Technical Report CS74011~-R

IMPLEMENTATION OF FORTRAN RANDOM NUMBER GENERATORS
ON COMPUTERS WITH ONE'S COMPLEMENT ARITHMETIC

Richard E. Nance®
and
Claude Overstreet, Jr.*%

July 1974

tSome of the results described are related in an earlier report from the
Computer Science/Operations Research Center at Southern Methodist University,
Dallas, Texas. :

: *Department of Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia.

#**Department of Computer Science, Bowling Green State University, Bowling
Green, Ohio.

INTRODUCTION

A method of generating random numbers on the SRU 1108 using the FORTRAN
language is described in a paper by Marsaglia and Bray [1]. This method seeks
to produce "the least positive residue modulo 236:"*By*uéiﬂg"the“éingle*statement.

I= ISIGN(IABS((I*K))+MINO(ISIGN(l,(I*K)),O),(I*K)). |
In a subsequent paper Grosembaugh [2] noted that this instruction failed to
produce the exact residues; however, the statement

T = I*RK+(ISIGN(1,I*K)-ISIGN(1,1))/2
does give the correct residues.

Marsaglia and Bray note that the difficulty in producing the correct residues
on 1's complement machines such as the SRU 1108 stems from the procedure by-whiéh
the FORTRAN compiler handles signea numbers. In this paper we explore several
methods for producing the correct residues on the two most popular series of 1's
complement machines~-the SRU 1107-1108 and the Control Data Corporation (CDCjﬁéOOO and
CYBER group. In working with both the SRU and CDC series, we treat the "one-line
generators" in the sense of the authors [1]1.

Actually, the FORTRAN routines suggested by Marsaglia and Bray do not produce
random values in the usual sense, i.e. fractional values distributed U(O,l)lg
instead, they produce signed integer residues that must be transformed.
in this paper-we present several methods for producing residues using the
FORTRAN language and compare the execution times for these methods., Each method
produces an integer satisfying the usual linear congruence relation; however,
differences in the generated residues necessitate slight variations in the
conversion of the integers to uniform random variates, i.e. values distributed

1 : .)
U(0,1). For example, both imstructioms above produce positive and negative

1 . s
“The(no§§t10n U(0,1) is used to represent the distribution of values uniformly
on (0,1).

residues, and some test is required to assure that the negative residues produce

positive uniform variates,

METHODS FOR PRQDUCING UNIFORM VARTATES
SRU 11071108
We compare four methods for random number generation in FORTRAN on the SRU
1107-1108, In each case the value produced is assigned to an element of a one-
dimensional array RANUM. For each method below, the variables IX and IA repreéent
the values Xi and a respectively in the congruence relationship
Xi4q = %y (wod 239), 1=0,1,2,,., .

We also note that the FORTRAN V compiler for the SRU machines contains several
non-standard features that are used o advantage. Since our investigation is
specific to 1's complement machines, we perceive no gain in restriciting our

comparisons to the standard subset of the language.

Signed Regidue Method

This method uses the single statement suggested by Grosenbaugh [2] to
produce signed residues, i,e. both negative and positive residues. A test is
required to detect the negative values and to transform them to a congruent
positive residue modulo 23°,2 Division by 235 then produces the uniform variate,

IX=IX*IA+(ISIGN(1,IX*IA)—ISIGN(l;IX))/2

IY=1X

IF(1X.LT.0) IY=IX+34359738367
RANUM(1)=1Y/34359738368.0

2The generation of "least positive residues modulo 236" actually refers to the
generation of the complete sets of negative and positive residues modulo 233,

Unsigned (Positive) Residue Method

An obvious shortcoming of the above technique is the necessity for testing
to defermine the sign of the generated residues. We develop an alternative that
eliminates the explicit test by using the MINO funetion.

IX=IX*IA—MINO(0,ISIGN(34359738362,IX*IA))

RANUM(I)=IX/34359738368.0

Magked Sign (FLD Function) Method

FORTRAN V on the SRU 1108 enables bit manipulation capability using the

intrinsic function, FLD(J,K,E)[3,5.3]. The arguments of the function are:

I

J = an INTEGER expression with value 0 = J:< 35,
£ = an INTEGER expression with value 1 < k‘< 36, and

E = any INTEGER, REAL, or LOGICAL expression, a Hollerith woxd,
or a typeless function,

The FLD function extracts a field (or bit string) of X bits from the 36 bit string
represented by F beginning with the bit J (counted from left to right where the
zero bit is the left most bit of E). After the extracted bit string is right just-
ified, the remaining bits are set to zexo, Below the FLD function is used to simply
mask the sign bit, i.e. the sign bit is always set to zero thus producing a positive
value,

IX=FLD(1, 35, IX*TA)

RANUM(I)=1IX/34359738368.0

Logical Mask Method

The fourth method utilizes the logical conjunction operation, which is possible
using the AND function in FORTRAN V, By applying the AND function with 230 - 1
(34359738367) as the second argument, we create a mask to assure that the product
is the correct positive residue modulo 235,

IX=AND (IX*A, 34359738367)
RANUM(I)=1%/34359738368.0

CDC 6000 and CYBER

The peculiar feature of the CDC hardware is the lack of an integer
multiply in the imstruction set. An integer multiply is accomplished using
the floating point multiply, which inherently restricts the integer product
to 48 bits. Thus the maximum integer value we may obtain is 248 _ 1, wo
overflow occurs in the sign field since only the lower 48 bits are returned
as the result of an arithmetic operation'£ﬁ];1EThisfe1imiﬁatés the netessity of

checking for negativernumbers.

Unsigned (Positive) Residue Method

No test is required to detect negative values. Division by 248 produces
the uniform variate.
IX=TX*TA
RANDUM(I)=1IX/281474976710656.0

Logical Mask Method

The second method utilizes the logical operator OR to mask in the appropriate
-exponent (1717)g. This produces an unnormalized floating point number with an
exponent of 248,

IX=IX*TA
RANUM(I)=0R(171700000000000000008, IX)

COMPARISON OF GENERATION TIMES.

An identical sequence of U{(0,1l) random variates is generated by each of

these methods for the respective machines; the prominent issue is the velative "cost”

of using one method over another. To obtain an objective comparison of each method,

the following experimental conditions are imposed:

1)

(2)

(3)

(4)

(5)

(6)

Each method is inserted in a block of FORTRAN code,

illustrated in Figure 1 without the accompanying output and
documentation statements.

Three different values are used for the linear multiplier (IA) on
the SRU 1108 to remove any effect of a specific set of wvalues. Each
multiplier has been found to produce satisfactory results for the
spectral test formulated by Knuth [5,:p. 88]. Aliso,each multiplier
‘has. shown. satisfactory performance when subjected Lo a battery of
tests [7]. The initial value of the sequence (IX) on-the SRU 1108
remains as 56329 for all runs., For the CDC 6000-CYBER series a
single multiplier was used, and six independent samples (for both
5000 and 20000) were generated to obtain timing values.

Sequences of length 5000 and 20,000 are generated based on the
value assigned to MAXN.

A timing subroutine (TIMER) on the SRU 1108 is inserted to record

the execution time for the DO loop containing each generation method,
While this time includes that necessary for the DO statement as well
as the linkage necessary for TIMER, the time values provide accurate

rrélative comparisons. An equivalent timing subroutine (SEcoND);ig”

used on the CDC 6000-CYBER,

For the SRU 1107-1108 series, programs were executed on an SRU 1103,
using FORTRAN V : LEVEL 6.0.

For the CDC 6000-CYBER series, programs were executed on a CYBER-72,
using FTN.: VERSION 3.0.

The results are summarized in Tabkla 1.

For the SRU 1107-1108 series, the logical mask method realizes the least

execution

time although its advantage over the masked sign metheod is rather small,

The unsigned residue method requires approximately 32 percent more execution time

than the logical mask method (83/63). Inclusion of the explicit test in the signed

residue method imposes a cost of approximately 78 percent in execution time

efficiency. These comparative values, based on the generation times for a

sequence of length 5000, are increased slightly for a sequence of 20,000 values.

For the CDC 6000-CYBER series,

30 percent more execution time than the logical mask method (135,6/105.5 and

546.8/419.0).

SRU 1107-1108

DIMENSION IS(2)

DIMENSION RANUM(20000)
TA=5%%15

IX=56329

MAXN=5000

CALL TIMER(IS)

JB=5000%IS (1)+(4999-15(2))
DO 1 I=1,MAXN

METHOD

RANUM(T)=1X/34359738368.0
CALL TIMER(IS)

JE=5000*IS (1)+(4999-15(2))
TIME={(JE~JB) %200

.

the unsigned residue method requires approximately

CDC 6000 and CYBER
¥

..

IA=55364538 ,
IX=12743214774131558
MAXN=5000
T1=SECOND (A)

DO 1 I=1,MAXN
IX=TX*TA

METHOD

. .CONTINUED . .
"T2<BECONB(A)

TIME=T2-T1

Figure 1, The Execution Time Comparison Programs
(documentation and output statements omitted)

SRU 1107-1108 Timing Results

Methods

Sequence Signed3 Unsigned Masked Logical
Multipliers (TA) Length Residue Residue Sign Mask
5%%15 5000 111,.8 83.4 64,4 63.4

20000 457,2 335.4 259.4 247.8
3141592221 5000 112,8 83.4 64.8 61.0

20000 450,2 334.6 259.4 247.8
2718281821 5000 112.8 83.2 64.6 60,8

20000 448.6 334.6 259.6 244,83

CDC 6000~CYBER Timing Results

Methods :iuwio s
Sequence * Unsigned Logical
Multiplier (IA) Length Residues Mask
5536458 5000 135.6 105.5
20000 546,8 419,0

Table 1. Execution Times for Gemerators (in milliseconds)4

In thedir paper cited above, Marsaglia and Bray note that composite generators

A COMPOSITE GENERATOR

can be constructed from simple one-line generators without inordinate loss of

speed,

increase periodicity and/or to improve statistical performance,

The need for a composite generator, of course, 1s based on the desire to

By combining two

3Marsaglia and Bray [1] give the speed of their generator for the SRU 1108 as

49,000/second.,

Our results for the signed residue method, indicated by

L. R, Grosenbaugh to be the method used by him, give the speed as approximately

45,000/ second.
essentially.

4No array was maintained for values generated on the CYBER-72.

Accepting either value, the comparative results are not altered

simple generators above, we obtain an efficient composite generator of the same
type as proposed in the earlier work of MacLaren and Marsaglia [6]., The
technique suggested by MaclLaren and Marsaglia utilizes one generator to identify
a location in a 128-element table, A second generator produces values to be
inserted into, and later retrieved from, the location computed by the first
generator, Of course, the table must bepfilled with values from the second
generator before the combination procedure can begin,

The implementation of the composite generator requires four FORTRAN state-
ments in addition to the division operation to return the uniform variate,

IX=AND (IX*IA, 34359738367)

IXJ=AND (IXJ*TAJ, 34359738367)

NUM=FLD (1,6, IXJ)}+1

RANUM(I)=ITABLE (NUM)/34359738368.0

ITABLE (NUM)=IX
Note that the logical mask method is used to generate the values inserted into
the table (IX) and to provide a value from which the table location (IXJ) is
:determined., The FLD function selects the six must significant bits to give a
value in the interval [0,127].

Comparative execution times for our composite generator and that of
Marsaglia and Bray [1] are shown in Table 2. For ourrgenerator the execution
times are converted to a generation rate to facilitate comparison with the earlier
results. Results are given for two runs at each level (5000 and 20000) since the

timing values can vary slightly due to the manner of allocating overhead on the

SRU 1108,

Number Generated 5000 20000

Method Run 1 Run 2 Run 1 Run 2
Nance & Overstreet 123.8 1i5.2 485.8 465.4
(Execution time in ms)
Nance & Overstreet 40,000/, 43,500/ | 41,000/ | 43,000/
(Conversion of above sec sec sec sec
values to generation

; rate)

i

MacLaren & Marsaglia
{(Composite In~Line)

16,5007 sec

Table 2.

Comparison of Generation Times for Composite Generator

10

SUMMARY

Random number generators can be programmed in FORTRAN using several methods
on 1's complement machines. We have presented several methods for the SRU 1107-
1108 and CDC 6000 and CYBER series, the two most popular that utilize 1's
complement arithmetic. We believe the £;gical mask method to be the most
efficient technique based on execution time on both machines,. This method
requires only a little more than one-half the time of the signed residue method
on the SRU 1107-1108 and a little more than two-thirds the time of the unsigned
residue method on the CDC 6000-CYBER,

A fast composite generator in FORTRAN uses the logical mask method combined
with the FLD function to implement the table approach of MacLaren and Marsaglia

[6]. This generator proves to be more than twice as fast as a previeus one for

the SRU 1108, [1].

11

REFERENCES

Marsaglia, George and T. A, Bray, 'One-Line Random Number Generators and
Their Use in Combinations", Comm., ACM, 11(11): November 1968, 757-759.

Grosenbaugh, L, R,, "More on Fortran Random Number Generators', Comm.
ACM, 12(11): November 1969, 639,

-
FORTRAN V Programmers Reference Manual, Univac Data Processing Division
UP-4060, 1966,

Control Data 6400/6600 Computer Systems Reference Manual, Pub. No. 60100000,
Control Data Corporation, 1966. -

Knuth, D. E., The Art of Computer Programming: Volume 2/Seminumerical
Algorithms, Addison-Wesley, 1969.

MacLaren, M. D. and George Marsaglia, "Uniform Random Number Generators",
J. ACM, 12(1): January 1965, 83-89,

Overstreet, Claude, Jr., "A FORTRAN V Package for Testing and Analysis of
Pseudorandom Number Generators", Technical Report CP-72009, Computer Science/
Operations Research Center, Southern Methodist University, March 1972.

10

SUMMARY

Random number generators can be programmed in FORTRAN using several methods
on 1's complement machines. We have presented several methods for the SRU 1107-
1108 and CDC 6000 and CYBER series, the two most popular that utilize 1's
complement arithmetic, We believe the logical mask method to be the most
efficient technique based on execution time on both machines, This method
requires only a little more than one-half the time of the signed residue method
on the SRU 1107-1108 and a little more than two-thirds the time of the unsigned
residue method on the CDC 6000-CYBER,

A fast composite generator in FORTRAN uses the logical mask method combined
with the FLD function to implement the table approach of MacLafeu and Marsaglia
[6]. This generator proves to be more than twice as fast as a previeus one for

the SRU 1108, [1].

