

Efficient Binary Field Multiplication on a VLIW DSP

Christian Sean Tergino

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science

In
Computer Engineering

Patrick Schaumont
Wuchun Feng
Michael Hsiao

June 18, 2009
Blacksburg, VA

Keywords: Binary Field, Galois Field, GF, Multiplication, Digital Signal Processor, Very
Long Instruction Word, Modular Multiplication, C64x+, Heterogeneous Multiprocessors,

Copyright 2009, Christian Sean Tergino

Efficient Binary Field Multiplication on a VLIW DSP

Christian Sean Tergino

ABSTRACT

 Modern public-key cryptography relies extensively on modular multiplication

with long operands. We investigate the opportunities to optimize this operation in a

heterogeneous multiprocessing platform such as TI OMAP3530. By migrating the long-

operand modular multiplication from a general-purpose ARM Cortex A8 to a specialized

C64x+ VLIW DSP, we are able to exploit the XOR-Multiply instruction and the inherent

parallelism of the DSP. The proposed multiplication utilizes Multi-Precision Binary

Polynomial Multiplication with Unbalanced Exponent Modular Reduction. The resulting

DSP implementation performs a GF(2233) multiplication in less than 1.31us, which is

over a seven times speed up when compared with the ARM implementation on the same

chip. We present several strategies for different field sizes and field polynomials, and

show that a 360MHz DSP easily outperforms the 500MHz ARM.

 iii

ACKNOWLEDGEMENTS

 I would like to thank all of my instructors and advisors throughout my time at

Virginia Tech. I would specifically like to thank my advisory committee members

Michael Hsiao and Wuchun Feng. A special thanks goes to my advisor Patrick

Schaumont, who has spent a good deal of time helping guide my research. I also would

like to thank my research group and my fellow students for their support.

 iv

FOREWORD

 This is an expanded version of a paper submitted to International Symposium on

System-on-Chip on May 29th, 2009. It is currently under review.

 v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION...1

CHAPTER 2: BACKGROUND..3

 2.1 Prime Field vs. Binary Field..3

 2.2 Binary Field...4

 2.3 NIST Finite Fields..4

 2.4 Montgomery's Algorithm...5

 2.5 Karatsuba Multiplication...6

 2.6 Unbalanced Exponent Modular Reduction..6

 2.7 Texas Instruments Beagle Board and OMAP3530..8

 2.8 Texas Instruments TMS320C64x+ DSP..9

 2.9 Related Work..10

CHAPTER 3: PROPOSED METHOD..11

 3.1 Multi-Precision Binary Polynomial Multiplication...11

 3.2 Unbalanced Exponent Modular Reduction..13

CHAPTER 4: METHODOLOGY..15

CHAPTER 5: RESULTS..24

 5.1 Tools and Environment..24

 5.2 Execution Times on the OMAP3530..24

 5.3 Cycle Count Compared To Other Implementations...28

 5.4 Reduction Results...29

CHAPTER 6: FUTURE WORK..33

 6.1 Improving Binary Field Multiplication..33

 6.2 Implementing a Cryptosystem on the C64x+...34

 6.3 Finite Field Multiplications on Other Processors...34

CHAPTER 7: CONCLUSIONS..35

REFERENCES..36

 vi

LIST OF FIGURES

FIGURE 1: TEXAS INSTRUMENTS BEAGLE BOARD……………………………………………7

FIGURE 2: OMAP3530 FUNCTIONAL BLOCK DIAGRAM……………………………………..8

FIGURE 3: BLOCK DIAGRAM OF THE C64X+ DSP…………………………………….…….9

FIGURE 4: MULTI-PRECISION BINARY POLYNOMIAL MULTIPLICATION….…………………..11

FIGURE 5: EXECUTION DIAGRAM OF A MULTIPLICATION………………………………...…12

FIGURE 6: UNBALANCED EXPONENT MODULAR REDUCTION……………………….………14

FIGURE 7: DESIGN FLOW FOR DEVELOPING SOFTWARE FOR THE C64X+……………..……15

FIGURE 8: EXECUTION TIMES OF MULTIPLICATIONS…………………………………..…..25

FIGURE 9: MULTIPLICATION EXECUTION CYCLES PER BIT……………………………...….26

FIGURE 10: MULTIPLICATION EXECUTION CYCLES PER BIT
2
 ON C64X+……………….…..26

FIGURE 11: MULTIPLICATION EXECUTION CYCLES PER BIT
2
 ON ARM…………..……..…..27

FIGURE 12: MULTIPLICATION EXECUTION CYCLES PER BIT RAISED TO THE LOG23……...…27

FIGURE 13: AN ARM WITH MULGF VERSUS OUR IMPLEMENTATION………………….…...29

FIGURE 14: CYCLES FOR UNBALANCED EXPONENT MODULAR REDUCTION………………...30

FIGURE 15: PERCENTAGE OF EXECUTION TIME NEEDED FOR REDUCTION……………........31

 vii

LIST OF TABLES

TABLE I: NIST PRIME FIELD SIZES…………………………………………………….……5

TABLE II: NIST BINARY FIELD IRREDUCIBLE POLYNOMIALS ………..………………………..5

TABLE III: MODULAR MULTIPLICATION ON THE TI OMAP3530…………………………….25

TABLE IV: CYCLES FOR MODULAR MULTIPLICATION……………………………………….28

TABLE V: CYCLES FOR UNBALANCED EXPONENT MODULAR REDUCTION…….………..…....29

TABLE VI: CYCLE PERCENTAGE FOR REDUCTION……………………………………..……32

1

CHAPTER 1

INTRODUCTION

Modern mobile devices frequently make use of heterogeneous multi-processors,

which allows them to execute a mix of multimedia applications and general-purpose

information technology. The parallelism, as well as the architectural heterogeneity,

ensures that these chips are very energy-efficient. For example, the TI OMAP3530 runs

off less than 500mA at 5V [1]. However, this efficiency is only available when

applications can optimally exploit the features of the architecture. This means that

software applications must be developed with the specialized platform features in mind.

Indeed, these features are typically ignored by general-purpose software compilers, and

require either a clever, architecture-aware programmer, or else a specialized software

library.

In this thesis we consider the efficient execution of modular multiplication of long

operands. Modular multiplication is a cornerstone of public-key cryptography, and it is

used in algorithms such as ECC, RSA and DSA. Most known software optimizations of

cryptographic modular multiplications assume standard processor architectures, and focus

on the algorithm. Some well-known examples are modular multiplications with

Montgomery or Barrett reduction, or multiplication based on Karatsuba decomposition

[2]. However, rather than developing new algorithms, we investigate the opportunities

offered by a heterogeneous Multi-Processor System on Chip (MPSoC) architecture.

We investigate the implementation of modular multiplications on Texas

Instrument's OMAP3530, which has an ARM Cortex A8 and a TI C64x+ DSP. We will

use the C64x+ DSP in the OMAP3530 as a cryptographic accelerator. There are two

arguments for this. The first is that this DSP is a Very Long Instruction Word (VLIW)

architecture, which enables parallelism. The second is that the DSP has an XOR-Multiply

 2

(XORMPY) instruction, which can accelerate binary field multiplications in GF(2m).

Neither of these features is available on the ARM.

Because cryptographic operands typically are several hundreds of bits long, and

because the C64x+ DSP is a 32-bit processor, we have to implement modular

multiplications using multi-precision arithmetic, based on combining XORMPYs, XORs

and shifts. We call this operation Multi-Precision Binary Polynomial Multiplication

(MPBPM). The contribution of our work is an efficient implementation of MPBPM on the

C64x+ DSP. We also present two efficient modular reduction techniques based on

Unbalanced Exponent Modular Reduction (UEMR) [3]. While these algorithms are

known, we are not aware of any Binary Field Multiplication implementations optimized

for the C64x+ DSP. Our results show that the resulting binary field multiplication

executes six times faster on the DSP when compared with the ARM. This comparison is

made against an ARM which runs an optimized modular multiplication algorithm at a

higher clock frequency.

The remainder of this thesis is organized as follows. Chapter 2 introduces Finite

Fields and the TI OMAP3530. Chapter 3 presents our proposed methods for Multi-

Precision Binary Polynomial Multiplication and Unbalanced Exponent Modular

Reduction. Our methodology is explained in Chapter 4. Results are given in Chapter 5.

Possible future work on this topic is discussed in Chapter 6, and conclusions are drawn in

Chapter 7.

 3

CHAPTER 2

BACKGROUND

 This chapter reviews prime field and binary field arithmetic, Unbalanced

Exponent Modular Reduction, Montgomery's algorithm, Karatsuba Multiplication, the TI

Beagle Board, OMAP3530 and C64x+.

2.1 Prime Field vs. Binary Field

ECC, a very popular public-key cryptographic primitive, is implemented over

GF(p), a prime field, or GF(2m), a binary field. The National Institute of Standard and

Technology (NIST) recommends five specific prime fields and five specific binary fields,

with curves defined for each. GF(p) defines a finite field of integers, where its elements

are {0, 1, 2, 3, ..., p-2, p-1} and p is a prime number. Every operation is performed modulo

p. GF(2m) defines a Finite Field of binary polynomials, i.e. polynomials whose

coefficients are each 0 or 1. The maximal term in a number in GF(2m) is x
m-1. Every

operation in this field is performed modulo an irreducible polynomial, f(x).

 GF(p) is popularly implemented in software while GF(2m) is usually implemented

in hardware. GF(2m) multiplications are faster than GF(p) in hardware because there are

no carries, which results in a reduced critical path [4]. It is also quicker to compute the

inverse in a binary field versus a prime field [2]. On the other hand, GF(p) multiplications

are faster than GF(2m) in software because processors have integer multipliers built into

them. GF(2m) relies on binary polynomial multiplications and a large majority of

processors do not have support for this. However, the C64x+ does have support for binary

polynomial multiplication for Reed Solomon based error control coding [5]. This special

purpose hardware can also be utilized by cryptographic algorithms by implementing

MPBPM.

 4

2.2 Binary Fields

Binary field numbers are within GF(2m) and are represented in the form

 A(x) = a0x
0 + a1x

1 + a2x
2 + … + am-2x

m-2 + am-1x
m-1, (1)

where each coefficient ai = {0, 1}. Registers can easily represent these numbers where

each bit in a word is a coefficient. For each binary field, an irreducible polynomial f(x) is

defined:

 f (x) = T(x) + xm, (2)

 T(x) = x
0 + t1x

1 + t2x
2 + … + tm-2x

m-2
 + tm-1x

m-1, (3)

where every coefficient, ti = {0, 1}. All operations in GF(2m) are performed modulo f(x).

Addition and subtraction are equivalent to performing a bitwise Exclusive-OR between

the two operands. The first step of multiplication, Binary Polynomial Multiplication

(BPM), is similar to integer multiplication. In the second step, partial products are added

together, which is equivalent to performing bitwise Exclusive-ORs. Performing this BPM,

C(x) = A(x)B(x) yields

 C(x) = c0x
0 + c1x

1 + c2x
2 + … + c2m-3x

2m-3 + c2m-2x
2m-2. (4)

The product must be reduced to remain within GF(2m), which is done by performing C(x)

mod f (x).

2.3 NIST Finite Fields

 NIST recommends the usage of five prime fields and five binary fields. The NIST

prime fields are GF(p192), GF(p224), GF(p256), GF(p384) and GF(p521). The prime

fields are referred to in the form of GF(pn), where n is the number of bits needed to

represent the prime modulo, p. Therefore, GF(p192) means that the field has p elements,

where p is a 192-bit prime number. The p values are shown for each NIST Prime Field in

Table I.

 The NIST Binary Fields are referred to in the form GF(2m), where m is the number

of bits in the binary field. NIST has recommended an irreducible polynomial for each

 5

binary field. These polynomials are chosen to make computations in that field very

efficient. Each of these irreducible polynomials has either three or five terms and the

biggest term in T(x) is less than x
m/2. The NIST binary fields are GF(2163), GF(2233),

GF(2283), GF(2409) and GF(2571). Table II displays the irreducible polynomial for each

NIST Binary Field.

TABLE I. NIST PRIME FIELD SIZES
TABLE II. NIST BINARY FIELD

IRREDUCIBLE POLYNOMIALS

2.4 Montgomery's Algorithm

 Montgomery's algorithm is commonly used to speed up reduction. In prime field,

there exists a k such that 2k-1 < p < 2k. Let r be 2k and let the p-residue of a number � be

�� � � · � ��	
 ��. The Montgomery product of two p-residues, �� and
�, is �� � �� ·
� ·

 ��� ��	
 �� � � · � ��	
 ��. Thus, � can be calculated by performing Montgomery

Reduction: � � �� · ��� ��	
 �� [6].

 For example, if p = 11 then � = 16 and ��� = 9 because � · ��� ��	
 11� � 1.

Let � � 5 and
 � 4. Then �� � 5 · 16 ��	
 11� � 3 and
� � 4 · 16 ��	
 11� � 9. Let

� � � ·
 ��	
 ��. Therefore �� � 3 · 9 · 9 ��	
 11� � 1 and � � 1 · 9 ��	
 11� � 9.

 Performing Montgomery Reduction is faster than regular reduction (dividing by

p). Performing more multiplication with the same operands will reduce the total execution

time because the p-residue needs to only be calculated once for each number [7]. This

algorithm can similarly be applied to binary fields.

NIST

Prime Field
Field Size

GF(p192) 2192 - 264 - 20

GF(p224) 2224 - 296 + 20

GF(p256) 2256 - 2224 + 2192 + 296 - 20

GF(p384) 2384 - 2128 - 296 + 232 - 20

GF(p521) 2521 - 20

NIST

Binary Field

Irreducible

Polynomial

GF(2163) x
163 + x7 + x6 + x3 + x0

GF(2233) x
233 + x74 + x0

GF(2283) x
283 + x12 + x7 + x5 + x0

GF(2409) x
409 + x87 + x0

GF(2571) x
571 + x10 + x5 + x2 + x0

 6

2.5 Karatsuba Multiplication

 The Karatsuba method can be used to reduce the execution time for large operand

multiplication. This method replaces some multiplications with additions and subtractions.

With a base b, if an operand x has two digits, (x1x0), and operand y has two digits, (y1y0),

then their product z is

 z = (x1y1)b
2 + (x0y1 + x1y0)b + (x0y0). (8)

Karatsuba showed that a multiplication can be eliminated from (8). The middle coefficient

is equivalent to

 x1y0 + x0y1 = (x0y0 + x0y1 + x1y0 + x1y1) - x1y1 - x0y0 (9)

 x1y0 + x0y1 = (x0 + x1)(y0 + y1) - x1y1 - x0y0. (10)

Therefore (8) can be rewritten as

 z = (x1y1)b
2 + ((x0 + x1)(y0 + y1) - x1y1 - x0y0)b + (x0y0). (11)

 For examples, if b = 102 and x = 2345 and y = 6789, then x1 = 23, x0 = 45, y1 = 67

and y0 = 89. Traditionally, to calculate z = x · y, one would calculate �45 · 89� � �45 ·

67 � 23 · 67�10� � �23 · 67�10�, which has four multiplications. Using Karatsuba

Multiplication, one would calculate z0 = 45 · 89 � 4005 and z2 = 23 · 67 � 1541 first.

Next, z1 would be calculated as follows: z1 = �45 � 23� · �89 � 67� - z2 - z0 � 5062.

Hence, z = z0 + z1b + z2b
2 = 4005 � 5062 · 10� � 1541 · 10� = 15920205, which is

equal to 2345 · 6789.

 (11) has two more additions and subtractions but one less multiplication than (8).

Traditional multiplication is performed in O(n2) because every word must be multiplied by

every other word. Karatsuba Multiplication can be performed in O(nlog
2
3) [8].

2.6 Unbalanced Exponent Modular Reduction

Shen, Jin and You proposed using Unbalanced Exponent Modular Reduction over

binary fields in [3]. C(x) can be divided into two parts as shown in (5).

 7

 Since C(x) = Cl(x) + Ch(x)xm
 (5)

 and T(x) ≡ x
m mod f(x) (6)

 then C(x) ≡ Cl(x) + Ch(x)T(x) mod f(x) (7)

Both Cl(x) and Ch(x) are within GF(2m). Because of (6), (7) can be performed and repeated

until Ch(x) is zero, in which case C(x) is completely reduced. When the largest nonzero

term in T(x) is xk and k <

�
, then (7) need only be performed twice. This is the case for all

NIST Binary Fields.

 For example in GF(24), f(x) = x4 + T(x) and T(x) = x + 1. Multiplying (x3 + x + 1)

(x2 + x) yields C(x) = x5 + x4 + x3 + x2 + x2 + x = x5 + x4 + x3 + x. Therefore Cl(x) = x3 + x

and Ch(x) = x + 1. To reduce this product using UEMR, we multiply Ch(x) by T(x), which

gives (x + 1)(x + 1) = x2 + x + x + 1 = x2 + 1. We take this and add it to Cl(x), which

yields x3 + x2 + x + 1. Since now Ch(x) is zero, the product is completely reduced. If the

Ch(x) was not zero, this process would be repeated.

Figure 1. Texas Instruments Beagle Board [1]. Photo by Gerald Coley of
BeagleBoard.org.

 8

2.7 Texas Instruments Beagle Board and OMAP3530

 The Beagle Board, shown in Figure 1, is a development board manufactured by

Texas Instruments and available for purchase through DigiKey for $149. This board

contains an OMAP3530, 128MB DDR RAM, 256 MB Flash, an SD Card Reader and a

variety of I/O ports. The Beagle Board consumes less than 2500mW and can be powered

by a USB port [1].

 The TI OMAP3530 is a multiprocessor system in a Package-On-Package

implementation built using 65nm technology [9]. It contains an ARM Cortex A8 and a

TMS320C64x+ DSP [1]. Figure 2 depicts its Functional Block Diagram.

 The ARM Cortex A8 is an applications processor based on the ARMv7

architecture and consumes less than 300mW [10]. The Cortex A8 supports Thumb-2

technology and is implemented with 16KB Instruction L1 Cache, 16KB Data L1 Cache

and 256KB L2 Cache [9].

Figure 2. OMAP3530 Functional Block Diagram.

 9

2.8 Texas Instruments TMS320C64x+ DSP

 The C64x+ is a VLIW processor with 32KB of L1 Program Cache, 80KB of L1

Data Cache, and 96KB of L2 Cache [9]. It contains two identical data paths, each with

four functional units. Each instruction is 32-bits and the processor can execute 8

instructions every cycle. Therefore every VLIW instruction fetch is 256-bits. The

processor contains two register files, one for each data path. Each register file has 32 32-

bit registers. The registers and data paths are shown in Figure 3. Each functional unit can

optionally retrieve an operand from a register in the other data path. Shifts can be

performed by the functional units .S1 and .S2. XORs, ANDs, and ORs can be performed

by the functional units .S1, .S2, .D1, .D2, .L1 and .L2. Multiplications can be performed

by .M1 and .M2 [11]. So in one cycle, the C64x+ can perform two shifts, four XORs and

two multiplies. Alternatively, the C64x+ can perform six XOR instructions and two

multiply instructions every cycle. Therefore an addition in GF(2m) can take just

⌈m/�32·6�⌉ clock cycles. Thus binary field addition can be performed faster on the C64x+

when compared to the ARM, since an ARM can only execute one 32-bit XOR every

cycle.

Figure 3. Block Diagram of the C64x+ DSP.

The C64x+ contains an XOR-Multiply (XORMPY) instruction, which is identical

to a normal multiplication except that the partial products are XORed together instead of

added. This is ideal for binary polynomial multiplication. The operand sizes for XORMPY

are limited to 32-bits and 9-bits and the product size is limited to 32-bits.

 10

2.9 Related Work

 In [12], cryptosystems were implemented on the Texas Instruments

TMS320C6201 DSP. The authors used Montgomery's algorithm for prime field

multiplication on the DSP. This paper shows that RSA, DSA and ECC can run fast on a

VLIW DSP.

 In [13], the architecture of the TMS320C6201 was considered when enhancing an

algorithm to perform modular multiplication. Gastaldo, Parodi and Zunino produced a

45% reduction in cycles for 2048-bit prime field multiplications using Montgomery's

algorithm. Like [13], we analyze a DSP's architecture to help speed up modular

multiplication. However, we instead use binary fields and Unbalanced Exponent Modular

Reduction.

 [14] shows that binary field multiplication can be sped up greatly by adding an

instruction set extension, MULGF, to an ARM. MULGF performs 32-bit by 32-bit binary

polynomial multiplication. However, adding this extension requires implementing the

processor on an FPGA, which is not lower power, or designing a new ASIC, which takes

significant time and resources. We will utilize a similar instruction, XORMPY, which is

already part of the C64x+. Therefore our method requires no hardware design or

implementation.

 11

CHAPTER 3

PROPOSED MULTIPLICATION METHOD

 In this chapter we present our proposed method for Multi-Precision Binary

Polynomial Multiplication and our proposed implementations for Unbalanced Exponent

Modular Reduction.

3.1 Multi-Precision Binary Polynomial Multiplication

 We propose using the XORMPY instruction to perform Multi-Precision Binary

Polynomial Multiplications. XORMPY puts its result in a 32-bit register. Since its

operands are limited to 32-bits and 9-bits, the results extends out by 8-bits (32+9-1). Since

Figure 4. Multi-Precision Binary Polynomial Multiplication: Partial products from
24-bit by 8-bit XORMPY are XORed into 32-bit products.

 12

we need all bits in the result, the sum of the number of bits in the operands must be less

than or equal to 33 (not 32 because there are no carries). To keep everything byte-aligned,

we propose performing 24-bit by 8-bit XORMPYs. Figure 4 shows an operand, "A", being

multiplied by an operand, "B." Operand "A" must be shifted into 24-bit subwords. Each

subword can then be multiplied by each byte of the "B" operand. This will produce partial

products which can then be XORed together to form a complete product, "P". Figure 4

shows the formation of the partial products and complete product.

+

P[i]

A0 A1 P[i+1]

P[i+2]

<< >>

+ +

A2 A3

<< >>

<< >>+ +

+

A4

+

+ << >>

A5

+ +

P[i+3]

P[i+4]

B0

A6

<< >>

+ +

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Cycle 12

X
O
R
M
P
Y

X
O
R
M
P
Y

X
O
R
M
P
Y

X
O
R
M
P
Y

X
O
R
M
P
Y

X
O
R
M
P
Y

X
O
R
M
P
Y

L
O
A
D

L
O
A
D

L
O
A
D

L
O
A
D

L
O
A
D

L
O
A
DST

ST

ST

ST

ST ST

P[i+5]

P[i]

P[i+1]

P[i+2]

P[i+3]

P[i+4] P[i+5]
Figure 5. Execution diagram of a multiplication between a 24-bit word of operand A
and a byte of operand B in GF(2163)

 Performing the XORMPY operations and then shifting and XORing the result is

the most computationally intensive part of this algorithm. Given the C64x+'s parallelized

architecture, this series of instructions can be computed quickly. The DSP can perform

two XORMPYs, two shifts along with four XOR operations every cycle. Figure 5 shows

the execution diagram of the formation of the partial products using the "First Byte"

portrayed in Figure 4. Figure 5 details the dependency and ability to take advantage of the

parallelized architecture of the C64x+. The rows represent cycles and the columns show

concurrent operations. Even though only two XORMPYs can be dispatched every cycle,

 13

more than two XORMPYs can be executed concurrently. For example in Cycle 5, one

XORMPY is starting to execute, but six other XORMPY instructions are also being

executed. In Cycle 8, three XOR instructions, two Shift instructions and one Store

instruction are all executed in parallel.

3.2 Unbalanced Exponent Modular Reduction

After the full polynomial product is formed, it must be reduced into GF(2m). We

propose using Unbalanced Exponent Modular Reduction [3].

The irreducible polynomial is usually known at compile time, and based on this

we propose using one of two methods for Unbalanced Exponent Modular Reduction. If

three of four or more terms in T(x) are within 9 bits of each other, then it is beneficial to

use XORMPYs, shifts and XORs to reduce the product. Else, it is more efficient to shift

and add for reduction.

If most of terms in T(x) are within a 9-bit window, then these terms can fit in the

9-bit operand of XORMPY. Therefore, XORMPY can be used by multiplying T(x) by

Ch(x) using 24-bits at a time. This is similar in time and resources to multiplying one byte

of operand B by all 24-bit words of operand A. If there is a term that is not within this

window, shifts and adds can be used implement that bit's multiplication.

For example, in the case of GF(2163), the irreducible polynomial is: f(x) = x163 + x7

+ x
6 + x

3 + x
0. So T(x) = x

7 + x
6 + x

3 + x
0 (0xC9). Performing the first iteration of

reduction requires T(x) be multiplied with seven 24-bit words. The next and final iteration

requires T(x) be multiplied with one 24-bit word. The left diagram of Figure 6 shows a

325-bit product being reduced to GF(2163).

When most of the set bits are not in a 9-bit window of the irreducible polynomial,

it is more effective to manually multiply the upper bits. Instead of calling XORMPY, for

coefficient ti which is 1 in T(x), shift all bits m and greater to the right m-i bits. For each

term produced, XOR them together and with the original bits below m.

 14

Figure 6. Unbalanced Exponent Modular Reduction. Left: Reduction over GF(2163)
using MPBPM. Right: Reduction over GF(2233) using shifts and adds.

For GF(2233), the irreducible polynomial, f (x), is x233 + x74 + x0. To reduce, we

shift all bits above bit 232 to the right 233, then XOR them with the bits occupying bits

232-0. We XOR that result with Ch(x) shifted to the right 233-74 = 159 bits. Since the

result extends out over 233 bits, these steps must be repeated once more. This is shown in

the right diagram of Figure 6.

 15

CHAPTER 4

METHODOLOGY

 We used the TI C6x C Compiler to build our program. All of our coding was in C.

The compiler has built-in functionality which recognizes when the function "_xormpy()"

is written in a C program it refers to the XORMPY instruction. Given the inherent

parallelism of the DSP, the compiler attempts to make the best use of its hardware when

compiling the source code. Optimizing code for a processor with eight parallel functional

units that can all access the same registers is complicated. The compiler can produce very

different binary files by just switching the order of a few C statements, even if the

resulting executable will have the exact same functionality. Therefore our design cycle,

depicted in Figure 7, had some added steps to try to get the most out of the compiler.

Figure 7. Design flow for developing software for the C64x+.

First, we developed the algorithm and pseudo code. Next, we wrote the C code

and compiled it. Then we went through a few cycles of debugging and fixing the C Code.

Once the program was functioning properly, we worked on optimizing the resulting

 16

binary, by optimizing the C code. Some techniques we used to help reduce execution

time are listed below:

• Put C statements which could be executed in parallel, adjacent to each other

• Unroll and roll loops

• Adjust the number of temporary variables

• Do not access registers modified by instructions with delay slots soon after

dispatched

After making one of the above changes, we would compile the modified program

and compare its assembly listing file to the previous iteration's assembly listing. If the

new listing file looked more optimized, we would work on further optimizing this new C

file. Else, we would go back to the previous iteration's C file and try different

optimizations. We considered an assembly listing more optimized if the number of cycles

needed decreased from the previous listing file.

The following C Code displays the main loop for a GF(2163) multiplication. The

compiled assembly listing of this code is listed immediately following the C Code. Each

line in the assembly listing starting with "| |" indicates it is being dispatched in parallel

with the preceding instruction. Counting every instruction not preceded by "| |", gives a

good estimate for the number of cycles needed to perform that group of instructions.

Therefore, assuming there are no cache misses, each iteration in this loop will take 96

cycles. There will be a very limited number of cache misses because the L1 Data Cache

is 80KB and the data required for this multiplication is much less than 1KB. There are

227 total instructions being executed in these 96 cycles, including 23 cycles of NOPs

(No-Operation instructions). Therefore, each cycle an average of 2.13 instructions are

being dispatched in parallel, excluding NOPs. This loop will run for 5 iterations, so it

takes a total of 96 · 5 = 480 cycles.

 The subsequent listing shows the same C Code with only two modifications. First,

instead of using one variable to compute the partial products, seven variables are used

(one for each partial product computed for each byte of operand "b"). Second, all

 17

XORMPY instruction calls for the same byte of operand "b", are written on consecutive

lines, and all XOR and shift instruction calls for that byte are also written consecutively.

Even though this has the exact same functionality as the previous C code, compiling this

gives much different results. The resulting assembly listing is given after the optimized C

code. If there are no cache misses, each iteration of this loop will take 43 cycles. Since

there are a total of 165 instructions (with no NOPs) being executed in these 43 cycles,

each cycle an average of 3.84 instructions are being dispatched. Since this is executed for

five iterations, this section of the code requires 43 · 5 = 215 cycles. This is a speed up of

2.23 when compared with the unoptimized C code.

This drastic difference in cycles can be surprising since there was no algorithmic

change. However, this shows the importance of being architecturally-aware when writing

code for a VLIW processor.

 18

Unoptimized C Code Snippet from GF(2
163

)

Multi-Precision Binary Polynomial Multiplication

99 for(i=0; i<5; i++)

100 {
101

102 b = 0xFF&opb[i];

103
104 p = _xormpy(shifted[0], b);

105 final[i] ^= p;

106
107 p = _xormpy(shifted[1], b);

108 final[i] ^= (p << 24);

109 final[i+1] ^= (p >> 8);

110

111 p = _xormpy(shifted[2], b);

112 final[i+1] ^= (p << 16);

113 final[i+2] ^= (p >> 16);

114

115
116 p = _xormpy(shifted[3], b);

117 final[i+2] ^= (p << 8);

118 final[i+3] ^= (p >> 24);

119
120 p = _xormpy(shifted[4], b);

121 final[i+3] ^= p;

122
123 p = _xormpy(shifted[5], b);

124 final[i+3] ^= (p << 24);

125 final[i+4] ^= (p >> 8);

126

127 p = _xormpy(shifted[6], b);

128 final[i+4] ^= (p << 16);

129 final[i+5] ^= (p >> 16);

130
131

132
133 b = (0xFF00&opb[i]) >> 8;

134
135 p = _xormpy(shifted[0], b);

136 final[i] ^= (p << 8);

137 final[i+1] ^= (p >> 24);

138

139 p = _xormpy(shifted[1], b);

140 final[i+1] ^= (p);

141
142 p = _xormpy(shifted[2], b);

143 final[i+1] ^= (p << 24);

144 final[i+2] ^= (p >> 8);

145

146 p = _xormpy(shifted[3], b);

147 final[i+2] ^= (p << 16);

148 final[i+3] ^= (p >> 16);

149

150 p = _xormpy(shifted[4], b);

151 final[i+3] ^= (p << 8);

152 final[i+4] ^= (p >> 24);

153

154 p = _xormpy(shifted[5], b);

155 final[i+4] ^= (p);

156
157 p = _xormpy(shifted[6], b);

158 final[i+4] ^= (p << 24);

159 final[i+5] ^= (p >> 8);

160
161

162
163 b = (0xFF0000&opb[i]) >> 16;

164
165
166 p = _xormpy(shifted[0], b);

167 final[i] ^= (p << 16);

168 final[i+1] ^= (p >> 16);

169
170 p = _xormpy(shifted[1], b);

171 final[i+1] ^= (p << 8);

172 final[i+2] ^= (p >> 24);

173

174 p = _xormpy(shifted[2], b);

175 final[i+2] ^= (p);

176
177 p = _xormpy(shifted[3], b);

178 final[i+2] ^= (p << 24);

179 final[i+3] ^= (p >> 8);

180
181 p = _xormpy(shifted[4], b);

182 final[i+3] ^= (p << 16);

183 final[i+4] ^= (p >> 16);

184
185 p = _xormpy(shifted[5], b);

186 final[i+4] ^= (p << 8);

187 final[i+5] ^= (p >> 24);

188
189 p = _xormpy(shifted[6], b);

190 final[i+5] ^= p;

191
192
193

194 b = (0xFF000000&opb[i])>>24;

195

196 p = _xormpy(shifted[0], b);

197 final[i] ^= (p << 24);

198 final[i+1] ^= (p >> 8);

199
200 p = _xormpy(shifted[1], b);

201 final[i+1] ^= (p << 16);

202 final[i+2] ^= (p >> 16);

203

204 p = _xormpy(shifted[2], b);

205 final[i+2] ^= (p << 8);

206 final[i+3] ^= (p >> 24);

207
208 p = _xormpy(shifted[3], b);

209 final[i+3] ^= (p);

210

211 p = _xormpy(shifted[4], b);

212 final[i+3] ^= (p << 24);

213 final[i+4] ^= (p >> 8);

214

215 p = _xormpy(shifted[5], b);

216 final[i+4] ^= (p << 16);

217 final[i+5] ^= (p >> 16);

218
219 p = _xormpy(shifted[6], b);

220 final[i+5] ^= (p << 8);

221 final[i+6] ^= (p >> 24);

222
223
224 }

 19

Assembly Output from Compiling Unoptimized C Code Snippet from

GF(2
163

) Multi-Precision Binary Polynomial Multiplication

;*---*

;* SOFTWARE PIPELINE INFORMATION

;*

;*Loop source line : 99

;*Loop opening brace source line : 100

;*Loop closing brace source line : 224

;* Known Minimum Trip Count : 5

;* Known Maximum Trip Count : 5

;* Known Max Trip Count Factor : 5

;*Loop Carried Dependency Bound() : 69

;* Unpartitioned Resource Bound : 34

;* Partitioned Resource Bound(*) : 40

;* Resource Partition:

;* A-side B-side

;* .L units 0 0

;* .S units 21 26

;* .D units 40* 27

;* .M units 11 17

;* .X cross paths 28 21

;* .T address paths 40* 39

;*Long read paths 0 0

;*Long write paths 0 0

;*Logical ops (.LS) 0 0

;* Addition ops (.LSD) 29 34

;* Bound(.L .S .LS) 11 13

;* Bound(.L .S .D .LS .LSD) 30 29

;*

;*---*

CL1: ; PIPED LOOP PROLOG

;** ---*

 LDW .D2T2 *B16,B4 ; |102| <0,0>

 NOP 4

 EXTU .S2 B4,24,24,B8 ; |102| <0,5>

 LDW .D2T1 *+SP(32),A21 ; |127| <0,6>

|| XORMPY .M2 B19,B8,B4 ; |109| <0,6>

 XORMPY .M2 B6,B8,B7 ; |118| <0,7>

 LDW .D1T1 *++A18,A5 ; |105| <0,8>

|| LDW .D2T2 *B5++,B7 ; |105| <0,8>

|| XORMPY .M2 B18,B8,B21 ; |111| <0,8>

 LDW .D2T1 *+B5(4),A3 ; |113| <0,9>

|| LDW .D1T2 *+A18(8),B7 ; |113| <0,9>

|| XORMPY .M2 B20,B8,B9 ; |105| <0,9>

 NOP 1

 XORMPY .M1X A21,B8,A3 ; |129| <0,11>

|| SHL .S2 B7,8,B22 ; |120| <0,11>

 LDW .D2T2 *+B5(16),B7 ; |125| <0,12>

|| XORMPY .M1X A20,B8,A8 ; |123| <0,12>

|| SHRU .S2 B7,24,B23 ; |118| <0,12>

 LDW .D2T1 *+B5(12),A4 ; |125| <0,13>

|| XORMPY .M2 B17,B8,B4 ; |121| <0,13>

|| XOR .L2 B9,B7,B9 ; |105| <0,13>

|| SHRU .S2 B21,16,B8 ; |113| <0,13>

 STW .D2T2 B9,*-B5(4) ; |107| <0,14>

|| XOR .L2 B7,B23,B8 ; |118| <0,14>

|| XOR .S2X A3,B8,B7 ; |113| <0,14>

|| SHRU .S1X B4,8,A4 ; |109| <0,14>

 SHL .S1X B4,24,A4 ; |111| <0,15>

|| XOR .L1 A5,A4,A6 ; |109| <0,15>

|| MV .L2 B8,B23 ; |120| <0,15>

|| XOR .S2 B7,B22,B22 ; |120| <0,15>

|| STW .D2T2 B7,*+B5(4) ; |116| <0,15>

 SHL .S1 A8,24,A7 ; |124| <0,16>

|| SHRU .S2X A3,16,B9 ; |129| <0,16>

|| XOR .L1X B9,A4,A4 ; |111| <0,16>

|| STNDW .D2T2 B23:B22,*+B5(4); |120| <0,16>

|| MV .D1 A6,A5 ; |111| <0,16>

 SHRU .S1 A8,8,A3 ; |125| <0,17>

|| SHL .S2X A3,16,B22 ; |129| <0,17>

|| XOR .L2 B8,B4,B4 ; |121| <0,17>

|| STNDW .D2T1 A5:A4,*-B5(4) ; |111| <0,17>

 SHL .S2 B21,16,B4 ; |112| <0,18>

|| XOR .L1 A4,A3,A3 ; |125| <0,18>

|| XOR .L2X B4,A7,B8 ; |124| <0,18>

|| STW .D2T2 B4,*+B5(8) ; |123| <0,18>

 XOR .L2X A6,B4,B4 ; |112| <0,19>

|| STW .D1T2 B8,*+A18(8) ; |124| <0,19>

 MV .L2X A3,B4 ; |125| <0,20>

|| STW .D2T2 B4,*B5 ; |112| <0,20>

 XOR .L2 B7,B9,B9 ; |129| <0,21>

|| XOR .S2X A3,B22,B8 ; |129| <0,21>

|| STW .D2T2 B4,*+B5(12) ; |127| <0,21>

 STNDW .D2T2 B9:B8,*+B5(12) ; |129| <0,22>

 LDW .D2T2 *B16,B4 ; |133| <0,23>

 NOP 4

 EXTU .S2 B4,16,24,B7 ; |133| <0,28>

 XORMPY .M2 B20,B7,B4 ; |137| <0,29>

 LDW .D1T1 *+A18(12),A7 ; |152| <0,30>

|| XORMPY .M2 B17,B7,B8 ; |150| <0,30>

 LDW .D1T2 *A18,B7 ; |137| <0,31>

|| XORMPY .M1X A19,B7,A4 ; |148| <0,31>

 LDW .D2T2 *-B5(4),B4 ; |139| <0,32>

|| XORMPY .M1X A21,B7,A3 ; |159| <0,32>

 XORMPY .M1X A20,B7,A6 ; |155| <0,33>

|| SHL .S2 B4,8,B9 ; |139| <0,33>

 LDW .D1T1 *+A18(4),A6 ; |144| <0,34>

|| XORMPY .M2 B18,B7,B9 ; |142| <0,34>

|| SHRU .S2 B8,24,B21 ; |152| <0,34>

 LDW .D1T1 *+A18(16),A5 ; |152| <0,35>

|| XORMPY .M2 B19,B7,B21 ; |140| <0,35>

|| SHRU .S2 B4,24,B4 ; |137| <0,35>

|| XOR .L2X A7,B21,B26 ; |152| <0,35>

 LDW .D1T1 *+A18(8),A5 ; |144| <0,36>

|| XOR .L2 B7,B4,B7 ; |137| <0,36>

|| SHL .S2X A4,16,B22 ; |150| <0,36>

 XOR .L2 B4,B9,B24 ; |139| <0,37>

|| SHL .S1 A3,24,A5 ; |159| <0,37>

|| SHRU .S2X A3,8,B23 ; |159| <0,37>

|| MV .D2 B7,B25 ; |139| <0,37>

 XOR .L1X A7,B21,A3 ; |152| <0,38>

|| XOR .L2X B26,A6,B4 ; |155| <0,38>

|| STNDW .D2T2 B25:B24,*-B5(4); |139| <0,38>

 SHRU .S1X B9,8,A3 ; |144| <0,39>

|| XOR .L2 B7,B21,B4 ; |140| <0,39>

|| XOR .S2X B4,A5,B24 ; |159| <0,39>

|| STW .D2T1 A3,*+B5(12) ; |154| <0,39>

|| STW .D1T2 B4,*+A18(12) ; |157| <0,39>

 SHL .S2 B9,24,B7 ; |143| <0,40>

|| SHRU .S1 A4,16,A4 ; |148| <0,40>

|| XOR .L2X A5,B23,B25 ; |159| <0,40>

|| STW .D1T2 B4,*A18 ; |142| <0,40>

 SHL .S2 B8,8,B7 ; |151| <0,41>

|| XOR .L1 A5,A4,A3 ; |148| <0,41>

 20

|| XOR .S1 A6,A3,A4 ; |144| <0,41>

|| XOR .L2 B4,B7,B4 ; |143| <0,41>

|| STNDW .D1T2 B25:B24,*+A18(12);|159| <0,41>

 MV .L1 A3,A5 ; |150| <0,42>

|| STW .D2T1 A4,*+B5(4) ; |146| <0,42>

|| XOR .S1X A4,B22,A4 ; |150| <0,42>

|| STW .D1T2 B4,*A18 ; |143| <0,42>

 XOR .L1X A3,B7,A3 ; |151| <0,43>

|| STNDW .D1T1 A5:A4,*+A18(4) ; |150| <0,43>

 STW .D1T1 A3,*+A18(8) ; |151| <0,44>

 LDW .D2T2 *B16,B4 ; |163| <0,45>

 NOP 4

 EXTU .S2 B4,8,24,B8 ; |163| <0,50>

 XORMPY .M2 B17,B8,B7 ; |181| <0,51>

 NOP 1

 XORMPY .M1X A19,B8,A3 ; |179| <0,53>

 LDW .D1T1 *+A18(12),A5 ; |183| <0,54>

|| XORMPY .M2 B20,B8,B4 ; |168| <0,54>

|| XORMPY .M1X A20,B8,A4 ; |187| <0,54>

 LDW .D1T1 *+A18(4),A6 ; |172| <0,55>

|| XORMPY .M2 B19,B8,B9 ; |170| <0,55>

 LDW .D1T1 *A18,A17 ; |168| <0,56>

|| SHL .S1X B7,16,A8 ; |182| <0,56>

 LDW .D1T1 *-A18(4),A17 ; |170| <0,57>

|| XORMPY .M2 B18,B8,B21 ; |175| <0,57>

|| SHL .S1 A3,24,A9 ; |181| <0,57>

 LDW .D1T1 *+A18(16),A4 ; |183| <0,58>

|| SHRU .S1 A4,24,A7 ; |187| <0,58>

 LDW .D1T2 *+A18(8),B7 ; |172| <0,59>

|| SHRU .S2 B9,24,B21 ; |172| <0,59>

|| SHRU .S1X B4,16,A16 ; |168| <0,59>

 XOR .L2X A6,B21,B7 ; |172| <0,60>

|| SHRU .S1X B7,16,A6 ; |183| <0,60>

 SHL .S2 B9,8,B7 ; |171| <0,61>

|| SHL .S1X B4,16,A16 ; |170| <0,61>

|| XOR .L1 A5,A6,A6 ; |183| <0,61>

|| XOR .D1 A17,A16,A5 ; |168| <0,61>

|| XOR .L2 B7,B21,B4 ; |175| <0,61>

|| STW .D2T2 B7,*+B5(4) ; |174| <0,61>

 XORMPY .M1X A21,B8,A4 ; |190| <0,62>

|| XOR .L1 A17,A16,A16 ; |170| <0,62>

|| SHL .S2X A4,8,B8 ; |189| <0,62>

|| STW .D1T2 B4,*+A18(4) ; |177| <0,62>

|| STW .D2T1 A6,*+B5(12) ; |185| <0,62>

|| MV .S1 A5,A17 ; |170| <0,62>

 XOR .L1 A4,A7,A3 ; |187| <0,63>

|| SHRU .S2X A3,8,B9 ; |179| <0,63>

|| XOR .S1X A5,B7,A4 ; |171| <0,63>

|| STNDW .D1T1 A17:A16,*-A18(4) ; |170|

<0,63>

 MV .L1 A3,A5 ; |189| <0,64>

|| XOR .L2 B7,B9,B7 ; |179| <0,64>

|| XOR .S1X A6,B8,A4 ; |189| <0,64>

|| STW .D1T1 A4,*A18 ; |171| <0,64>

 XOR .L2X B4,A9,B8 ; |181| <0,65>

|| MV .S2 B7,B9 ; |181| <0,65>

|| STNDW .D1T1 A5:A4,*+A18(12); |189| <0,65>

 XOR .L2X B7,A8,B4 ; |182| <0,66>

|| STNDW .D1T2 B9:B8,*+A18(4) ; |181| <0,66>

 XOR .L1 A3,A4,A3 ; |190| <0,67>

|| STW .D1T2 B4,*+A18(8) ; |182| <0,67>

 STW .D1T1 A3,*+A18(16) ; |190| <0,68>

 LDW .D2T2 *B16++,B4 ; |194| <0,69>

 NOP 4

 SHRU .S2 B4,24,B4 ; |194| <0,74>

 NOP 1

 XORMPY .M2 B17,B4,B21 ; |211| <0,76>

|| XORMPY .M1X A21,B4,A16 ; |219| <0,76>

 XORMPY .M2 B19,B4,B22 ; |200| <0,77>

|| XORMPY .M1X A20,B4,A5 ; |217| <0,77>

 LDW .D1T2 *+A18(4),B7 ; |202| <0,78>

|| XORMPY .M2 B18,B4,B9 ; |206| <0,78>

 LDW .D1T1 *+A18(8),A3 ; |202| <0,79>

|| XORMPY .M2 B20,B4,B8 ; |198| <0,79>

 LDW .D1T1 *A18,A6 ; |198| <0,80>

|| SHL .S1 A16,8,A9 ; |220| <0,80>

 LDW .D1T1 *-A18(4),A7 ; |200| <0,81>

|| XORMPY .M1X A19,B4,A3 ; |209| <0,81>

|| SHL .S1 A5,16,A21 ; |219| <0,81>

 LDW .D1T1 *+A18(12),A22 ; |213| <0,82>

|| SHRU .S2 B9,24,B4 ; |206| <0,82>

|| SHL .S1X B22,16,A8 ; |201| <0,82>

 LDW .D2T1 *+B5(20),A6 ; |221| <0,83>

|| SHRU .S2 B22,16,B22 ; |202| <0,83>

|| SHRU .S1X B21,8,A17 ; |213| <0,83>

 LDW .D1T1 *+A18(16),A6 ; |213| <0,84>

|| SHL .S2 B9,8,B9 ; |208| <0,84>

|| XOR .L2X A3,B4,B7 ; |206| <0,84>

|| XOR .D2 B7,B22,B4 ; |202| <0,84>

|| SHRU .S1X B8,8,A4 ; |198| <0,84>

 SHL .S1X B8,24,A6 ; |200| <0,85>

|| XOR .L1 A6,A4,A4 ; |198| <0,85>

|| MV .L2 B7,B9 ; |208| <0,85>

|| XOR .S2 B4,B9,B8 ; |208| <0,85>

|| STW .D2T2 B4,*+B5(4) ; |204| <0,85>

[B0] SUB .L2 B0,1,B0 ; |99| <0,86>

|| SHL .S2 B21,24,B8 ; |212| <0,86>

|| XOR .L1 A7,A6,A6 ; |200| <0,86>

|| STNDW .D1T2 B9:B8,*+A18(4) ; |208| <0,86>

|| MV .S1 A4,A7 ; |200| <0,86>

 XOR .L2X B7,A3,B4 ; |209| <0,87>

|| [B0] B .S2 CL2 ; |99| <0,87>

|| SHRU .S1 A16,24,A7 ; |221| <0,87>

|| XOR .L1 A22,A17,A3 ; |213| <0,87>

|| STNDW .D1T1 A7:A6,*-A18(4) ; |200| <0,87>

 SHRU .S1 A5,16,A7 ; |217| <0,88>

|| XOR .L1 A7,A6,A5 ; |221| <0,88>

|| XOR .L2 B4,B8,B4 ; |212| <0,88>

|| STW .D1T2 B4,*+A18(8) ; |211| <0,88>

 XOR .L1 A6,A7,A4 ; |217| <0,89>

|| STW .D2T1 A5,*+B5(20) ; |221| <0,89>

|| XOR .S1 A4,A8,A5 ; |201| <0,89>

|| MV .L2X A3,B4 ; |213| <0,89>

|| STW .D1T2 B4,*+A18(8) ; |212| <0,89>

 MV .L1 A4,A7 ; |219| <0,90>

|| XOR .S1 A3,A21,A6 ; |219| <0,90>

|| STW .D1T1 A5,*A18 ; |201| <0,90>

|| STW .D2T2 B4,*+B5(12) ; |215| <0,90>

 XOR .L1 A4,A9,A3 ; |220| <0,91>

|| STNDW .D1T1 A7:A6,*+A18(12); |219| <0,91>

 STW .D1T1 A3,*+A18(16) ; |220| <0,92>

 NOP 5

 21

Optimized C Code Snippet from GF(2
163

) Multi-Precision

Binary Polynomial Multiplication

225 for(i=0; i<5; i++)
226 {
227
228 b = 0xFF&opb[i];
229
230 p = _xormpy(shifted[0], b);
231 p1 = _xormpy(shifted[1], b);
232 p2 = _xormpy(shifted[2], b);
233 p3 = _xormpy(shifted[3], b);
234 p4 = _xormpy(shifted[4], b);
235 p5 = _xormpy(shifted[5], b);
236 p6 = _xormpy(shifted[6], b);
237
238 final[i] ^= p;
239 final[i] ^= (p1 << 24);
240 final[i+1] ^= (p1 >> 8);
241 final[i+1] ^= (p2 << 16);
242 final[i+2] ^= (p2 >> 16);
243 final[i+2] ^= (p3 << 8);
244 final[i+3] ^= (p3 >> 24);
245 final[i+3] ^= p4;
246 final[i+3] ^= (p5 << 24);
247 final[i+4] ^= (p5 >> 8);
248 final[i+4] ^= (p6 << 16);
249 final[i+5] ^= (p6 >> 16);
250
251
252 b = (0xFF00&opb[i]) >> 8;
253
254 p = _xormpy(shifted[0], b);
255 p1 = _xormpy(shifted[1], b);
256 p2 = _xormpy(shifted[2], b);
257 p3 = _xormpy(shifted[3], b);
258 p4 = _xormpy(shifted[4], b);
259 p5 = _xormpy(shifted[5], b);
260 p6 = _xormpy(shifted[6], b);
261
262 final[i] ^= (p << 8);
263 final[i+1] ^= (p >> 24);
264 final[i+1] ^= (p1);
265 final[i+1] ^= (p2 << 24);
266 final[i+2] ^= (p2 >> 8);
267 final[i+2] ^= (p3 << 16);
268 final[i+3] ^= (p3 >> 16);
269 final[i+3] ^= (p4 << 8);
270 final[i+4] ^= (p4 >> 24);
271 final[i+4] ^= (p5);
272 final[i+4] ^= (p6 << 24);
273 final[i+5] ^= (p6 >> 8);
274
275
276
277 b = (0xFF0000&opb[i]) >> 16;

278
279
280 p = _xormpy(shifted[0], b);
281 p1 = _xormpy(shifted[1], b);
282 p2 = _xormpy(shifted[2], b);
283 p3 = _xormpy(shifted[3], b);
284 p4 = _xormpy(shifted[4], b);
285 p5 = _xormpy(shifted[5], b);
286 p6 = _xormpy(shifted[6], b);
287
288 final[i] ^= (p << 16);
289 final[i+1] ^= (p >> 16);
290 final[i+1] ^= (p1 << 8);
291 final[i+2] ^= (p1 >> 24);
292 final[i+2] ^= (p2);
293 final[i+2] ^= (p3 << 24);
294 final[i+3] ^= (p3 >> 8);
295 final[i+3] ^= (p4 << 16);
296 final[i+4] ^= (p4 >> 16);
297 final[i+4] ^= (p5 << 8);
298 final[i+5] ^= (p5 >> 24);
299 final[i+5] ^= p6;
300
301
302
303 b = (0xFF000000&opb[i])>>24;
304
305 p = _xormpy(shifted[0], b);
306 p1 = _xormpy(shifted[1], b);
307 p2 = _xormpy(shifted[2], b);
308 p3 = _xormpy(shifted[3], b);
309 p4 = _xormpy(shifted[4], b);
310 p5 = _xormpy(shifted[5], b);
311 p6 = _xormpy(shifted[6], b);
312
313 final[i] ^= (p << 24);
314 final[i+1] ^= (p >> 8);
315 final[i+1] ^= (p1 << 16);
316 final[i+2] ^= (p1 >> 16);
317 final[i+2] ^= (p2 << 8);
318 final[i+3] ^= (p2 >> 24);
319 final[i+3] ^= (p3);
320 final[i+3] ^= (p4 << 24);
321 final[i+4] ^= (p4 >> 8);
322 final[i+4] ^= (p5 << 16);
323 final[i+5] ^= (p5 >> 16);
324 final[i+5] ^= (p6 << 8);
325 final[i+6] ^= (p6 >> 24);
326
327
328 }

 22

Assembly Output from Compiling Optimized C Code Snippet from

GF(2
163

) Multi-Precision Binary Polynomial Multiplication

;*---*

;* SOFTWARE PIPELINE INFORMATION

;*

;* Loop source line : 99

;* Loop opening brace source line : 100

;* Loop closing brace source line : 202

;* Known Minimum Trip Count : 5

;* Known Maximum Trip Count : 5

;* Known Max Trip Count Factor : 5

;* Loop Carried Dependency Bound(^) : 32

;* Unpartitioned Resource Bound : 24

;* Partitioned Resource Bound(*) : 32

;* Resource Partition:

;* A-side B-side

;* .L units 0 0

;* .S units 29 18

;* .D units 8 32*

;* .M units 20 8

;* .X cross paths 13 28

;* .T address paths 20 32*

;* Long read paths 0 0

;* Long write paths 0 0

;* Logical ops (.LS) 0 0

;* Addition ops (.LSD) 23 27

;* Bound(.L .S .LS) 15 9

;* Bound(.L .S .D .LS .LSD) 20 26

;*

;*--*

CL3:; PIPED LOOP PROLOG

;** --*

 XORMPY .M1 A8,A7,A6 ; |110| <0,7>

 LDW .D1T1 *++A9,A5 ; |114| <0,8>

|| EXTU .S1 A22,8,24,A21 ; |155| <0,8>

|| XORMPY .M1 A18,A7,A4 ; |107| <0,8>

 LDW .D1T1 *+A9(16),A27 ; |123| <0,9>

|| EXTU .S1 A22,16,24,A24 ; |130| <0,9>

 LDW .D2T2 *B8++,B6 ; |114| <0,10>

|| LDW .D1T1 *+A9(12),A23 ; |123| <0,10>

|| XORMPY .M1 A19,A7,A6 ; |106| <0,10>

|| XORMPY .M2X B21,A7,B16 ; |114| <0,10>

|| SHL .S1 A4,24,A3 ; |118| <0,10>

 LDW .D2T2 *+B8(8),B5 ; |118| <0,11>

|| XORMPY .M2X B20,A24,B4 ; |132| <0,11>

|| SHRU .S1 A4,8,A23 ; |123| <0,11>

 LDW .D2T2 *+B8(4),B16 ; |118| <0,12>

|| XORMPY .M2X B20,A7,B9 ; |108| <0,12>

|| SHL .S1 A6,16,A25 ; |123| <0,12>

 SHRU .S1 A6,16,A26 ; |123| <0,13>

|| SHRU .S2X A4,24,B4 ; |118| <0,13>

 XOR .L1 A25,A23,A4 ; |123| <0,14>

|| SHL .S1 A4,8,A3 ; |118| <0,14>

|| SHRU .S2 B16,8,B7 ; |114| <0,14>

|| XOR .L2X A3,B4,B18 ; |118| <0,14>

 XORMPY .M1 A20,A7,A4 ; |114| <0,15>

|| SHL .S1 A6,16,A4 ; |114| <0,15>

|| XOR .L1 A27,A26,A7 ; |123| <0,15>

|| SHRU .S2X A6,16,B17 ; |118| <0,15>

|| XOR .D1 A23,A4,A6 ; |123| <0,15>

 XORMPY .M1 A8,A24,A3 ; |134| <0,16>

|| SHL .S1X B16,24,A3 ; |114| <0,16>

|| XOR .L2X A3,B17,B5 ; |118| <0,16>

|| XOR .S2 B5,B18,B17 ; |118| <0,16>

|| STNDW .D1T1 A7:A6,*+A9(12); |123| <0,16>

 XORMPY .M2X B20,A21,B16 ; |158| <0,17>

|| XOR .L1X A4,B7,A6 ; |114| <0,17>

|| XOR .L2 B16,B5,B16 ; |118| <0,17>

|| LDW .D2T2 *+B8(12),B6 ; |147| <0,17>

|| XOR .S2 B9,B17,B17 ; |118| <0,17>

 XORMPY .M1 A20,A24,A4 ; |137| <0,18>

|| XOR .L1X B6,A3,A3 ; |114| <0,18>

|| STNDW .D2T2 B17:B16,*+B8(4); |118| <0,18>

 XORMPY .M1 A19,A24,A5 ; |130| <0,19>

|| XOR .L1 A5,A6,A5 ; |114| <0,19>

|| XOR .S1 A4,A3,A4 ; |114| <0,19>

|| LDW .D2T1 *+B8(16),A7 ; |147| <0,19>

 XORMPY .M1 A17,A24,A3 ; |133| <0,20>

|| SHL .S1 A3,24,A6 ; |147| <0,20>

|| STNDW .D1T1 A5:A4,*-A9(4) ; |114| <0,20>

 XORMPY .M2X B21,A21,B9 ; |155| <0,21>

|| SHRU .S2 B16,16,B17 ; |172| <0,21>

|| SHRU .S1X B4,24,A5 ; |147| <0,21>

|| LDW .D2T2 *B8,B7 ; |137| <0,21>

 XORMPY .M2X B21,A24,B6 ; |137| <0,22>

|| SHL .S2 B4,8,B5 ; |142| <0,22>

|| XOR .L1 A6,A5,A6 ; |147| <0,22>

|| LDW .D2T2 *-B8(4),B18 ; |137| <0,22>

 XORMPY .M1 A18,A24,A3 ; |131| <0,23>

|| SHRU .S1 A3,8,A6 ; |147| <0,23>

|| SHRU .S2X A4,24,B4 ; |137| <0,23>

|| LDW .D2T2 *+B8(4),B18 ; |142| <0,23>

|| XOR .L1X B6,A6,A23 ; |147| <0,23>

 SHL .S2X A5,24,B6 ; |137| <0,24>

|| LDW .D2T2 *+B8(8),B6 ; |142| <0,24>

|| XOR .L1 A7,A6,A7 ; |147| <0,24>

|| XOR .S1 A3,A23,A6 ; |147| <0,24>

 XORMPY .M1 A20,A21,A4 ; |163| <0,25>

|| SHRU .S2X A5,8,B19 ; |142| <0,25>

|| XOR .L2 B6,B4,B4 ; |137| <0,25>

|| STNDW .D2T1 A7:A6,*+B8(12); |147| <0,25>

 XORMPY .M1 A17,A21,A3 ; |159| <0,26>

|| SHL .S2X A4,8,B7 ; |137| <0,26>

|| XOR .L2 B7,B4,B4 ; |137| <0,26>

|| LDW .D2T2 *+B8(12),B4 ; |172| <0,26>

 XORMPY .M1 A18,A21,A5 ; |157| <0,27>

|| SHL .S1 A3,16,A5 ; |142| <0,27>

|| XOR .L2 B18,B7,B6 ; |137| <0,27>

|| LDW .D2T2 *+B8(16),B5 ; |172| <0,27>

|| XOR .S2 B6,B4,B7 ; |137| <0,27>

 SHRU .S1 A22,24,A23 ; |180| <0,28>

|| SHRU .S2X A3,16,B4 ; |142| <0,28>

|| STNDW .D2T2 B7:B6,*-B8(4) ; |137| <0,28>

 SHRU .S1 A4,16,A7 ; |163| <0,29>

|| XOR .L2 B5,B4,B5 ; |142| <0,29>

|| XOR .S2X A5,B19,B4 ; |142| <0,29>

|| LDW .D2T2 *B8,B5 ; |163| <0,29>

 XORMPY .M1 A8,A21,A3 ; |160| <0,30>

|| SHL .S1 A3,8,A6 ; |172| <0,30>

|| XOR .L2 B6,B5,B7 ; |142| <0,30>

|| XOR .S2 B18,B4,B6 ; |142| <0,30>

|| LDW .D2T2 *-B8(4),B17 ; |163| <0,30>

 XORMPY .M1 A20,A23,A4 ; |188| <0,31>

|| XORMPY .M2X B21,A23,B6 ; |180| <0,31>

 23

|| SHL .S2 B16,16,B7 ; |168| <0,31>

|| SHL .S1X B9,8,A22 ; |163| <0,31>

|| STNDW .D2T2 B7:B6,*+B8(4) ; |142| <0,31>

 XORMPY .M1 A19,A21,A3 ; |156| <0,32>

|| SHRU .S1 A3,24,A3 ; |172| <0,32>

|| SHL .S2X A5,24,B16 ; |168| <0,32>

|| XOR .L1X A6,B17,A6 ; |172| <0,32>

|| LDW .D2T2 *+B8(4),B5 ; |168| <0,32>

 XORMPY .M1 A17,A23,A6 ; |184| <0,33>

|| XORMPY .M2X B20,A23,B9 ; |183| <0,33>

|| SHRU .S2 B9,24,B9 ; |168| <0,33>

|| XOR .L1 A22,A7,A21 ; |163| <0,33>

|| LDW .D2T2 *+B8(8),B7 ; |168| <0,33>

|| XOR .S1X B5,A3,A7 ; |172| <0,33>

 XORMPY .M1 A19,A23,A5 ; |181| <0,34>

|| SHL .S2X A4,16,B4 ; |163| <0,34>

|| XOR .L1X B4,A6,A6 ; |172| <0,34>

|| XOR .S1 A3,A7,A7 ; |172| <0,34>

 STNDW .D2T1 A7:A6,*+B8(12); |172| <0,35>

|| XOR .L2 B17,B4,B4 ; |163| <0,35>

|| XOR .S2X B5,A21,B5 ; |163| <0,35>

 XORMPY .M1 A8,A23,A6 ; |185| <0,36>

|| SHRU .S1 A4,8,A21 ; |188| <0,36>

|| SHRU .S2X A5,8,B16 ; |168| <0,36>

|| XOR .L2 B16,B9,B4 ; |168| <0,36>

|| STNDW .D2T2 B5:B4,*-B8(4) ; |163| <0,36>

 SHL .S1 A6,16,A25 ; |197| <0,37>

|| XOR .L2 B7,B16,B5 ; |168| <0,37>

|| XOR .S2 B5,B4,B4 ; |168| <0,37>

|| LDW .D2T2 *+B8(12),B4 ; |197| <0,37>

 SHL .S1 A5,8,A24 ; |192| <0,38>

|| XOR .L2 B7,B5,B5 ; |168| <0,38>

|| XOR .S2X A3,B4,B4 ; |168| <0,38>

|| LDW .D2T2 *+B8(16),B7 ; |197| <0,38>

 SHRU .S1 A6,16,A7 ; |197| <0,39>

|| STNDW .D2T2 B5:B4,*+B8(4) ; |168| <0,39>

 SHL .S1 A6,8,A8 ; |197| <0,40>

|| LDW .D2T2 *+B8(8),B6 ; |192| <0,40>

 LDW .D1T1 *+A9(20),A3 ; |199| <0,41>

|| SHL .S1X B6,16,A3 ; |188| <0,41>

|| LDW .D2T2 *-B8(4),B7 ; |188| <0,41>

[A0] SUB .L1 A0,1,A0 ; |99| <0,42>

|| SHRU .S1X B9,8,A22 ; |197| <0,42>

|| LDW .D2T2 *B8,B9 ; |188| <0,42>

 XOR .L1 A8,A7,A4 ; |197| <0,43>

|| SHRU .S1 A5,24,A8 ; |192| <0,43>

|| XORMPY .M1 A18,A23,A4 ; |182| <0,43>

|| SHL .S2X A4,24,B5 ; |188| <0,43>

|| LDW .D2T2 *+B8(4),B6 ; |192| <0,43>

|| LDW .D1T1 *A16++,A22 ; |102| <1,0>

 XOR .L1 A25,A22,A4 ; |197| <0,44>

|| XOR .D1X B7,A4,A5 ; |197| <0,44>

||[A0] B .S1 CL4 ; |99| <0,44>

|| SHRU .S2 B6,16,B7 ; |192| <0,44>

 SHRU .S1 A6,24,A6 ; |199| <0,45>

|| SHL .S2 B9,24,B4 ; |192| <0,45>

|| XOR .L2X A24,B7,B16 ; |192| <0,45>

|| XOR .L1 A3,A21,A7 ; |188| <0,45>

|| XOR .D1X B4,A4,A4 ; |197| <0,45>

|| LDW .D2T1 *+SP(32),A8 ; |110| <1,2>

 XOR .L1 A6,A3,A3 ; |199| <0,46>

|| XOR .L2X B4,A8,B4 ; |192| <0,46>

|| STNDW .D2T1 A5:A4,*+B8(12); |197| <0,46>

 STW .D1T1 A3,*+A9(20) ; |199| <0,47>

|| XOR .L2 B6,B4,B7 ; |192| <0,47>

|| XOR .S2 B7,B5,B4 ; |188| <0,47>

|| XOR .D2X B9,A7,B5 ; |188| <0,47>

 XOR .L2 B6,B16,B4 ; |192| <0,48>

|| STNDW .D2T2 B5:B4,*-B8(4) ; |188| <0,48>

|| XOR .S2X A4,B7,B5 ; |192| <0,48>

|| EXTU .S1 A22,24,24,A7 ; |106| <1,5>

 STNDW .D2T2 B5:B4,*+B8(4) ; |192| <0,49>

|| XORMPY .M1 A17,A7,A4 ; |109| <1,6>

24

CHAPTER 5

RESULTS

In this chapter, we discuss how we compiled our implementation. We compare our

implementation to a standard library and other implementations on an ARM, and we

analyze our results.

5.1 Tools and Environment

We wrote our implementations in C and was able to execute the XORMPY

instruction by using the "_xormpy()" function call. We compiled these implementations

using the TI C6x C Compiler using the -O3 option. It was run on the C64x+ at 360MHz

on an OMAP3530.

We compared our results by running modular multiplication using libcrypt on the

ARM Cortex A8 on the same OMAP3530. libcrypt is the cryptographic library which

OpenSSL uses. We compiled libcrypt using GCC with the -O3 option.

5.2 Execution Times on the OMAP3530

Table III shows our results. We can perform finite field multiplication faster using

the DSP despite the DSP running at a slower clock rate. Using our implementation, we can

perform binary field multiplication over seven times faster on the DSP when compared to

using libcrypt on the ARM for GF(2283) and smaller. We can perform GF(2233)

multiplications on the DSP over six times faster than prime field GF(p224) multiplications

on the faster ARM. There is a drop off in speed up as the field increases in size, with the

largest drop off at GF(2571). Figure 8 is a graph of the execution times of binary field

multiplication on the OMAP3530. These comparisons are relevant because these are two

TABLE III.

NIST

Field

500MHz ARM Cortex A8

libcrypt

Time (µs)

GF(2163) 6.62
GF(2233) 9.98
GF(2283) 15.44
GF(2409) 27.47
GF(2571) 45.53

GF(p192)a 6.80b
GF(p224)a 8.79b
GF(p256)a 9.28b

Figure 8. Execution times of multiplications in all NIST Binary Fields on the ARM
Cortex A8 using libcrypt and C64x+

processors implemented on the same SoC

technology.

 Figure 9 depicts a graph of

NIST Field. It shows that as the

bit needed to complete the multiplication also increa

0

5

10

15

20

25

30

35

40

45

50

GF(2^163)

T
im

e
 (

μ
s)

Execution Time of Binary Field

Multiplication on the TI OMAP3530

ARM (500MHz) C64x+ (360MHz)

25

I. MODULAR MULTIPLICATION ON THE TI OMAP3530

00MHz ARM Cortex A8

libcrypt
360MHz TI C64x+ DSP

Our Implementation

Cycles Time (µs) Cycles

3310 0.829 298
4990 1.31 472
7720 2.20 792

13735 4.43 1595
22765 11.60 4175
3400b - -
4395b - -
4640b - -

a. Montgomery Multiplication
b. Does not include overhead needed for Montgomery Multiplication

imes of multiplications in all NIST Binary Fields on the ARM
and C64x+ using our implementation.

processors implemented on the same SoC. So our results have factored out differences in

depicts a graph of multiplication execution cycles per bit vs.

It shows that as the number of bits in the NIST Field increase, the cycles

needed to complete the multiplication also increases. Figure 10 shows the

GF(2^233) GF(2^283) GF(2^409) GF(2^571)

NIST Binary Field

Execution Time of Binary Field

Multiplication on the TI OMAP3530

C64x+ (360MHz)

OMAP3530

360MHz TI C64x+ DSP

Our Implementation

Speed Up

7.99
7.62
7.02
6.20
3.93

-
-
-

a. Montgomery Multiplication
needed for Montgomery Multiplication

imes of multiplications in all NIST Binary Fields on the ARM

differences in

vs. bits in the

bits in the NIST Field increase, the cycles per

shows the cycles per bit

GF(2^571)

vs. bits2 in the NIST Field. This is close to a horizontal line. So the multiplication in our

implementation is O(n2), which is a result of us multiplying each byte of the one operand

by each subword of the other oper

Figure 9. Multiplication execution cycles per bit versus the number of bits in the
NIST Binary Field on the ARM Cortex A8 (libcrypt) and TI C64x+ (our implementation).

Figure 10. Multiplication execu
NIST Binary Field using our implementation on the TI C64x+.

0

5

10

15

20

25

30

35

40

45

100 200

C
y

cl
e

s
P

e
r

B
it

Execution Cycles Per Bit for NIST Binary Fields

TI C64x+ ARM Cortex A8

0

0.005

0.01

0.015

0.02

0.025

0.03

100 200

C
y

cl
e

s
P

e
r

B
it

2

Cycles on C64x+ Per Bit

26

in the NIST Field. This is close to a horizontal line. So the multiplication in our

), which is a result of us multiplying each byte of the one operand

by each subword of the other operand. Figure 11 shows that the libcrypt implementation

Multiplication execution cycles per bit versus the number of bits in the
NIST Binary Field on the ARM Cortex A8 (libcrypt) and TI C64x+ (our implementation).

Multiplication execution cycles per bit2 versus the number of bits in the
NIST Binary Field using our implementation on the TI C64x+.

300 400 500

Bits in Binary Field

Execution Cycles Per Bit for NIST Binary Fields

ARM Cortex A8

300 400 500

Bits in Binary Field

Cycles on C64x+ Per Bit2 for NIST Binary Fields

in the NIST Field. This is close to a horizontal line. So the multiplication in our

), which is a result of us multiplying each byte of the one operand

shows that the libcrypt implementation

Multiplication execution cycles per bit versus the number of bits in the
NIST Binary Field on the ARM Cortex A8 (libcrypt) and TI C64x+ (our implementation).

versus the number of bits in the

600

Execution Cycles Per Bit for NIST Binary Fields

600

for NIST Binary Fields

running on the ARM Cortex A8 decreases in cycles per bit

shows that the libcrypt implementation uses a form of K

O(nlog
2
3). Figure 12 shows the

Figure 11. Multiplication e
NIST Binary Field using our implementation

Figure 12. Multiplication E
the number of bits in the NIST Binary Field using libcrypt on the ARM Cortex A8.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

100 200

C
y

cl
e

s
P

e
r

B
it

2

Execution Cycles on ARM Cortex A8

Per Bit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 200

C
y

cl
e

s
P

e
r

B
it

lo
g

2
3

Execution Cycles on ARM Cortex A8

Per Bit

27

running on the ARM Cortex A8 decreases in cycles per bit2 in a NIST Binary F

ypt implementation uses a form of Karatsuba Multiplication

shows the number of cycles for the libcrypt multiplication

Multiplication execution cycles per bit2 versus the number of bits in the
using our implementation on the ARM Cortex A8.

Multiplication Execution Cycles per bit raised to the log23 power versus
the number of bits in the NIST Binary Field using libcrypt on the ARM Cortex A8.

300 400 500

Bits in Binary Field

Execution Cycles on ARM Cortex A8

Per Bit2 for NIST Binary Fields

300 400 500

Bits in Binary Field

Execution Cycles on ARM Cortex A8

Per Bitlog
2
3 for NIST Binary Fields

in a NIST Binary Field. This

aratsuba Multiplication, which is

t multiplication vs. the

versus the number of bits in the

3 power versus
the number of bits in the NIST Binary Field using libcrypt on the ARM Cortex A8.

600

600

28

number of bits raised to the power of log2 3. This displays a horizontal line, and shows that

libcrypt does use a form of Karatsuba Multiplication. This gives us the reason why our

speed up decreases as the number of bits in the field increase, i.e. the libcrypt

implementation uses Karatsuba Multiplication, while our implementation does not.

5.3 Cycle Count Compared To Other Implementations

Table IV shows our results compared to results shown in other papers. In [14], an

ARM instruction extension, MULGF, was implemented. MULGF performs the same

operations as XORMPY, except that it takes two 32-bit operands and produces a 63-bit

result. Figure 13 shows the execution cycles of our implementation compared with the

implementations in [14] with the MULGF instruction implemented. Even though the

MULGF is more powerful than XORMPY, i.e. it can produce a 63-bit result as opposed to

a 32-bit result, the C64x+ still outperforms the ARM by big margin. This shows that

because of the highly parallelized architecture of the C64x+, it can perform modular

multiplication much faster than the ARM Cortex A8.

TABLE IV. CYCLES FOR MODULAR MULTIPLICATION

Processor Implementation NIST

Field
Cycles

TI C64x+
DSP

Our Implementation

GF(2163) 298

GF(2233) 472

GF(2283) 792

ARM

Montgomery [15] GF(p256) 3384

Pencil and Paper [14] GF(2163) ~8000

Montgomery [14] GF(2163) ~24000

Karatsuba [14] GF(2163) ~5500

ARM +
MULGF

instruction
extension

Pencil and Paper [14] GF(2163) ~2400

Montgomery [14] GF(2163) ~7000

Karatsuba [14] GF(2163) ~2500

Figure 13. Execution cycles of
the MULGF instruction [14]

5.4 Reduction Results

We implemented both of our reduction techniques for

and GF(2409). Our results are listed

better only for GF(2233) and GF

the irreducible polynomial are within a 9

Multi-Precision Binary Polynomial Multiplication.

TABLE V. CYCLES

0

1000

2000

3000

4000

5000

6000

7000

8000

Montgomery

C
y

cl
e

s
Cycle Counts of GF(2

NIST Field

GF(2163) x
163

GF(2233)

GF(2283) x
283 +

GF(2409)

29

of multiplication implementations on an ARM processor with
 and our implementation on the C64x+ DSP in GF

We implemented both of our reduction techniques for GF(2163), GF(2

. Our results are listed in Table V. Using the Shift and Add method works

GF(2409). This supports our claim that if most of the set bits in

the irreducible polynomial are within a 9-bit window, then it is more effective to use

lynomial Multiplication. Figure 14 displays this data in a graph.

YCLES FOR UNBALANCED EXPONENT MODULAR REDUCTION

Karatsuba Pencil and Paper Our implementation

Cycle Counts of GF(2163) Multiplication

Irreducible

Polynomial

Cycles for Reduction

Method

Shift and

Add

Multi-Precision

Multiplication
163 + x7 + x6 + x3 + x0 28 19

x
233 + x74 + x0 33 42

+ x12 + x7 + x5 + x0 90 64

x
409 + x87 + x0

 52 66

mentations on an ARM processor with
GF(2163).

(2233), GF(2283)

. Using the Shift and Add method works

. This supports our claim that if most of the set bits in

bit window, then it is more effective to use

displays this data in a graph.

EDUCTION

Our implementation

Precision

Multiplication

Figure 14. Cycles for Unbalanced Exponent Modular Reduction using the shift and
add method and MPBPM.

 One might expect that reduction for

GF(2283) because it is a larger binary field.

in it when compared with the

Therefore, the first iteration of

multiplied by Ch(x), and then

GF(2283) there are 282 bits in

multiplied by the reduction byte in the first iteration.

added to account for the bit not in the reduction byte, i.e.

adds and 9 2 = 18 shifts needed in

polynomial multiplication. In the first iteration of reduction for

only ⌈408/32⌉ = 13 adds and 13

 Table VI displays the

Unbalanced Exponent Modular Reduction. The reduction method which needed the least

number of cycles was chosen for each binary field.

graphs. This data shows that

execution time when compared with the other NIST Binary Fields. This is because it

0

10

20

30

40

50

60

70

80

90

100

GF(2^163)

C
y

cl
e

s
Cycle Count of Unbalanced Exponent

Modular Reduction of Binary Fields

Shift and Add Multi-Precision Multiplication

30

Cycles for Unbalanced Exponent Modular Reduction using the shift and

that reduction for GF(2409) would take longer than

er binary field. However, T(x) for GF(2283) has

in it when compared with the T(x) for GF(2409), and not all bits are within a 9 bit window

iteration of UEMR requires the "reduction byte", (0xA1),

then Ch(x) must be shifted and added to that result.

) there are 282 bits in Ch(x), there are ⌈282/24⌉ = 12 subwords that need to be

multiplied by the reduction byte in the first iteration. Then Ch(x) must be shifted and

t for the bit not in the reduction byte, i.e. x12. So there are

needed in addition to the adds and shifts needed for binary

polynomial multiplication. In the first iteration of reduction for GF(2409), there needs to be

= 13 adds and 13 2 = 26 shifts.

displays the percentage of cycles of multiplications

Unbalanced Exponent Modular Reduction. The reduction method which needed the least

number of cycles was chosen for each binary field. Figure 15 shows this data in pie

that reduction for GF(2283) takes the highest percent

execution time when compared with the other NIST Binary Fields. This is because it

GF(2^233) GF(2^283) GF(2^409)

NIST Binary Field

Cycle Count of Unbalanced Exponent

Modular Reduction of Binary Fields

Precision Multiplication

Cycles for Unbalanced Exponent Modular Reduction using the shift and

 reduction for

) has more bits set

not all bits are within a 9 bit window.

", (0xA1), to be

) must be shifted and added to that result. Since in

= 12 subwords that need to be

) must be shifted and

. So there are ⌈282/32⌉ = 9

addition to the adds and shifts needed for binary

), there needs to be

percentage of cycles of multiplications needed for

Unbalanced Exponent Modular Reduction. The reduction method which needed the least

this data in pie

takes the highest percentage of

execution time when compared with the other NIST Binary Fields. This is because it

GF(2^409)

must perform both binary polynomial multiplication using XOR

and shift and add. Figure 15

of the total multiplication time

bits set in T(x) are either 2 or 4, as the NIST Binary Field becomes larger, the percentage

of execution time used for reduction

Figure 15. Percentage of execution time needed for reduction for each NIST Binary
Field in our implementation on the C64x+

93.62%

6.38%

Cycles for GF(2

Multiplication

96.74%

3.26%

Cycles for GF(2409

Multiplication

Binary

Polynomial

Multiplication

Reduction

31

must perform both binary polynomial multiplication using XOR-Multiply instructions

 shows that reduction does count for a very small per

on time, which supports our usage of UEMR. Since the number of

) are either 2 or 4, as the NIST Binary Field becomes larger, the percentage

of execution time used for reduction becomes smaller.

Percentage of execution time needed for reduction for each NIST Binary
Field in our implementation on the C64x+

Cycles for GF(2163)

Multiplication

Binary

Polynomial

Multiplication

Reduction 93.01%

6.99%

Cycles for GF(2233

Multiplication

Binary

Polynomial

Multiplication

Reduction

91.92%

8.08%

Cycles for GF(2283)

Multiplication

Binary

Polynomial

Multiplication

Reduction

409)

Multiplication

Binary

Polynomial

Multiplication

Reduction 95.83%

4.17%

Cycles for GF(2571)

Multiplication

Binary

Polynomial

Multiplication

Reduction

Multiply instructions

shows that reduction does count for a very small percentage

Since the number of

) are either 2 or 4, as the NIST Binary Field becomes larger, the percentage

Percentage of execution time needed for reduction for each NIST Binary

233)

Binary

Polynomial

Multiplication

Reduction

)

Binary

Polynomial

Multiplication

Reduction

32

TABLE VI. CYCLE PERCENTAGE FOR REDUCTION

NIST Field Irreducible Polynomial

Percentage

of cycles for

MPBPM

Percentage

of cycles for

Reduction

GF(2163) x
163 + x7 + x6 + x3 + x0 93.62% 6.38%

GF(2233) x
233 + x74 + x0 93.01% 6.99%

GF(2283) x
283 + x12 + x7 + x5 + x0 91.92% 8.08%

GF(2409) x
409 + x87 + x0

 96.74% 3.26%

GF(2571) x
571 + x10 + x5 + x2 + x0

 95.83% 4.17%

33

CHAPTER 6

FUTURE WORK

6.1 Improving Binary Field Multiplication
 While our results were very good, there is room for improvement. Our lowest

speed ups came at larger binary fields. Our algorithm can be enhanced by incorporating

Karatsuba Multiplication in it so it can perform in less than O(n2) time. The larger binary

fields would benefit most from this.

 To represent numbers in GF(2571) on the C64x+, ⌈571/32⌉ = 18 registers are

needed. Let x0 and y0 represent the least significant 9 registers of x and y, respectively.

Let x1 and y1 represent the most significant 9 registers of x and y, respectively. Let the

base b be 2288 (2(9)(32)). Instead of calculating (x1y1)b
2 + (x0y1 + x1y0)b + x0y0, you can use

Karatsuba Multiplication and calculate (x1y1)b
2
 + x0y0 + ((x1 + x0)(y0+ y1) - x0y0 - x1y1)b.

This increases the number of additions and subtractions, equivalient to Exclusive-ORs, but

significantly decreases the number of XOR-Multiplies needed. Six XOR instructions can

be executed every cycle and these instructions have no delay slots. Only two XOR-

Multiply instructions can be dispatched each cycle and require three delay slots. Using

XOR-Multiply also requires executing XOR and shift instructions to create partial

products. Using Karatsuba Multiplication in this instance decreases the number of XOR-

Multiply instructions needed for MPBPM from 1728 to 1296, while increasing the number

32-bit XOR instructions by 18. This is a significant drop off in the the number of

instructions needed.

 We implemented this on the C64x+ and it produced very good results. The

execution time decreased from 11.60µs to 6.81µs. The speed up compared to the libcrypt

implementation on the ARM increased from 3.93 to 6.68. Karatsuba Multiplication can

also be performed recursively. That is, each multiplication required, i.e. x1y1, x0y0 and (x1

+ x0)(y0+ y1), in this new implementation can be also be performed using Karatsuba

34

Multiplication. This requires each multiplication to be broken up into smaller parts to

decrease the total number of XOR-Multiply instructions. This can potentially be done

several times to further increase performance. There will be a point where performing

another Karatsuba decomposition will make the execution time longer. Therefore further

work can be done to further optimize these algorithms for this DSP.

 Functions to perform binary field squaring can be also be developed based on

MPBPM and UEMR. To square x, you get x
2 = (x1x1)b

2 + (x0x1 + x0x1)b + x0x0. Since

adding terms in a binary field is equivalent to performing a bit-wise XOR operation, the

middle term is equal to zero because x0x1 + x0x1 = 0. Hence x2 = (x1x1)b
2 + x0y0. Therefore

squaring a binary field polynomial can be performed much faster than even Karatsuba

Multiplication.

6.2 Implementing a Cryptosystem on the C64x+

 Modular multiplication is just one part of a modern cryptosystems. Implementing

an entire cryptosystem on the C64x+ can further support our argument that utilizing a

VLIW DSP for cryptographic operations can significantly reduce execution time while

freeing up the General Purpose Processor. Even though we have showed that the most

computationally intensive part of an encryption algorithm can be sped up greatly,

implementing a whole cryptographic system might show bottlenecks that might slow

down the system. Cache and memory access might limit the C64x+. Additionally, if a full

cryptosystem was implemented, there would need to be communication with the ARM or

other peripherals. So communication may prove to be a bottleneck in this application.

6.3 Finite Field Multiplications on Other Processors

 Future research can be done to see how finite field multiplication can perform on

other processors. One can survey newer DSPs, newer ARM processors or other low power

processors. Power analysis of different processors performing modular multiplication

would also be interesting.

35

CHAPTER 7

CONCLUSIONS

We have shown that migrating applications from an ARM to a DSP can provide

drastic improvements in performance. We implemented binary field multiplication using

Multi-Precision Binary Polynomial Multiplication on the TI C64x+. For most fields, this

provided a six times speed up when compared with the ARM on the same chip.

We have shown that Unbalanced Exponent Modular Reduction can also be

efficiently implemented on the C64x+ using both the shift and add method and Multi-

Precision Binary Polynomial Multiplication.

We have explained how our algorithm can be improved by taking advantage of

Karatsuba Multiplication. We also explored other possible future work.

 We have taken our source code and produced a C library for the C64x+ which can

perform binary field addition and multiplication for all NIST Binary Fields. Our source

code is posted online and is available for all to view, edit and compile. It is downloadable

from: http://rijndael.ece.vt.edu/ctergino

36

REFERENCES

[1] "BeagleBoard System Reference Manual Rev C2," beagleboard.org, revision 0.2,
 March 2009.

[2] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve
 Cryptography. New York, NY: Springer, 2004, pp. 213-215.

[3] S. Haibin, Y. Jin, and R. You, "Unbalanced Exponent Modular Reduction over
 Binary Field and Its Implementation," Innovative Computing, Information and
 Control, 2006. ICICIC '06. First International Conference on, vol. 1, pp. 190-193,
 Aug-Sept 2006.

[4] M. Knezevic, K. Sakiyama, J. Fan, and I. Verbauwhede, "Modular Reduction in
 GF(2n) Without Pre-Computational Phase," Lecture Notes in Computer Science,
 Arithmetic of Finite Fields - 2nd International Workshop, WAIFI 2008,
 Proceedings, pp. 77-87, July 2008.

[5] J. Sankaran, "Reed Solomon Decoder: TMS320C64x Implementation," Digital
 Signal Processing Solutions Application Report, Texas Instruments, December
 2000.

[6] P. Montgomery, "Multiplication Without Trial Division," Mathematics of
 Computation, vol. 44, issue 170, pp. 519-521, April 1985.

[7] C. Koc, T. Acar and B. Kaliski, "Analyzing and Comparing Montgomery
 Multiplication Algorithms," IEEE Micro, vol. 16, issue 16, pp. 26-33, June 1996.

[8] B. Sunar, "A generalized method for constructing subquadratic complexity
 GF(2k) multipliers," IEEE Transactions on Computers, vol. 53, issue 9, pp.
 1097-1105, Sept. 2004.

[9] "OMAP3530/25 Applications Processor," Texas Instruments, May 2009.

[10] "Architecture and Implementation of the ARM® Cortex™-A8 Microprocessor,"
 ARM, October 2005.

37

[11] "TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide," Texas
 Instruments, October 2008.

[12] K. Itoh, M. Takenaka, N. Torii, S. Temma and Y. Kurihara, " Fast
 Implementation of Public-Key Cryptography on a DSP TMS320C6201," Lecture
 Notes In Computer Science, vol 1717, pp. 61-72, 1999.

[13] P. Gastaldo, G. Parodi and R. Zunino, "Enhanced Montgomery Multiplication on
 DSP Architectures for Embedded Public-Key Cryptosystems," EURASIP Journal
 on Embedded Systems, vol. 8, issue 3, pp. 1-9, April 2008.

[14] S. Bartolini, I. Branovic, R. Giogri, and E. Martinelli, "Effects of Instruction-Set
 Extensions on an Embedded Processor: A Case Study on Elliptic Curve
 Cryptography over GF(2m)," IEEE Transactions on Computers, vol. 57, issue 5,
 pp. 672-686, May 2008.

[15] A. Tenca and C. Koc, "A Scalable Architecture for Modular Multiplication Based
 on Montgomery's Algorithm," IEEE Transactions on Computers, vol. 52, issue 9,
 pp. 1215-1221, Sept 2003.

