequency imperfections, verifying the qualitative explanation.
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5.6.2.2 Damping Imperfections

The effect of damping imperfections were investigated by introducing the two

damping time constants of 25 and 25.5 seconds.  The maximum damping axis was rotated

and the drift calculated for the open loop case and with a damping loop that adds ten

times the resonator damping.  The results of this analysis (Fig. 5.14) show that the drift

caused by damping imperfections is not reduced by the addition of the damping control

loop.  The qualitative explanation of this is that the term c12 is not effected by the addition

of damping and still appears as a equivalent rate input in equation 5.12.
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Figure 5.14 Zero-rate offset due to damping imperfections unaffected by 
damping loop control.
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5.6.3 Force to Rebalance Control

The effect of using proportional-integral feedback to null the response of the

secondary mode, when frequency and damping imperfections are present, was investigated

by solving the steady-state equations.  The effect of nulling the in-phase and quadrature

components of the response separately and then simultaneously was considered to gain

deeper insight into the effects of FTR control.

5.6.3.1 Frequency Imperfections

Inspection of the averaged equations shows that frequency imperfections affect

the value of Yc only if Ys is non zero. Ys is non-zero due to the term k21 coupling Ys to Xc.

Also, if Yc is non zero it couples back to the equation for Xs and thus influences the

frequency of operation.  It is therefore advantageous to null the component Ys to eliminate

this coupling.

Figure 5.15 shows that nulling the in-phase component Ys, eliminated the drift

caused by elastic imperfections thus verifying the qualitative explanation given above.

When only the quadrature component Yc, is nulled the drift is not reduced from the open

loop case.  The reason for nulling the quadrature component is to increase the bandwidth

of the gyroscope.

5.6.3.2 Damping Imperfections

The effect of damping imperfections was calculated in the analogous manner.

Figure 5.16 shows that force to rebalance control does not reduce the drift caused by

damping imperfections as represented in this analysis.  Inspection of equation 5.12 shows

that the damping imperfection is indistinguishable from an applied rotation.
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Figure 5.15 Suppression of the zero-rate offset due to frequency imperfections 
(15 kHz resonator with 1 Hz frequency split) by FTR control.
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Figure 5.16 No reduction of the zero-rate offset due to damping imperfections 
by FTR control.
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5.7 Experimental Investigation

The zero-rate offset of a vibratory gyroscope is an important performance

parameter and is strongly influenced by temperature.  The temperature induced variations,

or drift, of this parameter, for a piezoelectrically sensed and actuated vibrating cylinder

gyroscope  were investigated experimentally.  Damping loop and force to rebalance

control were implemented and the results were compared to measurements with open loop

control.  

5.7.1 Experimental Setup

The resonator used in the experiments comprised a thin walled, steel cylinder,

closed at one end, with eight discrete piezoelectric ceramic elements bonded near the open

end as described in chapter 2.  Opposite pairs of ceramic elements were electrically

connected and two pairs functioned as actuators while the remaining two pairs functioned

as sensors.  The resonator was enclosed in an evacuated housing to reduce acoustic

radiation damping. 

The control systems described in section 5.4 were implemented using a

combination of digital and analog circuitry.  In these experiments the control system was

kept at room temperature while the resonator (with pre-amplifiers) was placed in an

environmental chamber on a rate table.  The scale factor (mV/deg/s) of the gyroscope,

with a particular control system, was measured at 20°C.  The zero-rate offset of the

gyroscope was then measured as a function of temperature over a range of 0 to 60°C

using the temperature profile shown in Fig. 5.17.  The measured voltage was then

converted to an equivalent rotation rate in °/s using the measured scale factor.  In this way

it was possible to compare the variations in zero-rate offset of the gyroscope with

different control systems.  All measurements were conducted on the same resonator.
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5.7.2 Experimental Results

5.7.2.1 Damping Loop Control

The amount of damping added to the resonator was measured by the reduction in

scale factor that was obtained.  The damping loop gain was varied from zero (open loop)

to a value giving a large bandwidth.  The measured zero-rate offsets are displayed, as

functions of time, in Fig. 5.18 and as functions of temperature in Fig. 5.19.  These zero-

rate offsets were adjusted so that the minimum offset is zero in each case.  This makes it

easy to compare the variations of the offset over temperature.  These figures clearly show

the reduction in drift which results from increasing the damping of the secondary mode.

In this particular resonator the drift was decreased by an order of magnitude.

The gains displayed in Figs. 5.18 and 5.19 are the ratios of the feedback voltage

to the sensed voltage and not the ratio of force to displacement.  The amount of added

damping was estimated from the reduction in scale factor so that the maximum offset drift

could be plotted against the added damping as was done in Fig. 5.13.  The added damping

is the damping added by the velocity feedback non-dimensionalized by dividing by the

damping inherent in the resonator.  This information is plotted in Fig. 5.20 and the

experimental result is compared to the qualitative effect of adding damping.  The

theoretical curve assumes that there are no damping imperfections while the experimental

results are obviously effected by damping imperfections inherent in the resonator.  The

correlation between the experimental and theoretical results is believed to be adequate to

confirm the theoretical predictions.  This result indicates that the major source of offset

in the open loop operation, was the variation in frequency imperfection during the

temperature cycle.  Damping loop control produced an order of magnitude decrease in the

temperature induced zero-rate offset drift.
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Figure 5.17 Temperature cycle applied to resonator during measurements.

 



105

Figure 5.18 Measured reduction of temperature induced zero-rate offset drift by 
damping loop control (offset vs time).
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Figure 5.19 Measured reduction of temperature induced zero-rate offset drift 
by damping loop control (offset vs temperature).



107

Figure 5.20 Zero-rate offset drift reduction by increasing damping loop gain.
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5.7.2.2 Force to Rebalance Control

Measurements were performed to investigate the effect of force to rebalance

control on the temperature induced zero-rate offset.  The results of these measurements

are shown in Figs. 5.21 and 5.22.  Apart from the control system in which both

components of the secondary mode response are nulled, control systems where only one

component is nulled were also examined.  The results show a dramatic decrease in the

drift when the in-phase component of the secondary mode is nulled.  This result is in

agreement with the theory as by nulling the in-phase component the effects of elastic

imperfections are suppressed.  Force to rebalance control produced an order of magnitude

decrease in the temperature induced zero-rate offset drift. 

5.8 Conclusions

A system of averaged equations describing the dynamics of a vibratory gyroscope

resonator were presented.  These equations are very convenient for analysis of control

systems used to operate the resonator as a rotation rate sensor.  The equations prompt the

form of control system required and also provide useful insight into the qualitative effects

of the resonator imperfections.  Two feedback control schemes were considered namely,

damping loop control and force to rebalance control.  The effects of frequency and

damping imperfections were analyzed for open loop and closed loop operation.  It was

found that the control system can eliminate the first-order effects of frequency

imperfections.  The effect of damping anisotropy is not reduced by the control systems

and this is believed to be the major source of error in the closed loop system. 

Experimental measurements, of a piezoelectrically actuated and sensed resonator, over a

temperature range of 60 EC, showed that variation of the zero-rate offset was decreased

by an order of magnitude by both damping loop control and force-to-rebalance control.

The remaining drift is believed to be primarily due to damping imperfections.  The

experimental results verify the theoretical predictions.
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Figure 5.21 Measured reduction of temperature induced zero-rate offset drift 
by FTR control (offset vs time).
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Figure 5.22 Measured reduction of temperature induced zero-rate offset drift 
by FTR control (offset vs temperature).
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Chapter Six

Effects of Piezoelectric Material Property Variations

6.1 Introduction

Piezoelectric ceramics are commonly used to actuate and sense the vibrations of

elastic bodies used as resonators in vibratory gyroscopes.  It is well known that the

properties of these materials vary with time and temperature.  The effects of mechanical

property variations (mass, stiffness and damping), of the resonator and attached

piezoceramic elements, were analyzed in chapter 5.  Piezoelectric and electrical property

variations are considered in this chapter.

The piezoelectric gyroscope designer has to choose among the available materials

from a number of different manufactures or develop a new composition which has suitable

properties.  The selection or specification of a material requires an understanding of which

material properties influence the performance of the gyroscope.  A second related decision

is whether voltage of charge amplifiers should be used to measure the sensed signals.  The

objective of this chapter is to illustrate how the material properties effect the performance

of the gyroscope and thus to present a measure which can be used either to select between

available materials or to optimize the composition of a new ceramic.  The control system

design can also influence the sensitivity of the gyroscope to various material property

variations.  In the analysis presented, the gyroscope is assumed to be operating in the

force to rebalance mode which was analyzed in chapter 5.

6.2 Analysis of Piezoelectric Gyroscope Operation 

The analysis of the operation of a piezoelectric gyroscope begins with an

electromechanical model of the resonator.  This model is manipulated into a form which

makes available the electrical signals used in the control electronics.  The control system

functions are then imposed on this model so that the effects of material property variations

on the gyroscope performance, and not merely the resonator dynamics, can be established.
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6.2.1 Piezoelectric Resonator Dynamics

The dynamics of a piezoelectric vibratory gyroscope resonator may be expressed

by the following system of coupled electromechanical equations:

These equations may be derived, for a particular resonator, by the Rayleigh-Ritz

method (as was done in chapter 2) or by application of a general finite element analysis.

If we partition the electrical and electromechanical matrices to separate the

elements used for sensing and actuation these equations may be written as follows:

where is the vector of sensed voltages and  is the vector of actuation or drives d

voltages.

If we sense with a high impedance so that the charges are effectively zero theqs

sensed voltages are given by:

As no external mechanical forces are applied to the resonator the forces and thef'0

above expression may be substituted into the equation of motion to yield:
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Generally in vibratory gyroscopes only two vibration modes are used.  The mode

shape vectors describing these two modes are denoted and .  The mode shapes1 2

are found by an eigensolution of the problem and can be usedMr̈%[K% sCps

&1 T
s ]r'0

to decouple the equations of motion and reduce the problem to two generalised

coordinates.

where, is the matrix containing the two operational mode shapes.' 1 2

The transformation decouples the mass matrix so that .TM 'm'

m1 0
0 m2

In chapter 5 it was shown that damping imperfections have a greater influence than

elastic imperfections, when operating in the force to rebalance mode.  If we consider a

resonator which is perfect except for the possibility of damping asymmetry the equations

may be reduced to:

where, 

is the reduced damping matrix which is symmetric but notc'm &1 TC

necessarily diagonal.

is the reduced gyroscopic matrix which is skew-g( )'m &1 TG( )

symmetric.

is a diagonal matrix containing the two natural2
n'm &1 T[K% sCps

&1 T
s ]

frequencies squared.

We can partition the electrical terms into actuation and sensing ceramics operating

on the primary and secondary modes as follows:
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If we assume that the ceramics drive or sense only the primary or the secondary

mode then the actuator equations can be written as follows for the two modes:

The sensor equations are written for the sensing ceramics:

These equations may be rearranged so that the sensed voltages measuring the

primary and secondary vibration modes may be written explicitly.

The assumption that the sensors and actuators only sense and actuate either the

primary or secondary modes of vibration may be expressed mathematically as

.  This assumption is only valid ins1

T
2'0; s2

T
1'0; T

1 d2
'0; T

2 d1
'0

the limited case of a resonator with no errors in sensor and actuator location.

6.2.2 Control System Functions

The control functions used in force to rebalance operation may be simply described
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as driving the primary mode at it’s resonant frequency to a specified amplitude and nulling

any response in the secondary mode.  Therefore the frequency and amplitude of

(voltage applied to drive the primary mode) is continuously adjusted to givevd1

(voltage sensed due to primary mode displacement) to be 90E out of phase and atvs1

a prescribed amplitude .  Because the piezoelectric properties of the sensingvs1

ceramics can change, with temperature and time, the amplitude of vibration which results

in a sensed voltage can change.  The amplitude of vibration is found from thevs1

sensing equation for the primary mode:

This equation shows that variations in the capacitance or electromechanical

coupling of the sensing piezoceramics will cause variations in the amplitude of mechanical

vibration.

The motion in the secondary mode, measured by ,  is suppressed by applyingvs2

 so that  is nulled.  The sensor equation for the secondary mode indicates that vd2 vs2 x2

must be zero if  is nulled.  If  is forced to zero then and will also be zerovs2 x2 0x2 ẍ2

and the equation of motion for the secondary mode reduces to,

The voltage  applied to null the motion of the secondary mode provides a measurevd2

of the inertial angular rate which is the information required from the gyroscope. 

At steady state therefore,0x1'&j [Cps1

&1
s1

T
1]
&1 vs1



116

d2
'&j m2

Cps1

T
2 d2

&1
s1

T
1

vs1
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This equation expresses the zero-rate drift and also the scale factor or sensitivity to

rotation rate of the gyroscope.

6.3 Piezoelectric Property Variations

At zero rotation rate there will be a voltage required to null the motion of the

secondary mode due to the damping asymmetry represented by .  The stability of thisc21

zero rate offset, over time and temperature, is of great importance in many gyroscope

applications.  It is therefore of interest to determine how the material properties of the

piezoceramic material influence this offset.  In the formulation used, the capacitance

matrices are linearly dependent on the material parameter  while the piezoelectricg
S
33

coupling matrices are linearly dependent on the material parameter .  Therefore thee31

offset is a function of  and it is desirable that this quantity should be as stableg
S
33 /e 2

31

as possible.

The scale factor of a gyroscope relates the voltage output (proportional to )vd2

to the applied rotation rate.  The stability of the scale factor of the gyroscope, over time

and temperature, is another important performance parameter of the gyroscope.  The scale

factor is a function of therefore it is important that this quantity remains asg
S
33 /e 2

31

constant as possible over time and temperature.  

The influence of the ratio   on zero-rate offset and scale factor make thisg
S
33 /e 2

31

quantity a suitable figure-of-merit that should be used to select a piezoceramic material

for operation over temperature and time.

In this analysis it was assumed that in practice, the displacements of the resonator

would be determined by measuring the voltages at the sensing ceramics with a high

impedance circuit.  A second possibility is that a charge amplifier (low impedance) is used

and the measured charge is proportional to the displacements.  Repeating the above

analysis for this situation shows that the zero-rate offset and the scale factor are then



117

dependent on the ratio .  Therefore in this situation the figure of merit for the1/e 2
31

selection or optimization of piezoelectric materials would be .1/e 2
31

6.4 Conclusions

The effects of piezoelectric and electrical property variations of the piezoceramic

material used in vibratory gyroscopes was analyzed.  Force to rebalance control was

assumed and damping imperfections were included in the analysis.  It was shown that

when high impedance sensing electronics (buffer or voltage follower) is used, the zero-

rate offset and the scale factor of the piezoelectric vibratory gyroscope vary according to

the ratio .  When low impedance (charge amplifier) electronics is used theg
S
33 /e 2

31

ratio describes the variation of zero-rate offset and scale factor.  These two figures1/e 2
31

of merit should be evaluated when deciding on which form of electronic amplification to

use and also when selecting an existing piezoceramic material or optimizing a new

composition. 
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Chapter Seven

Conclusions and Recommendations

The effects of imperfections in vibratory gyroscopes has been studied with

particular emphasis on piezoelectrically actuated and sensed resonators.  The study began

with considering the resonator dynamics and the effects of control on the resonator

dynamics.  The more general problem of the effects of imperfections in the controlled

system was then analyzed.  Conclusions for each part of the study are given in the

individual chapters therefore only the conclusions that relate specifically to the objectives

of the study are repeated here.

Piezoelectric resonators used in vibratory gyroscopes may be effectively modeled

using Hamilton’s principle for the electromechanical system and the Rayleigh-Ritz

method.  A cylindrical resonator, including imperfections, was modeled and the results

agreed well with experiment.  This approach also made it possible to analyze the effects

of the control system on the resonator dynamics and the effects of piezoelectric material

property variations in general terms.  The findings of this study were published in the

Journal of Intelligent Material Systems and Structures [32].  This was the first publication

which included imperfections in piezoelectric vibratory gyroscopes and which presented

direct comparison between theoretical and experimental results.

The effect of elastic boundaries on the dynamics of thin-walled rotating cylinders

was analyzed by an exact solution of the Flügge shell theory equations of motion.  It was

found that the natural frequency, of the operating mode of a cylinder supported at one end

only, is very sensitive to the axial stiffness of the support.  A range of boundary stiffnesses

in which the natural frequency and sensitivity to rotation (gyroscope scale factor) are

sensitive to boundary stiffness variations was determined.  It is recommended that

cylinders be designed to have boundary stiffnesses outside this range as they will then be

practically insensitive to boundary stiffness variations.  Only axisymmetric boundaries

were considered.  This research was published as a general study of elastically supported
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thin cylindrical shell vibrations, in the Journal of Sound and Vibration [40].  Future work

on cylindrical resonator modeling could focus on the effects of non-axisymmetric

boundary conditions.  The effects of slight ovaling of a cylinder could also be analyzed.

The effects of displacement and velocity feedback on the resonator dynamics was

analyzed.  The method used is general but requires an electromechanical model of the

resonator.  Experimental results confirmed the accuracy of the method.  It was shown that

‘electrical springs’ and ‘electrical dampers’ may be formed by displacement and velocity

feedback respectively.  In the case of the cylinder vibratory gyroscope it was found that

the effect of displacement feedback was more than adequate to balance the effects of

typical manufacturing imperfections.  A simple experimental method of determining the

effect of displacement feedback on the natural frequency was devised and verified.  This

research contribution was published in the IEEE Transactions on Ultrasonics,

Ferroelectrics and Frequency Control [48].

The ability of the electronic control system to reduce the effects of resonator

imperfections was investigated.  Averaged equations of motion derived from a general

model of a resonator were used to motivate the control system functions.  This approach

has the advantage that only slowly varying components need be simulated numerically or

controlled electronically in practice.  Excitation by a phase-locked loop was used to

ensure vibration at resonance of the primary mode.  Control of the secondary mode is

usually motivated by a desire to increase the bandwidth of the gyroscope.  Two control

schemes, acting on the secondary mode, were considered and it was shown that these

schemes reduce the effects of mass/stiffness imperfections leaving damping anisotropy as

the major source of error.  The reduction of the effects of mass/stiffness imperfections is

therefore a major advantage of closed loop operation.  This result is applicable to a wide

range of vibratory gyroscopes including micromachined designs.  Experimental results

showed that both damping loop control and force to rebalance control reduced the zero-

rate offset variation over temperature by an order of magnitude.  The major contribution

to knowledge of vibratory gyroscope control systems, was the explanation and

demonstration of the ability of the control system to reduce the effects of elastic

imperfections.  This contribution will be published as a journal paper.  Simple
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implementation of the electronic control system needs to be investigated as does design

for low noise.

Stability of the closed loop systems could be analyzed in future and nonlinearities

in the resonator could be included requiring a higher order approximation in the method

of averaging. 

“Electrical springs”, formed by displacement feedback, could be used to reduce

the effects of mass/stiffness imperfections in the same way as has been done with

“electrical springs”, formed by electrostatic forces in the HRG.  This approach would

require the construction of resonators with 16 piezoceramic elements but would not offer

any advantage over force to rebalance control. 

The effect of piezoelectric material property variations were studied for a

piezoelectric resonator operating in force to rebalance mode.  The effects of variations in

the piezoelectric and dielectric coefficients on the zero-rate offset and the scale factor

were determined.  Two simple figures-of-merit were proposed for resonators in which

voltage or charge amplifiers are connected to the sensing elements.  These figures of merit

should be used when selecting an existing piezoceramic material or when optimizing a

new composition for this application.  The development of a simple, direct method of

measuring these figures-of-merit would be a useful contribution.  The magnitude of the

damping imperfection introduced by different piezoceramic compositions needs to be

quantified in future and included in the material selection process.  Analysis of other types

of sensing and actuation could be performed and the various methods compared to

determine which is most appropriate method of sensing and actuation for particular

resonator designs.
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APPENDIX A: Derivation of Matrix Terms Used in Resonator Modeling

A.1 Mass Matrix and Gyroscopic Matrix

Simulation of the rotating vibrating cylinder requires that we derive the gyroscopic

matrix.  Both the mass matrix and the gyroscopic matrix are derived from the kinetic

energy so both can be derived simultaneously.

The velocity of a point on the mid surface of a cylinder which is rotating at angular

rotation rate  about its axis is:

The kinetic energy of the cylinder is found by integrating over the volume of the cylinder,

The kinetic energy of the piezoceramics has the same form with the integration being

performed over the volume of the piezoceramics.  If we consider slowly rotating cylinders,

we can omit the terms of order .  Substitution of the assumed displacement2

distributions (equation 2.15) yields,
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After taking variations, integrating by parts and collecting terms in the first and

second derivative of the generalized coordinates the following mass and gyroscopic

matrices are found:

 

Note that the mass matrix derived here is the same as is obtained by substituting

the assumed displacement distributions into equation 2.8.

A.2 Stiffness Matrix

The derivation of the stiffness matrix is rather lengthy.  To illustrate the derivation

of this matrix only one of the terms in the piezoceramic stiffness matrix for the first

assumed mode (KP1) is derived here.

The assumed displacement distributions for the first mode may be written in the

form of equation 2.4a.
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The matrix , in equation 2.6, for this mode is:Nr(x)

The piezoceramic elements used in this application were polarized in the radial

direction so the rotation matrix in equation 2.9 may be omitted and the expression for the

piezoceramic stiffness matrix for the first assumed mode simplifies to:

The first element  in this matrix is:

where the integration is performed over the volume of all the ceramic elements.
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APPENDIX B: Calculation of Amplitude Ratios

Equation 3.6 can be used to write the ratios of the axial and tangential

displacements to the radial displacements.  In the following equations the small terms

containing 2 have been neglected and  is assumed to be 0.3.

The amplitude ratios are then calculated by substituting the roots

( ) in equations (B.1) and (B.2), for , as follows:± 1, ±i 2, ±(p± iq)

A1 = (V0 / W0 ) with  = 1

A2 = (U0 / W0 ) with  = 1

A3 = (V0 / W0 ) with  = i 2

iA4 = (U0 / W0 ) with  = i 2

A5 + iA6 = (V0 / W0 ) with  = p + iq

A7 + iA8 = (U0 / W0 ) with  = p + iq
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