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3.0  Fundamental Equation

3.1  Nonlinear Fluid Analysis

In the absence of viscosity, heat transfer, and body forces, the Navier-Stokes equations

reduce to the familiar time dependent Euler equations written in integral form for a bounded

domain Ω , with boundary ∂Ω , as

∂Q

∂t
dV +

Ω
∫∫∫ F ⋅ N

∂Ω
∫ dS =0 (3.1)

where Q = ρ ρu ρv ρw ρeo{ }T
 is the aerodynamic state vector, and F ⋅ N  are the

inviscid flux vectors normal the boundary ∂Ω

E = F ⋅ N =

ρΘ
ρΘu + pηx

ρΘv + pηy

ρΘw + pηz

ρeo + p( )Θ

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(3.2)

N = ηx ηy ηz{ }T
 represents the outward pointing normal to the boundary and Θ

denotes the normal velocity

Θ = uηx + vηy + wηz (3.3)

For closure, the pressure must be related to the state variables. In the current work, this is

accomplished via the ideal gas law, which may be written as
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p = γ − 1( ) ρeo − ρ
u2 + v2 + w2( )

2

 

 
 

 

 
 (3.4)

The above coupled set of nonlinear equations ensures the conservation of mass,

momentum, and energy for an inviscid, compressible flow.

3.1.1  Finite Volume Formulation

The finite volume formulation is derived from application of the Reynolds transport

equation expressed in equation 3.1. A discretization, and the subsequent solution obtained

using this formulation, will ultimately satisfy the integral statement of conservation.

Furthermore, the finite volume formulation is more attractive than the finite difference

formulation due to its ability to handle arbitrary cell volumes. The shape of these volumes

is irrelevant. The only requirement that must be adhered to is that the computational domain

must be divided into a finite number of non-overlapping volumes.

An expression for the semi-discrete approximation to the governing equations may be

expressed as

Vi
∂Qi

∂t
= −Ri (3.5)

where Qi  is the cell-averaged state variables for cell i and Ri  is the residual vector

containing the inviscid fluxes

Ri = F ⋅ N dS = Ei,j
j=κ i( )
∑

∂Ω
∫ Ai,j (3.6)

and Ai,j  is the area of face j for cell i through which the flux passes. The number of

unknowns in Eq.(3.5), i.e., the dimension of Qi , is four times the total number of

triangular cells in two-dimensions and five times the total number of tetrahedral cells in

three-dimensions, respectively. Due to the random placement of cells in an unstructured
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mesh, a generalized indexing scheme (requiring the use of a connectivity matrix which is

referenced repeatedly throughout the solution process) must be used [112].

3.1.2  Upwind Discretization

Methods currently being used to construct the inviscid flux vectors, which appear in the

right hand side of Eq.(3.5), are the central and upwind differencing schemes. Central

difference schemes lack dissipation and are inherently unstable. Hence, to prevent

oscillations near shock waves or stagnation points, artificial dissipation must be added

[113]. The most popular form of this dissipation is due to Jameson et al. [114,115]. It

consists of a blend of second and fourth order differences of the conserved variables. This

type of dissipation, however, requires user specified second and fourth order dissipation

coefficients which have been found to be case dependent.

Upwind methods overcome this deficiency by modeling the underlying physics of signal

propagation as dictated by characteristic theory and, thus, are naturally dissipative.

Currently there are many upwind schemes available in the literature [116-119]. A review

and comparison for a number of these schemes is presented in references 120 and 121. For

the computations in the present work, the flux vector splitting technique of Van Leer [117]

is used exclusively.

For Van Leer’s flux vector splitting scheme, the flux vectors through face j are split into

the following contributions

E j = E+ Q j
−( ) + E− Q j

+( ) (3.7)

where Qj
−  and Qj

+  denote the state variables interpolated to the left and right sides of the

cell interface. Determination of the appropriate fluxes are based on the Mach number

normal to the cell face. This results in the possible occurrences of supersonic or subsonic

flow through the face. The supersonic fluxes are evaluated as
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E+ = F ⋅ N( )− , E− = F ⋅ N( )+ = 0 Mn ≥ 1 (3.8a)

E+ = F ⋅ N( )− = 0 , E − = F ⋅ N( )+ Mn ≤ −1 (3.8b)

where   F ⋅ N( )m  are the fluxes given by Eq.(3.2) using the interpolated state variables to the

left and right cell interfaces, and Mn  represents the Mach number normal to the cell face

and is given by

Mn =
Θ
a

(3.9)

with the local speed of sound

a =
γ p

ρ
 
 
  

 
 

12

(3.10)

As for the subsonic occurrence Mn < 1, the split fluxes are evaluated as

E± =

fmass
±

fmass
± fmom1

±

fmass
± fmom2

±

fmass
± fmom3

±

fmass
± fe

±

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(3.11)

with

fmass
± = ±

ρa

4
Mn ±1( )2

(3.12)

fmom1
± = u + ηx −Θ ± 2a( )/ γ

fmom2
± = v + ηy −Θ ± 2a( ) /γ

fmom3
± = w + ηz −Θ ± 2a( ) /γ

(3.13)

fe
± =

1 − γ( )Θ2 ± 2 γ − 1( )Θa + 2a2

γ 2 − 1( ) +
u2 + v2 + w2

2
(3.14)
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A point worth noting is that Van Leer’s flux vector splitting is continuously differentiable,

which makes it a valuable method for evaluating the inviscid fluxes for implicit time

integration algorithms where the flux Jacobians are required. Moreover, it has been found

in practice that steady shocks are resolved with at most two interior zones [117,120,121]

with this flux splitting method.

3.1.3  Spatial Differencing

The development of a higher-order spatially accurate scheme ultimately depends on the

interpolation of the state variables to the left and right of the cell interfaces. The manner in

which this interpolation is accomplished depends on the grid type, and is one of the major

differences between structured and unstructured grid algorithms. This is not to say that the

methods used for structured grids cannot be extended to unstructured grids [122-124]; it

has just been found difficult to obtain CPU efficient, accurate results. Thus, techniques

which exploit the geometric properties of triangles and tetrahedra have been developed and

used with success for unstructured grid algorithms [47,125-127].

A higher-order scheme is obtained by expanding the cell-centered solution to each cell

face using a Taylor series expansion [125] which may be expressed as

  Q f
± = Q + ∇Q ⋅ ∆

v 
r ( )±

(3.15)

where the solution gradient, ∇Q , at the center of the cell is found using geometrically

invariant features of tetrahedra. The expression for the solution gradient at the cell center

may be obtained from the application of Green’s theorem as

  
∇Q ⋅ ∆

v 
r ( )± =

1

4

1

3
Qn1 + Qn2 + Qn3( ) − Qn4

± 
 

 
 

(3.16)

where Qn1 , Qn2 , Qn3  are the primitive variables at the three nodes that constitute the face

through which the flux passes, and Qn4
±  are the same variables at the appropriate fourth
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node of the tetrahedra opposite to the face. In the current work, the data at the nodes are

obtained from the cell center solution by using either an inverse distance [125,128] or a

psuedo-Laplacian [47,127] weighting procedure. Both procedures, described in Ref. 129,

attempt a multidimensional weighted averaging of the form

Qn = wc,i Qc,i
i=1

nc

∑
 

 
  

 
 wc,i

i=1

nc

∑
 

 
  

 
 (3.17)

where w c,i are the computed weighting factors from the desired node, n , to the surrounding

nc cell centers.

The weighting factors from the inverse-distance procedure may be written as

wc,i =
1.0

∆x 2 + ∆y2 + ∆z2( )12 (3.18)

where ∆x = xc,i − xn( ) , ∆y = yc,i − yn( ) , and ∆z = z c,i − z n( ) . It should be noted that this

weighting procedure has been shown to be slightly less than second-order accurate [127].

In Ref. 130, however, the data at the nodes was interpolated using the inverse-distance

weighting procedure and by a linear least squares fit of the data, with no discernible

differences observed between the two.

The psuedo-Laplacian weighting procedure, which has been shown to be fully second-

order accurate [127], may be expressed as

wc,i = 1 + ∆wc,i (3.19a)

with

∆wc,i = λ x ∆x + λ y ∆y + λz ∆z (3.19b)

where ∆x , ∆y , and ∆z  are given above, andλx , λy , and λz  are obtained from the

solution of an optimization problem [47,127] using the method of Lagrange multipliers,

and are given by
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λx = −

v 
Ω ⋅

v 
I y ×

v 
I z( ) , λy =

v 
Ω ⋅

v 
I x ×

v 
I z( ), λz = −

v 
Ω ⋅

v 
I x ×

v 
I y( ) (3.20a)

where the following definitions have been used

  
v 

Ω = Ωx D Ωy D Ωz D{ },     
v 
I x = Ixx Ixy Ixz{ } (3.20b)

  
v 
I y = Ixy Iyy Iyz{ },     

v 
I z = Ixz Iyz Izz{ } (3.20c)

with

D = Ixx Iyy Izz − Iyz
2( ) − Ixy IxyIzz − Ixz Iyz( ) + Ixz IxyIyz − Iyy Ixz( ) (3.20d)

Ωx = xc,i − xn( )
i=1

nc

∑ , Ωy = yc,i − yn( )
i=1

nc

∑ , Ωz = zc,i − zn( )
i=1

nc

∑ (3.20e)

Ixx = xc,i − xn( )2

i=1

nc

∑ , Iyy = yc,i − yn( )2

i=1

nc

∑ , Izz = zc,i − zn( )2

i=1

nc

∑ (3.20f)

Ixy = xc,i − xn( ) yc,i − yn( )
i=1

nc

∑ (3.20g)

Ixz = xc,i − x n( ) zc,i − zn( )
i=1

nc

∑ (3.20h)

Iyz = yc,i − yn( ) zc,i − zn( )
i=1

nc

∑ (3.20i)

Observe that, regardless of the method chosen to obtain the weighting factors, they are

constructed solely from geometric properties of the grid. This is in direct contrast to

structured grid algorithms that transform the mesh to a computational space where the

upwind interpolation may proceed without the explicit need of geometric information. The

mesh dependence of the interpolation in Eq.(3.15) for unstructured grids requires the

computation of additional derivative terms when performing shape sensitivity analysis.

These additional terms will be discussed below, and are given in the Appendices.
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3.2  Linear Structural Analysis

Structural analysis primarily deals with the determination of displacement and stress

distributions under given loads, temperatures, and constraints. The displacement and stress

fields may be obtained by solving the basic equations of elasticity while satisfying imposed

boundary conditions on forces and/or displacements. To summarize, the basic equations of

elasticity for a general three-dimensional structure include 3 equations of equilibrium, 6

stress-strain equations, and 6 strain-displacement equations. Thus there are 15 equations

which may be solved for the 15 unknowns, e.g., 3 displacements, 6 stresses, and 6

strains. For further information concerning the theory of elasticity, the reader is directed to

the classical text of Timoshenko and Goodier [131]. In the current work, the equilibrium

equations of linear static structural analysis are modeled, and only constant strain triangle

(CST) membrane elements and truss members are considered. The equilibrium equation

may be written in terms of the displacement field as

Ku − L = 0 (3.21)

where u is the structural state vector, K  is the global stiffness matrix, which is the sum of

the element stiffness matrices, and L is the global load vector. A more detailed discussion

of structural analysis and the finite-element method may be found in references 132-134. In

the sections to follow, the element types used in the current work are presented.

3.2.1  Constant Strain Triangle Membrane Elements

In the weak form of the equilibrium equation, on which the finite-element approximation

is based, the displacements are the primary variables and only first derivatives of these

displacements are required for their solution. Since first derivatives of the primary variables

are involved, the displacements must be approximated by the Lagrange family of

interpolation  polynomials [132]. The lowest order polynomial that has first derivatives in
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two coordinate directions is bilinear. The simplest element that satisfies this requirement is

the linear triangle, referred to as the constant strain triangle. Derivation of constant strain

triangular elements may be found in any text on the finite-element method [132-134], and

will therefore be omitted here. Furthermore, before transformation to a two-dimensional

space, each element has 9 degrees-of-freedom, e.g., three displacement components at each

node. The basic assumptions are (1) uniform thickness, (2) plane stress state, and (3)

constant strain in the field.

3.2.2  Truss Members

Truss members, sometimes referred to as bar elements, by definition can only carry axial

loads and deform axially. The linear, three-dimensional truss member has 6 degrees-of-

freedom, e.g., three displacement components at each node. After transformation to an

axial coordinate system, the element has only axial displacements at the two ends of the

bar. Once again, like the constant strain triangle membrane element discussed in the

previous section, truss members are well documented in the literature [132-134]. The basic

assumption of this element is that the cross-sectional area of the bar remains constant along

the length of the member.

3.3  Aerodynamic Sensitivity Analysis

As noted in a previous section, to determine the needed sensitivity derivatives, the

sensitivity of the state vector ∂Q ∂βk  is required. To obtain this, the discrete residual

vector (for a steady-state solution) may be recast as

R Q βk( ),X βk( ),βk( ) = 0 (3.22a)
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where the explicit and implicit dependencies of the residual on the state vector, the

computational mesh, and the design variables are asserted. Similarly, the satisfaction of the

boundary conditions of the problem may be expressed as

B Q βk( ),X βk( ), βk( ) = 0 (3.22b)

At this point, one of two discrete formulations may be used to determine the sensitivity

derivatives. These formulations are referred to as the direct differentiation method

(Eqs.(2.6a,b)) and the adjoint variable method (Eqs.(2.7a,b)). For reasons which will be

summarized below, the direct approach is used in the current work. For a more detailed

discussion of both methods, and their associated boundary conditions, the reader is

referred to reference 135.

3.3.1  Direct Differentiation Formulation

In this formulation Eqs.(3.21a and b) are directly differentiated with respect to the vector

of design variables to produce the following linear equations

dR

dβk
=

∂R

∂Q

∂Q

∂β k
+

∂R

∂X

∂X

∂βk
+

∂R

∂β k
= 0 (3.23a)

dB

dβk
=

∂B

∂Q

∂Q

∂β k
+

∂B

∂X

∂X

∂βk
+

∂B

∂β k
= 0 (3.23b)

or, in terms of the state vector at interior cells, Qo , and on the boundary, Qb , as

∂R

∂Qo

∂Qo

∂βk
+

∂R

∂Qb

∂Qb

∂βk
+

∂R

∂X

∂X

∂βk
+

∂R

∂βk
= 0 (3.24a)

∂B

∂Qo

∂Qo

∂βk
+

∂B

∂Qb

∂Qb

∂βk
+

∂B

∂X

∂X

∂βk
+

∂B

∂βk
= 0 (3.24b)

rearranging yields the following matrix equation
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∂R

∂Qo

∂R

∂Qb
∂B

∂Qo

∂B

∂Qb

 

 

 
 
 

 

 

 
 
 

∂Qo

∂βk
∂Qb

∂βk

 

 
 

 
 

 

 
 

 
 

= −

∂R

∂X

∂X

∂βk
+

∂R

∂βk
∂B

∂X

∂X

∂βk

+
∂B

∂βk

 

 
 

 
 

 

 
 

 
 

(3.24c)

where ∂R ∂Q , ∂R ∂X , ∂B ∂Q , and ∂B ∂X  are the Jacobian matrices evaluated at a

converged flow solution, and ∂X ∂βk  is the grid sensitivity term. For each design variable,

the number of unknowns in Eq.(3.24) is the total number of cells plus the total number of

boundary faces in the mesh, e.g., ncell+nbface. The coefficient matrix for this equation has

the dimensions of (ncell+nbface)2, but is very sparse. The dimension of the above system

of equations can be reduced via the implicit treatment of the boundary sensitivity, referred

to as pre-elimination in reference 135. This is accomplished by solving Eq.(3.24b) for the

boundary sensitivity and substituting it into Eq.(3.24a); grouping and rearranging terms

yields

∂˜ R 

∂Q

∂Qo

∂βk
= −

∂˜ R 

∂βk
(3.25)

where

∂˜ R 

∂Q
=

∂R

∂Qo
−

∂R

∂Qb

∂B

∂Qb

 

  
 

  

−1
∂B

∂Qo

 

  
 

  (3.26a)

and

∂˜ R 

∂βk
=

∂R

∂X

∂X

∂βk
+

∂R

∂β k
−

∂R

∂Qb

∂B

∂Qb

 

  
 

  

−1
∂B

∂X

∂X

∂βk
+

∂B

∂βk

 
 
 

 
 
 

(3.26b)

For each design variable the number of unknowns in Eq.(3.25) has been reduced to

ncell, and the dimension of the coefficient matrix is now ncell2. Since this equation is

linear, the exact linearization of the residual vector and the boundary conditions must be

utilized in equations 3.26a and 3.26b. When higher-order spatially accurate sensitivity

analysis is desired, the number of non-zero entries in the coefficient matrix can become
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prohibitively large for three-dimensional computations. The exact number of non-zero

entries is mesh dependent for unstructured grids, and may vary from one mesh to the next,

but is approximately (30~50)×25×ncell. For example, the storage requirements of

Eq.(3.26a) alone, for a three-dimensional unstructured mesh containing 350,000 cells,

would be approximately 260 to 437 mega-words. This memory requirement is beyond that

which is currently possible on modern supercomputers.

It should be noted that the task of constructing exactly or analytically all of the required

Jacobians and derivatives above by hand, and then building the software for evaluating

these terms can be extremely complex. This problem is exemplified by the inclusion of

even the most elementary turbulence model (for viscous flow) or use of a sophisticated grid

generation package for adapting (or regenerating) the computational mesh to the latest

design. A promising possible solution to this problem, however, has been found in the use

of a technique known as automatic differentiation, which involves the application of a

precompiler software tool called ADIFOR (Automatic DIfferentiation of FORtran, Ref.

136). This software has been utilized, with much success, to obtain complex derivatives

from advanced CFD and grid generation codes for use within aerodynamic design

optimization procedures [24,44,45,137-140].

In the present work, the Jacobians ∂R ∂Q , ∂R ∂X , ∂B ∂Q , and ∂B ∂X  as well as all

derivatives (except for the grid sensitivity term) are constructed by hand, and are given in

the Appendices. This is due to the fact that an inviscid fluid model is assumed, with the

inviscid fluxes being constructed via the flux vector splitting scheme of Van Leer (a scheme

which is continuously differentiable and well documented). The boundary conditions types

used in the present work are inviscid surface (flow tangency) and characteristic

inflow/outflow; which are both differentiable. ADIFOR, on the other hand, is used on the
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unstructured grid adaptation algorithm to provide the required grid sensitivity terms. Details

of this algorithm and the evaluation of grid sensitivities will be discussed in a later section.

3.3.2  Adjoint Variable Formulation

The adjoint variable formulation of the sensitivity derivatives given in Eqs.(2.7a,b) may

be derived by combining Eqs.(3.23a and b) from the direct differentiation method with the

sensitivity derivatives in equations 2.6a and b. From this, the adjoint vectors λF  and λC j

may be conveniently defined such that the sensitivity of the field variables is no longer

needed [135]. This is accomplished by defining the adjoint vectors as

∂ ˜ R 

∂Q

 

 
  

 
 

T

λ F =
∂ ˜ F 

∂Q
(3.27a)

∂ ˜ R 

∂Q

 

 
  

 
 

T

λC j =
∂ ˜ C j
∂Q

(3.27b)

which requires the solution of ncon+1 linear systems. Once again, ~ denotes that the

boundary conditions have been implicitly treated or pre-eliminated from the equations; see

Ref. 135 for further details of this procedure for the adjoint equations. Nevertheless, it can

clearly be seen that the most efficient method for obtaining the sensitivity derivatives

depends on the formulation of the optimization problem, i.e., the choice and number of

design variables and constraints.

3.3.3  Direct vs. Adjoint Variable Method

In the current work the direct differentiation approach, as opposed to the adjoint variable

approach, was used to perform the discrete sensitivity analysis. As is well known, for

design problem formulations in which the number of design variables exceed the number of

constraints plus one (for the objective function), the adjoint method is the preferred
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approach. However, when the reciprocal is true and there are more constraints than design

variables, as is typical in the case of multidisciplinary optimization, the direct approach is

more attractive. For example, the aeroelastic design optimization of an aircraft wing would

undoubtedly have constraints placed on the maximum allowable stress in the structural

members, maximum allowable strains in the skin, and also on the dynamic pressure at

which divergence occurs. To perform the discrete aeroelastic sensitivity analysis, a coupled

set of adjoint equations would need to be solved for each constraint. In addition, adjoint

equations would need to be defined for any aerodynamic constraints as well. Thus, it can

clearly be seen that the multidisciplinary design of a configuration, which utilizes discrete

sensitivity analysis, is subject to an enormous number of constraints originating from the

various disciplines. Therefore since the ultimate goal of the present work is the

development of a integrated multidisciplinary analysis and optimization procedure (using

discrete sensitivity analysis), the direct differentiation method was adopted.


