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(ABSTRACT)

An efficient reliability technique has been developed based on Response Surface Methodology
(RSM) in conjunction with the First Order Second Moment (FOSM) reliability method. The
technique is applied when the limit state function cannot be obtained explicitly in terms of the de-
sign variables, i.e., when the analysis is performed using numerical techniques such as finite ele-
ments. The technique has proven to be efficient because it can handle problems with large numbers
of design variables and correlated as well as nonnormal random variables. When compared with
analytical results, the method has shown excellent agreement. The technique contains a sensitivity
analysis scheme which can be used to reduce the computation time resulting in nearly the same
accuracy. This technique allows the extension of most finite element codes to account for prob-
abilistic analysis, where statistical variations can be added to the design variables.

An explicit solution for rocket motors consisting of propellant and steel case under environ-
mental temperature variations is compared to the RSM technique. The method is then used for
the analysis of rocket motors subjected to mechanical loads for which the stress analysis is per-
formed using the finite element method. The technique is also applied to study the reliability of a
laminated composite plate with geometric nonlinearity subjected to static and time dependent
loadings. Different failure modes were considered as well as different meshes. Results have shown
that when the relative size of the element is introduced into the probabilistic model, the same reli-
ability value is obtained regardless of the number of elements in the mesh. This is good because

it allows the technique to be used for problems where the failure region is unknown.
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Chapter 1

INTRODUCTION

In classical mechanical and structural design, uncertainties in design parameters
such, as material properties, loading and models used to describe stresses, are accounted
for by factors of safety, chosen by experience and intuition. But reliability methods
employing concepts of probability and statistics provide mathematical procedures for
modeling uncertainty in a rational and consistent manner, thereby promising to produce
a well engineered design.

Reliability analysis is defined as the application of probabilistic and statistical
methods to the design process of a structure. Two important problems can be generated
from this type of analysis. The first problem is reliability assessment in which the goal
is to compute the reliability or the safety index for an existing or proposed structure.
The second problem entails design where a target reliability is specified as a basic re-
quirement for the structure.

Reliability analysis of structures has been carried out using various techniques,
among them the First Order Second Moment (FOSM) method. In this technique a

performance function is defined explicitly in terms of the design variables and separates
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the failure region from the safe region. A minimum distance is computed from the origin
of the design variables to a point on the performance function; this distance is called the
safety index from which the reliability of the system can be computed, and the point on
the performance function is called the failure point. The value of the safety index is
obtained by taking the ratio of the first order approximation of the mean value of the
performance function to its standard deviation evaluated at the failure point. Although
there i1s some approximation associated with this method, it is efficient because it allows
all the design variables to have any type of probability distribution as well as correlation
between different variables.

Explicit or exact solutions are available when simple problems are considered. In
most cases, however, explicit or exact solutions are not available. Such is the case for
laminated composite structures subjected to various types of loads or rocket motors
subjected to impact loadings. In fact, exact solutions become impossible when the
analysis includes geometric or material nonlinearities. For such cases approximate
methods are used.

Many statistical techniques have been developed to approximate the performance
function in an explicit form in terms of the design variables. In fact, it has been a
long-standing practice in engineering to approximate the mechanical behavior of struc-
tures to obtain simple solutions without significant loss of accuracy. A well known ex-
ample is the discretization of continuous structures by the finite element method. From
this point of view it seems to be obvious to follow this practice in order to reduce the
computational efforts required for reliability analysis on an acceptable level. This ap-
proach led to the Response Surface Methodology (RSM), i.e., the approximation of the
performance function by a simple function.

The use of Response Surface Methodology was first introduced in the late 1980°s

and early 1990’s. Its main purpose is to approximate the performance function using a
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polynomial function. The work that has been done in this area is not too deep. Some
researchers dealt with approximation of the performance function by a polynomial
which contains linear terms only, while others added quadratic terms without any inter-
action between different terms (mixed terms). The latest one applied RSM with mixed
terms and made use of factorial design, which is an expensive design in terms of com-
putation time, and when FOSM was applied, results were good if the variables were
within one standard deviation of their mean values. Therefore, the need for an inex-
pensive and more general design is necessary.

A Response Surface Methodology (RSM) is presented in this work. In this tech-
nique the performance function is approximated by a second order polynomial ex-
pression, where all the design variables are included. In order to obtain the coefficients
of the polynomial, central composite design is used in conjunction with fractional fac-
torial analysis. Five levels for each variable are assumed and a design matrix is gener-
ated based on different combinations of these levels. Then the coefficients of the
polynomial are obtained by solving a simple system of linear equations.

The main advantages for using this type of design are that it allows for interaction
between different variables and uses fractional factorial design instead of a total factorial
design. It uses five levels for each variable which increases the range in which the
polynomial is valid. In other designs using two levels for each variable, the polynomial
is valid within one standard deviation around the mean value, while here the polynomial
will be valid up to three or more standard deviations around the mean value of each
variable. This high range is important because it allows the performance function to
handle small probability of failure values, especially for large safety indices. Another
important advantage is that the central composite design is an orthogonal design, which
means the system of linear equations to be solved for the coefficient of the polynomial

is a set of decoupled equations (diagonal system). This technique has the capability of
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converting all available deterministic finite element codes to probabilistic finite element
codes.

In some engineering problems, where large numbers of design variables are in-
cluded, the fractional factorial design becomes expensive too. Therefore, a sensitivity
analysis will be used based on the ¢ test to determine the relative importance of the
design variables. This analysis will be performed on a first order polynomial which in-
cludes all design variables. Then a second order polynomial will be constructed and
only important variables will be included.

Once the performance function is given in this explicit form in terms of the design
variables, the FOSM can be applied to obtain the reliability of the structure. In fact, this
gives the reliability at one point and is a good estimate for a structure with a single
failure mode. In most structures, however, the failure domain is not just one point; they
may have more than one critical point or mode of failure at different unknown locations.
In this case the reliability must be computed at every critical point in the structure, and
if the failure modes are independent, the reliability of the structure will be the product
of these individual reliabilities.

The FOSM reliability method will be used to study the service life of Solid Rocket
Motors subjected to environmental temperature variations. This problem is investigated
for random temperature input and random strength with different probability distrib-
ution functions. In this study, all design parameters such as modulus, coefficient of
thermal expansion, Poisson’s ratio, etc. are assumed to be random. Correlation between
design variables as well as different probability distributions such as normal, lognormal
and Wiebull will be considered. Three different locations will be examined. Point
Barrow, AK. represents a cold site, Yuma, AZ. represents a warm site and Nashville,
TN. represents a moderate site. Since the exact solution for stress analysis of this

problem is available, the problem will be used to investigate the accuracy and efficiency
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of the proposed technique. Comparisons will also be made with a FOSM method uti-
lizing numerical differentiation.

The proposed technique will then be used to compute the reliability of rocket mo-
tors subjected to mechanical, static and time-dependent, loadings such as impact loads.
An available deterministic finite element code will be converted to a probabilistic one to
compute the reliability of the motor subjected to random design variables. Mean and
standard deviation of any response quantity such as stresses and displacements will be
computed too.

An important problem comes into the picture, especially when a finite element
method is used for the analysis. Suppose, for example, a bar under uniform state of
stress is analyzed using 10 elements in one case and then using 100 elements for another
case. If it is assumed that failure of one element is independent from the others, the 10
element bar will give much higher reliability values than the 100 element bar, and since
the bar is under uniform state of stress, the reliability values should be equal for both
cases. In this research an important objective is to include the size of every element in
the reliability analysis.

A more general example that includes nonlinear theory will be discussed, where the
size effect plays an important rule. In this example a simply supported laminated com-
posite plate subjected to static and time-dependent loads will be discussed; geometric
nonlinearity will be included to account for large deformations. A deterministic finite
element program is written to compute stresses and displacements; the program will be
extended to include random design variables. Mean and standard deviation for any re-
sponse quantity will be computed based on linear and nonlinear theories for both static
and transient loadings. The reliability of the plate will be computed for every case, and
a comparison will be made among the different cases based on central deflection. The

reliability will also be computed for each element from which the total reliability of the
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plate will be obtained for different numbers of elements. This will include the size of
each element in the probabilistic model in order to obtain the same results for different
numbers of elements.

Therefore, the objectives of this dissertation are summarized as follows:

1. Development of a reliability technique to be applied to problems where explicit or
exact solutions are not available, large numbers of design variables are included, the
failure region is unknown and correlated non-normal random variables are involved.

2. Calculation of any response statistics such as the mean and standard deviation of
displacements and stresses when random design variables are included in such a
case.

3. Investigation of the service life of rocket motors under thermal loads when all design
variables are random. Here an exact analysis is available and will be compared to
the developed technique.

4. Computation of the reliability of rocket motors under mechanical loads where stress
analysis is performed using an available finite element code.

5. Analysis of laminated composite plates with geometric nonlinearities, random design

parameters and multi-failure modes.

In this study the first problem of reliability assessment is discussed. An overview
of the literature relevant to this study is presented in chapter II. Chapter 111 contains
the theoretical development of the probabilistic model and the approach used to ac-
complish it. In chapter IV the reliability of a rocket motor under thermal loads is
computed using exact analysis and is compared to the developed technique. The reli-
ability of rocket motors subjected to mechanical loadings is discussed in chapter V and

a probabilistic analysis of laminated composite plates with geometric nonlinearities is
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presented in chapter VI. Chapter VII contains more examples to prove the efficiency
of the developed technique, discussion of results, conclusions and recommendations for

future work.
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Chapter 11

LITERATURE REVIEW

The analysis of structural reliability was first applied by Freudenthal [1]. The pur-
pose of his paper was to analyze the safety factor in engineering structures in order to
establish a rational method of evaluating its magnitude.

A second landmark work in structural reliability which began to formalize analyses
was written by Freudenthal, Garrelts and Shinozoka [2]. This work dealt with the situ-
ation in which stress, S, and strength, R, are the basic random variables and these vari-
ables are both normally or lognormally distributed. The probability of failure was
defined as the integral of the joint probability density function of these variables over the
failure domain. The failure domain is the region where R < S and the joint probability
density function is obtained from the probability density function (PDF) and cumulative
density function (CDF) for both variables. The integral was easy to obtain because of
the simplicity of the assumption in the design variables.

In general, the joint probability density function is, however, a function of several
variables and to obtain it for several variables is a very difficult, sometimes impossible

task. Therefore the need for an alternative reliability technique exists.
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The First Order Second Moment (FOSM) reliability method was introduced by
Cornel [3] to circumvent this difficulty. In general the failure region can be separated
from the safe region by what is called the limit state function or performance function,
G, which is a function of n random variables. An approximation to the mean value of
G, g, and the standard deviation, o,, can be obtained using the first order terms of
Taylor’s series expansion.

Cornel defined the safety index, 8, as u, divided by o, and probability of failure
| equal to O — f), where @ is the standard normal CDF. The technique was also called
Mean Value First Order Second Moment method (MVFOSM).

The performance function depends on a physical model and not on a probabilistic
model. However, MVFOSM fails to give the same result for g if the probabilistic model
is changed; for example, changing G from R — S to R/S —1 produces different values of
B. In 1974, Hasofer and Lind [4] proposed a new definition of the safety index which
does not affect the way that the performance function is defined or its shape. The H-L
scheme is based on normalizing every random variable with respect to its mean and
standard deviation, substituting all random variables into the performance function to
obtain the performance function in normalized coordinates, then computing the mini-
mum distance from the origin of this coordinate system to a point on the performance
function. This distance is called the safety index, §, and the point on the performance
function which corresponds to the minimum distance is called the design point.

The major shortcoming of the H-L method is that it will not accept distributional
information even if it is available. In 1978 Rackwitz and Fiessler [5] extended the H-L
method in order to make it possible for the variables to have any distribution. The main
idea in their method is to transform non-normal distribution functions into equivalent
normal distributions. The equivalent normal distribution is obtained so that the PDF

and CDF at the design point are the same as for a normal distribution. An equivalent
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normal mean and standard deviation are then computed for every non-normal variable,
and the safety index and the design point are calculated. The process is repeated until
convergence OCCurs.

The probability of failure, p;, as computed by the R-F method is close to exact in
many cases, in contrast to others in which the error is significant [6]. Therefore, to im-
prove p;, Chen and Lind [7] in 1983 proposed a three-parameter normal tail approxi-
mation. The C-L algorithm is an extension of the R-F method as it added a third
condition for the equivalent normal variable. In this method, not only are the PDF and
CDF the same at the design point, but the slope of the PDF is also the same for the
original distribution and the equivalent normal distribution.

Shinozuka [8] reviewed the FOSM method and showed that a Lagrange multiplier
formulation can be used to evaluate the safety index and the location of the design point.
The Monte Carlo technique was recommended for use in estimating limit state proba-
bilities as a practical alternative to other methods. It was proposed that the point of
maximum likelihood (failure point) should be used as the design point.

An efficient algorithm to compute the structural reliability has been available, where
uncertainty can be included in any design variable [9]. But the problem is that, in com-
puting the safety index, many derivatives of the performance function should be com-
puted and the performance function should also be expressed in terms of § in order to
solve for . This was possible when the performance function was available in an ex-
plicit form in terms of the design variables. In most engineering problems, however,
explicit or exact solutions are not available, especially with the use of numerical sol-
utions such as the finite element method.

Thangjitham [10] has formulated the FOSM method in a numerical form. In this
algorithm numerical differentiation of the performance function was used instead of ex-

act differentiation. The algorithm is efficient for problems with a small number of design
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variables. For problems with a large number of design variables, however, this algorithm
becomes costly or may be impossible when analysis is performed using finite elements
and when execution codes are provided instead of source codes. Moreover, when finite
element analysis is performed based on nonlinear theory, the user should be extra careful
when performing numerical differentiation, otherwise inaccurate solutions may be ob-
tained.

Therefore, the use of statistical procedures such as Monte Carlo simulation became
the only way for reliability calculations of structures with an implicit performance func-
tion. In this technique, sampling from known distribution functions is conducted where
a large sample size must be used in order to converge to the correct reliability value [11].
The method becomes very expensive, as a finite element solution must be produced for
each sample. This led to another statistical approach in which a planned set of exper-
iments around the mean value of the different random variables is performed using a
standard finite element code to determine response to different inputs. A regression
analysis is then used to fit the response (performance function) to the different inputs.

In 1984 Wu [12-13], and Wu and Wirsching [14-15] developed an algorithm to
compute structural reliability when the performance function is not available in explicit
form in terms of the design variables. The algorithm, an extension of the R-F and C-L
methods, employs an approximation of the performance function by a quadratic at the
design point and transforms the quadratic form to a linear one, which gives a linear
performance function in the normal design variables.

The quadratic form of the performance function defined by Wu did not include any
mixed terms, such as xix;. This is because Wu had computed the coefficient of the
quadratic by varying one variable at a time. Therefore, the need for more efficient
methods to define G in an explicit form became one of the important goals for re-

searchers in the area of probabilistic mechanics in the late 1980°s and early 1990’s.
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Bucher et al. [16] and Schuéller et al. [17] introduced the RSM to approximate the
performance function by a second order polynomial. They divided G into two parts, one
part containing the linear and the quadratic terms and the other containing the mixed
terms only. The former was computed by interpolation along each axis, while the latter
was computed by interpolation between the axes. The reliability, in their work, was
obtained using the Adaptive Sampling Method (ASM), also known as Iterative Fast
Monte Carlo (IFM) procedure.

Nagpal, Rubinstein and Chamis [18] developed a methodology to quantify the in-
fluence of random variation on the performance of structural components and applied
this methodology to quantify uncertainties in geometry, material properties and
loadings. A factorial design was used and a ¢ test was performed to determine whether
a given variable was significant. A turbopump blade was chosen as an example where
the mean and standard deviation of the natural frequency, stresses and displacements
were obtained based on uncertainties in material properties and geometry.

Bucher and Bourgund [19] presented a new adaptive interpolation scheme which
enables fast and accurate representation of the system behavior by a Response Surface
(RS). The response surface approach utilizes elementary statistical information of the
basic variables (mean values and standard deviations) to increase the efficiency and ac-
curacy. Thus the RS obtained in their study is independent of the type of distribution
or correlations among the basic variables. To obtain the reliability estimates, the RS is
utilized in conjunction with the advanced Monte Carlo simulation technique. When
compared with FOSM, this method was shown to be more efficient and accurate.

Tong and Wu [20] developed a method for reliability assessment that combines a
fast convolution procedure with Response Surface. They established a quadratic per-
formance function and transformed the quadratic function into a linear function, then

applied a fast convolution procedure to obtain the PDF and CDF of the performance
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function. In their work, mixed terms in the quadratic function were not used because the
transformation can not be done if they were included. This reduced the accuracy of the
method for cases when mixed terms are significant.

Ibrahim [21] presented a general strategy for structural-system reliability for use
when deterministic structural analysis is expensive. The goal was to estimate the
system-failure probability with a minimum number of structural analyses. The strategy
relies upon the user to interpret and generate information about the system through the
use of appropriate techniques such as RS and FOSM. But there are no concrete steps
in the strategy, which make it inefficient for problems where the failure region is not easy
to predict.

A different approach named Non-Statistical Approach was used to predict the reli-
ability using the finite element method directly. This approach is also based on FOSM
and Taylor’s series expansion, where the mean and the standard deviation of the per-
formance function are computed directly without using any statistical and design meth-
ods. Handa and Anderson [22] used this idea to study linear truss structures and the
effect of correlation. Hisda and Nakagiri [23] used the same method to analyze struc-
tures with uncertain shapes, where geometrical coordinates were allowed to be random
variables. Nakagiri et al. [24-27] applied this method to composite structures.

Liu et al. [28-31] introduced the term Probabilistic Finite Element Method. They
applied the FOSM to nonlinear structural dynamics for correlated and uncorrelated
random variables. Tokada and Shinozoka [32] developed a new method in which local
integration of the continuous stochastic field was made in an element by element basis
to form element stiffness matrices so that the random field is transformed into only a few
random variables. This new method requires high computational time and was applied
to linear problems only. Engelstad and Reddy [33] applied the FOSM to laminated

composite shells, and material as well as geometric nonlinearities were included in the
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analysis. The results obtained in this analysis were in a good agreement with Monte
Carlo simulation, but only uncorrelated variables with normal distribution functions
were considered in their study.

In the above approach, when FOSM is used, the safety index, £, is computed based
on the mean and the standard deviation of the response function, which is the same as
the original definition given by Cornel [3] and was shown to be invariant. Also, in
computing the partial derivatives of the response function with respect to each random
variable and as the number of random variables increases, it becomes apparent that a
significant amount of storage becomes necessary to retain all the derivatives and high
computational time is required to obtain these derivatives. This led to our focus in this
research, which is the statistical method.

In Probabilistic Finite Element Method, the reliability is computed for each element
and the total reliability is computed by multiplying the “element reliabilities”. This
means that the more elements in the domain, the less reliable the structure becomes.
Therefore, the size of each element must be included in the reliability computations. In
other words, the strength of each element must depend on the element size. Weibull
[34,35] developed a statistical theory based on the “Weakest Link” hypothesis; a proba-
bility distribution function for the strength of the material was proposed. This Weibull
distribution function has been widely used in various areas. Most of the applications
are for brittle structures where failure of the structure occurs when one component of
the structure has failed.

Some of the relevant studies in this area were performed by Margeston [36] and
Stanley and Margeston [37]. They developed a statistical theory of brittle failure for an
anisotropic structure and applied it to obtain the failure probability of a cylinder under
thermal load. Heller [38,39], Heller, Schmidt and Deninghoff [40] and Heller,

Thangjitham and Wall [41], applied the Weakest Link theory to a Proof-Loaded
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isotropic material and to a composite plate with a hole. Thangjitham and Heller [42]
computed the reliability of an infinite composite plate with a hole subjected to random
load. Heller, Thangjitham and Yeo [43] investigated the size effect of a brittle composite
beam and computed the reliability of the beam with random strength only. Yeo [44]
extended the previous work for composite plates with stress concentration. However,
none of these researches allow for all design variables to be probabilistic.

The use of reliability theories to predict the service life of Solid Rocket Motors was
first started by Heller [45]. Input temperature as well as strength of the motor were as-
sumed random variables, and the reliability of the motor was computed based on
stress-strength interference. Cost [46] applied the Monte Carlo simulation technique to
predict the service life of the motor. Heller et al. [47] and Heller and Singh [48] added
the viscoelastic effect to the problem as well as cumulative damage and aging effect and
obtained the service life of the motor based on the stress-strength interference. Zibdeh
and Heller [49] used the First Passage method to predict the storage life of rocket mo-
tors, in which strength and stresses were assumed random variables. The uncertainty in
the stress in their study was due to the uncertainty in the input temperature. In all of
these studies, strength and input temperature are assumed independent random variables
with different probability distribution functions, while in this proposed technique all de-
sign variables are allowed to have any probability function as well as correlation among

them.
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Chapter 111

THEORY AND APPROACH

3.1 Introduction

In this chapter a formulation of a new technique (probabilistic model) will be de-
veloped based on Response Surface Methodology (RSM) to approximate the perform-
ance function (G) in an explicit form in terms of the design variables by a second order
polynomial. Sensitivity analysis will be derived and used to test the relative importance
of each random design variable based on which the number of variables in the probabi-
listic model will be reduced. The details of the First Order Second Moment (FOSM)
reliability method will be presented for normal, non-normal and correlated random de-
sign variables.

The weakest link hypothesis and size effect will be discussed. A new formulation for
probabilistic finite element analysis that includes the size of the element in the probabi-

listic model will be derived, too.
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3.2 Response Surface Methodology

3.2.1 Generation of the Polynomial

The purpose of this technique is to obtain a good approximation to the performance

function G. Consider a full second order polynomial

n-—1 n

n n
y=a+ Zaixi+ Zaiixi2+ Z Z @xX; + &
I=1 1=1 i=1j=i+1
where
y is the approximated response
a, ..., ag_pare the regression coefficients; their total
(n+ 1)(n+ 2)/2 and denoted by K
X, ..., X, are the design variables
n 1s the number éf design variables
¢ is the error in the approximation.

In general, Eq. 3.1 can be written as

(Y} = [X1(4} + (&}

where
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where m is the number of data sets.
The vector {/3} should be calculated such that {€} is minimum [50]. This can be

accomplished using least squares estimators, as

m

s({A4)) = Ze? = ")
=1 ) ) (3.5)
= ({Y} — [X]{AN)({ ¥} — [X){4))
= (N7 - 24 TR + (ATTTXA)

where s(z&) is the error produced by the difference between exact and approximated re-

sponses. To minimize this error, consider the following derivative:

05— _opxyT(y) + 20X XA} = 0 (3.6)
o(A)

or
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XX} = [(X17(Y) (3.7)

Therefore, the solution of the linear system in Eq. 3.7 gives the vector {/AI} which
are the coeflicients of the second order surface given by Eq. 3.1. But the question is how
can the vector {Y} and the data sets be generated! To answer this, the central composite

design is discussed next.

3.2.2 Central Composite Design

Two levels for each variable are chosen as —1, +1; i.e, one standard deviation below
and one above the mean value [51]. Using 2" factorial experiments with each variable

(factor) at two levels, a design matrix of order 2" X n can be obtained as

1 —1... -1 ]
#1 =1 ... -1
-1 41...-1
1= . ..., . (3.8)
1 41 . .. +1

If the design matrix, [D] , is augmented by
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00... 0
—a0... O
aO0... O
(3.9
0 0. -«
0 0. o

where the value of o is chosen based on the number of random variables in the analysis
(Table 3.1), the resultant matrix represents a new design matrix which is called the cen-
tral composite design. In this design a total of five levels for each variable have been
used, Fig. 3.1.

The response {Y} is obtained by using each row in the resultant design matrix as
an input. Then the design matrix is substituted in the [X] matrix, and the resultant
[X] matrix and the vector {Y} are substituted in Eq. 3.7 to produce an independent lin-
ear system. The solution will be the coefficients of the second order surface .

This design is an orthogonal central composite design, that is, [X]’[X] in Eq. 3.7 is
a diagonal matrix, which provides ease in computation and an uncoupled linear system
of equations.

The dimension of the design matrix, [ D], is usually large: (2" + 2n +1) x n. For ex-
ample, if 5 random variables are involved in the computation the dimension of [D] is
45 x 5. The dimension can be reduced without affecting the accuracy in the estimated
second order surface by using fractional factorial analysis [52]. The above dimension is

large because it allows for all possible interactions such up to xjx.xs...x,. However, the
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second order surface defined in Eq. 3.1 needs only a second order interaction between
variables. This means a large number of terms should drop out of the factorial design.
This can be done by defining what is called a define contrast for certain levels of inter-
action for which this interaction is not included in the required surface. Each contrast
will reduce the order of the design matrix by %; this can be done several times taking
into consideration that each contrast will ignore some interaction terms that are not re-
quired and, more important, the combination of contrasts will also ignore more terms
that are not required in the design surface [53].

The dimension of [D] can be reduced more by using what is called sensitivity anal-
ysis. In this method the response (performance function) is tested with respect to the
variation in each random variable in the design using the ¢ test. As a result of this test,

only significant variables will remain in the design matrix.

3.2.3 Polynomial Approximation vs. Taylor’s Series Expansion

The rationale for the polynomial approximation of G is based on Taylor’s series
expansion of G around the mean values of the design variables. For example, the second
order Taylor’s series expansion of G around the mean values u,, of the variables X,
i=1,n, can be written as

n

3G 8*G
G110y Xn) = Gltxyyons ) + ) 2 (= 1) + > P (% — 1)’
[

X
n—1
)
i=1]

i=1 i=1 (3.10)
n 2
4 l(xi - ﬂ'xl.)(xj - l“xj) Ox

+e&
iaxj
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knowing that the mean value of the normalized variables x; in Eq. 3.1 is equal to zero.
A comparison between Eq. (3.10) and Eq. (3.1), makes it clear that a second order
polynomial is the Taylor’s series expansion of the performance function around the
mean value of the design variables.

Similarly, a first order polynomial can be proven to be a first order Taylor’s series
expansion of the G function around the mean value of the design variables. In this case,
the derivatives which correspond to the regression coefficients are indeed the gradient
of the G function. In fact, they will be used to test the sensitivity of the G function with
respect to each design variable and to determine the direction in which the second order

polynomial has to be generated.

3.2.4 Sensitivity Analysis

It was noticed in the previous section that as the number of random variables in the
probabilistic model increased, the number of runs or the number of times the physical
model must be evaluated is increased as a multiple of two. However, when probabilistic
analysis is performed and in the case of a large number of design variables, a major
question arises: which of these variables should be included in the model, all of them or
some of them, and how to distinguish between the importance of these variables.

The sensitivity analysis is used to answer all these questions. This can be done by
constructing a probabilistic linear model, then testing the coefficient of each variable
with respect to the standard error or the estimated standard deviation, ¢ test [54] which

can be written as

f=— (3.11)
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C— P
where b; is the regression coefficient, s =/ —% is the standard error and

i=1

c; 1s the jth diagonal of ([x]7[x])!
Myers and Walpole [55] show that t in Eq. 3.11 has a ¢ or Student distribution with
(m — k) degrees of freedom. The probability density function for this distribution can

be witten as [56]

-+ D)2
h(t)=%;1%(l+ivz-) —oco << o0 (3.12)

where v = m — k, m is the number of data sets, k=n+ 1 is the number of regression
coeflicients and » is the number of random design variables.

Therefore, the probability that a random sample produces a value for t falling be-
tween any two specified values is equal to the area, 4,, under the curve of the t distrib-
ution between the two ordinates corresponding to the specified values. Accordingly, the
probability of not falling between these values is 1 — 4, and is designated as prf. This
will be used to test the importance of each design variable; if prf is large, the variable
will be removed from the probabilistic model. A value of 0.005 or more will be consid-
ered large here.

Thus, the use of sensitivity analysis can be summarized as follows:

1. All random variables are identified in the physical problem; if it is not clear whether
some variables are random or not, they can be assumed random with 10% coeffi-

cient of variation.
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2. A factorial design is constructed based on the number of random variables as
2» > k; for 10 variables a 2¢ design is needed for 30 variables a 2° design is needed,
and so on.

3. The RSM is performed to obtain a first order polynomial based on the design vari-
ables in (1) and the factorial design in (2).

4. A sensitivity analysis is performed to obtain a prf value for the coefficient of each
design variable in the first order polynomial. If prf> 0.005, the variable can be ig-
nored from the probabilistic model.

5. The RSM is performed on the remaining variables to obtain a second order

polynomial to which the FOSM is applied to obtain the reliability of the system.

Since y may represent any response quantity, such as stresses or displacements in a
physical problem, the mean and standard deviation of y can be computed using Taylor’s

series expansion.

3.3 First Order Second Moment Reliability Analysis

Though the details for the FOSM have been available in many references [9], they
are repeated here to show how complicated the method will be when the performance
function is not available in an explicit form in terms of the design variables. In this
method a performance function, G, is defined explicitly in terms of the design variables

and separates the failure region from the safe region, Fig. 3.2. It can be written as

G = G(xy, Xq, ..y X) (3.13)
when G < 0 failure takes place. The probability of failure, Py, is then given as
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Pr=P[G<0] (3.14)

where x; are uncorrelated reduced variates

*
X~ Ky,
Oy,

(]

X = (3.15)
with u,, and o,, the mean and standard deviation of the variable x; .
The safety index, f, is defined as the minimum length vector from the origin of the

coordinate system of x; 's to the performance function G:

1] =\/xf+x§+"-+xi2 (3.16)

The corresponding point, x{, on G is called the design point. The direction cosines, y,,

are calculated from the partial derivatives of G:
260
_ 206G 26
H= g o Z( G (3.17)
i=1

A design value of the variables, x;, is then obtained as

X, =y, — V0 (3.18)

These variables are substituted into the performance function, Eq. 3.13, and the
equation is solved for f .

The process is iterative, in that the new values of x; (Eq. 3.18) are used in evaluating
an improved set of y; and subsequently a new value of f.

For problems with large values of f, and in some other cases also, the polynomial

shown in Eq. 3.1 has to be re-evaluated by using the design or the failure points obtained
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in the first analysis as origin points (mean value) for the second design. A new
polynomial can be obtained and will be much closer to the exact performance function.
Then an increment for f can be computed and added to the previous value (as shown
in Fig. 3.3) to obtain an accurate safety index for the problem under consideration. This
process is repeated until the increment of § goes to zero. Usually it happens after one

or two increments.

3.3.1 Uncorrelated Normally Distributed Variables

When all variables are normally distributed, the safety index § will also be normal

and the probability of failure may be obtained from the normal integral as

Pr= (- p) (3.19)

3.3.2 Correlated Normally Distributed Variables

It has been observed that strength and modulus for many materials are correlated

variables. Such interdependence is characterized by the correlation coefficient p,,:

—l<ppy<1 (3.20)

The procedure in such circumstances requires a transformation to uncorrelated variables

[%1.

In vector, form the means and standard deviations become
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= (i) - 7= () 62

and the covariance matrix [C] is

2 2 C
Tx, P1 20, axz Ox, 12
[C]= = . (3.22)
p]Zleaxz UXZ CIZ UXZ

The two eigenvalues 4,, A, and eigenvectors are determined next by solving the matrix

equation

(G2 —1)  Cp

5 =0 (3.23)
Ciy (axz - 4)

The eigenvectors are found from

(=2  Ca |4
Co (=1 (3)-0 .

From these a modal matrix [@] and its transpose [D]” are obtained as

€1 €n
[@] = (3.25)
| €21 €22
T BN
[®] = (3.26)
| €12 ezzj

The means of the uncorrelated normal variables {z} are calculated as
u,=(Ha) =[o]7( = 2
o= () =to77(tx) (3.27)

while the standard deviations of these uncorrelated normal variables are
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For the calculation of the reliability index, f, the technique described earlier can be

used with some modifications. First the variables {x'} are uncorrelated:

{z} = [@1{x"} (3.29)

The derivatives of the performance function in terms of the uncorrelated variables

are obtained as

9G _
oz

CIREEY (3.30)

Next, the direction cosines {y} are found

1 2
=10, 221 [ D 0,95y ) (3:31)
i=1 ¢

New values of {z} are calculated:

2= p; + vifo,, (3.32)
The original variables are obtained by the transformation
=} =[0)z) (3.33)

These are substituted into the performance function

*

G(x1, Xgy 0, %;) =0 (3.34)
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which is then solved for . The process is repeated until convergence occurs.

3.4 Non-Normal Variables

When variables are not normally distributed, transformations to equivalent normal
distributions are first performed. If the density function and probability distribution are
S(x*) and Fi(x"), respectively, while the corresponding normal density and distribution

at the design point are ¢(x;) and ®(x;), for equivalence

flx) = o(x") (3.35)
Fyx) = d(x) (3.36)

The equivalent normal standard deviation is obtained from the relation
oy = [0 (FIlfx) (337)

and the normal mean from

uY =X — o) [Fyx)] (3.38)

These values are then used to replace the standard deviation and the mean in Eqs. 3.17
and 3.18.

The probability of failure is calculated from Eq. 3.19.
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3.4.1 Log Normal Variables

When variables are log-normally distributed,

1 =1 Inx—4, 2
(=) (3.39)

=

the parameters of the distribution, A,, the mean value of log x and {,, the standard de-

viation of log x, must be computed

dx=lnp——l=Ink (3.40)

t.=+/In(1 + 62) (3.41)

where 8, = o,/u, is the coefficient of variation and x is the median value.

With these parameters, Eqs. 3.37 and 3.38 are simplified

oN = (3.42)
and
wY=x"(1-In<-) (3.43)
X

3.4.2 Weibull Distributed Variables

The density and probability functions of the Weibull distribution are given in terms
of three parameters, x. , the characteristic value, x, , the minimum value and m , the

shape parameter, as
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m—

— 1 — m
)= (=) expl— (=) ] (3.44)

and

—_ m
X — X,

Fy(x)=1-exp[ - (7=x-) ] (3.45)

x, and m are related to the mean and standard deviation of the variable:

Py =X+ (%, + x)T(1 + -,%1—) (3.46)
1
0y = (%, — %)T(1 + =) = T(1 +—=)1° (3.47)

with I'(.) the gamma function. The shape parameter may be approximated for the two

parameter case (x, = 0) as

(3.48)

3.4.3 General Strategy for Non-Normal Variables

The following steps will be used to perform probabilistic analysis for problems with

design variables that have non-normal probability functions.

1. All five steps that are described in section 3.2.4 are used under one condition which
is that the mean and standard deviation for each variable that enter the design must
come from a normally distributed function, i.e., Eqs. 3.36 and 3.37 are used to obtain

an equivalent normal mean and standard deviation for every non-normal variable.
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2. New values for the equivalent mean and standard deviation are computed based on
the design points obtained in step 5 of 3.2.4.

3. Step S of 3.2.4 is repeated using the new values of the mean and the standard devi-
ation for each variable, and a new design point as well as an increment for the safety
index are obtained.

4. Steps 2 and 3 are repeated till the increment of the safety index becomes less than

0.001. This normally happens after 2 to 3 trials.

3.5 Progressive Probability of Failure

The probabilities of failure calculated in the previous section lead to the concept of
failure rate or hazard rate [57], A(f), which is the probability that a structure that survived
to time ¢ will fail during the next time unit. It is based on the application of a single

stress and is defined as the ratio

1)
h(f) = IZ(_(:) (3.49)

When a sequence of stresses is applied to the motor, its reliability L(¢) is calculated as

L(t) = exp[ — f h(t) df] (3.50)

In summation form

PAY)
L{f; 1)

L(i,) = exp[ - ) ] (3.51)

J=1
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with L(0) = 1.0.

The progressive probability of failure is

ply) =1—L(z) (3.52)

3.6 Weakest Link and Size Effect

3.6.1 Independent Failure Modes

In the probabilistic finite element method, the reliability for each element is com-
puted based on FOSM in conjunction with the RSM described above. In some prob-
lems, failure of one element represents total failure of the system. Normally, this is the
case for problems where brittle materials are involved in their design or the case of in-
dependent failure modes in the system. The total reliability will be computed based on
Weakest Link theory which requires multiplying element reliabilities by each other. This
technique depends on the number of elements in the finite element domain, i.e., for less
elements a better reliability value will be obtained. In fact, this should be true when the
domain in reality consists of several elements, but the descretization of the domain is
done by the user and is different from one user to another. Therefore, the following is
proposed to overcome this difficulty and obtain the same reliability value regardless of
the number of elements in the domain.

The proposed technique is based on including the size of the element in the strength

distribution of the material. The technique described above will be used to compute the
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reliability for each element. The Weibull probability density function has been a good

choice for the strength of the material [34,35] and can be written as

fR(r>=RﬂC(R%C)'"”exp[—(L)’"]

4

with the cumulative distribution function

Fl(r) =1~ expl = (%~ )]

R, and m are related to the mean and standard deviation of the variable:

pr=RI(L+97)

1
or = RIT(1 +-2) — X1 + )12

with I'(.) the gamma function.

(3.53)

(3.54)

(3.55)

(3.56)

The FOSM is performed at the element level; therefore the above equations should

include the element size. Probability functions are always nondimensional, thus the size

of the element should be normalized with respect to the total size of the domain. Egs.

3.53-3.56 can be written as

far) = e B ()" expl = o( )]

c

Fa(r)=1—exp[ — (%))

and the mean and standard deviation of the strength become

1
up=R()"T(1+-)

1 1
or=R(~)"[T(1 +2) - T(1 + )1
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(3.59)
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where ¢ is the ratio between the element size and the total size of the domain. In 1-D
problems, ¢ is the ratio of the length of the element to the total length; in 2-D problems
it is the area of the element to the total area, and in 3-D problems it is the ratio of the
volume of the element to the total volume. The FOSM described above will be used
based on non-normal variables, with strength probabilistic information given in Egs.

3.57-3.60.

3.6.2 General Strategy for Multi-Independent Failure Modes

When more than one failure mode is included in the analysis, more than one per-
formance function must to be considered. Moreover, since the Weibull distribution
function described in the previous section is adapted for the strength of the material, at
least one of the variables is a non-normal random variable. To achieve this, the fol-

lowing steps are used:

1. Step one in section 3.4.3 is applied for each failure mode, i.e., for each failure region.
In this case, however, the results of sensitivity analysis for each failure mode must
be combined together in order to decide on the retained variables that will be used
in the second order approximation, i.e., only common variables must be dropped
out of the design.

2. The reliability of the system is computed by multiplying the reliabilities at each
failure mode by each other.

3. The safety index of the system is computed by taking the inverse of the normal

density function at the resultant reliability value.
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4. The procedure is terminated after this step because more than one set of design
points is obtained (one set for each failure mode) and it is impossible to decide which

one to choose in order to reevaluate the performance function.
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Table 3.1 Values of « for an Orthogonal Central Composite Design

O 1NN KW

1.000
1.216
1.414
1.596
1.761
1.910
2.045
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Fig. 3.1 Central composite design for n =3
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Fig. 3.2 A typical performance function
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Fig. 3.3 A performance function obtained by RSM
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Chapter IV
RELIABILITY OF ROCKET MOTORS UNDER

THERMAL LOAD

4.1 Introduction

Solid propellant rocket motors when stored under field conditions are subjected to
environmental temperature changes which will eventually produce thermal stresses, cu-
mulative damage as well as aging in the propellant. These stresses will cause structural
damage and consequently structural failure. Since all design variables as well as tem-
perature parameters are random variables, a probabilistic analysis based on the First
Order Second Moment (FOSM) reliability method will be used to determine the service
life of these motors.

Motors are considered to be long, hollow, elastic, cylindrical shells, surrounded by
a layer of insulation and filled with a viscoelastic propellant whose strength is degraded

by cumulative damage and aging. Temperature is symmetric with respect to the axis of
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the motor, and the outside surface temperature is the same as the air temperature.
Failure of the motor is based on the maximum tangential stress at the bore, for which
an exact solution can be derived.

The new technique that has been developed in chapter 3 will be applied here too and
a comparison between the two solutions will be made to demonstrate the accuracy of the
developed technique. The new developed technique will be referred to as the approxi-

mate solution.

4.2 Exact Analysis

The First Order Second Moment (FOSM) reliability method is used to predict the
service life of rocket motors. The technique allows different probability distributions for
each variable and allows for dependence between variables in terms of correlation such
as propellant strength and modulus. Before the induced thermal stresses are calculated
at a certain point in the motor, the temperature at that point must be known. Hence
the first task is to determine the temperature at the instant at which the stresses are de-
sired, and the second one is to compute the stresses themselves.

In previous studies, [47,48,58], a recorded time series of actual hourly temperatures
has been used as an input. Such a detailed series has been found to be unnecessarily
costly in terms of computer time. In the present analysis, only seasonal and diurnal
temperature variations are considered without significant loss of accuracy and with

considerable savings in computational costs.
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4.2.1 Thermal Stress Analysis

Though the thermal stress analysis of a layered cylinder has been presented in many
papers [44,45], it is repeated here in a shortened form for the sake of completeness.
Assuming an axisymmetric temperature distribution around the cylinder, the heat
conduction equation in cylindrical coordinates is used for each layer Fig. 4.1,
*T,
*r

oT;
+F L=
or

o,
o 4.1

B[~

The temperature of the j*# layer, T(r,t) is a function of both radial coordinate,
r, and time, ¢, with &, the thermal diffusivity of the j* layer. Using the frequency response

function approach, the temperature can be written as

Tfr,) = T(r, w)e™” (4.2)

Substituting Eq.4.2 into Eq. 4.1, the solution of Eq. 4.1 becomes
T(r, ) = C Br(x)) + C/ Kr(x, (4.3)
where Tj(r, w) is the frequency response function of the j* layer, x; = \/w/&; r; , Br, Kr are

Kelvin functions [56] and C}, C? are coefficients to be determined from the following

boundary conditions:

B.C. 1: Ty(0,r) temperature at the center is finite
B.C. 2,3,4, 5 Tf(rt)=T,,,(rt) , temperatures are the same on both sides of an

interface
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oT (vt 0T, \(r,t ) ;
B.C. 6,7, 8,9: K Ja(: ) = K}H’Tlr(rl- , the heat flux across an interface is

continuous
B.C. 10: Ti(r,f) =e*' , the temperature on the surface of the fifth layer varies

sinusoidally with a unit amplitude and a frequency, w

While temperature is evaluated in all five layers, stresses are of interest only in layers
2 and 3. The frequency response function of the temperature is used to evaluate the
frequency response functions for the stress components S,(r, w) and S,(r, w) for the fol-
lowing boundary conditions: continuity of radial displacements and radial stresses on
interfaces and zero radial stresses on the bore and the external surface of layer 3.

Because storage life is limited by the deterioration of the propellant rather than the

case, only stresses in the second layer (propellant) are evaluated. These are given as

2

r: r? q oy by r E
S{rw)=—2— (1= )E o~ = (1——3)] T(r, )rdr
rp—n r (1 = vy)(ry — ry) r n
r (4.4)
OC:’.E2 '7:
- o(r, w)rdr
(1 =vyr "
2 2 2 r
r r q o E r —
S(r, @) = — == 2(1+—;)Fq;;—+ = (1+—‘2)j Ty(r, w)rdr
n—n r (1 =v)(ry — ry) r n
E [’ E,Ty(r, ) @3
— 7,
+ __0(2—2 Ty(r, w)rdr — Lby 1o\, @)
(1 —vyr " 1—v,
where
r
g1 = 205(1 + v,) J Ty(r, w)rdr — as(1 + v3)(rs — r)T(ry, ) (4.6)
n
gy = (1 +v)(1 = 2v)r; + (B E3)(1 = vi)ry(rs — rD)(rs — 1) 4.7
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The stress frequency response functions, Eqgs. (4.4) and (4.5), are complex quantities.

Their magnitudes are obtained as

|S(r, w)| = [S(r, w)gg + S(r, @)pr] (4.8)

They are the response to a sinusoidal temperature input of unit amplitude and frequency

w. A temperature input consists of several constant and sinusoidal components:

T=T;— [Ty + A, sin(oyt + ¢,) + Agsin(wzt + ¢,)] (4.9)

All constants in Eq. 4.9 are defined in Table 4.1.

Calculations indicate that the tangential stress at the bore is significantly greater than
the radial stress at the bond line. Therefore only the time dependent tangential stress
will be considered. This can be written as

So(r’t) = TfSe(r,O) - TmSO(r’O) - Ad Sin(wdt + d)d)SG(r' wd)

— A, sin(wyt + $,)S,(r, ®,) (4.10)

4.2.2 Viscoelastic Properties of the Propellant

Both modulus and strength of the material are time and temperature dependent
properties.

Since in storage, thermal loads are essentially cyclic in nature, it is expedient to
convert the time-dependent relaxation modulus into the frequency-dependent complex
modulus representation. This is accomplished by performing sine and cosine Fourier-

transformations which yield a real and an imaginary term
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J Ew’a’t?
E(T,0)gg=E_+ ) ———— (4.11)
RE ,; 1+ w’tja}
and
5 Ewar;
ENT, o)y =2n) ———— 4.12
™ ,; 1+ wzt?af (412
Hence
E(T, w) = E(T, o) + iE'"(T, o) (4.13)

For the seasonal and diurnal frequencies, the imaginary part can be neglected [48].

In Egs. (4.11) and (4.12) , E, ©; are moduli and relaxation times for parallel Maxwell
elements [58], shown in table 4.2, and q, is the viscoelastic shift function [59] which for
the material under investigation can be written as

8.86(T + 34.0)
181.9 + (T + 34.0)

log a,=1.42{ - +3.32} 4.19)
with T in F°. The shift function for the propellant under consideration is plotted in Fig.
4.2. Substituting Eq. (4.14) into Eq. (4.11), the daily modulus can be computed as a
function of temperature, and the result is shown in Fig. 4.3.

The mean strength, R(7,?) (psi) of a viscoelastic material is given in [60] as

t -n
R(Tvt) - RO( 4611 ) (415)
For the propellant under consideration » = 0.0857, R, = 139 when ¢ is measured in min-

utes, and Ry =98 when r is in hours. Experiments conducted by the U.S. Army Missile

Command [61] indicate that the bond line for room temperature and above is approxi-
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mately twice as strong as the tensile strength of the propellant. Only at low temper-

atures is the bond line weaker than the propellant. At 0° F their ratio is 0.8.

4.2.3 Cumulative Damage and Aging

The linear cumulative damage rule proposed in [62] states that damage produced in
time spent at a particular stress level, S,, is inversely proportional to the time, #;, required

to produce failure in the material at that stress level:

dy=— (4.16)

t:
D= 2? (4.17)

where t; is the duration for each stress level. A relationship between constant stress and

reduced time to failure is given as

n
a;

=cs;B (4.18)

where C and B are material parameters ( C= 1.6 x 10, B = 8.76 are being used here).

The cumulative damage, D, becomes

N

p=- St 4.19
"’C at (‘ )

i=1
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Therefore, the degraded mean strength can be written as

R(T,t) = R(T,1)(1 = D) (4.20)

Aging is defined as the change in physical and thermal parameters in an unloaded
condition. It is accelerated in warm climates and during summer periods. It has been
shown that the ratio, 5(7,?), of the current value of a property to its initial value is pro-
portional to the logarithm of time [63].

In the case of strength,

R(T,
T = Jor = 1= Bl log. @21)

where the coefficient, Sx(7), is an exponentially decreasing function of absolute temper-

ature, T. Hence,

Br(T) = Age™PRT (4.22)

R(T.) =nRel 357) (423)

Here Az =1.15 x 10", Br = 1.53 x 10* with ¢ in days and T in °Rarkin.

In the case of the modulus, E;, the coefficients of Eqs. (4.22) and (4.23) are replaced
by Ar=4.1 x 105, Bg=8.75 x 105,

Variable temperature aging will be calculated based on the concept of reduced time.
If the propellant is aged at temperature 7; for the period of ¢ days, the aging factor

becomes equal to

7]1 = 1 - ﬂl ].Og tl (4-24)
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where f, = Ae 2/t . The same aging factor may be obtained at a different temperature,
T;, in time, ', called equivalent time Hence the equivalent time during which the same

aging parameter is reached at 7; becomes equal to

¢ = PilF (4.25)

If aging is now continued at 7; for an additional time, Az, the total aging time, #,, will

be the sum

L=1t;+ At (4.26)

The process is then repeated for other temperatures.

Because the aging at practical service temperatures is relatively slow , it has been
found that diurnal temperature variations have an insignificant effect on aging factors.
As a consequence, only seasonal thermal changes have been included in aging calcu-

lations. Aging factors are evaluated for the average daily temperature.

4.2.4 Results for Exact Analysis

4.2.4.1 Evaluation of Stresses

The motor configuration shown in Fig. 4.1 with geometric, thermal and mechanical
parameters presented in Table 4.1 has been analyzed. Coefficients of variation are given
in the same table. Three different locations are considered. Point Barrow, AK. repres-
ents a cold site, Yuma, AZ. represents a warm site and Nashville, TN. represents a

moderate site.
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First, the frequency response function for temperature at the bore is evaluated for
seasonal and diurnal frequencies. Then the tangential bore stress is calculated and the
results are plotted in Fig. 4.4 for the three locations.

Cumulative damage is presented in Fig. 4.5. The damage at Point Barrow becomes
1 after 2200 days, which corresponds to O strength, and further calculations are termi-
nated. Aging factors are plotted in Fig. 4.6 for both strength and modulus. It is seen
that the modulus and consequently the stresses are affected more by this phenomenon
than is the strength of the material. Both indicate accelerated deterioration during the
hot summer months. This explains why there is no aging effect on the strength at Point
Barrow,

The seasonal variations of the modulus including aging are depicted in Fig. 4.7. The
change in the slope is due to high variation of the modulus at low temperature levels.
The plot presented in Fig. 4.4 indicates the seasonal changes in thermal stresses. The
gradual deterioration of the core strength is seen in Fig. 4.8. The strength at Point

Barrow becomes O after 2200 days, the same period in which the damage effect is 1.

4.2.4.2 Evaluation of the Safety Index and the Progressive Probability of Failure

4.2.4.2.1 Uncorrelated Non-Normal Variables (aging and cumulative damage

included)

The safety index, B, is a measure of the reliability of a structure. A high value of
corresponds to high reliability. Utilizing Eqs. (3.13) to (3.18) with the performance
function, G = R — S, where, R is given in Eq. 4.15 and S is give in Eq. 4.10, the safety

index may be determined for each day. The daily variations in the safety index are
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plotted in Fig. 4.9 for the three different locations, where strength and modulus have
Weibull probability distributions and other variables have normal distributions. The
influence of the temperature variation is clearly visible here.

Because low temperature produces high modulus and consequently high stresses,
where the latter produces a high damage factor which gives rise to a significant reduction
in the strength, therefore the lowest value of § occurred at Point Barrow, AK. The daily
probability of failure may be calculated from Eq. (3.19) while the progressive probability
of failure is obtained from Eqs. (3.51) and (3.52).

The progressive probability is presented in Fig. 4.10 again for the above three cases.
Because a low value of the safety index corresponds to high probability, the Point
Barrow curve rises fastest, followed by the Nashville curve and the Yuma curve. To il-
lustrate the effect of probability distributions on the analysis, different probability dis-
tributions are assumed for the strength and the modulus at Nashville, TN. Results are
shown in Fig. 4.11 for the safety index and Fig. 4.12 for the progressive probability of
failure.

The probability of failure is less for the Weibull distributed modulus than for the
lognormally distributed modulus, Therefore, if the actual probability distribution of the
modulus is lognormal and the prediction was made based on Weibull, then the service

life will be over estimated.

4.2.4.2.2 Correlated Non-Normal Variables (aging and cumulative damage

included)

To illustrate the effects of correlation, three different levels of correlation are con-

sidered at the moderate site. Correlation is assumed between strength and modulus of
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the propellant. Weibull probability distribution is assumed for both the strength and the
modulus of the propellant, and normal probability distribution is assumed for the other
variables. These cases are shown in Fig. 4.13 for the safety index and Fig. 4.14 for the
progressive probability of failure.

As correlation increases, the probability of failure decreases because higher stresses
(higher modulus) are applied to a stronger material while a weaker material is subjected
to lower stresses. In the absence of correlation such matching does not take place. The
assumption of independence of variables results, therefore, in conservative estimates for

reliable storage lives of motors.

4.3 Approximate Analysis

4.3.1 Solution by Approximate Analysis

The importance of this approximation is to get the function G in a simplified explicit
form in terms of the design variables.

The reliability of the motor described above will be computed based on RSM and
a comparison will be made with the exact solution. Let

propellant modulus £;

case modulus E;

Poisson’s ratio of case v;

coeflicient of thermal expansion of propellant o,
coeflicient of thermal expansion of steel case a3
daily temperature amplitude A4,

yearly temperature amplitude 4,

propellant strength R

Sr&apayx
T T T
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By assuming two levels for each variable, and making use of central composite de-
sign, with o = 2.045 from table 3.1, the design matrix, D, Eq. 3.8 and Eq. 3.9 can be
obtained. The fractional factorial analysis is used to reduce the order of the design ma-
trix from 256 4+ 17 to 64 + 17. This fraction is called '411_ of 2% fractional factorial analysis.
Each row of the design matrix is substituted into Eq. 3.11 to obtain the corresponding
response y. The design matrix is also substituted into the X matrix, Eq. 3.3, and the el-
ements of the X matrix are obtained. Then the linear system given by Eq. 3.7 is solved
and the solution is the set of coefficients of the approximated surface of the second or-
der.

This second order surface can be written as

8 8 7 8
2
y=aq+ Za,-x,-+ Zaﬁxi + Z Z aijx,-xj+ & (4.27)
i=1 i=1 i=1j=i+1

The FOSM reliability method is ready to be applied by using y as the performance

function G, where the probability of failure is

Pr=P(y<0) (4.28)

Then the same procedures as in Eqgs. 3.13-3.18 can be followed. In order to obtain the

derivatives of y with respect to each variable x, y should be rewritten as

y=ay+xb+x Bx (4.29)

where
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Xy (al ayy Gyp Q13 Ay4 Q15 Q16 G17 G438
X @ Gy Qa3 Oxg s Gy Gy7 Gog
Q33 34 d3s A3 A37 O3y
b=| " B= Quq Ays Ay Q47 Aag (4.30)
Qss Asg dsy dsg

Qg6 Ge7 dpg
@77 478
xS a8 . . . . . . . a88J

">
il

Off diagonal elements are divided by 2. Therefore

oy A
E=b+2Bx (4.31)

The transformed variables can be written as

xp=—yf (4.32)

Substituting Eq. 4.31 into Eq. 3.17, y; are evaluated. Then substituting Eq. 4.32 into Eq.
4.29, the safety index, f, is obtained. Then the derivatives in Eq. 4.31 can be updated

and new values of y can be obtained. The process is iterative until convergence occurs.

4.3.2 Results for Approximate Analysis

Fig. 4.15 represents a comparison between exact analysis and the new approximate
analysis. The stress, S, the strength, R, and the performance function, R — S, are cal-
culated based on the exact analysis. The function R — S is also calculated using ap-
proximate analysis and the results are plotted in Fig. 4.15. An excellent agreement is
obtained between the two techniques.

Fig. 4.16 represents a comparison between the two analyses in terms of the safety

index. The safety index is obtained by substituting Eq. 3.18 into Eq. 3.13 and solving
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for g for the exact analysis and by substituting Eq. 4.32 into Eq. 4.29 for the approxi-
mated analysis. The two curves overlap.

Fig. 4.17 represents the progressive probability of failure for the two solutions. The
solution is obtained based on Eq. 3.51 and Eq. 3.52. The two curves are in good

agreement, indicated by the overlap in the safety index curves.

4.4 Conclusions

The FOSM method of structural reliability has been applied to estimate the storage
life of motors subjected to environmental temperatures. Variables with various statis-
tical distributions and degrees of correlation have been assumed.

Under or over estimates of the service life of rocket motors might result if the design
variables are given unreasonable probability distributions. The assumption of inde-
pendence between variables produces more conservative estimates than correlated vari-
ables.

Results have shown that storing rocket motors at a warm site make them more re-
liable than storing them at a cold site.

The accuracy of the approximate solution has been demonstrated by the excellent
agreement that has been obtained between the two analyses. This allows for more
complicated examples to be investigated where solutions are obtained using finite ele-
ment analysis. An example is the case of rocket motors subjected to static and dynamic
patch and line loadings where reliability analysis is required. This example will be cov-

ered in the next chapter.
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A computer program entitled ROCKT2 has been developed [64] for the calculation

of reliabilities and storage lives of solid propellant motors.
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Table 4.1 Geometric, Thermal and Mechanical Parameters

Material Air (core) Propellant ¢ Case o Air(gap) Insulation
r (in) 1.875 4.302 ---  4.400 5.400 6.400
Conductivity K
Btu/hrft F° 0.0145 0.7641  ---  14.600 --- 0.0145 0.0160
Diftfusivity o
in? [hr 109.872 4.378 ---  48.960 --- 109.872 1.235
Elastic modulus E Eco
(psi) --- 281.84  0.10 30.0x 10¢ 0.05 ---
Poisson’s ratio v --- 0.492 0.0 0.253 0.05 --- ---
Coefficient of thermal
expansion a(in/inF°) --- 5.7%x10-50.05 6.5x10¢ 0.05 --- ---
Strength Eq. (13) 0.10 ---
Stress Free Temperature

T; (F?) 165 ---
Characteristics Point Barrow, AK 6 Nashville, TN 6 Yuma, AZ &
Mean Temperature (7,,) F° 9.356 58.536 --- 73.49 ---
Daily Amplitude (4,) F° 1.602 0.10 7.495 0.10 11.530  0.10
Yearly Amplitude (4,) ¥ 30.690 0.10 20.678 0.10 19.224  0.10
Wy 2n/24 -- 27[24 --- 2n[24 ---
w, 278760  --- 278760  --- 27/8760 ---
Daily Phase (¢,) 15w, --- 16w, --- 16w, ---
Yearly Phase (¢,) 5088w, 4871w, --- 492000, ---
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Table 4.2 Prony Constants for Tensile Relaxation Modulus
w = 281.84psi (1.943E + 06N/m?)

i E psi(N[m?) T, hrs.

1 1.979E+04 (1.364E + 08) 3.333E-12
2 7.990E + 03 (5.509E +07) 3.333E-10
3 2.522E+03 (1.739E+07) 3.333E-08
4 1.153E+ 03 (7.947E + 06) 3.333E-06
S 7.346E+ 02 (5.065E + 06) 3.333E-04
6 2.041E+02 (1.497E +06) 3.333E-02
7 2.718E+02 (1.873E + 06) 3.333E400
8 8.643E-15 (5.959E-16) 3.333E+02
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Fig. 4.2: The shift function of the core under consideration at different
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Fig. 4.3: Core modulus, E( 5 ), at different temperatures for daily frequency,

Note that the variation in the modulus is very high in the low temper-
ature range which corresponds to Point Barrow, AK and low Iin the
high temperature range which corresponds to Yuma, AZ.
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Fig. 4.4: Tangential stress, S e(r,t), at the bore due to cyclic temperature
with time at different locations.
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Fig. 4.8: Core strength, R, with time at different locations (aging and
damage effects are included); note that the strength at Point Barrow,
AK. becomes 0 after 2200 days, the same period in which damage
effect is 1.
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Filg. 4.9: Safety Index, B, with time at different locations, strength and
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Fig. 4.10: Progressive probability of failure with time at different locations;
strength and modulus are Weibull, other variables are normal
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Chapter V
RELIABILITY OF ROCKET MOTORS UNDER

MECHANICAL LOAD

5.1 Introduction

Storing rocket motors under field conditions produces thermal stresses which have been
investigated in the previous chapter. During storing or loading, however, rocket motors
may be accidentally dropped or hit by an object. The stress distribution due to such
cases can result in extensive damage and consequently in termination of the service life
of the motor.

In this chapter, the reliability of rocket motors subjected to mechanical loadings
will be investigated. All design parameters will be assumed random variables with cor-
relation among some of them. Static and time-dependent loading with real time history
will be considered. These loads will be treated as two opposite line loads, one patch load

and one line load, especially in the case of impact loads. Response statistics such as

RELIABILITY OF ROCKET MOTORS UNDER MECHANICAL LOAD 76



mean and standard deviation of stress and displacements will be computed and the effi-
ciency of the sensitivity analysis will be demonstrated too.

Experiments have shown that failure of the motor occurs at the bore under this
loading condition, i.e., the tangential stress at the bore exceeds the propellant strength.
Therefore, the performance function is defined as (R — S) where R is the propellant
strength and S is the maximum tangential stress at the bore. Once the stress analysis is
performed, the RSM method is applied to produce an analytical expression for the per-
formance function followed by the FOSM analysis.

Stresses are analyzed with the aid of a finite element program [65] (MCYL1). Be-
cause no explicit performance function can be written in this case, the RSM method is

used.

5.2 Probabilistic Finite Element Program

The finite element method is used in computing stresses and displacements. A
deterministic finite element program (MCYL1) was developed by Heller and Lin [65] to
perform the analysis and it will be extended to allow for probabilistic analysis. The
deterministic finite element model was developed based on a mixed finite element for-
mulation where stresses and displacements were treated as the unknown nodal values.

The deterministic finite element program will be converted to a probabilistic one

based on the following steps:

1. Random design variables such as modulus, strength, Poisson’s ratio, load parame-

ters, inner radius, etc. are identified in terms of mean and standard deviation
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2.

10.

11.

12.

13.

A design matrix is obtained based on factorial design, where 2*>n+1,
p=4forn=8andp=35forn=11

The performance function, G, is defined as R — S with R the propellant strength and
S the maximum tangential stress at the bore

The finite element program MCYLI is called to perform the analysis at each data
set to obtain the corresponding G value

The RSM is used to build a first order probabilistic model as a function of the ran-
dom design variables defined in step 1

The sensitivity analysis is used to scan the variables and determine which variables
should be retained in the probabilistic model

A fractional factorial design is built based on the retained variables

A central composite design is constructed as shown in 3.2.2

The finite element program MCYLI is called again to perform the analysis at each
data set

The RSM is used to build a second order performance function in terms of the re-
tained variables

If response statistics are required, such as mean and standard deviation of stresses
and displacements, G is replaced by that response quantity, Taylor’s series expan-
sion is used to compute the response statistics and further calculations are termi-
nated; if reliability analysis is required, this step may be ignored

The FOSM is used to obtain the safety index f and, consequently, probability of
failure and reliability; design points are obtained too

If the value of § obtained is large and for some special cases, step 9 is repeated with
the design points obtained in step 12 used as new mean values of the variables; in

this manner, an increment for f§ is obtained

RELIABILITY OF ROCKET MOTORS UNDER MECHANICAL LOAD 78



14. The process may be repeated until the increment of § goes to zero (normally after

two trials)

A flow chart has been developed based on the above steps and is shown in Fig. 5.1
for this case. Any available deterministic finite element program is used as a subroutine
in the main algorithm and each data set can be run separately. This makes the devel-
oped technique efficient because it can handle problems where only execution codes are
available and there is no way to access the structure of these codes, such as is the case
for ABAQUS. In fact, all the probabilistic finite element programs that have been used

in this work (chapters V and VI) are and will be developed based on this flow chart.

5.3 Rocket Motor Loaded by Static Line Loads

A rocket motor subjected to two line loads (Fig. 5.2) is examined. Geometrical and
mechanical properties are given in Table 5.1. In this case the reliability curve is required
as a function of the applied load for different mean strength values.

Fig. 5.3 represents the tangential stress at the bore as a function of the applied load.
Fig. 5.4 shows the performance function (R — S) as a function of the applied load for
different strength values. Fig. 5.5 presents the safety index, f, with load for different
strength values; the high safety index curve corresponds to high values of strength. Fig.
5.6 represents the reliability of the motor with load for different strength values, where
high reliability corresponds to high safety index and high strength value. For a constant
strength, the reliability of the motor decreases as load increases.

As a good check of the results, consider the fact that when strength and stress are

equal, the reliability is equal to 0.5. This can be proven by the results in Fig. 5.6 and
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Fig. 5.3. In Fig. 5.6 the applied load corresponding to 0.5 reliability can be obtained for
each curve. Then these load values can be entered into Fig. 5.3 to obtain the corre-
sponding stress value. These stresses will be equal to the strength from which the load

is obtained, i.e., stress and strength are equal.

5.4 Rocket Motors Loaded by Patch Loads.

The motor of section 5.3 is analyzed under the action of a line load and a patch load
combination as shown in Fig. 5.7. Static as well as dynamic loads are considered, the
dynamic load is applied over a short period of time to represent impact. The FEM code
(MCYL1) used above is used for the static and dynamic responses such as stresses and
displacements. The RSM is applied to predict the mean and standard deviation for any
response quantity. Then the RSM with FOSM is used to obtain the reliability and the

progressive probability of failure of the motor.

5.4.1 Static Loads

Fig. 5.8 presents the mean and standard deviation of the radial displacement with
load at the interface under the load. In Fig. 5.9 the mean and the standard deviation
of the tangential stress is plotted at the same location. Utilizing the RSM and FOSM,
the safety index with load is presented in Fig. 5.10 for different propellant strengths. In
Fig. 5.11 the safety index is plotted for different coefficients of variation, while in Fig.

5.12 the probability of failure is plotted based on these safety indices.
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5.4.2 Impact Patch Loads

Patch loads are applied to the motor of section 5.3 as functions of time, shown in
Fig. 5.13. Because the total duration of the load is § msec it is considered to be an im-
pact. The mean and the standard deviation of the radial displacement at the interface
and the tangential stress at the bore are computed under the action of random impact
load as functions of time (Figs. 5.14 and 5.15). The safety index with time for different
strength values is presented in Fig. 5.16, and the progressive probability of failure is
computed for this case and plotted in Fig. 5.17. The safety index and the progressive
probability of failure are computed also for different coefficients of variation as functions
of time (Figs. 5.18 and 5.19). In this analysis the load-time function used is a half sine

wave.

5.4.3 Experimental Impact Loads

In a parallel experimental investigation of the effect of impact loads on motor seg-
ments, a drop tester is used for tests on 4 in. long, inert propellant filled cylinders. The
equipment consists of a 10.5 lbs drop-weight with an instrumented, %in. diameter
spherical impactor. The cylinders have the dimensions shown in Fig. 5.2. Their dynamic
mechanical properties have been computed from Eqs. 4.11-4.15 and are given in Table
5.2.

The drop tester measures the impact force and the velocity of the impactor as

functions of time and automatically plots these variables in addition to the displacement

of the tup and the impact energy also as functions of time.
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A typical set of such curves is presented in Figs. 5.20 and 5.21 for a drop height of
20 in. and a maximum energy of 17.14 ft — lbs. As seen in Fig. 5.20, the load-time trace
is not sinusoidal and reaches a maximum value of 992 /bs.

This load-time history is used in a digitized form as an input first to the finite ele-
ment analysis (MCYL1) and then in the RSM reliability analysis.

The experimental results and finite element results are compared in terms of the ra-
dial displacements under the load and are shown in Fig. 5.22 for a load duration of
10 msec. Fig. 5.23 represents the tangential stress with time at the bore for the same
energy level.

A reliability analysis is performed based on the developed technique for different
energy levels. The safety index f is computed as a function of energy levels for different
coefficients of variation. The results shown in Fig. 5.24 and Fig. 5.25 represent § and
the reliability of the motor as functions of energy levels.

Specimens subjected to drop tests were disected. A close examination indicated that
in the majority of cases cracks originated at the bore and propagated radially under the
influence of circumferential stresses. In some specimens, however, cracks developed near
the interface (bond line) and traveled in the circumferential direction under the influence
of radial tension stresses.

A stress analysis indicated that radial stresses in this region vary from compression
directly under the load (0°) to tension around 30° from the loading direction and back to
compression again at right angles to the load. Fig. 5.26 taken from reference [66] shows
the variation of radial stress around the circumference of the cylinder.

Tangential stresses at the bore and radial stresses near the bond line at various an-
gles from the loading direction are presented in Table 5.3. It is seen that tangential bore

stresses are considerably higher than radial bond-line stresses and consequently cracks
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at the bond-line are expected to initiate only when some imperfections are present in the

material. This fact has been observed in the experiments.

5.5 Application of Sensitivity Analysis and Correlated Variables

5.5.1 Application of Sensitivity Analysis

To demonstrate the efficiency of the sensitivity analysis, three more variables with
10% coeflicients of variation are assumed to be random, bringing the total number of
random design variables to 11 which, are

applied patch load

propellant modulus

case modulus

Poisson’s ratio of propellant
Poisson’s ratio of case

density of propellant

density of case

propellant strength

inner radius

half angle range of the patch load
half angle range of the line load

HEEH SRR KRS K
RN

A first order G function is constructed based on RSM in terms of all the above
variables. The sensitivity analysis described in section 3.2.4 is performed to determine
which variable must be retained in the probabilistic model, and the results are shown in
Table 5.4. It is clear that xs, x5, x5, X7 and x;; are insignificant with respect to the other
variables; therefore, these 5 variables are removed from the probabilistic model.

In order to prove the accuracy of the sensitivity analysis, the FOSM is applied to

the first order G function obtained above and a similar polynomial is constructed based
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on the 6 retained variables to which the FOSM is again applied. A comparison between
the two solutions is made in terms of the safety index, f§, the probability of failure, Py,
the reliability, R, and the design points. The comparison is shown in Table 5.5 where
a good agreement is obtained. A second order G function is constructed also in terms
of the 6 retained variables. A (% of 264+ 12+ 1) number of points instead of
(% of 21" 4+ 22 + 1) are used, resulting in the same accuracy; the finite element code is
evaluated 45 times instead of 278 times.

According to the results in Table 5.4, 4 out of the 8 original random variables are
significant and must be retained in the probabilistic model. The RSM is applied to
construct a second order G function, then the FOSM is used to obtain f, P, R, and the
design points. This is performed based on 4 and 8 random variables and the comparison

is shown in Table 5.6.

5.5.2 Application of Correlated Variables

Four random variables are found to be significant, the patch load (x;), the propellant
modulus (x2), the case modulus (x;) and the propellant strength (x,). It has been found
that propellant modulus, x;, and strength, x., are correlated random variables, since both
are time and temperature dependent. The RSM in conjunction with FOSM for corre-
lated variables is applied to obtain 8, P;, R, and the design points for correlation coeffi-
cients, p, of 0.0, 0.4 and 0.8 (Table 5.7).

To increase the accuracy of the solution, the G function for 0.0 and 0.4 correlation
coefficient is re-evaluated using the design points as the new mean values. An incre-

mental value for f is computed and added to the previous one. New values for
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B, P;, R; and design points are obtained and are shown in the same table. Because f is

small, the re-evaluation of G does not change these values significantly.

5.6 Conclusions

Reliability of motors subjected to static and impact loads was calculated, using the
developed technique, for two different loading conditions: two opposite line loads and
patch-line load combinations. Response statistics such as the mean and the standard
deviation of stresses and displacements were calculated too.

The efficiency of the sensitivity analysis was demonstrated by considering all ran-
dom variables and obtaining the same safety index when insignificant ones are consid-
ered as deterministic. This will reduce the computations by a significant amount.
Correlated varibles were tested and it was found that the assumption of correlation be-
tween propellant strength and modulus will increase the safety index and consequently
the reliability of the motors.

The technique uses an available deterministic computer code as a subroutine. This
allows the extension of all available finite element codes or any other numerical codes
to be adapted to a probabilistic analysis.

A computer program entitled ROCKT3 has been developed [67] for the calculation

of reliabilities of rocket motors under mechanical loadings.
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Table 5.1. Design variables for line and patch loaded motors

Variable Mean Coeflicient of variation &
Propellant
Strength R (psi) 25.0 to 100.0 0.10
Modulus E, (psi) 281.0 0.10
Poisson’s ratio v, 0.49 0.005
Density p,(1b/in®) 0.0623 0.10
Case
Modulus E; (psi) 20 E+06 0.10
Poisson’s ratio v, 0.30 0.10
Density p.(Ib/in%) 0.0600 0.10
Applied load

P(Ib) 1 to 200 0.10
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Table 5.2 Design variables for impact loads

Variable Mean standard Coefficient of
deviation variation ¢
E (propellant) (psi) 1076 107.6 0.10
R (propellant) (psi) 319 31.9 0.10
319 63.8 0.20
E (case) (psi) 3.0E+06 3.0E+0S 0.10
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Table 5.3 Radial stress at the interface for different angular locations compared with

maximum tangential stress at the bore under the load

location radial stress Max. tangential stress
at interface at bore
0° psi psi
0 -160 280
30 75
45 46
90 -40
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Table 5.4 Sensitivity analysis based on 11 variables

CoefTicient Value t Value PRF
intercept 0.66824937E + 02 0.49196245E + 02 0.00000102
X -0.25307438E+02  -0.18631232E+02  0.00004885
X3 -0.13999063E + 02 -0.10306053E+ 02 0.00050004
X3 0.13222188E+02 0.97341203E+01 0.00062375
X4 -0.30398125E + 01 -0.22378975E + 01 0.08882885
Xs -0.79043750E+00  -0.58191685E+00  0.59184263
Xs 0.13005625E+ 01 0.95746879E+00  0.39255109
X7 -0.24643750E+00  -0.18142628E+00  0.86485538
X3 0.31354938E+02 0.23083377E+ 02 0.00002087
Xo -0.88980625E + 01 -0.65507172E+01 0.00280780
X10 -0.23738563E+02  -0.17476233E+02  0.00006294
-0.13256875E+01 -0.97596571E+ 00 0.38434388

X1
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No. of random
variables

safety index

Reliability
R

Prob. of failure
P

Table 5.5 Comparison between 6 and 11 random variables as a result of sensitivity analysis

11 (1st order G)
6 (1st order G)
6 (2nd order G)

1.29801
1.30271
1.24774

0.9028576500E+00 0.9714235000E-01
0.9036628641E+00 0.9633713590E-01

0.8939373171E+00 0.1060626829E + 00

Variable Mean value

Design value

11 r. v. 1Ist order

Design value
6 r.v. 1st order

Design value

6 r.v. 2nd order

X -0.28590E+ 06 -0.30414E+ 06

X2
X3
Xa
Xs
Xs
X7
X
X9
X10

0.10767E+ 04
0.30000E + 07
0.49000E + 00
0.30000E + 00
0.62300E-01

0.60000E-01

0.31946E+ 03
0.75000E + 00
0.10000E+01
0.10000E + 01

0.11147E+04
0.29000E + 07
0.49019E+ 00
0.30060E + 00
0.62096E-01

0.60037E-01

0.29421E+03
0.76683E + 00
0.10599E + 01
0.10033E+01

-0.30418E+ 06
0.11137E+04
0.28970E + 07
0.49000E + 00
0.30000E + 00
0.62300E-01
0.60000E-01
0.29399E + 03
0.76647E + 00
0.10605E + 01
0.10000E + 01

-0.30379E + 06
0.11136E+04
0.28905E+ 07
0.49000E + 00
0.30000E + 00
0.62300E-01
0.60000E-01
0.29655E+ 03
0.76660E + 00
0.10593E+01
0.10000E + 01
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Table 5.6 Comparison between 4 and 8 random variables as a result of sensitivity analysis

No. of random safety index Reliability Prob. of failure
variables / Py
8 (2nd order G) 1.45135 0.9266592171E+00 0.7334078289E-01

4 (2nd order G) 1.45864

0.9276683596E + 00

0.7233164038E-01

Variable Mean value Design value Design value
8r. v. 4r. v,
X -0.28590E + 06 -0.30939E + 06 -0.30959E + 06
X2 0.10767E+ 04 0.11250E+ 04 0.11254E+04
X3 0.30000E + 07 0.28533E+07 0.28520E + 07
X4 0.49000E + 00 0.49034E + 00 0.49000E + 00
Xs 0.30000E + 00 0.29943E + 00 0.30000E + 00
Xs 0.62300E-01 0.62300E-01 0.62300E-01
X7 0.60000E-01 0.60000E-01 0.60000E-01
X3 0.31946E+03 0.28797E+ 03 0.28763E+03
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Table 5.7 Reliability analysis for different levels of correlation

Corr. coeff. safety index Reliability Prob. of failure
P2a B R, Py
0.0(1st time) 1.45864 0.9276683596E+00 0.7233164038E-01
0.0(2nd time) 1.48401 0.9310967550E+00 0.6890324400E-01
0.4(1st time) 1.60376 0.9456162171E+00 0.5438378289E-01
0.4(2nd time) 1.69604 0.9550608270E+ 00 0.4493917000E-01
0.8 1.81678 0.9653743731E+00 0.3462562693E-01
Variable X3 X2 X3 Xa
Mean value -0.28590E+06  0.10767E+04  0.30000E+07 0.31946E+03
Design value
0.0 Ist time -0.30959E+06  0.11254E+04  0.28520E+07 0.28763E+03
0.0 2nd time -0.31008E+06  0.11263E+04  0.28496E+07 0.28717E+03
0.4 1st time -0.31417E+06  0.10863E+04  0.28180E+07 0.28827E+ 03
0.4 2nd time -0.31614E+06  0.10692E+04  0.28085E+07 0.28683E+03
0.8 -0.32170E+06  0.10272E+04  0.27578E+07 0.28984E + 03
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MOTOR UNDER LOADING

p=11t0 200 Ib
= 13.58 to 2716 psi

r2=1.6250 in (Propellant)

ri= 0.3438 in (Air)
r3=1.6870 in (Case)

Fig. 5.2 Motor under two opposite line loads
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Fig. 5.3 Tangential stress at the bore with load
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5.4 Response (R-S) with load for different mean strength values:

(4) 25.0 psi
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Fig. 5.5 Safety index with load for different mean strength values:
(1) Propellant strength = 100.0 psi , (2) 75.0 psi
(3) 50.0 psi , (4) 25.0 psi
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Fig. 5.6 Reliability with load for different mean strength values:

(1) Propellant strength = 100.0 psi , (2) 75.0 psi
(3) 50.0 psi , (4) 25.0 psi
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MOTOR UNDER LOADING
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= 288.2 to 57640.0 psi (patch
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r3=1.6875 in (Case)

F=1102001b
= 0.283 to 56.6 psi (line
load over 2 (deg) angle

LOAD

MOTOR UNDER PATCH / LINE LOADS

Fig. 5.7 Motor under patch/line loads compination
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Fig 5.8 Mean and standard deviation of the radial displacement with load

at the interface under the load
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Fig. 5.9 Mean and standard deviation of the tangential stress with
load at the bore under the load
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Fig. 5.10 Safety index with load for different mean strength values
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Fig. 5.11 Safety index with load for different coefficients of variations:

(R= Strength, F= Load, Mean (R)= 80 psi)
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Fig. 5.12 Probability of failure with load for different coefficients
of variations: (R= strength, F= Load, Mean (R)= 80 psi)
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Fig 5.13 Sine wave impact load
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Fig. 5.14 Mean and standard deviation of radial displacement with time at
the interface under the load due to sine wave load
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Fig. 5.16 Safety index with time for different mean strength values
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Fig. 5.17 Progressive probability of failure with time for different
mean strength values
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Fig. 5.18 Safety index with time for different coefficients of variations:
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Fig. 5.19 Progressive probability of failure with time for different
coefficients of variations: (R= Strength, F= Load)
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Fig. 5.22 Comparison between FEM solution and experimental results
for an impact energy of 17.14 (ft-1b)
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Chapter VI
RELIABILITY OF LAMINATED COMPOSITE

PLATES

6.1 Introduction

Laminated composite plates have been used widely in industry, especially in the last
decade. Linear as well as nonlinear analyses have been carried out by many researchers
for laminated composite plates under static and transient loads where all the parameters
in the analysis are assumed to be deterministic, i.e., have constant values [68-71].
However, material properties, fiber orientation and loading are statistically variable
quantities. Therefore, the need for probabilistic analysis exists. Moreover, since the
analysis uses finite element codes, the development of probabilistic finite element codes
is a "hot” research area.

In previous chapters, normally distributed and correlated design variables were

considered. Probabilistic analysis was performed based on a single failure mode. In this

RELIABILITY OF LAMINATED COMPOSITE PLATES 119



chapter, however, the same will be applied to a more complicated example, where ge-
ometric nonlinearity is involved. The application of non-normal variables will be con-
sidered as well as the case of multi-independent failure modes.

Probabilistic static and transient finite element analysis of a geometrically nonlinear
laminated composite plate will be discussed. The probabilistic model is developed based
on Response Surface Methodology (RSM) in conjunction with the First Order Second
Moment (FOSM) reliability method as was discussed in chapter 3. The finite element
mode] will be developed based on the first order shear deformation theory in conjunction
with Von Karman’s strain tensor. Newton-Raphson and Newmark direct integration
methods are used for nonlinear and time dependent analysis, respectively. Two models
are considered: a finite element model for the deterministic analysis of stresses and dis-

placements and a probabilistic model for the reliability analysis.

6.2 Finite Element Model

6.2.1 Theory and Formulation

The first order shear deformation theory is used in conjunction with Von Karman'’s
nonlinear strain tensor to account for large deformations. The plane strain assumption

is used in this study also.
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6.2.1.1 Kinematics

Based on first order shear deformation theory (Fig. 6.1), the displacement field can

be written as

uy = u(x ) + 29 (x,,1) (6.1)
Uy = v(x,1) + 20, (x 1) (6.2)
uy = w(xp,1) (6.3)

where ¢ is the time, u, w4, 43 are the displacements in x,y, z directions, respectively,
u, v, w are the associated mid-plane displacements, and ¢,, ¢, are the slopes in the xz and

yz planes due to bending only.

6.2.1.2 Von Karman Nonlinear Strains

The strains in the Von Karman plate theory which account for large deflections can

be expressed in the form

1 ..
eij = ? (ul'./' + uj,i + um,l um.j) Iy = 172’3 (6.4)

where the components of the strain tensor can be found in [72].
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6.2.1.3 Constitutive Relations

The constitutive relations for the plate can be written as
NY [t4] 81] (¢
(6.5)
M [B] [D]]| (x
and

{Qz} [Au. Aas] {84}
(6.6)
O Ass Ass | Les

Where N, M and Q are called the plate generalized forces and [4], [B], [D] are the

plate generalized stiffnesses given in [72]. The stress strain relations can be written as

{2} -[2] {gl} (6.7

and
{f’a} _ [544 —Q_4s} {84} (6.8)
Os §45 éss Es

6.2.1.4 Equations of Motion

To derive the equations of motion, Hamilton’s principle is used:
h

SLdt=0 (6.9)

i
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where 6L is the first variation of the Lagrangian

or

h
0= j f(aij Se;)dv — f Swf dxdy — § (©, 6w+ M, 2% 4 pr 90w \a Ny
fo v Q, l"‘, an as

(6.10)
_ f (;r (N1, + NyiSu)ds + J - (it + bilgly + 5a3a3)dv)dt
[ 4 VC

L
)

Substituting Eqs. 6.1-6.8 into Eq. 6.10 and integrating by parts, both with respect

to time and spatial coordinates, results in

Nyx+ Noy = Lii + L, (6.11)

Nox+ Noy =L + Lo, (6.12)

Q1 x+ Qay + Nw) = Liw —flxp,1) (6.13)

M+ Mg, — Q= L, + Lii (6.14)

M+ Myy— Oy =L, + Ly (6.15)
where

ow

_ 0y Ow Ow .\, 0 N 0w ow
is the contribution due to nonlinear terms, and
n
Zm 41
([1’ 12v 13) = ZJ pm(l,z,zz)dz (617)
zm
m=1

with p, the material density of the m* layer.
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6.2.1.5 Variational formulation

Multiply Eqgs. 6.11 to 6.15 by a weight function (w(x,y), j= 1,5) and integrate by

parts. The variational form can be written as

0 =I (wl(Il i+ 1¢,)+ wyx Ny +wy,y Né)dxdy —4: N, w, ds (6.18)
Q T

0= f (wy(I¥ + Lo,) + wy No + w,,N,) dxdy — ; N,, w, ds (6.19)
Q T,

0 =.[ (wy W + w3 Q1 + w; ,0p + Wy (Nyw 5 + Néwy)) dxdy
QC

(6.20)
+f (W3 (New x + Now ) — ws f) dxdy _§ Q, w; ds
Q, T,
0= j (WalLs b + Lyil) + wy My + wy, Mg + wyQ,) dxdy
Q,
(6.21)
_§ Mn W4 ds
rt
0 =f (ws(Izy + L) + ws xMs + ws , M, + wsQ;,) dxdy
e | (6.22)

"‘{ Mnt Ws ds
F‘
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6.2.2 Finite Element Formulation

6.2.2.1 Polynomial Approximation

Approximating u, v, w, ¢,, and ¢, in polynomial functions and substituting into
Eqs. 6.18 to 6.22, the governing equations can be written in terms of the polynomial

function as given in [72], or in matrix form as

- - r -

ey o1 o1 e o |[@] [t e ey e s
[01 [M*1 [01 [0 [M™1||{}| |CK™1 K™ [KP] [K*] [K™]
[01 [01 [M¥] [0 [0] |[{#}|+]CK"] K7 K] K] [K°]
M¥1 [01  [0] [M¥3 [o] || @] |rxM1 k%1 (k¥ (KM (K]
| [0 [M7] 01 [0] [M™1||G}| |CK'] (K] (K] (K] [K™)

1 o] - (0.23)
| |FY
m | | F)
w) |=| (F)
x| | FY
(1] L{FS} |

where [M] is the mass matrix, [K] is the stiffness matrix and {F} the column vector
which contains the boundary conditions and the transverse force. The elements of
[M], [K] and {F} are given in [72]. The element stiffness matrix [K] is nonlinear and
unsymmetric in the present formulation, the nonlinearity being due to nonlinear terms

appearing in the variational form.
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6.2.2.2 Newmark’s Direct Integration Method for Transient Analysis

The time-dependent displacements and accelerations in Eq. 6.23 are approximated

using Newmark's integration scheme [70], with « = 0.5 and f=0.25. Eq. 6.23 can be

written as

(K8}t 1= Flap sy (6:29)
where

[K] = [K] + a[ M] (6.25)
and

(F) = (Flpy 1 + [M1@{A), + @1 (A}, + 2,{A},) (6.26)
and

ao=ﬁ , ay = aght ,a2=$—1 6.27)

Once the solution {A} is known at ¢,,, = (n + 1)A¢, the first and second derivatives

(velocity and acceleration ) of {A} at #,,, can be computed from

{41 = a({A}, 4 1 — {A}) — @ {A), — & {4}, (6.28)
{A}y 1= (A}, + a3{A},) +a,{A}, (6.29)
a;=(1 — a)At ,a, = aAt (6.30)
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All of the operations previously indicated can be performed at the element level and the

assembled form of Eq. 6.23 can be obtained for the whole problem.

6.2.2.3 Newton Raphson Method for Nonlinear Analysis

This technique is used to solve the nonlinear equations. It is based on computing

what is called the tangent stiffness matrix [73] as follows:

., 9{R}
[K']= 7Sy (6.31)
where
(R} = [KI(A} — {F) 6.32)

and [IA(] is a function of {A}
The assembled form of Eq. 6.32 can be obtained. Applying the boundary condi-
tions, the assembled equations may be solved. Then the solution vector can be updated

as

{A)y 1= {4}, + {04} (6.33)

In order to insure the accuracy of the solution, a check for convergence is made. The

elements of the tangent stiffness matrix are given in [72].
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6.3 Probabilistic Model

The probabilistic model is constructed based on the technique described in chapter

I1I and the flow chart presented in Fig. 5.1.

6.4 Applications and Results

A computer program is written based on the finite element formulation and is used
as a subroutine in the probabilistic model code. Before the probabilistic analysis is per-
formed, the computer program is tested against some of the results that are available in
the literature. Fig. 6.2 shows a comparison with reference [71] for a [90/0] simply sup-
ported plate subjected to uniformly distributed load, and a good agreement is obtained
for linear and nonlinear analyses. In Fig. 6.3 a comparison is made with reference [70]
for a [+45/-45] simply supported plate subjected to time-dependent load, and a good
agreement is obtained also. Material properties as well as loading information can be
found in these references.

The program is then tested for the following example: a 100” x 100" plate with
[+45/-45]25/s subjected to uniformly distributed static and transient loads. Material
properties, fiber orientations and loads are assumed to be random variables, as shown

in Table 6.1.
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6.4.1 Probabilistic Static Analysis (Linear and Nonlinear)

In this and the next two sections, a single failure mode is considered based on the
maximum allowable deflection, W,,, and will be referred to as the strength of the plate,
[74]. The maximum deflection, Wi, is located at the center of the plate according to
Fig. 6.4, therefore the G function will be defined as Wy — Wi

Using the FOSM the mean and the standard deviation of the central deflection with
load for linear and nonlinear analyses is presented in Fig. 6.5. The linear analysis results
in more deflection than the nonlinear one; in fact, the difference between the two ana-
lyses increases as the load increases. This observation applies to the standard deviation
too. To compare the probability of failure between linear and nonlinear analyses, the
performance function, G, is designed based on a maximum allowable deflection of 1.5’
with 10% coefficient of variation. The analysis is performed and the results are pre-
sented in Fig. 6.6 for the safety index, #, with load and in Fig. 6.7 for the probability of
failure with load. In Fig. 6.6 high values for § correspond to nonlinear analysis while in
Fig. 6.7 high values for the probability of failure they correspond to linear analysis.

In order to investigate the effects of the strength in the analysis, three different val-
ues for the maximum allowable deflection are assumed (0.8,1.0,1.57). The results are
shown in Fig. 6.8 for § with load and Fig. 6.9 for the probability of failure with load. In
these two figures, by increasing the maximum allowable deflection, high values for § and
low values for the probability of failure are obtained.

To study the sensitivity of the plate to design parameters, the probability of failure
is computed based on different coefficients of variation as shown in Fig. 6.10. The

probability of failure increases by increasing the coefficient of variation for the strength.
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By increasing the coefficient of variation for the load by the same amount, the proba-

bility of failure increases but does not reach the same level.

6.4.2 Probabilistic Transient Analysis (Linear and Nonlinear)

A load factor (f= 25 or p = 0.65 psi) is assumed to be time dependent (step function
applied at ¢t = 0) when applied to the plate. The linear and nonlinear mean and standard
deviation for the central deflection is presented in Fig. 6.11 as a function of time. In this
figure the linear deflection has higher peaks for 4 and ¢ than the nonlinear one. On the
other hand, the nonlinear deflection has a shorter period than the linear one.

In Fig. 6.12, the safety index is presented for a maximum allowable deflection of 1.5
(in) and coefficients of variation of 10%. The values for linear and nonlinear analyses
are plotted and show high values for § in the nonlinear analysis. Fig. 6.13 represents the
progressive probability of failure for both analyses as defined in section 3.5. High values
are obtained because the response keeps repeating itself.

The effect of the strength in the analysis is presented in Fig. 6.14 for the safety index
and Fig. 6.15 for the progressive probability of failure. In Fig. 6.16 the effect of different
coefficients of variation is considered. The progressive probability of failure increases
by increasing the coefficient of variation for the strength. However, by increasing the
coeflicient of variation for the load by the same value, the progressive probability of

failure increases but does not reach the same level.

RELIABILITY OF LAMINATED COMPOSITE PLATES 130



6.4.3 Application to Non-Normal Variables

To examine the developed technique for non-normal variables, three different dis-
tributions are assumed for the strength of the plate, normal, lognormal and Weibull.
The technique described in section 3.4 is used and the analysis is performed for a mean
strength of 1.5” and 10% coefficient of variation for different load values. Results are
shown in Fig. 6.17 for the safety index, Fig. 6.18 for the reliability and Fig 6.19 for the
probability of failure as functions of load.

A close look at Fig. 6.18 shows that the lognormal distribution gives the most con-
servative assumption and the Weibull gives the least one, while the normal one is in be-
tween. These results, however, are not absolute and they may change from one example
to another. They are produced here to show that the developed technique can handle

non-normal variables.

6.4.4 Application to Multi-Failure Modes

In this section, multi-failure modes are considered and different meshes are tested.
Failure is considered based on the maximum bending stress through the thickness of the
plate where several locations can be obtained and compared with the allowable strength.
Because fibers are weak in compression compared to tension, the maximum compressive
stress is computed in each element. The results are shown in Fig. 6.20 and Fig. 6.21 for
1.95 psi uniform load in a 3-D plot and contour lines, respectively. It is clear from these
two figures that there are many critical regions.

To demonstrate the effect of considering single and multi-failure modes, the prob-

abilistic analysis is performed based on the maximum compressive stress through the
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thickness for the whole plate. A comparison is made in terms of the safety index for
different failure and the results are shown in Fig. 6.22 for the 64 elements mesh and Fig.
6.23 for the 256 elements mesh. It is clear from these two figures that a single failure
mode is a nonconservative assumption because it produces higher values for the plate
reliability. The analysis is also performed based on the maximum compressive stress at
the center of the plate computed for a 64 and a 256 element mesh. Results are shown
in Fig. 6.24 for the safety index, Fig. 6.25 for the reliability and Fig. 6.26 for the proba-
bility of failure for different compressive strength values. The reason a small difference
appears between the two analyses is due to the fact that a fine mesh produces higher
values for the stresses than a coarse mesh.

However, if the stress distribution over the whole plate is considered, it is clear that
there is more than one critical region where the stress is equal or greater than the stress
at the center of the plate. This means that for such a case, it is not justified to consider
a single failure mode for the probabilistic analysis. The question now is how to handle
such a case: if the failure of one element represents the failure of the plate, e.g., brittle
failure, then the reliability of each element is to be computed and the total reliability of
the plate is computed as the product of these individual reliabilities. But by doing this,
the more elements in the mesh, the plate becomes less reliable, as shown in Fig. 6.27 for
the safety index, Fig. 6.28 for the reliability and Fig. 6.29 for the probability of failure.
It is shown in Fig. 6.27 and Fig. 6.28 that lower safety index and reliability are obtained
for the 256 element mesh than for the 64 element mesh. In Fig. 6.29 higher probability
of failure is obtained for the 256 element mesh than for the 64 element mesh.

To overcome this difficulty, the size of the element is introduced into the element
strength as described in section 3.6. The results are shown in Fig. 6.30 for the safety
index, Fig. 6.31 for the reliability and Fig. 6.32 for the probability of failure. It is seen

that the same results are obtained regardless of the mesh size. The small difference be-
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tween the two meshes is due to the fact that the fine mesh produces higher stresses than
the coarse one. A comparison between different meshes with and without size effect is
shown in Fig. 6.33 for the safety index, Fig. 6.34 for the reliability and Fig. 6.35 for the
probability of failure. It is seen that by including the size of element in the probabilistic
model, reasonable values for the safety index, the reliability and the probability of failure
are obtained and they are independent of the number of elements in the domain.

A comparison is also made for the safety index which includes different meshes, all
elements with and without size effect, and critical modes. The result is shown in Fig.
6.36. It shows that when the size of the element is included in the probabilistic mode,
the values of § obtained by size effect are independent of the number of elements in the
mesh. They are also close to the one obtained when critical modes are considered only.
This result is good because it can be used for problems where the critical or failure

modes are not clear.

6.5 Conclusions

Results have shown the sensitivity of the response (deflection) to the variation in the
design parameters. For example, in Fig. 6.5 a 10% variation in each of the design vari-
ables produces more than 13% variation in the central deflection. In fact the linear
analysis produces more variation than the nonlinear one. For this reason the standard
deviation of the deflection for linear analysis is much higher than for the nonlinear one

in Fig. 6.11.
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Results have also shown that the variation in the strength produces higher proba-
bility of failure than the variation in the load (Fig. 6.10 and Fig. 6.16). Therefore, in a
certain design it is more efficient to control the strength than control the load.

It is noticed that the period for the nonlinear analysis is less than that for the linear
one. This happens because the nonlinear analysis assumes a stiffer plate. However,
when computing the progressive probability of failure for a short period of time the lin-
ear analysis has produced higher values than the nonlinear one (Fig. 6.6 and Fig. 6.7).
On the other hand, if the analysis is performed for longer periods of time, the nonlinear
analysis will produce greater probability of failure than the linear one.

In Fig. 6.20 some of the bending stress values are close to zero away from the cor-
ners of the plate and high at the corners. This is because the two simply supported sides
at each corner make the corner act as a fixed end, which produces high bending stress
at each corner and causes a change in curvature of the vertical displacement as shown
in Fig. 6.4. The points where the curvature changes sign are called inflection points that

correspond to zero moment and consequently zero bending stresses.
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Table 6.1 Design variables for laminated composite plate

Variable Mean standard CoefTicient of
deviation variation ¢

Ey (psi) 7.8 E+06 7.8 E4+05 0.10

Ex (psi) 2.6 E+06 2.6 E+05 0.10

Glz= 613=st (pSi) 1.3 E+06 1.3 E+05 010

Vi .25 0.025 0.10

0, +45 4.5 0.10

0. - 45 4.5 0.10

P (psi) 0.13t0 1.3 0.013 to 0.13 0.10
0.13t0 1.3 0.026 to 0.26 0.20

R (in) 0.8,1.0, 1.5 0.08, 0.1,0.15 0.10
0.8, 1.0, 1.5 0.16, 0.2,0.30 0.20

R (psi) 7.5E3 to 22.5E3 7.5E2 to 22.5E2 0.10

h; (in) 0.01 -
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FIg. 6.1 Geometry of the undeformed and deformed xz plane
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Fig. 6.6 Safety index with load for linear and nonlinear analyses,
R =1.5" and 6 =0.1
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Fig. 6.7 Probability of failure with load for linear and nonlinear
analyses (R=1.5" and 6 =0.1)
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Fig. 6.8 Safety index with load for different values of R and nonlinear
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Fig. 6.11 Mean and standard deviation of W with time for linear and
nonlinear analyses, 8 =0.1 and load factor of 25
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Fig. 6.12 Safety index with time for linear and nonlinear analysis
6=0.1, R=1.5 in and load factor of 25
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Fig. 6.13 Progressive probability of failure with time for linear and
nonlinear analyses, 6=0.1, R=1.5 in. and load factor of 25

RELIABILITY OF LAMINATED COMPOSITE PLATES 148



10.0

8.0

6.0

\

4.0

\

2.0

) . 1 1

A
)
]

\

0.0
0.0

Fig

RELIABILITY

.5 2.0 2.5

TIME (sec)

3.0

. 6.14 Safety index with time for different values of R and

nonlinear analysis, §=0.1 and load factor of 25

OF LAMINATED COMPOSITE PLATES

149



N s
e 1] e |
] .

L 1 L L : |-

0.5 1.0 1.5 2.0 2.5 3.0

TIME (sec)

Fig. 6.15 Progressive probability of failure with time for different values
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Fig. 6.17 Safety index with load for different strength distributions,
R=1.5 and § =0.1

RELIABILITY OF LAMINATED COMPOSITE PLATES 152



1.00y @ .4 @ 0 - -
—o6— Normal ]
—&— Lognormal
L —o— Welbull
0-99 \_________________
-l
o 0.98 \
0.96
0.95 . — — 4 . k
0.0 10.0 20.0 30.0 40.0 50.0

LOAD FACTOR

Fig. 6.18 Reliability with load for different strength distributions,
R=1.5 in and 3 =0.1
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Fig. 6.21 Compressive stress contours over the plate due to a 1.95 psi uniform
load or 75 load factor and linear analysis (256 elements mesh)
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Fig. 6.24 Safety index with strength based on the maximum compressive
stress at the center of the plate for different meshes

RELIABILITY OF LAMINATED COMPOSITE PLATES 159



RL

1 . & & e =
3 / -
/
0.95 j
I | 1
0.9 C[ f —oc— 64 elm. mesh
[ // _—Cl— 256 elm. mesh |
0.85 j
I | -
0.8 f
i 4 .
0.75 : . : —
5.0 10° 1.0 104 1.5 104 2.0 104 2.5 104

STRENGTH (psi)

Fig. 6.25 Reliability with strength based on the maximum compressive
stress at the center of the plate for different meshes
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Fig. 6.26 Probability of failure with strength based on the maximum
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Fig. 6.27 Safety index with strength based on the maximum compressive
stress for different meshes (no size effect included)
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stress for different meshes (no size effect included)
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Fig. 6.30 Safety index with strength based on the maximum compressive
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Fig. 6.32 probability of failure with strength based on the maximum
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Fig. 6.34 Reliability with strength based on the maximum compressive
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Chapter VII

SUMMARY AND CONCLUSIONS

7.1 Introduction

In this chapter the efficiency as well as the accuracy of the developed technique will
be discussed. A comparison with a numerical technique that uses FOSM utilizing nu-
merical differentiations will be made as well as comparison with the Monte Carlo simu-
lation technique. The comparison will be made in terms of the safety index obtained by
each technique. The extension of the commercial finite element code ABAQUS to allow
for probabilistic analysis will be made also.

A summary of the results obtained in each chapter will be presented. The use of
probabilistic analysis to improve the structural performance will be explained too.
Recommendations for future works will be stated and the shortcomings of the developed

technique will be discussed also.
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7.2 Efficiency and Accuracy of the Developed Technique

In this section an example is chosen from Ang and Tang [9]. The solution is ob-
tained using different methods, the developed technique (RSM), a computer algorithm
that uses the FOSM utilizing numerical differentiation, developed by Dr. Thangjitham
and his group [10], which is available on the main frame system of Virginia Tech, and
the Monte Carlo simulation technique. The Monte Carlo technique is used when un-
correlated variables are considered. The safety index f is obtained using the three
methods and a comparison is shown in Table 7.1.

The results presented in Table 7.1 show a good agreement between the developed
technique and the other techniques. This adds more evidence to the accuracy of the
developed technique, with a similar accuracy being obtained in chapter IV.

To add more evidence to the efficiency of the developed technique, an example is
solved using ABAQUS where the reliability analysis is required. The example is taken
from Heller et al. [75]). It is a rocket motor with orthotropic shell under point load,
material properties as well as loadings are assumed random variables. The stress analy-
sis is performed using ABAQUS for three dimensional analysis. To make ABAQUS
handle probabilistic analysis, a design matrix is generated based on six random variables
and transformed in terms of non-normalized variables. The order of the matrix is 45x6.
Then each row in the transformed matrix is used as a set of input data for ABAQUS.
The algorithm described in section 2 of chapter V is used to obtain the safety index and
the reliability of the motor as a function of the applied load. Results are shown in Fig.
7.1 and Fig. 7.2 for the safety index and the reliability of the motor, respectively. It is
important to mention here that without the developed technique such results are im-

possible to obtain. This proves the efficiency of the developed technique.
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7.3 Summary of Results and Conclusions

The use of RSM in conjunction with the FOSM reliability method produced an ef-
ficient reliability technique. It can be used for complicated structures where stress
analysis is performed using numerical techniques such as the finite element method and
no explicit solutions are available, because it uses an available deterministic finite ele-
ment code as a subroutine. This will cause the extension of most available finite element
codes (source codes or executions codes) to allow for probabilistic analysis by adding
uncertainty to any design variable. It handles variables with normally as well as non-
normally distributed probability density functions. Correlated as well as uncorrelated
variables can also be handled using this technique.

The use of a sensitivity analysis scheme that has been developed was proven to be
efficient. It can save tremendously in terms of computation time with a power of 2 for
each variable that can be excluded from the probabilistic model. It takes the gradient
of the performance function and directs the analysis towards the failure region. This
analysis becomes very useful for cases where large numbers of design variables are in-
cluded in the stress analysis. It is also very useful in cases where the user is having dif-
ficulty determining if a variable needs to be treated as random or not.

The sensitivity analysis can be useful in a design problem or in increasing the reli-
ability of a certain structure. This can be done by looking at the results of sensitivity
analysis and determining the variables with the lowest PRF value. Then by changing
these variables the reliability of the structure can be improved.

It was shown in chapter III that the 2nd order surface, used to approximate the
performance function, is the 2nd order Taylor’s series expansion of this function around

the mean value of the design variables. But the design variables used in the RSM are
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normalized with respect to the mean and the standard deviation of each variable; there-
fore, the mean value and the standard deviation of each design variable in the RSM are
0 and 1, respectively. The main advantage of this normalization is the linear system that
is produced for the calculation of the coefficients of the second order surface. It will
contain a homogenous matrix and no ill conditioning will be associated with this matrix.

In chapter IV, the service life of solid propellant rocket motors subjected to thermal
stresses was predicted. Design variables as well as temperature parameters were treated
as random variables. Correlated variables with different probability density functions
were considered as well. Results have shown that the service life can be under or over
estimated at the same probability of failure level when variables with different density
functions are considered. This shows the importance of using the real probability den-
sity function for each variable when it is possible.

Since the strength and the modulus of the propellant are both time and temperature
dependent, it was noticed that the assumption of correlation between them increases the
service life of the motor. It was noticed, also, that when the correlation coefficient in-
creases, the service life increases as well for the same value of the probability of failure.
This example was solved analytically using the FOSM. When tested using the developed
technique, results have shown an excellent agreement.

In chapter V, the developed technique was used to study the reliability of rocket
motors under mechanical loadings. Stress analysis for such a case was performed using
finite element analysis, program MCYL1 developed by Heller and Lin [65]. It was ex-
tended in this study to allow for probabilistic analysis under the name ROCKT3. All
design variables are assumed random with correlation among some of them. The use
of the sensitivity analysis scheme that has been developed in this study was seen to be
powerful in reducing the number of computations and in showing the significant vari-

ables in the design. For example, the same reliability value was obtained when 11 and
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6 random variables were considered, which reduced the computation by a factor of 6.
It was also shown that the assumption of correlation between strength and modulus of
the propellant layer increases the reliability of the motor. Moreover, results have shown
that the increase in the strength variation increases the probability of failure much more
than if the same increase in variation is applied to the load.

Experiments were performed to determine the critical region on the motor where
failure might occur. It was found that there are two failure regions, one at the bore and
the other at the interface between propellant and case. Results have shown, however,
that the failure at the bore may occur before the failure at the interface. This was ob-
served for well designed motors, i.e., no cracks in the propellant before testing. On the
other hand, if cracks do exist, especially at the interface, failure might occur at this lo-
cation due to stress concentration.

An application of the size effect technique that has been developed in chapter III
was shown in chapter VI. In this chapter the developed technique was applied to obtain
the reliability of a laminated composite plate under static and dynamic loadings. Linear
as well as nonlinear analysis were considered to allow for large deformations. Results
have shown that when the size of each element in the mesh is included in the probabi-
listic model, the same reliability value is obtained regardless of the mesh size. This type
of analysis is very helpful for cases where the failure region is unidentified and stress
analysis must be performed at every point. Single as well as multi-failure modes were
considered and results have shown that a probabilistic analysis based on a single failure
mode produces higher reliability value than a multi-failure mode.

Results have also shown that the variation in the strength affects the reliability
much more than the variation in the load. Therefore, in such design it is more significant
to control the strength than the load. This result was observed for the motor in chapter

V as well.
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7.4 Recommendations for Future Work

An efficient technique for structural reliability was developed for problems where
explicit or exact solutions are not available, analysis is performed using finite element
codes, large numbers of design variables are involved, correlated normal as well as non-
normal random variables are included and failure regions are unknown. The shortcom-
ings of this technique, however, can be used for a future investigation of this study; these

are:

1. When correlated variables are considered, the user must be careful in matching the
standard deviation for each variable with its eigenvalue. Therefore, the technique
should be extended to overcome this difficulty.

2. When multi-failure modes are considered, it is hard to reevaluate the performance
function because different design points are produced from each failure mode.
Therefore, the solution might not be accurate for large values of f.

3. This study was developed for reliability assessment of structures and it needs to be

extended to handle design problems where a target reliability is required.
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Table 7.1 Comparison between different methods
This example is taken from Ang and Tang [9], example 6.11.
The G function is given as:

C po+ Ap
G—R—NH_eO Hlog 70

The mean, coefficient of variation and standard deviation for each variable are given as
follows:

variable mean coefl. of variation standard deviation
R 2.5,5.0,7.5 0.0 0.0
N 1.000 0.200 0.200
C. 0.396 0.25 0.099
& 1.190 0.150 0.1785
H 168.0 0.050 8.400
Do 3.720 0.050 0.186
Ap 0.500 0.200 0.100
Case 1, R = 2.5
method
MC 1.2107
RSM 1.1326
Thangjitham 1.1214
Case 2, R = 5.0:
method
MC 3.4136
RSM 3.3420
Thangjitham 3.3440
Case 3, R = 7.5:
method
MC 4.8916
RSM 4.8400

Thangjitham 4.8230
Case 4, R = 2.5; 65y=0.1 and correlated variables; py, 4, = 0.4
method

RSM 1.1875
Thangjitham 1.1900
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Fig. 7.1 Safety index with load for a motor with orthotropic case
(analysis is performed using ABAQUS)
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Fig. 7.2 Reliability with load for a motor with orthotropic case
(analysis is performed using ABAQUS)
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