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We explore the dynamics of driven magnetic flux lines in disordered type-II superconductors in
the presence of twin boundaries oriented parallel to the direction of the applied magnetic field, using
a three-dimensional elastic line model simulated with Langevin molecular dynamics. The lines are
driven perpendicular to the planes to model the effect of an electric current applied parallel to the
planes and perpendicular to the magnetic field. A study of the long-time non-equilibrium steady
states for several sample thicknesses L and drive strengths Fy reveals a rich collection of dynamical
regimes spanning a remarkably broad depinning transition region that separates the pinned and
moving-lattice states of vortex matter. We perform novel direct measurements of flux line excita-
tions such as half-loops and double kinks, and quantitatively analyze their excitation occurrence
distributions to characterize the topologically rich flux flow profile and generate a boundary curve
separating the regions of linear and non-linear transport in the (L, Fy) plane. Rich static and dy-
namic visualizations of the vortex matter in different drive regimes supplement the quantitative

results obtained.

I. INTRODUCTION

Point, columnar, and planar quenched disorder serve
as natural pinning centers for magnetic-flux lines in type-
II superconductorst. Effective pinning action through
material defects may be used to curb flux flow due to ex-
ternal electric current, thereby mitigating the associated
Ohmic loss and leading to a significant decrease in sam-
ple resistivity? 2. Planar defects are commonly found in
the form of twin boundaries in high-T¢. cuprates such as
YBayCuszO7_, (YBCO) and LagCuQO4. Twin boundaries
are formed in these materials as they undergo a tetrag-
onal to orthorhombic structural phase transition during
the oxidative cooling phase of synthesis®-.

Although twin boundaries naturally tend to occur as a
mosaic of twins from one of two orthogonal families®?, it
is possible to fabricate samples containing a single fam-
ily of twin planes®>1%. The work in this paper per-
tains to the latter. In the case of a single family of
twin planes, the pinning effect of twin boundaries on
flux lines is highly anisotropict®2?2 i.e., it strongly de-
pends on the angle between the magnetic field and the
twin planes (that are both oriented along the crystallo-
graphic ¢ axis). Early experiments exploring this vari-
ation of pinning strength with field orientation yielded
contradictory results>2?, with later experiments*! con-
clusively showing that pinning is strongest when the field
is parallel to the twin planes and the current is flowing in
the ab plane parallel to the twins thus exerting a Lorentz
force on the flux lines perpendicular to the planar defects,
confirming the results first presented by Kwok et al.?:2!
Experiments on flux-boundary pinning can be broadly
classified into two types — those that measure electrical
transport properties of the system such as resistivity and

critical depinning current, and those where the flux lines
are directly imaged via techniques like small angle neu-
tron scattering?? and scanning tunneling microscopy23.
In transport experiments, planar defects are seen act-
ing as strong pinning centers by their influence on the
linear resistivity of a sample near the melting point of
the Abrikosov lattice into a flux liquid. The monotonic
increase of resistivity with temperature observed in the
absence of planar (or other correlated) disorder in the
sample is interrupted in the presence of defect planes by
a sharp drop near the lattice melting transition which
is attributed to strong pinning of vortices by the twin
boundaries in the hexatic or liquid phase®24. Experi-
ments measuring the critical depinning current density
J. in systems with planar defects also confirm the strong
flux-boundary pinning hypothesis, with a sharp maxi-
mum in J. observed as a function of temperature just
below the melting point of the Abrikosov lattice in a phe-
nomenon known as the peak effect?®>. Real-time imag-
ing experiments of flux lines driven perpendicular to a
single family of twin planes also show strong pinning
of magnetic vortices at the twin boundaries?¢ 28, How-
ever, relatively recent experiments utilizing scanning su-
perconducting quantum interference device microscopy
to probe vortex motion near twin boundaries in pnic-
tide superconductors show that vortices avoid pinning to
twin boundaries in these materials owing to enhanced su-
perfluid density near the boundaries, instead preferring
to move parallel to them; this flux-boundary repulsion is
offered as a possible explanation for the enhanced critical
currents observed in twinned superconductors??.

Numerical studies of vortex behavior in the presence of
planar defects range from solving the full time-dependent
Ginzburg-Landau equations®® 32 to more approximate
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FIG. 1: Simulation snapshot of flux lines (red) driven
along the z axis in the presence of two planar defects
(blue) oriented perpendicular to the direction of drive
and many randomly positioned point defects (blue).

descriptions®* 38 of vortices in two-dimensional thin-

film and three-dimensional bulk samples as structureless
point- or string-like objects that are studied with either
Monte Carlo simulations or Langevin dynamics meth-
ods. The experimentally detected anisotropy of pinning
and transport has been observed in numerical simula-
tions of twinned superconductors3?4? with thermal fluc-
tuations being enhanced and vortex motion being facil-
itated within defect planes. Reichhardt et al. identified
three phases of flux flow in London-Langevin studies of
driven vortices subject to planar pinning, wviz. guided
plastic flow at low drives characterized by partially or-
dered vortices, highly disordered plastic flow at interme-
diate drives, and elastic flow at high drives with the vor-
tices reordering into a lattice in this phase2®. This is in
agreement with earlier results of Crabtree et al4! which
were obtained by solving the time-dependent Ginzburg-
Landau equations on a discrete grid. Recent anaytical
works argue that for randomly placed parallel planar de-
fects, the flux line lattice displays a novel planar glass
phase with an exponential decay of long-range transla-
tional order as opposed to the algebraic decay seen in the
case of the Bragg glass obtained in the absence of pla-
nar defects?244. Marchetti and Vinokur in their analyti-
cal studies of the low-temperature dynamics of magnetic
flux lines in type-II superconductors, find that flux lines
driven transverse to a family of parallel twin planes do so
in a manner analogous to the motion of one-dimensional
charge carriers in a disordered semiconductor induced by
an electric field, and discuss various linear and non-linear
transport mechanisms for vortex motion that are associ-
ated with different flux line excitations in the system#2:46,

In the present work, we use an elastic line descrip-

tion of vortices in a three-dimensional sample modeled
to mimic the behavior of flux vortices in the mixed phase
of YBCO. The elastic lines are mutually repulsive and
are subject to a horizontal drive representing the Lorentz
force exerted by an external current. The sample con-
tains two planar defects perpendicular to the direction
of drive as well as many randomly distributed point-like
pinning sites that represent point disorder such as those
produced by oxygen vacancies (FIG. [[). The dynamics
of this model are simulated by numerically solving over-
damped Langevin equations that account for the fast de-
grees of freedom in the system as stochastic forcing that
is subject to certain physical constraints. This particular
implementation of the elastic line model named LineMD
was previously used by Dobramysl et al4” to study re-
laxation and aging phenomena of flux lines in the pres-
ence of point-like and columnar disorder. Since then,
it has been employed to investigate relaxation dynamics
of vortex lines following magnetic field, temperature and
drive quenches*® 39, as well as the pinning time statis-
tics for flux lines in disordered environments®!. We have
extended this work to here address the dynamics of vor-
tices driven parallel to the x axis, and perpendicular to
two parallel planar defects that are placed either a short
distance (16 pinning center radii bg) apart or a large dis-
tance (160by) apart. The system is periodic in the z
direction and therefore the planar defect pair configura-
tion employed here is comparable to a long YBCO sample
containing evenly spaced pairs of parallel twin bound-
aries. We observe the long-time steady-state behavior of
this system of flux lines for various sample thicknesses
and drive strengths. These observations involve measur-
ing several physical attributes and occurrence statistics
for different flux line excitations as well as static and
dynamic visualizations of the system under a range of
conditions and from a number of (both two- and three-
dimensional) perspectives.

The characterization of the depinning process, by
which magnetic vortices subject to planar pinning tran-
sition from the pinned to the moving lattice state,
has been greatly enhanced by direct measurements of
the unique vortex excitations that emerge from pla-
nar defect-induced elastic deformations of these vortices.
These measurements are made possible by the full three-
dimensional specification of our simulated model coupled
with the structural simplicity of the infinitesimally thin
elastic lines that represent the vortices. The steady-state
results pertaining to the depinning region reveal a rich
assortment of drive (Fy) regimes, starting from an ex-
tremely disordered moving liquid at the onset of depin-
ning that is followed by three more distinct regimes of
increasing translational order that culminate in the dy-
namical freezing of the vortices into a moving triangular
lattice. The excitation measurements complement these
results by providing us with an insight into the types of
structures that facilitate the realization of the different
depinning regimes. The sample thickness (L) variation
we have explored in this work establishes a strong depen-



dence of the manifestation of these novel regimes on the
length of the flux lines.

The organization of this paper is as follows. The sub-
sequent section explains the various terms in the Hamil-
tonian for our elastic line model, describes the Langevin
Molecular Dynamics algorithm we employ to implement
its stochastic dynamics, and specifies the material param-
eters we use for the implementation. This Section also
covers definitions of the six observable quantities we mea-
sure directly and the simulation protocol we use to evolve
the system to the steady state. We discuss the relevant
results in Section 3, including the different regimes of flux
flow observed as systems of vortex lines of varying length
are driven from the pinned state at low drive values to
the moving lattice state at sufficiently high drives. We fo-
cus on a discussion of the various flux line excitations ob-
served in the different drive regimes and the separation of
linear and non-linear phases of current-voltage response
in the (L, Fy) plane that is delineated using quantitative
excitation population data. We conclude the paper by
summarizing our results in Section 4.

II. ELASTIC LINE MODEL AND SIMULATION
PROTOCOL

A. Model Hamiltonian

We model flux lines as mutually repulsive elastic
lines®22% in the extreme London limit, i.e., when the
London penetration depth is much larger than the co-
herence length. The Hamiltonian of the system is a sum
of four terms, viz. the elastic line tension energy, the at-
tractive potential due to pinning sites, the repulsive pair
interactions between vortex line elements, and the work
done by the external electric current:
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r;(z) represents the position vector in the zy plane of the
line element of the ith flux line (one of N), at height z.
The elastic line stiffness or local tilt modulus is given by
€1~ T 2egIn(Aap/Eap) where T~ = My, /M. is the effec-
tive mass ratio or anisotropy parameter. A, is the Lon-
don penetration depth and &g, is the coherence length,
in the ab crystallographic plane. The in-plane repul-
sive interaction between any two flux lines is given by
V(r) = 2e0Ko(r/Aap), where K denotes the zeroth-order
modified Bessel function. It effectively serves as a loga-
rithmic repulsion that is exponentially screened at the
scale A\gp. The pinning sites are modeled as smooth po-

tential wells, given by
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where Np is the number of pinning sites, p > 0 is the pin-
ning potential strength, by is the width of the potential
well, while r,, and z, respectively represent the in-plane
and vertical position of pinning site a. The Lorentz force
exerted on the flux lines by an external current j is mod-
eled in the system as a tunable, spatially uniform drive
F; = |j X $oB/B]| in the x direction.

In the following, all lengths are measured in units of bg
while energies are measured in units of €pbg, where ¢y =
(¢bo/4mAap)? is the elastic line energy per unit length, and
oo = he/2e is the magnetic flux quantum.

B. Langevin Molecular Dynamics

We simulate the dynamics of the model by discretizing
the system along the direction of the external magnetic
field (z direction) into layers. Consecutive layers are sep-
arated by co, i.e., one crystal unit cell size along the crys-
tallographic ¢ direction®®%4. Consequently, each elastic
line consists of elastically coupled points, with each dis-
crete element residing in a unique layer. The pinning
sites () are also confined to these layers. The interac-
tions between these discrete elements are encapsulated
in the properly discretized version of the Hamiltonian
(@) that we use to obtain coupled overdamped Langevin
equations which we then solve numerically:
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Here, n = ¢3/2mp,c?€?, is the Bardeen-Stephen vis-
cous drag parameter, where p,, represents the normal-
state resistivity of YBCO near T.1:22. We model the
fast, microscopic degrees of freedom of the surrounding
medium by means of thermal stochastic forcing as uncor-
related Gaussian white noise f; ,(¢) with vanishing mean
(f; . (t)) = 0. Furthermore, these stochastic forces obey
the Einstein relation

<fi)z(t) . fj7z/(8)> = 477]€BT6ij6ZZ/6(t — S),

which ensures that the system relaxes to thermal equilib-
rium with a canonical probability distribution P[r; .]
e~ Hlri=l/ksT in the absence of any external current.

C. Model Parameters

We have selected our model parameters to closely
match the material properties of the ceramic high-T,
type-1I superconductor YBCO. The pinning center radius



is set to by = 35A. The inter-layer spacing in the crys-
tallographic ¢ direction is set to ¢g = by. The in-plane
London penetration depth and superconducting coher-
ence length are chosen to be A\, = 34by =~ 12004 and
£ap = 0.3by ~ 10.5A respectively, in order to represent
YBCO, which has a high effective mass anisotropy ra-
tio '™t = 1/5. The line energy per unit length is ¢y ~
1.92-10%erg/cm. This effectively renders the vortex line
tension energy scale to be €1 /¢g ~ 0.189. The pinning po-
tential well depth is taken as p/ep = 0.05. The tempera-
ture in our simulations is set to 10K (kg7 /egbo = 0.002
in our simulation units). The Bardeen—Stephen viscous
drag coefficient n = ¢3/2mp, €2, ~ 107 Perg - s/cm? is
set to one, where p, ~ 500 uQm is the normal-state re-
sistivity of YBCO near T.2¢. This results in the simula-
tion time step being defined by the fundamental temporal
unit tg = nbo/€p ~ 18 ps; simulation times are measured
in units of tg.

D. Measured Quantities

Our understanding of the system is primarily devel-
oped by examining certain physical observables. One
such observable is the mean velocity v of the vortex lines,

v = <%ri(z)>. (4)

Here, (...) represents an average over all line elements of
line ¢ as well as an average over all N lines and different
realizations of the disorder and the noise.

Another quantity of interest is the mean radius of gy-
ration,

rg = VA(ri(z) — (r:))?) , (5)

i.e., the standard deviation of the lateral positions r;(z)
of the points constituting the ¢th flux line, averaged over
all the lines. r, is a measure of overall roughness of the
lines in the system.

The third quantity we measure is the fraction of pinned
line elements, defined as

fp=n(r < bo)/ntotal- (6)

Here, n(r < bg) is the number of line elements located
at a distance r from a pinning site that is less than one
pinning center radius by. Nyotal is the total number of line
elements in the system. Thus, f, is the fraction of line
elements in the system that are located within distance
bo of an attractive defect site.

We also measure the numbers of different flux line ex-
citations that appear in the system, viz. half-loops, single
kinks and double kinks (FIG.[2). A flux line forms a half-
loop (FIG. 2h) when it becomes partially depinned from
a defect plane and the separation between the depinned
portion and the plane is smaller than the inter-planar
distance. A single kink (FIG.[2b) appears when part of a
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FIG. 2: Simulation snapshots of the system projected
onto the xz plane for a side view, showing flux lines
forming three different excitations: (a) half-loop, (b)

single kink, and (c) double kink. The green dotted lines
are flux lines, the gray dots represent point pins, and
the black vertical lines planar defects. The red dotted
sections are those portions of the flux lines that are
trapped at planar defects. The drive Fy is oriented
along the positive z (right) direction.

line is trapped in one defect plane while an adjacent sec-
tion is trapped in the neighboring plane. A double kink
(FIG. [Zk) is similar to a half-loop but with a larger sepa-
ration between the depinned portion and the remainder
of the flux line that results in the outermost portion of
the half-loop being pinned to the next defect plane; this
can also be viewed as a specific combination of two single
kinks and is accounted for as such in our measurements.
In each simulation run, we record the total number of
each type of vortex excitations appearing in the system
(which of course depend on the total number of flux lines
N). We have used N = 16 vortices in all of the work
presented in this study.

E. Simulation Protocol

We obtain steady-state results for our system via the
following procedure. We set the sample thickness of the
system (in the z direction) L to the desired value and
initialize it with two planar defects oriented perpendic-
ular to the direction of the drive (x direction). Each
planar defect consists of rows of point defects extend-
ing along the entire height of the system. Each row of
point defects extends along the length of the system in
the y direction, and consecutive defects are separated by
a distance of 2by. We set up our pair of defect planes



in one of two configurations — either close together, i.e.,
where the planes are separated by 16by (~ 5% of the
system extension in the z direction) or far apart with
a separation of 160by (~ 50% of the system length in
the = direction). Besides the two defect planes, point
defects are randomly distributed throughout the system
to maintain a concentration of 1116 defects per plane.
The random point defects provide the effective viscocity
experienced by moving flux lines in a real physical sys-
tem. We employ periodic boundary conditions in the z
and y directions and free boundary conditions in the z
direction. We set the horizontal system size (in the zy
plane) to (16/v/3\ap)bo X 8Aapbo. This ratio of horizon-
tal boundary lengths is necessary to ensure that the flux
lines can equilibrate to a periodic hexagonal Abrikosov
lattice in the absence of disorder.

We randomly place N = 16 straight flux lines in the
system and immediately subject them to an effective tem-
perature of 0.002 egbo/kp and the desired drive strength
F,;. The lines are allowed to relax in this constant
temperature-drive bath for an initial relaxation time of
100,000¢g. At this point, we start measuring the various
observables in the system every 100 time steps, a duration
larger than the correlation times in the system that range
from 20tg to 45ty depending on the strength of the ap-
plied driving force. We perform 1000 such measurements
and under the ergodic assumption, record their average
for each observable. We simulate 10 independent realiza-
tions in this manner and perform an ensemble average
over these realizations. Between the time averaging and
ensemble averaging, we thus average each data point over
10,000 independent values.

III. RESULTS
A. The Six Dynamical Drive Regimes

We have performed a detailed study of the long-time
steady-state behavior of vortex matter subject to ran-
domly placed point pins and two parallel extended pla-
nar defects oriented perpendicular to the drive as a func-
tion of drive for several sample thicknesses (L = 50bg
to 250bg). These steady-state curves reveal new dis-
tinct drive regimes not observed in our prior studies*7:49
with point-like and columnar defects, and underscore the
much richer kinetics accessible with this defect geometry.

For the case where the planar defects are placed close
together, we observe six drive regimes in total — a pinned
and a moving-lattice regime found respectively at the be-
ginning and end of the drive spectrum under study, along
with four intermediate regimes that populate the remark-
ably wide depinning transition region connecting the two
extremal regimes. These intermediate regimes are the
liquid regimes I and II, a smectic, and a hexatic regime2”
(see FIG.[)). The defining features of each regime and the
mechanisms by which the system subsequently evolves
into each of these regimes are described below.
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FIG. 3: Steady-state (a) radius of gyration r, (units of
bo), (b) mean vortex velocity v (units of by/t), and (c)
fraction of pinned line elements f, as a function of drive
F; (units of ¢y) for interacting flux lines in the presence
of two closely placed planar defects, in samples of
varying sample thickness L (units of by). For
L = 250 by, vertical gray lines are used to demarcate the
six drive regimes, that are labeled with acronyms — P:
pinned regime, L-I: liquid regime I, L-II: liquid regime
IT, S: smectic regime, H: hexatic regime and ML:
moving lattice regime. Here and in the following figures
only error bars larger than the symbol sizes are shown.

The first drive regime in the system represents the
pinned state; it is characterized by a very low (< 3by)
mean radius of gyration rg4, zero mean velocity, v and a
sizable non-zero fraction of pinned line elements f, (pin-
ning fraction) that actually grows monotonically with
drive (FIG. ). In this regime, a proportion of the flux
lines are trapped in the first planar defect (the one with
the lower x coordinate) while the remainder of them are
held stationary at a fixed distance behind them by the ex-
ternally applied drive and the opposing long-range inter-
vortex repulsions (see FIG. @hl and FIG. @h2). Due to
the vertically correlated configuration of the planar de-
fects, the flux lines trapped within them are nearly per-
fectly straight and therefore display a low radius of gyra-
tion. Those lines not trapped by planar defects are also
quite straight on account of not only their intrinsic elas-
tic line tension but also the repulsive caging induced by
the plane-trapped lines positioned in front of them. This
results in the low overall gyration radius and zero mean
velocity we observe in the steady state. The system in
the pinned regime is a destabilized Bragg glass display-
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FIG. 4: Simulation snapshots of a system with 16 flux lines in a sample of thickness L = 150 b, in the presence of
two closely placed planar defects, projected onto the (1) zy plane for a top view, and (2) zz plane for a side view in
the (a) pinned, (b) liquid I, (¢) liquid II, (d) smectic, (e) hexatic, and (f) moving lattice regimes of drive. The (green)

dotted lines represent the vortices, and the black vertical lines are planar defects. The red dotted sections mark
those portions of the flux lines that are trapped at planar defects. The drive Fy is oriented in the positive z (right)
direction. The system boundary lengths in the = and y directions are 314 by and 272 by, respectively. The full videos
from which these snapshots have been taken can be viewed at https://figshare.com/s/8ale4bf34£463£988ebd.
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ing quasi long-range positional order as seen in FIG. [Zh1.
Within the pinned regime, higher drives correspond to
higher pinning fractions since an increase in drive shrinks
the distance between the free-standing caged vortices and
those trapped in the first defect plane, thereby increasing
the susceptibility of a free-standing flux line to be pulled
into the first defect plane. In this regime the influence of
sample thickness L on all of the measured quantities is
negligible, with the steady-state curves for different L ap-
pearing identical within our statistical errors. This is due
to the fact that in the pinned regime, the flux lines are
virtually motionless barring thermal fluctuations. The
influence of the length of the flux lines only becomes ap-
preciable once we enter one of the moving regimes where
the flux lines start experiencing partial pinning by the
planar defects; this affects lines of different lengths quite
differently, as described in detail below.

Increasing the drive further, we exit the pinned regime
to enter the liquid regime I, the first of four regimes that
comprise the depinning transition region. In this regime,
the drive is strong enough for the flux lines to detatch
from the planar defects, while suffering large distortions
(FIG. @bl and FIG. [@b2) that result in a sharp increase
in their mean gyration radius (FIG. Bh). The incipient
vortex motion also results in the mean vortex velocity as-
suming non-zero values (FIG. Bb). Both gyration radius
and velocity increase monotonically with drive, while the
pinning fraction diminishes (FIG.Bk) on account of fewer
line elements being pinned as we increase the drive and go
deeper into the depinning region. The increased drive in
this regime transforms the earlier Bragg glass into a mov-
ing liquid that is practically devoid of long-range transla-
tional order (FIG.[4b1). This moving liquid phase of the
system spans two drive regimes, the liquid regimes I and
II. The crossover from the pinned into the liquid regime
I occurs at lower drives for thicker samples (greater L)
than for thinner ones since longer vortex lines have a
larger number of points along their trajectory which can
potentially be set free from the defect plane holding them,
by the applied drive with assistance from thermal fluc-
tuations. This increases the probability of neighboring
line elements to break free as they are elastically cou-
pled to the first detached element, inducing a cascading
effect whereby the entire line is pulled free from the de-
fect plane. For any given drive in this regime, longer
flux lines, i.e., those in thicker samples (with greater L),
display a larger gyration radius (FIG. Bh), as longer lines
are capable of incorporating larger distortions as they are
pulled free from the defect planes at different locations
along their length by the drive. The opposite trend is
true for the pinning fraction f, (FIG. Bk), with shorter
lines being more likely than longer ones to be trapped by
planar defects. The propensity to be partially depinned
also results in longer lines moving faster than shorter ones
on average (FIG.[3b) as their motion is not impeded by
the disorder as much.

Following the liquid regime I, we enter the second tran-
sition regime, the liquid regime II, where the stronger

external forcing propels the flux lines faster through the
defect planes, as seen in the rising velocity-drive curves
(FIG.Bb) for all sample thicknesses L. The faster veloc-
ity means the lines spend less time at the pinning sites
(both planar and point) which reduces the distorting ef-
fects of the disorder on the vortices, resulting in com-
paratively straighter flux lines (FIG. @k2). This is evi-
dent in the decline of the gyration radius with drive in
this regime compared to its upward trend in the previ-
ous regime (FIG. Bh). The peak in gyration radius that
marks the change in regimes occurs at different points
in systems with different L, with thicker samples cross-
ing over at lower drive values than thinner samples. The
pinning fraction continues to decline with drive in this
regime albeit at a slower rate than in the previous regime

(FIG. Bk).

The next regime is the smectic regime. This is the
dynamical regime unique to the system under consid-
eration (two planar defects close together and perpen-
dicular to the drive) and has not appeared in systems
populated by only point or columnar defects. The gy-
ration radius instead of monotonically decreasing with
drive after undergoing its first maximum, as in systems
containing only point or columnar defects, once again
starts to increase at a certain drive strength (FIG. Bh),
which marks the start of the third intermediate regime.
This anomalous behavior can be explained on the basis
of three factors: high line velocity, a finite periodic sys-
tem, and repulsive vortex interactions. As we enter the
third intermediate regime, the lines are moving faster
than in previous regimes on account of the higher driv-
ing force (FIG. Bb). The enhanced speed leads to a rel-
atively short time period between a flux line leaving the
second defect plane and re-encountering the first one af-
ter crossing the periodic boundary in the x direction. As
a result, any major line distortion, such as a tilt in ver-
tical orientation effected by the asymmetric depinning
of a flux line from the second defect plane starting at
one end of the line, has insufficient time to relax before
it is quickly reinforced by the rapidly approaching first
defect plane (FIG. ). The long-range inter-line repul-
sions propagate these aberrations to neighboring lines,
significantly enhancing the overall distortive effect. In
the smectic regime, the moving vortex liquid starts de-
veloping transverse order to form a moving smectic phase
that is characterized by well-defined horizontal channels
of flux flow (FIG.[4d1). This marks the beginning of the
dynamic freezing process that finally culminates in the
flux lines forming a moving vortex lattice. The growing
gyration radius characteristic of the smectic regime is far
more pronounced in longer lines than shorter ones ow-
ing to the greater capacity of the former for containing
horizontally wide-spanning structures. In fact, for flux
lines with L < 100 by, the effect is insignificant enough
that the gyration radius simply does not form the valley
which signifies the transition from the liquid regime II to
the smectic regime, instead growing monotonically un-
til its eventual degradation in the hexatic regime as the
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FIG. 5: Steady-state number of (a) half-loops, (b)
single kinks, and (c) double kinks as a function of drive
F,; (units of €) for interacting flux lines in the presence

of two closely placed planar defects, in samples of
varying sample thickness L (units of by). The six drive
regimes corresponding to L = 250 by are demarcated by

vertical gray lines.

vortices dynamically freeze into a triangular lattice. Es-
sentially, these shorter flux lines transition directly from
the liquid regime I to the hexatic regime, bypassing the
liquid II and smectic regimes.

Once the driving force crosses a certain threshold
(~ 0.17 €p), the attractive influence of the planar defects
becomes sufficiently weak that they are no longer capa-
ble of either inducing large distortions in the flux lines
or reinforcing them. This threshold marks the beginning
of the fourth and final depinning transition regime, the
hexatic regime, where the flux lines start to arrange in a
distorted triangular lattice (FIG. Bk1). The evolution of
the system with drive in this regime is qualitatively sim-
ilar to that in the liquid regime II, i.e., gyration radius
(FIG. Bh) and pinning fraction (FIG. [Bc) decrease as a
function of drive as the flux lines become faster (FIG.Bb),
straighter (FIG.[Hk2), and less susceptible to pinning. We
also observe progression in the dynamic freezing process,
with the flux lines starting to arrange themselves into a
triangular lattice, albeit an imperfect one, that suffers
from the distortive effects of the relatively weaker but
still potent pinning centers, especially the planar defects.
The role of the sample thickness L is also diminished
in this high-drive regime, as partial pinning of flux lines
occurs less frequently due to the effectively reduced pin-
ning strength of the defects, resulting in the steady-state

curves for various L starting to converge as we move to
higher drives.

The final drive regime in the series is the moving lat-
tice regime. The drive is sufficiently strong that the pin-
ning at the attractive defects is negligible, and the lines
are once again almost perfectly straight as in the low-
drive pinned regime (FIG. @f2). With the destabilizing
influence of disorder effectively removed, the flux lines
arrange themselves into a moving hexagonal Abrikosov
lattice (FIG. HF1), completing the dynamic freezing pro-
cess. The mean velocity of the lines shows a linear de-
pendence on drive strength, indicating that the system
has entered an Ohmic regime with linear -V characteris-
tics (FIG.[Bb). The pinning fraction (FIG.Bk) plateaus a
little above zero (f, ~ 0.04) as does the gyration radius
(FIG. Bh), as the lines move practically freely through
the system without the pinning and roughening effects
of the defects. The role of sample thickness diminishes
further, with the velocity and pinning fraction curves for
different L coinciding perfectly for the entire width of the
regime, and those for the gyration radius doing so near
the very end of the drive spectrum under consideration.

B. Flux Line Excitations

In order to better understand the line structures that
characterize the novel regimes observed in our studies
of vortex matter subject to planar defects, we devised a
technique of directly measuring the flux line excitations,
viz. half-loops, single kinks and double kinks, that ap-
pear in our system due the interactions of the flux lines
with the closely placed defect planes (see Section for
definitions).

The two local gyration radius maxima (FIG. Bh)
that mark the drive regime transitions respectively from
the liquid regime I to II and smectic to hexatic coin-
cide exactly with corresponding peaks in the single-kink
(FIG. 2b) steady-state curves (FIG. [Bb). This observa-
tion along with the overall structural similarity between
the gyration radius and single-kink steady-state data sug-
gests that single kinks are the primary drivers of flux line
distortion. For any given driving force, we see a positive
correlation between the number of single kinks and vortex
length (or sample thickness) L — the longer a flux line, the
more potential points there exist along its length where
a kink might form. This correlation between line length
and mean number of steady-state excitations holds true
for the other line structures (half-loops and double kinks)
under consideration as well.

Vortex half-loops (FIG.2h) occur in the system with a
frequency comparable to that of single kinks and attain
a maximum at the transition point between the smectic
and hexatic drive regimes (FIG.[Bh). In contrast to single
kinks, the formation of half-loops requires the flux lines to
be relatively straight. We thus observe a steady increase
in the number of half-loops beyond the pinned regime
as the lines that start out distorted in the liquid regime



I, steadily straighten out with increasing drive until the
start of the the hexactic regime regime, where the num-
ber of half-loops peaks. Beyond this regime, the pinning
influence of the planar defects starts to wane in compari-
son to the relatively high drive, and we see the number of
half-loops monotonically decline with drive. It is worth
noting that of the three types of excitations under study,
half-loops are the most resilient structures in the sys-
tem, with their population being significantly above zero
(0.2 ~ 0.5) in the moving lattice regime, even though sin-
gle kinks (FIG.[Eb) and double kinks (FIG.[Bk) practically
stop appearing in the system well before the onset of this
regime. This is consistent with the theoretical findings
of Marchetti and Vinokur that for large enough current,
half-loop configurations of transverse width smaller than
the average separation between the planes are the domi-
nant excitations®46,

Double kinks (FIG. Bk) occur far less frequently
(FIG. Bk) than single kinks or half-loops as they re-
quire a flux line to assume a spatial structure of rel-
atively higher complexity. Qualitatively speaking, the
double-kink steady-state curves share more in common
with those for single kinks than half-loops, with the
major double-kink peak occurring in the middle of the
liquid regime II, a slightly but noticeably higher drive
value than that corresponding to the major single-kink
peak, which occurs at the beginning of liquid regime II.
For, as the flux lines evolve from their most distorted
shape at the outset of liquid regime II to being some-
what straighter by the end of this regime, the formation
of double kinks is facilitated as these vortices start to
loop back on themselves and reattach to the first defect
plane.

C. Widely Spaced Defect Planes

When we increase the distance betwen the planar de-
fects to 50% of the system length, the richness and
variety of the depinning regimes observed for closely
placed planes is diminished significantly. The flux lines
of all lengths under consideration, except for the longest
(L = 250bp), are too short to allow for the formation of
single-kink (FIG. [Bb) or double-kink excitations. As a
result, for shorter samples (L < 150bp), the single-kink
driven gyration radius valley (comprised of the liquid IT
and smectic regimes) separating the liquid regime I and
the hexatic regime practically disappears (FIG. [Bh), and
we end up with a flux flow profile resembling that for a
system with columnar defects, i.e., containing a single
maximum in the steady-state gyration radius curve that
marks the transition of the system directly from the lig-
uid to the hexatic phase in the depinning region. For all
sample thicknesses considered, the only flux line excita-
tions to appear in any appreciable quantity are half-loops
(FIG. [Bk), since they need just one defect plane to form.

FIG. 6: Steady-state (a) radius of gyration (units of
bo), (b) number of half-loops, and (¢) number of single
kinks as a function of drive Fy (units of €;) for
interacting flux lines in the presence of two widely
spaced planar defects, in samples of varying sample
thickness L (units of by).

D. Transport Regimes

The different flux line excitations discussed in the pre-
ceding Section are associated with different transport
mechanisms for the vortices to move through the sys-
tem. These mechanisms may be classified as linear or
non-linear depending on whether they result in a linear
or non-linear current-voltage response in the sample. Our
investigation of transport regimes is primarily motivated
by the analytical works by Marchetti and Vinokur#2:46
on dilute vortex arrays. These sources provide the con-
text for the results we report in this subsection as well
as the definitions included herein. Marchetti and Vi-
nokur discuss five transport regimes in all, of which we
are able to observe three in our system as a consequence
of our limiting the number of planar defects in our sim-
ulations to two. These regimes are: the linear rigid flow
regime for very thin samples; the linear nearest-neighbor
hopping regime for thicker samples dominated by double
kinks; and the non-linear half-loop regime dominated by
half-loops that emerges in samples of all thicknesses.

Marchetti and Vinokur showed that there exists a char-
acteristic current scale Ji, ~ 1/L that separates the re-
gions of linear and non-linear current-voltage response in
the (L, J) plane, where L is the sample thickness in the
direction of the magnetic field, J is the electric current
that exerts a Lorentz force (what we refer to as the drive



0.085 A

0.080 -

0.075 -

0.004 0.006 0.008 0.010

0.070 A

FL

0.065 .
non-linear

0,060 1 linear
0.055 A

1
— ~ (theory)
0.050

75 100 125 150 175 200 225 250
L

FIG. 7: Crossover drive strength F7, separating the
regions of linear and non-linear response, as a function
of sample thickness L. The inset displays F, plotted as

a function of 1/L.

Fy) in the direction perpendicular to the defect planes
(the z direction), and J, is the critical current value,
which if exceeded causes flux lines in a sample of thick-
ness L to cross over from a linear to a non-linear trans-
port regime. Since J ~ Fy, it follows that Fy ~ 1/L
where F7, is the critical drive corresponding to the crit-
ical current Jr,. We have confirmed this relationship in
our simulations (FIG. [). The curve representing the
cross-over boundary between the regimes of linear and
non-linear response was obtained by identifying the crit-
ical drive strength Fr when the steady-state number of
half-loops starts assuming non-zero values, and repeating
this process for 21 systems of varying sample thickness,
evenly-spaced between L = 50y and 250 bg.

IV. CONCLUSION

We have examined a system of driven flux lines in the
presence of two planar defects aligned parallel to the mag-
netic field and perpendicular to the direction of drive. We
probed the steady-state drive dynamics of the system
over several sample thicknesses, and for closely placed
defect planes, observed a number of interesting regimes
of flux flow ranging from a quasi-ordered Bragg glass at
the lowest drive strengths to a perfectly ordered moving
lattice at the highest drive strengths, along with four in-
termediate regimes with vortex matter in different stages
of disorder. This system is quite distinct in its dynamical
signatures from samples with other types of quenched dis-
order such as point or randomly placed columnar defects.
The depinning region in the flux flow profile is remarkably
broad with non-trivial topology that we have character-
ized via novel methods of detecting and quantitatively
analyzing the unique spatial structures or excitations as-
sumed by the flux lines. These methods supplement the

10

quantitative analysis of essential summary observables in
the system, and furthermore are aided by rich visualiza-
tions of the vortex matter from different perspectives.

At drives close to zero, we see the system equilibrate
in the steady state, to a destabilized Bragg glass phase
(pinned regime) with quasi-long-range ordered flux lines
either trapped in the first defect plane or held at a fixed
distance behind this planar defect by the opposing forces
of drive and mutual vortex repulsion. The influence of
sample thickness or vortex length is negligible in this
regime that is devoid of flux flow.

When the drive is increased beyond the range of the
pinned regime, we see strongly disordered plastic vortex
motion that is characterized by very high gyration radius
or line roughness, non-zero line velocity, and a decline in
pinning fraction. We call this the liquid regime I; the
transition point from the pinned phase into this regime
also marks the point when we observe a maximum num-
ber of single-kink excitations. Single kinks thus emerge as
the dominant drivers of line distortion in the system, with
half-loop and double-kink excitations acting as secondary
sources of flux line roughening. Longer flux lines show en-
hanced distortion as well as excitations of all three kinds
compared to shorter ones, owing to the greater num-
ber of points along their length that can be dislodged
from pinning centers. Upon increasing the drive fur-
ther, the gyration radius (and number of single kinks) at-
tains a maximum, and then starts decreasing with drive,
marking the onset of liquid regime II, a regime where
drive strength dominates over the distortion-inducing ef-
fect of the planar defects, resulting in faster moving and
straighter lines. A maximum number of double-kink ex-
citations is observed in this regime.

Instead of monotonically continuing in this manner un-
til the system reaches the moving lattice state (as samples
with point or columnar defects would), the gyration ra-
dius experiences a minimum at the onset of the smectic
regime, and starts to again increase with drive. Close
examination of the flux line configurations reveals this
gyration radius valley to be a consequence of the finite,
periodic nature of the system, with major line distor-
tions having insufficient time to relax before being re-
inforced by the mext defect plane that lies beyond the
periodic boundary along the drive direction. This phe-
nomenon should be experimentally realizable in samples
with evenly spaced pairs of parallel twin boundaries that
are sufficiently long in the drive direction — we therefore
do not dismiss this phenomenon as a mere finite-size ef-
fect without experimental significance. Just as with the
transition from the liquid regime I to II, stronger drive
pushes the system from the smectic regime to the hex-
actic regime, where the pinning strength becomes suffi-
ciently weak compared to the driving force that it stops
inducing the large destabilizing vortex distortions it in-
duces in the smectic regime. Flux lines start becoming
straighter and faster yet again, eventually forming a per-
fectly ordered moving triangular Abrikosov lattice mark-
ing the end of the dynamic freezing process and the termi-



nation of the hexatic regime. Finally, the system reaches
the moving lattice regime where the steady-state curves
for different sample thicknesses start to converge, indi-
cating the diminishing influence of both flux line length
and planar pinning.

Quantitative measurements of the flux line excitation
populations were utilized to detect the phase boundary
separating the regions of linear and non-linear current-
voltage response in the (L, J) or (L, Fy) plane. By iden-
tifying the drive strength Fp, corresponding to the emer-
gence of half-loops in the system for each sample thick-
ness L, we have confirmed that the critical drive strength
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F;, needed to push the system from a linear to a non-
linear transport regime shows a 1/L dependence, as an-
alytically predicted by Marchetti and Vinokur6.
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