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Applying the Newmark Method into the Discontinuous Deformation Analysis

Bo Peng

(ABSTRACT)

Discontinuous deformation analysis (DDA) is a newly developed simulation method for discon-

tinuous systems. It was designed to simulate systems with arbitrary shaped blocks with high

efficiency while providing accurate solutions for energy dissipation. But DDA usually exhibits

damping effects that are inconsistent with theoretical solutions. The deep reason for these artifi-

cial damping effects has been an open question, and it is hypothesized that these damping effects

could result from the time integration scheme. In this thesis two time integration methods are

investigated: the forward Euler method and the Newmark method.

The work begins by combining the Newmark method and the DDA. An integrated Newmark

method is also developed, where velocity and acceleration do not need to be updated. In simu-

lations, two of the most widely used models are adopted to test the forward Euler method and the

Newmark method. The first one is a sliding model, in which both the forward Euler method and

the Newmark method give accurate solutions compared with analytical results. The second model

is an impacting model, in which the Newmark method has much better accuracy than the forward

Euler method, and there are minimal damping effects.
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Chapter 1

Introduction

Rock, as a widely existing material in nature, is closely related to our daily life: falling rocks near

highway might result in serious accidents; slope stability is one of the key factors to ensure safety

of construction activities on either man-made or natural slops. From irregular aggregates to huge

rock mountains, rock systems are highly discrete. Therefore, it is very important to develop models

and simulation methods to help us understand discrete rock systems.

There are several popular simulation methods to simulate the dynamic behavior of rock systems,

such as the finite element method (FEM), the discontinuous deformation analysis (DDA) and the

discrete element methods (DEM). In these three methods, the FEM is mainly used for continuous

problems, while the DDA and the DEM are designed for discrete systems.

The finite element method (FEM) is a popular simulation method to simulate mechanical sys-

tems5, 6 . However, in terms of discontinuous materials, especially for blocky systems, the FEM is

1
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highly restricted when solving big deformation problems, while discrete methods (e.g. DDA and

DEM) do not have this shortcoming.

The discrete element method (DEM), first proposed by Cundall in 1979,7 has been developed

rapidly worldwide since then. The DEM can be applied in a wide range of research areas, including

the particle fluidization of cohesionless and cohesive particle flow, confined or unconfined particle

flow, particle flow in hoppers, in mixers, in drums and mills, particle packing, compaction of

particles, etc. The advantage of the DEM is that it can simulate heterogeneity materials through

discretization. Setting different parameters to the contributing materials in the simulation helps

to distinguish their interaction. An example of the DEM asphalt binder simulation with irregular

shaped aggregates is shown in Figure 1.1. In the simulation two different materials, aggregates

and asphalt, were developed in the same specimen, and clumps of particles were used to simulate

irregular shaped aggregates. Although DEM is design for discrete systems, it has defects such as

inaccurate artificial energy dissipation estimation and not sophisticated contact interaction models.

Therefore, the DEM is restricted in particle flow problems.

The discontinuous deformation analysis (DDA) was first proposed by Shi in 1988.8 Because of

its advantages such as high accuracy, reasonable contact interaction model, relatively low com-

putational cost etc., the DDA shows great potential to be a powerful tool for simulating discrete

rock systems. Besides the original two-dimensional DDA, some extended methods are developed,

including the backward DDA,9 the particle DDA,10 the manifold method,11 and the three dimen-

sional DDA.12 Validation results for DDA are obtained from comparison between DDA results and

analytical solution, laboratory data, field data, and results of other discrete element analysis, such



Bo Peng Chapter 1. Introduction 3

as DEM. For validation with respect to analytical solution, works have been done on initiation of

failure , rotation13 , tensile strength,13 sliding motion14 and impacting behaviors.15 For practical

applications, the DDA has been applied to many engineering projects, such as the Three Gorges

Dam in China,16 Yerba Buena Tunnel in California,17 Masada National Monument in Israel18 and

Pueblo Dam in Colorado.19 An example for the DDA rocky system simulation is shown in Figure

1.2. Compared to clusters of particles in DEM, each irregular shaped block in DDA simulation

is one object representing by surface and vertex information, as Figure 1.2 left shows. The right

picture is a slope stability analysis for Bai He Tan Hydropower station using the DDA, and the

highlighted red block is the most unstable rock. This example shows a great advantage of DDA: it

can be used to solve problems in the real world directly, which is not achievable for the DEM so

far.

Figure 1.1: Left: Individual aggregates in DEM. Right: DEM simulation for aggregates in
asphalt binder.
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Y. Liu, Discrete element methods for asphalt concrete: development and application of

userdefined microstructural models and a viscoelastic micromechanical model. Michigan

Technological University, 2011. Used under fair use, 2014.

Figure 1.2: Left:irregular shaped blocks in the DDA simulation. Right: The DDA slope
stability analysis for Bai He Tan Hydropower station.

X. Peng, Stability reports for Baiheitan Dam, 2003. Used under fair use, 2014.

1.1 Research Objects

The damping effects resulting from the DDA could be attributed as an inner defect. According to

theoretical analysis,20 there should be no energy dissipation under undamped situation. However,

previous research4, 15, 21 has shown an obvious damping effect in collision and oscillation simula-

tions, and the damping effects increase when time-step size increases. Although efforts have been

made to improve on this weakness, no effective/efficient remedy has been developed.

To overcome this shortcoming, we explored a new time integration method – the Newmark method,
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and applied it to the DDA code. As mentioned above, the DDA is designed to simulate displace-

ment changes with respect to time. For the velocity and acceleration information in the stiffness

matrix, the global equation of the DDA can be formulated as a set of ordinary differential equa-

tions (ODEs). However, the swift changes of contact status cause the stiffness matrix in the ODEs

to vary frequently. As a result, it is very inefficient to apply traditional ODE solvers to solve the

global equation in the DDA. Therefore, highly discrete time integration methods must be applied

to the DDA.

Prior to this work, only the forward Euler method was applied to DDA. In this thesis,the Newmark

method is used as a time integration scheme in the DDA for the first time. A comprehensive

comparison between the forward Euler method and the Newmark method when applied in the

DDA will be studied based on two test models: a sliding model and an impacting model. These

two models are the most basic testing models for the DDA method, because both models involve

simulations of block contacting in both tangential and normal directions.

1.2 Organization

The main goal of research in this thesis is to improve the simulation accuracy of DDA through

the Newmark method. The structure of this thesis is organized as following: Chapter two will

give a brief description on the DDA theory and the research literature of DDA. Chapter three

will introduce the application of the Newmark method in DDA, as well as an integrated Newmark

method. Chapter four is going to illustrate the implement details, including the DDA code structure
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and how to combine the Newmark method into DDA. Chapter five shows a comprehensive data

analysis of the Newmark simulation. The results are compared to the traditional forward Euler

simulation. Chapter six presents the conclusion of this thesis and proposes the future work to

search for optimized parameters.



Chapter 2

Background

2.1 Introduction to the DDA

2.1.1 The Origin of the DDA

Before the description of the DDA, two basic rock definitions need to be introduced as below:

• Structure plane: there are geological surfaces with different factors and traits in rocks; such

as joint, fracture, fault. Because of their existence, rock can not be considered as continuous

material: rocks are split into irregular rock blocks. The interface separating rocks is called

structure plane. Structure interfaces are with multiple scales of sizes and properties: some

of them are big enough to present across the entire rock, while some others can not even

be seen in the surface. With the tectonic movements for billions of years, there are a huge

7
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amount of structure planes in rocks.

• Blocky system: intricate structure planes split rock mountain into many irregular rock blocks,

which form blocky systems.

Because of the extreme anisotropy and its much lower strength than rock, structure plane is the

place that material failure occurs most. The failure mode and movement mode vary tremendously

with changes of structure planes.

With the understanding that structure planes play a key role in rock mechanics, the DDA considers

each block as an individual object, and blocks interact with each other through contact forces.

These properties of DDA simplify complicated blocky systems and their mechanical analysis,

which make the simulation of complex blocky systems possible.

DDA Problem

Considering a practical engineering project: a tunnel is planed to be built across a rock mountain.

Though the mountain is split by structure planes into large amount of individual rock blocks, it

is stable before the tunnel is developed. However, a tunnel will change the structure stability of

a mountain: rocks near the tunnel will lose some of their supports, and this will result in serious

potential risks such as falling rocks. Therefore, it is very important to know how a tunnel influences

the mountain stability. Figure 2.1 shows an example of tunnel stability analysis. Through DDA

simulation, we know the information of unstable rocks, highlighted red block in picture, resulting

from tunnel excavation. With these information, the tunnel can be stabilized through actions of
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anchoring unstable rocks during construction.

Figure 2.1: DDA simulation for unstable rocks in a tunnel

X. Peng, Stability reports for Baiheitan Dam, 2003. Used under fair use, 2014.

2.1.2 Time-step Loop

In order to simulate the movement and mechanical behavior of an object over a period of time,

the DDA divides the entire process into many small time intervals and we call each interval one

time-step. In every time-step the DDA solves a linear equilibrium equation, which takes the center

displacement and rotation in each block as unknown variables. The linear equation is formulated

with force equilibrium laws based on energy minimization principle: the forces in all directions are

supposed to be balanced in every time-step. These forces include gravity, loading, inertial force and



Bo Peng Chapter 2. Background 10

other contacting forces. More details of equation formation in the DDA will be introduced in the

next section. After solving the linear equation, we obtain the increment of displacement for each

block in the current time-step. Then according to movement laws, the velocity and acceleration

in the current step are acquired. Also, with the help of shape functions (relationship with center

displacement and displacement of arbitrary points in the block), the coordinates of blocks’ vertex

can be obtained, as well as the positions of blocks. Based on those position information, the contact

information will be determined. A time-step simulation is finished at this point, and this process

will repeat until the simulation ends.

2.1.3 Interaction

In discrete blocky systems, blocks interact with each other through contacting. There are two types

of contacting: vertex-plane contacts and edge-edge contacts. A contact is defined as the overlap

between two blocks. After a contact is formed, the two blocks are considered as being connected

with two springs: a normal spring and a tangential spring. The magnitude of spring forces is linear

with the depth of the overlap, and the spring forces will be added to the linear equilibrium equation

mentioned above.

2.1.4 Boundary Conditions

Boundary conditions in blocky systems are constrains. There are three different kinds of restric-

tions: rotation constrains, translation constrains and fixed constrains. The setting of boundary
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conditions in the DDA is similar to that in the FEM: defining boundary conditions according to the

system structure, and adding those information into the linear equilibrium equation.

2.1.5 Two Dimensional DDA and Three Dimensional DDA

When Dr. Shi proposed the DDA method for the first time, it was designed only for two-dimensional

problems. For two dimensional DDA (2D-DDA),8 there are only three basic unknown variables

for each block: translation displacements in the X,Y directions and the rotation in the XY plane.

After the three dimensional DDA (3D-DDA) was proposed in 2001,12 the number of basic un-

known variables extended to six: displacements in X,Y,Z directions and rotations in XY, YZ, XZ

planes. With the 3D-DDA solution, it is possible to simulate all different types of movements. The

unknown variables can also include the strain information as we will illustrate in the next.

2.2 Theoretical Three Dimensional DDA

This section is based on the 2D-DDA and 3D-DDA theoretical work done by Shi.8, 12

2.2.1 The Complete First Order Approximation

Assume that a block, whose center is (x0, y0, z0), has constant strain and stress. In the following

we will demonstrate that the displacement (u, v, w) for an arbitrary point (x, y, z) in the block can
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be denoted by twelve variables:

(u0, v0, w0, r1, r2, r3, εx, εy, εz, γxy, γyz, γxz), (2.1)

where u0, v0, w0 are translation displacements for the center of the block, r1, r2, r3 denote rotations,

εx, εy, εz, γxy, γyz, γxz are normal and tangential strains for the block.

The complete first order approximation of displacements in a block can be denoted as:

u = a1 + a2x+ a3y + a4z,

v = b1 + b2x+ b3y + b4z,

w = c1 + c2x+ c3y + c4z.

(2.2)

The displacements on center of the block (x0, y0, z0) can be denoted as:

u0 = a1 + a2x0 + a3y0 + a4z0,

v0 = b1 + b2x0 + b3y0 + b4z0,

w0 = c1 + c2x0 + c3y0 + c4z0.

(2.3)

Then, subtracting Eq. (2.3) from Eq. (2.2):

u = a1 + a2(x− x0) + a3(y − y0) + a4(z − z0) + u0,

v = b1 + b2(x− x0) + b3(y − y0) + b4(z − z0) + v0,

w = c1 + c2(x− x0) + c3(y − y0) + c4(z − z0) + w0.

(2.4)
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Considering the definitions of strain and rotation, we have

εx =
∂u

∂x
= a2,

εy =
∂v

∂y
= b3,

εz =
∂w

∂z
= c4,

1

2
γxy =

1

2
(
∂v

∂x
+
∂u

∂y
) =

1

2
(b2 + a3),

1

2
γxz =

1

2
(
∂w

∂x
+
∂u

∂z
) =

1

2
(c2 + a4),

1

2
γyz =

1

2
(
∂w

∂y
+
∂v

∂z
) =

1

2
(c3 + b4),

r1 =
1

2
(
∂v

∂x
− ∂u

∂y
) =

1

2
(b2 − a3),

r2 =
1

2
(
∂w

∂x
− ∂u

∂z
) =

1

2
(c2 − a4),

r3 =
1

2
(
∂w

∂y
− ∂v

∂z
) =

1

2
(c3 − b4).

(2.5)

Rewrite Eq. (2.4) by using (u0, v0, w0, r1, r2, r3, εx, εy, εz, γxy, γyz, γxz). We get a matrix format of
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the complete first order equation for displacements:


u

v

w

 =



1 0 0

0 1 0

0 0 1

−(y − y0) (x− x0) 0

0 −(z − z0) (y − y0)

(z − z0) 0 −(x− x0)

(x− x0) 0 0

0 (y − y0) 0

0 0 (z − z0)

(y − y0)/2 (x− x0)/2 0

0 (z − z0)/2 (y − y0)/2

(z − z0)/2 0 (x− x0)/2



T 

u0

v0

w0

r1

r2

r3

εx

εy

εz

γxy

γyz

γxz



. (2.6)

For the block i, the displacement equation Eq. (2.6) can be rewritten as:


u

v

w

 = [Ti]{Di}. (2.7)

A higher order approximation can be derived by increasing the dimension of [Ti], {Di} .
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2.2.2 Energy Minimization and Equilibrium Equation

Contacts between blocks and restrictions integrate blocks into a system. Assume there are n blocks,

then the equilibrium equations for the system are given by



K11 K12 K13 · · · K1n

K21 K22 K23 · · · K2n

K31 K32 K33 · · · K3n

...
...

... . . . ...

Kn1 Kn2 Kn3 · · · Knn





D1

D2

D3

...

Dn


=



F1

F2

F3

...

Fn


. (2.8)

There are twelve degrees of freedom (u0, v0, w0, r1, r2, r3, εx, εy, εz, γxy, γyz, γxz) for each block,

therefore, {Di}, {Fi} are both 12 × 1 vectors, and [Kij] is a 12 × 12 matrix. {Di} denotes the

displacement and strain for each block in one time-step, {Fi} saves the loading information, and

[Kii] stores the information of material of ith block, [Kij] stores the contact information between

block i and block j.

The equilibrium equations are derived from minimization of the total potential energy, which is a

function of forces and stress in the system. The i-th row of Eq. (2.8) is composed of twelve linear

equations:

∂
∏

∂dri
= 0, r = 1, ..., 12, (2.9)

where
∏

denotes the energy of entire system, and dri is the displacement information for the ith
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block. The partial derivatives

∂2
∏

∂dri∂dsj
, r, s = 1...12 (2.10)

are coefficients for unknown variable dsj in Eq. (2.9). Therefore, all terms of Eq. (2.9) form a

12 × 12 matrix, which is a coefficient for submatrix [Kij] in the global equation Eq. (2.8). Eq.

(2.10) also shows the symmetry of the stiff matrix [K]. The partial derivatives

−∂
∏

(0)

∂dri
, r = 1...12 (2.11)

are free terms for Eq. (2.8), and they will shift to the right side of that equation. Eq. (2.11) is a

12× 1 vector, which is the subvector {Fi} in Eq. (2.8).

2.2.3 Structure of Stiffness Matrix and Right-side Vector

The total energy is a function of six components: strain energy, energy of the initial constant

stresses, energy from the point loading force, energy from volume loading (e.g. gravity), dynamic

energy and contacts between blocks. We will present the equations corresponding to each compo-

nent below.
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Stiffness Submatrix

The strain energy can be denoted as an integration of strain times stress over the entire block:

Πe =

∫ ∫ ∫
1/2(εxσx + εyσy + εzσz + γxyτxy + γxzτxz + γyzτyz)dxdydz. (2.12)

The strain-stress relationship in the i-th block is given by

{εi} = [Ei]{σi}, (2.13)

where

[Ei] =
E

2(1 + ν)(1− 2ν)



2(1− ν) 2ν 2ν 0 0 0

2ν 2(1− ν) 2ν 0 0 0

2ν 2ν 2(1− ν) 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν



. (2.14)

The strain energy Eq. (2.12) can be rewritten as

Πe = 1/2

∫ ∫ ∫
{Di}T [Ei]{Di}dxdydz = S/2{Di}T [Ei]{Di}, (2.15)
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where S is the volume of the i-th block.

Based on Eq. (2.15), the submatrix of stiffness matrix is acquired through minimization of the

strain energy
∏

e:

krs =
∂2Πe

∂dri∂dsi
=

∂2

∂dri∂dsi
({Di}T [Ei]{Di}), r, s = 1...12, (2.16)

where krs is a 12× 12 submatrix added to [Kii] in the global stiffness matrix:

S[Ei]→ [Kii]. (2.17)

Subvector of Initial Stress

If the i-th block is under an initial stress(σx0, σy0, σz0, τxy0, τxz0, τyz0), the respective energy of the

entire block is given by

Πσ =

∫ ∫ ∫
1/2(εxσx

0 + εyσy
0 + εzσz

0 + γxyτxy
0 + γxzτxz

0 + γyzτyz
0)dxdydz

= −S(εxσx
0 + εyσy

0 + εzσz
0 + γxyτxy

0 + γxzτxz
0 + γyzτyz

0)

. (2.18)

Let

[σ0]
T =

(
[0]6×1 σx

0 σy
0 σz

0 τxy
0 τxz

0 τyz
0

)
, (2.19)

then rewrite Eq. (2.18) as

Πσ = −S{Di}T{σ0}. (2.20)
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Minimizing Πσ by taking the derivatives:

fr = −∂Πσ

∂dri
= S

∂{Di}T{σ0}
∂dri

r = 1...12, (2.21)

where fr is a 12× 1 vector, and it will be added to the global force vector:

S{σ0} → {Fi}. (2.22)

Subvector of Point Loading

The energy raised by a point load (Fx, Fy, Fz) at a point (x, y, z) can be denoted as:

Πp = −(u v w)


Fx

Fy

Fz

 = −{Di}T [Ti(x, y, z)]T


Fx

Fy

Fz

 . (2.23)

After minimizing this part of energy, a 12 × 1 loading vector will be added to the global loading

vector:

[Ti(x, y, z)]T


Fx

Fy

Fz

→ {Fi}. (2.24)
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Subvector of Volume Load

Assume that (fx, fy, fz) is a volume load applied on the ith block, then the potential energy from

the volume load is:

Πs = −
∫ ∫ ∫

(u v w)


fx

fy

fz

 dx dy dz = −{Di}T
∫ ∫ ∫

[Ti]
Tdx dy dz


fx

fy

fz

 . (2.25)

Assume the center of mass for the ith block is (x0, y0, z0). Then we can rewrite Eq. (2.25) as:

Πs = −{Di}
(
fxS fyS fzS [0]9×1

)
. (2.26)

After minimizing the energy equation Eq. (2.26), the subvector of volume loading is formulated

as: (
fxS fyS fzS [0]9×1

)T
→ {Fi}. (2.27)

Submatrix of Inertia Force

Denote (u(t), v(t), w(t)) as the displacement for any point (x, y, z) in time t. The inertia force per

unit volume is: 
fx

fy

fz

 = −M


∂2u(t)
∂t2

∂2v(t)
∂t2

∂2w(t)
∂t2

 , (2.28)
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where M is the weight density of rock. The potential energy from the inertia force of the ith block

is:

Πi = −
∫ ∫ ∫

(u v w)


fx

fy

fz

 dx dy dz =

∫ ∫ ∫
M{Di}T [Ti]

T [Ti]
∂2{D(t)}

∂t2
dx dy dz.

(2.29)

We use {D(t)}n−1 to denote the displacement at previous time-step, {D(t)}n to denote the dis-

placement at current, h to denote the time interval. As the velocity at the end of previous time-step

equals velocity at the beginning of current time-step,we have the forward Euler formation:

{D(t)}n =
h2

2

∂2{D(t)}n−1
∂t2

+ h
∂{D(t)}n−1

∂t
. (2.30)

In the forward Euler method, we consider the acceleration remaining the same within a time-step.

Then we have the acceleration vector in current time-step as:

∂2{D(t)}n
∂t2

=
2

h2
{D(t)}n −

2

h

∂{D(t)}n−1
∂t

=
2

h2
{D(t)}n −

2

h
{V }n−1, (2.31)

where

{V }n−1 =
∂{D(t)}n−1

∂t
(2.32)
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is the velocity at the beginning of a time step. Therefore, Eq. (2.29) can be rewritten as:

Πi = {Di}T
∫ ∫ ∫

[Ti]
T [Ti]dx dy dz(

2M

h2
{D(t)}n −

2M

h
{V }n−1). (2.33)

Note that both {Di} and {D(t)}n denote the displacement of current time-step. After minimizing

the energy equation with respect to {Di}T , we have:

2M

h2

∫ ∫ ∫
[Ti]

T [Ti]dx dy dz → [Kii],

2M

h
(

∫ ∫ ∫
[Ti]

T [Ti]dx dy dz){V }n−1 → {Fi}.
(2.34)

2.3 Previous Work on DDA Validation

Although the DDA aims to solve very complicated problems, the validation models are actually

quite simple. The most widely used validation model is the sliding model, the energy dissipation

model, the multi-block model and the tension model, etc. The primary goal of validation is to com-

pare the simulation results with analytical solutions or experimental results, where the difference

shows the accuracy of the DDA method.2, 3, 10, 21–26

2.3.1 Sliding

The DDA is widely used to simulate blocky systems. One of the most important practical problems

DDA aims to solve is the failure of rock systems, which is triggered by sliding of rocks along with
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their contact surfaces. As a simplification to this problem, a validation for a sliding block on a

frictional incline has been well explored by two-dimensional DDA simulations. The ease to obtain

dynamic motions of an object is one of the features that distinguish the DDA from continuum-

based methods, which are limited to problems within slow material deformation and few material

discontinuities.

The sliding simulation model is shown in Figure 2.2 – a block under gravity slides along a fixed

inclined plane with an angle α and an interface friction angle φ. In this situation, the analytic

solution for the block’s displacement as a function of time is

d = 1/2at2 = 1/2(gSin(α)− gCos(α)Tan(φ))t2. (2.35)

So far, most validated simulation is based on the 2D-DDA model. Yeung27 studied 12 cases of a

sliding model with different combinations of slope angles and friction angles. Yueng also derived

an analytical solution for shear and normal contact forces. The difference between analytical re-

sults and simulation results was less than 0.5%. Maclauglin and Sitar28 proposed a ’gravity turn

on routine to reduce effects of a sudden loading in the initial time step. There are some other

validation models: a block decelerates along an incline with an initial velocity, with a maximum

error of 2%;29 a block with an initial speed stops due to the friction on a horizontal plane, with

error less than 0.1%;30 a block accelerates along a steep slope first and then transfers to a shallower

slope decelerating to a stop, and the DDA predicted maximum distance is 5% different from ana-

lytical solutions29, 31, 32 ; a block slides along an incline with friction and cohesion, where error on



Bo Peng Chapter 2. Background 24

accelerations and contact forces were within 0.02%.33 Besides, Doolin and Sitar4 analyzed a 1m

×2m block slides along a 250m plane with an inclined angle 30◦, and addressed the accuracy of

the DDA method through a sensitivity analysis.

Simulation results has also been compared with field results. Tsesarsky and Hatzor applied a

harmonic oscillation on the original sliding model and a corresponding physical experiment was

performed on a larger hydraulic driven shaking table. Then, the DDA simulation results for dis-

placement were compared with experimental results, which showed a similar trend, and the relative

error was less than 10%.

Figure 2.2: The sliding model

M. MacLaughlin and D. Doolin, Review of validation of the discontinuous deformation

analysis (dda) method, International journal for numerical and analytical methods in ge-

omechanics, vol. 30, no. 4, pp. 271305, 2006. Used under fair use, 2014.
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With great effort from many researchers, the 2D-DDA has been well developed and verified. How-

ever, two dimensional models are restricted by assuming plane-strain or plane-stress conditions.

After Shi proposed a three-dimensional DDA (3D-DDA), a limited number of research work has

been done in this new area; this might be because of the very complex contact conditions for ar-

bitrary shaped blocks. Haztor and Bakun-Mazor3 reviewed current 3D-DDA results, and provided

a validation for a sliding block under a Sine horizontal acceleration using the 3D-DDA method.

The relative error in terms to block’s final position was approximately 8%. The 3D sliding model

is shown in Figure. 2.3.

Figure 2.3: Left: Single sliding face in 3D. Right: Double sliding face in 3D.

Y. Hatzor and D. Bakun-Mazor, Modelling dynamic deformation in natural rock slopes and

underground openings with dda: review of recent results, Geomechanics and Geoengi-

neering, vol. 6, no. 4, pp. 283292, 2011. Used under fair use, 2014
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2.3.2 Energy Dissipation Model

An impacting model is a typical model to test energy dissipation, and it was studied by Shyu15

through two 2D-DDA simulations: collision between two identical rods and collision between

two spheres moving towards each other in opposite directions. The displacement of each object,

the velocities of each object and the stress at contact points were recorded and compared with

analytical results from Hughes.34 Then Doolin and Sitar4 examined a frictionless impact model

as Figure 2.4 shows. In their study, a 1m ×2 m block falls down freely and hits into a 1m ×15

m fixed rod. A heavily damped impact was shown from simulation results. This research also

concluded that the rebound is completely damped at very high penalties, and the impact contact

forces increase with the sizes of time-step and penalty values.

Figure 2.4: Initial position for filling rock tests.
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D. M. Doolin and N. Sitar, Displacement accuracy of discontinuous deformation analysis

method applied to sliding block, Journal of engineering mechanics, vol. 128, no. 11, pp.

11581168, 2002. Used under fair use, 2014.

Energy dissipation has also been studied in time integration scheme analysis. Doolin and Sitar21 did

a comprehensive analysis on time integration for the 2D-DDA, which included a stability analysis

and an accuracy analysis for the DDA model. The time scheme applied in DDA (”right Riemann”)

has advantages of being unconditionally stable and ensure system energy dissipation, but it is

implicit and requires expensive iterations to solve. Jiang et al20 provided an exploration of energy

dissipation and convergence criterion for the DDA. Time-step sizes from 0.001s to 0.008s were

used to analyze energy dissipation. For convergence criteria, displacement, kinetic energy and

unbalanced force from the DDA solution were used for measurements. However, in this research,

they only explored the situation that acceleration remains constant during one time-step.

2.4 Challenges

Previous research has exhibited an obvious defect in the DDA: energy dissipation. According to

the energy conservation principle, there should be no energy loss in the completely elastic collision.

However, loss in energy openly appears in DDA simulations, especially when movement direction

changes suddenly. This energy dissipation occurs in the form of velocity and amplitude attenuation

even under undamped conditions. In order to overcome this shortcoming, we apply a new time

integration scheme to the DDA method: the Newmark method. The improved DDA method will
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be testified through a sliding model and an impacting model. Besides, from previous work, we

can see that most of DDA work still remains in the 2D level. However, 3D models are important

for accuracy of simulations, because the unbalanced bounce and rotation resulting from energy

damping in 3D simulation are more obvious than that in 2D. Therefore, 3D-DDA simulations are

used in this thesis to simulate block sliding and bouncing.



Chapter 3

Newmark Method in 3D-DDA

In this chapter, we will first introduce the classic Newmark method,35 and then the applications of

the classic Newmark method to the DDA . Also, a new integrated Newmark method are illustrated.

3.1 Newmark Method

The Newmark method is a time-integration method, which shows the relationships between dis-

placement, velocity and acceleration. In each time-step of DDA simulation, the time integration

method updates the displacement, velocity and acceleration for every block based on the infor-

mation of previous time step. Since velocity and acceleration play key roles in forming stiffness

matrix in the linear equilibrium equation as mentioned in section 2.2.3, the time-integration method

can influence the accuracy of DDA simulation greatly.

29
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Before the illustration of Newmark method in DDA, we will first clarify two set of symbols denot-

ing movement information.

• {u}n describes the accumulated displacement in general case, which denotes the accumu-

lated displacement at the end of current time-step. ˙{u}n represents the velocity and ¨{u}n

represents the acceleration.

• {D(t)}n = {Di} is the solution of the DDA linear equilibrium equation, and it describes

the displacement within current time-step. But ∂{D(t)}n
∂t

, ∂2{D(t)}n
∂t2

are still the velocity and

acceleration respectively: ∂{D(t)}n
∂t

= ˙{u}n, ∂
2{D(t)}n
∂t2

= ¨{u}n.

Assuming the time interval h is small enough, the velocity vector at the end of current time step

{u̇}n is estimated as velocity at the end of previous time step plus acceleration times time inter-

val, and displacement vector at the end of current time-step {u}n is approximated as the sum of

displacement at the end of previous time-step, a velocity part and an acceleration part:

{u̇}n = {u̇}n−1 + h{ü}γ, (3.1)

{u}n = {u}n−1 + h{u̇}n−1 + 1/2h2{ü}β, (3.2)

where {ü} is the acceleration vector, and {ü}γ {ü}β are accelerations within a time-step:

{ü}γ = (1− γ){ü}n−1 + γ{ü}n 0 < γ < 1, (3.3)
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{ü}β = (1− 2β){ü}n−1 + 2β{ü}n 0 < 2β < 1. (3.4)

Hence, the approximation of displacement and velocity are:

{u̇}n = {u̇}n−1 + (1− γ)h{ü}n−1 + γh{ü}n, (3.5)

{u}n = {u}n−1 + h{u̇}n−1 + (1/2− β)h2{ü}n−1 + βh2{ü}n. (3.6)

With different values of β and γ, the stability of Newmark method varies:36 it is conditional stable

if γ >= 1/2, and it is unconditional stable when β >= 1
4
(γ + 1/2)2. If taking γ = 1/2 and

β = 1/6, then the acceleration value ü(t) linearly interpolates in the time interval [tn−1, tn]:

{ü(t)} = {ü}n−1 + (t− tn−1)
{ü}n − {ü}n−1

h
. (3.7)

Taking γ = 1/2 and β = 1/4, then the value of {ü(t)} is the average acceleration over the time

interval [tn−1, tn]:

{ü(t)} =
{ü}n−1 + {ü}n

2
. (3.8)

3.2 Newmark Method in DDA

As a time-integration scheme, the Newmark method is used to approximate blocks’ movement

information (displacement, velocity and acceleration) of current time-step based on that of previous

time-step. For DDA simulation, there are two parts need movement information: one is developing
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submatrix of inertia force, another one is updating movement’s information at the end of each time-

step.

To develop the submatrix of inertia force for a block, (u(t), v(t), w(t)) are used to denote the

displacements at any point (x, y, z) in the time t. Then the inertia force per unit volume is given

by a product of weight density and acceleration:


fx

fy

fz

 = −M


∂2u(t)
∂t2

∂2v(t)
∂t2

∂2w(t)
∂t2

 , (3.9)

Then the potential energy from the inertia force of the ith block can be denoted as an integration

of product of displacement and inertia force over volume:

Πi = −
∫ ∫ ∫

(u v w)


fx

fy

fz

 dx dy dz =

∫ ∫ ∫
M{Di}T [Ti]

T [Ti]
∂2{D(t)}

∂t2
dx dy dz.

(3.10)

Take {D(t)}n−1 to denote the DDA displacement in the previous time step, {D(t)}n to denote the

displacement increment in the current time step, h to denote the time interval. Then applying the

Newmark method:

∂2{D(t)}n
∂t2

=
1

h2β
{D(t)}n −

1

hβ

∂{D(t)}n−1
∂t

− (1/2− β)

β

∂2{D(t)}n−1
∂t2

, (3.11)
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∂{D(t)}n
∂t

=
∂{D(t)}n−1

∂t
+ (1− γ)h

∂2{D(t)}n−1
∂t2

+ γh
∂2{D(t)}n

∂t2
. (3.12)

Replace the acceleration in the energy equation with Newmark acceleration, Eq. (3.10) can be

rewritten as:

Πi = {Di}T
∫ ∫ ∫

[Ti]
T [Ti]dx dy dz(

[M ]

h2β
{D(t)}n−

[M ]

hβ

∂{D(t)}n−1
∂t

−(1/2− β)[M ]

β

∂2{D(t)}n−1
∂t2

).

(3.13)

As {D(t)}n = {Di}, minimizing the energy equation Eq. (3.13) with respect to {Di}T , we have

the stiffness submatrix and force sub-vector resulting from inertial force as:

(

∫ ∫ ∫
[Ti]

T [Ti]dx dy dz)A→ [Kii],

(

∫ ∫ ∫
[Ti]

T [Ti]dx dy dz)B → {Fi},
(3.14)

where

A =
[M ]

h2β
,

B = (
[M ]

hβ

∂{D(t)}n−1
∂t

+
(1/2− β)[M ]

β

∂2{D(t)}n−1
∂t2

).

(3.15)

With Eq. (3.14)and Eq. (3.15), the Newmark method has been applied in the DDA method to

acquire the submatrix of inertia force.
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3.3 The Energy Balance of the Newmark Method in DDA

The following part will prove the energy balance of the Newmark method in DDA method. Simpli-

fying the DDA model as a particle without regarding the stress and strain, then only point loading

and inertial force is considerate:

{Dn} = (h
∂{D(t)}n−1

∂t
+ h2(1/2− β)

∂2{D(t)}n−1
∂t2

) + h2β
∂2{D(t)}n

∂t2
[M ]. (3.16)

For the traditional Newmark method, Krenk37 has proved its balance in energy. He denotes the

energy change in one time-step as:

(1/2 ˙{u}
T

[M ] ˙{u}+ 1/2{u}T [K]{u})nn−1. (3.17)

After combing Eq. (3.17) with Newmark method Eq. (3.1), (3.2), then a reformulation of energy

change in one time-step is obtained as

(1/2 ˙{u}
T

[M ] ˙{u}+ 1/2{u}T ([K] + (β − 1/2γ)h[K][M ]−1[K]){u})nn−1

= −(γ − 1/2){D}T ([K] + (β − 1/2γ)h[K][M ]−1[K]){u}){D},
(3.18)

where the the original stiffness matrix can be replaced as an equivalent stiffness matrix: [K]eq =

[K] + (β − 1/2γ)h[K][M ]−1[K]). Note that if we take β = 1/4 in Eq. (3.16), then the solution

of DDA would be the same as the Newmark method taking β = 1/4, γ = 1/2, where Eq. (3.18)

suggests no energy dissipation.



Bo Peng Chapter 3. Newmark Method in 3D-DDA 35

3.4 The Integrated Newmark Method in DDA

Besides the classic Newamrk method, an integrated Newmark method is developed and applied to

the DDA method. Unlike the classic Newmark method, velocity and acceleration information are

not required for the integrated Newmark method when the linear equilibrium equation is developed.

The general kinetic function is:

[M ]{ü}+ [C]{u̇}+ [K]{u} = {P}, (3.19)

where {u} is the accumulated displacement, [M] is the mass matrix, [C] is the damping matrix, [K]

is the stiffness matrix without considering the inertia force and {P} is the loading matrix without

inertia force. In order to convert the unknown variable {un} to displacement at each time step

{Dn}, considering the following four equations of four time-step under undamped situation:

[M ] ¨{u}n + [K]{u}n = {P}n, (3.20)

[M ] ¨{u}n−1 + [K]{u}n−1 = {P}n−1, (3.21)

[M ] ¨{u}n−2 + [K]{u}n−2 = {P}n−2, (3.22)

[M ] ¨{u}n−3 + [K]{u}n−3 = {P}n−3. (3.23)
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After reorganizing equations as (Eq. (3.21)+Eq. (3.20))-(Eq. (3.22)+Eq. (3.23)), we have :

[M ][( ¨{u}n + ¨{u}n−1)− ( ¨{u}n−2 + ¨{u}n−3)] + [K][{u}n + {u}n−1 − {u}n−2 − {u}n−3]

= {P}n + {P}n−1 − {P}n−2 − {P}n−3.

(3.24)

As taking the newmark method is unconditional stable when γ = 1/2 and β = 1/4,36 we formulate

the Newmark method as:

˙{u}n = ˙{u}n−1 + 1/2h( ¨{u}n−1 + ¨{u}n), (3.25)

{u}n = {u}n−1 + h ˙{u}n−1 + 1/4h2( ¨{u}n−1 + ¨{u}n). (3.26)

Then, after Eq. (3.25) and Eq. (3.26) are combined, we have:

¨{u}n + ¨{u}n−1 =
4

h2
({u}n − {u}n−1) +

4

h
˙{u}n−1. (3.27)

We can also obtain a reorganization, 2×Eq. (3.26) - Eq. (3.25), as:

{u}n − {u}n−1
h

=
˙{u}n + ˙{u}n−1

2
. (3.28)

With Eq. (3.27) and Eq. (3.28), we can reformulate Eq. (3.24). The part of mass matrix [M ] in
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Eq. (3.24) can be rewritten as:

[M ][( ¨{u}n + ¨{u}n−1)− ( ¨{u}n−2 + ¨{u}n−3)]

= [M ]{ 4

h2
({D}n − {D}n−2)−

4

h
( ˙{u}n−1 − ˙{u}n−3)}

= [M ]{ 4

h2
({D}n − {D}n−2)−

4

h
[( ˙{u}n−1 + ˙{u}n−1)− ( ˙{u}n−1 + ˙{u}n−3)]}

= [M ]{ 4

h2
({D}n − 2{D}n−1 + {D}n−2)},

(3.29)

where:

{D}n = {u}n − {u}n−1,

{D}n−1 = {u}n−1 − {u}n−2,

{D}n−2 = {u}n−2 − {u}n−3.

(3.30)

The part of stiffness matrix [K] in Eq. (3.24) can also be rewritten as:

[K][{u}n + {u}n−1 − {u}n−2 − {u}n−3]

=[K][({u}n − {u}n−2) + ({u}n−1 − {u}n−3)]

=[K][({D}n + {D}n−1) + ({D}n−1 + {D}n−2)].

(3.31)

Finally, substituting Eq. (3.29) and Eq. (3.31) into Eq. (3.24), the equation of displacement in
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each time-step can be formulated as:

[M ]{ 4

h2
({D}n − 2{D}n−1 + {D}n−2)}+ [K][({D}n + {D}n−1) + ({D}n−1 + {D}n−2)]

= {P}n + {P}n−1 − {P}n−2 − {P}n−3.

(3.32)

As {D}n is the unknown variable, we reformulate Eq. (3.32) as:

[M ]
4

h2
{D}n + [K]{D}n

=[M ](
4

h2
(2{D}n−1 − {D}n−2)− [K](2× {D}n−1 + {D}n−2)

+ {P}n + {P}n−1 − {P}n−2 − {P}n−3.

(3.33)

Therefore, the submatrix of inertia force – stiffness submatrix and force subvector resulting from

inertia force – are:

[M ]
4

h2
→ [Kii],

[M ](
4

h2
(2{D}n−1 − {D}n−2)→ [Fi].

(3.34)

Also, the following part are required to be added to force vector in the global equation:

−[K](2× {D}n−1 + {D}n−2) + {P}n−1 − {P}n−2 − {P}n−3 → [Fi]. (3.35)

At this point, the Eq. (3.34) and Eq. (3.35) contend all the inertial force information that linear

equilibrium equation requires.



Chapter 4

Implement Details

So far, there is no sophisticated open source 3D-DDA code for simulating irregular shaped blocks.

Thanks to Professor Peng from China water and hydra resource institute, who contributed his

private 3D-DDA code, our experiment can be conducted based on it. The 3D-DDA code is an

extensible code developed in FORTRAN, and it is focused on implement of 3D-DDA Algorithm.

Because of the difficulty in 3D DDA simulation, this code is one of the few codes that able to

simulate the entire process of 3D block movements. But there are several challenges in revising

this code. The main problem is that the structure of this code is not well organized – its first version

was developed twenty years ago, and the optimization for this code are based on the first version’s

structure. Therefore, this code is not object-oriented, the entire code is just in one file.

39
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4.1 Structure of the DDA Code

Because of the confusion of the code’s structure, it is necessary to understand the mechanism of

entire code. The Figure. 4.1 shows the a big picture of the DDA algorithm, including inputting

the block structure information, generating the stiffness matrix, solving the equation and checking

the contacts information. We will illustrate the structure of the DDA code through the following

functions:

• READ_PXC() is a function to read input files. There are two input files: Good.txt and

info.txt. The block structure information is stored in Good.txt , which includes the

surface number in each block, the point label in each surface, point coordinates, and equation

parameters for each surface. Other parameters are stored in the file Good.txt , including

Poisson ratio, Young’s modulus, gravity, etc.

• STIFF() is a function to determine the global stiffness matrix and right-side loading vector

in the linear equilibrium equation resulting from point load, volume load, initial stress, block

interactions. The theoretical details has been presented in section 2.2. The results are stored

in a 6n× (6n+ 1) matrix called ff(), where n is the number of unfixed blocks. In ff(),

the first 6n × 6n matrix stores the stiffness matrix information, and the last column is the

right-side loading vector.

• GXSTIFF() obtains the information of the submatrix of inertia force, and then adds it to

the global matrix ff().
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• SOLVER_PCG_zgx() applies preconditioned conjugate gradient (PCG) method to solve

the linear equilibrium equation, and the solution are the displacement and rotation of unfixed

blocks, which store in a 6n vector called ee(). However, in case of bad convergence rate

for PCG, a SOLUT3 () function employing the classic Gaussian elimination method will

be applied to resolve the linear equilibrium equation.

• NEWLOCATION() MACLENG() MAXMIN() MAXMINPLANE() check the contacts in-

formation when new location of unfixed blocks has been solved from the linear equilibrium

equation. If the new location of blocks are not satisfied with the contacting law, such as

tensile force existing between blocks, then the stiffness matrix need to be redeveloped. A

variable called MCBH records the friction status; if the friction status changes, the stiffness

matrix will also be recalculated. The stiffness matrix maybe regenerated several times, and

the simulation would not step into the next time-step unless the solution of equilibrium equa-

tion satisfies all contacting laws.

• DT() is a function to export the blocks’ coordinate information and to update other infor-

mation, such as velocity and acceleration. It will only be called once at the end of every

time-step.

There are also quit a large number of functions to handle the details, such as T_DELT() to adjust

time-step size, MIDJL to record error information.
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Figure 4.1: Flowchart for the DDA code
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4.2 Newmark Method in the DDA Code

Note that the submatrix of inertial force is the only part related with time integration method;

therefore, to apply newmark method into DDA code, function GXSTIFF() is the key part to

revise. After we Applied Eq. (3.14) and Eq. (3.15) to the DDA code, the following part is the

Newmark method in GXSTIFF() function:

SUBROUTINE GXSTIFF(IMBF)

DMF=4./DELT

DMK=DMF/DELT

DO 1900 KBLOCK=1,NBLOCK

IF (KBLOCK.EQ.1) IDENT=0

IJ=ISTRI(2,KBLOCK)

IF (IJ.EQ.0) GOTO 1900

CALL TV(DIU,KBLOCK)

FI=0.0

DO I=1,6
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DO J=1,6

FI(I)=FI(I)+FFS(I,J,KBLOCK)*DIU(J)*GAMA

ENDDO

ENDDO

DO I=1,6

DO J=1,6

KII(I,J)=FFS(I,J,KBLOCK)*DMK*GAMA

ENDDO

ENDDO

CALL DRZKII(KBLOC,KII,FI)

1900 CONTINUE

RETURN

END

The function GXSTIFF() is the last part to form the global stiffness matrix, and it runs after

STIFF(). The return value of TV() is a vector DIU(6), storing the value of (4∂[D(t)n−1]
∂t

−

2∂
2[D(t)n−1]

∂t2
) of the KBLOCK’s object. FFS() is the mass matrix, which is [M ] in Eq. (3.14) and

Eq. (3.15). After the submatrix of inertial force has been acquired, a function DRZKII () will
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map the local stiffness matrix into the global matrix.

Besides the GXSTIFF(), the velocity and acceleration should be updated at the end of each time-

step:

ACCEL()=4./DELT/DELT*DIU()-4./DELT*VEL_1()-ACCEL_1()

VEL()=VEL_1()+0.5*DELT*(ACCEL_1()+ACCEL())

4.3 Implement of the Integrated Newmark Method in the DDA

Code

Apply the integrated Newmark method into DDA code is more complicated. Because the loading

vector of current time-step relies on the loading vectors in previous time-step, and the equation is

deducted based on the assumption that the mass matrix [M ] and stiffness matrix [K] remain the

same in recent four time-steps. As a result, the Newmark method can not be applied during the

whole process. As [M ] is only related with the structure of block, [M ] does not change during

the entire simulation process. However, [K] changes whenever the contacts vary. Therefore, once

contact status changes, the forward Euler method will be applied. After contacts status keep the

same for three time-steps, Newmark method will be applied again. This process is shown in Figure

4.2.

The function GXSTIFF(), which is used for obtaining the submatrix of inertial force, is the key

part to apply the integrated Newmark method. This part is based on the Eq. (3.34) and Eq. (3.35).



Bo Peng Chapter 4. Implement Details 46

Figure 4.2: Switch between the forward Euler method and the Newmark method

But through Eq. (3.20) to Eq. (3.23), it clearly shows that both the loading vector {P} and the

stiffness matrix [K] are the global information without considering the inertial force. Therefore,

close attentions are paid when updating the stiffness matrix and the loading vector. Figure. 4.3

shows the flowchart of how GXSTIFF() works.
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Figure 4.3: Flowchart for GXSTIFF() function in DDA code



Chapter 5

Results and Analysis

In this chapter, we will report the simulation results for two DDA models. The first model is

a sliding model, which composed of a fixed incline and a small block. The second model is

an impacting model, in which a small block impacts a fixed horizontal surface. As the DDA is

designed for solving discrete systems, contacting between objects can be regarded as the most

important part in simulation. A contact is composed of a tangential direction contact and a normal

direction contact. A sliding model is a great example for simulating tangential contacts and an

impacting model is for normal contacts. Therefore, both models are the very fundamental for

DDA verification. The general structures of these two models are illustrated, and the experiment

results will be shown.

To show the accuracy improvements by the Newmark method, the forward Euler method is used

for comparison. Before this study, the forward Euler method is the only time-integration scheme

48
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applied in the DDA simulation. It is a very stable method, while resulting in strong damping

effects at the same time.21 This damping effect becomes more obvious when a sudden change of

movement direction occurs.

The DDA code we use is offered by Professor Peng from China Institute of Water Resource and

Hydropower Research, and it is developed by Fortran. After models have been developed, the dis-

placement of the center of block is used to compare the accuracy of two different time integration

methods. So far, most research in DDA are restricted to two dimensional simulation, but in this

study both models are three dimensional models with six degree of freedoms – displacement in

x,y,z directions and rotation in x,y,z directions. The three dimensional results will be compared

with analytical solution, and the relative error will be measured.

5.1 Sliding Model

A sliding model represents a simplified model to simulate rocks sliding along structure surfaces,

as they share similar boundary conditions: the rock(block) slides in the direction of slope with no

restriction in other direction.

The points of this experiment are: 1) to validate the 3D-DDA method through comparison between

analytically solution and simulation solution, 2) to compare the accuracy of the Newmark method

and the forward Euler method, 3) to explore the computational costs for these two time-integration

method.
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In this study, a 0.3m × 0.3m × 0.3m three dimensional block lies on a fixed 30 degrees slope, as

Figure 5.1 shows. Each experiment lasts 1.5 second in simulation time, which is the summation

of all time-step. At the start point, a small block is released from the top of slope with zero

initial velocity. After a very short period of stabilizing, the block will slides along the frictionless

slope smoothly. The only force applied to the small block is the gravity. During the process,

displacement and time are recorded.

The material parameters for the block are: Young’s modulus E = 1MPa, Poisson’s ratio v = 0.7,

and unit weight γ = 2.7KN/m3. The interface properties are: frictional angle φ = 0◦, cohesion

C = 0, and normal contact stiffness pn = 3× 107.

Figure 5.1: Sliding model: a small block sliding along a fixed slope
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5.1.1 Accuracy Analysis

To validate the DDA method, a simulation of sliding model was conduct. For this simulation,

the time-step is fixed as 0.002s, and the trajectory of small block within a total 1.5s simulation

time were recorded. Figure 5.2 displays the results: a comparison between DDA solution using

the forward Euler time integration, DDA solution using the Newmark time integration and the

analytical solution. The picture shows that the displacement of DDA method using both time

integration schemes are very close to the analytical solution:

d =
1

2
g(sin(α)− cos(α)tan(φ))t2 (5.1)

where d is the displacement, α is the degree of slope, φ is the frictional angle which is zero here, t

is the accumulated time. To measure the accuracy of the forward Euler method and the Newmark

method, we define a relative error as:

Er = (Ds −Da)/Da (5.2)

where Er is the relative error, Ds is the simulated displacement and Da is the analytical displace-

ment. Figure 5.3 illustrates the relative error based on the same results of Figure. 5.2. It shows

that the beginning of DDA simulation is not very stable, and relative errors change quickly. That

is because the block adjusts itself to a stable condition when it contacts with the slope at the very

beginning. But after the block starts to slide steadily along the slope, the relative errors for both
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time integration methods decrease smoothly. The relative error at the end of 1.5s is less than 0.3%.

Figure 5.2: Displacement-time relationship for the sliding model. With size of timestep
0.002s, both the forward Euler method and the Newmark method provide solutions very
close to the analytical solution.

The size of time-step influences the accuracy of simulation results directly. To examine the accu-

racy of the DDA method in respect of time-step size, seven individual sliding tests with different

sizes of time-steps (0.002s, 0.004s, 0.008s, 0.016s, 0.02s, 0.025s, 0.032s) were applied in the slid-

ing model. For each tests, they had the same initial conditions, boundary conditions, and the entire

simulations last 1.5s in real time. The error at final point is used as the relative error value for each

test. From the Figure 5.4 we can see that when time-step h = 0.002, 0.008, 0.016, the Newmark

method presents a higher relative error. While for the rest h = 0.004, 0.020, 0.025, 0.032, the New-

mark method leads to a better accuracy. This picture also shows that the error of the forward Euler

method is linear related with time-step size, but the error of the Newmark method is not.
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Figure 5.3: Relative error and time relationship for the sliding model. The relative errors of
both the Newmark method and the forward Euler method decline steadily after a point.

Figure 5.4: Time-step size and relative error relatioship for the sliding model. The compar-
ison is based on simulation solutions which have the same simulatation time (1.5 s)
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5.1.2 Computational Time Comparison

Figure 5.5 shows the computational cost of the DDA code using the Newmark method and the

forward Euler method. The computational time of six independent tests with different numbers of

time-steps (60, 75, 188, 375, 750, 1500) were recorded. All the simulations start at a same initial

point, have the same boundary condition and the same simulation time 1.5s. The different numbers

of time-steps (n) are achieved by the change of time-step size (h) in the sliding model. From the

figure, we can see that the simulations using the Newmark method and the forward Euler method

cost almost the same computational time. This is because time integration is only a small part in

the entire DDA code. Also, besides the way to obtain velocity and acceleration, the rest algorithm

of these two time integration methods are very similar.

Figure 5.5: Model size (timestep number) and computational costs relationship in sliding
model. The computational time for the Newmark method and the forward Euler method
are almost the same.
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5.2 Impacting Model

Impacting model is composed of a fixed surface and a small block which can move freely. It is a

very important validation model for DDA simulation to test how normal contacts between blocks

work, and how they work under condition of trajectory direction changes rapidly. The impacting

process in simulation can be classified as two part: contacting and non-contacting parts. When

blocks contact with each other, they are connected by two artificial springs: a normal one and a

tangential one. When blocks are not contacting, they moves independently, and the only force the

small block took is the gravity.

As the direction of movements change during a relatively small time of contacting in the impacting

model, strong damping effects occur even in undamped cases when the forward Euler method is

applied. This is against the theoretical solution, because there is no energy dissipation shown in

the DDA equation. Being a challenge in the DDA simulation for a long time, the unreasonable

damping effects can be vanished by applying the Newmark method, and it will greatly increase the

accuracy of the DDA.

The points of this experiment are: 1) to demonstrate the significant accuracy improvements through

using the Newmark method, 2) to explore how the time-step size effects the accuracy of the forward

Euler method and the Newmark method.

The impacting model is composed of a 3m × 3m × 3m small block and a 10m × 10m × 10m

big block, as Figure 5.6 shows. The big block is fixed, and the small one can move freely. In the

simulation, the small block falls down at the point of 0.3m above the big one, and then constantly
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impacts the big block until being stop. A total 1.0 second real time movement of impacting model is

simulated. During the process, displacement, velocity and acceleration are recorded. The material

parameters og the block are: Young’s modulus E = 1MPa, Poisson’s ratio v = 0.7, and unit

weight γ = 2.7KN/m3. The interface properties are: frictional angle φ = 0◦, cohesion C = 0,

and normal contact stiffness pn = 3× 107.

Figure 5.6: Impacting model: a small block falling down and constantly impacting a fixed
block

5.2.1 Damping Effects

Damping effect is the influence to shrinkage the amplitude of oscillation. But the continuous

oscillation is very difficult to simulate in the discrete system, thus, the impacting model is applied

as the substitution.
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In this study, three time integration methods are going to be explored: the forward Euler method,

the classic Newmark method and the integrated Newmark method. The simulation results of dis-

placement, velocity and acceleration are compared with analytical results:

∆d = v × h+
1

2
× a× h2. (5.3)

This is the analytical solution for a one dimensional problem, and the object is idealized as a

particle. This situation is usually simulated by a Single-degree of freedom system in previous

research.20, 21 However, in the 3D-DDA simulation, we use a six degree of freedom model: the

small block will impact the fixed surface with its entire bottom plane, and it is possible to rotate or

move to any direction.

In this experiment, the bottom plane of the small block is parallel to the fixed ground surface, and

no friction is applied in contacts. As the small block shows barely any offset in Y,Z direction,

only the vertical trajectory of its mass center is recorded for comparison analysis. Figures 5.7-5.9

demonstrate the comparison results. Figure 5.7 is the displacement comparison, it shows that the

forward Euler method results in a strong damping effect, the solution of classic Newmark method

matches well with analytical solution, and the integrated Newmark method amplifies oscillation.

Even though the classic Newmark solution is very close to the analytical solution, it still shows a

slight damping, as its peak is lower than analytical one in the fourth impacting loop. Figure 5.8

is the velocity comparison. In this figure, it shows that the damping effects in the forward Euler

method mainly occurs when two blocks contacting to each other, while the amplifying effects in
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the integrated Newmark method imbedded in the entire process – both when two blocks contact

and separate. We believe this is an inner defect of the integrated method, but the reason is not

clear yet. Figure 5.9 shows the acceleration information: their peak values, which happen in

contacting, demonstrate how stable for the impacting process. Peaks in the forward Euler method

decrease linearly, those in the classic Newmark method keep the same in each loop, and that in the

integrated Newmark method have no stable trend.

Generally speaking, the integrated Newmark method does not show a good match with analytical

solution. But so far, we do not know the reason. It might be because of the defects in either

equation deduction or the code. Therefore, the rest analysis will not include Integrated Newmark

method.

Figure 5.10 shows the energy change in the impacting process, which verifies the energy conser-

vation of the Newmark method. It also shows a damping effect in forward Euler method and an

amplifying effect in the integrated Newmark method.

5.2.2 Time-step effects

Time-step is closely related with the accuracy of a simulation. Figures 5.11-5.13 show the impact-

ing model simulation results when different time-step sizes (0.0005s, 0.0015s, 0.0025s, 0.004s) are

applied. From these four Figures, we can tell that damping effects from the forward Euler method

increasing with increment of time-step size. For the Newmark method, the solution matches with

analytical solution reasonable well when time-step size equals to 0.0005s, 0.0015s and 0.0025s,
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Figure 5.7: Comparison of displacement between the Newmark method, the forward Euler
method and the analytical solution in the impacting model. With a time-step size 0.002(s),
the forward Eular method shows strong damping effects; the classic Newmark method
illustrates a good match with analytical solution; and the integrated Newmark method has
an amplifed effects.

Figure 5.8: Comparison of velocity between the Newmark method, forward Euler method
and analytical solution in the impacting model.
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Figure 5.9: Comparison of acceleration between the Newmark method and forward Euler
method in the impacting model.

Figure 5.10: Comparison of energy between the Newmark method and forward Euler
method in the impacting model.
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but when time-step size turns too big – 0.004s – the Newmark solution becomes not stable any

more. We can also notice that the Newmark method solution with 0.0025s time-step fits analytical

solution better then that of 0.0015s, and this is because of round-off error.

To illustrate the relative error and time-step size relationship more clearly, we define the relative

error for impacting model as:

Er =

∑
Ds∑
Da

(5.4)

The Figure 5.14 shows relative error and time-step size relationship. The relative error of Euler

solution decrease steadily with time-step size, while for the Newmark solution, the relative error

decrease very fast and then it stays in a relative stable range (10%) when time-step size less than

0.0025 second. Generally speaking, the error from Newmark simulation is much smaller than that

from forward Euler simulation. The relative error of energy in the Newmark method also shows

the same trends in comparison with that in the forward Euler method, as Figure 5.15 shows.

Figure 5.11: Comparison of displacement from the Newmark method, the forward Euler
method and the analytical solution in impacting model with time-step 0.0005(s).
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Figure 5.12: Comparison of displacement from the Newmark method, the forward Eu-
ler method and the analytical solution in impacting model whose time-step equals to
0.0015(s).

Figure 5.13: Comparison of displacement from the Newmark method, the forward Euler
method and the analytical solution in impacting model whose time-step equals to 0.004(s).
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Figure 5.14: The relationship between Relative error and time-step in impacting model
using Newmark method and forward Euler method.

Figure 5.15: The relationship between energy relative error and time-step in impacting
model using Newmark method and forward Euler method.
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5.3 Summary

The results analysis of the sliding model and the impacting model suggest that the classic Newmark

method significantly restricts the damping affects and improves the accuracy, while computational

costs remain in the same level. Considering the velocity is the first order derivative of displace-

ment and acceleration is the second order derivative, then the forward Euler method is a first order

approximation, and the Newmark method can be considered as a second order approximation. For

the impacting process, the change of moving direction results in a sudden change of much higher

value of acceleration than average acceleration, and in this situation the second order approxima-

tion is able to provide a much better solution than the first order one. For the sliding model, two

time-integration method have a similar accuracy as the acceleration keeps the same in the entire

process.



Chapter 6

Conclusion and Future Work

We investigated two time integration methods: the forward Euler method and the Newmark method

applied to the DDA. Prior to this work, only the forward Euler method was used as a time integra-

tion method in the DDA. The forward Euler method is a very stable method, but it leads to severe

damping effects in contacting simulation, which is against the corresponding theoretical solution.

The major contribution of this work is to derive the Newmark method and apply it to the DDA.

The Newmark method avoids the damping effects resulted from time integration simulation. Our

work also shows a complete three dimensional DDA simulation, which is rare so far as we know.

It has been an open question for some time whether the damping effect in DDA is an inner defect.

With the impacting model, we can see that the damping effects will shrinkage with time-step size,

which indicates that when the time-step is small enough, the error resulted from the damping effects

can be ignored. But that will cost a high computational time. On the other hand, the Newmark

65
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method keeps the damping effect relatively low when time-step size is reasonable.

In this thesis, for theoretical part, we derived the formula and applied the Newmark method to the

DDA. We also developed an integrated Newmark method, in which no velocity and acceleration

were included when solving the linear equilibrium equation. But the integrated method is more

complicated in practice, and the simulation results show amplifying effects.

For the simulation part, two very basic and very widely used models are applied to test the forward

Euler method and the Newmark method. The first one is a sliding model, both the forward Euler

method and the Newmark method show a good match with analytical results. The second model

is an impacting model, in which the Newmark method shows a much better accuracy than the

forward Euler method, and there are barely damping effects.

In future work, more simulations under boarder range of situations are needed to understand how

the Newmark method in the DDA works. Also more work could be done to explore Newmark

parameters γ, β. We tried to use some different combination of γ, β, but because of the limite

of time, the data is not sufficient for meaningful conclusion can be drawn so far. We expect the

introduction of the Newmark method improves the accuracy of the DDA and be more widely used

in more complected simulations
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