
Performance Modeling and Analysis
of a Massively Parallel DIRECT—
Part 2

Jian He 1

Alex Verstak 1

M. Sosonkina 3

L. T. Watson 2

Abstract
Modeling and analysis techniques are used to inves-
tigate the performance of a massively parallel version
of DIRECT, a global search algorithm widely used
in multidisciplinary design optimization applications.
Several high-dimensional benchmark functions and
real world problems are used to test the design
effectiveness under various problem structures. In
this second part of a two-part work, theoretical and
experimental results are compared for two parallel
clusters with different system scale and network
connectivity. The first part studied performance
sensitivity to important parameters for problem con-
figurations and parallel schemes, using performance
metrics such as memory usage, load balancing,
and parallel efficiency. Here linear regression mod-
els are used to characterize two major overhead
sources—interprocessor communication and proces-
sor idleness—and also applied to the isoefficiency
functions in scalability analysis. For a variety of
high-dimensional problems and large scale systems,
the massively parallel design has achieved reason-
able performance. The results of the performance
study provide guidance for efficient problem and
scheme configuration. More importantly, the design
considerations and analysis techniques generalize to
the transformation of other global search algorithms
into effective large scale parallel optimization tools.
Keywords: DIRECT, global search algorithms, isoef-
ficiency, load balancing, parallel optimization, perfor-
mance modeling, scalability analysis

1 INTRODUCTION

Part 1 (He et al. 2007) of this work describes
the serial version of the deterministic global op-
timization algorithm DIRECT, sets a context for
the applications of massively parallel global search,
and outlines a recently developed massively parallel
version of DIRECT. This paper continues the perfor-
mance modeling and analysis of Part 1 by specifically
addressing the computing environment and communi-
cation overhead issues that were ignored in Part 1.
A detailed comparison between an Apple Xserve G5-
based system with 2,200 processors (System X) and
an AMD Opteron-based system with 400 processors
(Anantham) is conducted.

Table 1.1 Parameters and characteristics under
study.

Description
Nd Problem dimension
Imax maximum iterations
Nb number of evaluations per task
m number of subdomains
n number of masters per subdomain
k number of workers
Tf objective function cost, seconds
Tcp point-to-point round trip cost, microseconds
Tca one-to-all broadcast cost, microseconds

Both System X and Anantham are cluster systems
of dual CPU nodes located at Virginia Tech. They
provide different types of computing environments for
the present study. On System X, 10 Gbps InfiniBand
switches connect 1,100 nodes, each of which has
two 2.3 GHz processors and 4 GB of main memory.
On top of the 32-bit Mac OS X operating system,
MVAPICH (MPI-1 implementation over VAPI (Liu
et al. 2004b)) software is used to communicate via
the InfiniBand interconnect. On Anantham, 200
nodes running the 64-bit Linux operating system,
each with two 1.4 GHz processors and 1 GB of main
memory, are interconnected over 2 Gbps Myrinet
(Boden et al. 1995) interfaces underlying a GM
(general messaging) communication platform. Both
System X and Anantham have Gigabit Ethernet
as a secondary network. A detailed performance

1Departments of Computer Science and 2Mathemat-
ics, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061. (jihe@vt.edu)

3Ames Laboratory, Iowa State University, 236 Wilhelm
Hall, Ames, IA 50011.

1

comparison of VAPI/InfiniBand and Myrinet/GM on
a 32-node cluster can be found in Liu et al. (2004a).

Part 2 studies the impact of parallel system
parameters on the performance of pDIRECT II (He
et al. 2006) on large-scale clusters, focusing on
the latency modeling, overhead identification, and
scalability analysis. The parallel system parameters
include the objective function cost Tf and two
network characteristics Tcp and Tca as shown in
Table 1.1, which recounts the relevant parameters
under consideration for both Part 1 and Part 2.

The rest of Part 2 is organized as follows. Section 2
addresses the parameters Tf , Tcp, and Tca. Section 3
offers a scalability analysis based on isoefficiency. The
conclusions given in Part 1 apply to the entire body
of work, so Section 4 here gives only those conclusions
and future work pertinent to this paper, Part 2.

2 Parallel System Parameters
The overall scheme of pDIRECT II consists of a
single master or multiple masters with or without
a global pool of shared workers. When masters
take on function evaluation tasks locally without
workers, they form a horizontal scheme. A vertical
scheme is formed when workers are used to carry
out the function evaluation tasks distributed by a
master. Depending on the memory requirements, the
horizontal scheme of multiple masters can be mixed
with the vertical scheme to share the memory burden
and dispatch tasks to workers. These schemes are the
basic components that map data and tasks onto a
cluster system of processors.

2.1 Objective Function Cost
The objective function cost Tf is the key parameter
that affects parallel performance under different
parallel schemes. An empirical study by He et
al. (2006) concluded that the horizontal scheme
outperforms the vertical scheme when Tf ≈ 0.0,
but performs worse than the vertical scheme when
Tf = 0.1. The performance impact of Tf ∈ (0.0, 0.1)
was further investigated using the 150-dimensional
GR function (Appendix) under both the vertical and
horizontal schemes on System X and Anantham.

The first experiment used a small number of
processors p = 3, 4, 5 with Tf being adjusted in 15
small time intervals from T1 = 0.1 to T16 = 2.5E-
05. Since the 150-dimensional GR function originally
costs about 1.5E-05 on System X and 2.5E-05 on
Anantham, T16 is chosen as the smallest objective
function cost to make the test cases comparable on
System X and Anantham. Figure 2.1 shows that
the parallel efficiency increases sharply as Tf grows
from T16 to Tmid (called the “performance boundary”,

h_p3
v_p3
h_p4
v_p4
h_p5
v_p5

Tflog
10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1

E
ffi

ci
en

cy

Parallel Efficiency on System X

(a) System X.

h_p3
v_p3
h_p4
v_p4
h_p5
v_p5

log
10

Tf

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1

E
ffi

ci
en

cy

Parallel Efficiency on Anantham

(b) Anantham.
Fig. 2.1 Comparison of parallel efficiency as Tf

changes in the range (0, 0.1) using p = 3, 4, and 5
processors for the 150-dimensional GR function
with Imax = 90. “v ” stands for the vertical
scheme and “h ” for the horizontal scheme.

log
10Tflog

10Tf

p3
p4
p5

Vertical Scheme Horizontal Scheme

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

−5 −4 −3 −2 −1 −5 −4 −3 −2 −1

E
(x

)−
E

(a
)

Fig. 2.2 Parallel efficiency differences from that
on System X to that on Anantham (marked as
“E(x)-E(a)”) corresponding to the experimental
results in Figure 2.1.

marked as dotted lines with the x coordinates being

2

2.5E-04 and 1.0E-03 on System X and Anantham,
respectively), then grows slightly up to T1, which
gives the highest efficiency for a particular setting
specified by the parallel scheme, the number of
processors, and the computing platform system. Since
Tf < Tmid is comparable with the communication cost
under either the vertical or the horizontal scheme,
the communication overhead dominates, degrading
the efficiency significantly. When p = 3 and 4, the
horizontal scheme outperforms the vertical scheme
regardless of the value of Tf because one processor
is dedicated as the master in the vertical scheme.
When p = 5 and Tf ≥ Tmid, the vertical scheme
starts to perform better than the horizontal scheme.
The turning point Tmid is different for System X and
Anantham due to the different underlying network
properties characterized by Tcp and Tca, which are
considered in Section 2.2.

A smaller value of Tmid suggests a lower Tcp and/or
a higher Tca. The point-to-point communication,
characterized by Tcp, happens more often in the
vertical scheme than in the horizontal scheme, while
the global one-to-all communication, with the cost
Tca, is a feature of the horizontal scheme. Moreover,
the common overhead caused by data dependency
and problem structure becomes more dominant than
the communication overhead when Tf > Tmid and
eventually levels off the efficiency growth to the
highest possible value for a particular setting.

The difference from E(x) (the efficiency on System
X) to E(a) (the efficiency on Anantham) is denoted
E(x)−E(a) in Figure 2.2. Observe that E(x) ≥ E(a)
for the vertical scheme, but for horizontal scheme,
there are a few cases when E(x) is worse than E(a)
for Tf ∈ (2.5E-04, 1.0E-02). More importantly, the
difference becomes very small as Tf grows beyond
1.0E-02. However, no inference should be drawn
without further study that compares the performance
impact of Tf using a larger number of processors.

The second experiment uses p = 10, 20, 40, . . ., 100
processors with Tf being adjusted from the largest
value T1 = 0.1 to Ti = Ti−1 × 1.0E-01 (i = 2, 3, 4) to
the smallest value of T5 = 2.5E-05. As expected, the
results on System X (Figure 2.3) show that the parallel
efficiency of the vertical scheme is greatly improved,
reaching 80–90% for all numbers of processors p when
Tf grows from T5 to T1. However, the efficiency
of the horizontal scheme is improved slightly except
for p = 10, when it still does not surpass 60% for
the largest value T1. For the vertical scheme on
System X, smaller p results in higher efficiency when
Tf ∈ (T5, T2). For the rest of the Tf values, reasonable
efficiency is attained ranging from the lowest E = 0.85
to the highest E = 0.94 on 80 and 40 processors,

v_p10
v_p20

v_p60
v_p80

log
10

Tf

v_p40

v_p100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1

E
ffi

ci
en

cy

Comparison of Parallel Efficiency on System X

(a) The vertical scheme.

log
10Tf

h_p10
h_p20
h_p40
h_p60
h_p80
h_p100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1

E
ffi

ci
en

cy

Comparison of Parallel Efficiency on System X

(b) The horizontal scheme.
Fig. 2.3 Comparison of parallel efficiency as Tf

changes in the range (0, 0.1) using p = 10, . . ., 100
processors on System X for the 150-dimensional
GR function with Imax = 90.

log
10
Tf log

10
Tf

Vertical Scheme Horizontal Scheme

p10
p20
p40
p60
p80
p100

−0.05

 0

 0.05

 0.1

 0.15

 0.2

−5 −4 −3 −2 −1

E
(x

)−
E

(a
)

−5 −4 −3 −2 −1

Fig. 2.4 The parallel efficiency differences on
System X and Anantham (denoted “E(x)-E(a)”)
corresponding to the experimental results in
Figure 2.3.

respectively. In the horizontal scheme, all the cases
perform less efficiently than in the vertical scheme,

3

especially when a large number of processors are
used. On Anantham, similar results were produced as
observed in Figure 2.4, which plots the differences of
the parallel efficiency for both vertical and horizontal
schemes on System X and Anantham. For most cases,
System X gives a higher or equal efficiency. The next
subsection studies the system-dependent parameters
that may cause the performance variance on different
systems.

2.2 Network Characteristics
Network connections are affected by many factors
and characterized mostly by the classical metrics
such as point-to-point latency, broadcast latency, and
bandwidth. Here empirical studies of the network
performance are presented for the point-to-point
round trip cost Tcp. Although the one-way broadcast
cost Tca is also recognized as a major network
characteristic (see, e.g., Wu et al. (2005)), its detailed
modeling is beyond the scope of this paper, which
contains only a few observations regarding Tca.

The OSU benchmark library (Panda et al. 2006)
provided in the MVAPICH software distribution
was used to measure the MPI-level point-to-point
and broadcast latencies. Small simulation programs
were also used to quantize the other delays (i.e.,
host overhead, bottleneck, and network contention)
involved in the messaging via MPI. Based on the
benchmark and simulation results, both network
characteristics Tcp and Tca may be modeled as linear
functions of the message size and the number of
processors. For all the experiments in this section,
the timing results were measured in microseconds.
For small messages (less than 8 Kbytes), the results
were the average of 10,000 runs, before which 1,000
runs were skipped as the network warm-up period; for
large messages, 110 runs were done with the first 10
runs skipped.

2.2.1 Round Trip Cost
Tcp, the message point-to-point round trip cost, can
be construed as the time for a master to receive
from and reply to a worker. All the point-to-point
messages for a given problem have the same size,
so the transmission time for these messages over the
network theoretically is the same.

Figure 2.5 shows the latency benchmark results
between two processors on System X and Anantham
as the message size Sm grows up to 2048 bytes. The
two processors are either “coupled” on the same node
or “decoupled” on two different nodes. The latency
benchmark is a typical ping-pong test, where the
sender calls MPI Send to send a certain size message
to the receiver and waits for a reply; the receiver

coupled_x
coupled_a
decoupled_x
decoupled_a

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

Message size in bytes

Point−to−point Latency Comparison

Fig. 2.5 Comparison of point-to-point latency
test results. The processors are either coupled
or decoupled on System X (“ x”) and Anantham
(“ a”).

calls MPI Recv to receive the message and sends it

back as the reply. The average latency results shown

in Figure 2.5 are the one-way message transmission

delays.

The timing results show that using decoupled

processors yields a much higher latency on Anantham

than on System X. Furthermore, using coupled pro-

cessors reduces the latency significantly on Anantham

but causes almost no change on System X. Observe

that the Myrinet intra-node latency is lower than that

of VAPI for InfiniBand, which has been also pointed

out in Liu et al. (2004a). The reason behind such

poor performance of MVAPICH is that its particular

Mac OS X implementation used on System X takes

no advantage of the shared memory available to the

coupled processors, and all the communications may

involve the network interface on a given node. In fact,

the disregard or poor usage of the shared memory

may actually increase communication latencies as has

been shown, e.g., in Chen et al. (2003). On the

other hand, the MPI implementation over Myrinet is

more mature now and has been well tuned to exploit

the shared memory access provided by the Linux

operating system.

On System X, InfiniBand is still an attractive

communication medium compared with using the

Gigabit Ethernet over TCP/IP, because InfiniBand

delivers much better communication performance for

both decoupled and coupled processors. For instance,

with the message size Sm = 1024 bytes, Tcp = 37.58

and 225.19 when MPICH-2 is used between two

coupled (over the shared memory) and decoupled

processors (over the Gigabit Ethernet), respectively.

4

p1=16
p2=16
p1=32
p2=32
p1=64
p2=64

2
 7

 8

 9

 10

 11

 12

 13

 14

 10 20 30 40 50 60 70

D
el

ay
 in

 m
ic

ro
se

co
nd

s

Number of Processors

Master Response Delay on System X

(a) System X

p1=16
p2=16
p1=32
p2=32
p1=64
p2=64

2

 17

 17.5

 18

 18.5

 19

 19.5

20

 20.5

21

 10 20 30 40 50 60 70

D
el

ay
 in

 m
ic

ro
se

co
nd

s

Number of Processors

Master Response Delay on Anantham

 16.5

(b) Anantham
Fig. 2.6 Comparison of master response delay
using p = 16, 32, and 64 processors on System X
and Anantham. “ pi” corresponds to i processors
per node.

Conversely, Tcp = 14.26 µs when MVAPICH is used
via VAPI/InfiniBand instead.

When a large number of processors are used, Tcp

may also include a certain amount of response delay
due to the host buffer latency, bottleneck effect,
and network contention at the receiver. Such a
delay is called “master response delay” because it is
more likely to happen at a master that handles the
messages exchanged with workers and other masters
than at a worker that only communicates to one
master at a time. A small MPI program was
written to simulate the same communication pattern
between a master processor and a group of processors,
either as other masters or workers that communicate
with this master simultaneously. With p processors,
the master processor repeats the receive-and-reply
of a small handshaking message (Sm = 112 bytes,
a typical message size for a 10-dimensional problem
with Nb = 1 function evaluation per task) 11,000
times initiated by p − 2 other processors from within
the total p > 2 processors. The first 1,000 handshakes

System X
Anantham

2/e

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50 60 70
Processor Breakpoint

Comparison of Ratio R

R
at

io
 R

2 /e

Fig. 2.7 Comparison of the ratio R2/e for differ-
ent breakpoints of the piecewise linear model of
Tcp on System X and Anantham.

are considered as the network warm-up period as in
the other experiments, thus not counted in the timing
results. Six groups of simulation results shown in
Figure 2.6 are the average timing results with p = 16,
32, and 64 processors either coupled or decoupled on
System X and Anantham. The x-axis refers to the
number of processors within the p−2 workers/masters
that are communicating with the specified master.

On both systems, the curves for different numbers
p are overlapped very well. Similarly to the
latency benchmark results, using coupled processors
reduces the master response delay significantly on
Anantham especially for small numbers of processors,
but slightly increases the delay on System X. On
System X, no matter whether the processors are
coupled or decoupled, the delay drops dramatically
at the beginning until p = 10 (coupled) or p = 11
(decoupled), then suddenly reaches up to a saturated
level ≈ 11.0 µs. On Anantham, the delay using
coupled processors drops slightly at the beginning,
then increases significantly until p = 10, from which
point it starts leveling off at the saturated level
≈ 20.0 µs. If using decoupled processors instead, the
delay increases slightly at the beginning from p = 2
to p = 4, then drops to a level ≈ 20.3 µs. The
narrower bandwidth on Anantham yields a longer
delay because the network contention occurs when a
large number of processors are communicating to each
other simultaneously. In the following experiments,
coupled processors are used primarily because the
cluster is utilized more efficiently (when decoupled
processors are used, 50% of the processors are idle).
Secondarily, it makes a minor difference on System X
and even reduces the latency on Anantham.

The above experiments indicate that the Tcp

between a master and a group of processors is affected
by two factors: (1) the message size Sm and (2) the

5

 0

 50

 100

 150

 200

 250

 300

 350

 400

−20 −10 0 10 20 30 40 50

F
re

qu
en

cy

Residual Error in microseconds

Histogram of Residuals

(a) System X

 0

 100

 200

 300

 400

 500

 600

−80 −60 −40 −20 0 20 40 60

F
re

qu
en

cy

Residual Error in microseconds

Histogram of Residuals

(b) Anantham
Fig. 2.8 Histogram of residual errors of the
linear regression models for Tcp on System X and
Anantham.

number of processors p that communicate with the
master. Tcp increases as Sm grows, but varies when
p is small and levels off at a certain value when p is
sufficiently large depending on the computing system.
Therefore, Tcp is modeled as a multivariate function
of Sm and p as

Tcp(p, Sm) = TL(Sm) + Td(p),

where TL(Sm) is defined as the point-to-point latency
function in terms of Sm without the response delay
and Td(p) as the pure response delay function in
terms of p. In Figure 2.5, the data points for
decoupled processors essentially depict Tcp(Sm, p) as
the point-to-point latency TL(Sm) with a response
delay Td(p = 2), so TL(Sm) is fairly likely a linear
function of Sm. In addition, the data points for
coupled processors in Figure 2.6 show that the delay
function Td(p > 2) with TL(Sm = 112bytes) may
be a piecewise linear function with one breakpoint
around p = 10, which disconnects the two pieces on
System X but connects them on Anantham. The
optimal breakpoints of a piecewise linear model can be

determined systematically as in Vieth (1989). For the
present work, a series of piecewise linear models of Tcp

were fitted using the statistics package R (Dalgaard
2002) at every possible breakpoint that forms either
a single linear model or a two-piece piecewise linear
model, each piece containing at least two different
p numbers from the experimental data. For each
piecewise linear model, define the ratio of the average
correlation coefficient R2 = (R2

1 + R2
2)/2 to the sum

of the residual standard errors e = e1 + e2 as the
objective function to be maximized to find the optimal
breakpoint. Clearly, the ratio is simply R2

1/e1 for
the single linear model case. When either R1 or R2

is below 0.5, the model is considered invalid and the
objective function value is set to zero. The shortest
point-to-point message is 48 bytes in the present work,
so the data points were collected with message size
Sm = 2i bytes (i = 6, . . ., 14) using p = 64 coupled
processors on System X and Anantham.

For each system, Figure 2.7 shows that the single
linear model maximizes the ratio of R2/e, thus a
single linear model is used for Tcp on both systems.
Table 2.1 lists the model formula, coefficients, residual
standard errors e, and correlation coefficient R2.

Table 2.1 Model formula, coefficients, residual
standard errors e, and correlation coefficient R2

for Tcp on System X (X) and Anantham (A).

Tcp(Sm, p) Linear Models
X 9.917 + 0.007Sm + 0.001p

e = 9.435, R2 = 0.926
A 18.76 + 0.007Sm − 0.017p

e = 6.587, R2 = 0.956

The values e and R2 are very reasonable for both
systems. The model coefficients suggest that Tcp is
affected only slightly by Sm and p. Ignoring Sm

and p, Tcp is about twice smaller on System X than
on Anantham. The histograms of residual errors are
plotted in Figure 2.8 using 50 bins for the total of 1,008
data points. The residual errors fall in a narrower
range [−20, 50] on System X than the range [−80, 60]
on Anantham. However, residuals are skewed with
more data points located away from zero on System
X than on Anantham, where residual errors follow
an approximate normal distribution. Because System
X has 2,200 processors, the maximum impact of the
term 0.001p is 2.2 µs. Also, the maximum impact
of −0.017p on Anantham is 6.8 µs. Therefore, the
impact of p on Tcp is negligible on both systems. Since
the factor Sm has a large range of values depending
on the problem dimension, the number of function

6

evaluations per node, and the scheme configuration,
Sm is kept in the final model of Tcp:

Tcp(Sm) = 0.007Sm + Lcp, (2.1)

where Lcp = 9.917 on System X and 18.76 on
Anantham.

In the DIRECT algorithm, all the collective
communications may be modeled using broadcast
operations. For example, the barrier occurring after
all the masters prepare local convex hull boxes can
be treated as an all-to-one gather followed by an
one-to-all broadcast. Similarly to the point-to-point
latency, Tca is a linear function of the message size
Sm and the number of processors p, i.e., Tca(Sm, p).
It has been observed (Vadhlyar et al. 2004), however,
that its dependence on p may be affected by such
factors as the broadcast algorithm implemented on a
particular number of processors and network topology
and by switching modes of this algorithm triggered
for certain processor numbers.

3 Scalability Analysis
Scalability is the capacity to increase speedup in
proportion to the number of processors p for a parallel
system, including a parallel implementation of an
algorithm and a particular execution environment.
The crucial step is to identify the overhead as a
function of problem scale and system scale. The
scalability is evaluated with a realistic tool—the
isoefficiency function (Kumar et al. 1994) based
on the characterized communication patterns and
overhead sources.

Kumar et al. (1994) point out that if the parallel
efficiency can be maintained constant as the total
work grows at least linearly with p, then the
parallel implementation is scalable. The authors
have previously used the isoefficiency function to
analyze the performance of the restarted generalized
minimum residual (GMRES) method (Saad 2003)
for the iterative solution of large scale sparse linear
systems (Sosonkina et al. 2002). Decker and Krandick
(2001) have generalized the concept of isoefficiency
function for use in search algorithms, and showed
its application in the analysis of a search algorithm
that computes isolating intervals for polynomial real
roots. In the present paper, the overhead terms are
analyzed in great detail in order to identify the ones
with significant weight under different circumstances.
The derivation of the isoefficiency function is shown
only for the vertical (n = 1, k > 1) scheme. Since
one may proceed in a similar manner to develop the
isoefficiency function for the horizontal (n > 1, k = 0)
scheme, its derivation is omitted here while major
findings are only summarized.

3.1 Vertical Scheme Scalability
In the vertical scheme, three sources of overhead are
present. The first is the communication involved in
distributing tasks to remote workers. The second is
the idleness due to task imbalance among workers
due to the data dependency of algorithm steps.
Part 2 assumes Nb = 1 (one function evaluation per
task), since Part 1 has proved that choice for Nb

minimizes the data dependency overhead, especially
for expensive objective functions. The third is the
idle time when workers wait for DIVISION and
SELECTION to be finished at the master. Since
DIVISION and SELECTION are necessary steps of
DIRECT, and the cost does not vary with k, the
third source of overhead is considered as a constant
for a particular problem with a specified stopping
condition.

Let W be the total number of function evaluations
over Imax iterations,

W =

Imax
∑

i=1

Fi, (3.1)

where Fi denotes all the function evaluation tasks at
iteration i. The total overhead for k workers is

To(W, k) = k Tk − W Tf , (3.2)

where Tk is the parallel execution time with k workers.
Define the parallel efficiency Ep as

Ep =
W Tf

k Tk

. (3.3)

If Ep can be maintained constant as W grows
at least linearly with k, then the vertical scheme is
scalable. The isoefficiency function is derived from
Equation (3.2) and (3.3) as

W =
Ep

1 − Ep

(To(W, k)/Tf). (3.4)

It describes the total work W in terms of To, the total
overhead function given a desired Ep and the constant
objective function cost Tf . To find if W is a linear

function of k, To(W, k) as a function of W needs to
be extended by accumulating over all Imax iterations.
All the costs, except for the function evaluation, are
included in To(W, k). So it has three components:

T 1
oc (communication overhead), Tod (data dependency

overhead), and a constant Tos (the DIVISION and
SELECTION cost).

The interaction between masters and workers is
described in full detail by He et al. (2006). Here, the
communication phases are only outlined.

(1) Each of k workers sends a nonblocking
request to a randomly selected master.

7

(2) For each worker that has sent a nonblocking
request or that is in the queue, a master
sends a task, if any. If there are no
more tasks, the master sends a “no point”
message, or if there are no more iterations,
sends a “all done” message.

(3) The workers who received tasks send values
back to the master. Those who received the
“no point” notice check with other masters,
who may have tasks, and if none have tasks,
send blocking requests and wait. Those who
received the “all done” notice terminate.
For each value received, a master sends a
task, if any; if there are no more tasks, a
master sends a “no point” notice; for each
blocking request, a master queues up the
worker.

Only one master distributes tasks, so if it runs out
of tasks at the end of an iteration, all workers will
block waiting in its queue. So, Phase (1) happens
only at the first iteration, because the workers are all
in the queue of the master from the second iteration
onward. Phases (2) and (3) are repeated at every
iteration. To sum up the communication overhead,
consider the message types and the frequency of these
messages exchanged between a master and a group of
workers:

(a) T1 = k Tcp/2 (k workers send nonblocking

requests),
(b) T2 = Fi Tcp/2 (workers receive Fi tasks),

(c) T3 = Fi Tcp/2 + k Tcp (the master receives
all function values and sends “no point”
messages at end of each iteration to k
workers; all workers then send blocking
requests to the master),

(d) T4 = k Tcp/2 (workers receive “all done”
messages from the master at the last
iteration).

The communication overhead over all iterations is

T 1
oc = T1 +

Imax
∑

i=1

T2 +

Imax
∑

i=1

T3 + T4.

Represent it as a function of W (Equation 3.1) and k
with Tcp(Sm) (Equation 2.1):

T 1
oc(W, k) = (k(1 + Imax) + W)Tcp(Sm)

= (0.007Sm + Lcp)W

+ (1 + Imax)(0.007Sm + Lcp)k.

(3.5)

For point-to-point messages, the message size Sm (in
bytes) depends on the problem dimension Nd:

Sm = (Nd + 4) 8. (3.6)

GR
QU
RO
SC
MI
FE
BY

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90 100

Id
le

 C
yc

le
s

Number of Workers

Worker Idle Cycles

(a)

GR
QU
RO
SC
MI
FE
BY

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140

N
um

be
r

of
 E

va
lu

at
io

ns

Number of Iterations

Function Evaluation Tasks per Iteration

(b)
Fig. 3.1 All the worker idle cycles, shown in (a),
are calculated using k = 2, . . ., 100 workers and
the function evaluations are shown in (b) on all
the test problems on System X. Imax = 122.

Therefore, Tcp(Sm) is a constant for the same problem

on a particular system. Because T 1
oc depends linearly

on k, it grows linearly as O(k) for a fixed size problem
specified by Imax and W . On System X, the twice
smaller Lcp (Table 2.1) gives a slower growth of T 1

oc

in terms of k than that on Anantham.
The second source of overhead—data dependency—

is as important as the communication. It causes task
imbalance among workers. At iteration i, if some
workers obtain no tasks, when the number of tasks
Fi is less than the number of workers k, or obtain
fewer tasks than others, idle cycles will appear, each
of which lasts about Tf . The number Xi of such
cycles can be derived from the equation

δi+ (k − Xi) + δi− (Xi) = Fi,

where δi+ = ⌈Fi/k⌉ and δi− = ⌊Fi/k⌋ are the workers’
task shares defined in the workload model of Part 1.
Because δi+ − δi− = 1,

Xi =
δi+ k − Fi

δi+ − δi−

= δi+ k − Fi,

8

GR
QU
RO
SC
MI
FE
BY

−1500

−1000

−500

 0

 500

 1000

 1500

 0 10 20 30 40 50 60 70 80 90 100

Id
le

 C
yc

le
s

Number of Workers

Residual Scatter Plot

Fig. 3.2 Scatter plot of residuals δp(k) for test
problems on System X.

yielding the total data dependency overhead

Tod =

Imax
∑

i=1

XiTf

=

Imax
∑

i=1

(⌈

Fi

k

⌉

k − Fi

)

Tf .

(3.7)

Observe that Tod becomes zero when Fi is a multiple

of k. Figure 3.1(a) shows the results of
∑Imax

i=1
(Xi,j),

which is the total number of worker idle cycles over
Imax iterations using j = 2, . . ., k workers. The test
problems include the artificial functions described in
the Appendix, cell cycle parameter estimation for frog
egg extracts (FE) by Zwolak et al. (2005), and cell
cycle parameter estimation for budding yeast (BY) by
Panning et al. (2006) in systems biology.

Interestingly, each curve for the total idle cycles
presents a linear function of k with a fluctuation,
which falls in a larger range when more workers are
used. Note that the wall clock duration of data
dependency overhead is actually

Imax
∑

i=1

sgn(Xi,j)Tf ≥
Imax
∑

i=1

(Xi,j)Tf/k,

and this average, rather than total, overhead per
worker is considered for experimental verification
here.

The growth rate of the number of idle cycles was
estimated by the same linear regression tool used in
Section 2. Although the QU, SC, and MI problems
generate more function evaluation tasks per iteration
than other problems do (Figure 3.1(b)), the growth
rates are very close to each other for these test
problems as shown in Table 3.1. Hence, Tod grows
approximately linearly with k with a fluctuation that
can be described by the residual error function δp(k)
(Figure 3.2).

Table 3.1 Comparison of the fitted linear growth
rate θ, the residual standard error e, and the
correlation coefficient R2 for the fitted linear
model of the worker idle cycles for test problems.

θ e R2

GR 61.093 327.6 0.966
QU 60.724 202.5 0.986
RO 61.816 194.1 0.988
SC 61.879 200.1 0.987
MI 59.186 241.2 0.980
FE 64.613 234.9 0.984
BY 60.658 269.7 0.976

Table 3.2 Comparison of Cm, T x
oc/k (on System

X), T a
oc/k (on Anantham), and Tod/k (in seconds)

for all test problems using k = 99 workers.
Imax = 122 with the first 12 iterations skipped for
the overhead computation. Nb = 1. Nd = 150
and Tf = 0.1 for artificial functions, Nd = 16 and
Tf = 2.66 for FE, and Nd = 143 and Tf = 11.02 for
BY.

Cm T x
oc/k T a

oc/k Tod/k

GR 413332 0.039 0.057 4.450
QU 1598908 0.149 0.221 5.371
RO x 1021480 0.097 – 5.101
RO a 1017544 – 0.141 5.540
SC 1487836 0.139 0.206 5.368
MI 1508052 0.141 0.209 4.957
FE 59604 – 0.006 156.860
BY 528468 0.048 – 616.790

Table 3.2 compares the number of one-way messages
Cm, the theoretical communication overheads per
worker T x

oc/k and T a
oc/k on System X and Anantham,

respectively, and the worker average data dependency
overhead Tod/k for all test problems with k = 99
workers. On both System X and Anantham, Imax =
122 iterations were run, with the first 12 iterations
skipped for the overhead computation to eliminate
startup effects, so the number of one-way messages

is Cm = 2
(

k(Imax − 12) +
∑Imax

i=13
Fi

)

. Both T x
oc and

T a
oc were estimated using the formula for T 1

oc in
Equation 3.5 given Cm, Fi (the number of function
evaluation tasks per iteration collected from the runs),
the linear models of Tcp in Equation 2.1, and Sm

in Equation 3.6. The worker average time Tod/k is
calculated with Equation 3.7 given the collected data
for Fi using 99 workers. For the BY problem the
data were collected only on System X and, for the
FE problem, only on Anantham, because the versions

9

SAMPLING
(receiving)

wait(receiving)

SELECTION

master worker

(sending)

DIVISION (evaluation)

(sending)

wait

Fig. 3.3 Overhead measurement of sampling
loop on a master and a worker.

of these applications used require specific execution
environments. A reasonably large objective function
cost Tf = 0.1 is assumed for artificial functions while
Tf ≈ 2.66 for the FE problem and Tf ≈ 11.02 for
the BY problem were measured with experiments.
In addition, the RO problem generates different
numbers of function evaluation tasks on System
X and Anantham because the 64-bit registers on
System X and the 80-bit registers on Anantham give
slightly different computation precision. During the
SELECTION step, the RO problem yields different
results depending on the floating point hardware.
Therefore, the estimation of the communication
and data dependency overhead differs on these two
systems.

When Tf is taken into account, the data depen-
dency overhead becomes more significant for expensive
functions, such as FE and BY, than for cheap ob-
jective functions. Although System X has lower
communication overhead, the common overhead Tod

still dominates because Tf ≥ 0.1 is sufficiently large.

On the other hand, if Tf ≤ 10−3, Tod would become
less dominant than the communication overhead. This
explains the observed values of the parallel efficiency
as Tf changes (Section 2.1).

To verify the above theoretical analysis, Tsk

(total sampling time with k workers) and Te (total
evaluation time) were measured by the phases depicted
in Figure 3.3. Tsk is the same for the master and
the worker. T 1

oc is measured by counting messages
instead of directly timing the duration because it
is hard to separate sending and receiving costs
from SAMPLING. However, it is expected that

the estimated overhead Tot = (T 1
oc + Tod)/k (the

sum of the theoretical communication and data

dependency overhead per worker in Table 3.2) should

be approximately equal to the experimental result

Toe = Tsk − Te/k as listed in Table 3.3.

Table 3.3 The experimental results of the SAM-
PLING cost Tsk and the evaluation cost Te for all
test problems on System X (‘ x’) and Anantham
(‘ a’). The combined experimental overhead
Toe = Tsk − Te/k is compared to the estimated
overhead Tot = (T 1

oc + Tod)/k.

Tsk Te Toe Cm Tot

GR x 202.44 19578.0 4.68 413332 4.50
GR a 203.28 19578.0 5.52 413332 4.51
QU x 802.48 78857.0 5.94 1598908 5.52
QU a 803.73 78858.0 7.18 1598908 5.59
RO x 510.46 49987.0 5.54 1021480 5.20
RO a 509.65 49789.0 6.73 1017544 5.68
SC x 746.46 73306.0 5.99 1487836 5.51
SC a 748.85 73304.0 8.41 1487836 5.57
MI x 756.44 74316.0 5.77 1508052 5.10
MI a 757.83 74316.0 7.16 1508052 5.17
FE a 696.25 50608.0 185.06 59604 156.87
BY x 29179.0 2788790 1009.40 528468 616.84

The SAMPLING cost Tsk is approximately the

same on both systems. Note that the combined

experimental overhead Toe is greater than the theo-

retical estimation Tot. Moreover, the scaled difference

(Toe − Tot)/Tsk is larger on Anantham than that

on System X. Nevertheless, Cm matches exactly

(Table 3.2) the experimental results. One possibility

is that the communication overhead could be under-

estimated because the small simulation program that

generated the data points for modeling Tcp may incur

less overhead than the full DIRECT optimization pro-

gram does with a large amount of memory allocated.

There might also exist another system dependent

source of overhead other than the communication,

such as memory access inefficiency, that may increase

the overhead Toe on Anantham.

With all the overhead terms analyzed, the isoeffi-

ciency function (Equation 3.4) for the vertical scheme

may be expressed as

W =
Ep

1 − Ep

T 1
oc(W, k) + Tod(k) + Tos

Tf

,

where T 1
oc(W, k) is a linear function of k, Tod(k) is

an approximately linear function of k, and Tos is a

10

constant for a particular problem with specified Imax

and resulting W . Therefore, W becomes

W =
Ep

(

Tcpk(1 + Imax) + Tod(k) + Tos

)/

Tf

1 − Ep − EpTcp/Tf

.

Firstly, observe that W grows linearly with k, meaning
that the vertical scheme is scalable. Secondly, a larger
ratio of Tcp/Tf on a particular system requires a
faster growth of W to maintain the same Ep as more
workers are used. Lastly, a larger Tf gives a better
scalability.

3.2 Horizontal Scheme Scalability
When the objective function is computationally cheap,
the horizontal scheme is more suitable than the
vertical scheme as discussed in Section 2.1. Thus,
Tf ≈ 2.6E-05 was considered for all the artificial test
problems in the scalability analysis of the horizontal
scheme with multiple masters (n > 1) and no workers
(k = 0) in a single domain.

The overhead includes T 2
oc, the communication

overhead involved in the global convex hull computa-
tion during the parallel SELECTION, and T ′

od, the
data dependency overhead among masters:

T ′

o(H, W, n) = T 2
oc(H, n) + T ′

od(H, W, n), (3.8)

where H stands for the total work in the convex
hull computation. Part 1 has demonstrated that
the horizontal scheme has load balancing of function
evaluation tasks significantly worse than that of the
vertical scheme. The analysis of T ′

o(H, W, n) reveals
that it is mostly caused by the data dependency over-
head T ′

od. Specifically, the data dependency overhead
is dominant for large data sets and is very problem
dependent. On the other hand, the communication
overhead dominates when Tf is cheap. Thus, the dif-
ferences in communication subsystems, such as those
on System X and Anantham, are not pronounced
when function evaluations are expensive. In general,
for the horizontal scheme, the isoefficiency function is
linear but with the communication overhead growing
faster than in the vertical scheme.

4 CONCLUSION

The performance impact of three parallel system
parameters—Tf (the objective function cost), Tcp

(the point-to-point round trip cost), and Tca (the
broadcast cost)—on pDIRECT II, a massively parallel
implementation of the DIRECT global optimization
algorithm, has been explored in Part 2 of the present
work. The scalability of basic parallel schemes—
vertical and horizontal—were further analyzed here
using linear models and isoefficiency functions.

On System X and Anantham, an empirical study
with Tf varying in small time steps was conducted for
both schemes to compare the resulting parallel per-
formance under two types of computing environments
differing in both hardware (i.e., CPU clock frequency,
system architecture, and interconnect network) and
software (i.e., operating systems, MPI supporting
packages, and compilers). System X outperforms
Anantham in all cases, except for a few cases under
horizontal schemes when Tf is larger than 2.5E-04,
the performance boundary value for the vertical and
horizontal scheme on System X. A detailed analy-
sis of overhead and scalability further supports the
experimental observations.

Both theoretical and experimental studies have
demonstrated that different system settings only
matter when Tf is small. For expensive objective
functions, the dominant impact on the parallel per-
formance comes from the problem-dependent factors
such as data dependency. However, higher network
bandwidth and greater node availability on System X
certainly provide a better computing environment for
many large scale optimization applications.

The new insights gained from the present work
suggest a fresh research direction for conquering
the biggest challenge—the data dependency of DI-
RECT. Advanced algorithm steps will be designed for
SAMPLING to prefetch enough function evaluation
tasks, generated from selected boxes that are not
on the convex hull, so that the current idle worker
cycles would be put to use. The function values
at these extra sampling points may not necessarily
contribute to the optimization process, so an optimal
selection strategy would balance such waste with the
benefit of idle cycle computations that do further the
DIRECT search. Also, the optimal strategy would
preserve the determinism of DIRECT, contrasted
with nondeterministic methods that produce different
solutions on different runs. Of paramount importance
is that the proposed modification does not destroy
DIRECT’s global convergence property. Given the
recent interest in DIRECT both in the mathematics
and computer science communities, the prospects for
significant progress are bright.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation Grant DMI-0355391, Department of En-
ergy Grant DE-FG02-06ER25720, and NIGMS/NIH
Grant 1 R01 GM078989-01. The authors also grate-
fully acknowledge access to System X provided by the
Virginia Tech Terascale Computing Facility.

11

BIOGRAPHIES

REFERENCES
Boden, N.J., Cohen, D., Felderman, R.E., Kulawik,

A.E., Seizovic, J.N. 1995. Myrinet: a gigabit-per-
second local area network. IEEE Micro, Vol. 15,
No. 1, pp. 29–36.

Chen, X. and Turner, D. 2003. Efficient message-
passing within SMP systems. Recent advances
in Parallel Virtual Machine and Message Passing
Interface, Lecture Notes in Computer Science,
Springer, Vol. 2840, pp. 286–293.

Dalgaard, P.. 2002. Introductory Statistics with R.
Springer, ISBN 0-387-95475-9.

Decker, T. and Krandick, W. 2001. Isoefficiency
and the parallel Descartes method. Proceedings
of Dagstuhl Seminar “Symbolic Algebraic Meth-
ods and Verification Methods”, Lecture Notes in
Computer Science. Springer, pp. 55–69.

He, J., Verstak, A., Watson, L.T., and Sosonkina,
M. 2006. Design and implementation of a mas-
sively parallel version of DIRECT. Computational
Optimization and Applications, to appear.

Jones, D.R., Pertunen, C.D., and Stuckman, B.E.
1993. Lipschitzian optimization without the Lips-
chitz constant. J. Optimization Theory and Appli-
cations, Vol. 79, No. 1, pp. 157–181.

Kumar, V. and Gupta, A. 1994. Analyzing scalability
of parallel algorithms and architectures. J. of
Parallel and Distributed Computing, Vol. 22, No.
3, pp. 379–391.

Liu, J., Chandrasekaran, B., Yu, W., Wu, J., Buntinas,
D., Kini, S., Panda, D.K. 2004a. Microbenchmark
performance comparison of high-speed cluster
interconnects. IEEE Micro, Vol. 24, No. 1, pp.
42–51.

Liu, J., Wu, J., Kini, S.P., Wyckoff, P., and Panda,
D.K. 2004b. High performance RDMA-based MPI
implementation over InfiniBand. International J.
of Parallel Programming, Vol. 32, No. 3, pp.
167–198.

Panda D. K. and MVAPICH team. 2006. MVAPICH
0.9.8 User and Tuning Guide. Network-based
Computing Laboratory, Department of Computer
Science and Engineering, the Ohio State Univer-
sity.

Panning, T.D., Watson, L.T., Allen, N.A., Chen, K.C.,
Shaffer, C.A., and Tyson, J.J. 2006. Deterministic
global parameter estimation for a model of the
budding yeast cell cycle. J. of Global Optimization,
to appear.

Pohlheim, H. 1996. GEATbx: Genetic and Evolu-
tionary Algorithm Toolbox for Use with Matlab–
Documentation. Ph.D. thesis, Technical University
Ilmenau, Germany.

Saad, Y. Iterative Methods for Sparse Linear Systems.
2003. SIAM, Philadelphia, PA, 2nd edition.

Sosonkina, M., Allison D.C.S., and Watson, L.T. 2002.
Scalability analysis of parallel GMRES implemen-
tations. Parallel Algorithms and Applications, Vol.
17 pp. 285–299.

Vadhlyar, S.S., Fagg, G.E., and Dongarra, J.J. 2004.
Towards an accurate model for collective commu-
nications. International J. of High Performance
Computing Applications, Vol. 18, No. 1, pp.
159–167.

Vieth, E. 1989. Fitting piecewise linear regression
functions to biological responses. Journal of applied
physiology, Vol. 67, No. 1, pp. 390–396.

Wu, M.S., Kendall, R., Wright, K., and Zhang Z.
2005. Performance modeling and tuning strategies
of mixed mode collective communications. SC ’05:
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, pp. 45–55.

Zwolak, J.W., Tyson, J.J., and Watson, L.T. 2005.
Globally optimized parameters for a model of
mitotic control in frog egg extracts. IEE Systems
Biology, Vol. 152, No. 2, pp. 81–92.

APPENDIX Test functions.

Table 1 Test functions selected from GEATbx
(Pohlheim 1996).

Name Description

GR Griewank

f = 1 +
∑N

i=1
xi

2/500− ∏N

i=1
cos(xi/

√
i)),

−20.0 ≤ xi ≤ 30.0, f(0, . . . , 0) = 0.0

QU Quartic

f =
∑N

i=1
2.2 × (xi + 0.3)2 − (xi − 0.3)4,

−2.0 ≤ xi ≤ 3.0, f(3, . . . , 3) = −29.816N

RO Rosenbrock’s Valley

f =
∑N

i=1
100(xi+1 − x2

i)
2 + (1 − xi)

2,
−2.048 ≤ xi ≤ 2.048, f(1, . . . , 1) = 0

SC Schwefel

f = −∑N

i=1
xi sin(

√

|xi|),
−500 ≤ xi ≤ 500,
f
(

420.9(1, . . . , 1)
)

≈ −418.9N

MI Michalewicz

f = −
∑N

i=1
sin(xi) × sin(

ix2

i

π
)20,

0 ≤ xi ≤ π, f(x̄) = 0 for x̄ ∈ {0, π}N

12

