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2.0  Design Optimization Problem Formulation

2.1  General Formulation

Numerical optimization is a vast field which has been the subject of numerous text books

[1,103,104]. To keep the scope of the discussion focused in this section, only gradient-

based (sometimes referred to as first-order) methods will be treated. The solution procedure

for gradient-based methods may be decomposed into four distinct steps: (a) evaluation of

the objective function, F , to be minimized or maximized and any constraints, C j , to be

imposed, (b) evaluation of the gradients of the objective function, ∇F , and constraints,

∇Cj , with respect to the vector of design variablesβk , commonly referred to as sensitivity

derivatives, (c) determination of the search direction,   
v 
s , upon which the design variables

will be updated, and (d) determination of the optimum step length, α , along this search

direction (termed line search). Techniques to accomplish these steps will be discussed in

this, and subsequent, chapters.

Formally, the aforementioned procedure for constrained minimization may be stated as

minimize
βk

F βk( ) (2.1)

subject to the vector of inequality constraints

  C j βk( ) ≤
v 
0 j = 1, ncon (2.2)

and possible side constraints on the vector of design variables

βk
l ≤ βk ≤ βk

u k = 1, ndv (2.3)



19

where βk
l  and βk

u  are the lower and upper bounds of the design variables, respectively.

The design variables during the mth design cycle may be updated as

  βk
m = βk

m−1 + α
v 
s m−1 (2.4)

with the corresponding objective function

  
F βk

m( ) = F βk
m−1 + α

v 
s m−1( ) = F α( ) (2.5)

Thus, while searching in the direction of   
v 
s , the design problem reduces from ndv variables

to the determination of the scalar step length that minimized the objective function along the

search direction. The iterative process of determining the step length,α , is referred to as

the one-dimensional or line search algorithm, and will be discussed in section 2.3.2.

For gradient-based optimization methods, the search direction is determined using first

derivatives of the objective function and constraints with respect to the vector of design

variables. This is not to say that the search direction is soley based in first-derivative

information. It is possible to estimate second-order derivatives using the computed first

derivatives. When the evaluation of the objective function and constraints are also a

function of a state vector Q βk( ), whose value requires the satisfaction of a corresponding

state equation R Q,βk( ) = 0 , several alternatives exist for evaluating the needed sensitivity

derivatives. The above optimization procedure will be denoted as traditional gradient-based

numerical optimization when the state equation is exactly satisfied at each iteration (also

known as a design feasible approach) during the design process.

2.2  Systems Governed by Partial Differential Equations

For aerodynamic optimization, the state equation is comprised of a system of partial

differential equations (PDE). At this point differentiation of the system of PDE can be

performed at one of two levels. The first method, termed the continuous or variational
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approach, differentiates the PDE prior to discretization. This method utilizes fundamental

calculus of variations to define an adjoint set of equations to the continuous governing

PDE. Subsequently, these adjoint equations are discretized and solved. The second

method, termed the discrete approach, differentiates the PDE after discretization. In the

present work, the discrete approach is adopted. For a more detailed discussion of the

continuous approach to aerodynamic design optimization, the interested reader is directed to

the literature [10,41,48,52,105].

For discrete aerodynamic shape sensitivity analysis the objective function and constraints

may, in general, be expressed as F Q,X, βk( )  and C j Q, X, βk( ) , respectively. Here, Q  is

the disciplinary state vector on which the objective or constraint is defined, X  is the

computational mesh over which the PDE is discretized, and βk  is the vector of design

variables which control the shape of the configuration. The sensitivity derivatives of the

objective function, ∇F , and the constraints, ∇Cj , may be simply evaluated by finite

differences; however, this approach is not only computationally expensive, it has been

found at times to produce highly inaccurate gradient approximations. The preferable

approach is to obtain the discrete sensitivity derivatives quasi-analytically via

∇F =
∂F

∂βk
+

∂F

∂Q

 
 
  

 

T
∂Q

∂β k
+

∂F

∂X

 
 

 
 

T ∂X

∂βk
 (2.6a)

∇Cj =
∂Cj

∂βk
+

∂C j

∂Q

 
 
  

 
 

T
∂Q

∂βk
+

∂C j

∂X

 
 
  

 
 

T
∂X

∂βk
 (2.6b)

To compute the sensitivity derivatives in Eqs.(2.6a,b), the sensitivity of the state vector

∂Q ∂βk  is needed. It should be noted that the sensitivity of the state vector is comprised of

two parts; an interior cell contribution and a boundary contribution. The origins of these

components will be discussed in greater detail in a later section. Nevertheless, this
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approach is referred to as the direct differentiation method and results in the difficulty of

solving an extremely large system of linear equations. The number of systems needing to

be solved is equal to the number of design variables, ndv. If, in the design problem under

consideration, the sum of the objective function and constraints is less than the number of

design variables (i.e., ncon+1 < ndv), a more efficient alternative approach may be

formulated. This method is referred to as the discrete-adjoint variable approach, and may be

written as

∇F =
∂F

∂βk
+

∂F

∂X

 
 

 
 

T ∂X

∂βk
− λF

T ∂R

∂X

∂X

∂βk
 (2.7a)

∇Cj =
∂C j

∂βk
+

∂C j

∂X

 
 
  

 
 

T
∂X

∂βk
− λC j

T ∂R

∂X

∂X

∂βk
 (2.7b)

where λF  and λC j
 are adjoint vectors defined in such a way as to eliminate the dependence

of the objective function and constraints on the design variables, and R is the disciplinary

state equation. Similar to the direct differentiation approach, these adjoint vectors must be

defined at both interior cells and boundary points. Furthermore, this method requires the

solution of ncon+1 linear systems, and will be discussed in section 3.3.2.

The equations and methods used in the current work to obtain the state vectors for the

aerodynamic system, and the sensitivity of this state vector, will be presented in chapters to

follow.

2.3  Gradient-Based Numerical Optimization

As posed in Eq.(2.4), the first task in producing the design variable update during the mth

design cycle relies on the determination of a search direction. The choice of this search

direction is not unique, but must be such that small changes in the design variables in this
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direction improve the objective function without violating the constraints. Once a search

direction has been found, all points located along this direction may be expressed in terms

of a scalar step length. The design problem then reduces to finding the step length that

produces the best possible design along the given search direction. The methods used in the

present work to determine the search direction and step length are discussed below.

2.3.1  Search Direction Determination

For unconstrained problems, the most well known method for determining the search

direction is the steepest descent method. This steepest descent direction is simply

  

v 
s =−

∇F

∇F
(2.8)

where ⋅  denotes the Euclidean norm. This search direction is insufficient for constrained

minimization problems, however, since it does not account for constraint boundaries. The

steepest descent method would produce a useable direction (i.e., any direction that will

reduce the objective function), but not a feasible direction (i.e., any direction that for a

small step in this direction, the design does not violate any constraint). Mathematically, a

useable direction is one in which

  
v 
s T ⋅∇F < 0 (2.9)

and a feasible direction satisfies

  
v 
s T ⋅∇C j > 0 j ∈ IA (2.10)

where IA is the set of critical, or near active, constraints for the current design.

Thus there are two criteria for the determination of a search direction: (1) reduce the

objective function as much as possible, and (2) keep away from the constraint boundaries

as much as possible. The technique used in the present work to determine this search
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direction is the method of feasible directions [106,107]. This method solves a maximization

problem for the search direction as

  
maximizev 

s 
ξ (2.11a)

subject to

  −
v 
s T ⋅∇C j + θ j ξ ≤ 0 j ∈ IA (2.11b)

  
v 
s T ⋅∇F + ξ ≤ 0 (2.11c)

  
v 
s T ⋅

v 
s ≤ 1 (2.11d)

where the θ j  are positive numbers called push-off factors which determine how far the

design will move from the constraint boundaries. Note that in the above optimization

problem, the components of the search direction are the design variables to be determined;

the search is therefore called a direction-finding process [107]. For maximum reduction in

the objective function the θ j  may be set to zero. The solution to the above maximization

problem then becomes   ξ =−
v 
s T ⋅∇F . Furthermore, for finite values of θ j , if the solution

to Eq.(2.11) above results in ξ > 0  then a useable-feasible direction has been determined,

and if ξ = 0  then the current design satisfies the necessary conditions for an isolated local

minimum, e.g., the Kuhn-Tucker necessary conditions.

2.3.2  Line Search Algorithm

When the optimization process reaches the line search algorithm, the design problem has

been converted from ndv variables to one that consists of finding the scalar step length that

best improves the design along the predetermined search direction (see Eq.(2.5)). Several

techniques are available to accomplish this one-dimensional search. Typical examples are

bracketing methods [108], polynomial interpolation [109], and the Golden Section method

[110,111]. Bracketing methods attempt to “bracket” the minimum between two points
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through recursive function evaluation. Polynomial interpolation evaluates the function at

several sample points, and then constructs a polynomial fit of the data from which the

minimum can easily be found. These methods, however, assume that the minimum exists

in the space of the points tested, and usually rely on a bracketing method to first determine

the upper and lower bounds. The Golden Section method first assumes that the one-

dimensional design space is unimodal, i.e., only one minimum exists. Then, by optimum

placement of the sample points, the minimum is systematically found. As shown in Ref. 1,

a relationship exists to determine the total number of function evaluations required to obtain

a specified interval of uncertainty about the function minimum. A more detailed discussion

of this algorithm may be found in references 1,103,110, and 111. The shortcoming to each

of these techniques is the large number of function evaluations required to determine the

optimum step length along the line search for highly nonlinear problems. In the current

work, the computational costs of evaluating the objective function is excessive and the

design space tends to be highly nonlinear. Thus, a constant increment, ∆α , is chosen in

advance to traverse the design space, and for the nth iteration of the line search the step

length is

αn = α n−1 + ∆α (2.12)

This method approaches the optimum step length in one direction, and has the advantage of

only perturbing the design slightly between successive iterations. Hence, the solution to the

state equations at one iteration may be used as a good initial guess at subsequent steps.


