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ABSTRACT

This paper presents a full-range-of-motion
numerical model of the dynamic characteristics of
compliant-moored  submerged systems in
unsteady fluid flow wusing a first-principles
approach. The program, implemented using the
MATLAB software package, is in development
with the primary intention of being applicable to
in-stream hydrokinetic turbines, though many
wave energy converter and offshore wind turbine
platform systems will also be capable of being
modeled.

A Lagrangian frame of reference is adopted to
generate the equations of motion of a given
system. The external forces presently considered
in the model are those of gravity, buoyancy, and
fluid drag, with plans to include more
sophisticated fluid effects as the project advances.

The development of the kinematic system and
the body drag model are discussed. Additionally,
two validation tests are presented. The results of
the validation tests provide confidence that the
methods employed have the potential to
realistically simulate the dynamic behavior of
compliant-moored systems once more detailed
effects of fluid loading are accounted for.

INTRODUCTION

Tidal power devices harness the kinetic
energy in tidally driven currents for electricity
generation. Tidal turbines are analogous to wind
turbines and share a number of engineering
features.

Most designs for tidal turbines incorporate a
rigid mounting structure which is either pile-
driven into the seabed [1] or is designed such that
gravitational forces keep the structure upright
when subjected to high currents [2]. Pile-
supported turbines are typically feasible in water
depths up to 40 m. For gravity foundations, the
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weight required to resist overturning limits hub
heights to the less energetic portion of the water
column. Additionally, both of these strategies
place specific requirements on the vessels used
for installation and recovery, adding to the overall
engineering challenge and expense of such
projects.

A mooring concept that combines the ease of
deployment of gravity platforms with the
advantageous hub heights of pile structures is to
design buoyancy into the turbine and fix it to the
seafloor via flexible mooring lines attached to an
anchor or installed foundation. As an added
benefit, compliant-moored turbines could
potentially introduce fewer environmental
stressors. Boehlert and Gill [3] suggest that the
greatest impact due to the introduction of
manmade devices into the marine environment is
on benthic habitats and ecosystems. Compliant-
moored turbines allow for less hard substrate to
be placed into the marine environment, reducing
the magnitude of the modification to the
structural habitat and the changes in water
circulation and currents. Additionally, as
evidenced by an environmental appraisal for the
Argyll Tidal Energy Demonstrator Project [4],
mooring configurations can be designed such that
the only direct impact to benthic communities is
localized at the mooring foundations.

This method has the advantage of enabling
turbine operation in deep water while occupying
the energetic flows occurring higher up in the
water column. Designing for the uplift force
experienced by the mooring foundations in a
compliant-moored turbine system is likely a
simpler engineering challenge when compared to
the overturning moment induced onto a rigidly-
supported turbine operating at a comparable
water depth and hub height.  Additionally,
compliant-moored devices may offer benefits to



the ease and cost of deployment and recovery of
the device when compared to pile-driven or
gravity foundation methods.

To assist in the design of single or arrays of
compliant-moored tidal turbines, NNMREC is
developing a software tool to simulate mooring
performance.  This consists of a numerical
simulation implemented in MATLAB
(www.mathworks.com) of a moored turbine
system which, when given the necessary input
parameters, models the dynamic response of the
system to a specified flow field. This information
will help turbine developers determine the best
configuration of turbines and mooring lines to
maintain the optimal turbine orientation to the
fluid flow and position in the water column while
staying within structural loading and mooring
foundation uplift limits. Furthermore, this tool
will be helpful in the design of active or passive
control systems to optimize turbine position, as
the performance of various control techniques and
parameters can be evaluated computationally,
reducing the overall effort and expense associated
with field testing. The methods described herein
were developed primarily with consideration to
moored tidal turbines, though they will eventually
be expanded to include effects relevant to the
analysis of wave energy converters or offshore
wind platforms.

BACKGROUND

Within the growing field of tidal energy
harvesting, compliant moored devices have often
been mentioned as a potential area for
investigation [2,5,6]. The Energy Systems
Research Unit (ESRU) at the University of
Strathclyde is developing a device that employs a
single mooring line anchored to the sea floor and
tensioned using a buoy that may or may not be
surface-penetrating, with a neutrally buoyant tidal
turbine attached to the line at some point along its
length [7]. The turbine features two sets of blades
rotating in opposite directions to eliminate the
reactive torque generated by the rotating turbine
blades. This device has undergone successful
testing at sea in an energetic ocean current and
ESRU is currently working on up-scaling and long-
term reliability testing of the device.

A second project is being led by Ocean
Renewable Power Company (ORPC). Named the
0CGen Power System, it consists of an array of
helical cross-flow turbines which resemble
vertical axis wind turbines. The turbines are held
in place on the seafloor by a system of mooring
lines. Because of the reduced construction effort
required to anchor the mooring lines as compared
to installing rigid support structures in the

seafloor, the OCGen is suitable for deployment in
water depths surpassing 80 m [8].

The development of these systems could be
supported by a time-domain dynamic model
Clark et al [7] discuss the importance of predicting
instabilities in a compliant-moored system to
achieve optimal performance. Different
mechanisms for dealing with instabilities can be
evaluated using an accurate dynamic model
before experimental methods are employed,
thereby allowing a wide range of options to be
investigated in a short period of time and using
minimal resources.

There are currently several options for
software packages capable of performing dynamic
analysis on moored tidal energy systems. One of
these is OrcaFlex (www.orcina.com), a time-
domain numerical solver which is widely used in
many marine engineering industries to perform
dynamic analysis of offshore marine systems.
OrcaFlex was wused by Columbia Power
Technologies, LLC (CPT), to aid in the design of a
wave energy converter [9]. The software was
used to evaluate significant design changes to the
device in terms of performance in a relatively low-
cost and low-impact manner. They found that,
due to the specific nature of ocean energy
harvesting  devices, off-the-shelf  software
packages often need to be supplemented with
custom-made numerical approaches [9]. To
accurately model the system, CPT worked with
Garrad Hassan and Partners (GH) to develop a
numerical modelling package suited to their
applications. Through implementation of the GH
Wavefarmer software to examine frequency-
domain behavior, and importing terms obtained
from the frequency-domain modelling into
OrcaFlex , they were able to generate a model for
the mooring behavior of a WEC which closely
resembled experimental results from data
collected from a 1/33 scale test device [9].

Another  fully  dynamic, time-domain
hydrodynamic simulator was developed by
Dynamic Systems Analysis, Ltd. ProteusDS
(www.dsa-1td.ca) specializes in underwater cable
dynamics and can model systems consisting of
both rigid bodies and flexible cables and nets by
employing finite-element discretization of flexible
members and a nonlinear hydrodynamic cable
model. This program was used by Hall et al. [10]
to model the dynamic behavior of floating offshore
wind turbines through coupling with a quasi-static
aero-hydro simulator called FAST
(wind.nrel.gov/designcodes/simulators/fast),
which uses Blade-Element-Momentum Theory
and linear hydrodynamics to describe a floating
wind turbine device [11]. In addition, FAST
includes a quasi-static model of taut or slack



mooring lines by solving a system of analytical
catenary cable equations to find the static-
equilibrium position and tension of the lines. The
linear  hydrodynamics  simulator =~ WAMIT
(www.wamit.com) was used to model the
hydrodynamic loads on the floating wind turbine
platform. Coupling of FAST with ProteusDS yields
a fully dynamic finite element model of floating
wind turbine system dynamics. The static-
equivalent results from the dynamic model of a
floating offshore wind turbine were compared to
results found using FAST’s default quasi-static
mooring model, and the two were found to be in
good agreement [10]. Further testing involving
irregular sea states that cause the motions of the
floating platform and surface waves to be out of
sync will reveal a more complete picture of the
differences between the fully-dynamic model and
the quasi-static model.

Though these software packages have been
shown to be applicable to marine energy systems
with good accuracy, the development of a new,
first-principles code is justified by the following:
1) Code can be developed for specific
functionalities and readily expanded to include
secondary effects or to accept different formats of
system parameter inputs (for example, one might
express fluid velocity as a function of time and
space or as a velocity vector field). 2) The
simulation is developed from the ground up with
the goal of modeling mooring dynamics
specifically for marine energy converters. This
will hopefully offer benefits over commercial
software packages in terms of the ease and
completeness with which a compliant-moored
MEC system can be fully defined and
parameterized, making this simulation better-
suited to rapid-iteration design where many
different system configurations may need to be
examined. 3) Total control over both how the
model is constructed and how the solution is
obtained allows for greater confidence in the
results. 4) Greater flexibility when integrating
with other computational tools such as active
control system simulators.

METHODS
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FIGURE 1: SAMPLE COMPLIANT-MOORED SYSTEM

A sample compliant-moored tidal turbine
system that can be modeled using the described
techniques is that shown in Figure 1. These
systems can contain multiple rigid bodies
connected via mooring lines to the sea floor or to
other bodies. Multiple bodies can also be joined
rigidly such that one body is constrained to a fixed
position within a free body’s coordinate frame.
Any one body in a rigid grouping can be defined
arbitrarily as the free body. The constrained body
does not add to the number of degrees of freedom
of the system, whereas each free body adds six
DOF. A free node is used to connect multiple
mooring lines at a junction and adds three
translational DOF. A system can be composed of
as many or as few free bodies, constrained bodies,
free nodes, and mooring lines as necessary to
describe the system.

Mooring lines are modeled using a finite
segment approach. Each line is divided into a
number of discreet segments specified by the user
during configuration of the system. The greater
the number of segments, the more closely the
model will resemble a continuous mooring line
until a point where the number of segments is so
great that the length of each segment is on the
same order of magnitude as the computer’s
floating point precision and rounding errors begin
to dominate. Each additional line segment also
introduces three additional DOF to the system,
which increases the computation time required to
converge on a solution. An appropriate balance
must be found between a sufficiently realistic
model and one that can be solved in a reasonable
amount of time.

To analyze the dynamic behavior of these
systems, it is necessary to develop expressions for
all forces acting on the system as functions of the
position and velocity of each feature. Due to the
complex geometry of a tidal turbine, the fluid
forces and the fluid-structure interactions are
difficult to model. These effects are simplified to
allow for initial development of the computational
methods. This approach allows for the
development of the program to a point where the
governing equations can be derived and solved for
using a reasonable approximation of fluid forces
for simple geometries and light loading, however
for the model to accurately simulate tidal turbine
behavior in a sufficiently wide range of operating
conditions, more advanced calculations of the
fluid forces will be needed.

Presently, all bodies in a system, including the
turbines themselves, are modeled as simple rigid
bodies. It is assumed that the component of fluid
velocity parallel to a body-fixed axis imparts a
drag force which is parallel to that axis, i.e. no lift.
The lift experienced by symmetric bodies at non-



zero angles of attack is approximated by
decomposing the relative fluid velocity into its
components along the body-fixed axes and using
corresponding drag coefficients and characteristic
areas for flow along each coordinate direction.
This approach is suitable for blunt body
geometries, assuming the flow possesses a
sufficiently high Reynolds number.

Rigid Body and Mooring Line Dynamics

A complete model will result in a system of
differential equations of motion in the familiar
form of Equation (1), where M is a mass matrix, B
is a damping coefficient matrix (if external
damping is applied), K is a stiffness matrix, and F
is an array of forces acting on the corresponding
displacement variable consisting of the
contributions from drag, gravity, buoyancy,
applied forces, and any other included forces.

M% + Bx + Kx = F(x,x,t) (1)

Figure 2 shows the free-body diagram of a
rigid body within a simply configured system and
Figure 3 shows the forces acting on an individual
line node. It should be noted that slack line
conditions are not yet handled by the simulation.
Any instantaneous line segment length that is less
than the natural length of the segment will result
in compressive spring forces which do not occur
in physical mooring lines. Until slack line
conditions are incorporated into the model, it will
only be useful for taught moorings.

The number of equations in the system is
equal to the number of degrees of freedom, which
is determined by the number of rigid bodies, free
nodes, and mooring line segments. Rather than
attempting to assemble the system of differential
equations into a form similar to Equation (1)
directly, the program implements Lagrange’s
equation of motion, given as Equation (2), to
derive the equations of motion for each
independent displacement variable.

dodr oT oV oD

: t—t—=¢ 2
dtaq,  aq oq ag  © (2)

T,V, and D are scalar symbolic expressions for the
total kinetic energy, the total potential energy, and
the rate of energy dissipated due to linear
damping terms, respectively; g and ¢ are the
symbolic arrays of displacement and velocity
variables, respectively, and e is an array
containing symbolic expressions for the forces
acting on each independent displacement variable.
The symbolic expressions for T, V, D, and each
entry in e are non-linear functions of g, ¢, and t.
The differentiations needed to implement

Lagrange’s equation are performed using
commands from the MATLAB Symbolic Toolbox.
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The intention is to create a full-range-of-
motion model, therefore a robust method of
accounting for body rotation is necessary. To this
end, angular displacements and velocities of the
rigid bodies are expressed in terms of a-f3-y Euler
Angles, depicted in Figure 4. In this manner, any
point or vector in a body-fixed frame can be
expressed in the global frame with a simple
multiplication by a transformation matrix.
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FIGURE 4. EULER ANGLE TRANSFORMATION.

The transformation matrix is found by
defining a coordinate frame ‘a’ coincident to the
inertial frame (Figure 4a), and rotating it about



the x,-axis by an angle «a to frame ‘b’ (Figure 4b).
Frame ‘b’ is then rotated by an angle  about the
yp-axis to frame ‘c’, which is then rotated about
the z.-axis by the angle y to obtain the body-fixed
frame ‘1’. Each individual step is accomplished in
sequence through multiplication with a single
transformation matrix.  The product of the
matrices for each step yields the transformation
matrix to express any point or vector in the body-
fixed frame in terms of the inertial frame, as
described in Equation (3) [12].

1 0 0 g 0 sp ¢ —-s, 0
[0 Cq —Sa] 0O 1 O [sy cy O]
0 s, cq4

A

—Sp 0 cito 0 1 (3)
Cply —CpSy Sp
= [ SaSECy + CaSy —SaSgSy + CaCy —sacﬁ]_
—CaSBCy T SqSy  CqSgSy + SaCy CaCp

A vector expressed in a body-fixed frame ( '7) is
found in terms of the inertial frame ( °7) as shown
by Equation (4).

T

%F =4, ' (4)
Additionally, a point P in a body-fixed frame
whose origin is not coincident with that of the
inertial frame can be found by application of
Equation (5).

°p=9p 4+ 4, 'P (5)

(1’13 is the location of the origin of the body-fixed
frame ‘1’ with respect to the inertial frame 0’, 1p
is the location of point P with respect to the body-
fixed frame, and °p is the location of point P
expressed in the inertial frame.

The angular velocity of the body-fixed frame
can be written in terms of the time derivative of a
body’s Euler Angles as Equation (6).

‘o = al, + By + vk, (6)

where i, j,,, and k, are the unit vectors along the
X4, Vp, and z. axes, respectively. Noting that the
X, axis is parallel to the inertial x-axis, the unit
vector i, is also parallel to the global i, unit
vector, therefore i, =iy = cgcy iy — ¢S, Jy -I: sﬁkl.
With similar observations about the j, and k, unit
vectors, the resultant angular velocity of a rigid
body is expressed in terms of the time derivative
of its Euler Angles as shown in Equation (7).

cgcy, Sy O]ra
w=|=csy ¢ 0 /3] (7)

The velocity of any fixed point in a body-fixed
frame can be expressed in terms of the inertial
coordinate system as Equation (8).

% = 9% + 4,( 'wx 'P) (8)

where %7 is the velocity of the origin of the body-
fixed frame ‘1’ with respect to the inertial frame
and 'Pis the location of the body-fixed point P
with respect to the body-fixed frame. Using Euler
Angle transformations facilitates the derivation of
the symbolic expressions for the kinetic and
potential energies in the system as well as the rate
of energy dissipated due to applied damping
terms and the resultant total force due to gravity,
buoyancy, and fluid and applied forces.

Kinetic and Potential Energy

To derive the equations of motion using
Lagrange’s equation, an expression for the total
kinetic energy as a function of the independent
variables is needed. The total kinetic energy is the
sum of the kinetic energies of all individual mass-
possessing elements of the system. The general
equation for the kinetic energy of a body is

_1 2 2 2 2
Tbody,i = E(mi(vx +v,°+v, ) + I, 0w,y

+ Iy'i(l)yz + IZ',:(UZZ)

(9)

where m is the mass of the object, v,, vy, and v,
are the components of velocity in the inertial x, y,
and z directions, I,.;, I,,;, and I,; are the body’s
mass moment of inertia about the body-fixed axes,
and wy, w,, and w, are the body’s components of
angular velocity about the instantaneous body-
fixed axes as found from Equation (7).

Using the lumped-parameter approach for the
mooring lines, the kinetic energy for each line is
found as the sum of the individual kinetic energies
of each lumped mass. Rotational kinetic energy of
line nodes is expected to be small and therefore is
neglected. The end-nodes of a mooring line are
fixed to other features and do not constitute
independent displacement variables, therefore the
velocity of these nodes is represented in the
symbolic expression for kinetic energy as a
function of the displacement variables belonging
to the feature to which the end-node is fixed.

Potential energy is stored in the elastic
mooring lines. Gravitational effects are not
included in the expression for system potential
energy because they are accounted for in the



model as forces acting on the system. The
quantity of potential energy stored in each
segment is

2
Vsegment,i = %kl(#l - {Jo,i) (10)

where k; is the segment spring constant, ¢; is the
instantaneous segment length, and £ ; is the un-
stretched segment length. The instantaneous
segment length is found symbolically as a function
of the system’s independent displacement
variables. The total system potential energy is
calculated as the sum of the potential energies
stored in each individual discretized mooring line
segment.

Fluid Force Model

One of the greatest challenges of this project
is the calculation of fluid forces acting on the
system. At this stage of development, fluid forces
are approximated component-wise as pure drag;
that is, a given body will be subjected to drag
forces calculated along its body-fixed axes, and a
given line segment will be subjected to drag acting
tangent and normal to its axis. Modelling the drag
forces on rigid bodies begins with finding the
velocity of the fluid relative to the instantaneous
velocity of the body. This relative velocity is then
transformed to the body-fixed coordinate frame
using the Euler Angle transformations described
earlier. From here, the drag force vector with
respect to the body-fixed frame can be calculated
using Equation (11).

1
Faragi = 5P5CpiAiu;|u;] (11)

where Cp;, A;, and u; are the coefficient of drag,
characteristic area, and relative fluid velocity,
respectively, with respect to the body-fixed
coordinate i-direction, such that the total drag
force vector is expressed as
1Fdrag = [Faragx, Faragy, Faragz]".

Figure 5 demonstrates in two-dimensions
how drag forces are decomposed into axis-aligned
components and applied to a rigid body. In this
figure, v, is the velocity of the fluid relative to the
rigid body along the global y,-axis, v, and w, are
the relative fluid velocities aligned to the body-
fixed y; and z; axes, respectively, A,, and A, are
the body characteristic areas corresponding to
flow along the y, and z; axes, respectively, and
Cp,y, and Cp ,, are the coefficients of drag for fluid
flow along the corresponding body-fixed axis.
Note that for geometries such as a cube or a
sphere where the values for the coefficients of
drag and the characteristic areas are equivalent

along each direction, the resultant drag force
vector will always act parallel to the relative fluid
flow regardless of body orientation. The force is
then expressed back in terms of the inertial
coordinate frame by another operation with the
transformation matrix.
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FIGURE 5. DECOMPOSITION OF DRAG FORCE
ACTING ON A RIGID BODY.

The drag forces acting on the mooring lines
are handled in a slightly different manner.
Because the mooring line segments more closely
resemble elongated cylinders rather than bluff
bodies, the drag force experienced by a line
segment is calculated as the vector sum of a
tangential and normal force component. The
characteristic area used for -calculating the
tangential force component is the cylindrical
surface area of the line segment, A = nd¥, where
d is the line diameter (assumed to be constant
under load) and ¢ is the instantaneous length of
the line segment. For calculating the normal drag
force component, the lengthwise projected area,
A = d¥, is used. The tangential force component
acts along a vector parallel to the line segment,
whereas the normal force acts along a vector
normal to the segment and in the plane created by
the relative fluid velocity vector and the axis of the
line segment, as shown in Figure 6. For mooring
lines with more complex geometries such as
chains, whose segments do not resemble
elongated cylinders, suitable equivalent
parameter values are used.

Using a lumped-parameter approach, the drag
force on a line segment is calculated as though it is
acting through the geometric center of the
segment and then distributed evenly between the
two adjacent line nodes.

Line Segment

COM / F tangent
0
Normal
Velocity Tangent

Velocity

normal
FIGURE 6. DECOMPOSITION OF DRAG FORCE

ACTING ON AN IDIVIDUAL LINE ELEMENT.



Seafloor Constraint

The normal force exerted by the seafloor is
modeled by a non-linear force applied to each z-
displacement variable. The empirical form of the
model is

P _n
I = —
seafloor Ziz

k (12)

where 7 is a tuning variable and z; is the distance
from the seafloor. In this way, the force is only
significant when the displacement variable
accounting for the z-position of a line node, free
node, or rigid body is close to zero. The
appropriate value of n depends on the length,
mass, and number of discretized segments for a
mooring line. This quantity should be chosen such
that the normal force acting on the mooring line
nodes due to the seafloor is in equilibrium with
gravitational forces at an acceptably small
distance from the seafloor. Larger values forn
will cause the line to come to rest at unrealistically
large distances from the seafloor, and values that
are too small can lead to non-convergence as the
distance approaches zero. For a system with a
submerged line segment weight equivalent to 1.5
kilograms, a value of n =103 Nm? produced
realistic results.

This method does not take into consideration
the physical dimensions of a rigid body. It is
assumed that the desired information is whether a
structural body collides with the seafloor or not,
rather than how the system responds when it
does. On the other hand, the response of a system
with mooring-line interaction with the seafloor is
of interest, and this model gives a reasonable
representation of mooring-lines lying partially on
the seafloor.

Once the expressions for Kkinetic energy,
potential energy, rate of energy dissipation, and
the combined force loading are obtained,
Lagrange’s Equation of Motion is implemented to
generate the complete system of differential
equations which describes the system. This
system is then solved numerically using the built-
in MATLAB function odel5i.m, which outputs the
value for each displacement variable at a given
time within the user defined interval.

PRELIMINARY MODEL VALIDATION TESTS
Comparison to steady-state model

The first benchmark test evaluates the
equilibrium position of a potential tidal turbine
system. The results obtained by running the
dynamic model until a steady-state condition is
reached are compared to results of an equilibrium
model developed by DuBuque [13], who presents

a numerical method to obtain the equilibrium
position of a tidal turbine in a steady fluid flow
through iterative minimization of the potential
energy of the system. The system configuration
selected is shown in Figure 7.
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FIGURE 7. SYSTEM SCHEMATIC FOR COMPARISON
TO STATIC-EQUILIBRIUM MODEL.

This system is composed of a single rigid body
with four mooring lines in a fluid with density
p = 1020 kg/m?3 moving with a constant velocity
of 4m/s. The body measures 28 m wide, 4 m
deep, and 8.5 m tall. Due to the fact that this body
represents a tidal turbine which allows some fluid
to pass through its volume, the effective surface
areas of the body are only a small percentage of
the total rectangular surface area. The rigid body
properties for this system are given in Table 1.

TABLE 1. RIGID BODY PROPERTIES - STATIC MODEL
COMPARISON TEST.

Property Value

Mass: m = 5000 kg

Mass Moment of 1=, I, I]
Inertia: = [4 4 4.] kg m?2
Volume: V=10m3

Initial position in Yo =1[X% Yo Zo]

global frame: =[0 0 20lm

Initial orientation 0y =1lag Bo Vol

in global frame: =[0 0 O0]rad
Effective Surface A=1[Ax, A4y Az]
Area: =[16 24 11]m?
Coefficients of Cp =1Cpx, Cpy, Cpgl
drag: =[05 0.5 0.5]

The mooring line stiffness is based on a material
with a Young’s modulus of 10 GPa and a diameter
of 5 cm. The resulting unit spring constant is
found as described in Equation (13).




kynie = EA = (103(109 N/mz)%(OOS m)2

(13)
= 19635000 (N/)m
This is the spring constant for a line 1 meter in
length. The program uses this value to calculate
the spring constant for each line segment based on
the length of each segment, which is determined
by the overall length of the mooring line and the
number of segments into which it is divided as
stipulated by the user. The remaining mooring
line properties are presented in Table 2.

TABLE 2. MOORING LINE PROPERTIES - STATIC

MODEL COMPARISON TEST.
Property Value
Linear mass: | m =10 kg/m
Diameter: d=0.05m
Length: L=44m

Unit stiffness: | kyn;; = 19635000 (N/m)m

Coefficients of | Cp = [Cpnorm  Cb.tan]
drag: =[1.0 0.3]m

The simulation is run for a long enough
duration such that the system reaches steady-
state. The resulting equilibrium position and
orientation of the rigid body are presented in
Table 3, along with those observed by DuBuque
for comparison.

TABLE 3. RESULTS OF STATIC MODEL COMPARISON
TEST.

Pf)sitim_l/ I\S/[t:;fl Dynamic Error
Orientation Model
[13]
x (m) 10-5 0 0%
y (m) 2.263 2.3864 5%
z (m) 16.30 16.0411 1.6%
a (rad) 0.3809 0.3758 1.3%
B (rad) 10-6 0.0 0%
y (rad) 10-6 0.0 0%

The validity of the drag force model acting on
a rigid body and mooring line system under
steady state conditions is evidenced by the
consistency between the static-equilibrium model
and the static-equivalence obtained from the
dynamic solution.

Comparison to Analytical Solution to Mass-Spring-
Damper System

The first dynamic validation test is used to
determine the efficacy of the automatic derivation
and solution of the equations of motion of a
system without consideration to the developed

fluid force model. For this test, a two degree of
freedom mass-spring-damper system is modeled
and the behavior as obtained from the numerical
model is compared to the analytical solution to the
governing equations of motion. The chosen test
system is presented in Figure 8a.  Careful
attention must be paid to ensure that the system
generated in the numerical model accurately
resembles the chosen test system due to the fact
that the numerical model expects all compliant
lines to be continuous with uniform linear mass,
whereas the test system utilizes ideal massless
springs. Similarity is achieved in the numerical
model by describing a system with a single
mooring line discretized into two segments
attached to a rigid body. By dividing the mooring
line into only two segments, a single lumped-
parameter line node is created which is analogous
to mass 2 in the test system. The lumped-mass of
the sole line node is equal to the mass of one line
segment; additionally, a quantity of mass equal to
one-half that of the line segment is lumped to the
rigid body as part of the discretization scheme,
therefore the linear mass of the mooring line and
the mass of the rigid body must be chosen such
that the resulting lumped-masses of the line node
and rigid body are equal to the masses m, and m,
in the test system, respectively. Additionally, the
unit spring constant of the mooring lines must be
chosen such that the resulting spring constant of
each line segment is equal to the spring constant k
in the test system.

k
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FIGURE 8. MASS-SPRING-DAMPER SYSTEM (a) AND
EQUIVALENT NUMERICAL SYSTEM (b) FOR
PRELIMINARY DYNAMIC VALIDATION TEST.

In the test system, the body massm; and node
mass m, are set to 100 kg and 8 kg respectively,
the spring constants of both springs are set to
500 N/m, and the damping constant is set to

10 Ns/m. A sinusoidal force is applied as a
function F = —500N sin(2rt/(10s)) . The
governing equations of motion for this system are
expressed as shown in Equations (14) and (15).

myy, = —myg + k(y, —y, —5m) — by, (14)
— 500N sin(2rt/(10s))
Mmy¥, = —myg + k(5m —y,)

—k(y, —y, —5m) (15)



With the initial positions of each mass as
shown in the figure and the initial velocities of
both masses set to zero, this system of differential
equations of motion is easily solved analytically
using Mathematica to obtain the vertical position
of masses m; and m, as functions of time.

The corresponding system as modeled in the
dynamic modeling program is shown in Figure 8b,
where the mooring line is modeled as two discrete
4 meter segments. To match the test model, the
unit spring constant is set to

Kynie = (500 N/p)(4m) = 20008™/,, . The

linear mass is set to 2 kg/m such that the mass of
the lumped-parameter node is 8 kg, and the mass
of the rigid body is set to 96 kg such that when the
mass of half of a line segment is lumped to the
body, the result is equal to m,. Because the
damper in the test system acts between body 1
and the fixed inertial frame, its value is the same
as that applied to the rigid body in the numerical
model.

The simulation is run several times while
varying the value for the relative and absolute
error tolerance applied to the ODE solver. Figure
9 shows the resulting maximum error between
the solution (y-position of the mass as a function
of time) obtained analytically and that found by
the numerical simulation as a function of the
solver tolerance. The figure demonstrates that as
the tolerances are tightened on a logarithmic
scale, the absolute error between the analytical
and the numerical solutions also decreases
logarithmically.

Absolute Error Between Analytical and Numerical Solutions

o : : . : ;
10° 107 10t 10° 10° 10"° 10°
Absolute and Relative Tolerance of ODE Solver

FIGURE 9. MAXIMUM ABSOLUTE ERROR AS A
FUNCTION OF ODE SOLVER TOLERANCES.

This test serves to validate several key
components of the program. It shows that the
program is able to effectively extract the
differential equations of motion of a system
involving a mass, elastic cable, and damper.
Additionally, the results prove that the ODE solver
is capable of solving the equations of motion and
producing a representation of the system behavior

with an accuracy dependent on the specified error
tolerance. This test was conducted with only two
discretized line segments so that an analytical
solution to an equivalent system could easily be
found. It is reasonable to conclude that similar
results will be found as the number of line
segments is increased when compared to the
analytical solution to the corresponding mass-
spring-damper system. Since finite segment
theory states that a continuous line can be
modeled as discretized segments (see [14]), these
results support the claim that this model for
mooring line dynamics accurately reflects the
behavior of a mass tethered by a continuous
mooring line with uniform linear mass and
stiffness. What this test does not validate is the
fluid forcing model, since fluid forces were not
applied.

FUTURE DEVELOPMENT AND APPLICATION

A great deal of effort is still required to
advance the dynamic numerical simulation to the
point where it can reasonably model real-world
moored tidal turbine systems. Most of this effort
will be applied to refining the fluid loading model.
Fluid forces arise from drag, added mass effects,
turbulence, and oscillatory wave motion in a
manner more complicated than what can be
modeled with a single non-linear drag
representation. The results of the validation tests
described within this paper provide confidence
that the algorithm employed to develop the
Lagrangian differential equations of motion for a
given mooring-line/submerged-body system yield
satisfactory results when taking into account the
gravitational, buoyant, and non-linear drag forces
acting on the system. This method of solving for
the equations of motion benefits from full range of
motion in six degrees of freedom for all rigid
bodies through the use of a-B-y Euler Angles to
define body rotation and to transform vector
quantities between reference frames.

Features such as non-coincident centers of
mass and buoyancy, control over center of drag
pressure, surface penetration, surface wave
loading, slack line conditions, and mooring line
resistance to bending are in the process of being
incorporated into the model. The greatest
challenge, at present, is addressing more
stochastic fluid loading effects resulting from
turbulence, flutter instabilities, fluid-structure
interaction, as well as the effects of energy
extraction and reaction forces acting on an
operating turbine. As models for these effects and
how they are observed in tidal turbine systems
are developed, they will be included in our tool as
additional force loads applied to the rigid bodies
and mooring line nodes, which will hopefully yield



simulation results that closely resemble observed
dynamic behavior of real-world systems.

The success of this project depends on our
ability to prove the program yields realistic
results. Therefore, validation against real data
from instrument deployments is necessary. This
presents the opportunity for collaboration with
groups in possession of this type of data and
interested in a full-range-of-motion dynamic
model for a system within the scope of our
applications. The program can serve to provide
insight into the way changes to a system design
would impact the overall system behavior and
performance, allowing designers to assess the
impact of design changes prior to expending the
cost and effort of applying those changes.
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