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Optimal Vehicle Stability Control with Driver Input and Bounded Uncertainties 

 

Seyed Hossein Tamaddoni 

 

ABSTRACT 

 

 

For decades vehicle control has been extensively studied to investigate and improve 

vehicle stability and performance. Such controllers are designed to improve driving 

safety while the driver is still in control of the vehicle. It is known that human drivers are 

capable to learn and adapt to their built-in vehicle controller in order to improve their 

control actions based on their past driving experiences with the same vehicle controller. 

Although the learning curve varies for different human drivers, it results in a more 

constructive cooperation between the human driver and the computer-based vehicle 

controller, leading to globally optimal vehicle stability. 

The main intent of this research is to develop a novel cooperative interaction model 

between the human driver and vehicle controller in order to obtain globally optimal 

vehicle steering and lateral control. Considering the vehicle driver-controller interactions 

as a common two-player game problem where both players attempt to improve their 

payoffs, i.e., minimize their objective functions, the Game Theory approach is applied to 

obtain the optimal driver’s steering inputs and controller’s corrective yaw moment. 

Extending this interaction model to include more realistic scenarios, the model is 

discretized and a road preview model is added to account for the driver’s preview-time 

characteristic. Also, a robust interaction model is developed to stabilize the vehicle 

performance while taking bounded uncertainty effects in driver’s steering behavior into 

consideration using the Integral Sliding Mode control methodology. 

For evaluation purposes, a nonlinear vehicle dynamics model is developed that captures 

nonlinear tire characteristics and includes driver steering controllability and vehicle speed 

control systems such as cruise control, differential braking, and anti-lock braking 

systems. A graphical user interface (GUI) is developed in MATLAB to ease the use of 

the vehicle model and hopefully encourage its widespread application in the future.  

Simulation results indicate that the proposed cooperative interaction model, which is the 

end-product of human driver’s and vehicle controller’s mutual understanding of each 

other’s objective and performance quality, results in more optimal and stable vehicle 

performance in lateral and yaw motions compared to the existing LQR controllers that 

tend to independently optimize the driver and vehicle controller inputs. 
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Chapter 1 

Introduction 

For decades vehicle control has been extensively studied to investigate and improve 

vehicle stability and performance. Vehicle stability control systems help drivers to 

improve ride and handling, maintain vehicle stability and avoid spinning out and rolling 

over during emergency braking and steering maneuvers. In June 2006 the United States 

Insurance Institute for Highway Safety reported that more than 10,000 fatal crashes could 

be prevented by vehicle stability control systems annually in the US. A comprehensive 

literature review by Ferguson [2007] reveals that vehicle stability control systems can 

effectively reduce single-vehicle crashes in cars and sport utility vehicles by 30-50%. 

Additionally, equipping vehicles with stability controllers fatal rollover crashes are 

estimated to decrease about 70-90%. Hence, the automotive industry’s demand for 

multifaceted controllers that can deal with common safety and performance issues such 

as rollover, skidding, and handling has been rapidly increasing in the recent years. Such 

systems must be able to work in nearly all cases, including those with unknown vehicle 

parameters, unmeasured states, unknown road disturbance, and unpredictable driver 

steering and speed control. 

Vehicle stability control systems are mostly designed to improve driving safety while the 

driver is still in control of the vehicle. It is known that human driver have the ability to 

learn and adapt to the built-in vehicle controller in order to improve his/her action based 

on their past driving experiences with the same vehicle controller. Although the learning 

curve varies for different human drivers, it would result in a move towards constructive 

cooperation between the vehicle’s human operator and computer-based controller, 

leading to globally optimal vehicle performance. 
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The advancement of smart systems in vehicles that can augment the driver input, in order 

to improve the vehicle handling and dynamics, necessitates a better understanding of how 

the vehicle driver and controller inputs can co-exist in a manner that are complementary, 

not contradictory. Hence, this research is devoted to developing a driver-controller 

interaction framework in which the vehicle driver and controller cooperate optimally with 

each other in order to guarantee system stability and improve vehicle handling. 

1.1. Research Objectives 

The primary objectives of this research are to 

1. develop a novel vehicle driver-controller interaction model that will take 

advantage of combining driver steering behavior with vehicle stability control in 

order to improve vehicle handling and lateral stability;  

2. evaluate the effectiveness of the suggested driver and vehicle controller models 

using a validated nonlinear vehicle model that allows for controlling the steering, 

braking, and traction; and 

3. explore the effects of uncertainty in driver steering control on the robustness of 

the proposed control framework, and develop a robust optimal vehicle driver-

controller interaction model. 

1.2. Document Organization 

In chapter 2, the state of the art is described through a comprehensive literature search. 

The survey includes a historical background of vehicle study including modeling vehicle 

dynamics and driver steering control, and design and implementation of vehicle stability 

control systems. 

Chapter 3 is devoted to evaluation and control models. Throughout this chapter vehicle 

dynamics, traction/braking control systems and driver directional control is explained. 

First, a nonlinear vehicle model is developed base on Multibody dynamics approach, and 

nonlinear tire models, both physical and semi-empirical, are described. The assumption 

of constant forward speed that consequently reduces the number of differential equations 
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leads to linear vehicle models. These simple models will be applied to better understand 

yaw and roll motions of the vehicle, and mainly to serve as the control platform for 

handling and stability purposes. Cruise Control and Differential Braking systems are also 

introduced to control the vehicle speed. The cruise control is mainly based on PID control 

concept while the differential braking system includes Active Slip Control (ASC), 

Differential Brake Distributor, and Anti-lock Braking System (ABS) to distribute the 

braking torques on the wheels. Also, two driver steering control models are reviewed; the 

first one is a continuous-time first-order preview driver steering model with time lag, and 

the second one is a discrete-time preview driver directional model based on optimal 

linear control theory. The vehicle model is finally validated by the commercially 

available vehicle dynamics simulation software CarSim, and the results are illustrated for 

a test scenario. 

Chapter 4 introduces the main contribution of this research, i.e. a novel interaction model 

for optimal linear vehicle steering and yaw control based on the Game Theory concept. In 

this chapter, an optimal vehicle stability controller is developed while the driver is 

controlling the steering angle within a bounded uncertainty range. The first section 

reviews the continuous-time interaction model of steering and yaw control design based 

on the linear quadratic (LQ) differential game approach, followed by the application of 

the LQ difference game theory to obtain optimal steering angle and corrective yaw 

moment for a driver with road preview information. This chapter also studies the effect of 

uncertainty in driver steering behavior and derives robust control strategies to deal with 

bounded uncertain driver control structure based on Integral Sliding Mode control. 

Finally, Chapter 5 concludes the study and proposes significant future works to improve 

the study presented in this research. 

1.3. Thesis Contribution 

The primary contributions of this study are: 

1. novel interaction framework for optimal driver steering and vehicle stability 

control based on Game Theory;  
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2. optimal robust vehicle control design based on the Integral Sliding Mode (ISM) 

control to deal with uncertainty in driver’s steering angle in a linear quadratic 

game system; 

3. MATLAB graphical user interface (GUI) toolbox called “Vehicle System 

Simulator” that simulates vehicle/tire nonlinear dynamics in the 

MATLAB/Simulink environment with any user-defined arbitrary inputs and 

outputs.  
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Chapter 2 

Background 

 

In this chapter, the prior state-of-the-art related to this research is studied. The historical 

backgrounds of vehicle dynamics, driver steering models, and vehicle stability control 

systems are discussed in Section 2.1 and that of game theory is briefly reviewed in 

Section 2.2. 

 Historical Background of Driver-Vehicle Modeling and 2.1.

Control 

Vehicles, derived from the Latin word “vehiculum” are nonliving means of transport. 

Transportation can be considered as a means of conveyance from one point or place to 

another. Generally, vehicles can be classified by their support which balances the gravity 

acting on the vehicles, and propulsion principles which is planned to generate the forward 

speed. Figure 2.1 shows a simple classification of vehicles based on support and 

propulsion principles.  

Most vehicles represent interesting and complex dynamics systems that require careful 

analysis and design to make sure they perform properly and hold stability. The stability 

aspect of vehicle motion has to do with assuring that the vehicle does not deviate 

spontaneously from a desired path and is still under control. The control aspect of vehicle 

stability has to do with the ability of a human operator or an automated system to guide 

the vehicle along the desired path. In either case, the dynamic parameters of such vehicles 

should be properly tailored to allow controllability with reasonable ease and precision.  

http://en.wikipedia.org/wiki/Means_of_transport
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The inherent complexity of actual vehicle systems makes an exact analysis of the system 

impossible; however, simplifying assumptions may reduce the system complexity level in 

such a way that the behavior or performance approximates that of the real system. This 

process is called “modeling”, and the simplified version of the real system is called the 

mathematical model of the system.  

 

Figure 2.1 General classification of vehicles 

The study of automobile stability and control is a relatively new field. Figure 2.2 shows 

some significant steps in the history of vehicle study. 

2.1.1. Vehicle Dynamics Modeling 

While the first self-propelled steam road vehicle was successfully tested in 1767 by 

Cugnot, the pioneer work in vehicle engineering occurred in 1903 when the Wright 

brothers successfully built their first airplane. A few years later, G. H. Bryan started his 

pioneering work on a mathematical theory of airplane stability [Bryan, 1911]. 

Development of scale models and wind tunnels evolved the understanding of 

aerodynamics and how it affects the stability of an aircraft. Yet lack of understanding of 

the role of the tire mechanics in the stability of an automobile had slowed down the 

development of an automotive stability theory. 

Vehicle 

Ground Vehicle 

Inertia Vehicle 

(e.g. Spacecraft) 
Fluid Vehicle 

(e.g. Ship) 

Non-guided 

(e.g. road vehicle) 
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Figure 2.2 History of vehicle study 

During 1900 and 1930, the emphasis on improving the ability of the driver to control the 

vehicle led to kinematic studies of suspension and steering geometries resulting in 

improved designs including Ackermann steering geometry [Gears, 1927]. In that period, 

vehicles were plagued with the phenomenon of steering shimmy. To explain this 

phenomenon, Broulheit introduced the basic concepts of sideslip and slip angle for the 

first time [Broulheit, 1925]. Following Broulheit’s work, Becker, Fromm, and Maruhn 

published a text on the role of the tire in steering system vibrations and further developed 

the field of tire mechanics [Becker, 1931]. 

In 1930’s, the Cadillac Suspension Group of General Motors (GM) developed the first 

independent front suspension system. Olley and his co-researchers in GM found that 

certain steering geometries led to a condition called roll oversteer which was later 

recognized unsafe at high speeds [Olley, 1937]. In 1934 an unpublished report by Olley 

stated the proposition of oversteer/understeer and the idea of critical speed [Olley, 1934]. 

In 1935 Goodyear Tire and Rubber Company began rolling drum tests to determine tire 

1
9
0
3
 -

- 

1
9
1
1
 -

- 

1
7
6
9
 -

- 

1
9
2
7
 -

- 

1
9
3
4
 -

- 

1
9
5
6
 -

- 

1
9
7
3
 -

- 

1
9
9
7
 -

- 

1
9
8
7
 -

- 

1
9
2
9
 -

- 

2
0
0
0
 -

- 

1
9
6
5
 -

- 

2
0
0
1
 -

- 

2
0
0
8
 -

- 

1
8
7
6
 -

- 

1
9
6
1
 -

- 



7 Background   

 

 

characteristics. The results of lateral tire characteristics including data on cornering force 

and self-aligning torque were published in [Evans, 1935].  

During 1940’s very little progress was made due to World War II. In 1950 Lind Walker 

introduced the concept of the neutral steer line and the stability margin [Walker, 1950]. 

Although these concepts had already been established in aeronautical circles, Walker for 

the first time suggested them as criteria for steady state directional stability in 

automobiles. 

By the middle of the 1950s a basic understanding of the tire enabled the creation of 

reasonably accurate mathematical tire models. In 1956 William F. Milliken, David W. 

Whitcomb, and Leonard Segel of the Cornell Aeronautical Laboratory, published the first 

major quantitative and theoretical analysis of vehicle handling in a series of papers 

[Milliken, 1956; Segel, 1956’s; Whitcomb, 1956].  

Milliken [1956] stated that the major effort in handling research to date has been in the 

recognition of individual effects, their isolation, and examination as separate entities. 

There were no universally accepted set of reference axes and measured tire data of the 

period were typically confined to two or three of the possible six force/moments. This 

made translation of the data from one set of axes to another difficult if not impossible. 

Milliken also emphasized the need to concentrate on the objective analysis of car stability 

and control; therefore, he made the following distinctions between stability and control, 

performance and ride. In general, an automobile has six-degrees-of-motion freedom, and 

stability and control may be thought of as those lateral motions out of the plane of 

symmetry involving rolling, yawing and side slipping. (“Performance”, by way of 

distinction, is concerned with fore-and-aft motions in the plane of symmetry, such as 

acceleration, speed, and braking, while “ride” is composed of the vertical and pitching 

motions in the plane of symmetry.) 

Leonard Segel’s work [1956b] was devoted to derivation of a set of nondimensionalized 

linearized three degree of freedom equations for lateral and directional motion. Segel 

ignored the bounce and pitch degrees of freedom of the chassis and used a fixed 

longitudinal roll axis parallel to the ground. The other simplifying assumptions included 

constant forward velocity, fixed driving thrust divided equally between the rear wheels, 
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decoupled tire lateral properties from longitudinal properties, and a single non-rolling 

lumped mass as the unsprung mass. An experimental validation of the model was 

performed by a 1953 Buick Super four door sedan at 32 mph in a series of frequency 

response curves with the results showing good correlation. 

D. W. Whitcomb’s paper [1956] introduced the concept of the “static margin” and 

discussed automobile stability and control using a two degree of freedom model 

including yaw and side-slip which is today referred as bicycle model. 

In 1961 Martin Goland and Frederick Jindra added the roll degree of freedom as a quasi-

coordinate to the two degree of freedom (yaw and sideslip) vehicle model of Segel in 

order to calculate the vertical load on the tires. The effects of load transfer and the 

variation of the cornering performance of the tires with vertical loading were thus 

presented in [Goland, 1961].  

In 1965 Walter Bergman published his findings of the nature of vehicle understeer and 

oversteer. He noted that understeer and oversteer could be recognized by considering the 

change in the yaw velocity induced by a change in lateral acceleration. This definition is 

in accordance with the standardized definitions of oversteer and understeer put forth by 

the Society of Automotive Engineers (SAE).  

In 1967 R. Thomas Bundorf of General Motors published the relation of vehicle design 

parameters to the characteristic speed and to understeer [Bundorf, 1967]. Bundorf argued 

that under most normal driving conditions, which he characterized as having lateral 

accelerations below 1/3 g, a vehicle can be accurately modeled by a linear model.  

In 1973 Frank H. Speckhart presented a vehicle model containing fourteen degrees of 

freedom [Speckhart, 1973]. Six degrees of freedom were assigned to the sprung mass, 

four degrees of freedom were associated with the suspension movement at the four 

corners of the vehicle, and four rotational degrees of freedom were assigned to the 

wheels. He used a Lagrangian approach in deriving his equations.  

During 1970’s several time-saving methods were published such as Bernard’s digital 

simulation code for Highway Safety Department [Bernard, 1973], Hybrid Computer 

Vehicle Handling Program [Jindra, 1976], and Ford Motor Company’s model containing 

detailed three degree of freedom model of the front suspension [Morman, 1977].  
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In 1987 twenty-five different suspension types were tested to understand the effects of 

suspension design on the stability of vehicles [Nalecz, 1987]. A typical three degree of 

freedom lateral dynamics model was used with the addition of a quasi-static pitch degree 

of freedom. The roll axis of sprung mass was a function of body roll. This set of tests 

helped Nalecz to understand that the assumption of a fixed roll axis could not be justified 

for certain types of suspensions such as double wishbone and MacPherson strut.  

In 1992 another model with eight degrees of freedom, consisted of a three degree of 

freedom lateral dynamics model coupled to a five degree of freedom planar rollover 

model, was developed [Nalecz, 1992]. The lateral dynamics model was derived in the 

same manner as Segel’s original model. The rollover model consisted of sprung and 

unsprung masses connected through the various elements of the suspension system. The 

effects of aerodynamic forces and moments and lateral and longitudinal weight transfer 

were also included in this model. 

In 1996 Michael R. Petersen and John M. Starkey described a relatively detailed straight-

line acceleration vehicle model for predicting vehicle performance [Petersen, 1996]. The 

model included longitudinal weight transfer effects, tire slip, aerodynamic drag, 

aerodynamic lift, transmission and driveline losses and rotational inertias of the wheels, 

engine and driveline components. The model used a manual transmission with fully 

clutch engagement in such a way that shifts were simulated by disengaging the clutch 

completely, assuming that the engine torque is zero during the shift, changing the gear 

ratio, and then reapplying the full torque of the motor. This model enabled the authors to 

conduct sensitivity analyses in order to determine which design parameters most strongly 

affected vehicle performance. 

2.1.2.   Driver Steering Control Modeling 

The principal roots of driver modeling extend back to the early years of human-machine 

and aircraft pilot studies which helped to reveal various properties unique to, or 

characteristic of, the human as a controller of dynamical plants and certain vehicles. 

In 1963, Ornstein proposed a transfer function as a model of the human operator for 

pursuit-type manual tracking tasks and included coefficients associated with the effective 
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transport time delay and the anticipatory behavior of the human operator which was 

adaptive to changing plant dynamics and methods of visual presentation [Ornstein, 1963]. 

In effect, this was an early observation of the adaptive nature of a human when 

interacting with different or changing plant dynamics and the use of prediction by the 

human operator.  

In the late 1950s and early 1960s, Rashevsky addressed the mathematical biology of 

automobile driving wherein the basic model of the driver as a steering controller was 

treated in a purely geometric/kinematic manner [Rashevsky, 1959]. The proposed 

algorithm for steering an automobile of designated width and length along a straight road 

of specified width amounted to issuing instantaneous steering corrections to the vehicle 

whenever it approached to within a specified margin of either lane edge. Although no 

vehicle dynamics were considered within this mathematical treatment, driver anticipation 

and driver delay properties were included as key parameters. 

During 1970’s Weir and McRuer introduced useful and simple forms of the driver control 

models are based on the crossover model of the human operator [Weir, 1970]. This model 

applies to a wide variety of manual control tasks including driving a car or piloting an 

aircraft. In 1977 McRuer proposed a three-level servo-control model of driver steering 

behavior [McRuer, 1977]. The model describes driving as consisting of a hierarchy of 

navigation, guidance and control phases conducted simultaneously with visual search, 

recognition and monitoring operations. It also distinguishes between closed-loop 

(compensatory) control and open-loop (anticipatory) control. Compensatory steering is 

described as two feedback loops. Firstly, the lateral position is fed back and compared to 

the desired path, and if there is a deviation it will result in an error-correcting action, 

which is compared to current heading angle and, if needed, a steering wheel correction 

will be made. The perceived road curvature derived from visual input guides the pursuit 

control. Secondly, pursuit control is an open-loop feed-forward control element that 

permits the driver to follow the anticipated road curvature. An interesting third control is 

the precognitive control that in practice is a first phase of dual-mode control, that is, both 

open-loop and closed-loop controls. Precognitive control consists of previously learned 
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control actions, which are triggered by situation and vehicle motion but works as pure 

open-loop control. 

The following year in 1978, Donges developed a two-level driver steering control model 

(anticipatory and compensatory) and evaluated the performance of the driver-vehicle 

system [Donges, 1978]. 

In 1988 Charles MacAdam developed a driver-vehicle steering interaction models for 

dynamic analysis [MacAdam, 1988]. MacAdam’s model replicated the driver steering 

behavior during path-following and obstacle-avoidance maneuvers by tuning only two 

design parameters. 

In 1996 Cho Young studied the handling characteristics of the vehicle moving along a 

curved path using the two degree of freedom bicycle model [Young, 1996]. As a result, 

Young proposed the concept of look-ahead distance as a mean to calculate the previewed 

lateral error of the vehicle with respect to the center of the road.  

Later in 2000, Robin Sharp designed a mathematical driver model using a proportional 

correction of the yaw angle and the lateral displacement [Sharp, 2000]. The following 

year, Sharp [2001] developed a driver model using linear quadratic discrete optimization.  

In 2000 Liang-Kuang Chen used a Ford Driving Simulator (FDS) to acquire data from 

twelve human drivers with the aim of identifying the parameters of the driver model 

using the ARMAX algorithm [Chen, 2000].  

In 2006 Cole introduced a new representation of optimal linear car steering control where 

the standard lateral/yaw linear car model was transformed into discrete-time formation 

that constructed a quadratic cost function consisting of terms describing path and attitude 

errors with respect to the road path. Based on this cost function, steer angle control was 

minimized by the Linear Quadratic Regulator (LQR) control [Cole, 2006]. 

In 2007 Plöchl developed an analytical method to determine the parameters of the driver 

model using a nonlinear two wheel vehicle model which was tested on a simulation 

model of the whole vehicle [Plöchl, 2007].  

A year later in 2008, Vito Cerone developed a driver model that combined two tasks, 

namely automatic lane-keeping and driver steering, for either obstacle avoidance or lane-

change maneuvers [Cerone, 2008]. 
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2.1.3.   Vehicle Stability and Control 

In order to cope with the complicated operation conditions and to improve vehicle safety 

and comfort when the vehicle is at the physical limit of its performance, various active 

control systems such as Anti-lock Braking System (ABS), Four Wheel Steering (4WS), 

Electronic Stability Control (ESC) and semi-active/active suspensions were equipped in 

vehicles one after another since the late 1970s. 

In 1929 Anti-lock Braking System (ABS) was first developed for aircraft application by 

Gabriel Voisin, a French automobile and aircraft pioneer.  

In the 1950s, Dunlop's Maxaret system introduced an early ABS system with 30% 

improvement in braking performance in some aircraft models [Ellam, 1958]. The 

experiments on the Maxaret anti-lock brake in 1958 demonstrated that anti-lock brakes 

can be of great value to motorcycles, for which skidding is involved in a high proportion 

of accidents and stopping distances were reduced in most of the tests compared with 

locked wheel braking, particularly on slippery surfaces. 

In 1971 a computerized three-channel four-sensor all-wheel anti-skid system called "Sure 

Brake" was introduced for passenger cars by Chrysler and the Bendix Corporation 

[Douglas, 1971]. In the same year, General Motors (GM) introduced the “Trackmaster” 

rear-wheel-only ABS as an option on their rear-wheel drive Cadillac models [Oakley, 

1973]. In the same year, Nissan offered an EAL (Electro Anti-lock System) as an option 

on the Nissan President, which became Japan's first electronic antilock braking system 

[Nissan, 1971]. 

In 1986 Yuhara proposed a design methodology for an Adaptive Rear Wheel Steering 

Control System (ARWSCS) that maintains desirable vehicle response through computer 

control regardless of changes in vehicle dynamics [Matsushita, 1986]. The system 

controls the rear wheels based on a Self Tuning Controller (STC) in such a manner that 

the vehicle follows the prescribed reference model which presents the desired response to 

driver's input. In the same year, another passive four wheel steering (4WS) control 

scheme was introduced by Takiguchi based on gain-schedule control system in which the 

rear-to-front steer angle ratio varies as a function of vehicle speed [Takiguchi, 1986]. 

During very low speed driving, this control system steers the rear wheels in the opposite 
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direction to the front ones at the maximum steer angle ratio; whereas at high speed, it 

steers the rear wheels in the same direction as the front ones. 

In 1987 the earliest innovators of Electronic Stability Controllers (ESC), Mercedes-

Benz and BMW, introduced their first traction control systems. Traction control (TCL) 

works by applying individual wheel braking and throttle to keep traction while 

accelerating. The system has since evolved into Mitsubishi's modern Active Skid and 

Traction Control (ASTC) system which was developed to help the driver maintain the 

intended path through a corner using an onboard computer to monitor several vehicle 

operating parameters through various sensors. When too much throttle has been used 

while taking a curve, engine output and braking are automatically regulated to ensure the 

proper path through a curve and to provide the proper amount of traction under various 

road surface conditions. While conventional traction control systems at the time featured 

only a slip control function, Mitsubishi developed a traction control system which had a 

preventive (active) safety feature. This improved the course tracing performance by 

automatically adjusting the traction force, thereby restraining the development of 

excessive lateral acceleration, while turning. The TCL system's standard wheel slip 

control function improves traction on slippery surfaces or during cornering. In addition to 

the TCL's traction control feature, it also works together with Diamante's electronic 

controlled suspension and four-wheel steering that Mitsubishi had equipped to improve 

total handling and performance [Tanaka, 1991].  

In 1989 Kanai applied the design theory of model reference adaptive control to the four 

wheel steering system and proposed a design method for a system that would adaptively 

control yaw rate and lateral acceleration [Kanai, 1989]. 

During 1987 and 1992, Mercedes-Benz and Robert Bosch GmbH co-developed a lateral 

slippage control system called Electronic Stability Control (ESC) [Klinkner, 1995].  

In 1992 BMW, working with Robert Bosch GmbH and Continental Automotive Systems, 

developed a system to reduce engine torque to prevent loss of control and applied it to the 

entire 1992 BMW model line [Leffler, 1994]. 

In 1995 automobile manufacturers commercially introduced ESC systems. Mercedes-

Benz supplied by Bosch was the first to implement this with their W140 S-Class model. 
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That same year BMW and Volvo Cars began to offer ESC on some of their models 

while Toyota's own Vehicle Stability Control system appeared on the Crown Majesta. 

General Motors (GM) worked with Delphi Corporation and introduced its version of ESC 

called “StabiliTrak” in 1997 for select Cadillac models [Ghoneim, 2000]. StabiliTrak was 

made standard equipment on all GM SUVs and vans sold in the U.S. and Canada by 2007 

except for certain commercial and fleet vehicles.  

 Historical Background of Game Theory Study 2.2.

Game theory deals with the development of suitable concepts to describe and understand 

conflict situations. Figure 2.3 shows the significant progress in the study of game theory. 

 

Figure 2.3 History of game theory study 

It was first in 1713 that Waldegrave, inspired by a card game, provided the first known 

minimax mixed strategy solution to a two-person game. The economic aspect of game 

system (duopoly) was first discussed by Cournot in 1838 that questioned the equilibrium 

price in case of two producers who sell an identical product [Cournot, 1838]. Cournot’s 

works resulted in a restricted version of the non-cooperative Nash equilibrium. Later in 

1881, Edgeworth proposed the contract curve as a solution to cooperative trading 

between individuals [Edgeworth, 1881], followed by Pareto in 1896 that used the 
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formalism of ordinary utility theory to introduce the notion of efficient allocation [Pareto, 

1896].  

In 1913 Zermelo proposed the first theorem of game theory asserting that assuming that 

only an a-priori fixed number of moves is allowed the chess is a strictly determined game 

and the black, i.e. second starting player, has no strategy to always win the game 

[Zermelo, 1913]. 

In 1930 The bargaining problem in which the players decide to cooperate with each other 

to maximize their profits was considered by Zeuthen [1930].  

In early 1950s, Nash [1950, 1951, 1953] proved the existence of a strategic equilibrium - 

the Nash equilibrium - for non-cooperative games, and approached the cooperative games 

via their reduction to non-cooperative games. Nash equilibrium for a game system is 

defined as a self-enforcing strategy in which no player can gain by one-sidedly deviating 

from it. Later in 1956, Harsanyi showed that the Zeuthen’s solution is equivalent to 

Nash’s bargaining solution [Harsanyi, 1956]. 

In 1971 Lukes stated that for a game with a sufficiently small planning horizon, there is a 

unique linear feedback Nash equilibrium that can be computed by solving a set of so-

called Nash Riccati differential equations [Lukes, 1971]. Later in 1979, 

Papavassilopoulos and Cruz [1979] proved that the Nash equilibrium is unique, if it 

exists, provided that the set of strategy spaces is restricted to analytical functions of the 

current state and time, and discussed parametric conditions under which the coupled set 

of algebraic feedback Nash Riccati equations has a solution.  

Since  the 1980’s the analytical solutions of the Riccati equations have been studied for 

different aspects of differential game theory including, but not limited to, open-loop 

equilibrium, finite and infinite time horizon and stochastic system [Başar, 1974, 1995; 

Abou-Kandil, 1993; Engwerda, 1998]. 

 Introduction to Handling Stability 2.3.

Vehicle handling performance is becoming increasingly significant for today’s discerning 

customers. The handling behavior is referred to direction control and disturbance 
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stabilization issues. Handling is a measure of the directional response of a vehicle, thus 

playing an important role in vehicle dynamics. 

Cornering is defined as the ability of the vehicle to travel on a curved path. Cornering 

ability of a vehicle may be affected by different factors such as tire construction, tire 

tread, road surface, tire loading, suspension design, and alignment. As a vehicle turns, 

centrifugal force is generated pushing outward on the vehicle’s center of gravity. The 

interaction of centrifugal force and the tire traction force distributes the weight on both 

sides of the vehicle causing the vehicle roll about its roll axis. 

A vehicle may be considered as a control system upon which various inputs are imposed. 

During a turning maneuver, the steer angle induced by the driver can be considered as an 

input to the system, and the motion variables of the vehicle such as yaw velocity, lateral 

acceleration, and curvature, may be regarded as outputs. Yaw velocity gain which is 

defined by the proportion of vehicle yaw rate z  to the front wheel steering angle F  

measures the steering response of road vehicles. A car with infinite value of yaw velocity 

gain will turn violently in response to the slightest steering input or external disturbance. 

Consider a vehicle of mass m  and length  F Bl l  where 
Fl  is the horizontal distance 

between vehicle CG and front axle, and Bl  is the horizontal distance between vehicle CG 

and rear axle, . Yaw velocity gain is given by 

 2( ) 1

z x

F F B us x

v

l l k v






 
 (2.1) 

where this ratio represents a gain that is proportional to velocity on the case of neutral 

steer vehicle [Wong, 2001]. usk  is called the understeer gradient and is calculated as 

 

 
2

B B F F

us

F B F B

m l c l c
k

l l c c

 

 





 (2.2) 

where c  represents the cornering stiffness defined as the change in lateral force per unit 

slip angle change at a specified normal load in the linear range of the tire.

 

 

Based on this definition, the steady-state response of the vehicle can be classified in three 

categories: neutral steer, understeer, and oversteer, as shown in Figure 2.4.  
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Figure 2.4 Yaw velocity gain as a function of velocity 

Neutral steering happens when 0usk  , or in the other words, 

z x

F F B

v

l l







 

which means that the yaw velocity gain is proportional to the velocity of the vehicle with 

a slope of  1 F Bl l . On a constant-radius turn, no change in the steer angle will be 

required as the speed is varied. As shown in Figure 2.5, the center line of a neutral 

steering vehicle is tangent to the instantaneous radius of curvature of vehicle trajectory. 

When 0usk  , the denominator of (2.2) is smaller than 1, and z F   is not linearly 

proportional to the vehicle velocity, the vehicle is called to oversteer. An oversteering 

vehicle large slip angles are the rear tires. Therefore, the rear of the vehicle appears to 

slide out from under the driver. 

 

Understeer 

Oversteer 

Neutral Steer 

Critical  
Speed 

Characteristic 
Speed 

Yaw  
velocity  

gain 
 

Longitudinal 
Velocity 

z

F




 
 
 

xv

1

F Bl l

0usk 

0usk 

0usk 



08 Background   

 

 

R 

oversteer 

understeer 

neutral steer 
intended   

     trajectory 

 

 

 

 

 

Figure 2.5 Vehicle handling characteristics 

An understeering vehicle needs relatively large slip angles at the front tires, requiring 

excessive steering input to track a given trajectory. Understeering occurs when  0usk  , 

the denominator of (2.2) is larger than one. Just as an oversteering vehicle is perceived as 

twitchy, an understeering vehicle is sluggish.  

Although neutral steering characteristics are desired, passenger vehicles generally exhibit 

varying degrees of understeer. This intrinsic degree of understeer is placed to minimize 

the occurrence of transient situations such as heavy acceleration or obstacle avoidance 

when the vehicle can tend toward oversteer. All other factors equal, a vehicle with a 

forward weight bias will exhibit understeer. Steering characteristics also can be 

influenced by factors other than weight bias. As an example, if the side force generated 

by a tire for a given slip angle is reduced, a larger slip angle will be necessary to develop 

the required moment balance which results in yaw to track the desired trajectory. 
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Chapter 3 

Vehicle and Driver Modeling 

With the advent of modern computational technologies, the use of vehicle modeling and 

simulation has become far more practical for more users. The low cost of computer 

simulation as compared with actual testing is a significant benefit to vehicle designers. 

Computer modeling allows the user to test out various dynamic maneuvers and driving 

scenarios without spending the time, money, and equipment to conduct testing on a track. 

These mathematical models can be used for evaluating various functional performance 

characteristics of the vehicle such as ride and handling. Furthermore, vehicle control 

strategies are often derived based on simple but comprehensive mathematical models that 

contain the key characteristics under investigation. Therefore, an appropriately derived 

vehicle model is an important factor in the development of vehicle control algorithms. 

Over the past century, there has been extensive growth in the use of dimensionless 

framework to study the governing dynamics of complex systems in various fields of 

research. The non-dimensional analysis simplifies the comparison of systems with 

different dimensions, as well as it reduces simulation time and cost. The basis for this 

analysis approach is the well-known Buckingham‟s  -theorem [Buckingham, 1914] 

which can be found in many standard textbooks on Fluid Mechanics. The Buckingham‟s 

  theorem states that: 

“If there are n variables in a problem and these variables contain m primary dimensions, 

the equation relating all the variables will have (n-m) dimensionless groups.” 

The seven primary dimensions are recognized as: mass [ M ], length [ L ], time [ T ], 

amount of a substance, electric current, temperature, and luminous intensity. Only the 

first three dimensions whose abbreviations are shown in the brackets will be used in this 
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study. On the other hand, secondary or derived dimensions are made up of primary 

dimensions, such as velocity which is distance (length) per unit of time [
1LT 
]. 

The dimensionless groups, i.e., π groups, must be independent of each other and no one 

group should be formed by multiplying together powers of other groups. In this 

framework, there are 2 conditions: 

1. each fundamental dimensions must appear in at least one of the m variables; 

2. it must not be possible to form a dimensionless group from one of the variables 

within a recurring set.  

A recurring set is a group of variables forming a dimensionless group. 

In this chapter, the dimensionless modeling of vehicle handling dynamics with different 

complexities, assumptions, and limitations and driver steering control with preview time 

are developed. These models are either used for vehicle dynamics evaluation or to derive 

control algorithms. 

 Coordinate System 3.1.

Multibody vehicle dynamics models are typically generated using right-handed 

coordinate systems. For vehicle dynamics modeling based on ISO 8855, the standard 

coordinate system has forward X-axis, upward Z-axis, and Y-axis pointing to the left-

hand side of the vehicle; vertical tire forces are always positive; and wheel spin rates are 

positive for forward vehicle speeds. 

All of the coordinate systems and axes are built from four reference directions: (i) 

vertical, as defined by the direction of the gravity vector, (ii) the X axis of the vehicle 

reference frame, (iii) the Y (spin) axis of a wheel of interest, and (iv) the direction normal 

to the road at the center of tire contact. Figure 3.1 shows the three axis systems associated 

with the entire vehicle. Figure 3.2 shows the tire and wheel axis systems. The 

mathematical definitions of five axis systems are described below. 
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Figure 3.1 Vehicle body coordinate system 

 Earth-fixed axis system  E E E EO ;X ,Y ,Z : right-handed orthogonal axis system 

fixed in the inertial reference. The EZ  axis is parallel to the gravity vector with 

upward EZ  orientation. 

 Intermediate axis system  O;X,Y,Z : right-handed orthogonal axis system whose 

Z  axis is parallel to EZ , and whose Y  axis is perpendicular to both EZ  and VX . 

This axis system can be obtained by rotating the Earth-fixed axis system about the 

EZ  axis by the vehicle yaw angle. 

 Vehicle axis system  V V V VO ;X ,Y ,Z : right-handed orthogonal axis system fixed 

in the vehicle reference frame. The VX  axis is primarily horizontal in the vehicle 

plane of symmetry and points forward. The VZ  axis is vertical and the VY  axis is 

lateral. The directions should coincide with the earth-fixed axis system when the 

vehicle is upright and aligned with the VX  axis parallel to the EX  axis. 
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Figure 3.2 Tire and Wheel Coordinate System 

 Road axis system  R R R RO ;X ,Y ,Z : right-handed orthogonal axis system whose 

RZ  axis is normal to the road, at the center of tire contact, and whose RX  axis is 

perpendicular to the wheel spin axis WY . 

 Wheel axis system  W W W WO ;X ,Y ,Z : right-handed orthogonal axis system whose 

WY  axis is parallel with the spin axis of the wheel and whose WX  axis is 

perpendicular to RZ . 

The following sections are devoted to mathematical derivation of various models that will 

be used throughout this research.   

 Vehicle Dynamics 3.2.

In order to study the handling and roll dynamic responses of the vehicle, a nonlinear 

model of a vehicle is derived which includes longitudinal and lateral translational 

motions, and roll and yaw motions with rotational dynamics of each of the four wheels. 

To analyze vehicle dynamics in a non-dimensional manner, the procedure of the 

Buckingham‟s   Theorem is applied such that the vehicle parameters are collected in 

RX

WX RY
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WZ
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groupings of dimensionless groups, or   groups, that can be equivalently obtained by 

normalizing the primary dimensions of mass, length, and time respectively by scaling 

factors dependent directly on the vehicle‟s total mass M , front to rear axle length L , and 

longitudinal speed xV . In this study, the following convention is followed: 

o lower-case, normal, italic (e.g. p ): dimensionless ( ) parameter 

o upper-case, normal, italic (e.g. P ):  dimensional (actual) parameter 

The resulting   parameters are included in Appendix A. 

3.2.1.   Body Dynamics 

Figure 3.3 depicts the sprung and unsprung body coordinates of a four-wheel vehicle. 

The unsprung mass is connected to the sprung mass with four suspension linkage shown 

by hashed lines. The body coordinates U  and S  are intermediate axis systems for the 

unsprung and sprung masses, respectively. 

 
Figure 3.3 Vehicle schematics 

The presented vehicle handling model has five degrees of freedom: longitudinal velocity 

xv , lateral velocity yv , roll angle x , pitch angle y , and yaw angle z . The nonlinear 

vehicle model is derived by writing the translational and rotational equations in the 

vehicle fixed coordinate frame. 

Assuming that the sprung mass can only rotate along the X and Y axes of the unsprung 

coordinates, the sprung body will perform the pitch and roll motion. It is also assumed 

S

usr

U
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that the unsprung mass performs yaw motion and there is no relative yaw angle between 

the sprung and unsprung bodies. 

The rotation matrices of roll and pitch motions of the sprung coordinate S  along the X 

and Y axes of the unsprung coordinate U  are given by 

1 0 0 cos 0 sin

0 cos sin , 0 1 0

0 sin cos sin 0 cos

y y

S S

U x x x U y

x x y y

R R

 

 

   

  
       
     

 
(3.1) 

The location of the sprung coordinate relative to the unsprung coordinate is given by 

0

. . 0S U U

U us S y S xr R R

h

 
 
 
  

 
(3.2)

 

The angular velocities and accelerations are obtained as 

0

0 ,

0

x

U S U

u U s u y

z



   



  
       
     

 
(3.3)
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z



     



  
        
     

 
(3.4)

 

The translational velocities and accelerations are  

,

0 0

x x

U U U U

u y u y u u

v v

V v a v V

   
      
   
      

 
(3.5) 

U U S S

s u U s U usV V r  
 

(3.6) 

U U S S S S S

s u U s U s U us U s U usa a r r       
 

(3.7) 

The sprung-mass moment of inertia matrix is also transformed to the unsprung body 

coordinate system as 

.( . . ).U S S S S T S T

S s U y U x s U x U yI R R I R R
 

(3.8) 

Using equations (3.1)-(3.3), the equations of motion can be written as 
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where 
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(3.10) 

 

Figure 3.4 Vehicle’s lower-body schematics 

The final equations are in form of 

( ) ( , )q q q q  Α Β
 

(3.11) 

where the generalized forces are given by 

 
2

cos sinx x y

MU
f f

L
      

(3.12) 

 
2

sin cosy x y

MU
f f

L
      

(3.13) 

  2 sin cos cos sinx x x x x s x y x yMU k c gh          
 

(3.14) 
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  2 cos sin sin cosy y y y y s x y x yMU k c gh          
 

(3.15) 

 2 sin cos cos sinz x y x yMU l f l f w f w f               
(3.16) 

where 

     ' , ' , 0 0
T T T

F F B B R R L L F Fl l l l l w w w w w         
 

(3.17) 

The vehicle states and parameters are defined in Appendix A. The complete sets of 

equations are reported in Appendix B.  

For a simple case in which there is no pitch motion, i.e., : 0yt   , and relatively small 

roll motion, i.e., : , 1x xt   , the simplified equations of motion are given by 

   2 cos sinx y z s s x z x z x ym v v m h f f             
(3.18) 

   2 sin cosy x z s s x z x x ym v v m h f f            
(3.19) 
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(3.20) 
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   

         
 

(3.21) 

where l  and w  are defined in (3.17). 

The equations (3.18)-(3.21) form the vehicle body dynamics that will be used to derive 

and evaluate control algorithms. 

3.2.2.   Wheel Dynamics 

In addition to the rigid body vehicle degrees of freedom, one rotational degree of freedom 

was considered for each wheel. Wheel dynamics will be of importance when studying the 

brake dynamics of the vehicle. Figure 3.5 shows a free body diagram of a wheel.  

The equation of motion for each wheel is given by: 

w w x w wDr wBri f r     
 

(3.22) 

where wi  is the wheel y-axis moment of inertia, xf  is the longitudinal tire force applied 

on each wheel, w  is the wheel rotational velocity, wr  is the effective radius of the wheel, 
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and ,wDr wBr   represent the non-dimensional applied driving and braking moments on 

each wheel, respectively. 

 

Figure 3.5 Rotational degree of freedom of wheels 

3.2.3.   Tire Dynamics 

For vehicle dynamics modeling, proper representation of tire dynamics is essential since 

the functional characteristics of the vehicle (e.g. handling, ride) are significantly 

influenced by the tire forces. As shown in Equations (3.17)-(3.21), tire forces and 

moments are the dominant factors in calculating the generalized forces and play 

important roles in wheel dynamics. Therefore, analysis of tire dynamics is the basis for 

the analysis of vehicle dynamics. 

Tire models can be categorized as physical, empirical, or a combination of the two, i.e., 

semi-empirical. Physical tire models focus on representing the interaction of the tire 

compound and structure mathematically. Empirical tire models curve-fit test data of 

existing tires to predict how the tire will respond. Semi-empirical models combine the 

attributes of a physical and empirical model. Most tire models that are currently available 

are only sufficient for modeling steady-state conditions. Many of these models lack the 

capabilities of modeling transient handling maneuvers, especially the response of tire 

friction forces. The steady-state tire models often have computational benefits, but lack 

the capability to model evasive or high-speed maneuvers, where the tire transient forces 

and moments become dominant. 
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Tire longitudinal force 
xf  and lateral force yf  depend on the vertical load on the tire 

such that they increase with increasing vertical tire force in pure slip conditions. The 

significance of tire force estimation in the modeling vehicle dynamics necessitates an 

accurate approximation of the vertical load on each tire. Figure 3.6 shows the vertical 

forces acting on a vehicle.  

 

Figure 3.6 Vertical force schematics 

Total tire vertical load on each wheel is the summation of static and dynamic weight 

distributions and are given by: 
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(3.23) 

The first term in Equation (3.23) is the component of static weight due to vehicle center 

of gravity location; the second and third terms are the effects of longitudinal and lateral 

acceleration, respectively; and the fourth term comes from the suspension dynamics.  

Calculation of other significant tire forces, i.e., lateral and longitudinal, depends on 

adequate knowledge of tire properties and contact patch properties. There are some semi-

empirical and/or simplified models that provide tire forces as functions of slip angle, 
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longitudinal slip, and normal load. Before the tire models are introduced, important 

variables such as longitudinal slip and sideslip angle are defined. 

The longitudinal slip

 

  is defined as the difference between the tire tangential speed and 

the speed of the axle relative to the road, and is given by 

 
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(3.24) 

where the tire velocity for each wheel is approximated as 
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(3.25) 

The lateral tire slip angle   is defined as the angular difference between the treads in the 

contact patch and the direction the wheel is turned, and for each tire in steady-state 

condition is given by 
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(3.26) 

 

Figure 3.7 Tire slip angle 

To include the tire relaxation characteristics, a first order lag model is added to equation 

(3.26); hence, the new slip angle definition reads 
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 , 0w x ssv    
 

(3.27) 

where   is the tire relaxation coefficient and controls the transient response of tire 

sideslip angle. 

3.2.3.1 Pacejka Tire Model 

The Magic Formula is a semi-empirical tire model used to calculate the steady state tire 

forces and moment characteristics for use in vehicle dynamics studies [Pacejka, 2006]. 

By studying the tire force characteristic curves from physical tests, it was observed that 

the curves could be closely approximated by mathematical functions. 

The forces (either in the longitudinal or the lateral direction) are characterized by an 

important number of coefficients. In pure longitudinal slip condition, the magic formula 

for the tire force is, 

     0 , .sin .arctan . ' . . ' arctan . 'z Vf f x f D C B x E B x B x S     
   

(3.28) 

where 

' Hx x S   : Slip ratio 

1CC P  : Shape factor 

. zD f  
: Peak factor 
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: Friction coefficient 
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1.K zK P f
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: Normalized change in vertical load 

znf  
: Normalized vertical load 
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For a set of Pacejka parameters shown in Appendix C, the normalized longitudinal and 

lateral tire forces in pure slip condition are plotted in Figure 3.8. 

Magic Formula is later extended for combined-slip situations when the pure slip 

conditions are not satisfied, and the form of equation reads 

0. Vf G f S 
 

(3.29) 

where 

0f  : Force at pure condition as in Equation (3.28) 

G  : weighing function 

VS   : vertical shift induced by the other parameters 

More details on combined-slip theory are provided later in this chapter. 

 

 

 

Figure 3.8 Tire forces in pure conditions based on Magic Formula tire model 
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3.2.3.2 LuGre Tire Model for Longitudinal Force 

The LuGre model is a physics-based dynamic friction model which provides an 

interpretation of the friction forces as the result of elastic deformation of the surfaces in 

contact. 

 

Figure 3.9 LuGre model of tire longitudinal force 

The dynamic nature of the model allows the study of the transient behavior of the tire. 

The LuGre model also includes the Stribeck effect which accounts for the variations from 

the static friction, when there is no slip, to the sliding friction. 

The equations for the LuGre model [Canudas de Wit, 1995] are: 

 0 1 2x n n r zf v f      
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(3.31) 

and 
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(3.32) 

The above parameters are described as 

xf  : Normalized longitudinal friction force 

n  
: Normalized longitudinal friction 

zf  
: Normal force 

0  : Normalized rubber longitudinal lumped stiffness 

rv

xf

zf
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1  
: Normalized rubber longitudinal lumped damping 

2  
: Normalized viscous relative damping 

c  
: Normalized Coulomb friction 

s  
: Normalized static friction 

sv
 

: Stribeck relative velocity 

rv  
: Relative velocity between surfaces 

  : Constant used to capture the steady-state slip characteristics 

  : Parameter related to normal force distribution 

w  
: Angular velocity of the tire 

3.2.3.3 Combined-slip Theory 

Tire's tread can only generate as much horizontal force as the maximum tire-road friction 

force. Hence, the sum of longitudinal and lateral forces acting on each tire is limited to 

maximum friction force between the tire treads and the road. This effect can be illustrated 

in Figure 3.10 which is known as “Circle of Friction”. 

 

Figure 3.10 Circle of Friction 
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The longitudinal and lateral slips are combined to get total theoretical (combined) slip as 

2 2

t x ys s s 
 

(3.33) 

where the relationship between these theoretical slip quantities and the practical slip 

quantities are 

 tan
,

1 1
x ys s



 
  

   
(3.34) 

The theoretical slips are then normalized by peak slip values, 
,maxxs  and 

,maxys . Peak slip 

values are those that cause peak longitudinal and lateral tire forces, xf  and yf . The total 

normalized slip is 

2 2

tn xn yns s s 
 

(3.35) 

where 
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(3.36) 

The equivalent longitudinal and lateral slips are calculated from the normalized total 

theoretical slip with the friction ratio 0  , 
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(3.37) 

Using the equivalent longitudinal and lateral slips, the so-called „base-curves‟ are 

obtained from the tire model as 0 0,x yf f . The base-curves are then modified to account for 

the anisotropic properties of the tire-road friction. 
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(3.38) 

where 
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(3.39) 

The longitudinal and lateral tire forces are then calculated by 
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(3.40) 

 

Figure 3.11 Combined-slip tire forces 

For the tire parameters listed in Appendix C, the friction circle is plotted in Figure 3.12. 

 

Figure 3.12 Actual circle of friction based on combined-slip theory 
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3.2.3.4 Linear Tire Models 

Vehicle control systems are often based on a simple linear model that captures the 

essential characteristics that are required for the purpose of simulation and/or control 

task. As shown in Figure 3.13, tire forces exhibit a linear behavior for a limited range of 

slip. If the vehicle performs within the linear range of longitudinal slip (or sideslip angle), 

the tire longitudinal (or lateral) force can be represented by a linear function of 

longitudinal slip (or sideslip angle) as 

,x yf c f c   
 

(3.41) 

where longitudinal slip of the tire

 

  was defined in (3.24), and slip angle 
ss  is 

simplified to its linear form (3.26) as 

,1tan
w y

linear

x

v

v
    

   
 

 
(3.42) 

where   is the wheel steering angle, ,w yv  is the wheel lateral velocity, and xv  is the 

vehicle longitudinal speed.  

 

Figure 3.13 Linear tire forces 

3.2.4 Simplified Linear Model of 4-Wheel Road Vehicles 

Vehicle handling is becoming increasingly important for today‟s customers. The handling 

stability can be improved through various chassis control systems most of which use a 

linear vehicle model to estimate vehicle performance and driver‟s intention. Two 

common models include yaw, lateral velocity, and roll motions of vehicle center of 

gravity. These are explained in the following sections. 
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3.2.4.1 Linear 2-DOF Bicycle Model 

Consider a simplified linear single-track bicycle model shown in Figure 3.14 which 

captures the essential vehicle steering dynamics including yaw and lateral motions. The 

tire lateral forces are assumed to be linear functions of tire slip angles. 

 

Figure 3.14 Vehicle 2-DOF bicycle model 

The vehicle motion is represented by global lateral position and velocity of the vehicle 

center of mass as well as the yaw angle and yaw rate as shown in Figure 3.14. The state 

variable vector becomes 
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For the sake of simplicity, the mathematical model is linearized around the operating 

conditions * *

4 10 , 0Fx   . The equations of motion for a constant forward speed xv  are 

given by 
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The linear model (3.44) considers only two degrees of motion, namely, lateral and yaw. 

Therefore, this simple model can be only applied to generate later control strategies for 

lateral and yaw stability while the other parameters of vehicle dynamics are negligible. 

When the effects of other dynamics parameters are large enough, adequate degrees of 

freedom should be added to take those parameters into account.  

3.2.4.2 Linear 3-DOF Model 

In some cases the effect of load transfer due to roll cannot be neglected; therefore, roll 

motion is added to the linear bicycle model. The schematic front view of a simple vehicle 

model with three degrees of freedom, i.e., lateral velocity, yaw rate, and roll angle, is 

shown in Figure 3.15. The state variable vector becomes 

 
T

z x xx y     (3.45) 

 

Figure 3.15 Linear 3-DOF Vehicle Model 

The equations of motion for a linear 3-DOF vehicle model can be formulated as 
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where 
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where xk  is total roll stiffness, xc  is total roll damping, and g  is the gravity constant. 

The presented model includes three degrees of freedom, namely, lateral, yaw, and roll. 

While the linear bicycle model is good enough for yaw stabilization, linear formulation of 

this model as given by (3.46) makes it quite simple for designing control strategies that 

stabilize not only yaw and lateral motions, but also roll motion of the vehicle at the same 

time. 

 Control Systems 3.3.

Various types of active control systems have been developed in the past to enhance the 

stability and handling characteristics of the vehicle. Active front steering, active rear 

steering, four-wheel steering, active suspension, and antilock braking system are some of 

the options widely explored. In this research, the system of wheel speed control, i.e., 

cruise/brake, are developed and implemented in the final design.  

3.3.1.   Cruise Control 

The cruise control system offers three major advantages: maintained vehicle speed, 

improved fuel economy by maintaining a steady accelerator pressure, and increased 

driver comfort on long distance trips [Givens, 1975]. A modern cruise control system will 

maintain a near constant vehicle speed ,x desv  and help those heavy-footed drivers from 

exceeding the legal speed limit.  
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Ignoring the engine model and throttle dynamics, a simple PID cruise control can be 

introduced for a rear-axle drive vehicle as 

   ,
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(3.47) 

where wDr  is the wheel driving torque as shown in Figure 3.5, and the PID operator 

PID  is defined as 

0

t

PID pcc icc dcc

d
k k dt k

dt
    

(3.48) 

Finally, the cruise control system (3.47) is modified as shown in Figure 3.16, 

 

Figure 3.16 Cruise control system 

to account for the driving torque threshold of the engine as well as the wheel slip control. 

In this research, a simple version of Active Slip Control (ASC) is applied in which the 

wheel driving torques are weighted as  
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(3.49) 

where avgv  for a rear-axle drive vehicles is the average of the rear wheel rotational speeds 

as 
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(3.50) 

As discussed in Section 3.2.4, a key assumption in developing linear vehicle models is 

constant vehicle speed. Since the linear vehicle models form the main structure of the 
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control strategies in this research, later in the next chapter the proposed cruise control 

(3.47)-(3.49) will be applied to maintain the vehicle speed at a desired level. 

3.3.2.   Differential Braking 

Differential Braking controls the yaw motion of the vehicle by distributing the wheel 

braking torques. The proposed Differential Braking system is composed of a series of 

control blocks including Active Slip Control (ASC), Differential Brake Distributor 

(DBD), and Anti-lock Braking System (ABS). It interprets the desired corrective yaw 

moment zc  as the desired wheel braking torques *

wBr  such that excessive wheel slip are 

controlled using ASC. The desired wheel braking torques are then fed to ABS which 

controls the tire slip ratio through a bang-bang control strategy.  The schematic view of 

the proposed Differential Braking system is shown in Figure 3.17. 

 

Figure 3.17 Differential Braking System 

As a part of differential braking system, an Active Slip Control (ASC) for braking system 

is developed such that the maximum braking force at each wheel is estimated as 
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(3.51) 

based on the current tire-road friction   and the tires vertical loads zf , longitudinal slip 

 , and side slip angle  . The static map of the Active Slip Control (ASC) strategy 
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(3.51) for the braking system is shown in Figure 3.18 in which the normalized maximum 

braking force ,maxx zf f  is plotted against longitudinal slip   and side slip angle  . 

 

Figure 3.18 ASC static map 

Differential Brake Distributor (DBD) consists of a microprocessor that computes the 

braking/driving torques at each wheel based on the desired total braking/driving torques, i.e., 

,decel accel  , from the deceleration/acceleration pedals and the maximum allowed longitudinal 

force at each wheel ,maxxf  as well as the required corrective yaw moment zc  from the 

Vehicle Stability Control (VSC) system. The system minimizes the squared sum of wheel 

longitudinal forces xf  constrained to the following set of equalities and inequalities: 
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(3.52) 

Solving (3.52) for the wheel longitudinal forces xf , the wheel braking torques are given by 
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   *

, , , ,maxmax , , , , ,wBr i w x i wDr i wBrr f i FR FL BR BL    
 

(3.53) 

where the wheel driving torques ,wDr i  are the output of the cruise control system as 

described in Section 3.3.1, and the maximum allowed braking torque at wheels is given by 

,maxwBr . 

After the Differential Brake Distributor system calculates the wheel braking torques *

,wBr i  

the outputs are fed into the Anti-lock Braking Systems. The Anti-lock Braking System 

(ABS) is a closed-loop control device that prevents wheel lock-up during braking, and as 

a result vehicle stability and steering is maintained [SAE, 1992]. Wheel lock-up is an 

unwanted situation due to a high braking force. In ABS-equipped vehicles ECU 

recognizes the wheel lock-up as a sharp increase in wheel deceleration, ABS functions to 

limit the braking pressure to prevent wheel lock-up. The Braking force is reapplied until 

the onset of wheel lock-up is again detected at which point it again reduces the brake 

force in a closed loop process. The cyclic application and reduction of braking force 

ensures that the brakes operate near their most efficient point and maintains steering 

control [Burton, 2004]. When the driver applies the brake, brake slip increases and at the 

point of maximum friction between tire and road surface the limit between the stable and 

unstable range is reached. At this point any increase in brake pressure will not increase 

the stopping force; as further brake pressure is applied the friction reduces and the wheel 

tends towards skidding. 

Adopting from [Tanelli, 2007], the Antilock Braking System (ABS) actuator is 

considered as a Hydraulic Actuated Brake (HAB) in which the pressure exerted by the 

driver on the pedal is transmitted to the hydraulic system via a valve such that the 

increase and decrease pressure actions are physically limited by the actuator rate limit as 

wBr bk   with a positive rate limit bk . The switching logic that governs ABS is based on 

a bang–bang control strategy introduced by Tanelli [2007] and is given by 
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(3.54) 

Figure 3.19 shows a sample ABS operation limit cycle created by the bang–bang control 

(also known as the hysteresis control) strategy (3.54). 

 

Figure 3.19 ABS operation limit cycle using bang-bang control strategy 

Based on CarSim8 [Mechanical Simulation, 2009], the following values are implemented 

in the final design of the Anti-lock Braking System (ABS): 

 

    ABS parameters Table 3.1

Wheel / Parameters min  max  ,minB  ,maxB  
bk  

Front Wheels 0.09 0.15 25 40 10 

Rear Wheels 0.09 0.12 25 40 10 

 

The proposed Differential Braking system interprets the desired corrective yaw moment 

zc  as the wheel braking torques wBr  while controlling the wheel slip, and thus, 

preventing wheel lockup through implementation of an Antilock Braking System (ABS). 
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The application of the proposed differential braking system to generate a desired yaw 

moment will be illustrated in the next chapter. 

 Driver Models 3.4.

Driver steering control in regulation tasks have been investigated in numerous 

driver/vehicle related studies. The directional control models of interest here apply to 

straight or curving roadways, with approximately constant driver steering actions to stay 

in the center of the lane in the presence of a random (directional) yaw disturbance. 

First, a continuous-time preview driver model is reviewed based on [Weir, 1970]. This 

preview/predictor model provides a steer input that would minimize the error between a 

desired path and actual vehicle position using preview time 
pt  and human lag time dt . 

Adopted from Sharp [2001], the second model is a mathematical driver model using a 

proportional correction of the yaw angle and the lateral displacement. The final driver 

model is derived using quadratic discrete optimization of the vehicle lateral and yaw 

errors. 

3.4.1.   Continuous-Time Model 

Preview/predictor models attempt to provide a steer input that would minimize the error 

between a desired path and actual vehicle position. The schematics of the maneuver task 

geometry is shown in Figure 3.20 where the driver compare the vehicle position at some 

future distance with the target path corresponding to that point. The vehicle position 

ahead is estimated from the current position of the vehicle. The driver estimates the 

vehicle‟s future position at the preview point by assuming the vehicle continues to travel 

in a straight line at the current heading angle.  
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Figure 3.20 Schematic of maneuver task geometry 

The desired steering wheel angle *
SW  that minimizes the error between the target path 

and the actual vehicle position is given by 

 
 2

* 2
( ) . ( ) ( ) ( )st

sw d des p p

x p

r d
t t y t t y t t y t

v t
       (3.55) 

The driver reaction time which represents the driver‟s decision time plus the time 

required to transmit the actuation signal to his/her limbs is modeled as a first-order time 

lag dt . 

3.4.2.   Discrete-Time Model 

This linear vehicle model is translated to discrete-time difference equation as 

d d d d swx x   A B  (3.56) 

where ,d dx x
 represent the discrete state (3.43) for current and next time step, 

respectively, and ,d dA B  are obtained from the discrete bilinear transformation [Matsuno, 

1984] of the corresponding continuous-time matrices ,A B  in (3.44). 

To extend the vehicle model (3.56) by road preview, the concept of multi-point preview 

model of path-following steering control is adopted from Sharp [2001] which originates 

from linear discrete-time preview control of active suspension. The inputs to the model 

are effectively the discrete states of the vehicle dx
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the output of the model is the steering angle 
sw . Hence, the lateral profile of the road is 

considered in discrete sample value form with sample values from road observations 

being stored as states of the full vehicle/road system. 

 0 1 2, , , ,...,
T

T

d r r r rNz x y y y y
 (3.57) 

where 0ry  is the road reference position at one step before the current time, 
1ry  is the 

current reference position, and 2 ,...,r rNy y  are road reference positions at  1N   time 

steps ahead. 

 

Figure 3.21 Schematic of discrete maneuver task geometry 

As the system moves forward in time, a new road sample value is read in and the oldest 

stored value is discarded. All the other road sample values are shifted through the time 

step which may be represented mathematically by 

( 1)r r r r r Ny y y

 A B  (3.58) 
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Combining vehicle and road equations (3.56) and (3.58) yields the full dynamic system 
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 (3.59) 

If the reference sample 
riy  is a white-noise sample from a random sequence, the state-

preview system (3.59) is controllable if the state system (3.44) is controllable, i.e., if 

 ,A B  is controllable [Sharp, 2001]. 

For the discrete preview model (3.59), the driver steering control can be represented as 

linear feedback system in which the gains are derived using linear quadratic regulation 

(LQR) method. The driver control objective is to reduce the vehicle state error with 

respect to their corresponding desired values while keeping the steering angle bounded. 

Hence, if the driver priorities over the vehicle state errors are known, the objective 

function can be written as 

 2( ) ( )T

d d sw

t

J z z z z     Q  (3.60) 

Solving the LQR problem for the system (3.59) constrained to the objective function 

(3.52), the optimal steering angle is found in the following linear feedback form: 

 *

sw dz z  G  (3.61) 

This preview model will be discussed in more details in the next chapter. 

 Simulation and Results 3.5.

Based on the vehicle dynamics discussed in this chapter, a user-friendly MATLAB 

toolbox is developed that is called Vehicle System Simulator (or VSS). This toolbox uses 

the discrete-time ode-3 solver and is mainly based on Level-2 s-function design. The GUI 

part of the toolbox takes user inputs including vehicle parameters, event specifications, 

and plot configurations, while the Simulink model contains the mathematical model of 

the designated vehicle dynamics. The screenshots of Vehicle System Simulator are 

shown in Figure 3.22. 
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For the non-dimensional analysis, the vehicle speed carU , total mass 
carM , and front to 

rear axle length carL  are considered to form the three primary dimensions: time  [ ]T , 

mass [ ]M , and length [ ]L  as 

[ ] , [ ] , [ ] car
total car

car

L
M M L L T

U
  

 
(3.62) 

The evaluation vehicle is the CarSim‟s D-class sedan with parameters listed in Appendix 

C. The vehicle is moving at 20( )m s , i.e., 72( )km h , when it starts to constantly steer at 

30   steering wheel angle. The significant non-dimensional vehicle parameters are 

[ ] 1450 , [ ] 2.78 , [ ] 0.139

1 , 0.9448

0.3993, 0.6007, 0.1457

0.0541, 0.3741, 0.3741

0.3448, 0.0496, r 17.25
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(3.63) 

 

 

Figure 3.22 MATLAB GUI of Vehicle System Simulator 

In order to assess the viability of the control algorithms that are designed, a more realistic 

simulation environment is required. CarSim is a software package developed by 
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Mechanical Simulation Corporation that offers an accurate representation of real world 

road vehicles. To assure the accuracy of the vehicle simulation model the mathematical 

models are validated against CarSim8. 

3.4.1.   Nonlinear Model 

To evaluate our vehicle dynamics model, the evaluation scenario is done in both CarSim8 

and Vehicle System Simulator (VSS). The CarSim8 plot data are then plotted along with 

the VSS results. The simulation results are shown in Figure 3.23 and 3.24. 

 

 

 

(a) 

(b) 
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Figure 3.23 Evaluation results; vehicle sates: (a) longitudinal velocity, (b) lateral velocity,  
(c) longitudinal acceleration, (d) lateral acceleration, (e) yaw rate 

Figure 3.23 shows that the vehicle states throughout the simulation. Although the 

simulation results fairly match the CarSim results, slight deviations are expected due to 

inadequacy of degrees of freedom in the developed model, particularly in the suspension 

and powertrain systems. 

(c) 

(d) 

(e) 
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Figure 3.24 Evaluation results; tire forces: (a) vertical force on front axle wheels, (b) vertical 
force on rear axle wheels, (c) longitudinal force on front axle wheels, (d) longitudinal force 

on front axle wheels, (e) lateral force on front axle wheels, (f) lateral forces on rear axle 
wheels 

 

(f) 

(e) 

(d) 
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Figure 3.24 shows that the tire forces throughout the simulation. The simulation results 

fairly match the CarSim results for vertical and longitudinal forces, while the lateral force 

estimation slightly differs from what the CarSim gives out which is emerged from the 

simplicity assumption in the developed model, particularly in modeling the suspension 

system. 

3.4.2.   Linear Models 

The linear models (3.46) and (3.48) are simulated in the evaluation scenario. Once again, 

the CarSim‟s D-class sedan is moving at 20( )m s  when it starts to steer at 30   steering 

wheel angle. The simulation results including lateral velocity, yaw rate, and roll angle are 

plotted in Figure 3.21 along with the CarSim and Vehicle System Simulator results. 

For the vehicle parameters given in (3.63), the “non-dimensional” state matrix A  and the 

“non-dimensional” control matrix B  of the linear two and three degree-of-freedom 

models (3.48) become 

2 2

0 1 1 0 0

0 1.150 0 0.884 0.0333
,

0 0 0 1 0

0 0.3097 0 0.8 0.0356

DOF DOF 

   
    
    
   
   

   

A B
 

(3.64) 

 

3 3

1.880 0.811 1.0858 0.1621 0.0333

0.3097 0.8 0 0 0.0356
,

0 0 0 1 0

3.9782 0.401 5.916 0.883 0

DOF DOF 

    
   
    
   
   

     

A B
 

(3.65) 

Figure 3.25 shows that the vehicle lateral velocity, yaw rate, and roll angle throughout the 

simulation. It is concluded that in spite of simplification that were made to obtain these 

models, their estimation of yaw rate and roll angle are acceptable compared to the 

CarSim and the developed nonlinear model of VSS. It is possible to improve the results 

by tuning the vehicle parameter in the linear models. 
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Figure 3.25 Evaluation results; vehicle states: (a) lateral velocity, (b) yaw rate, (c) roll angle 

 

(a) 

(b) 

(c) 
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3.4.3.   Non-dimensional Analysis 

The effect of steering angle on vehicle dynamics in non-dimensional space is studied. 

The primary dimensions are vehicle speed, total mass, and front to rear axle length, and 

other vehicle parameters are non-dimensionalized accordingly. Regardless of vehicle 

speed, mass, and front to rear axle length, Figure 3.26 depicts the effect of wheel steering 

angle on vehicle states throughout the simulation. The results are in non-dimensional 

forms and can be scale up or down to any vehicle of the same proportions as the test 

vehicle (3.53). 

 

 

 

(a) 

(b) 
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Figure 3.26 Effect of wheel steering angle (in degrees) on vehicle states: (a) roll angle,  
(b) lateral velocity, (c) yaw rate, (d) longitudinal acceleration, (e) lateral acceleration 

(c) 

(d) 

(e) 
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Chapter 4 

Vehicle Control Design Based On Game Theory 

Stability in a vehicle system is determined by the total performance of all dynamics 

subsystems. Among different subsystems, vehicle driver and vehicle stability control 

systems share the most significant responsibility in providing stability in severe handling 

maneuvers. A rational driver tends to keep the vehicle stable throughout the maneuver; 

however, due to unexpected or uncontrolled events, vehicle stability is jeopardized and 

the driver is unable to control the vehicle. It is in these scenarios that vehicle stability 

control (VSC) system plays a crucial role in stabilizing the vehicle. 

Vehicle active safety systems are designed to improve driving safety while the driver is 

still in control of the vehicle. The advancement of smart systems in vehicles that can 

augment the driver input, in order to improve the vehicle handling and dynamics, 

necessitates a better understanding of how the vehicle and driver inputs can co-exist in a 

manner that are complementary, not contradictory. The literature concerned with the 

interaction modeling of the vehicle driver and control system are classified in two 

categories.  

In the first and the most popular category, the vehicle driver and the vehicle stability 

controller are two independent subsystems of the vehicle in which the performance and 

strategy of each system does not significantly affect the performance and strategy of the 

other system. For example, most existing driver models ignore the fact that human 

drivers respond differently as the vehicle control system is changed [Chen, 2000; Sharp, 

2001; Cole, 2006], or most vehicle control literature has reported control designs that 

assume a predetermined steering input, and thus, ignoring the driver‟s transient response 

to the current event [Anwar, 2005; Esmailzadeh, 2003; Ghoneim, 2000; Tamaddoni, 

2008; Zheng, 2006].  
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The second category includes researches that consider vehicle stability as collaboration 

between driver and the vehicle stability control system. Wenzel showed that considering 

a joint combination of a driver model and active front steering control may result in 

improved vehicle stability and performance [Wenzel, 2005]. Regardless of the 

complexity, cooperative control of the driver‟s input and vehicle control system control 

actions trivially results in globally optimal solution to vehicle stability problems. 

In this research, the interaction modeling of driver steering control and vehicle yaw 

control is studied in a manner that both the driver and the vehicle stability controller 

determine their control action based on the current vehicle states, maneuver constraints, 

and the other system‟s performance by observing the history of past control performance. 

This observation requires that all subsystems are aware of or able to estimate the 

decision-making structure of each other.  

Human learning takes place in the central nervous system in a wide variety of mental and 

physical tasks, one of which is to “learn” how his/her own vehicle with its factory built-in 

vehicle stability control system performs in various day-to-day maneuvers. “Learning” 

means that the driver is able to create a model of the dominating vehicle dynamics and 

the significant decision-making structure of the vehicle controller in his/her own 

unconscious mind. 

For vehicle directional control, the steering wheel is the primary means for control 

actuation. Many driver models try to approximate the real driver‟s road tracking 

performance, assuming certain driver inputs and outputs. If the controller is aware of the 

driver‟s intentions, the driver mathematical model can be traced back iteratively to 

determine its significant factors. Accordingly, establishing a technique for detecting the 

driver's intentions or for recognizing driver model has been a challenging problem for 

vehicle system researchers. Kuge [2000] developed a driver behavior recognition method 

based on hidden Markov models to characterize and detect driving maneuvers and place 

it in the framework of a cognitive model of human behavior. In another research by 

McCall and his colleagues [McCall, 2007], driver‟s behavior and the lane change intent is 

analyzed using robust sparse Bayesian learning methodology and it is shown that by 

incorporating a state-of-the-art Sparse Bayesian Learning classifier with well-motivated 
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evaluation metrics, the likelihood of driver intent inference system algorithmic failure 

reduces. 

In this research, a novel optimal driver-controller interaction strategy is developed based 

on linear quadratic Game Theory. The model includes the driver‟s directional control 

through introducing steering wheel angle and the vehicle direct yaw control (DYC) 

system through imposing a corrective yaw moment using differential braking of the four 

wheels. As a result, it is shown that globally optimal performance is obtained in the case 

that the effects of driver‟s decision making on the controller and vice versa are taken into 

account and the interactions are correctly modeled. 

Throughout this research, it is assumed that the driver steering control can be modeled as 

a linear feedback control of the vehicle states, and the vehicle stability controller is 

formed by a direct yaw control system that provides handling stability and comfort as 

described in Section 2.4. For evaluation purposes, the D-class sedan vehicle described in 

Section 3.4 is used within the interaction models introduced later in this chapter. The test 

maneuver is a single-lane change of four meters, i.e. 4desiredy m . The driver and 

controller feedback gains on significant states and control actions are listed in Table 4.1. 

The listed gains, later, form the control priorities ,Q R  in this chapter. 

 

 Feedback gains on significant vehicle states and control actions Table 4.1

 

Lateral 

position 

error 

Lateral 

velocity 

error 

Yaw angle 

error 

Yaw rate 

error 

Steering 

angle 

Corrective 

yaw 

moment 

Driver 10 0.01 0.1 0.01 1 0 

DYC 0 0.1 0 1 10 1e-7 

 

In Section 4.1, the driver-controller interactions are modeled in continuous time using 

differential linear quadratic Game Theory. The preview-time characteristic of human 

driver is later taken into account in the discrete-time preview model in Section 4.2. 

Parameter sensitivity analysis and robust interaction modeling is discussed in details in 

Sections 4.3 and 4.4. 



06 Vehicle Control Design Based On Game Theory   

 

 

4.1. Continuous-Time Interaction Model 

This section deals with continuous time interaction modeling of the driver steering and 

the vehicle direct yaw control as a dynamic game between the driver and the controller. 

In this game, the driver (player/agent 1) and the vehicle controller (player/agent 2) play 

cooperatively through their control actions, namely, the steering wheel angle sw  and the 

corrective yaw moment zcM . To model such interactions, the linear bicycle model (3.44) 

is extended to introduce the corrective yaw moment as 

1 2

1 2( ) ( ) ( ) ( )c c sw c zc

u u

x t x t t M t  A B B  (4.1) 

where ( )cx t  represents the time-continuous state, and 
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The tire cornering stiffness for front and rear axles are given by FC  and BC , 

respectively, and steering gear ratio str  is defined by the ratio between the steering wheel 

angle and the steering angle at the front wheels as st sw Fr   . 

The cooperative actions of the two players, namely, human driver and vehicle stability 

controller, are assumed to have the tendency to minimize the corresponding sum of 

squares of attitude angle differences and to minimize the higher-order dynamics, typical 

terms that can be found analytically. Hence, it is assumed that the control priorities of the 

driver and the vehicle direct yaw controller are characterized in a form of quadratic cost 

functions given as 

   1 2 1 1 1 2 2 2
0

,
t

T T T

i i i iJ u u x x u u u u dt   Q R R
 

(4.2) 

where all weighting matrices are constant and symmetric with 0, 0T

i ij ij ij  Q R D D
 

and 0T

ii i i R D D , and 1,2i   is the player number. 
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In Nash (1951), the Nash equilibrium concept was introduced and in Başar and Olsder 

(1995) and Starr (1969) it was defined as the pair  * *

1 2,u u   which corresponds to a Nash 

equilibrium if the following relations are satisfied for each admissible strategy  1 2,u u : 

* * *

1 1 2 1 1 2

* * *

2 1 2 2 1 2

( , ) ( , ) ,

( , ) ( , ) .

J u u J u u

J u u J u u

 



 

(4.3) 

The Nash equilibrium is defined such that it has the property that there is no incentive for 

any unilateral deviation by any one of the players. In the other words, at Nash 

equilibrium with  * *

1 2,u u , the player who chooses to change his/her strategy cannot 

improve his/her payoff.  

4.1.1.   Control Design 

The problem of continuous time vehicle-driver interaction model is now reduced to 

finding the Nash equilibrium for the continuous-time model of (4.1). The following 

theorem was modified from Ho et al. [1965] according to the game model (4.1): 

 

Theorem 4.1   Consider the game system (4.1) with the cost functions defined in (4.2). 

Let the strategies 
* * * *

1 2,sw zcu u  
 
be such that there exist solutions  1 2,P P

 
to the 

differential equations 

     
*

* * * * * *

1 2 1 2, , , , , , . , 1,2
j

i i i i i

i

ud
x u u x u u i

dt x u x

 
   

  
P H P H P

 
(4.4) 

where 

   1 2 1 1 1 2 2 2 1 1 2 2, , , T T T T

i i i i i i c c cx u u x x u u u u x u u     H P Q R R P A B B
 

(4.5) 

such that for 1,2i  : 

 * * *

1 2, , , 0i i

i

x u u
u





H P

 
(4.6) 

and *x  satisfies  

* * * *

1 1 2 2( ) ( )c c cx t x t u u  A B B
 

(4.7) 
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Then 
* *

1 2( , )u u  is Nash equilibrium with respect to the memoryless perfect state 

information structure, and the following equalities hold: 

* 1 ( )T

i ii ci iu t R B P
 

(4.8) 

 

Since the driver steering control and the vehicle yaw controller are restricted to the class 

of linear time-invariant feedback strategies, the admissible strategies are defined as 

 ( ; ) ( ) ,fd

i i i i iu u x t x t    G
 

(4.9) 

There exists a generically unique linear feedback Nash equilibrium [Ho, 1965; Başar, 

1974] where the functions of Theorem 1 are given by ( ) ( )i it x tP K . 

 

Theorem 4.2   Suppose iK  satisfy the coupled Riccati equations given by 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T

c i i c i i i i i i ni i i i i ii i
      A K K A Q K S K K S K K S K K S K 0

 
(4.10) 

where  1,2i   and î  is the counter-coalition, i.e. the player counter-acting to the 

player with index i ,  and 

1 1 1

ˆ ˆ ˆ̂ ˆ ˆ̂ ˆ,T T

i ci ii ci ii ci ii ii ii ci

   S B R B S B R R R B
 

(4.11) 

Then the following strategy 

* 1( ) ( )T

i ii ci iu t x t R B K
 

(4.12) 

is linear feedback Nash equilibrium for the game system (4.1) with the cost functions 

defined in (4.2). 

 

The coupled Riccati equation (4.10) is hard to solve due to the presence of quadratic 

coupling terms between 
1K  and 

2K . To the best of our knowledge there are no explicit 

conditions guaranteeing the existence of solutions to equation (4.10). Implicit conditions 

and special cases are provided in Weeren et al. (1999) and Jungers et al. (2008). Only 

numerical algorithms without proof of convergence are available to solve these equations 

(Freiling et al., 1996; Jungers et al., 2008). If there exists a solution to the coupled Riccati 
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equation (4.10), it can be best found by iterative search of the following modified 

equation (4.13) until it converges to a stationary state: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T

i c i i c i i i i i ii i i i i ii i

d

dt
       K A K K A Q K S K K S K K S K K S K

 
(4.13) 

where  1,2i   and î  is the counter-coalition, i.e. the player counter-acting to the player 

with index i , and ˆ,i ii
S S  are defined the same as in equation (4.10).

  
Considering the cooperative control actions 

1 swu   and 
2 zcu M  representing the 

driver‟s steering control and the vehicle controller‟s corrective yaw moment, the globally 

optimal set of actions by Game Theory are defined as 

   * 1

11 1 1 1

T

sw c des desx x x x     R B K G
 

(4.14) 

   * 1

22 2 2 2

T

zc c des desx x x x     R B K G
 

(4.15) 

where 1 2,K K  are the solutions of the coupled Riccati equation (4.10). 

4.1.2.   Simulation and Results 

Computer simulations are carried out to verify the effectiveness of the proposed 

continuous time interaction model. The presented driver and controller models are, hence, 

evaluated using the nonlinear model that was introduced in Section 3.2 with the objective 

to stably steer the vehicle through a single lane change of four meters. The following 

defines the desired states in non-dimensional form for the evaluation maneuver: 

 ,5 0 0 ,
T

des z desx 
 

(4.16) 

The desired value of yaw rate in order to provide handling comfort is obtained from 

   
, 21

x
z des sw

st F B us x

V

r L L K V
 

   
(4.17) 

where the understeering coefficient usk  is defined in Section 2.4. 

To better assess the performance of the proposed driver-controller interaction framework 

based on Game Theory, an independent model of vehicle driver and direct yaw control 

(DYC) system are also simulated in the same scenario. These independent models are 

assumed in the form of linear feedback controllers and their corresponding feedback 
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gains are obtained by the linear quadratic regulation (LQR) strategy. In both cases, i.e. 

Game Theory (GT) and linear quadratic regulation (LQR), the control priorities for the 

driver and the controller are defined based on Table 4.1, and are rewritten as 

1 11 12

10 0 0 0

0 0.01 0 0
: , 1 , 0

0 0 0.1 0

0 0 0 0.01

Driver

 
 
   
 
 
 

Q R R
 

(4.18) 

7

2 21 22

0 0 0 0

0 0.1 0 0
: , 10 , 10

0 0 0 0

0 0 0 1

DYC 

 
 
   
 
 
 

Q R R
 

(4.19) 

Using the same Q  and R  matrices, the final state feedback gains for both strategies are 

calculated from Theorem 4.2 and listed as follows; 

• Game Theory: 

 

 

1( )

2( )

0.809 0.146 8.624 0.713

0 504.08 0 10696

GT

GT

    


 

G

G  
(4.20) 

• LQR: 

 

 

1( )

2( )

1.0 0.215 13.63 1.286

0 129.93 0 599

LQR

LQR

    


 

G

G  
(4.21) 

where 1 2,G G  are the driver and the vehicle controller feedback gains, respectively. 

The simulation is done using the built-in vehicle mathematics model in Vehicle System 

Simulator for three different scenarios: 

 Scenario “A”: the driver is supposed to act as an ideal linear quadratic regulator 

with the feedback gain 1( )LQRG  defined in (4.20), and the vehicle controller is 

turned off. 

 Scenario “B”: the driver and the vehicle controller are both supposed to act as 

ideal linear quadratic regulators with the feedback gain 1( )LQRG  and 2( )LQRG , 

respectively. 
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 Scenario “C”: the driver and the vehicle controller are both supposed to act as 

ideal feedback controller with the feedback gain 1( )GTG  and 2( )GTG  obtained from 

the Game Theory based framework as defined in (4.13) and (4.14), respectively. 

Figure 4.1-3 shows the simulation results. 

Figure 4.1(a) shows that the vehicle successfully performs a single lane change maneuver 

of four meters in all three cases; however, the vehicle in case C, i.e. the Game Theory 

framework, exhibits slower response with an overshoot of about 10%. Case A has the 

fastest response among all cases which implies that the vehicle DYC system slows down 

the vehicle response and in the other words, increases the settling time. 

In spite of slower response, Figure 4.1(b,e) shows that the lateral and roll motions of the 

vehicle is more stable in case C with the Game Theory -based driver and controller 

models compared to case A and B, and they are more stable in case B compared to case 

A. This implies the performance of the vehicle stability control in limiting the lateral 

velocity and roll angle to prevent the undesired rollover. 

Figure 4.1(c) shows the vehicle yaw angle throughout the lane change. Again, it reflects 

the slower response time and the overshoot characteristics in case C. 

Figure 4.1(d) indicates that the vehicle controller in both cases B and C tends to provide 

the desired handling performance; however, the Game Theory framework keeps the 

vehicle yaw rate closer to its corresponding value of the desired yaw rate compared to the 

independently control models in case B. 

Figure 4.1(f) shows that in all cases the vehicle speed was almost kept at 20( )m s  to 

insure the validity of the system linearization. 

 



06 Vehicle Control Design Based On Game Theory   

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 



05 Vehicle Control Design Based On Game Theory   

 

 

 

 

 

 

Figure 4.1 Continuous time interaction model; vehicle states: (a) lateral position, (b) lateral 
velocity, (c) yaw angle, (d) yaw rate, (e) roll angle, (f) longitudinal velocity 

(d) 

(e) 

(f) 
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Figure 4.2 Continuous time interaction model; control inputs: (a) steering wheel angle, (b) 
corrective yaw moment 

(a) 

(b) 

(c) (d) 

(e) (f) 
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Figure 4.2 shows the driver‟s steering wheel angle and the corrective yaw moment 

required to maneuver the vehicle in a single lane change. It is concluded that as the 

vehicle controller is more engaged, the steering effort is more smoothed and the driver 

seems to be more relaxed, i.e. the peak values of the steering angle reduces. Figure 4.2(c-

f) shows the wheel braking torques that are calculated using Differential Braking system 

described in Section 3.3.2. 

4.2. Discrete-Time Interaction Model 

Unlike Section 4.1, this section deals with discrete time modeling of driver-controller 

interactions in a form of discrete difference game. In this game, the driver (player/agent 

1) and the vehicle controller (player/agent 2) play cooperatively through their control 

actions, namely, the steering wheel angle sw  and the corrective yaw moment zcM . 

Through discretization, it is now possible to add preview-time characteristics of human 

driver in directional control. Hence, the discrete time model (3.59) is extended to 

introduce the corrective yaw moment as 

 

1 2

1 2

1

0 0

0 0 0

d d d dd

sw zc r N

r r rr

zz

xx
M y

yy








          
             

         
B BA E

A B B

A B
 (4.22) 

where ,d dx x
 represent the discrete state (3.43) for current and next time step, 

respectively, and 1 2, ,d d dA B B  are obtained from the discrete bilinear transformation of 

the corresponding continuous-time matrices 1 2, ,c c cA B B  in (4.1), ,r rA B  are defined in 

(3.58), and  1r N
y


 is the road reference at N  time step ahead. 

Similar to (4.2), the control priorities for the driver, i.e. player 1, and the vehicle direct 

yaw controller, i.e. player 2, are defined in linear quadratic cost form as defined by 

2

0 1

1

2

T T

i i j ij j

k j

J z z u u


 

 
  

 
 Q R

 

 (4.23) 

where all weighting matrices are constant with 0ii R . iQ  is symmetric and reflected in 

a quadratic cost function as 
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T

i i d i iQ N Q N   (4.24) 

where the state error weighting matrices diQ  are 4 4  diagonal matrices and 
iN  for 

driver with road preview ( 1)i   and vehicle controller with no road information ( 2)i 
 

are defined as 

1

2 2 2

4 (4 )

0 1 0 0 ... 01 0 0 0

0 1 1 0 ... 00 1 0 0

0 1 ( ) 1 ( ) 0 ... 00 0 1 0

1 ( ) 2 ( ) 1 ( ) 0 ... 00 0 0 1

s s

x s x s

x s x s x s

state gains road preview gain
N

T T

V T V T

V T V T V T

 

 
 
 

 

 
 

  
  

N   (4.25) 

2

4 (4 )

1 0 0 0 0 ... 0

0 1 0 0 0 ... 0

0 0 1 0 0 ... 0

0 0 0 1 0 ... 0

state gains road preview gain
N 

 
 
 
 


 
 
 
  

N   (4.26) 

where sT  is the sampling time, and the road preview gains are introduced to define the 

state error with respect to the road reference information as 

1

2 1
,

2 1
,

, , , 2 1 0
, 2

2

ref r

r r
y ref

s s

r r
z ref

x s

z ref z ref z ref r r r
z ref

s s x s

Y Y

Y Y Y
V

T T

Y Y Y

X V T

Y Y Y

T T V T



  


 



 


 



   


  (4.27) 

The relative importance attached to path errors, attitude errors and steer angle are set by 

choosing the diagonal values of diQ  appropriately as described in [Sharp, 2001]. 

4.2.1.   Control Design 

The problem of preview time vehicle-driver interaction model is now reduced to finding 

the Nash equilibrium for the discrete-time model of (4.15). The linear Nash equilibrium 
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associated with a two-player linear quadratic difference game is defined by the following 

theorem: 

 

Theorem 4.3   Consider the difference game model (4.22) subject to the cost function 

(4.23). Suppose 
iP  satisfy the coupled Riccati equations for discrete linear quadratic 

games given by 

   ˆ1 1 2 2 2 1 1 2 2 1 1 2 21

TT T

i i i ii

       P Q G R G G R G A B G B G P A B G B G  (4.28) 

where  1,2i  , and î  is the counter-coalition, i.e. the player counter-acting to the 

player with index i , and 

   
1

ˆ ˆ

T T

i ii i i i i i i i


    G R B P B B P A B G

 
 (4.29) 

Then the following strategy 

* 1 ( 1,2)T

i ii i iu z i    R B P
 

(4.30) 

is linear feedback Nash equilibrium.  

 

The solution to the Riccati equations (4.28) is found by reversing the direction of time, 

i.e. 

   1 1 1 2 2 2 1 1 2 2 1 1 2 2

T
T T

i i i i i

               P Q G R G G R G A B G B G P A B G B G   (4.31) 

where 

   
1

ˆ ˆ1

T T

ii i i i i i i i


    G R B P B B P A B G   (4.32) 

Solving the equations (4.32) for 1 2, 
G G  yields 

1

1 11 1 1 1 1 1 2 1 1

2 2 2 1 22 2 2 2 2 2

T T T

T T T






     
      

     

G R B P B B P B B P
A

G B P B R B P B B P  
 (4.33) 

where can then be substituted in the Riccati equation (4.31) to obtain the Nash optimal 

controllers as defined in equation (4.30). 

The matrices ,i iP Q  can also be rewritten as 
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 , 1, 2
di mi di mi

i iT T

mi ri mi ri

i
   

     
   

Q Q P P
Q P

Q Q P P
  (4.34) 

to simplify the Riccati equations. 

Hence, the optimal preview linear feedback control (4.30) becomes 

 * 1 1,2T

i ii di di miu z i       R B P P  (4.35) 

Substituting , , ,i i iA B P Q  from equations (4.22) and (4.34) into (4.35) yields 

1

11 1 1 1 1 1 2 1 1 1 11

2 2 1 22 2 2 2 2 2 2 22

T T T T

d d d d d d d d d m

T T T T

d d d d d d d d d m






     
      

     

R B P B B P B B P B PG
A

B P B R B P B B P B PG  
(4.36) 

or 

1

11 1 1 1 1 1 2 1 1 1 11

2 2 1 22 2 2 2 2 2 2 22

T T T T

d d d d d d d d d d m r

T T T T

d d d d d d d d d d m r






     
      

     

R B P B B P B B P A B P AG

B P B R B P B B P A B P AG
  (4.37) 

For the sake of simplicity the inverse matrix is abbreviated as 

1

1 2 11 1 1 1 1 1 2

3 4 2 2 1 22 2 2 2

T T

d d d d d d

T T

d d d d d d



  
  

   

Δ Δ R B P B B P B

Δ Δ B P B R B P B
  (4.38) 

Substituting 1 2, 
G G  from Eq. (4.37) into (4.31) yields 

   

   

    

    

1 1 1 2 2 2 1 1 1 1 2 2 2

3 1 1 4 2 2 2 3 1 1 4 2 2

1 1 2 3 1 1 1 2 2 4 2 2

1 1 2 3 1 1 1 2 2 4 2 2

T
T T T T T

di di d d d d d i d d d d d

T
T T T T T

d d d d d i d d d d d

T
T T T

d d d d d d d d d di

T T

d d d d d d d d d

    

  

    

   

P Q A Δ B P Δ B P R Δ B P Δ B P A

A Δ B P Δ B P R Δ B P Δ B P A

A I B Δ B Δ B P B Δ B Δ B P P

I B Δ B Δ B P B Δ B Δ B P A

  (4.39) 

and 

   

   

    

    

1 1 1 2 2 2 1 1 1 1 2 2 2

3 1 1 4 2 2 2 3 1 1 4 2 2

1 1 2 3 1 1 1 2 2 4 2 2

1 1 2 3 1 1 1 2 2 4 2 2

T
T T T T T

mi mi d d d d d i d m d m r

T
T T T T T

d d d d d i d m d m r

T
T T T

d d d d d d d d d di

T T

d d d m d d d m r

    

  

    

  

P Q A Δ B P Δ B P R Δ B P Δ B P A

A Δ B P Δ B P R Δ B P Δ B P A

A I B Δ B Δ B P B Δ B Δ B P P

B Δ B Δ B P B Δ B Δ B P A

  (4.40) 
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The optimal controller is obtained by first solving equations (4.39), and then feeding the 

resulting time-independent diP  matrices into equations (4.40) to find the matrices miP . 

The stationary solutions di di

 P P  and mi mi

 P P
 
of equations (4.39) and (4.40) can be 

found in an iterative process. Substituting the stationary ,di miP P  into Eq. (4.30) yields the 

optimal preview feedback control 
*

iu  that guarantees the Nash equilibrium.  

4.2.2.   Simulation and Results 

Computer simulations are carried out to verify the effectiveness of the proposed discrete 

time preview interaction model. The derived models of the vehicle driver and controller 

are, hence, evaluated using the nonlinear model that was introduced in Section 3.2. The 

primary objective of the evaluation scenario is defined in Section 4.1.2 in order to stably 

steer the vehicle through a single lane change of four meters. 

The continuous-time system matrices of model (4.1) are discretized using the MATLAB 

function „c2d‟ (continuous to discrete) [MathWorks, 2010]. Assuming a sampling 

frequency of 100Hz , i.e. sampling time 0.01 ssT  , the discrete-time system matrices 

read as 

 

3

1 2

1 0.0099 0.01 0 0.002 0

0 0.9885 0 0.0088 0.330 0.0001
, 10 ,

0 0 1 0.01 0.002 0.0001

0 0.0031 0 0.992 0.355 0.0266

d d d



     
      
        
     
     
     

A B B   (4.41) 

To reserve solution accuracy, the integration time step frequency was set to 410 Hz , 

while using a “Down Sample” block in Simulink to reduce it to the sampling frequency 

as shown in Figure 4.3. 

To better assess the effects of the preview time in the presented optimal preview control 

framework, three drivers are selected with the same control priorities as defined in (4.23), 

but with different preview time ability: no preview time ( 0 )pT s , short preview time 

( 0.1 )pT s , and large preview time ( 1 )pT s . For all driving scenarios, the DYC system 
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is turn on and act as an ideal Nash player as defined by the optimal feedback controller in 

(4.30). 

 

Figure 4.3 Down-sampling of frequency in simulation model 

Figure 4.4-5 show the simulation results. 

Figure 4.4(a) shows that all three drivers successfully steers the vehicle through a single 

lane change maneuver of four meters; however, the vehicle with the driver of larger 

preview time ability kicks off the lane changing sooner. As the preview time decreases, 

the vehicle exhibits slower response and more overshoot. 

Figure 4.4(b,e) show that the vehicle lateral and roll motions is more stable as the 

preview time increases. In the other words, the preview time gives the vehicle more time 

to cope with the dynamics of the previewed maneuver. 

Figure 4.4(d) indicates that the vehicle yaw rate is more close to its corresponding desired 

yaw rate as the preview time increases; thus, it is concluded that the handling 

performance is best guaranteed for the driver with higher preview time ability. 

Figure 4.4(f) shows that in all cases the vehicle speed was almost kept at 20( )m s  which 

insures the validity of the system linearization. 

 

 

 

Driver 

- - - - - - - - - - 

DYC 

Road Preview 
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↓ 
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Figure 4.4 Discrete time interaction model; vehicle states: (a) lateral position, (b) lateral 
velocity, (c) yaw angle, (d) yaw rate, (e) roll angle, (f) longitudinal velocity 

(d) 

(e) 

(f) 
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Figure 4.5 shows the driver‟s steering angle and the corrective yaw moment. It is 

concluded that as the preview time increases the driver and the controller get involved 

sooner to follow the direction change. Based on Figure 4.5(a), as the preview time 

increases, the steering action is extended in time, but the peak value drops. Similar trend 

can be seen for the controller‟s effort, i.e. corrective yaw moment, in Figure 4.5(b). 

 

 

Figure 4.5 Discrete time interaction model; control inputs: (a) steering wheel angle, (b) 
corrective yaw moment 

4.3. Sensitivity Analysis 

The proposed vehicle driver-controller interaction relies on the use of a mathematical 

model and the quality of this model depends on how closely its response matches that of 

the physical plant, specifically the human driver. Since it is very difficult to obtain a 

mathematical model that is identical to the physical plant, design techniques must be 

(a) 

(b) 
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designed in a robust manner in the face of uncertainty and unknown disturbances and it 

requires a sensitivity analysis of the uncertain parameters. The sources of this uncertainty 

in the mathematical model description may be unknown, in which case some general 

uncertainty is imposed on the linear feedback gains of the driver steering control model. 

4.3.1.   µ-Sensitivity 

The basis of robust stability criteria for both unstructured and structured perturbations is 

the well-known “small gain theorem” introduced by Zames (1966): 

 

Theorem 4.4 (Small Gain Theorem)   Consider the feedback interconnection depicted 

in Figure 4.1. Suppose P  is the plant and let 0  . Then this feedback interconnection 

is internally stable for all unstructured uncertainty Δ  with 1 

Δ  if and only if 



P . 

 

Figure 4.6 Standard feedback configuration 

For the standard feedback configuration shown in Figure 4.6, the structured singular 

value of P  with respect to uncertainty structure Δ  is defined by 

 
1

( )
min ( ) : 0





 

Δ P
Δ I PΔ

  (4.42) 

unless no Δ  makes I PΔ  singular, in which case ( ) 0 Δ P . Here, ( ) Δ  represents the 

maximum singular value of matrix Δ . 

The following theorem [Packard, 1993] is a natural extension of the small gain theorem 

to the structured uncertainty case: 

 
 

Uncertainty 

Plant 

Δ

P

1

2

1e

2e
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Theorem 4.5   Consider the feedback interconnection depicted in Figure 4.1. Assuming 

that 0  , this feedback interconnection is internally stable for all structured Δ  with 

1 

Δ  if and only if sup ( )



 



Δ

Δ P . 

 

Hence, the peak value of the  -plot of P  determines the size of the perturbations that 

the loop is robustly stable against. 

For the continuous time system (4.1) with the linear feedback controls (4.14) and (4.15), 

the sensitivity of the system regarding the driver mode is investigated. The uncertain 

plant model is represented by 

 1 1 2 2

2 20

c c c

c c

  
  

 

A B G I W B G
P

A B G
  (4.43) 

where the uncertainty matrix W  is a diagonal matrix, and I  is the identity matrix. 

4.3.2.   Simulation and Results 

Computer simulations are carried out to investigate the sensitivity of the proposed 

continuous time interaction model to the structured uncertainties in the driver‟s steering 

control performance which is best reflected in the driver‟s feedback gain 1G .  

The Bode diagram of the vehicle-driver system for a vehicle speed of 20( )m s  and a 

variation of 40%  for driver control gain 1G  with respect to the nominal optimal gains 

are shown for the transfer functions between the lateral position y  (and yaw angle z ) 

and the vehicle control input, i.e. corrective yaw moment zc . 
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(a)                    (b) 

 

(c)                    (d) 

 

(e) 

Figure 4.7 Effect of uncertainty in driver feedback gain of lateral position  
on vehicle-driver system 
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Bode Diagram: Lateral Position / Corrective Yaw Moment 

 Uncertain Driver Gain: Lateral Position
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Bode Diagram: Lateral Velocity / Corrective Yaw Moment 

 Uncertain Driver Gain: Lateral Position

Frequency  (rad/sec)

-40%

-20%

  0%

 20%

 40%

-200

-180

-160

-140

-120

-100

M
a
g

n
it
u
d

e
 (

d
B

)

10
-1

10
0

10
1

10
2

10
3

-180

-135

-90

-45

0

P
h
a

s
e

 (
d

e
g

)

 

 

Bode Diagram: Yaw Angle / Corrective Yaw Moment 
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Bode Diagram: Yaw Rate / Corrective Yaw Moment 

 Uncertain Driver Gain: Lateral Position

Frequency  (rad/sec)

-40%

-20%

  0%

 20%

 40%

-35 -30 -25 -20 -15 -10 -5 0
-5

-4

-3

-2

-1

0

1

2

3

4

5

-40% -40%

-40%

-40%

-20% -20%

-20%

-20%

0% 0%

0%

0%

20%

20%

20%

20%

40%

40%

40%

40%

Vehicle-Driver System Poles 
 Uncertain Driver Gain: Lateral Position



66 Vehicle Control Design Based On Game Theory   

 

 

 

(a)                    (b) 

 

(c)                    (d) 

 

(e) 

Figure 4.8 Effect of uncertainty in driver feedback gain of lateral velocity  
on vehicle-driver system 
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Bode Diagram: Lateral Position / Corrective Yaw Moment 
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Bode Diagram: Lateral Velocity / Corrective Yaw Moment 
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Bode Diagram: Yaw Angle / Corrective Yaw Moment 
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Bode Diagram: Yaw Rate / Corrective Yaw Moment 
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(a)                    (b) 

 

(c)                    (d) 

 

(e) 

Figure 4.9 Effect of uncertainty in driver feedback gain of yaw angle  
on vehicle-driver system 
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Bode Diagram: Lateral Position / Corrective Yaw Moment 
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Bode Diagram: Lateral Velocity / Corrective Yaw Moment 
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Bode Diagram: Yaw Angle / Corrective Yaw Moment 
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Bode Diagram: Yaw Rate / Corrective Yaw Moment 
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(a)                    (b) 

 

(c)                    (d) 

 

(e) 

Figure 4.10 Effect of uncertainty in driver feedback gain of yaw rate  
on vehicle-driver system 
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Bode Diagram: Lateral Position / Corrective Yaw Moment 
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Bode Diagram: Lateral Velocity / Corrective Yaw Moment 
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Bode Diagram: Yaw Angle / Corrective Yaw Moment 
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Bode Diagram: Yaw Rate / Corrective Yaw Moment 
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Figure 4.7-10 show that the vehicle-driver system is stable with respect to changes in 

driver feedback gains; however, as the lower bound of uncertainty in the driver‟s gain 

corresponding to the yaw angle expands the vehicle lateral position moves toward 

instability as it is shown in Figure 4.9(a,e). Hence, it is concluded that the driver‟s gain 

for the yaw angle is the most sensitive parameter of the open-loop vehicle-driver system. 

For closed-loop analysis, µ-sensitivity of the vehicle-driver system is investigated. Three 

cases are studied: (a) cooperative control framework through the Game Theory 

interaction model (4.20), (b) independent control strategies through the LQR interaction 

model (4.21), (c) the driver performs independently based on the LQR gains but the 

vehicle controller acts as the optimal Nash player. 

The µ-plot of the plant (4.43) is shown in Figure 4.11. The blue bars indicate the 

sensitivity of the driver-controller interaction model to the uncertainty in the driver‟s 

feedback gain corresponding to the lateral position error, while the cyan, yellow, and the 

red bars indicate the uncertainties in the gains corresponding to the lateral velocity error, 

yaw angle error, and yaw rate error, respectively. 

Figure 4.11(a) implies that the proposed continuous time driver-controller interaction 

model based on Game Theory is sensitive to the uncertainties in the driver‟s feedback 

gain corresponding to the lateral position error, yaw angle error, and yaw rate error, while 

the system is robust with respect to the uncertainty in the feedback gain corresponding to 

the lateral velocity error. The conclusions seems sound since this interaction model gives 

the globally optimal based on its current knowledge of the driver‟s steering control model 

and if the driver feedback gains contain uncertainty, the global optimum cannot be 

attained. 

The independent actions of the driver and the controller in the driver-controller 

interaction model based on the linear quadratic regulation strategy is mostly relied on the 

driver‟s actions as the Figure 4.11(b) indicates that the system is only sensitive to the 

uncertainties in the driver‟s feedback gain corresponding to the lateral position and yaw 

angle errors and the uncertainty in the feedback gain corresponding to the yaw rate error 

does not affect the system performance.  
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(a) 

 

(b) 

 

(c) 
 

Figure 4.11 µ-plot of the continuous-time driver-controller interaction model: (a) Game 
Theory, (b) LQR, (c) mixed 
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Figure 4.11(c) shows that the mixed interaction model, i.e. when the driver performs 

independently based on the LQR gains and the vehicle controller acts as the optimal Nash 

player, shows almost the same sensitivity behavior as in the Game Theory framework 

shown in Figure 4.11(a); however, for the uncertainties less than 9% in the driver‟s 

feedback gain corresponding to the yaw rate error, the system is robust and the mixed 

interaction model is only sensitive to those uncertainties of more than 9%. 

4.4. Robust Interaction Model 

For the purpose of control design, a low-order feedback steering control for the driver 

model was developed. Therefore, it is reasonable to expect that the driver model 

uncertainties exist. It is necessary to obtain a reasonable picture of the driver model 

uncertainty that represents the difference between a real driver and the driver model at 

any instant in time, or to represent the change in driving behavior with time. Section 4.3 

investigated the sensitivity of each driver‟s control gain on the system total performance. 

This section studies the robust control design methodology for the vehicle direct yaw 

control system.  

In this research, the driver model uncertainty is assumed to lie within the cost priority 

matrices 1Q  and 11 12,R R . Assuming that driver‟s steering input varies in a bounded tube 

of its estimation as shown in Figure 4.12, a modified version of Game Theory is derived 

to cope with uncertainties emerged from the driver model inaccuracy and other sources. 

The Integral Sliding Mode (ISM) control yields to a game that the min-max robust Nash 

strategies can be applied. 

 

Figure 4.12 Uncertainty tube of driver input around estimate value 
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Again consider the continuous time game system (4.1) with the same quadratic cost 

function given in (4.2), but in the presence of the steering angle uncertainties imposed by 

the driver: 

1 2

1 2( ) ( ) ( ) ( ) ( )c c sw c zc

u u

x t x t t t M t 
 
    
 
 

A B B  (4.44) 

where 1 2, ,c c cA B B  are the known system matrices representing their best approximation 

of the real world, and ( )t  is the unknown exciting signal representing the uncertainty in 

the driver model with respect to its corresponding optimum based on Game Theory 

interaction framework and satisfies the following assumption: 

 

Assumption 4.1.   The unknown signal ( )t  is smooth disturbances and bounded: 

00, ( ) ( )t t x t    F  (4.45) 

where 1 4F   and  0 0  . 

 

4.4.1.   Robust Control Design 

The vehicle controller is supposed to reject the uncertainty in the driver model and make 

the interaction model robust. Hence, the methodology of Integral Sliding Mode (ISM) is 

applied and the robust Nash strategies are designed as 

1 1

2 2

o

o

u u

u u u




 
 (4.46) 

where 1 2,o ou u  are assumed to be the optimal control strategies as defined in (4.12) for the 

certain system defined in (4.1), and u  is designed to be discontinuous for rejecting the 

perturbation term ( )t . 

Substituting the control (4.46) in the uncertain game model (4.44) leads to: 

   1 1 2 2( ) ( ) ( ) ( ) ( ) ( )c c o c ox t x t u t t u t u t    A B B  (4.47) 
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Following the Integral Sliding Mode methodology, the sliding mode surface for the 

vehicle controller is defined as 

( , ) ( , ) ( , )os x t s x t s x t   (4.48) 

This switching function (4.48) consists of two parts that will be defined later; the first 

part 
os  may be designed as the linear combination of the system states; and the second 

part s  includes the integral term. 

Time derivative of the sliding surface (4.48) is: 

    1 1 2 2

( , ) ( , ) ( , )

( , ) ( , )
( , )

( , )
( ) ( ) ( ) ( ) ( )

( , )
( , )

o

o o

o
c c o c o

o

s x t s x t s x t

s x t s x t
x s x t

x t

s x t
x t u t t u t u t

x

s x t
s x t

t











 

 
  

 


    




 



A B B
 (4.49) 

The auxiliary variables os  and s  are selected as 

( ; ) ( )T

os x t x tG  (4.50) 

2

1

2

1

0 0 0 0

( , ) ( , )
( , ) ( ) ( )

( ) ( )

( , ) ( , )

o o
c ci oi

i

T

c ci oi

i

o

s x t s x t
s x t x t u t

t x

x t u t

s x t s x t









   
       

 
   

 

 





A B

G A B  (4.51) 

to simplify the switching function (4.48) into 

 1 2( , ) ( ) ( )T

c cs x t t u t G B B  (4.52) 

For stability analysis and robust control design, the following Lyapunov candidate is 

introduced: 

21
( , ) ( , ) 0 ,

2
V x t s x t t    (4.53) 

The time derivate of ( , )V x t  is 

  1 2( , ) ( , ) ( , ) ( , ) ( ) ( )T

c cV x t s x t s x t s x t t u t  G B B  (4.54) 
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The stability is insured by choosing the disturbance rejection control u  as 

     
1

2 2 2 1 0( ) sgn ( , )T T

c c c cu x t s x t 


  B B B B F  (4.55) 

where sgn()  is the sign function. 

Substituting the control (4.55) into (4.54) yields 

  

   

1 0

1 0

( , ) ( ) ( ) sgn( ( , ))

( , ) ( ) ( ) sgn ( , ) 0 ,

T

i c

T

c

V s x t t x t s x t

s x t t x t s x t t

 

 

  

    

G B F

G B F
 (4.56) 

Since the time derivative of the Lyapunov candidate (4.53) is negative, the system 

stability (4.48) is guaranteed based on the Lyapunov direct theorem by the proposed 

control (4.55). 

The uncertain system (4.44) can be, hence, rewritten as 

  

 

1

1 1 2 2 1 0 1

( )

( ) sgn ( , ) ( )

( ) ( ) sgn ( , ) ( )

eq

c c

c o c o c c

t

x t s x t x t

u t u t s x t t



 

 

   

A

A B F

B B B B
 (4.57) 

Where the sliding surface is obtained from 

2

10

( , ) ( ) ( ) ( )

t

T T

c ci oi

i

s x t x t x u d  


 
   

 
G G A B  (4.58) 

Depending on the sliding surface (4.58), the system (4.57) takes one of the following 

forms: 

 

 

1 1 2 2 1

1 1 1 2 2 1 0 1

1 1 1 2 2 1 0 1

( ) ( ) ( ) ( ) ( ) , ( , ) 0

( ) ( ) ( ) ( ) ( ) , ( , ) 0

( ) ( ) ( ) ( ) ( ) , ( , ) 0

c c o c o

c c c o c o c c

c c c o c o c c

x t x t u t u t t s x t

x t x t u t u t t s x t

x t x t u t u t t s x t



 

 

     


      


      

A B B B

A B F B B B B

A B F B B B B

 (4.59) 

Assuming that the disturbance ( )t  is white noise and ( )t  is known, the optimal 

solution for the set of linear two-player differential games of equation (4.59) is defined 

by the following theorem: 

 

 

Theorem 4.6   Suppose iK  satisfy the coupled Riccati equations given by 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T

eq i i eq i i i i i ii i i i i ii i
      A K K A Q K S K K S K K S K K S K 0

 
(4.60) 

and the shifting vector ik  resolving uniquely the set of coupled parameterized linear 

differential equations: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T

eq i i i i i i ii i i i i ii i
k w k k k k     A K K S K S K S K S 0  (4.61) 

where  1,2i   and î  is the counter-coalition, i.e. the player counter-acting to the 

player with index i ,  and 

1 1 1

ˆ ˆ ˆ̂ ˆ ˆ̂ ˆ,T T

i ci ii ci ii ci ii ii ii ci

   S B R B S B R R R B   

Then the following strategy 

 * 1( ) ( )T

oi ii ci i iu t x t k  R B K
 

(4.62) 

is a linear feedback Nash equilibrium. 

 

Theorem 4.6 gives three sets of Nash equilibrium for the uncertain game model (4.59). 

Hence, the optimal robust control (4.62) for each set can be rewritten as 

 

 

* 1

11 1 1 1 1 1

* 1

22 2 2 2 2 2

( ) ( ) ( )

( ) ( ) ( )

T

sw c
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M t x t k x t g

 



    

    

R B K G

R B K G  
(4.63) 

where iK  and ik  are given by (4.60) and (4.61). 

4.4.2.   Simulation and Results 

Computer simulations are carried out to verify the effectiveness of the proposed robust 

interaction model. The presented driver and controller models are, hence, evaluated using 

the nonlinear model that was introduced in Section 3.2 with the same primary objective 

as defined in Section 4.1.2, i.e. to stably steer the vehicle through a single lane change of 

four meters. 

The driver is considered to deviate from the optimal Nash equilibrium (4.15) by 

disturbance parameter ( )t  which is bounded as defined in (4.45) with  

  1 020% , 10  F B
 

(4.64) 

The system matrix eqA  and the known disturbance parameter   are, hence, found by 
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(4.65) 

Using the same Q  and R  matrices, the final state feedback gains for all three conditions 

are calculated and listed as follows; 

 

 

 

 

 

 

1 1

2 2

1 1

2 2

1 1

2 2

0.806 0.146 8.624 0.713 , 0
, 0

0 677.9 0 6216.2 , 0

0.750 0.067 7.819 0.726 , 0.063
, 0

0 132.4 0 7783.1 , 893.7

0.867 0.261 9.582 0.659 , 0.106

0 1107.3 0 4450.1 , 826

g
s

g

g
s

g

g

g

      


    

       


     

     

   

G

G

G

G

G

G
, 0

.38
s











 

 
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(4.66) 

where 1 2,G G  are the feedback gains and 1 2,g g  are shift vector of the driver and the 

vehicle controller, respectively.  

Figure 4.13-15 show the simulation results. 
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Figure 4.13 Robust interaction model; vehicle states: (a) lateral position, (b) lateral velocity, 
(c) yaw angle, (d) yaw rate, (e) roll angle, (f) longitudinal velocity 

(e) 

(d) 

(f) 
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Figure 4.13 shows that the vehicle performs a single lane change with robust and non-

robust vehicle controllers. It is concluded that the robust controller provides more 

handling comfort as the vehicle yaw rate error with respect to its corresponding desired 

yaw rate is lower compared to the vehicle with non-robust control system. Figure 4.13(f) 

shows that in all cases the vehicle speed was almost kept at 20( )m s  which insures the 

validity of the system linearization. 

Figure 4.14 shows the time history of the switching functions including the sliding 

surface ( , )s x t  and the disturbance rejection part of the sliding surface ( , )s x t  represented 

by ( , )s x t . It is shown that as the system is stabilized the sliding surface ( , )s x t  moves 

toward the equilibrium point, i.e. goes to zero. 

 

 

Figure 4.14 Robust interaction model: sliding surface 

Figure 4.15 shows the driver‟s steering angle and the controller‟s corrective yaw moment. 

The peak value of the steering angle in the robust controller is less than the peak value of 

the steering angle in the vehicle with the non-robust controller. Figure 4.15(b) indicates 

spike behavior in the controller‟s corrective yaw moment for the robust system due to the 

chattering effect imposed by the sliding mode control method. 
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Figure 4.15 Robust interaction model; control inputs: (a) steering wheel angle, (b) corrective 
yaw moment 

(a) 

(b) 
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Chapter 5 

Discussion and Future Work 

5.1. Discussion 

First, several linear and nonlinear vehicle models were developed and validated with 

CarSim which is a known vehicle dynamics simulation software. The linear forms of 

these models were used to develop control strategies while the nonlinear models provided 

the evaluation platform for controller strategies. The validation results show that the 

developed vehicle dynamics model is suitable for handling scenarios in this research.  

As the main contribution of this research, a new structure for optimal linear car steering 

and yaw control has been devised based on the game theory concept. Using the definition 

of a linear quadratic difference game, the driver’s steering input and the controller’s 

corrective yaw moment are defined as two dynamic players of the game “vehicle 

stability”, and their corresponding control efforts are optimized through Nash 

equilibrium.  

An advantage of the proposed controller not to be overlooked is the stability aspect. 

Results show that the final control system successfully performs the desired maneuvers. 

It is also concluded that in case of driver with preview time, the look-ahead preview 

information brings more time to the driver to cope with the desired path, and reduces the 

instability in lateral, yaw, and roll motions due the sudden direction change. Compared to 

the previewed control cases, a vehicle with no preview experiences larger steering angle 

peaks, and consequently, more severe roll and yaw dynamics. Similarly, the wheel 

braking torque action is extended in time and its peak value is lowered as the preview 

time increases. Finally, the DYC system effect on the vehicle is studied for the system 

with three seconds of preview time. The results show that the uncontrolled system 
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requires less steering effort, but results in more lateral velocity and yaw rate. The vehicle 

stability control system successfully reduces the lateral velocity and yaw rate to ensure 

vehicle stability in lateral and yaw motions. The proposed control strategy based on linear 

quadratic difference game theory seems promising to bring higher limit performance of 

vehicle handling and stability. Further studies are required to explore and expand the 

future application of Game Theory in the vehicle control and driver modeling fields. 

Finally, the Nash optimal strategy was modified using Integral Sliding Mode control to 

find an optimal vehicle stability controller to the case where bounded uncertainties in 

driver control were present. It was shown that although the system was disturbed by 

bounded uncertainties, the robust controller performs better than the regular controller in 

stabilizing the lateral and yaw motions of the vehicle. 

Although not demonstrated in this work, more extensive vehicle testing is likely to show 

that a closed-loop yaw control system based on Nash strategy not only improves vehicle 

performance, but also increases driver confidence in an emergency maneuver, because 

the controller takes more responsibility when Nash strategy is applied. However, based 

on the existing subtleties in workload distribution between the driver and the controller, 

the proposed controller needs to be carefully studied in the future. 

5.2. Future Work 

The proposed future work includes: 

i. developing a multifaceted chassis control that integrates four wheel steering, 

active suspension, antilock braking, and traction control strategies in order to 

implement the proposed direct yaw control; 

ii. identifying the parameter involved in driver control priorities and developing a 

real-time adaptive control law that adapts to changes in the driver model; 

iii. evaluating the proposed interaction model on an actual vehicle systems with 

human driver. 
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Appendix A 

Nomenclature 

Dimensional 

Parameter 

Non-Dimensional 

Parameter 

Description 

    Tire side slip angle 

sw  sw  Steering wheel angle 

F  F  Front wheel steering angle 

    Longitudinal slip 

  L  Lateral tire relaxation length 

w  w  Wheel rotational angle 

x  x  Vehicle Roll angle 

y  y  Vehicle Pitch angle 

z  z  Vehicle yaw angle 

accel   2

accel MU  Vehicle total driving torque 

decel   2

decel MU  Vehicle total braking torque 

wBr   2

wBr MU  Wheel braking torque 

wDr   2

wDr MU  Wheel driving torque 

zc   2

zc MU  Corrective yaw moment (non-dimensional) 

xA  2

xA L U  Vehicle longitudinal acceleration 

Dimensional Non-Dimensional Description 
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Parameter Parameter 

yA  2

yA L U  Vehicle lateral acceleration 

xC   xC MUL  Total roll stiffness 

C   2C L MU  Tire longitudinal slip stiffness 

C   2C L MU  Tire cornering stiffness 

xF   2

xF L MU  Longitudinal tire force 

yF   2

yF L MU  Lateral tire force 

zF   2

zF L MU  Vertical force on tire 

G  2GL U  Gravity 

H  H L  Roll center height w.r.t. ground 

sH  sH L  Roll centre height w.r.t. chassis 

wI   2

wI ML  Wheel total mass moment of inertia about the rotation axis 

xI   2

xI ML  Roll moment of inertia (about vehicle x-axis) 

xzI   2

xzI ML  Roll-yaw product of inertia 

yI   2

yI ML  Pitch moment of inertia (about vehicle y-axis) 

zI   2

zI ML  Yaw moment of inertia (about vehicle z-axis) 

J    Cost (objective) function 

usK  2

usK U  Understeer coefficient 

xK   2

xK MU  Vehicle roll stiffness 

yK   2

yK MU  Vehicle pitch stiffness 

dccK   dccK ML
 

Cruise control differential gain 
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Dimensional 

Parameter 

Non-Dimensional 

Parameter 

Description 

iccK   2

iccK L MU  Cruise control integral gain 

pccK   pccK MU  Cruise control proportional gain 

L  1  Vehicle wheelbase 

BL  BL L  Horizontal distance between vehicle CG and rear axle 

FL  FL L  Horizontal distance between vehicle CG and front axle 

M  1  Total vehicle mass 

sM  sM M  Non-rolling part of total vehicle mass 

zcM   2

zcM MU  Corrective yaw moment (see zc ) 

str  str  Steering ratio 

wR  wR L  Tire effective rolling radius 

pT  pT U L  Driver preview time 

sT  sTU L  Discretization sampling time 

u    Control input 

U  1  Vehicle speed 

xV  xV U  Vehicle longitudinal velocity 

yV  yV U  Vehicle lateral velocity 

W  W L  Vehicle track width 

X  X L  Vehicle longitudinal position 

cx    Continuous-time state 

dx    Discrete-time state 
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Dimensional 

Parameter 

Non-Dimensional 

Parameter 

Description 

Y  Y L  Vehicle lateral position 

z    Vehicle discrete-time preview state 

 



111 Appendix B   

 

 

APPENDIX B 

Vehicle Body Dynamics 

The vehicle body dynamics equations of motion are included in this appendix. 

 

 Longitudinal dynamics: 

2

2

sin cos cos cos sin ...

cos sin sin 2 cos cos ...

cos cos sin sin

x y z s s z x s s y x y s s z x y

s s y x y s s x y x s s x z x y

xFR F xFL F xBR xBL yFR F yFL F

mv mv m h m h m h

m h m h m h

f f f f f f

        

         

   

    

  

    
 

 

 Lateral dynamics: 

2 2

2

sin sin cos cos cos sin ...

cos sin 2 cos cos

sin

...

sin cos cos

y x z s s x x s s z x s s x x y s s z x y

s s x x y s s y z x y

xFR F xFL F yFR F yFL F yBR yBL

mv mv m h m h m h m h

m h m h

f f f f f f

          

      

   

     



   





 

 Roll dynamics: 

       

   

     

2 2 2 2 2

2 2

2 2

(cos 1) cos cos 1 cos cos cos sin ...

(cos 1) cos sin cos sin ...

cos sin cos 1 cos
sz

sy x sz x sx x z y sy sz z y x x

y z sz x sy x sy sz x z y x x

z y y sx sy

y

x x y x z sy

yi i i i i

i i i i

i i i i

        

        

      

 



       

    

       

 

 

 

2 2 2 2 2

2 2 2 2 2 2

2 2

cos sin sin ...

sin cos cos cos cos cos sin sin ...

cos cos 2 cos cos cos cos sin ...

cos

sz x x y

s s x x x y s s y x y s s y x x y

s s x z x y s s y z x y s s y z x y x

s s z x y

i

m h m h v m h

m h v m h m h

m h

  

         

           

   

 

    

    

  cos si sinn x x x x s sx y y xk c m h g       
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 Pitch dynamics: 

 

    
 

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

cos sin cos sin cos cos sin ...

cos cos cos cos sin ...

2 cos cos cos sin

sy y x sz y x sx z y y sy x sx y sz x x z

s s x y z x y sz z s s x z x y y

s s y x z x y sy z y x

i i i i i i

m h v v i m h

m h i

           

        

       

     

     

 

    

   

2 2 2

2

2 2 2

sin cos sin ...

cos cos sin cos sin sin ...

cos sin cos sin sin co ...

cos

s

sin

y s s y x y

sy sz z s s x y x y x sy sz x x x y

y y y y s s

sz sy x z x y s s z x x

x y

y y x

m h

i i m h i i

k c

i h

h

m

m g

i

   

         

        





  

 

    

   

  
 

 

 Yaw dynamics: 

  

       

   

2 2 2 2

2 2

cos sin cos sin ...

cos sin cos s cos cos sin ...

sin sin cos sin

i

cos sin

n

co

y x z sy

uz sz x sy x y sx y z

x y z sz x sy x s sz x y x

s s x y z s y x x y x y x

x y y

s z x y z y

i

i i

m h v h v

i i

i i

h

i

i

    

       

         

    

  

   

      

    

   

    

2

s ...

sin cos cos cos sin sin cos sin ...

sin cos cos cos cos cos sin ...

cos cos
2

x

s z x s x y y x z s s x y y s x x s x y x y

x z s z z x y x y s x y x y z z s x y

xFR F xFL F xBR

h h m h v h h

v h h h

w
f f f



              

              

 



     

     

   

 

sin sin ...

sin sin cos cos

xBL yFR F yFL F

F xFR F F xFL F F yFR F F yFL F B yBR B yBL

f f f

l f l f l f l f l f f

 

   

  

    
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APPENDIX C 

Evaluation Parse File 

** Vehicle System Simulator 2010 parse file 
 

DATABASE 

Database name (dbname) = ‘-30 Steering at 72 km/h’ 
Vehicle Model (vehdir) = ‘SedanD’ 

Simulink Model (simdir) = ‘vss_model’ 
Plot Config (plotdir) = ‘default’ 

Event Config (eventdir) = ‘default’ 

Solver (solver) = ‘ode3’ 
Sampling Frequency (freq) = 100 (Hz) 

Start Time (tstart) = 0 (s) 
Stop Time (tstop) = 4 (s) 

 

VEHICLE 
Vehicle Name (name) = ‘D-Class Sedan’ 

Gravity (g) = 9.8066 (m/s2) 
Total Mass (m) = 1450 (kg) 

Sprung Mass (ms) = 1370 (kg) 
Roll Inertial (Ix) = 606.1 (kg.m2) 

Pitch Inertia (Iy) = 4192 (kg.m2) 

Yaw Inertial (Iz) = 4192 (kg.m2) 
Roll-Yaw Inertial (Ixz) = 0 (kg.m2) 

Roll Stiffness (Kp) = 30000 (N.m/rad) 
Roll Damping (Cp) = 3000 (N.m.s/rad) 

CG Height (h) = 0.54 (m) 

CG-Axle Height (hs) = 0. 405 (m) 
CG-Front Axle Distance (lf) = 1.11 (m) 

CG-Rear Axle Distance (lr) = 1.67 (m) 
Track Width (w) = 1.565 (m) 

 
FRONT RIGHT TIRE 

Tire Effective Radius (Rw) = 0.373 (m) 

Wheel Inertia (Iw) = 1.2 (kg.m2) 
Fx Model = ‘LuGre’ 

Fx Tire = ‘LuGre 5’ 
Fy Model = ‘Pacejka’ 

Fy Tire = ‘Pacejka 5’ 

Combined Slip = ‘On’ 
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FRONT LEFT TIRE 

Tire Effective Radius (Rw) = 0.373 (m) 
Wheel Inertia (Iw) = 1.2 (kg.m2) 

Fx Model = ‘LuGre’ 
Fx Tire = ‘LuGre 5’ 

Fy Model = ‘Pacejka’ 

Fy Tire = ‘Pacejka 5’ 
Combined Slip = ‘On’ 

REAR RIGHT TIRE 
Tire Effective Radius (Rw) = 0.373 (m) 

Wheel Inertia (Iw) = 1.2 (kg.m2) 
Fx Model = ‘LuGre’ 

Fx Tire = ‘LuGre 5’ 

Fy Model = ‘Pacejka’ 
Fy Tire = ‘Pacejka 5’ 

Combined Slip = ‘On’ 
 

REAR LEFT TIRE 

Tire Effective Radius (Rw) = 0.373 (m) 
Wheel Inertia (Iw) = 1.2 (kg.m2) 

Fx Model = ‘LuGre’ 
Fx Tire = ‘LuGre 5’ 

Fy Model = ‘Pacejka’ 

Fy Tire = ‘Pacejka 5’ 
 

LUGRE 5 
Model Name = ‘LuGre 5’ 

Model Type = ‘Fx’ 
(muc) = 0.927 

(mus) =10 

(alpha) = 0.2922 
(sigma0) = 118.18 

(sigma1) = 0.76 
(sigma2) = 0 

(kappa0) = 1 

(vs) = 0.0216 
 

PACEJKA 5 
Model Name = ‘Pacejka 5’ 

Model Type = ‘Fy’ 
(PCY1) = 1.8300 

(PDY1) = 1.1044 

(PDY2) = -0.2659 
(PEY1) = 0.0382 

(PEY2) = -0.0483 
(PEY3) = -8.0155 

(PEY4) = 0 

(PKY1) = -21.1460 
(PKY2) = 1.4813 

(PHY1) = 0.0039 
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(PHY2) = 2.7190e-004 

(PVY1) = 0.0051 

(PVY2) = -0.0252 
 

EVENT 
Event Name = ‘Open-loop Speed’ 

Event #1 = ‘’ 

Initial Speed (u0) = 20 (m/s) 
 

SIMULINK 
Model Name = ‘vss_model’ 

Model Location = ‘\Lib\model\vss_model.mdl’ 
 

PLOT 

Plot Config Location = ‘\Lib\plot\default.mat’ 
Plot #1 = ‘’ 
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