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ABSTRACT 
 
 
 Modern public-key cryptography relies extensively on modular multiplication 

with long operands.  We investigate the opportunities to optimize this operation in a 

heterogeneous multiprocessing platform such as TI OMAP3530. By migrating the long-

operand modular multiplication from a general-purpose ARM Cortex A8 to a specialized 

C64x+ VLIW DSP, we are able to exploit the XOR-Multiply instruction and the inherent 

parallelism of the DSP. The proposed multiplication utilizes Multi-Precision Binary 

Polynomial Multiplication with Unbalanced Exponent Modular Reduction. The resulting 

DSP implementation performs a GF(2233) multiplication in less than 1.31us, which is 

over a seven times speed up when compared with the ARM implementation on the same 

chip. We present several strategies for different field sizes and field polynomials, and 

show that a 360MHz DSP easily outperforms the 500MHz ARM.  



 iii 

ACKNOWLEDGEMENTS 

 

 
 
 I would like to thank all of my instructors and advisors throughout my time at 

Virginia Tech. I would specifically like to thank my advisory committee members 

Michael Hsiao and Wuchun Feng. A special thanks goes to my advisor Patrick 

Schaumont, who has spent a good deal of time helping guide my research. I also would 

like to thank my research group and my fellow students for their support. 

  

  



 iv

FOREWORD 

 

 
 
 This is an expanded version of a paper submitted to International Symposium on 

System-on-Chip on May 29th, 2009. It is currently under review.



 v

TABLE OF CONTENTS 

 
 

CHAPTER 1: INTRODUCTION.......................................................................................1 

CHAPTER 2: BACKGROUND..........................................................................................3 

 2.1 Prime Field vs. Binary Field..............................................................................3 

 2.2 Binary Field.......................................................................................................4

 2.3 NIST Finite Fields..............................................................................................4

 2.4 Montgomery's Algorithm...................................................................................5

 2.5 Karatsuba Multiplication...................................................................................6

 2.6 Unbalanced Exponent Modular Reduction........................................................6

 2.7 Texas Instruments Beagle Board and OMAP3530............................................8

 2.8 Texas Instruments TMS320C64x+ DSP............................................................9

 2.9 Related Work....................................................................................................10 

CHAPTER 3: PROPOSED METHOD............................................................................11

 3.1 Multi-Precision Binary Polynomial Multiplication.........................................11

 3.2 Unbalanced Exponent Modular Reduction......................................................13 

CHAPTER 4: METHODOLOGY....................................................................................15 

CHAPTER 5: RESULTS..................................................................................................24 

 5.1 Tools and Environment....................................................................................24

 5.2 Execution Times on the OMAP3530................................................................24

 5.3 Cycle Count Compared To Other Implementations.........................................28

 5.4 Reduction Results.............................................................................................29 

CHAPTER 6: FUTURE WORK......................................................................................33

 6.1 Improving Binary Field Multiplication............................................................33

 6.2 Implementing a Cryptosystem on the C64x+...................................................34

 6.3 Finite Field Multiplications on Other Processors...........................................34 

CHAPTER 7: CONCLUSIONS........................................................................................35 

REFERENCES..................................................................................................................36 



 vi

LIST OF FIGURES 

 
 
FIGURE 1: TEXAS INSTRUMENTS BEAGLE BOARD……………………………………………7 

FIGURE 2: OMAP3530 FUNCTIONAL BLOCK DIAGRAM……………………………………..8 

FIGURE 3: BLOCK DIAGRAM OF THE C64X+ DSP…………………………………….…….9 

FIGURE 4: MULTI-PRECISION BINARY POLYNOMIAL MULTIPLICATION….…………………..11 

FIGURE 5: EXECUTION DIAGRAM OF A MULTIPLICATION………………………………...…12 

FIGURE 6: UNBALANCED EXPONENT MODULAR REDUCTION……………………….………14 

FIGURE 7: DESIGN FLOW FOR DEVELOPING SOFTWARE FOR THE C64X+……………..……15 

FIGURE 8:  EXECUTION TIMES OF MULTIPLICATIONS…………………………………..…..25 

FIGURE 9: MULTIPLICATION EXECUTION CYCLES PER BIT……………………………...….26 

FIGURE 10: MULTIPLICATION EXECUTION CYCLES PER BIT
2
 ON C64X+……………….…..26 

FIGURE 11: MULTIPLICATION EXECUTION CYCLES PER BIT
2
 ON ARM…………..……..…..27 

FIGURE 12: MULTIPLICATION EXECUTION CYCLES PER BIT RAISED TO THE LOG23……...…27 

FIGURE 13: AN ARM WITH MULGF VERSUS OUR IMPLEMENTATION………………….…...29 

FIGURE 14: CYCLES FOR UNBALANCED EXPONENT MODULAR REDUCTION………………...30 

FIGURE 15: PERCENTAGE OF EXECUTION TIME NEEDED FOR REDUCTION……………........31  

  



 vii

LIST OF TABLES 

 
 

TABLE I: NIST PRIME FIELD SIZES…………………………………………………….……5 

TABLE II: NIST BINARY FIELD IRREDUCIBLE POLYNOMIALS ………..………………………..5 

TABLE III: MODULAR MULTIPLICATION ON THE TI OMAP3530…………………………….25 

TABLE IV: CYCLES FOR MODULAR MULTIPLICATION……………………………………….28 

TABLE V: CYCLES FOR UNBALANCED EXPONENT MODULAR REDUCTION…….………..…....29 

TABLE VI: CYCLE PERCENTAGE FOR REDUCTION……………………………………..……32 

  



1 
 

CHAPTER 1  

INTRODUCTION 

 
 

Modern mobile devices frequently make use of heterogeneous multi-processors, 

which allows them to execute a mix of multimedia applications and general-purpose 

information technology. The parallelism, as well as the architectural heterogeneity, 

ensures that these chips are very energy-efficient. For example, the TI OMAP3530 runs 

off less than 500mA at 5V [1]. However, this efficiency is only available when 

applications can optimally exploit the features of the architecture. This means that 

software applications must be developed with the specialized platform features in mind. 

Indeed, these features are typically ignored by general-purpose software compilers, and 

require either a clever, architecture-aware programmer, or else a specialized software 

library. 

In this thesis we consider the efficient execution of modular multiplication of long 

operands. Modular multiplication is a cornerstone of public-key cryptography, and it is 

used in algorithms such as ECC, RSA and DSA. Most known software optimizations of 

cryptographic modular multiplications assume standard processor architectures, and focus 

on the algorithm. Some well-known examples are modular multiplications with 

Montgomery or Barrett reduction, or multiplication based on Karatsuba decomposition 

[2]. However, rather than developing new algorithms, we investigate the opportunities 

offered by a heterogeneous Multi-Processor System on Chip (MPSoC) architecture. 

We investigate the implementation of modular multiplications on Texas 

Instrument's OMAP3530, which has an ARM Cortex A8 and a TI C64x+ DSP. We will 

use the C64x+ DSP in the OMAP3530 as a cryptographic accelerator. There are two 

arguments for this. The first is that this DSP is a Very Long Instruction Word (VLIW) 

architecture, which enables parallelism. The second is that the DSP has an XOR-Multiply 
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(XORMPY) instruction, which can accelerate binary field multiplications in GF(2m). 

Neither of these features is available on the ARM. 

Because cryptographic operands typically are several hundreds of bits long, and 

because the C64x+ DSP is a 32-bit processor, we have to implement modular 

multiplications using multi-precision arithmetic, based on combining XORMPYs, XORs 

and shifts. We call this operation Multi-Precision Binary Polynomial Multiplication 

(MPBPM). The contribution of our work is an efficient implementation of MPBPM on the 

C64x+ DSP. We also present two efficient modular reduction techniques based on 

Unbalanced Exponent Modular Reduction (UEMR) [3]. While these algorithms are 

known, we are not aware of any Binary Field Multiplication implementations optimized 

for the C64x+ DSP. Our results show that the resulting binary field multiplication 

executes six times faster on the DSP when compared with the ARM. This comparison is 

made against an ARM which runs an optimized modular multiplication algorithm at a 

higher clock frequency. 

The remainder of this thesis is organized as follows. Chapter 2 introduces Finite 

Fields and the TI OMAP3530. Chapter 3 presents our proposed methods for Multi-

Precision Binary Polynomial Multiplication and Unbalanced Exponent Modular 

Reduction. Our methodology is explained in Chapter 4. Results are given in Chapter 5. 

Possible future work on this topic is discussed in Chapter 6, and conclusions are drawn in 

Chapter 7. 
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CHAPTER 2 

BACKGROUND 

 

 This chapter reviews prime field and binary field arithmetic, Unbalanced 

Exponent Modular Reduction, Montgomery's algorithm, Karatsuba Multiplication, the TI 

Beagle Board, OMAP3530 and C64x+. 

 

2.1 Prime Field vs. Binary Field 

ECC, a very popular public-key cryptographic primitive, is implemented over 

GF(p), a prime field, or GF(2m), a binary field. The National Institute of Standard and 

Technology (NIST) recommends five specific prime fields and five specific binary fields, 

with curves defined for each. GF(p) defines a finite field of integers, where its elements 

are {0, 1, 2, 3, ..., p-2, p-1} and p is a prime number. Every operation is performed modulo 

p. GF(2m) defines a Finite Field of binary polynomials, i.e. polynomials whose 

coefficients are each 0 or 1. The maximal term in a number in GF(2m) is x
m-1. Every 

operation in this field is performed modulo an irreducible polynomial, f(x). 

 GF(p) is popularly implemented in software while GF(2m) is usually implemented 

in hardware. GF(2m) multiplications are faster than GF(p) in hardware because there are 

no carries, which results in a reduced critical path [4]. It is also quicker to compute the 

inverse in a binary field versus a prime field [2]. On the other hand, GF(p) multiplications 

are faster than GF(2m) in software because processors have integer multipliers built into 

them. GF(2m) relies on binary polynomial multiplications and a large majority of 

processors do not have support for this. However, the C64x+ does have support for binary 

polynomial multiplication for Reed Solomon based error control coding [5]. This special 

purpose hardware can also be utilized by cryptographic algorithms by implementing 

MPBPM. 
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2.2 Binary Fields 

Binary field numbers are within GF(2m) and are represented in the form 

  A(x) = a0x
0 + a1x

1 + a2x
2 + … + am-2x

m-2 + am-1x
m-1,  (1)  

where each coefficient ai = {0, 1}. Registers can easily represent these numbers where 

each bit in a word is a coefficient. For each binary field, an irreducible polynomial f(x) is 

defined: 

  f (x) = T(x) + xm,        (2) 

  T(x) = x
0 + t1x

1 + t2x
2 + … + tm-2x

m-2
 + tm-1x

m-1,  (3)  

where every coefficient, ti = {0, 1}. All operations in GF(2m) are performed modulo f(x). 

Addition and subtraction are equivalent to performing a bitwise Exclusive-OR between 

the two operands. The first step of multiplication, Binary Polynomial Multiplication 

(BPM), is similar to integer multiplication. In the second step, partial products are added 

together, which is equivalent to performing bitwise Exclusive-ORs. Performing this BPM, 

C(x) = A(x)B(x) yields  

 C(x) = c0x
0 + c1x

1 + c2x
2 + … + c2m-3x

2m-3 + c2m-2x
2m-2.  (4)  

The product must be reduced to remain within GF(2m), which is done by performing C(x) 

mod f (x). 

 

2.3 NIST Finite Fields 

  NIST recommends the usage of five prime fields and five binary fields. The NIST 

prime fields are GF(p192), GF(p224), GF(p256), GF(p384) and GF(p521). The prime 

fields are referred to in the form of GF(pn), where n is the number of bits needed to 

represent the prime modulo, p. Therefore, GF(p192) means that the field has p elements, 

where p is a 192-bit prime number. The p values are shown for each NIST Prime Field in 

Table I. 

  The NIST Binary Fields are referred to in the form GF(2m), where m is the number 

of bits in the binary field. NIST has recommended an irreducible polynomial for each 
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binary field. These polynomials are chosen to make computations in that field very 

efficient. Each of these irreducible polynomials has either three or five terms and the 

biggest term in T(x) is less than x
m/2. The NIST binary fields are GF(2163), GF(2233), 

GF(2283), GF(2409) and GF(2571). Table II displays the irreducible polynomial for each  

NIST Binary Field. 

 

TABLE I.   NIST PRIME FIELD SIZES 
TABLE II.   NIST BINARY FIELD 

IRREDUCIBLE POLYNOMIALS 

 

2.4 Montgomery's Algorithm 

 Montgomery's algorithm is commonly used to speed up reduction. In prime field, 

there exists a k such that 2k-1 < p < 2k. Let r be 2k and let the p-residue of a number � be 

�� � � · � ��	
 ��. The Montgomery product of two p-residues, �� and 
�, is �� � �� · 
� ·

 ��� ��	
 �� � � · �  ��	
 ��. Thus, � can be calculated by performing Montgomery 

Reduction: � �  �� · ��� ��	
 �� [6]. 

 For example, if p = 11 then � = 16 and ��� = 9 because � · ��� ��	
 11� �  1. 

Let � � 5 and 
 � 4. Then �� � 5 · 16 ��	
 11� � 3 and 
� � 4 · 16 ��	
 11� � 9. Let 

� � � · 
 ��	
 ��. Therefore �� � 3 · 9 · 9 ��	
 11� � 1 and � � 1 · 9 ��	
 11� �  9. 

 Performing Montgomery Reduction is faster than regular reduction (dividing by 

p). Performing more multiplication with the same operands will reduce the total execution 

time because the p-residue needs to only be calculated once for each number [7]. This 

algorithm can similarly be applied to binary fields. 

 

NIST 

Prime Field 
Field Size 

GF(p192) 2192 - 264 - 20 

GF(p224) 2224 - 296 + 20 

GF(p256) 2256 - 2224 + 2192 + 296 - 20 

GF(p384) 2384 - 2128 - 296 + 232 - 20
 

GF(p521) 2521 - 20
 

NIST 

Binary Field 

Irreducible 

Polynomial 

GF(2163) x
163 + x7 + x6 + x3 + x0 

GF(2233) x
233 + x74 + x0 

GF(2283) x
283 + x12 + x7 + x5 + x0 

GF(2409) x
409 + x87 + x0

 

GF(2571) x
571 + x10 + x5 + x2 + x0 
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2.5 Karatsuba Multiplication 

 The Karatsuba method can be used to reduce the execution time for large operand 

multiplication. This method replaces some multiplications with additions and subtractions. 

With a base b, if an operand x has two digits, (x1x0), and operand y has two digits, (y1y0), 

then their product z is 

             z = (x1y1)b
2 + (x0y1 + x1y0)b + (x0y0).          (8)  

Karatsuba showed that a multiplication can be eliminated from (8). The middle coefficient 

is equivalent to  

          x1y0 + x0y1 = (x0y0 + x0y1 + x1y0 + x1y1) - x1y1 - x0y0         (9)  

 x1y0 + x0y1 = (x0 + x1)(y0 + y1) - x1y1 - x0y0.         (10)  

Therefore (8) can be rewritten as 

         z = (x1y1)b
2 + ((x0 + x1)(y0 + y1) - x1y1 - x0y0)b + (x0y0).       (11)  

 For examples, if b = 102 and x = 2345 and y = 6789, then x1 = 23, x0 = 45, y1 = 67 

and y0 = 89. Traditionally, to calculate z = x · y, one would calculate �45 · 89� � �45 ·

67 � 23 · 67�10� � �23 · 67�10�, which has four multiplications. Using Karatsuba 

Multiplication, one would calculate z0 = 45 · 89 �  4005 and z2 = 23 · 67 �  1541 first. 

Next, z1 would be calculated as follows: z1 = �45 � 23� · �89 � 67� - z2 - z0 � 5062. 

Hence, z = z0 + z1b + z2b
2 = 4005 � 5062 · 10�  � 1541 · 10� = 15920205, which is 

equal to 2345 · 6789. 

 (11) has two more additions and subtractions but one less multiplication than (8). 

Traditional multiplication is performed in O(n2) because every word must be multiplied by 

every other word. Karatsuba Multiplication can be performed in O(nlog
2
3) [8]. 

 

2.6 Unbalanced Exponent Modular Reduction 

Shen, Jin and You proposed using Unbalanced Exponent Modular Reduction over 

binary fields in [3]. C(x) can be divided into two parts as shown in (5).  
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 Since C(x) = Cl(x) + Ch(x)xm
         (5) 

 and  T(x) ≡ x
m  mod f(x)         (6)  

 then C(x) ≡ Cl(x) + Ch(x)T(x) mod f(x)         (7)  

Both Cl(x) and Ch(x) are within GF(2m). Because of (6), (7) can be performed and repeated 

until Ch(x) is zero, in which case C(x) is completely reduced. When the largest nonzero 

term in T(x) is xk and k <  
 

�
, then (7) need only be performed twice. This is the case for all 

NIST Binary Fields. 

 For example in GF(24), f(x) = x4 + T(x) and T(x) = x + 1. Multiplying (x3 + x + 1) 

(x2 + x) yields C(x) = x5 + x4 + x3 + x2 + x2 + x = x5 + x4 + x3 + x. Therefore Cl(x) = x3 + x 

and Ch(x) = x + 1. To reduce this product using UEMR, we multiply Ch(x) by T(x), which 

gives (x + 1)(x + 1) = x2 + x + x + 1 = x2 + 1. We take this and add it to Cl(x), which 

yields x3 + x2 + x + 1. Since now Ch(x) is zero, the product is completely reduced. If the 

Ch(x) was not zero, this process would be repeated. 

 

Figure 1. Texas Instruments Beagle Board [1]. Photo by Gerald Coley of 
BeagleBoard.org. 
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2.7 Texas Instruments Beagle Board and OMAP3530 

 The Beagle Board, shown in Figure 1, is a development board manufactured by 

Texas Instruments and available for purchase through DigiKey for $149. This board 

contains an OMAP3530, 128MB DDR RAM, 256 MB Flash, an SD Card Reader and a 

variety of I/O ports. The Beagle Board consumes less than 2500mW and can be powered 

by a USB port [1]. 

 The TI OMAP3530 is a multiprocessor system in a Package-On-Package 

implementation built using 65nm technology [9]. It contains an ARM Cortex A8 and a 

TMS320C64x+ DSP [1]. Figure 2 depicts its Functional Block Diagram. 

 The ARM Cortex A8 is an applications processor based on the ARMv7 

architecture and consumes less than 300mW [10]. The Cortex A8 supports Thumb-2 

technology and is implemented with 16KB Instruction L1 Cache, 16KB Data L1 Cache 

and 256KB L2 Cache [9]. 

 

Figure 2. OMAP3530 Functional Block Diagram. 
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2.8 Texas Instruments TMS320C64x+ DSP 

 The C64x+ is a VLIW processor with 32KB of L1 Program Cache, 80KB of L1 

Data Cache, and 96KB of L2 Cache [9]. It contains two identical data paths, each with 

four functional units. Each instruction is 32-bits and the processor can execute 8 

instructions every cycle. Therefore every VLIW instruction fetch is 256-bits. The 

processor contains two register files, one for each data path. Each register file has 32 32-

bit registers. The registers and data paths are shown in Figure 3. Each functional unit can 

optionally retrieve an operand from a register in the other data path. Shifts can be 

performed by the functional units .S1 and .S2. XORs, ANDs, and ORs can be performed 

by the functional units .S1, .S2, .D1, .D2, .L1 and .L2. Multiplications can be performed 

by .M1 and .M2 [11]. So in one cycle, the C64x+ can perform two shifts, four XORs and 

two multiplies. Alternatively, the C64x+ can perform six XOR instructions and two 

multiply instructions every cycle. Therefore an addition in GF(2m) can take just 

⌈m/�32·6�⌉ clock cycles. Thus binary field addition can be performed faster on the C64x+ 

when compared to the ARM, since an ARM can only execute one 32-bit XOR every 

cycle. 

 

 

Figure 3.     Block Diagram of the C64x+ DSP. 

The C64x+ contains an XOR-Multiply (XORMPY) instruction, which is identical 

to a normal multiplication except that the partial products are XORed together instead of 

added. This is ideal for binary polynomial multiplication. The operand sizes for XORMPY 

are limited to 32-bits and 9-bits and the product size is limited to 32-bits.  
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2.9 Related Work 

 In [12], cryptosystems were implemented on the Texas Instruments 

TMS320C6201 DSP. The authors used Montgomery's algorithm for prime field 

multiplication on the DSP.  This paper shows that RSA, DSA and ECC can run fast on a 

VLIW DSP. 

  In [13], the architecture of the TMS320C6201 was considered when enhancing an 

algorithm to perform modular multiplication. Gastaldo, Parodi and Zunino produced a 

45% reduction in cycles for 2048-bit prime field multiplications using Montgomery's 

algorithm. Like [13], we analyze a DSP's architecture to help speed up modular 

multiplication. However, we instead use binary fields and Unbalanced Exponent Modular 

Reduction. 

 [14] shows that binary field multiplication can be sped up greatly by adding an 

instruction set extension, MULGF, to an ARM. MULGF performs 32-bit by 32-bit binary 

polynomial multiplication. However, adding this extension requires implementing the 

processor on an FPGA, which is not lower power, or designing a new ASIC, which takes 

significant time and resources. We will utilize a similar instruction, XORMPY, which is 

already part of the C64x+. Therefore our method requires no hardware design or 

implementation. 
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CHAPTER 3 

PROPOSED MULTIPLICATION METHOD 

 

 In this chapter we present our proposed method for Multi-Precision Binary 

Polynomial Multiplication and our proposed implementations for Unbalanced Exponent 

Modular Reduction. 

 

3.1 Multi-Precision Binary Polynomial Multiplication 

 We propose using the XORMPY instruction to perform Multi-Precision Binary 

Polynomial Multiplications. XORMPY puts its result in a 32-bit register. Since its 

operands are limited to 32-bits and 9-bits, the results extends out by 8-bits (32+9-1). Since  

 

Figure 4. Multi-Precision Binary Polynomial Multiplication: Partial products from 
24-bit by 8-bit XORMPY are XORed into 32-bit products. 
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we need all bits in the result, the sum of the number of bits in the operands must be less 

than or equal to 33 (not 32 because there are no carries). To keep everything byte-aligned, 

we propose performing 24-bit by 8-bit XORMPYs. Figure 4 shows an operand, "A", being 

multiplied by an operand, "B." Operand "A" must be shifted into 24-bit subwords. Each 

subword can then be multiplied by each byte of the "B" operand. This will produce partial 

products which can then be XORed together to form a complete product, "P".  Figure 4 

shows the formation of the partial products and complete product. 

+
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Figure 5.    Execution diagram of a multiplication between a 24-bit word of operand A 
and a byte of operand B in GF(2163) 

 Performing the XORMPY operations and then shifting and XORing the result is 

the most computationally intensive part of this algorithm. Given the C64x+'s parallelized 

architecture, this series of instructions can be computed quickly. The DSP can perform 

two XORMPYs, two shifts along with four XOR operations every cycle. Figure 5 shows 

the execution diagram of the formation of the partial products using the "First Byte" 

portrayed in Figure 4. Figure 5 details the dependency and ability to take advantage of the 

parallelized architecture of the C64x+. The rows represent cycles and the columns show 

concurrent operations. Even though only two XORMPYs can be dispatched every cycle, 
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more than two XORMPYs can be executed concurrently. For example in Cycle 5, one 

XORMPY is starting to execute, but six other XORMPY instructions are also being 

executed. In Cycle 8, three XOR instructions, two Shift instructions and one Store 

instruction are all executed in parallel. 

 

3.2 Unbalanced Exponent Modular Reduction 

After the full polynomial product is formed, it must be reduced into GF(2m). We 

propose using Unbalanced Exponent Modular Reduction [3]. 

The irreducible polynomial is usually known at compile time, and based on this 

we propose using one of two methods for Unbalanced Exponent Modular Reduction. If 

three of four or more terms in T(x) are within 9 bits of each other, then it is beneficial to 

use XORMPYs, shifts and XORs to reduce the product. Else, it is more efficient to shift 

and add for reduction. 

If most of terms in T(x) are within a 9-bit window, then these terms can fit in the 

9-bit operand of XORMPY. Therefore, XORMPY can be used by multiplying T(x) by 

Ch(x) using 24-bits at a time. This is similar in time and resources to multiplying one byte 

of operand B by all 24-bit words of operand A. If there is a term that is not within this 

window, shifts and adds can be used implement that bit's multiplication. 

For example, in the case of GF(2163), the irreducible polynomial is: f(x) = x163 + x7 

+ x
6 + x

3 + x
0. So T(x) = x

7 + x
6 + x

3 + x
0 (0xC9). Performing the first iteration of 

reduction requires T(x) be multiplied with seven 24-bit words. The next and final iteration 

requires T(x) be multiplied with one 24-bit word. The left diagram of Figure 6 shows a 

325-bit product being reduced to GF(2163). 

When most of the set bits are not in a 9-bit window of the irreducible polynomial, 

it is more effective to manually multiply the upper bits. Instead of calling XORMPY, for 

coefficient ti which is 1 in T(x), shift all bits m and greater to the right m-i bits. For each 

term produced, XOR them together and with the original bits below m. 
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Figure 6.     Unbalanced Exponent Modular Reduction. Left: Reduction over GF(2163) 
using MPBPM. Right: Reduction over GF(2233) using shifts and adds. 

For GF(2233), the irreducible polynomial, f (x), is x233 + x74 + x0. To reduce, we 

shift all bits above bit 232 to the right 233, then XOR them with the bits occupying bits 

232-0. We XOR that result with Ch(x) shifted to the right 233-74 = 159 bits. Since the 

result extends out over 233 bits, these steps must be repeated once more. This is shown in 

the right diagram of Figure 6. 
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CHAPTER 4  

METHODOLOGY 

 

  We used the TI C6x C Compiler to build our program. All of our coding was in C. 

The compiler has built-in functionality which recognizes when the function "_xormpy()" 

is written in a C program it refers to the XORMPY instruction. Given the inherent 

parallelism of the DSP, the compiler attempts to make the best use of its hardware when 

compiling the source code. Optimizing code for a processor with eight parallel functional 

units that can all access the same registers is complicated. The compiler can produce very 

different binary files by just switching the order of a few C statements, even if the 

resulting executable will have the exact same functionality. Therefore our design cycle, 

depicted in Figure 7, had some added steps to try to get the most out of the compiler. 

 

Figure 7. Design flow for developing software for the C64x+. 

First, we developed the algorithm and pseudo code. Next, we wrote the C code 

and compiled it. Then we went through a few cycles of debugging and fixing the C Code. 

Once the program was functioning properly, we worked on optimizing the resulting 
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binary, by optimizing the C code. Some techniques we used to help reduce execution 

time are listed below: 

• Put C statements which could be executed in parallel, adjacent to each other 

• Unroll and roll loops 

• Adjust the number of temporary variables 

• Do not access registers modified by instructions with delay slots soon after 

dispatched 

After making one of the above changes, we would compile the modified program 

and compare its assembly listing file to the previous iteration's assembly listing. If the 

new listing file looked more optimized, we would work on further optimizing this new C 

file. Else, we would go back to the previous iteration's C file and try different 

optimizations. We considered an assembly listing more optimized if the number of cycles 

needed decreased from the previous listing file. 

The following C Code displays the main loop for a GF(2163) multiplication. The 

compiled assembly listing of this code is listed immediately following the C Code. Each 

line in the assembly listing starting with "| |" indicates it is being dispatched in parallel 

with the preceding instruction. Counting every instruction not preceded by "| |", gives a 

good estimate for the number of cycles needed to perform that group of instructions. 

Therefore, assuming there are no cache misses, each iteration in this loop will take 96 

cycles. There will be a very limited number of cache misses because the L1 Data Cache 

is 80KB and the data required for this multiplication is much less than 1KB. There are 

227 total instructions being executed in these 96 cycles, including 23 cycles of NOPs 

(No-Operation instructions). Therefore, each cycle an average of 2.13 instructions are 

being dispatched in parallel, excluding NOPs. This loop will run for 5 iterations, so it 

takes a total of 96 · 5 = 480 cycles. 

  The subsequent listing shows the same C Code with only two modifications. First, 

instead of using one variable to compute the partial products, seven variables are used 

(one for each partial product computed for each byte of operand "b"). Second, all 
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XORMPY instruction calls for the same byte of operand "b", are written on consecutive 

lines, and all XOR and shift instruction calls for that byte are also written consecutively. 

Even though this has the exact same functionality as the previous C code, compiling this 

gives much different results. The resulting assembly listing is given after the optimized C 

code. If there are no cache misses, each iteration of this loop will take 43 cycles. Since 

there are a total of 165 instructions (with no NOPs) being executed in these 43 cycles, 

each cycle an average of 3.84 instructions are being dispatched. Since this is executed for 

five iterations, this section of the code requires 43 · 5 = 215 cycles. This is a speed up of 

2.23 when compared with the unoptimized C code. 

This drastic difference in cycles can be surprising since there was no algorithmic 

change. However, this shows the importance of being architecturally-aware when writing 

code for a VLIW processor.  
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Unoptimized C Code Snippet from GF(2
163

) 

Multi-Precision Binary Polynomial Multiplication 

 
 

99 for(i=0; i<5; i++) 

100 { 
101   

102  b = 0xFF&opb[i]; 

103  
104  p = _xormpy(shifted[0], b); 

105  final[i] ^= p; 

106  
107  p = _xormpy(shifted[1], b); 

108  final[i] ^= (p << 24); 

109  final[i+1] ^= (p >> 8); 

110   

111  p = _xormpy(shifted[2], b); 

112  final[i+1] ^= (p << 16); 

113  final[i+2] ^= (p >> 16); 

114   

115  
116  p = _xormpy(shifted[3], b); 

117  final[i+2] ^= (p << 8); 

118  final[i+3] ^= (p >> 24); 

119  
120  p = _xormpy(shifted[4], b); 

121  final[i+3] ^= p; 

122  
123  p = _xormpy(shifted[5], b); 

124  final[i+3] ^= (p << 24); 

125  final[i+4] ^= (p >> 8); 

126   

127  p = _xormpy(shifted[6], b); 

128  final[i+4] ^= (p << 16); 

129  final[i+5] ^= (p >> 16); 

130  
131   

132  
133  b = (0xFF00&opb[i]) >> 8; 

134  
135  p = _xormpy(shifted[0], b); 

136  final[i] ^= (p << 8); 

137  final[i+1] ^= (p >> 24); 

138   

139  p = _xormpy(shifted[1], b); 

140  final[i+1] ^= (p); 

141  
142  p = _xormpy(shifted[2], b); 

143  final[i+1] ^= (p << 24); 

144  final[i+2] ^= (p >> 8); 

145   

146  p = _xormpy(shifted[3], b); 

147  final[i+2] ^= (p << 16); 

148  final[i+3] ^= (p >> 16); 

149   

150  p = _xormpy(shifted[4], b); 

151  final[i+3] ^= (p << 8); 

152  final[i+4] ^= (p >> 24); 

153   

154  p = _xormpy(shifted[5], b); 

155  final[i+4] ^= (p); 

156  
157  p = _xormpy(shifted[6], b); 

158  final[i+4] ^= (p << 24); 

159  final[i+5] ^= (p >> 8); 

160  
161  

162  
163  b = (0xFF0000&opb[i]) >> 16; 

164  
165  
166  p = _xormpy(shifted[0], b); 

167  final[i] ^= (p << 16); 

168  final[i+1] ^= (p >> 16); 

169  
170  p = _xormpy(shifted[1], b); 

171  final[i+1] ^= (p << 8); 

172  final[i+2] ^= (p >> 24); 

173   

174  p = _xormpy(shifted[2], b); 

175  final[i+2] ^= (p); 

176  
177  p = _xormpy(shifted[3], b); 

178  final[i+2] ^= (p << 24); 

179  final[i+3] ^= (p >> 8); 

180  
181  p = _xormpy(shifted[4], b); 

182  final[i+3] ^= (p << 16); 

183  final[i+4] ^= (p >> 16); 

184  
185  p = _xormpy(shifted[5], b); 

186  final[i+4] ^= (p << 8); 

187  final[i+5] ^= (p >> 24); 

188  
189  p = _xormpy(shifted[6], b); 

190  final[i+5] ^= p; 

191  
192  
193   

194  b = (0xFF000000&opb[i])>>24; 

195   

196  p = _xormpy(shifted[0], b); 

197  final[i] ^= (p << 24); 

198  final[i+1] ^= (p >> 8); 

199  
200  p = _xormpy(shifted[1], b); 

201  final[i+1] ^= (p << 16); 

202  final[i+2] ^= (p >> 16); 

203   

204  p = _xormpy(shifted[2], b); 

205  final[i+2] ^= (p << 8); 

206  final[i+3] ^= (p >> 24); 

207  
208  p = _xormpy(shifted[3], b); 

209  final[i+3] ^= (p); 

210   

211  p = _xormpy(shifted[4], b); 

212  final[i+3] ^= (p << 24); 

213  final[i+4] ^= (p >> 8); 

214   

215  p = _xormpy(shifted[5], b); 

216  final[i+4] ^= (p << 16); 

217  final[i+5] ^= (p >> 16); 

218  
219  p = _xormpy(shifted[6], b); 

220  final[i+5] ^= (p << 8); 

221  final[i+6] ^= (p >> 24); 

222  
223  
224 } 
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Assembly Output from Compiling Unoptimized C Code Snippet from 

GF(2
163

) Multi-Precision Binary Polynomial Multiplication 

 
;*-----------------------------------------------* 

;*   SOFTWARE PIPELINE INFORMATION 

;* 

;*Loop source line                 : 99 

;*Loop opening brace source line   : 100 

;*Loop closing brace source line   : 224 

;*      Known Minimum Trip Count         : 5                     

;*      Known Maximum Trip Count         : 5                     

;*      Known Max Trip Count Factor      : 5 

;*Loop Carried Dependency Bound() : 69 

;*      Unpartitioned Resource Bound     : 34 

;*      Partitioned Resource Bound(*)    : 40 

;*      Resource Partition: 

;*                                A-side   B-side 

;*      .L units                     0        0      

;*      .S units                    21       26      

;*      .D units                    40*      27      

;*      .M units                    11       17      

;*      .X cross paths              28       21      

;*      .T address paths            40*      39      

;*Long read paths              0        0      

;*Long write paths             0        0      

;*Logical  ops (.LS)           0        0      

;*      Addition ops (.LSD)         29       34      

;*      Bound(.L .S .LS)            11       13      

;*      Bound(.L .S .D .LS .LSD)    30       29      

;* 

;*-----------------------------------------------* 

$C$L1: ; PIPED LOOP PROLOG 

;** ---------------------------------------------* 

     LDW     .D2T2   *B16,B4        ; |102| <0,0>    

     NOP             4 

     EXTU    .S2     B4,24,24,B8    ; |102| <0,5>    

 

     LDW     .D2T1   *+SP(32),A21   ; |127| <0,6>  

||   XORMPY  .M2     B19,B8,B4      ; |109| <0,6>  

 

     XORMPY  .M2     B6,B8,B7       ; |118| <0,7>  

 

     LDW     .D1T1   *++A18,A5      ; |105| <0,8>  

||   LDW     .D2T2   *B5++,B7       ; |105| <0,8>  

||   XORMPY  .M2     B18,B8,B21     ; |111| <0,8>  

 

     LDW     .D2T1   *+B5(4),A3     ; |113| <0,9>  

||   LDW     .D1T2   *+A18(8),B7    ; |113| <0,9>  

||   XORMPY  .M2     B20,B8,B9      ; |105| <0,9>  

 

     NOP             1 

 

     XORMPY  .M1X    A21,B8,A3      ; |129| <0,11>  

||   SHL     .S2     B7,8,B22       ; |120| <0,11>  

 

     LDW     .D2T2   *+B5(16),B7    ; |125| <0,12>  

||   XORMPY  .M1X    A20,B8,A8      ; |123| <0,12>    

||   SHRU    .S2     B7,24,B23      ; |118| <0,12>  

 

     LDW     .D2T1   *+B5(12),A4    ; |125| <0,13>  

||   XORMPY  .M2     B17,B8,B4      ; |121| <0,13>  

||   XOR     .L2     B9,B7,B9       ; |105| <0,13>  

||   SHRU    .S2     B21,16,B8      ; |113| <0,13>  

 

     STW     .D2T2   B9,*-B5(4)     ; |107| <0,14>  

||   XOR     .L2     B7,B23,B8      ; |118| <0,14>  

||   XOR     .S2X    A3,B8,B7       ; |113| <0,14>  

||   SHRU    .S1X    B4,8,A4        ; |109| <0,14>  

 

     SHL     .S1X    B4,24,A4       ; |111| <0,15>  

||   XOR     .L1     A5,A4,A6       ; |109| <0,15>  

||   MV      .L2     B8,B23         ; |120| <0,15>  

||   XOR     .S2     B7,B22,B22     ; |120| <0,15>  

||   STW     .D2T2   B7,*+B5(4)     ; |116| <0,15>  

 

     SHL     .S1     A8,24,A7       ; |124| <0,16>  

||   SHRU    .S2X    A3,16,B9       ; |129| <0,16>  

||   XOR     .L1X    B9,A4,A4       ; |111| <0,16>  

||   STNDW   .D2T2   B23:B22,*+B5(4); |120| <0,16>  

||   MV      .D1     A6,A5          ; |111| <0,16>  

 

     SHRU    .S1     A8,8,A3        ; |125| <0,17>    

||   SHL     .S2X    A3,16,B22      ; |129| <0,17>  

||   XOR     .L2     B8,B4,B4       ; |121| <0,17>  

||   STNDW   .D2T1   A5:A4,*-B5(4)  ; |111| <0,17>  

 

     SHL     .S2     B21,16,B4      ; |112| <0,18>  

||   XOR     .L1     A4,A3,A3       ; |125| <0,18>    

||   XOR     .L2X    B4,A7,B8       ; |124| <0,18>  

||   STW     .D2T2   B4,*+B5(8)     ; |123| <0,18>  

 

     XOR     .L2X    A6,B4,B4       ; |112| <0,19>  

||   STW     .D1T2   B8,*+A18(8)    ; |124| <0,19>  

 

     MV      .L2X    A3,B4          ; |125| <0,20>   

||   STW     .D2T2   B4,*B5         ; |112| <0,20>  

 

     XOR     .L2     B7,B9,B9       ; |129| <0,21>  

||   XOR     .S2X    A3,B22,B8      ; |129| <0,21>  

||   STW     .D2T2   B4,*+B5(12)    ; |127| <0,21>    

 

     STNDW   .D2T2   B9:B8,*+B5(12) ; |129| <0,22>    

     LDW     .D2T2   *B16,B4        ; |133| <0,23>    

     NOP             4 

     EXTU    .S2     B4,16,24,B7    ; |133| <0,28>    

     XORMPY  .M2     B20,B7,B4      ; |137| <0,29>  

 

     LDW     .D1T1   *+A18(12),A7   ; |152| <0,30>  

||   XORMPY  .M2     B17,B7,B8      ; |150| <0,30>  

 

     LDW     .D1T2   *A18,B7        ; |137| <0,31>  

||   XORMPY  .M1X    A19,B7,A4      ; |148| <0,31>    

 

     LDW     .D2T2   *-B5(4),B4     ; |139| <0,32>  

||   XORMPY  .M1X    A21,B7,A3      ; |159| <0,32>  

 

     XORMPY  .M1X    A20,B7,A6      ; |155| <0,33>  

||   SHL     .S2     B4,8,B9        ; |139| <0,33>  

 

     LDW     .D1T1   *+A18(4),A6    ; |144| <0,34>  

||   XORMPY  .M2     B18,B7,B9      ; |142| <0,34>  

||   SHRU    .S2     B8,24,B21      ; |152| <0,34>  

 

     LDW     .D1T1   *+A18(16),A5   ; |152| <0,35>  

||   XORMPY  .M2     B19,B7,B21     ; |140| <0,35>  

||   SHRU    .S2     B4,24,B4       ; |137| <0,35>  

||   XOR     .L2X    A7,B21,B26     ; |152| <0,35>  

 

     LDW     .D1T1   *+A18(8),A5    ; |144| <0,36>  

||   XOR     .L2     B7,B4,B7       ; |137| <0,36>  

||   SHL     .S2X    A4,16,B22      ; |150| <0,36>    

 

     XOR     .L2     B4,B9,B24      ; |139| <0,37>  

||   SHL     .S1     A3,24,A5       ; |159| <0,37>  

||   SHRU    .S2X    A3,8,B23       ; |159| <0,37>  

||   MV      .D2     B7,B25         ; |139| <0,37>  

 

     XOR     .L1X    A7,B21,A3      ; |152| <0,38>  

||   XOR     .L2X    B26,A6,B4      ; |155| <0,38>  

||   STNDW   .D2T2   B25:B24,*-B5(4); |139| <0,38>  

 

     SHRU    .S1X    B9,8,A3        ; |144| <0,39>  

||   XOR     .L2     B7,B21,B4      ; |140| <0,39>  

||   XOR     .S2X    B4,A5,B24      ; |159| <0,39>  

||   STW     .D2T1   A3,*+B5(12)    ; |154| <0,39>  

||   STW     .D1T2   B4,*+A18(12)   ; |157| <0,39>  

 

     SHL     .S2     B9,24,B7       ; |143| <0,40>  

||   SHRU    .S1     A4,16,A4       ; |148| <0,40>  

||   XOR     .L2X    A5,B23,B25     ; |159| <0,40>  

||   STW     .D1T2   B4,*A18        ; |142| <0,40>  

     SHL     .S2     B8,8,B7        ; |151| <0,41>  

||   XOR     .L1     A5,A4,A3       ; |148| <0,41>  
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||   XOR     .S1     A6,A3,A4       ; |144| <0,41>  

||   XOR     .L2     B4,B7,B4       ; |143| <0,41>  

||   STNDW   .D1T2  B25:B24,*+A18(12);|159| <0,41>  

 

     MV      .L1     A3,A5          ; |150| <0,42>  

||   STW     .D2T1   A4,*+B5(4)     ; |146| <0,42>  

||   XOR     .S1X    A4,B22,A4      ; |150| <0,42>    

||   STW     .D1T2   B4,*A18        ; |143| <0,42>  

 

     XOR     .L1X    A3,B7,A3       ; |151| <0,43>  

||   STNDW   .D1T1   A5:A4,*+A18(4) ; |150| <0,43>    

 

     STW     .D1T1   A3,*+A18(8)    ; |151| <0,44>    

     LDW     .D2T2   *B16,B4        ; |163| <0,45>    

     NOP             4 

     EXTU    .S2     B4,8,24,B8     ; |163| <0,50>    

     XORMPY  .M2     B17,B8,B7      ; |181| <0,51>  

     NOP             1 

     XORMPY  .M1X    A19,B8,A3      ; |179| <0,53>    

 

     LDW     .D1T1   *+A18(12),A5   ; |183| <0,54>  

||   XORMPY  .M2     B20,B8,B4      ; |168| <0,54>  

||   XORMPY  .M1X    A20,B8,A4      ; |187| <0,54>    

 

     LDW     .D1T1   *+A18(4),A6    ; |172| <0,55>  

||   XORMPY  .M2     B19,B8,B9      ; |170| <0,55>  

 

     LDW     .D1T1   *A18,A17       ; |168| <0,56>  

||   SHL     .S1X    B7,16,A8       ; |182| <0,56>  

 

     LDW     .D1T1   *-A18(4),A17   ; |170| <0,57>  

||   XORMPY  .M2     B18,B8,B21     ; |175| <0,57>  

||   SHL     .S1     A3,24,A9       ; |181| <0,57>  

 

     LDW     .D1T1   *+A18(16),A4   ; |183| <0,58>  

||   SHRU    .S1     A4,24,A7       ; |187| <0,58>  

 

     LDW     .D1T2   *+A18(8),B7    ; |172| <0,59>  

||   SHRU    .S2     B9,24,B21      ; |172| <0,59>  

||   SHRU    .S1X    B4,16,A16      ; |168| <0,59>  

 

     XOR     .L2X    A6,B21,B7      ; |172| <0,60>  

||   SHRU    .S1X    B7,16,A6       ; |183| <0,60>  

 

     SHL     .S2     B9,8,B7        ; |171| <0,61>  

||   SHL     .S1X    B4,16,A16      ; |170| <0,61>  

||   XOR     .L1     A5,A6,A6       ; |183| <0,61>  

||   XOR     .D1     A17,A16,A5     ; |168| <0,61>  

||   XOR     .L2     B7,B21,B4      ; |175| <0,61>  

||   STW     .D2T2   B7,*+B5(4)     ; |174| <0,61>  

 

     XORMPY  .M1X    A21,B8,A4      ; |190| <0,62>  

||   XOR     .L1     A17,A16,A16    ; |170| <0,62>  

||   SHL     .S2X    A4,8,B8        ; |189| <0,62>    

||   STW     .D1T2   B4,*+A18(4)    ; |177| <0,62>  

||   STW     .D2T1   A6,*+B5(12)    ; |185| <0,62>  

||   MV      .S1     A5,A17         ; |170| <0,62>  

 

     XOR     .L1     A4,A7,A3       ; |187| <0,63>  

||   SHRU    .S2X    A3,8,B9        ; |179| <0,63>    

||   XOR     .S1X    A5,B7,A4       ; |171| <0,63>  

||   STNDW   .D1T1   A17:A16,*-A18(4)  ; |170| 

<0,63>  

 

     MV      .L1     A3,A5          ; |189| <0,64>  

||   XOR     .L2     B7,B9,B7       ; |179| <0,64>    

||   XOR     .S1X    A6,B8,A4       ; |189| <0,64>    

||   STW     .D1T1   A4,*A18        ; |171| <0,64>  

 

     XOR     .L2X    B4,A9,B8       ; |181| <0,65>  

||   MV      .S2     B7,B9          ; |181| <0,65>    

||   STNDW   .D1T1   A5:A4,*+A18(12); |189| <0,65>    

 

     XOR     .L2X    B7,A8,B4       ; |182| <0,66>  

||   STNDW   .D1T2   B9:B8,*+A18(4) ; |181| <0,66>    

 

     XOR     .L1     A3,A4,A3       ; |190| <0,67>  

||   STW     .D1T2   B4,*+A18(8)    ; |182| <0,67> 

    

     STW     .D1T1   A3,*+A18(16)   ; |190| <0,68>    

     LDW     .D2T2   *B16++,B4      ; |194| <0,69>    

     NOP             4 

     SHRU    .S2     B4,24,B4       ; |194| <0,74>    

     NOP             1 

 

     XORMPY  .M2     B17,B4,B21     ; |211| <0,76>    

||   XORMPY  .M1X    A21,B4,A16     ; |219| <0,76>  

 

     XORMPY  .M2     B19,B4,B22     ; |200| <0,77>  

||   XORMPY  .M1X    A20,B4,A5      ; |217| <0,77>  

 

     LDW     .D1T2   *+A18(4),B7    ; |202| <0,78>  

||   XORMPY  .M2     B18,B4,B9      ; |206| <0,78>  

 

     LDW     .D1T1   *+A18(8),A3    ; |202| <0,79>  

||   XORMPY  .M2     B20,B4,B8      ; |198| <0,79>  

 

     LDW     .D1T1   *A18,A6        ; |198| <0,80>  

||   SHL     .S1     A16,8,A9       ; |220| <0,80>  

 

     LDW     .D1T1   *-A18(4),A7    ; |200| <0,81>  

||   XORMPY  .M1X    A19,B4,A3      ; |209| <0,81>  

||   SHL     .S1     A5,16,A21      ; |219| <0,81>  

 

     LDW     .D1T1   *+A18(12),A22  ; |213| <0,82>  

||   SHRU    .S2     B9,24,B4       ; |206| <0,82>  

||   SHL     .S1X    B22,16,A8      ; |201| <0,82>  

 

     LDW     .D2T1   *+B5(20),A6    ; |221| <0,83>  

||   SHRU    .S2     B22,16,B22     ; |202| <0,83>  

||   SHRU    .S1X    B21,8,A17      ; |213| <0,83>    

 

     LDW     .D1T1   *+A18(16),A6   ; |213| <0,84>  

||   SHL     .S2     B9,8,B9        ; |208| <0,84>  

||   XOR     .L2X    A3,B4,B7       ; |206| <0,84>  

||   XOR     .D2     B7,B22,B4      ; |202| <0,84>  

||   SHRU    .S1X    B8,8,A4        ; |198| <0,84>  

 

     SHL     .S1X    B8,24,A6       ; |200| <0,85>  

||   XOR     .L1     A6,A4,A4       ; |198| <0,85>  

||   MV      .L2     B7,B9          ; |208| <0,85>  

||   XOR     .S2     B4,B9,B8       ; |208| <0,85>  

||   STW     .D2T2   B4,*+B5(4)     ; |204| <0,85>  

 

[ B0]   SUB     .L2     B0,1,B0     ; |99| <0,86>  

||   SHL     .S2     B21,24,B8      ; |212| <0,86>  

||   XOR     .L1     A7,A6,A6       ; |200| <0,86>  

||   STNDW   .D1T2   B9:B8,*+A18(4) ; |208| <0,86>  

||   MV      .S1     A4,A7          ; |200| <0,86>  

 

     XOR     .L2X    B7,A3,B4       ; |209| <0,87>  

|| [ B0]   B       .S2     $C$L2    ; |99| <0,87>  

||   SHRU    .S1     A16,24,A7      ; |221| <0,87>  

||   XOR     .L1     A22,A17,A3     ; |213| <0,87>    

||   STNDW   .D1T1   A7:A6,*-A18(4) ; |200| <0,87>  

 

     SHRU    .S1     A5,16,A7       ; |217| <0,88>  

||   XOR     .L1     A7,A6,A5       ; |221| <0,88>  

||   XOR     .L2     B4,B8,B4       ; |212| <0,88>  

||   STW     .D1T2   B4,*+A18(8)    ; |211| <0,88>  

 

     XOR     .L1     A6,A7,A4       ; |217| <0,89>  

||   STW     .D2T1   A5,*+B5(20)    ; |221| <0,89>  

||   XOR     .S1     A4,A8,A5       ; |201| <0,89>  

||   MV      .L2X    A3,B4          ; |213| <0,89>    

||   STW     .D1T2   B4,*+A18(8)    ; |212| <0,89>  

 

     MV      .L1     A4,A7          ; |219| <0,90>  

||   XOR     .S1     A3,A21,A6      ; |219| <0,90>  

||   STW     .D1T1   A5,*A18        ; |201| <0,90>  

||   STW     .D2T2   B4,*+B5(12)    ; |215| <0,90>    

 

     XOR     .L1     A4,A9,A3       ; |220| <0,91>  

||   STNDW   .D1T1   A7:A6,*+A18(12); |219| <0,91>    

 

     STW     .D1T1   A3,*+A18(16)   ; |220| <0,92>    

     NOP             5 
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Optimized C Code Snippet from GF(2
163

) Multi-Precision 

Binary Polynomial Multiplication 

 
 

225 for(i=0; i<5; i++) 
226 { 
227   
228  b = 0xFF&opb[i]; 
229  
230  p = _xormpy(shifted[0], b); 
231  p1 = _xormpy(shifted[1], b); 
232  p2 = _xormpy(shifted[2], b); 
233  p3 = _xormpy(shifted[3], b); 
234  p4 = _xormpy(shifted[4], b); 
235  p5 = _xormpy(shifted[5], b); 
236  p6 = _xormpy(shifted[6], b); 
237  
238  final[i] ^= p; 
239  final[i] ^= (p1 << 24); 
240  final[i+1] ^= (p1 >> 8); 
241  final[i+1] ^= (p2 << 16); 
242  final[i+2] ^= (p2 >> 16); 
243  final[i+2] ^= (p3 << 8); 
244  final[i+3] ^= (p3 >> 24); 
245  final[i+3] ^= p4; 
246  final[i+3] ^= (p5 << 24); 
247  final[i+4] ^= (p5 >> 8); 
248  final[i+4] ^= (p6 << 16); 
249  final[i+5] ^= (p6 >> 16); 
250  
251   
252  b = (0xFF00&opb[i]) >> 8; 
253  
254  p = _xormpy(shifted[0], b); 
255  p1 = _xormpy(shifted[1], b); 
256  p2 = _xormpy(shifted[2], b); 
257  p3 = _xormpy(shifted[3], b); 
258  p4 = _xormpy(shifted[4], b); 
259  p5 = _xormpy(shifted[5], b); 
260  p6 = _xormpy(shifted[6], b); 
261  
262  final[i] ^= (p << 8); 
263  final[i+1] ^= (p >> 24); 
264  final[i+1] ^= (p1); 
265  final[i+1] ^= (p2 << 24); 
266  final[i+2] ^= (p2 >> 8); 
267  final[i+2] ^= (p3 << 16); 
268  final[i+3] ^= (p3 >> 16); 
269  final[i+3] ^= (p4 << 8); 
270  final[i+4] ^= (p4 >> 24); 
271  final[i+4] ^= (p5); 
272  final[i+4] ^= (p6 << 24); 
273  final[i+5] ^= (p6 >> 8); 
274  
275   
276  
277  b = (0xFF0000&opb[i]) >> 16; 

278  
279  
280  p = _xormpy(shifted[0], b); 
281  p1 = _xormpy(shifted[1], b); 
282  p2 = _xormpy(shifted[2], b); 
283  p3 = _xormpy(shifted[3], b); 
284  p4 = _xormpy(shifted[4], b); 
285  p5 = _xormpy(shifted[5], b); 
286  p6 = _xormpy(shifted[6], b); 
287  
288  final[i] ^= (p << 16); 
289  final[i+1] ^= (p >> 16); 
290  final[i+1] ^= (p1 << 8); 
291  final[i+2] ^= (p1 >> 24); 
292  final[i+2] ^= (p2); 
293  final[i+2] ^= (p3 << 24); 
294  final[i+3] ^= (p3 >> 8); 
295  final[i+3] ^= (p4 << 16); 
296  final[i+4] ^= (p4 >> 16); 
297  final[i+4] ^= (p5 << 8); 
298  final[i+5] ^= (p5 >> 24); 
299  final[i+5] ^= p6; 
300  
301   
302  
303  b = (0xFF000000&opb[i])>>24; 
304   
305  p = _xormpy(shifted[0], b); 
306  p1 = _xormpy(shifted[1], b); 
307  p2 = _xormpy(shifted[2], b); 
308  p3 = _xormpy(shifted[3], b); 
309  p4 = _xormpy(shifted[4], b); 
310  p5 = _xormpy(shifted[5], b); 
311  p6 = _xormpy(shifted[6], b); 
312  
313  final[i] ^= (p << 24); 
314  final[i+1] ^= (p >> 8); 
315  final[i+1] ^= (p1 << 16); 
316  final[i+2] ^= (p1 >> 16); 
317  final[i+2] ^= (p2 << 8); 
318  final[i+3] ^= (p2 >> 24); 
319  final[i+3] ^= (p3); 
320  final[i+3] ^= (p4 << 24); 
321  final[i+4] ^= (p4 >> 8); 
322  final[i+4] ^= (p5 << 16); 
323  final[i+5] ^= (p5 >> 16); 
324  final[i+5] ^= (p6 << 8); 
325  final[i+6] ^= (p6 >> 24); 
326  
327  
328 } 
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Assembly Output from Compiling Optimized C Code Snippet from 

GF(2
163

) Multi-Precision Binary Polynomial Multiplication 

 
 

 

;*-----------------------------------------------* 

;*   SOFTWARE PIPELINE INFORMATION 

;* 

;*      Loop source line                 : 99 

;*      Loop opening brace source line   : 100 

;*      Loop closing brace source line   : 202 

;*      Known Minimum Trip Count         : 5                     

;*      Known Maximum Trip Count         : 5                     

;*      Known Max Trip Count Factor      : 5 

;*      Loop Carried Dependency Bound(^) : 32 

;*      Unpartitioned Resource Bound     : 24 

;*      Partitioned Resource Bound(*)    : 32 

;*      Resource Partition: 

;*                                A-side   B-side 

;*      .L units                     0        0      

;*      .S units                    29       18      

;*      .D units                     8       32*     

;*      .M units                    20        8      

;*      .X cross paths              13       28      

;*      .T address paths            20       32*     

;*      Long read paths              0        0      

;*      Long write paths             0        0      

;*      Logical  ops (.LS)           0        0 

;*      Addition ops (.LSD)         23       27 

;*      Bound(.L .S .LS)            15        9      

;*      Bound(.L .S .D .LS .LSD)    20       26      

;* 

;*----------------------------------------------* 

$C$L3:; PIPED LOOP PROLOG 

;** --------------------------------------------* 

     XORMPY  .M1     A8,A7,A6      ; |110| <0,7>  

 

     LDW     .D1T1   *++A9,A5      ; |114| <0,8>  

||   EXTU    .S1     A22,8,24,A21  ; |155| <0,8>  

||   XORMPY  .M1     A18,A7,A4     ; |107| <0,8>  

 

     LDW     .D1T1   *+A9(16),A27  ; |123| <0,9>  

||   EXTU    .S1     A22,16,24,A24 ; |130| <0,9>  

 

     LDW     .D2T2   *B8++,B6      ; |114| <0,10>  

||   LDW     .D1T1   *+A9(12),A23  ; |123| <0,10>  

||   XORMPY  .M1     A19,A7,A6     ; |106| <0,10>  

||   XORMPY  .M2X    B21,A7,B16    ; |114| <0,10>  

||   SHL     .S1     A4,24,A3      ; |118| <0,10>  

 

     LDW     .D2T2   *+B8(8),B5    ; |118| <0,11>  

||   XORMPY  .M2X    B20,A24,B4    ; |132| <0,11>  

||   SHRU    .S1     A4,8,A23      ; |123| <0,11>  

 

     LDW     .D2T2   *+B8(4),B16   ; |118| <0,12>  

||   XORMPY  .M2X    B20,A7,B9     ; |108| <0,12>  

||   SHL     .S1     A6,16,A25     ; |123| <0,12>  

 

     SHRU    .S1     A6,16,A26     ; |123| <0,13>  

||   SHRU    .S2X    A4,24,B4      ; |118| <0,13>  

 

     XOR     .L1     A25,A23,A4    ; |123| <0,14>  

||   SHL     .S1     A4,8,A3       ; |118| <0,14>  

||   SHRU    .S2     B16,8,B7      ; |114| <0,14>  

||   XOR     .L2X    A3,B4,B18     ; |118| <0,14>  

 

     XORMPY  .M1     A20,A7,A4     ; |114| <0,15>  

||   SHL     .S1     A6,16,A4      ; |114| <0,15>  

||   XOR     .L1     A27,A26,A7    ; |123| <0,15>  

||   SHRU    .S2X    A6,16,B17     ; |118| <0,15>  

||   XOR     .D1     A23,A4,A6     ; |123| <0,15>  

 

     XORMPY  .M1     A8,A24,A3     ; |134| <0,16>  

||   SHL     .S1X    B16,24,A3     ; |114| <0,16>  

||   XOR     .L2X    A3,B17,B5     ; |118| <0,16>  

||   XOR     .S2     B5,B18,B17    ; |118| <0,16>  

||   STNDW   .D1T1   A7:A6,*+A9(12); |123| <0,16>  

 

     XORMPY  .M2X    B20,A21,B16   ; |158| <0,17>  

||   XOR     .L1X    A4,B7,A6      ; |114| <0,17>  

||   XOR     .L2     B16,B5,B16    ; |118| <0,17>  

||   LDW     .D2T2   *+B8(12),B6   ; |147| <0,17>  

||   XOR     .S2     B9,B17,B17    ; |118| <0,17>  

 

     XORMPY  .M1     A20,A24,A4    ; |137| <0,18>  

||   XOR     .L1X    B6,A3,A3      ; |114| <0,18>  

||   STNDW   .D2T2   B17:B16,*+B8(4); |118| <0,18>  

 

     XORMPY  .M1     A19,A24,A5    ; |130| <0,19>  

||   XOR     .L1     A5,A6,A5      ; |114| <0,19>  

||   XOR     .S1     A4,A3,A4      ; |114| <0,19>  

||   LDW     .D2T1   *+B8(16),A7   ; |147| <0,19>  

 

     XORMPY  .M1     A17,A24,A3    ; |133| <0,20>  

||   SHL     .S1     A3,24,A6      ; |147| <0,20>  

||   STNDW   .D1T1   A5:A4,*-A9(4) ; |114| <0,20>  

 

     XORMPY  .M2X    B21,A21,B9    ; |155| <0,21>  

||   SHRU    .S2     B16,16,B17    ; |172| <0,21>  

||   SHRU    .S1X    B4,24,A5      ; |147| <0,21>  

||   LDW     .D2T2   *B8,B7        ; |137| <0,21>  

 

     XORMPY  .M2X    B21,A24,B6    ; |137| <0,22>  

||   SHL     .S2     B4,8,B5       ; |142| <0,22>  

||   XOR     .L1     A6,A5,A6      ; |147| <0,22>  

||   LDW     .D2T2   *-B8(4),B18   ; |137| <0,22>  

 

     XORMPY  .M1     A18,A24,A3    ; |131| <0,23>  

||   SHRU    .S1     A3,8,A6       ; |147| <0,23>  

||   SHRU    .S2X    A4,24,B4      ; |137| <0,23>  

||   LDW     .D2T2   *+B8(4),B18   ; |142| <0,23>  

||   XOR     .L1X    B6,A6,A23     ; |147| <0,23>  

 

     SHL     .S2X    A5,24,B6      ; |137| <0,24>  

||   LDW     .D2T2   *+B8(8),B6    ; |142| <0,24>  

||   XOR     .L1     A7,A6,A7      ; |147| <0,24>  

||   XOR     .S1     A3,A23,A6     ; |147| <0,24>  

 

     XORMPY  .M1     A20,A21,A4    ; |163| <0,25>  

||   SHRU    .S2X    A5,8,B19      ; |142| <0,25>  

||   XOR     .L2     B6,B4,B4      ; |137| <0,25>  

||   STNDW   .D2T1   A7:A6,*+B8(12); |147| <0,25>  

 

     XORMPY  .M1     A17,A21,A3    ; |159| <0,26>  

||   SHL     .S2X    A4,8,B7       ; |137| <0,26>  

||   XOR     .L2     B7,B4,B4      ; |137| <0,26>  

||   LDW     .D2T2   *+B8(12),B4   ; |172| <0,26>  

 

     XORMPY  .M1     A18,A21,A5    ; |157| <0,27>  

||   SHL     .S1     A3,16,A5      ; |142| <0,27>  

||   XOR     .L2     B18,B7,B6     ; |137| <0,27>  

||   LDW     .D2T2   *+B8(16),B5   ; |172| <0,27>  

||   XOR     .S2     B6,B4,B7      ; |137| <0,27>  

 

     SHRU    .S1     A22,24,A23    ; |180| <0,28>  

||   SHRU    .S2X    A3,16,B4      ; |142| <0,28>  

||   STNDW   .D2T2   B7:B6,*-B8(4) ; |137| <0,28>  

 

     SHRU    .S1     A4,16,A7      ; |163| <0,29>  

||   XOR     .L2     B5,B4,B5      ; |142| <0,29>  

||   XOR     .S2X    A5,B19,B4     ; |142| <0,29>  

||   LDW     .D2T2   *B8,B5        ; |163| <0,29>  

 

     XORMPY  .M1     A8,A21,A3     ; |160| <0,30>  

||   SHL     .S1     A3,8,A6       ; |172| <0,30>  

||   XOR     .L2     B6,B5,B7      ; |142| <0,30>  

||   XOR     .S2     B18,B4,B6     ; |142| <0,30>  

||   LDW     .D2T2   *-B8(4),B17   ; |163| <0,30>  

 

     XORMPY  .M1     A20,A23,A4    ; |188| <0,31>  

||   XORMPY  .M2X    B21,A23,B6    ; |180| <0,31>  
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||   SHL     .S2     B16,16,B7     ; |168| <0,31>  

||   SHL     .S1X    B9,8,A22      ; |163| <0,31>  

||   STNDW   .D2T2   B7:B6,*+B8(4) ; |142| <0,31>  

 

     XORMPY  .M1     A19,A21,A3    ; |156| <0,32>  

||   SHRU    .S1     A3,24,A3      ; |172| <0,32>  

||   SHL     .S2X    A5,24,B16     ; |168| <0,32>  

||   XOR     .L1X    A6,B17,A6     ; |172| <0,32>  

||   LDW     .D2T2   *+B8(4),B5    ; |168| <0,32>  

 

     XORMPY  .M1     A17,A23,A6    ; |184| <0,33>  

||   XORMPY  .M2X    B20,A23,B9    ; |183| <0,33>  

||   SHRU    .S2     B9,24,B9      ; |168| <0,33>  

||   XOR     .L1     A22,A7,A21    ; |163| <0,33>  

||   LDW     .D2T2   *+B8(8),B7    ; |168| <0,33>  

||   XOR     .S1X    B5,A3,A7      ; |172| <0,33>  

 

     XORMPY  .M1     A19,A23,A5    ; |181| <0,34>  

||   SHL     .S2X    A4,16,B4      ; |163| <0,34>  

||   XOR     .L1X    B4,A6,A6      ; |172| <0,34>  

||   XOR     .S1     A3,A7,A7      ; |172| <0,34>  

 

     STNDW   .D2T1   A7:A6,*+B8(12); |172| <0,35>  

||   XOR     .L2     B17,B4,B4     ; |163| <0,35>  

||   XOR     .S2X    B5,A21,B5     ; |163| <0,35>  

 

     XORMPY  .M1     A8,A23,A6     ; |185| <0,36>  

||   SHRU    .S1     A4,8,A21      ; |188| <0,36>  

||   SHRU    .S2X    A5,8,B16      ; |168| <0,36>  

||   XOR     .L2     B16,B9,B4     ; |168| <0,36>  

||   STNDW   .D2T2   B5:B4,*-B8(4) ; |163| <0,36>  

 

     SHL     .S1     A6,16,A25     ; |197| <0,37>  

||   XOR     .L2     B7,B16,B5     ; |168| <0,37>  

||   XOR     .S2     B5,B4,B4      ; |168| <0,37>  

||   LDW     .D2T2   *+B8(12),B4   ; |197| <0,37>  

 

     SHL     .S1     A5,8,A24      ; |192| <0,38>  

||   XOR     .L2     B7,B5,B5      ; |168| <0,38>  

||   XOR     .S2X    A3,B4,B4      ; |168| <0,38>  

||   LDW     .D2T2   *+B8(16),B7   ; |197| <0,38>  

 

     SHRU    .S1     A6,16,A7      ; |197| <0,39>  

||   STNDW   .D2T2   B5:B4,*+B8(4) ; |168| <0,39>  

 

     SHL     .S1     A6,8,A8       ; |197| <0,40>  

||   LDW     .D2T2   *+B8(8),B6    ; |192| <0,40>  

 

     LDW     .D1T1   *+A9(20),A3   ; |199| <0,41>  

||   SHL     .S1X    B6,16,A3      ; |188| <0,41>  

||   LDW     .D2T2   *-B8(4),B7    ; |188| <0,41>  

 

[A0] SUB     .L1     A0,1,A0       ; |99| <0,42>  

||   SHRU    .S1X    B9,8,A22      ; |197| <0,42>  

||   LDW     .D2T2   *B8,B9        ; |188| <0,42>  

 

     XOR     .L1     A8,A7,A4      ; |197| <0,43>  

||   SHRU    .S1     A5,24,A8      ; |192| <0,43>  

||   XORMPY  .M1     A18,A23,A4    ; |182| <0,43>  

||   SHL     .S2X    A4,24,B5      ; |188| <0,43>  

||   LDW     .D2T2   *+B8(4),B6    ; |192| <0,43>  

||   LDW     .D1T1   *A16++,A22    ; |102| <1,0>  

 

     XOR     .L1     A25,A22,A4    ; |197| <0,44>  

||   XOR     .D1X    B7,A4,A5      ; |197| <0,44>  

||[A0] B     .S1     $C$L4         ; |99| <0,44>  

||   SHRU    .S2     B6,16,B7      ; |192| <0,44>  

 

     SHRU    .S1     A6,24,A6      ; |199| <0,45>  

||   SHL     .S2     B9,24,B4      ; |192| <0,45>  

||   XOR     .L2X    A24,B7,B16    ; |192| <0,45>  

||   XOR     .L1     A3,A21,A7     ; |188| <0,45>  

||   XOR     .D1X    B4,A4,A4      ; |197| <0,45>  

||   LDW     .D2T1   *+SP(32),A8   ; |110| <1,2>  

 

     XOR     .L1     A6,A3,A3      ; |199| <0,46>  

||   XOR     .L2X    B4,A8,B4      ; |192| <0,46>  

||   STNDW   .D2T1   A5:A4,*+B8(12); |197| <0,46>  

 

     STW     .D1T1   A3,*+A9(20)   ; |199| <0,47>  

||   XOR     .L2     B6,B4,B7      ; |192| <0,47>  

||   XOR     .S2     B7,B5,B4      ; |188| <0,47>  

||   XOR     .D2X    B9,A7,B5      ; |188| <0,47>  

 

     XOR     .L2     B6,B16,B4     ; |192| <0,48>  

||   STNDW   .D2T2   B5:B4,*-B8(4) ; |188| <0,48>  

||   XOR     .S2X    A4,B7,B5      ; |192| <0,48>  

||   EXTU    .S1     A22,24,24,A7  ; |106| <1,5>  

 

     STNDW   .D2T2   B5:B4,*+B8(4) ; |192| <0,49> 

||   XORMPY  .M1     A17,A7,A4     ; |109| <1,6> 
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CHAPTER 5  

RESULTS 

 

In this chapter, we discuss how we compiled our implementation. We compare our 

implementation to a standard library and other implementations on an ARM, and we 

analyze our results. 

 

5.1 Tools and Environment 

We wrote our implementations in C and was able to execute the XORMPY 

instruction by using the "_xormpy()" function call. We compiled these implementations 

using the TI C6x C Compiler using the -O3 option. It was run on the C64x+ at 360MHz 

on an OMAP3530. 

We compared our results by running modular multiplication using libcrypt on the 

ARM Cortex A8 on the same OMAP3530. libcrypt is the cryptographic library which 

OpenSSL uses.  We compiled libcrypt using GCC with the -O3 option.  

 

5.2 Execution Times on the OMAP3530 

Table III shows our results. We can perform finite field multiplication faster using 

the DSP despite the DSP running at a slower clock rate. Using our implementation, we can 

perform binary field multiplication over seven times faster on the DSP when compared to 

using libcrypt on the ARM for GF(2283) and smaller. We can perform GF(2233) 

multiplications on the DSP over six times faster than prime field GF(p224) multiplications 

on the faster ARM. There is a drop off in speed up as the field increases in size, with the 

largest drop off at GF(2571). Figure 8 is a graph of the execution times of binary field 

multiplication on the OMAP3530. These comparisons are relevant because these are two  



 

TABLE III.       

NIST 

Field 

500MHz ARM Cortex A8

libcrypt

Time (µs) 

GF(2163) 6.62 
GF(2233) 9.98 
GF(2283) 15.44 
GF(2409) 27.47 
GF(2571) 45.53 

GF(p192)a 6.80b 
GF(p224)a 8.79b 
GF(p256)a 9.28b 

Figure 8. Execution times of multiplications in all NIST Binary Fields on the ARM 
Cortex A8 using libcrypt and C64x+

processors implemented on the same SoC

technology. 
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I.       MODULAR MULTIPLICATION ON THE TI OMAP3530

00MHz ARM Cortex A8 

libcrypt 
360MHz TI C64x+ DSP

Our Implementation

Cycles Time (µs) Cycles 

3310 0.829 298 
4990 1.31 472 
7720 2.20 792 

13735 4.43 1595 
22765 11.60 4175 
3400b - - 
4395b - - 
4640b - - 

a.  Montgomery Multiplication
b. Does not include overhead needed for Montgomery Multiplication

imes of multiplications in all NIST Binary Fields on the ARM 
and C64x+ using our implementation. 

processors implemented on the same SoC. So our results have factored out differences in 

depicts a graph of multiplication execution cycles per bit vs.

It shows that as the number of bits in the NIST Field increase, the cycles

needed to complete the multiplication also increases. Figure 10 shows the 

GF(2^233) GF(2^283) GF(2^409) GF(2^571)

NIST Binary Field

Execution Time of Binary Field

Multiplication on the TI OMAP3530

C64x+ (360MHz)

OMAP3530 

360MHz TI C64x+ DSP 

Our Implementation 

Speed Up 

7.99 
7.62 
7.02 
6.20 
3.93 

- 
- 
- 

a.  Montgomery Multiplication 
needed for Montgomery Multiplication 

 

imes of multiplications in all NIST Binary Fields on the ARM 

differences in 

vs. bits in the 

bits in the NIST Field increase, the cycles per 

shows the cycles per bit 

GF(2^571)



 

vs. bits2 in the NIST Field. This is close to a horizontal line. So the multiplication in our 

implementation is O(n2), which is a result of us multiplying each byte of the one operand 

by each subword of the other oper

Figure 9. Multiplication execution cycles per bit versus the number of bits in the 
NIST Binary Field on the ARM Cortex A8 (libcrypt) and TI C64x+ (our implementation).

Figure 10. Multiplication execu
NIST Binary Field using our implementation on the TI C64x+.
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in the NIST Field. This is close to a horizontal line. So the multiplication in our 

), which is a result of us multiplying each byte of the one operand 

by each subword of the other operand. Figure 11 shows that the libcrypt implementation 

Multiplication execution cycles per bit versus the number of bits in the 
NIST Binary Field on the ARM Cortex A8 (libcrypt) and TI C64x+ (our implementation).

Multiplication execution cycles per bit2 versus the number of bits in the 
NIST Binary Field using our implementation on the TI C64x+. 
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Execution Cycles Per Bit for NIST Binary Fields

ARM Cortex A8
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Cycles on C64x+ Per Bit2 for NIST Binary Fields

in the NIST Field. This is close to a horizontal line. So the multiplication in our 

), which is a result of us multiplying each byte of the one operand 

shows that the libcrypt implementation  

 

Multiplication execution cycles per bit versus the number of bits in the 
NIST Binary Field on the ARM Cortex A8 (libcrypt) and TI C64x+ (our implementation). 
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running on the ARM Cortex A8 decreases in cycles per bit

shows that the libcrypt implementation uses a form of K

O(nlog
2
3). Figure 12 shows the

Figure 11. Multiplication e
NIST Binary Field using our implementation 

Figure 12. Multiplication E
the number of bits in the NIST Binary Field using libcrypt on the ARM Cortex A8.
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running on the ARM Cortex A8 decreases in cycles per bit2 in a NIST Binary F

ypt implementation uses a form of Karatsuba Multiplication

shows the number of cycles for the libcrypt multiplication 

Multiplication execution cycles per bit2 versus the number of bits in the
using our implementation on the ARM Cortex A8. 

Multiplication Execution Cycles per bit raised to the log23 power versus 
the number of bits in the NIST Binary Field using libcrypt on the ARM Cortex A8.
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number of bits raised to the power of log2 3. This displays a horizontal line, and shows that 

libcrypt does use a form of Karatsuba Multiplication. This gives us the reason why our 

speed up decreases as the number of bits in the field increase, i.e. the libcrypt 

implementation uses Karatsuba Multiplication, while our implementation does not. 

 

5.3 Cycle Count Compared To Other Implementations 

Table IV shows our results compared to results shown in other papers. In [14], an 

ARM instruction extension, MULGF, was implemented. MULGF performs the same 

operations as XORMPY, except that it takes two 32-bit operands and produces a 63-bit 

result. Figure 13 shows the execution cycles of our implementation compared with the 

implementations in [14] with the MULGF instruction implemented. Even though the 

MULGF is more powerful than XORMPY, i.e. it can produce a 63-bit result as opposed to 

a 32-bit result, the C64x+ still outperforms the ARM by big margin. This shows that 

because of the highly parallelized architecture of the C64x+, it can perform modular 

multiplication much faster than the ARM Cortex A8. 

TABLE IV.       CYCLES FOR MODULAR MULTIPLICATION 

Processor Implementation NIST 

Field 
Cycles 

TI C64x+ 
DSP 

Our Implementation 

GF(2163) 298 

GF(2233) 472 

GF(2283) 792 

ARM 

Montgomery [15] GF(p256) 3384 

Pencil and Paper  [14] GF(2163) ~8000 

Montgomery [14] GF(2163) ~24000 

Karatsuba [14] GF(2163) ~5500 

ARM + 
MULGF 

instruction 
extension 

Pencil and Paper  [14] GF(2163) ~2400 

Montgomery [14] GF(2163) ~7000 

Karatsuba [14] GF(2163) ~2500 



 

Figure 13. Execution cycles of
the MULGF instruction [14] 

5.4 Reduction Results 

We implemented both of our reduction techniques for 

and GF(2409). Our results are listed 

better only for GF(2233) and GF

the irreducible polynomial are within a 9

Multi-Precision Binary Polynomial Multiplication.
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of multiplication implementations on an ARM processor with 
 and our implementation on the C64x+ DSP in GF

We implemented both of our reduction techniques for GF(2163), GF(2

. Our results are listed in Table V. Using the Shift and Add method works 

GF(2409). This supports our claim that if most of the set bits in 

the irreducible polynomial are within a 9-bit window, then it is more effective to use 

lynomial Multiplication. Figure 14 displays this data in a graph.

YCLES FOR UNBALANCED EXPONENT MODULAR REDUCTION

Karatsuba Pencil and Paper Our implementation

Cycle Counts of GF(2163) Multiplication 

Irreducible 

Polynomial 

Cycles for Reduction 

Method 

Shift and 

Add 

Multi-Precision 

Multiplication
163 + x7 + x6 + x3 + x0 28 19 

x
233 + x74 + x0 33 42 

+ x12 + x7 + x5 + x0 90 64 

x
409 + x87 + x0

 52 66 

 

mentations on an ARM processor with 
GF(2163). 

(2233), GF(2283) 

. Using the Shift and Add method works 

. This supports our claim that if most of the set bits in 

bit window, then it is more effective to use 

displays this data in a graph. 

EDUCTION 

Our implementation

Precision 

Multiplication 



 

Figure 14. Cycles for Unbalanced Exponent Modular Reduction using the shift and 
add method and MPBPM. 
 

 One might expect that reduction for 

GF(2283) because it is a larger binary field.

in it when compared with the 

Therefore, the first iteration of

multiplied by Ch(x), and then

GF(2283) there are 282 bits in 

multiplied by the reduction byte in the first iteration. 

added to account for the bit not in the reduction byte, i.e. 

adds and 9 2 = 18 shifts needed in 

polynomial multiplication. In the first iteration of reduction for 

only ⌈408/32⌉ = 13 adds and 13

 Table VI displays the 

Unbalanced Exponent Modular Reduction. The reduction method which needed the least 

number of cycles was chosen for each binary field. 
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Cycles for Unbalanced Exponent Modular Reduction using the shift and 

that reduction for GF(2409) would take longer than 

er binary field. However, T(x) for GF(2283) has 

in it when compared with the T(x) for GF(2409), and not all bits are within a 9 bit window

iteration of UEMR requires the "reduction byte", (0xA1),

then Ch(x) must be shifted and added to that result.

) there are 282 bits in Ch(x), there are ⌈282/24⌉ = 12 subwords that need to be 

multiplied by the reduction byte in the first iteration. Then Ch(x) must be shifted and 

t for the bit not in the reduction byte, i.e. x12. So there are 

needed in addition to the adds and shifts needed for binary 

polynomial multiplication. In the first iteration of reduction for GF(2409), there needs to be 

= 13 adds and 13 2 = 26 shifts. 

displays the percentage of cycles of multiplications 

Unbalanced Exponent Modular Reduction. The reduction method which needed the least 

number of cycles was chosen for each binary field. Figure 15 shows this data in pie 

that reduction for GF(2283)  takes the highest percent

execution time when compared with the other NIST Binary Fields. This is because it 

GF(2^233) GF(2^283) GF(2^409)

NIST Binary Field

Cycle Count of Unbalanced Exponent 

Modular Reduction of Binary Fields 

Precision Multiplication
 

Cycles for Unbalanced Exponent Modular Reduction using the shift and 

 reduction for 

) has more bits set 

not all bits are within a 9 bit window. 

", (0xA1), to be 

) must be shifted and added to that result. Since in 

= 12 subwords that need to be 

) must be shifted and 

. So there are ⌈282/32⌉ = 9 

addition to the adds and shifts needed for binary 

), there needs to be 

percentage of cycles of multiplications needed for 

Unbalanced Exponent Modular Reduction. The reduction method which needed the least 

this data in pie 

takes the highest percentage of 

execution time when compared with the other NIST Binary Fields. This is because it 

GF(2^409)



 

must perform both binary polynomial multiplication using XOR

and shift and add. Figure 15 

of the total multiplication time

bits set in T(x) are either 2 or 4, as the NIST Binary Field becomes larger, the percentage 

of execution time used for reduction 

Figure 15. Percentage of execution time needed for reduction for each NIST Binary 
Field in our implementation on the C64x+
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must perform both binary polynomial multiplication using XOR-Multiply instructions 

 shows that reduction does count for a very small per

on time, which supports our usage of UEMR. Since the number of 

) are either 2 or 4, as the NIST Binary Field becomes larger, the percentage 

of execution time used for reduction becomes smaller. 

 

 

 

Percentage of execution time needed for reduction for each NIST Binary 
Field in our implementation on the C64x+ 
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TABLE VI.   CYCLE PERCENTAGE FOR REDUCTION 

 

 

 

NIST Field Irreducible Polynomial 

Percentage 

of cycles for 

MPBPM 

Percentage 

of cycles for 

Reduction 

GF(2163) x
163 + x7 + x6 + x3 + x0 93.62% 6.38% 

GF(2233) x
233 + x74 + x0 93.01% 6.99% 

GF(2283) x
283 + x12 + x7 + x5 + x0 91.92% 8.08% 

GF(2409) x
409 + x87 + x0

 96.74% 3.26% 

GF(2571) x
571 + x10 + x5 + x2 + x0

 95.83% 4.17% 
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CHAPTER 6 

FUTURE WORK 

 

6.1 Improving Binary Field Multiplication 
   While our results were very good, there is room for improvement. Our lowest 

speed ups came at larger binary fields. Our algorithm can be enhanced by incorporating 

Karatsuba Multiplication in it so it can perform in less than O(n2) time. The larger binary 

fields would benefit most from this.  

 To represent numbers in GF(2571) on the C64x+, ⌈571/32⌉ = 18 registers are 

needed. Let x0 and y0 represent the least significant 9 registers of x and y, respectively. 

Let x1 and y1 represent the most significant 9 registers of x and y, respectively. Let the 

base b be 2288 (2(9)(32)). Instead of calculating (x1y1)b
2 + (x0y1 + x1y0)b + x0y0, you can use 

Karatsuba Multiplication and calculate (x1y1)b
2
 + x0y0  + ( (x1 + x0)(y0+ y1) - x0y0 - x1y1 )b. 

This increases the number of additions and subtractions, equivalient to Exclusive-ORs, but 

significantly decreases the number of XOR-Multiplies needed. Six XOR instructions can 

be executed every cycle and these instructions have no delay slots. Only two XOR-

Multiply instructions can be dispatched each cycle and require three delay slots. Using 

XOR-Multiply also requires executing XOR and shift instructions to create partial 

products. Using Karatsuba Multiplication in this instance decreases the number of XOR-

Multiply instructions needed for MPBPM from 1728 to 1296, while increasing the number 

32-bit XOR instructions by 18. This is a significant drop off in the the number of 

instructions needed. 

 We implemented this on the C64x+ and it produced very good results. The 

execution time decreased from 11.60µs to 6.81µs. The speed up compared to the libcrypt 

implementation on the ARM increased from 3.93 to 6.68. Karatsuba Multiplication can 

also be performed recursively. That is, each multiplication required, i.e. x1y1, x0y0 and (x1 

+ x0)(y0+ y1), in this new implementation can be also be performed using Karatsuba 
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Multiplication. This requires each multiplication to be broken up into smaller parts to 

decrease the total number of XOR-Multiply instructions. This can potentially be done 

several times to further increase performance. There will be a point where performing 

another Karatsuba decomposition will make the execution time longer. Therefore further 

work can be done to further optimize these algorithms for this DSP. 

 Functions to perform binary field squaring can be also be developed based on 

MPBPM and UEMR. To square x, you get x
2 = (x1x1)b

2 + (x0x1 + x0x1)b + x0x0. Since 

adding terms in a binary field is equivalent to performing a bit-wise XOR operation, the 

middle term is equal to zero because x0x1 + x0x1 = 0. Hence x2 = (x1x1)b
2 + x0y0. Therefore 

squaring a binary field polynomial can be performed much faster than even Karatsuba 

Multiplication. 

 

6.2 Implementing a Cryptosystem on the C64x+ 

 Modular multiplication is just one part of a modern cryptosystems. Implementing 

an entire cryptosystem on the C64x+ can further support our argument that utilizing a 

VLIW DSP for cryptographic operations can significantly reduce execution time while 

freeing up the General Purpose Processor. Even though we have showed that the most 

computationally intensive part of an encryption algorithm can be sped up greatly, 

implementing a whole cryptographic system might show bottlenecks that might slow 

down the system. Cache and memory access might limit the C64x+. Additionally, if a full 

cryptosystem was implemented, there would need to be communication with the ARM or 

other peripherals. So communication may prove to be a bottleneck in this application. 

 

6.3 Finite Field Multiplications on Other Processors 

 Future research can be done to see how finite field multiplication can perform on 

other processors. One can survey newer DSPs, newer ARM processors or other low power 

processors. Power analysis of different processors performing modular multiplication 

would also be interesting. 
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CHAPTER 7 

CONCLUSIONS 

 

We have shown that migrating applications from an ARM to a DSP can provide 

drastic improvements in performance. We implemented binary field multiplication using 

Multi-Precision Binary Polynomial Multiplication on the TI C64x+. For most fields, this 

provided a six times speed up when compared with the ARM on the same chip.  

We have shown that Unbalanced Exponent Modular Reduction can also be 

efficiently implemented on the C64x+ using both the shift and add method and Multi-

Precision Binary Polynomial Multiplication. 

We have explained how our algorithm can be improved by taking advantage of 

Karatsuba Multiplication. We also explored other possible future work. 

 We have taken our source code and produced a C library for the C64x+ which can 

perform binary field addition and multiplication for all NIST Binary Fields. Our source 

code is posted online and is available for all to view, edit and compile. It is downloadable 

from: http://rijndael.ece.vt.edu/ctergino 
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