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(ABSTRACT)

Taylor vortex flow is one of the basic problems of nonlinear hydro-
dynamic stability. In contrast with the wide region of wavenumber predicted
by the linear theory, experiments show that Taylor vortex flow only appears in
a small region containing the critical wavenumber B.,. This phenomenon is
called wave selection. In this work, several high-order perturbation methods
and a numerical method are established. Both evolution and steady state of
the flow caused by single or several disturbances are studied. The existence of
multiple steady states for disturbances with small wavenumber .'is discovered
and proved. The stable and unstable steady state solutions and some associ-
ated phenomena such as jump phenomenon and hysteresis phenomenon are
found and explained. In the small region, the wavenumbers and initial ampli-
tudes of disturbances determine the wavenumber of the flow. But outside this
region, only the wavenumbers of the disturbances have effect on the wave
selection. These results indicate that unstable solutions play a key role in wave
selection. The side-band stability curve produced by the high-order perturba-
tion methods is accurate at low Taylor numbers but incorrect at relatively
high Taylor numbers. The relation of the unstable solutions and side-band
stability is discussed. Besides, the overshoot and the oscillation phenomena
during evolution are studied in detail. Connections between this work and

experiments are discussed.
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CHAPTER 1
INTRODUCTION

1.1 Problem and Previous Work

The instability of the viscous incompressible flow between two concentric
rotéting cylinders is one of the classic and important problems in the theory of
hydrodynamic stability. In most of the studies of this problem, the outer
cylinder is fixed. At low rotation speeds the fluid forms a coaxial laminar flow
called circular Couette flow. When the rotation speed exceeds a certain critical
value, the Couette flow becomes unstable and a new kind of motion occurs.
The new flow, now called (axisymmetric) Taylor vortex flow, consists of
toroidal vortices spaced equally along the axis of the cylinders as shown in Fig.
1.1. Any two adjacent vortices have opposite directions of circulation. Each
vortex is referred to as a cell. The length of two cells, X, is defined as the
wavelength of the flow. The wavenumber of the flow, 3, is defined as g=2x /.
The parameter characterizing the stability of the flow is the Taylor number,
T, which is proportional to the square of the rotation speed, or equivalently
the Reynolds number R, . The definitions of these two parameters will be given
in Sect. 2.1. The critical Taylor number was measured and calculated based
on the linear theory by G. I. Taylor in 1921-1923. The agreement between the
experiment and the theory was excellent. Since Taylor’'s work, the flow
between two concentric cylinders has been studied widely and deeply. As the
Taylor number is increased beyond a second critical value, Taylor vortex flow
becomes unstable. Traveling azimuthal waves with a definite wave velocity

and wavenumber are superimposed on the Taylor vortex flow such that the
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boundaries between adjacent cells become wavy. Hence, the flow is called the
wavy vortex flow. Experiments show that as the Taylor number is further
increased the flow experiences subsequent transitions from wavy vortex flow to

quasi-periodic flow, and finally to turbulence (chaos).

A new and comprehensive review of the studies on the instabilities and
transition in the flow between concentric rotating cylinders was completed by

DiPrima and Swinney [1], in which 122 papers are cited.

Our work is restricted to the transition from Couette flow (basic flow) to
Taylor vortex flow (secondary flow) when the outer cylinder is at rest and the
two cylinders are assumed to be infinitely long. Our work is concerned with
the nonlinear hydrodynamic stability. Therefore, we only briefly describe some
previous nonlinear studies on the transition from Couette flow to Taylor vor-
tex flow. These studies can be classified into three categories: experimental

work, numerical work and theoretical work.

The experiments conducted by Coles [2]|, Snyder (3], Burkhalter and Kos-
chmieder [4],[5] are frequently mentioned in literature. Coles showed that the
wavenumber of Taylor vortex flow is not unique for a given Taylor number.
Snyder showed that the wavenumber obtained from the experiments depends
on the initial conditions. He concluded that any method which neglects the
time-dependent behavior of the problem can not select the final state from the
manifold of solutions of the nonlinear problem. Figure 1.2 shows the results
obtained by Burkhalter and Koschmieder. The ratio of the inner cylinder to
the outer cylinder is equal to 0.727. The dimensionless wavelength, X, is
defined as X/d where d is the gap of the cylinders. In this experiment, three

methods are employed to obtain Taylor vortex flow: ’sudden start’, ’quasi-

steady variation’ and ’slow filling’. In sudden start method, the inner cylinder



is brought from rest to some Taylor number almost instantaneously (less than
one second) and the flow changes from Couette flow to Taylor vortex flow in
seconds. In the quasi-steady method, the Taylor number is changed very
slowly as smooth as possible. In the filling method, the gap is slowly filled with
fluid from the bottom while the inner cylinder is rotating at some constant
supercritical angular velocity. In Fig. 1.2., we can see that the quasi-steady
variation method gives the wavelength almost equal to the critical wavelength.
The sudden start method results in shorter wavelengths while the slow filling
method produces longer wavelengths. The curve separating the wavelength-
Taylor number plane (\- T plane) into stable and unstable regions is obtained
from the linear stability theory. According to the linear theory, an axisym-
metric disturbance with wavelength X\ dies out in the stable region or grows
and thus develops into Taylor vortex flow in the unstable region. The lowest
Taylor number on the curve is called the critical Taylor number, T.,, and the
corresponding wavelength (or wavenumber) is the critical wavelength, X, (or
critical wavenumber, 8.,). Though the linear theory predicts T,, and X\, (or -
B..) quite successfully, it has at least two drawbacks. First, at high Taylor
numbers, the linear theory indicates that the dimensionless wavelength X could
be very big or very small (note that in Fig. 1.2 X is of log scale). However, all
the forementioned experiments showed that the wavelengths appear in a nar-
row band consisting of the critical wavenumber in spite of the methods used to
create the Taylor vortex flow. Hence, the values of X are close to 2, which
means the cross section of cells is almost square. The second drawback result-
ing from the linear theory is that amplitudes of the flow can not be evaluated.
Some experimental work is concerned with the end effects which become

important in short cylinders. Benjamin and Mullin [6],[7],[8] discovered in the



short cylinder experiments the hysteresis phenomenon which indicates the mul-

tiplicity of the flow. We shall discuss this phenomenon in Sect. 6.2.

Some numerical work has been done. Most of the early studies were
focused on the steady state of the flow. Recently, Neitzel [9] performed compu-
tations of time-dependent Taylor vortex flow in finite length-cylinders. The
objective of his work was to compare the results of the computation with the
experimental results by Burkhalter and Koschmieder. The wvalues of the
wavelength determined numerically are in good agreement with the
wavelengths measured for 1<7/T,, <16. Very recently, computations of the
steady state have been done by Meyer-Spasche and Keller [10]. Unstable

steady state solutions were found in some cases.

At present the mathematical tool available for the analytical study of the
nonlinear hydrodynamic stability is the perturbation method where an expan-
sion in the amplitude is used. In 1944, based on a heuristic argument, Landau
[11] proposed an amplitude equation now referred to as the Landau equation

whose modified and generalized form is

-:T-%= agta A2 +aAt + a4 + - - - (1.1)

where A is the time-dependent amplitude of a disturbance and ay, a,, as, ...
are Landau constants. Note that a, is the growth rate of the disturbance
predicted by the linear theory. In 1958, Stuart [12] derived the Landau equa-
tion from the energy principle for Poiseuille flow between parallel planes and
for the flow between rotating cylinders. Since Stuart’s work, the Landau equa-
tion has been widely accepted and applied to problems of nonlinear hydro-

dynamic stability. For Taylor vortex flow, Stuart and Watson [13],[14] pro-

posed a formal asymptotic expansion (third order) which was later used by



Davey [15],[16] to compute the amplitude and the torque on the inner cylinder
for the Taylor numbers slightly greater than the critical Taylor number.
Davey’s calculation of the torque was in good agreement with the experimental

measurements.

We have mentioned that in experiments Taylor vortices always show up
in 2 much narrower region (see Fig. 1.2) than that predicted by the linear
theory. One explanation for such discrepancy is that Taylor vortices are
unstable to a side band of axisymmetric disturbances. Hence, such instability
of secondary flow is sometimes called side-band instability or Benjamin-Feir
instability. To investigate the side-band stability, Echkaus [17], Kogelman
and DiPrima [18] developed an approach based on the Landau equation and
the concept of wave interaction. Their asymptotic expansions in the amplitude
were carried out to the third order. They found that inside the unstable region
predicted by the linear theory, there is a subregion where stable Taylor vortex
flow can exist. The boundary of this subregion is called the side-band stability
curve which is the dashed line shown in Fig. 1.2. However, as compared with
the experiment results, the region encompassed by this third order side-band
stability curve seems too wide at large Taylor numbers. Nakaya [18] designed
a method to compute the side-band stability curve up to the fifth order. The
subregion he obtained is somewhat narrower than that from the third order
approximation. But his result is subject to doubt as we shall discuss in Chap.
8. Hence, a natural question arises: whether or not the side-band stability

curve will become narrower if a higher order asymptotic expansion is used.

The asymptotic expansions in amplitude used by Stuart, Waston and oth-

ers suffer some shortcomings such that the Landau constants as, a3, a4, - - - are

not uniquely determined and their results are restricted to the third or fifth



order. Herbert [19],(20] improved the expansion by introducing a new
definition of amplitude based on reasonable normalization. In Herbert’s pro-
cedures, all high order terms in the expansion are uniquely determined. Hence,

the calculation can be carried out to arbitrarily high order.

1.2 Objectives

The initial motivation of our work was to apply high order asymptotic

expansions developed by Herbert to study

(1) the evolution and the steady state of the amplitude of Taylor vortex

flow;

(2) wave selection, more precisely, the effect of the high order terms of the

asymptotic expansions on the side-band stability curve.

In the course of this research, we realized the limitations of the perturba-
tion method which described the evolution of a single disturbance (single-
mode). Therefore, a new perturbation method called the two-mode method
and a (pure) numerical method are developed. Consequently, we use two
approaches in our study: perturbation methods and numerical method. These
two approaches support, supplement and sometimes correct each other. Good
and reliable results are thus obtained. More importantly, some new phenomena
such as jump phenomenon and hysteresis phenomenon are discovered and

explained.



CHAPTER 2

GOVERNING EQUATIONS AND CONCEPTS OF STABILITY

2.1 Governing Equations

It is natural to employ cylindrical polar coordinates (r,8,z) to study circu-
lar Couette flow and axisymmetric Taylor vortex flow. Note' that both flows
are independent of the azimuthal angle 6. The velocity components V,,V,,V,
and the pressure P satisfy the reduced Navier-Stokes equations for viscous

incompressible fluid

av, av, V., V2 _1sp PV, LaV. &V, V.
V, V, - = - -
at + or + Y 9z r p Or + U or? + or + 9z2 r2)
(2.1.1)
aV' 3V, aV‘ V,. V‘ 82V‘ 1 aV, 82V, V,
¢t 5r T Vi oz + r = ar? + T or 922 7) (2.1.2)
av, av, dV, _18p &V, 10V, &V,
3t + V, ar + I’, _az —TE V( ER + - a7 + 922 ) (2.1.3)

and the equation of continuity

av, V., av,

. T T T =0 (2.1.4)
with the boundary conditions
V. =V, =0 Ve=r 00, at r =r,
V., =V, =0 Vei=roly, at r =ry (2.1.5)

where r, and r, are the inner and outer radii, respectively; 0, and Q, are the
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angular velocities of the inner and outer cylinders, respectively; p is the den-

sity; v is the kinematic viscosity; t is the time.

The simplest solution (basic flow) of (2.1.1)-(2.1.5) is Couette flow

V,,,(r)=Ar +g
V%
P, =P, (r)=/[p - dr + const. (2.1.8)
2 Q
B-n 21-p ™ 2
w = = TN v e
here A Q’l—nQ’B erll—ﬂz’n r2,p o

Taylor vortex flow (secondary flow) is also a solution of (2.1.1)-(2.1.5),
which results from the unstable disturbed Couette flow. Thus, its velocity

components and pressure can be expressed as

Vi (r,z,t) 0 U(r,z,t) .
Vio(r,z,t)} ={Vyy(r)} + {V(r,2,t) : (2.1.7)
V.(r,z,t) 0 W(r,z,t)

P =P, +P

where U, V, W are the axisymmetric disturbance velocity components and P

is the disturbance pressure.

We substitute (2.1.7) into (2.1.1)}-(2.1.5), reduce the three momentum
equations to two equations by eliminating P, and nondimensionalize the

resulting equations and the boundary conditions. Finally, we obtain

PV 9V 1 A% 1 uv
. L2 _ _— Vv w=—_ _— 2.1.8
bomv + ¢2  or V=gastPv + 8§)+2A T+25 )
DD‘DD‘U+DD‘(232U— aU)+ 3% (82U_ aU)_ 0T Q v
35'2 or agz a§2 or a§2
1, 0° AU d aw T 3% ..
— o LACAN W o+ W v? (2.1.9
3475 57 (UPY + W52) = 5-D(UDW + WSZ)] + o2 V2 (2.1.9)



er L AW
DU + ? =0 (2.1.10)

with boundary conditions at z=0 (inner cylinder) and z=1 (outer cylinder)

V=U=D'U=0 (2.1.11)
where
Q,-Q -
=ry—-r ’7‘—‘1—II=IT1l 6=1 7L
1 n LY
d2
t=__u_r 2 =§d r =7'1+2'd =Tl(1+z6) (05351)
8 _19 8 _19 9 _v.o
dr d 9z 9z d d¢ at 42 or
_ Q Q - 20
14 1 174 1 1
= e c— V= T e e ai— 0 () e— e—
V=T2asY nf, v W=Z3a7" P=rzsas?
' A u-n Vie 1 B Yz 2+ 26
A=t = Q=0(z)=—L=—"(4 + =) =1-
Ol 1- "2 ( rQl Ql( r2) ﬂ(1+ﬂ) (1+15)2
o . a2 )
T bi=lg + 157
and the Taylor number
2 2752
1-nriQd
T =2(1-£ 2.1.12
( q2)1+7) e ( )

Note that r,¢,r , U,V ,W and p are dimensionless variables, and

Q =Q(z) represents the dimensionless basic flow.
We define the Reynolds number as

Q.d
R, =1 (2.1.13)

v

Hence, the relation between the Taylor number and the Reynolds number

is

T —o1- L)1 ppe (2.1.14)
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We shall only study the case when the outer cylinder is fixed while the

inner cylinder is rotating with Q,, hence

Q,=0 0 A =g, B —q,—t
= = =1 — =
2 B v 11_"2 ll—nz
2
' - 2+26
A = n Q =] - z
1- n? (=) (1 +n) (1 + z5)?
2 Q2d
T=—-2—'7—? I
1-1n A
r.,d _
R =—1-1 7 =Al-1)p- (2.1.15)
v 1+ 19

Since z=¢d, the dimensional wavenumber B and wavelength X\ are

expl'essed as
-~ 3
d 3 ( o )

where g and A\ are dimensionless wavenumber and wavelength, respectively. If

B=m, then A\=2d, that is, the cross sections of cells are squares.
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2.2 Linear Stability

The fact that Taylor vortex flow is axisymmetric and periodic in the axial
direction suggests that small axisymmetric disturbances destabilize Couette
flow. Furthermore, these axisymmetric disturbances can be decomposed into
periodic functions of : (modes). Following the standard procedure of linear
stability analysis, we consider the infinitesimal axisymmetric disturbances
which are so small that all the nonlinear terms in (2.1.8)-(2.1.11) can be

neglected. Thus, we obtain the following linearized disturbance equations

o’V oV
V4t —- —-U= 2.2.
DDV + S = Gy = U =0 (2.2.1)
“nne oo 02U 8U, 8% U QU PV
. ow
with boundary conditions at z =0 and z =1
V=U=D'U=0 (2.2.4)

We apply the normal mode method, in which modes are handled
separately because each of them satisfies (2.2.1)-(2.2.4). The solution is

assumed as

{58 IZZ:;} = {[QZL ;}e (807 =409) (2.2.5)

where a, is called the linear temporal growth rate and g is the dimensionless
wavenumber. Couette flow is considered unstable as long as one of the axisym-

metric periodic disturbances (modes) has a positive aq.

Substituting (2.2.5) into (2.2.1)-(2.2.4) leads to
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[DD*- (B2 + ag)]Vio= Uio =0 (2.2.6)
[DD*DD* - (28% + ao)DD "+ B*B% + ao)|Ujo + 2T QR B2V, =0 (2.2.7)
D*Uyp- ifWy, =0 (2.2.8)

with boundary conditions at z=0 and z=1
Ulo(Z) = Vlo(Z) =D ‘ Ulo(Z) =0 (2.2.9)

which are a set of linear ordinary differential equations with independent vari-
able z. The independent variables r and ¢ have been replaced by the parame-

ters, ao and 3, respectively.

There are three parameters a,, #, and T in (2.2.6}(2.2.9). Two basic

problems considered in the linear stability are

(1) find the neutral curve, that is, the relation between g and T when
aq =0;

(2) determine whether Couette flow is stable or unstable for given 8 and
T, that is, find a,.

Problem (2) is obviously an eigenvalue problem. Problem (1) can also be
treated as an eigenvalue problem since the neutral curve is obtained pointwise
by solving for T at different given values of 3. Nowadays, by use of comput-

ers, both problems are solved very quickly and accurately.

Since we are interested in the nonlinear theory, we shall not discuss the
details of the linear theory, which can be found in the book by Chandrasekhar
[22] or the book by Drazin & Reid [23]. Instead, we present the numerical
technique for solving the boundary value problem of ordinary differential equa-
tions. The technique involves the spectral-collocation method (see Meirovitch

[24], Gottlieb & Orszag [25]), which will also be used in the computation for
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the nonlinear theory.

The disturbance velocity components are expressed as

JJ2

V10(3)=§”:'¢i(3)

Ulz) = Jﬁﬂ; ¢;(z) (2.2.10)
J =i
where ¢ ;(z) is the Chebyshev polynomial of order j-1; u; and v; are constant
coefficients; JJ is the number of the collocation points in (0, 1); J72 =JJ+2 and
JI4 =JJ+4.
We substitute (2.2.10) into (2.2.6)-(2.2.9) and then apply the operator
fol 6(z- z;).( ) dz at the collocation points z; where §(z- z;) is the Dirac delta
function. Thus, at the i-th collocation point, we obtain

JJ2 JJ4

2”:‘ [DD* - (B%+a )¢ ;(z) - 2""¢ j(z:)=0 (2.2.11)

.Eu" [DD 'DD ‘- (2ﬂ2+ao)DD ‘+ ﬂ2(ﬂ2+ aO)]¢J (3',‘ )+ 2T (1"' )ﬂzgfv,-«ﬁj(z,- )=0
i=t 7=

(2.2.12)
with boundary conditions
JJ2 JJ4 JJ 4 .
Y v;6;(0)=0 Y u;9;(0)=0 YD u;4;(0)=0
i= = =
JJ2 JJ4 JJ4 .
Y6, (1)=0 Yuj¢,(1)=0 YD *u;¢,(1)=0 (2.2.13)
7=l 7=l 5=l

For convenience, we define
L=DD"-p* P=DD'DD"*-28°DD"* + p* Q =20 °T

R=- DD.+ ﬂ2 Yl=[vl) MRS £ 0700 VR 1“]./4]T (2'2‘14)
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Then Egs. (2.2.11)-(2.2.13) can be written in matrix form. For the case

that a, is treated as an eigenvalue, we have

(M+ aoN)Y,=0

where the matrices are (2+J7+6) by (2+/7+6) and expressed as

Q¢’l(3'1)

_Q $1(zss)

@ 142(0)
¢ 1s2(1)
Loyofz)

L iafzs)
0
0
0
0

Q@ ®ss2(z))

Q dusalzss)

0
0

- s1a(z1)

~dsozss)

o O O O O

o

O © O O O -

Re¢\(z)

R‘ﬂl('-’u)

0
0

- ¢ ri(z))

- & rra(zss)
¢ 774(0)
¢ 774(1)

D * ¢ 174(0)

D" é5.(1)

P& r4(zy)

P ¢JJL(I.U)J

o

cC O Cc O -

0
R ¢ r4(zy)

R ¢J.r-s(2u)_

(2.2.15)

(2.2.17)
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Since the Chebyshev polynomials are known functions, the matrices M
and N can be determined. The boundary value problem of ordinary differential
equations is thus reduced to a set of algebraic equations. After solving for a,
and Y,, we can evaluate the eigenfunctions «,, and v,y at any value of z by use
of (2.2.10). Among all the eigenvalues obtained, we are only interested in the
principal eigenvalue (the largest one) which governs the stability. Note that
Eq. (2.2.15) will give 6 abnormal eigenvalues which should not be taken into
account. The matrix N is singular since the eigenvalue ¢, does not show up in

6 boundary conditions. Equation (2.2.15) can be changed to

(M- 'N+ aLI)Y1=o (2.2.18)
0
which implies

det (M- lN+aLI)=o (2.2.19)
0

Obviously, if aL=o, then det (M-!N)—det(M-")det(N)=0. That is, there
0

appear 6 extremely large but spurious eigenvalues in the eigenvalue spectrum.
An alternative method is designed to search the principal eigenvalue and the
associated eigenfunction only and thus save a lot of computation time. For
brevity, we do not present this method here. For the case that T is treated as

an eigenvalue, the problem can be cast in a similar way.

Figure 2.1 is an example of the neutral curve for the wide gap case n=0.5.
Eight collocation points (JJ=8) are used. Figure 2.2 is an example of the varia-
tion of the linear growth rate a, with 8 at T=1715 for the small gap case
n=0.95238 (i.e., §=0.05 ). T is slightly greater than T, =1695. In this case, the

curve a, vs. B can be well approximated by a parabola which will be useful in
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Sect. 8.3. where the equation of the parabola will be given.

The use of the Chebyshev polynomials and an appropriate choice of the
collocation points guarantee high accuracy of the results. Let us take the com-
putation of the principal eigenvalue at #=3.0 and T=4500 as an example. The

variation of a, with the number of collocation points JJ is listed as follows

JI=8 4 ¢="5.313056
JJI=10 @ ¢==5.312527
JI=16 a¢=>5.312501

The relative error of a, is about 0.01% for JJ=8 and 0.0047% for J/=10 if

we regard a, for J/=16 as an 'exact’ value.
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2.3 Nonlinear Stability and Fourier Analysis

In the nonlinear stability, we study the disturbances of finite size. All the
nonlinear terms are taken into account. Because Taylor vortex flow is periodic
in the ¢ direction, it is natural to represent the disturbances by the Fourier

series in ¢

z,0,T 00 Un(z,r ,
[% :§,f§]= SRR ,rﬁ]e (- in ) (2.3.1)
z 7§)T) A =00 W,, (.’l.' ,1')

Of course, we may use in g in (2.3.1) instead of -in g, which is optional

because U, V, W, are real functions

U, =U_, V, =V_, W, =W_, (2.3.2)

Hence we only need to solve U,, V,, W, for non-negative values of n. We

define the amplitudes as follows

{AQ = Vo(z =0.5,T)

A, =2V, (z=05,7) (n£0) (2.3.3)

where A, is a measure of the distortion of the mean flow (basic flow) and 4,

are measures of the spatial harmonics in ¢. For example, A, =2V (z =0.57).

Substitution of (2.3.1) into (2.1.8)-(2.1.11) leads to

[DD*- n?8- %]v,, - U,=-2—Al,-6- 3 (UuD ' Vaiy = (n=p)B(iW,) Vo,
p=-~00

(2.3.4)

(DD*DD* - (2n?8% + %)DD'+ n?8%(n6? + -(%—)}U,, +2TQ n 2%V,
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-1 & . T &
=nzﬂz{m”§m[uupu._,, ~ (n=-w)BGW,)U,_,] - m”‘zwv,,v,_,,}
292 o
+'2":Tﬂ'3' E {DUnD (FWo_,) + UnDz("w-—n) - (n-u)B[D (t’W”)(t'W,_,,)
== 00
+ (iW,)D (t‘W.-,.)]} (2.3.5)
D'U, - infW, =0 (2.3.6)
with the boundary conditions at z=0 and z=1
U, =V, =D"U, =0 (2.3.7)

where the independent variable ¢ has been replaced by the dimensionless wave

number 5.

Based on the above Fourier analysis, we shall apply two approaches to

solve the set of nonlinear equations (2.3.4)-(2.3.7):
(1) numerical method;
(2) high-order perturbation methods.

In the linear theory, a small single disturbance (single-mode) with positive
linear growth rate a, is assumed to develop independent of other disturbances.
In the nonlinear theory, due to the nonlinear interaction, a small single distur-
bance with wavenumber g will generate corresponding harmonics with
wavenumber n 8 (n=2,3,...) and distort the mean flow during the evolution of
the flow. More features of the nonlinear theory will be discovered and

explained.



CHAPTER 3

THE HIGH-ORDER
PERTURBATION METHOD FOR SINGLE-MODE

3.1 Formulation for the Evolution of Taylor Vortex Flow

In the single-mode perturbation method, the distortion of the mean flow
and higher harmonics are assumed to be exclusively generated by the funda-
mental through the nonlinear terms. Based on this strong assumption, Herbert

[19],[20] proposed the following amplitude expansion

U- (2 ,1’) . Uum (z )
Ve (z,7)}=31Alr14m Y (2) (- c0<n <o0) (3.1.1)
W,(z,7)) ™= Wm (2)
where
A=A(r) Um=U_pm Vin=V_.um Wan=W_um
and
Vw(z =05)=05
{V,,,,, (z =0.5)=0 (n #1 and m $0) (3.1.3)
As compared with the definition of amplitudes in (2.3.3), we have
A, =2V (2 =0.5,7)=2A (r)V o(z =0.5)=A (r)=A (3.1.4)

Obviously, A(r) is the amplitude of the fundamental. In (3.1.1), the lead-
ing term (m=0) in the fundamental is of order A; the leading term in the

second harmonic is of order A% the leading term in the third harmonic is of

- 19 -
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order A3. Those terms with m >0 are the higher order corrections to the har-
monics or the distortion of the mean flow. Therefore A (r) plays the role of a
perturbation parameter. Now the single-mode has more meaning than a small
single disturbance because it also implies that there is only one perturbation
parameter A(r). Later, in the two-mode perturbation method (see Chap. 6),
two parameters, A (r) (the amplitude of the fundamental) and B(r) (the ampli-

tude of the second harmonic) are introduced.

For the time derivatives, we apply the well-known Landau equation

% =a9d4 + 0 A%+ aA% + a3AT+a A%+ - =Yg, AN (3.1.5)

k=0
where a, is indeed the linear growth rate as A —0; a,, a,, - - - are called the
second, third, -:: Landau constants, respectively. Note that these constants

are regarded as constants in the sense that they are not functions of time, but

they are functions of g and T.

Now we introduce the equivalent forms of (3.1.1) and (3.1.5)

U, (z,7) - ) Upm ()
Val(z,7) =2A"(AA )™ A Vam (2) (n >0)
Wo(z,r)) ™7 W (2)
U_n(I,T) w© . R U-nm(z)
Voalz,) b= A" (AA)" {V_im(z) }  (n>0) (3.1.6)
W_u(zr)) ™7 W_pm (z)

%=a0A +a A(AA) + agA(AA P + - - - =§:)Oa,,A(AA ) (3.1.7)

or
LA LA ah) s aad P = Sa(ad )



where A=A.Both A and A are real. If A is associated with ezp (- i 8), then A
is associated with ezp(i8). This is helpful and convenient when we construct
and check the perturbation equations by hand. For example, in (3.1.7), it is
easy to see that all the terms on both sides of the Landau equation are associ-

ated with the same wavenumber 3.

It is not difficult to generate (3.1.1). The procedure can be demonstrated
as follows. We first compute the functions associated with A and its counter-
part A (i.e., Vo and V_y,). Then, due to the quadratic terms, we generate the
functions associated with A2, A4 and their counterparts at higher order (i.e.,
Vo, Vi and V). By use of all known functions, we produce at the third
order the functions associated with A24,4° and their counterparts (i.e.,
VisVaos Vo and V_g). In such a way, we can generate the functions at arbi-

trarily high order. We list some lower order functions as follows

08 B 28 38 48 58 68
. AV
AAVy, AV
A4V, A¥Vg
A24%V T ARAV, AV,
: A4V, A4V, A%V
A3A3Vy, A4V, ABAV A%V

The first column represents the distortion of the mean flow because A* A*

implies zero wave number. The second column means
Vi=AVig+ APAV,, + ABA%V 4+ - - (3.1.8)

When we compare (3.1.8) with (3.1.7), we can see the inherent relation

between the fundamental V, and the corresponding Landau equation.
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Replacing Vv, by -;%— and V,, by a, in (3.1.8), we obtain (3.1.7). This idea will

be used later in the two-mode perturbation method (see Chap. 6) and the

side-band stability (see Chap. 8).

We substitute (3.1.8) and (3.1.7) into the system of nonlinear disturbance
equations (2.3.4)(2.3.7). Then we decompose the system into successive linear
ordinary differential equations according to: (1) same order; (2) same wave
number. As an example of the application of the Landau equation, we show

. . dVv
the term %(AVIO), which is the first term in T_—’-,

d A R
F(AV,O)=aOVm +aA(AA)W o+ a,A(AA PV + - - (3.1.9)

The term a,V,, will show up in the equations of V,, where a, will be
determined. The term a,V,, will be added to the equation of Vv, since a,V is
associated with A (AA) where a; will be solved. The resulting successive linear

perturbation equations are
[DD ‘- (" ﬂ)2 - (n + 2m )60] Vum_ Umu == i(" +2m - 2! )al Vn(m—l)+ Rl
1=l
(3.1.10)

{DD *DD - [2(n B)*+(n +2m )ao)|DD * +(n BY((n B)*+(n +2m )a }U,,,,, +2TQ (1 8 Vam

—- $3(n+2m - 20)[DD "~ (n A& Va(m- 1+ Ro (3.1.11)
{ =

DUy - nW,,, =0 (3.1.12)
with the boundary conditions at z =0 and z=1

Upmn = Vam =D * Upp =0 (3.1.13)
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where
= S M v, (- v)(m - p)
y=0p=0
+§m-ov{M [-vu, (8 +v)(m - v- p)|+M [(n +v)(m - v-p), - V“]}
Rz—ggoN [vie, (n - v)(m - p)]
+f)"'§'j"{N - v, (n +v)(m-v- p)l+N[(n +v)(m - v-p), - ,,”]} (3.1.14)
y=i y=)
and

M [V”’ (" - V)(m - ”)]=2_Al’—5—[UW‘D : V(n—u)(m—n)"' (n - u)ﬁ(iW,,”)V(,,_,)(,,,_,,)]

Nvp, (n-v)m-p)= n2ﬂ2{m+5[v,,,pv(,._,)(,._ uy= (0= V)B(EW ) Un- sy - )]

T
- 1+z 6 Vuu V(n-v)(m-u)}+ —2';1"_(" ﬂ){DUw‘D (’W(n v)(m - y))+ UuuD (’W(n v)(m - Il))
—(n=)BID (W, )iW (a- - g)) + (W 1D (iw(,,_,,(,,,_,,,)]} (3.1.15)

The expressions for the nonlinear terms R, and R, are tedious. As an

example, we show the equations for Uy, Vg, Wy (i.€., n =2,m =0)

1

515 Jwl Vi~ BiW Vi)  (3.1.16)

[DD * - (2B)* - 28]V - Uy =

{DD DD "~ [2(28)+ 2a¢)DD * + (2B)(28)2+ 2a,) }Ugo+ 2T Q (26)2V a0

T
1+1z6

=(28)° { 10DU g - B(iW10)U 1o} - Vme}

+ L 2)[DULD (Wi + VoD W ia) = BID(Waa)iWo) + (W 10D (Wo) |
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(3.1.17)
D’ V- i28Wy=0 (3.1.18)
with the boundary conditions at z=0 and z=1
Ug= V=D " Ugpy=0 (3.1.19)
where
R \(VieV10) =?A-l-,7(UwD *Vie- BiW oV 1) (3.1.20)
Ry(V1V10) =(2ﬂ)2{ﬁ[U10DU10 - B(iW 1)U o - I +T61 VwVw}

+ —-—2; - (2ﬂ){DU,oD(iwm) + U1eDM(iW1o) - BID (iW10)(iW o) + (iWw)D(*'Ww)]}

(3.1.21)

Note that the bold face letter V is used here. The symbol V,, stands for
any one among U,, V5, Wy This symbolic notation will be used later in Sect.

3.3.

We design a program to automatically generate and solve the complicated

and lengthy equations (3.1.10)~(3.1.13) for ’arbitrarily high’ order.

We can also point out some shortcomings of this method. The amplitude
expansion (3.1.1) implies that if the fundamental 4 =0, all the harmonics and
the distortion of the mean flow are automatically equal to zero. We shall see
that is not always true. Another shortcoming is that we can only prescribe
different values of the initial disturbance of the fundamental A (0) in the Lan-
dau equation (3.1.5). Hence, the method is incapable of dealing with the
interaction between different modes with different initial amplitudes. Other

shortcomings will be seen later.
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3.2 Formulation for Steady States of Taylor Vortex Flow

The method we use to directly compute steady states relies on the param-
eter expansion used by Reynolds and Potter [26] to study steady states of the
Poiseuille flow and later by Herbert [27] to study steady states of Taylor vor-

tex flow.

To study steady states, all the time derivatives are dropped from the non-
linear system (2.3.4)-(2.3.7). The amplitude expression is the same as (3.1.1)
except that A (r) is now replaced by the steady state amplitude, A4,, which is
no longer a function of time. Of course, the Landau equation is not used. In
(2.3.4)-(2.3.7), there are two parameters, wavenumber A and the Taylor
number T. The wavenumber appears nonlinearly while the Taylor number T
appears linearly. Hence, it is easier to expand T than B. For a fixed 8, we

expand T as

T=To+ T1A%>+ ToA  + T A+ TAZ+ - =) T A* (3.2.1)
k=0

or equivalently,

00

T=To+ TAcA) + To(A A, P + Ty(A. A, P+ - =), Th(A. A, ) (3.2.2)
k=0
where T, is the Taylor number at the neutral curve; T,, T, --- are the

coefficients to be determined.

We substitute (3.2.1) and the amplitude expression into the nonlinear sys-
tem (2.3.4)-(2.3.7) with the time derivatives dropped. Note that we should
apply (3.2.1) to both sides of the equations. The program designed takes care

of generating and solving the differential equations and evaluating T, T,

Tz,...
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After computing Ty, T,, T, - -, We can obtain A, for given T , or obtain
T for given A, by use of (3.2.1). The advantage of this method is obvious if
we are only interested in steady states. By use of (3.2.1), it is easy to compute
A, for many different values of T at a fixed . In contrast, if we use the
method for evolution to find A,, we can only get a single value of A, for a
group of ay, ay, a5, - - at fixed 8 and T. For many different values of T, we
need to compute many groups of Landau constants.

Success and shortcomings of this method will become more obvious as
compared with the results of the numerical method. For this reason, the

presentation of the results is postponed to Sect. 5.5.
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3.3 Results of the Evolution

Figures 3.1(a) and 3.1(b) describe the evolution of the amplitude A(r)
(indeed, 0.54) at 3=3.3 and T=3675 for the wide gap case n=0.5, where 9th
order is used. In these two figures, we observe that A (7) grows almost exponen-
tially at the beginning, which implies that the linear theory is adequate. With
growth, the nonlinear terms become more and more important and reduce the
growth rate of A until finally a steady state is reached. By comparison of the
figures, we recognize that the change of the initial amplitude of a disturbance
changes only the time to reach the steady state but not the value of the steady
state, A,. This is a typical example of supercritical stability. For different

values of 8 and T, the single-mode method gives figures similar to Fig. 3.1.

Now we turn our attention to the study of nonzero steady states of A.
Figure 3.2 shows the steady states at T=3500 for n=0.5. We get nonzero
steady states of A from g~ (the wavenumber of the left branch at the neutral
curve) to 8+ (the wavenumber at the right branch of the neutral curve). Figure
3.3 shows the steady states at T=6000 for n=0.5. The results of both 9th and
15th orders are given. In this figure, the curves for the steady state do not
cover the whole interval [8-, *]. We have two points 85=2.078 and §*=6.05
with A, =0. Note that g; >g-=1.45. It is easy to understand that A, =0 at g*
because there the linear growth rate is ay=0. However, a, is still positive at
Bs. We try different orders of the perturbation expansions (from 3rd to 15th
order). The value of 8s does not vary with the increase of the order used
though the nonzero amplitude varies with the orders as shown. When we

recall the truncated Landau equation (up to the 3rd order)

%=ao,4 + a,A® (3.3.1)



- 928 -

we can easily obtain the expression for the steady state by setting %=0, that
is

o
Al=- —
a,

For the positive a, at 85, we conclude that the second Landau constant a,
must tend to - co for 4, =0. This conclusion is confirmed by Fig. 3.4., where a,
vs. B is plotted and a, does show the singularity at gs. For those wavenumbers
g satisfying #<fs, a, is sometimes positive, producing meaningless result
A.2<0; sometimes it is negative, giving positive A,2. But we realize such posi-
tive A, is incorrect. Hence, we find the single-mode method is to be only valid
in the interval [8s, #*] rather than the interval [g-, #*]. Furthermore, we know
that those nonzero values of A, at wavenumbers close to 85 are not correct
because of the singularity at gs. We shall explain in the next section why and

where this singularity occurs.
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3.4 Singularity

Having found the singularity phenomenon in the single mode method, we
now derive the equation for the occurrence of the singularity from the pertur-

bation equations (3.1.10)-(3.1.13).

For simplicity, we only present the first equation (3.1.10) in (3.1.10}

(3.1.13). From (3.1.10), we get the following equations for U, Vi
(DD.— ﬂ2_ ao)Vlo - Ulo=o (3.4.1)

which is an eigenvalue problem. Solving this equation and its accompanying

equations in (3.1.11)(3.1.13) for Uy, Vg W1o, We obtain ag, Uy, Vg, Wig.

For Uy, Vo, we have
[DD* - (28)* - 2a0] Vo~ Up=R:(V1eV10) (3.4.2)

which is an inhomogeneous equation. This equation is not always solvable. To
show this, let us consider the equation for U,, V), associated with a

wavenumber g which is equal to 28
[DD*- B~ @o| V1o~ Uio=0 (3.4.3)
that is
[DD* - (2B)*- @ V10 - U1o=0 (3.4.4)
By comparing (3.4.2) with (3.4.4), we know from the theory of ordinary
differential equation that U, and Vo will have a unique solution if
=28 To# 2a, (3.4.5)
In the case that

B=28 To=2a, (3.4.6)
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the equations for Uy, Vg will have no solutions unless they satisfy solvability
condition. For this case, the inner product of the inhomogeneous terms and
the eigenfunction of the adjoint system must be equal to zero. Since there is
no flexible (undetermined) constant in the inhomogeneous term R, (also in R,),
the solvability condition can not be satisfied. Thus in general U, Vo have no

solution and become abnormal (extremely large) in the numerical method.

For U,, and V,,, we have
(DD’ - f%-3a0)V - Uny=-8,Vio+ R \(VioVio+ VoV_10+ V_10V20) (3-4-7)

where the second Landau constant a, is to be determined. When Eq. (3.4.6) is
satisfied, a, has a singular value because of the abnormal V4. For example, we
have shown that the singularity of a, occurs at 4=2.078 and T =6000 in Fig.
3.4. The calculation shows that a,=5.3795 at $=2.078 whereas 7,=10.7639 at

B=28=4.156. Hence, @;—2ay, which confirms (3.4.6).

Since the singularity occurs in the low order, increasing the order in the
perturbation method, for example, from 3rd to 15th order, does not change the

wavenumber for A, =0 where q, is singular.

In Fig. 3.5, we plot the singularity line of 8; which is also the line with
A,=0 in the 8- T plane. Note that this line starts from a particular point P.
The corresponding Taylor number, called T,, intersects the neutral curve at
two points, P and @, such that 8,=28p. These two points, especially the
point P, have special significance since 8p=0.58, and (a,)p=0.5(ag)q =0. For
the wide gap case (n=0.5), Tp=3666,3p=22 and Bo=44. For those Taylor
numbers satisfying T,, < T < Tp, we can get the steady states of A from 8- to

g*. That is, no singularity occurs.
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Moreover, we should point out that we shall obtain abnormal functions

UnOr V-O: WuO if
n ﬂ=ﬂ na o—_—Eo (3.4-8)

is satisfied (n > 2). Taking n=3 as an example, it is easy to show that a, will

have a singularity at the wavenumber g which satisfies
38=3 3a,=7, (3.4.9)

The wavenumber g satisfying Eq. (3.4.9) is smaller than that satisfying
Eq. (3.4.8). For example, at T=6000, the wavenumber satisfying (3.4.9) is
B=1.703 which is smaller than 85=2.078 as shown in Fig. 3.6. In fact, a,=2.320
for #=1.703 while a,=6.954 for 38=5.109. Hence, Eq. (3.4.6) is a special but
important case in Eq. (3.4.8) since it causes a singularity in larger wavenumber

than other values of n.



CHAPTER 4
FORMULATION OF THE NUMERICAL METHOD

4.1 Formulation
First, we rearrange (2.3.4)-(2.3.7) as

2 . 1 i . .
Frid =(DD*- "2/32)Vn“ U - m,‘:-z_w[UuD Vaou - (n-—y)ﬂ(zW”)Vn_“]

(4.1.1)

%(DD *-n?6%)U,=(DD*DD ‘- 2n28%DD* + n*fYU, + 2T Q n282V,

1 o® . T &
'"2ﬂ2{m“§w[U“DU"'“_ (n-m)BEW U} = 3 v,,v,,_,,}

242 00
- o B {PULD(We 1 UDAWL ) (- wBID (W)
+(W,)D (W, )| (4.1.2)

D*U, - inBW, =0 (4.1.3)
with boundary conditions at z-:0 and z =1
Va(z,r)=U,(z,7)=D"U,(z,r) =0 (4.1.4)

Then we separate the variables and apply a spectral-collocation method.

We assume that

Un (2,1‘) = glunj(r)‘ﬁj(x) (4'1'5)
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where ¢ ;(z) is the Chebyshev polynomial of order j-1; »; and v; are constant

coefficients; JJ is the number of the collocation points in {0,1] and JJ2=JJ +2.

We substitute (4.1.5) into (4.1.1}(4.1.4) and then apply the operator
f 01 6(z - z;).( ) dz at the collocation points z;. The resulting equations are sets
of ordinary differential equations with the independent variable r at the collo-
cation points z;. However, the boundary conditions have no time derivatives
which make it difficult to write the sets of equations in matrix form. To over-
come this obstacle, we convert the boundary conditions to the following ordi-

nary differential equations with respect to time and with initial conditions

N
_ U.(Z,7) __kar U, (T ,7)
Un(z,7) =0 - U, (£,0) =0
Vi (1) = b2V, (F.7)
_ n y ar n y
ValZm) = - Va(7,0) =0
. - 9 . —
DU, (% ,r) =- kFD U, (z,7)
D’'U,(%z,r) =0 - (4.1.6)

D’ U, (%,0) =0

where F=z;;=0 or T=1z,=1.

Note that 6 constants ¥ are introduced in (4.1.6). If we drop the nonlinear
terms in (4.1.1)-(4.1.2) and solve the resulting linear equations, these constants,
-k, will show up in the eigenvalue spectrum as spurious eigenvalues. Theoret-
ically, their values are arbitrary. But from the viewpoint of numerical stabil-
ity, ¥ should be positive. Hence, - ¥ is chosen somewhere between the max-
imum (principal) and minimum eigenvalues. If -k is greater than the principal

eigenvalues, it will contaminate the system. Note that for high harmonics (big
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values of n), the principal eigenvalue will be negative with a large absolute

value. In actual computations, k is of the order 10°.

After we apply the operator to the boundary conditions, we obtain

JJ JJ 3
Z Vai (7)e i (T)=- kgs:vm‘ (r)8; (%)

§V,5(1)¢j(f)=0 - ’ (4.1.7)
7= E 7(0)¢; (

for brevity, only one boundary condition is shown.

Now we present the resulting equations at z; (=2, - - - ,J/-1):

JJ ) JJ2
E a1 = Vaj (r)p(z:) = E Vai (r)(DD * - 2ﬂ2)¢j (z;) - EUM'(TM:' (%)

Jj=1 J=i

- B 0D Ve - (- GV (4.1.8)

E aiU (7DD -n?%¢ (%) = %2 U,; (r)(DD * DD *- 2n28°DD * + n'8%¢ ;(2;)
i= =l

+2TQ n2/32§ Vi (1)8 (=)

i=

*‘Jf ; {DU WD (iWo_ )+ U DHiW,_,) - (n-p)BD (iW,)(iW,_,)

+ (WD (W)l (4.1.9)
JJ2
g[unj (T)D ‘ ¢j (zl' )_ n ﬁwnj (zt' )]=0 (4.1.10)

where all the nonlinear terms are not expanded intentionally. The reason will

be clear later.

First we solve the linear part of the problem as a check. That is, we drop

all nonlinear terms in (4.1.7)-(4.1.10). The harmonics U,,V, and W, are thus
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decoupled. For each value of n, we can formulate (4.1.7)-(4.1.10) as

]
S, FY,—Q,Y, (4.1.11)

where

Yn=[any v ;Vu,JJ;Uul; T sUn,JJ'Z]T (4-1.12)

The method used to form S, and Q, is analogous to that to form M and
N in the linear theory (see (2.2.16) and (2.2.17) ). With the explicit Euler

method, (4.1.12) is expressed as
Sy o (Y, (7 + A7) = Y, (r:)] =Q Y, (rs) (4.1.13)

where Ar is the time step size and r;,=iAr. For n =1 at given 8, the eigen-
function with a very small amplitude (norm) is prescribed as an initial distur-
bance. This disturbance should grow approximately with ezp(a,) if the linear
growth rate is positive. However, in the numerical resulté the disturbance
grows much faster. Hence, we need to check the eigenvalue spectrum. Taking
#=3.0 and T=4500 as an example, the largest (principal) eigenvalue is 5.312501

while the smallest one is -59659.18 when JJ=16 collocation points are used.

The stiffness ratio (see Johnson & Riess [28] or Lambert [29]) 1155%2&59(‘)%8| is
as large as 10% In fact, the more collocation points (i.e., the more terms of the
Chebyshev polynomials) we use, the stiffer the Eq. (4.1.13). Therefore, use of

an implicit method is imperative. Eq. (4.1.11) is then expressed as

1

Se &

[Yo(ri + Ar) - Y, (r:)|=Qa Ya(ri+ &r)
or

-AITIYn (ri + A7) - Yo (ri)] =87 'Qa Y, (ri +47) (4.1.14)
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which turns out to be successful. Now let us reconsider the nonlinear system

(4.1.7)-(4.1.10). We can formulate this as

Y N,
S 0 0 : 0 ° Q 0 0 : 0 0
08, 0 oan 0 Q 0 : 0 N,
0 0 S, 0 8_r Y, }=[0 0 Q, 0 + <N, (4-1.15)
00 0:s, ‘| Jo o 0iq :
N Yy QN Ny
or
a3
S. E‘Yn =Q,Y, + Nn (YO’YD ce ey YN)
where Ny N;, Ny, - - -, Ny are nonlinear terms and each of them is a function of

Yo, Yy, - - -, Yy. Direct application of the implicit method to (4.1.15) is quite
involved. Hence, we use an implicit method to handle the linear terms and an

explicit method for the nonlinear terms. The formula is expressed as
Sa %[Yn (ri+ AT)-Y, (7)) =%Q» (Yo (ri +47) +Y, (7:)]+ N, [Yor: ), Yi(7:),-. Y (7))
(4.1.16)

If we drop the nonlinear term N, , Eq. (4.1.16) is reduced to the implicit
trapezoidal method with accuracy (Ar)®. The nonlinear term N, is evaluated at
time r;, thus Y, can be solved separately at r,+ Ar. Equation (4.1.16) can also

be written as
Yn (Ti + AT) =(Sn - "AEC'Qn )_ l[(sn + _A‘-)LQII )Yn (Tt') + ATN» (Ti )] (4‘1'17)
This method which is similar to those called semi-implicit or linearly-

implicit method (see Lambert [29]) is successful in our work. Other formula-

tions based on the semi-implicit method but with higher accuracy were tried.



- 37 -

But those formulations are not convenient and the improvement in the accu-
racy is insignificant. Hence, Eq. (4.1.17) is used for most of our numerical

work.



- 38 -

4.2 Some Remarks on the Method

The numerical method in general requires more computation time than
the perturbation method. For the cases with large positive linear growth rate,
ao (i.e., at high Taylor numbers and the wavenumber not too far away from
the critical wavenumber), the time for a small disturbance to develop into the
steady state is often short. But for those cases with small positive linear
growth rate, this time is quite long and the perturbation method is more desir-
able. However, the numerical method reveals some important phenomena
which would be hardly discovered by the perturbation method. Moreover, the
numerical method can model actual experimental situations much better than
the perturbation method. The numerical method is good for the study of the
wave interaction. For example, if we use 45 harmonics in the calculation, we
can start with 45 nonzero small disturbances and investigate their interaction,
which would be impossible for the perturbation method. More advantages and

the shortcomings of the numerical method will be discussed later.

The numerical method is indeed a combination of Fourier analysis in the
¢ direction, spectral-collocation method in the r direction, and a finite
difference method in r (time). The major errors come from the following
sources: the truncation of the Fourier series, the truncation of the Chebyshev
polynomials and the step size in the finite difference method. That is, the
errors depend on the values of N, JJ and Ar. There is no criterion available to
estimate the magnitude of errors. Hence we perform numerical experiments to
gain some confidence. In Sect. 4.1. we shall show the excellent agreement
between the numerical method and the perturbation method in prototype
cases. For all the numerical calculations, 8 collocation points (JJ=8) are used.

Depending on the wavenumbers, the harmonics N =9, 18, 27, 36, 45 are used.
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The step size of time Ar is varied from 0.002 to 0.02 based on the linear growth
rate. The numerical method is applied to the wide gap case =0.5 only. In this

case, axisymmetric Taylor vortex flow can exist for values of T much greater

than T,,.



CHAPTER 5

SOME RESULTS OF THE NUMERICAL METHOD

5.1 The Evolution and the Overshoot Phenomenon

In this section, we present the results of the numerical method and make
some comparison with the single-mode method. For convenience, let us fix the
Taylor number at T=6000. We shall present results at the following points in
the - T plane: M(5.2,6000), N (3.5, 6000), R (2.57, 6000), L (2.56, 6000), G (1.3, 6000),
H(1.0, 6000) shown in Fig. 5.1. Note that the wavenumbers are arranged in des-
cending order. For comparison with the single-mode method, only a single
small disturbance V,(0) is chosen as initial condition for the numerical method
for the time being. Recall the normalization of the eigenfunction is

V1o(z =0.5)=0.5. The amplitude of the disturbance is expressed as
V1(0)=0.5A (0)=0.5¢ (5.1.1)
where ¢ is a small constant at our disposal.

For the point M (8=5.2 and T=6000), we show the results of both the
perturbation and the numerical method. Figure 5.2(a) is the result of the
numerical method where 9 harmonics and the distortion of the mean flow are -
computed and V,, V,, V,, V3, V, are plotted. Figure 5.2(b) describes the evolu-
tion of the amplitude A(r) (indeed, 0.54 is shown in the figure) where 9th
order perturbation expansion is used. Note that in the single-mode method,
Oth order is associated with the 9th harmonic. When we plot these two figures
and superpose them, we find that the curve of 0.54 in Fig. 5.2(b) is almost

identical to the curve of V, in Fig. 5.2(a). In the steady state, 2V,=0.1074 while
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A=0.1089. This excellent agreement gives us confidence that both methods

and the designed programs are correct.

For the point N(3.5, 6000), Fig. 5.3(a) is a plot for the results of the numer-
ical method (9 harmonics) while Fig. 5(b) is a plot for the results of the single-
mode method (9th order). When we plot these two figures and superpose them,
we see that the curve of 0.54 in Fig. 5.3(a) is identical to the curve of V, in
Fig. 5.3(b) from the time ¢ =0 to the time when the maximum amplitudes are
reached. However, after reaching the maximum amplitude, 0.54 (r) keeps this
maximum amplitude as its steady state while V', decreases to some value and
then keeps this new value as its steady state, thus forming an 'overshoot’ of
the curve V,. Due to this overshoot, the steady state of A is slightly different

from that of Vv, (2V,=0.1688, A =0.1712).

The overshoot phenomenon during the evolution was reported by Neitzel
[9] on the study of the Taylor vortex flow in finite-length cylinders. In his
paper, the amplitude is defined by use of the stream function rather than the
fundamental V, we use. He suspected that the overshoot was caused by the
effect of the finite-length of the cylinders. Our results, however, show that the
overshoot exists even for the case of two infinitely long cylinders. The results
show that the harmonics take different times to reach their individual steady
states. If the fundamental V, reaches its maximum but some higher harmonics
are still growing and these harmonics have finite values, the interaction
between the fundamental and such harmonics may produce the overshoot. In
Fig. 5.3(b), we can see that the third harmonic causes the overshoot though
not very clearly. To gain a better view, we present an example as shown in
Fig. 5.4 at #=2.80 and T =9000 (i.e., the point K in Fig. 5.1.). The maximum

of the third harmonic corresponds to the ’valley’ of the overshoot of the
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fundamental and the second harmonic. We thus claim that the overshoot is an
inherent property of Taylor vortex flow independent of the length of the

cylinders.

The single-mode method is unable to model the overshoot phenomenon.
The reason is quite simple. If we differentiate the Landau equation (3.1.5) with

respect to time, we get

2
dA . A
%=F[ao+3al(AA)+5az(AA)2+ o] (5.1.2)

2
Obviously, %=0 is satisfied automatically if -:A;_=0. However, for the
T

dV d®v
overshoot, ——=0 but 14 0 at the maximum of V, (see the point P in

dr dr?

Fig. 5.4.).

Because of the overshoot and the singularity we have shown in Sect. 3.3,
the results of the single-mode method are inaccurate for smaller wavenumbers
at T=6000. We are not going to present the results for the evolution of the

single-mode method in this section.

In Figs. 5.5(a) and 5.5(b), we show the results of two neighboring points
R (2.57, 6000) and L (2.56, 6000), respectively. Fig. 5.5(a) is similar to the previous
figures for the numericaj method such as Fig. 5.2(a). However, Fig. 5.5(b)
displays something new. The fundamental V, and all the odd harmonics such
as third, fifth, ... finally vanish in the steady state. The second harmonic (with
28=5.12) takes the place of the fundamental. Hence the flow possesses 24=5.12
as its wavenumber. More interestingly, the results show that the small distur-
bance with =256 develops to the same steady state as a small disturbance

with #=5.12. The following is a comparison between the steady state of §—2.56
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and that of §=5.12

f=2.56 f=5.12

Vo=- 1.612339E - 02 Vo=-1.612339EF - 02
V,=0

V,=5.567141E - 02 V,=5.567141E - 02
V=0

V (=8.991310F - 04 V,=8.991310F - 04
V=0

V ¢=1.820990F - 04 V 3=1.820990F - 04

Of course, above results are not occasional. We will explain these results

in Sect. 5.4.

According to the linear theory, there will be no Taylor vortex flow if the
wavenumber, 8, of a small disturbance is less than 8- ( the left branch of the
neutral curve ). This is not true in the nonlinear case. Note that at T =6000,
p-=1.45. Figure 5.6(a) is a plot for g=1.3. The small disturbance with =13
finally leads to the steady state with 28=26. The small disturbance with
B=1.3 decays at first, which indicates the validity of the linear theory. How-
ever, this small disturbance generates higher harmonics through the nonlinear
interaction before it vanishes. The second, third and fourth harmonics soon
grow because they have positive growth rate. As we can see from this figure,
the interaction between the second, third and fourth harmonics with finite
amplitudes is complicated. Finally, the second and all the even harmonics sur-
vive while the fundamental and all odd harmonics vanish. Figure 5.6(b) is the
plot for a small disturbance with #=1.0 which leads to 34=3.0. The following is

a comparison between the steady state of 4=1.0 and that of 4=3.0



A=1.0
Vo==-5.316461E — 02
V,=0
V=0

V3=8.319775E - 02

Ve=1.049402F - 02
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a

f=30

Vo=-5.316461E - 02

V,=8.319775E - 02

Vo,=1.049402F - 02

These results will also be further discussed in Sect. 5.4.
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5.2 Steady States and the Jump Phenomenon

In Fig. 5.7, we plot the steady state of 2V, obtained from the numerical
method (9 harmonics) and A obtained from the single-mode method (9th
order) at T=3675 for n=0.5. The Taylor number is almost equal to T, =3666.

The agreement between the results of the two methods is very good.

Now we plot the steady state of the fundamental, 2V, and the second
harmonic, 2V,, at T=6000 in Fig. 5.8. The steady state A, obtained from the
single-mode method is also plotted for comparison. We observe that 2V, drops
to zero at B, whose value is between 2.562 and 2.565. Also, at 23;, 2V, jumps
up from a smaller value to a bigger value which is exactly the value of 2V, at
28;. This phenomenon is called the jump phenomenon. For different Taylor
numbers, T (T>Tp), we can find such jumps and the corresponding
wavenumbers, 4;. In Fig. 5.9, the line of occurrence of jump is plotted. Note
that this line starts from the particular point P of the neutral curve. We know
that the singularity line in the single-mode method also starts from this point.
We shall show that the jump phenomenon is a result of the existence of the

unstable steady state solution in Sect. 6.2.

By comparison, we can see the difference between the steady state of the
numerical method and that of the single-mode method may be caused by the
overshoot, the jump or the singularity. For those wavenumbers 4>3,, the
difference between two methods are approximately equal to the magnitude of
the overshoot. The overshoot phenomenon takes place at high Taylor numbers
with wavenumbers close to the critical wavenumber. For those wavenumbers
satisfying 8s <B<#;, the difference is due to the jump and the singularity. The
results of the numerical method are more accurate and reasonable results than

those of the single-mode method. In Fig. 5.9, we sketch the shaded domain
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where the the results of the single-mode method are in excellent agreement
with those of the numerical method. Hence, we conclude that the single-mode
method and the Landau equation produce good results for the values of 4 and

T in the shaded domain.

5.3 Amplitude Diagram and Two-Wave Interaction

So far we have only considered the single small initial disturbance. What
would happen if we introduce two initial disturbances to the flow? To answer
this question, we show two cases at g=2.58 and T=6000 in Figs. 5.10(a) and
5.10(b). In these two figures, V,(0) is the same only V,(0) is slightly different.
However, these two neighboring initial conditions lead to different steady
states. We can plot many figures like Fig. 5.10(2) and Fig. 5.10(b) for many
different pairs of A (0) and B(0) at fixed # and T. But the easier way to study
two-wave interaction is to draw an amplitude diagram for the fundamental
and the second harmonic. Of course, the evolution and the steady states
should be represented in an infinite dimensional space and the amplitude
diagram of two harmonics is only a subspace. Figure 5.11 is the amplitude
diagram at #=2.58 and T =6000. We observe that there are two attractors A4
and B which stand for two different stable steady states. More interestingly,
there exists a repellor R between the two attractors. This repellor corresponds
to an unstable solution. Without drawing the amplitude diagram, it is not easy
to discover the repellor because such an unstable solution is never achieved
during the evolution. A small part of the path corresponding to the overshoot
is also shown. Note that the overshoot only occurs for some pairs of initial

amplitudes A (0) and B(0) including the single initial disturbance (A (0)70 but
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B(0)=0). Indeed there is no overshoot in Figs. 5.10(a) and 5.10(b). Due to the
existence of the repellor (the unstable steady solution), the time for a pair of
A (0) and B(0) to reach the steady state varies quite largely. If a path of the
evolution is close to the repellor, this time will be very long. Hence, the time
to reach the steady state depends not only on the wavenumber but also on the
combination of the initial amplitudes (i.e., the spectrum of initial distur-

bances).

We have shown that for some wavenumbers and Taylor numbers, the
magnitudes of two initial disturbances will play a very important role. But this
is not the complete answer for the problem of two-wave interaction. In fact,
for other cases, only the wavenumber of one disturbance will determine the
steady state. Thus the magnitudes of the nonzero A (0) and B(0) have no effects
on wave selection. We find that as g decreases from 2.58, the distance between
the attractor A and the repellor R is shortened. And at §8,, the attractor A is
canceled by the repellor R. Hence, the jump phenomenon is caused by the can-
cellation of the attractor and the repellor. For g<3;,, for example §=2.55, there
is only one attractor B as shown in Fig. 5.12. Obviously, no matter how we
introduce A (0) and B(0), we always obtain the stable steady state with 8=5.10.
On the other hand, as 4 increases from 2.58, the distance between the attractor
A and the repellor R is enlarged while the distance between the attractor B
and the repellor R is shortened. At a certain wavenumber, the repellor R can-
cels the attractor B and only attractor A exists. Fig. 5.13 is an example with
only one attractor A. We always get the stable steady state with §=2.9 pro-
vided B(0) is nonzero. A very important case in this example is the pair of
V,(0)=0.25E-11 and V,0)=0.25E-02. Note that V,(0) is extremely small and

V,4(0) is 10° times as big as V,(0). Hence, V, reaches its steady state first. But
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the final stable steady state has §=2.9. The corresponding figure of evolution
for this case will be shown in Fig. 6.9. From this example, we conclude that

the steady state with §=5.8 is unstable to any small disturbance with g=2.9.

It is quite expensive and difficult to apply the numerical method to the
study of the interaction of two waves, especially searching the location of the
repellor in the amplitude diagram (i.e., the value of the unstable solution). To
overcome such difficulties, we establish the two-mode perturbation method

given in Chap. 6.
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5.4 Existence of Multiple Steady States

We are going to show the following important fact for steady state solu-

tions which may be stable or unstable:

If velocity components U(z), V(z), W(z) are the steady state solution for a
fixed wavenumber g, they are also one of the steady solutions for

wavenumbers 4/n where n=2,3,4, - -,

The above fact indicates the possibility of multiple steady state solutions

for small wavenumber (large wavelength), which will be shown in Fig. 5.14.

To study the steady state, we drop all the time derivative terms in

(2.3.4)-(2.3.7). The Fourier series (2.3.1) then becomes

2 :ﬁi] - %

W(I,S‘ A =00

Us(z) .
V,(z) | € (-nhs) | (5.4.1)
W, (z)

Now the harmonics U,, V,, W, are functions of z only. It will be enough
to consider only one equation (i.e., Eq. (2.3.4)) in this derivation. Eq. (2.3.4) is

reduced to

(DD~ 0287V, = Uym—b— 3 [U,D*Vu_, - (n-m)BGW,)V._,] (5.4.2)

2A7 6,52

Suppose that at a fixed g, there exists a steady state solution

Uz U_s . U_, i U_, ) U,
{V z }= el V_gle Gy e (iU vy le (-985) 4 Vo
Wiz) W_, W_, w_, W,
U, U, U, .
v e ey, le iz |y, te (i38c)4 . . . (5.4.3)
W, W, W,
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For n =0, Eq. (5.4.2) becomes

. 1 & . .
DD Vo— Uo=2—1— E [U“D V_“ - (—p)ﬂ(zW“)V_“]
A6,

and the subscripts 4 and - are listed as follows

p: . =5 -4-3-2-101 2 3 4 5 ..
-4 .. 5 4 3 2 10-1 -2 -3 -4-5 ..

For n =1, Eq. (5.4.2) becomes

(D"~ BV, - Uym e 33 (UWD" Vi = (- W)WVl

and the subscripts u and 1- u are listed as follows

p: e =5 -4-3-2-101 2 3 4 5 ..
1-p: ... 6 5 4 3 21 O0-1-2-3 -4 ...

For n =2, Eq. (5.4.2) becomes

[DD - (2/3)2] V2_ U2='2_Al"6_ i [UBD‘ Vz-u - (2—p)ﬂ(iW,,)V2_,,]

and the subscripts 4 and 2- 4 are listed as follows

p: .. -5-4-3-2-101 2 3 4 5
2-p: .. 7 6 5 4 32 1 0-1-2-3

Now let us consider the steady state solution U;, V;, W; at f=4/2.
Equation (5.4.2) becomes

(DD *- BV, - U;=Ezl,?_f) (TzD Vs_g- (R~ EVB(iW5) Vi_3)
B

=-00

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)
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For =0, Eq. (5.4.7) becomes

DpD* V- T, =2717_§ (TD°V_z- (- BB(W,)T7_] (5.4.8)

F=—co
For w=1, Eq. (5.4.7) becomes

[DD*- BV, - ‘7'=271’7- S 0DV p- -PBFAT, ] (5.4.9)

Jim=— 00
For =2, Eq. (5.4.7) becomes

(DD~ 2797, - 172=.é_‘4£7_§ (050° ¥, 5- (2-FB(WV, 5 (5.4.10)

p== 00

Let us consider (5.4.7). Besides the zero (trivial) solution, one possible
solution is that U, V;, W; are all nonzero. Furthermore, the third possible
solution is that U;, V;, W; with odd @ are all zero but Uy, V,, W, with even &
are all nonzero. Now let us focus on the third possible solution. For 7 =0, if &

is odd, all the terms with odd 7 vanish on the right hand side of (5.4.8).

Hence, the list of the subscripts is reduced to

.. -4 -20 2 4

- .. 4 20 -2 4

For w=1, all the terms on the right hand side of (5.4.9) are equal to zero
since either of @ and 1- 7 must be odd. And all the terms on the left hand side
are also equal to zero since U,, V,, W, are equal to zero. That is, Eq. (5.4.9) can
be dropped. Similarly, we can see that all the equations with odd subscript

in (5.4.2) vanish.

For #=2, the list of the subscripts is reduced to
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B .. -6 -4-2 0 2 4 6
2-p: .. 8 6 4 2 0 -2 -4

Now in (5.4.10) both 7 and 2- 7 are even. If we do the following replace-

ments in (5.4.10):

2B - B
(2- M8 — (1- u)8
B - 5
Fomm 00 p=—oo
T, Vo, W, - Ug, Vo, W,
(= is even) ( » is all integer)

then we can rewrite (5.4.10) as

[DD ‘- /32] Vx - 0I=TAI—? _ii) [vnD ’ f/,_” - (l—y)ﬁ(iW”)Vl-”] (5'4'11)

Obviously, Eq. (5.4.11) is essentially the same as (5.4.5) except that

U, V,, W, are used in (5.4.11) rather than U,, V,, W,.

For other even subscripts, we do the following replacements in (5.4.7):

78 - nf
(T - mB - (n - n)B
> - >
Jm=— o0 B=-0c0
U, V;, W; - Uy, Vo, W,
(7 is even) (¢ is all integer)

then all the equations with even 7 in (5.4.7) are rewritten as
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[DD*- %89V, - U, --—,— 2 (0,D*V,_, - (n-pw)B(W,)V,_,] (5.4.12)

u—-oo
By comparing (5.4.12) with (5.4.2), we obtain

ﬁ;= U“=U‘ Vi= Vn=Vn Wﬁ= W,,=W,, (5.4.13)

Based on (5.4.3) and (5.4.13), we conclude that the steady state solution
Un, Va, W, for g is also a steady state solution for U;, V;, W, for #=4/2 where
all U;, V;, W; with odd & are equal to zero. We have shown an example for

this case in Sect. 5.1, that is, the example for 4=1.3 and T =6000.

The previous procedure of proof can be easily extended to F=g/n (n >3).
For example, if the steady state solution (U,, V,, W,) does exist, there is at
least a possible steady solution (U, Vi, W) for A=8/3 which is nonzero as
f=---,-9,-6,-3,0,3,6,9,--- and zero for other values of #. We have
shown an example for this case in Sect. 5.1, that is, the example for §=1.0 and

T =6000.

We now explain why there are multiple steady state solutions for small
wavenumbers (large wavelengths). In Fig. 5.14, the curve labeled by 8 is the
steady state amplitude V, (the amplitude of the fundamental) obtained by the
numerical method at T=6000 for n=0.5. According to the fact we have just
proved, we can generate a curve labeled 28 by use of the curve labeled 8. A
point P, on the curve labeled by g is moved horizontally to the point P, on
the curve labeled 29 with the wavenumber one half of the wavenumber of the
point P, and the same amplitude as that of the point P,. This new curve
(labeled by 28) tells us that a small single disturbance, for example, with
B=2.50 will develop to a steady state with wavenumber 24=5.0. Similarly, we

can generate an infinite number of curves labeled by a8 (n >2). Only several
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such curves are shown in Fig. 5.14. From this figure, we know that for a dis-
turbance with small wavenumber, there is a multiplicity of steady state solu-
tions. For example, the disturbance with g=1.0 will have four possible solu-
tions: 38=3.0, 48=4.0, 58=5.0, 6§=6.0 because if we draw a vertical line at

f==1.0, it will intersect the curves labeled 33, 48, 53, 68.

Obviously, the smaller the wavenumber, the greater the number of possi-
ble steady state solutions. Note that according to the linear theory, the distur-
bances with g=2.0, 3.0, 4.0, 5.0, 6.0 have positive linear growth rates, but the

numerical method excludes the steady state for g=2.0.

In the experiments, only one steady state solution will be realized. In
Sect. 6.2 and Sect. 7.2, We shall show that some stable steady state solution
for a large wavenumber 4 may become unstable steady state solution for a

small wavenumber. For example, a stable steady state solution for g may

B

become an unsteady state solution for —"+——1- where n=1,2,3,---.
n

From the derivation, we realize that the important fact results from the
quadratic terms of the Navier-Stokes equations. Hence, we conclude that the
fact is not only valid for the Taylor vortex flow problem but also for some spe-
cial cases of the Navier-Stokes equations with spatially periodic steady state

solutions (e.g., Benard convection rolls).
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5.5 Comparison on Steady States with the Parameter Expansion

Method

In Sect. 4.2, we formulated the perturbation method based on a parame-
ter expansion. We now compare the results of this method with those of the

numerical method.

In Fig. 5.15, we plot three curves of the steady state amplitude of the fun-
damental, A., at #=4.0 corresponding to the 9th, 15th, 21st orders, respec-
tively. Also we plot three data points of the numerical method in which O har-
monics are computed. The numerical method shows that A, becomes horizon-
tal as T is greater than about 6000. For example, A, =.14957438 at T =6000 and
A,=.15008064 at T=9000. When we apply the numerical method, both T and 3
are fixed. However, for the perturbation method based on the parameter
expanéion, only g is fixed while T is expanded. Hence it is difficult to deter-
mine what order in the perturbation method based on the parameter expan-
sion is comparable with 9 harmonics in the numerical method. That is, there is
no direct relation available for us to compare the accuracy of these two
methods. What we observe is that the higher the order in the parameter

expansion, the better the agreement with the numerical method.

From the numerical method, we know that the amplitude of the funda-
mental A, =0 in the region with small g and large T. What would happen if
we apply the parameter expansion in such region? Figure 5.16 answers this
question. At g=2.5, the parameter expansion produces finite amplitudes at
T=6000 and T=9000 whereas the numerical method gives zero amplitude at

these two values of T and shows a sudden drop (jump) of the amplitude

between T =4500 and 7 =6000. We sketch the amplitude 4, in Fig. 5.17. We
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know that the jump phenomenon at a fixed T is due to the existence of the
unstable solution. Now we can see that there should be jump phenomena for
some fixed wavenumbers, one of which is the case we are discussing. It is not
a surprise that the parameter expansion can not model such jump phenomenon
which needs at least two values of T for a fixed A, at a given 4. However, the
parameter expansion, T=Ty+ T A, *+ T,4.+ - -, is a polynomial which can
give only one value of T for a fixed 4,.

We now conclude that the parameter expansion is unable to model the
jump phenomenon no matter how many terms in the expansion are calculated.
Note this above conclusion is not only valid for the expansion in terms of
parameter T, but also valid for the parameter expansion f=g8,+ /9,:4,2+ <. as
T is fixed. Consequently, there is no need to try an expansion of 8, which is

more complicated since 8 appears nonlinearly in (2.3.4)(2.3.7).

Tlie results show that all the coefficients T, are positive as long as > 2.2.
However, if we decrease g a little away from 2.2, for example, =2.199, an
interesting phenomenon occurs. All the coeflicients become negative suddenly
except T, (the Taylor number at the neutral curve). Table 5.1 is the com-
parison of the coefficients at =2.2 and =2.199. We realize that the sudden
change of the sign for all T, (k >0) is caused by singularities of T,. Table 5.2
illustrates the singularity of T, T,, T3 and T,. As all T, (¥ >0) become nega-
tive, the only physically possible solution of A, is A, =0. The reason is simple
because any nonzero A, will lead to meaningless results, T <T,, from
T="To+ T1A>+ ToA M+ .

When g is decreased further away from g=2.2, for example, =2.0, many

coefficients Ty (k > 3) change the sign from negative back to positive. Hence, we

get A, =0 at the 3rd and 5th orders but get nonzero A, at higher orders.
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Obviously, such nonzero 4, is incorrect. Hence, we conclude that 4,=0 for
B<2.2 as shown in the unshaded region in Fig. 5.18. Note that one of the boun-
daries of the shaded region is a vertical line at gJ=2.2 which intersects the neu-
tral curve at the particular point P. We have seen this special point P before

in the results of the single-mode perturbation method.



CHAPTER 6

THE HIGH-ORDER

PERTURBATION METHOD FOR TWO MODES

To gain deeper insight into the jump phenomenon discovered by the
numerical method, we propose a high order perturbation method for two
modes (two-mode method). In this method, the singularity appearing in the
single-mode method will be removed. Also the stable and unstable solutions of

the fundamental and the second harmonic will be found.

6.1 Formulation for the Evolution of Taylor Vortex Flow

We introduce two perturbation parameters: A(r) and B(r). Both A(r) and
B(r) are assumed to be of the same order. The general expressions for ampli-
tudes are difficult to obtain. Rather, we present the first several terms of the

fundamental as

Uz ,7) U (z) Uf(z) 5 (z) U (z)
Viz,r) V=4{V}i(z) } + AB{V S (2) +A2A VR (z){ + ABB{V () t + -
Wiz ,T) Wlll (z) W162 (z) W13 (z) W1135 (z)
(6.1.1)
and the first several terms of the second harmonic as
Uyz,7) U (z) #(z) U (z) Uz (z)
{Vz(z,r)}=B Vﬁ(z)]+A2 Vi(z) L+ AAB{VZ (z) } + BBV () } + - -
Wyz,7) Wi (z) % (z) W (z) W (z)
(6.1.2)
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where
Vi (z=0.5)=0.5 VA (z=0.5)=0.5 (6.1.3)
and the hat has the same meaning as in the single-mode method.

Other functions V), for the distorted mean flow, fundamental, second har-
monic and higher harmonics are equal to zero at z=0.5, where the first sub-
script n indicates the multiple of the wavenumber (for example, 2 indicates
28); the second subscript p indicates the order; and the superscript ¢ siands
for the ordinal number of the functions showing up in the program. Since

U,, V., W, are real, we have
uL=Us,, VL=V, Wh=Wwse, (6.1.4)
As compared with the definition of amplitudes in (2.3.3), we have
A =2V (2 =057)=2A4(r)V)} (z =0.5)=A (r)=A
Ag=2Vy(z=057)=2B(r) V3 (z=0.5)=B(r)=B (6.1.5)

which'show that 4 (r) is indeed the amplitude of the fundamental whereas B(r)
the amplitude of the second harmonic. In this method, the distortion of the
mean flow and the higher harmonics are assumed to be exclusively generated

by the fundamental and the second harmonic through the nonlinear terms.

We list the first several functions (up to the third order) as follows

05 B 28 36 48 58 63
AV BV
AAVE ABV S AV ABV BV}
BBV
ABVE  APAVY  AdBVE A*Vd  ABVE  aBVY  BUVY
ABBV \§ B2BV 8 AB2V 8
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From the second column and the third column, it is easy to understand
how we derive the amplitude expressions. Note that terms A24V)Y and
ABBV ¥ are associated with the same wavenumber g and the same order (third
order) but they have different combinations of A4 and B, which is a new

feature of this method.

Replacing v, V}}, V& by %—, aq, ¢y, - -+ in (6.1.1), we get
dA s 2 8 A
F=aoA + 6,AB + aA“A + a3ABB
+ a,A%B + a,AB?B +a,A%A% + 4;A%B? + ¢gAB?B? + - - - (6.1.6)
: 2 13 dB :
Replacing V,, V&, V& by - bo, by, - -+ in (6.1.2), we get
dB b 2 4 2B
F= oB +b1A +62AAB + b3B

+b,A%A + b3A°B? 4+ b,A%A%B + b;AAB?B + bgB%B% + - - (6.1.7)

Both equations (6.1.6) and (6.1.7) are called the Landau type equations
and the coefficients ag, a,, - - -, bg, by, - - - are called the Landau constants in

the sense that they are not functions of time. As one example of applications

of the Landau equations, we show the term T‘l;(BVﬁ ), which is the first term

v,

in
dr’

—dd_(BV22l ) =bOBV22l + b1A2V221 +b2 AABVQQI + bsBQBVQQl + (6.1.8)
T

In Eq. (6.1.8), the term b,V# will show up in the equation of V3§ which is

an eigenvalue problem for 5, The term 6,V3 will be added to the equation of

v3 since b,V2 is associated with A2 Recall that the singularity occurs in the
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functions associated with A2 in the single-mode method. Now this singularity
is removed because the Landau constant &, is determined by satisfying the sol-
vability condition for equation of V3. The term 5,VZ will be added to the
equation of VJ2 since 5,V$ is associated with AAB.

As another example of the application of the Landau equations, we show

. . . dV
the term %(ABV#2 ), which is the second term in d_rl’

T‘IT—(ABV,‘;) =(ag+ bo)ABV S + a,ABBV S + b,AA%VS + - - (6.1.9)

where the term (ag+ bo)V% will show up in the equation of V%, the term
e, V5% will be added to the equation of V¥, and the term &,V will be added
to the equation of V¥. In the derivation of (6.1.9), both Landau equations

have been used.

Substituting (6.1.1)-(6.1.7) into the nonlinear system (2.3.4)-(2.3.7), we
decompose the system into successive linear ordinary differential equations
according to : (1) same wavenumber; (2) same order; (3) same combinations of
A and B. As before, the program designed can generate, solve the differential

equations and evaluate the Landau constants.
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8.2 Applications of the Method

After determining the Landau constants, we can use the Landau equa-

tions (6.1.6)-(6.1.7) to study:
(1) the interaction the fundamental A (r) and the second harmonic B(r);
(2) the jump phenomenon and steady state solutions, 4, and B, ;

The properties of the Landau equations approximate some of the proper-
ties of the Navier-Stokes equations. Note that solving the Landau equations is
a very simple task. Now the study of the Navier-Stokes equations is converted

to the study of the Landau equations.

First, we present the application to the evolution of disturbance ampli-
tudes. Figure 6.1.(a) is obtained by the two-mode perturbation method (9th
order) at §=2.58 and T=6000 while the Fig. 6.2(b) is obtained by the numeri-
cal method (9 harmonics) at the same g and T. In both figures, only a small
disturbance of A (r) is initialized while the initial value of B(r) is equal to zero.
When we plot these two figures and superpose them, we can see that 0.54 (r)
and 0.5B(r) obtained by the two-mode method are almost identical to the
corresponding curves V, and V, by the numerical method from the time t=0
to the time that 0.54 (r) and 0.5B(7) almost reach their maximum values. How-
ever, unlike V, and V,, A(r) and B(r) do not exhibit any overshoot. Conse-
quently, the steady states of 0.54 and 0.5B are different from those of Vv, and
Vs

The two-mode method can be used to study two wave interaction. In
Figure 6.2.(a), two nonzero small disturbances A (0) and B(0) are initialized at
=258 and T=6000 for the wide gap case. As compared with Fig. 6.2.(b)

obtained from the numerical method, we can see that the two-mode method
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gives good approximate results of the evolution. At any fixed g and T, we can
easily plot a family of such figures of two wave interaction by choosing
different pairs of A (0) and B(0) since solving Landau equations (6.1.6)-(6.1.7) is
a simple and quick process. On the other hand, the numerical method requires
tens and sometimes hundreds times of computation time used for the two-

mode method to obtain same family of curves.

Amplitude diagrams are useful in the study of wave interaction. Figure
6.3 is an amplitude diagram at #=2.58 and T=6000. As compared with Fig.
5.11 obtained from the numerical method, we observe that both figures agree
qualitatively and show the existence of a repellor, R. However, both figures
only give the rough location of the repellor. The main difference between
these two figures is that the locations of the attractor, A, and the repellor, R,
are not the same and there is no overshoot showing up in the two-mode

method.

The question why the two-mode method can not exhibit the overshoot is
not solved yet. We wrote two different programs for the method. But we
obtained exactly the same results, which seems to exclude the possibility of
errors in programming. Perhaps, to model the overshoot, a three mode method
is needed since we have seen the indication in Fig. 5.4 where the overshoot
corresponds to the growth of the third harmonic. Another question is that the
steady states A, obtained from the two-mode method sometimes have better

accuracy but sometimes have worse accuracy than the single-mode method.

The reason for this is unknown as yet.

To solve the steady states directly, we set Z—’:=j—€=0 in (6.1.6)-(6.1.7)

then obtain the following equations
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0 =a0A + a,AB + a,A%A + a,ABB
+ a,A%B + agAB2B +agA%A® + a;A%B? + agAB?B  + - - - (6.2.1)
0=boB + b,A% + b,AAB + b4B*B
+ b, A%A + bsA%B2 + bgA%AB + b,AAB%B + bgB*B% + .-+ (6.2.2)
which can be solved by some numerical techniques similar to the bisection
method.

Figures 6.4 and 6.5 are the plots of steady states at T=4500 and T =6000,
respectively. In these two figures, both A, and B, obtained from the 9th order
two-mode method are plotted. Besides, A, from the 9th order single-mode
method and the steady state of 2V, from the numerical method are also plot-

ted. At some wavenumbers, Egs. (6.2.1)-(6.2.2) give three solutions with phy-

sical significance. For example, at 3=2.58 and T =6000, we get

solution A, B,
1 0. 1.11171F-01
2 1.04846F - 01 6.41049E - 02
3 1.62391F - 01 3.56543E - 02

In Fig. 6.5, we label these three solutions by A1, A2 and 43 for the funda-
mental and B1, B2 and B3 for the second harmonic. Obviously, Solutions 1
and 3 are stable and Solution 2 is unstable. By recalling Fig. 6.3 which is the
amplitude diagram for s—2.58 and T =6000, we observe that the stable Solu-
tions 1 and 3 correspond to the locations of the attractors, A and B, in the
amplitude diagram while the unstable Solution 2 corresponds to the location of
the repellor, R. In Figs. 6.4 and 6.5, the Solutions 2 and 3 are plotted with the

triangle symbol. As for the Solution 1, we notice that when A,=0, Egs.
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(6.2.1)-(6.2.2) are reduced to one equation
0=boB+ b3B?B + bgB*B%+ - - (6.2.3)

which is same as the Landau equation of the single-mode method. To avoid
confusing the figures, we do not plot the Solution 1 with the triangle symbol.
By varying wavenumbers, we obtain curves representing the three solutions.
When the unstable Solution 2 merges the stable Solution 3, the jump
phenomenon occurs, which implies that only Solution 1 can exist. Hence, Tay-
lor vortex flow has wavenumber 248. Note that the slope of the amplitude
curve is vertical at the jump in both Figs. 6.4 and 6.5. At T=4500, the jump
takes place at the same wavenumber as that obtained from the numerical
method - a very good agreement. At T =6000, the agreement is not as good as
that at T=4500. As T increases further, for example at 7 =9000, the
discrepancy between the two methods becomes bigger. The g, from the

numerical method is 2.61 while the g; from the two-mode method is 2.48.

The intervals where the unstable solutions exist are listed as follows

T (81, Bu] [28,,28y]
4500 2.446-2.475 4.892-4.95
6000 2.51-2.78 5.20-5.56
9000 2.48-3.22 4.96- 6.44

Figure 6.6 is an illustration of the intervals obtained at the 9th order.
The results of the calculation show that the location of the jump (wavenumber
4,) is almost not affected by the order used. For example, the 3rd order gives

the same 8; as the 9th order.
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We know that in the single-mode method, the results of A4, are good only
for those large g if T is large. In contrast, the two-mode method is only suit-
able to the right neighborhood of 3;. Note that in Figs. 6.4 and 6.5, we only
display A, in the right neighborhood of 8,. For those wavenumbers g satisfy-
ing 8>058", the mode B will have wavenumber 28 greater than g+ (the
wavenumber of the right branch of the neutral curve). Hence, mode B has the
negative linear growth rate b, which would cause a failure of the perturbation
method. Davey & Nguyen [30] found that the perturbation method based on
the Landau equation is invalid in the stable domain where the linear growth
rate is negative. Indeed, when wave number is increased to some value beyond
B8>0.58"%, singularities of some Landau constants appear and the amplitude of
B becomes abnormal (infinitely large). Consequently, we conclude that the

two-mode method is not suitable for T <T,.

The presence of the unstable solution is very important in the stability
analysis. Besides the jump phenomenon, we are able to explain some

phenomena of wave interaction.

Figure 6.7 is a sketch of the steady state amplitude. As <8, but g is
close to B;, the single disturbance (i.e., A(0)5%0 but B(0)=0) will lead to the
steady state with 28 no matter how small A (0) is. Now if we start with A (0)5£0
and B(0)70 (B(0) may be small or big ), we can definitely say that the steady
state must have wavenumber 23. In such a case, the single disturbance is a
special but very important case since the wave selection depends only on the
wavenumber, 3, and the magnitudes of A (0) and B(0) do not play any role pro-

vided A (0) is nonzero. Furthermore, we can conclude that the steady state

with 24 is stable to the small disturbance g if 3<3, but 3 is close to 3,.
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For the two intervals [8;, 8y] and [28,, 28y] where the three solutions
exist, the initial amplitudes, 4 (0) and B(0), play a role in wave selection (see
Fig. 6.7 ). Depending on the magnitudes of A (0) and B(0), we may get a steady

state with g or 24.

Now let us investigate the interval [8y, 0.58*] and the associated interval
[28y,8*]. Note that the fundamental and the second harmonic of the
unstable Solution 2 merge to the corresponding ones of the stable Solution 1 at
By and 28, respectively. Hence, there is only one solution with 4,0 and
B,#0 in these intervals. This conclusion is very interesting. Suppose that
there is a steady state with g inside the interval [28y, 8*] which may result
from a small disturbance with 8. This steady state will be stable if there are
no disturbances with smaller wavenumbers in the flow. However, this steady
state is unstable to the disturbance inside the interval [8y, 0.58*] since in such
case the steady state becomes the 'second’ harmonic. Figure 6.8 is a convincing
example at §=5.8 and T=6000. At first, a disturbance with A=5.8 is intro-
duced which soon develops to its steady state. At t=4.0, a new disturbance
with #=g4/2=2.9 is introduced. This disturbance is very small but it affects the
steady state with 8=5.8. Finally, the flow has new wavenumber g=2.9. The
original steady state with g=5.8 now has smaller value of amplitude and
becomes the second harmonic in the steady state of the flow. The numerical
method also produces similar result as shown in Fig. 6.9. Since V,(0) is
extremely small, V, soon grows to its steady state with finite amplitude while
V, is still very small. But V, continues to grow and eventually becomes the
fundamental of the steady state while V, becomes smaller and serves as the
second harmonic of the steady state. Thus we conclude that the steady states

in [28y, A*] are unstable to the small disturbances in [8y,0.58*]. The steady
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state in [28y, 7] is shifted to the steady state inside {8y, 0.58%]. Such shift
phenomenon is similar to the jump phenomenon because the steady state of
the fundamental changes from zero to finite while the steady state of the
second harmonic decreases to a smaller finite value. In Fig. 6.7, we denote such
shift ("jump’) by arrows at 8y and 28y. Also we denote the jump phenomenon

by arrows at 4; and 23;.

We can use Fig. 6.6. to explain the hysteresis phenomenon. Suppose that
a steady state is set up at the point 0. As the Taylor number T decreases
quasi-steadily to the point 1 (28y), the steady state is shifted to the point 2
(8v) according to the previous discussion. That is, the number of the cells in a
finite length of cylinder is reduced by one half. If T decreases further, the flow
keeps this new wavenumber. But instead if we increase T to the point 4, the
wavenumber of the flow will be changed from g back to 28 (point 5) because of
the jump phenomenon. The Taylor number for the change from 28 to g is
smaller than that for the change from g to 248. This is the so-called hysteresis
phenomenon, which was studied by Benjamin and Mullin [6],(7],[8] for some
short cylinders. The case we explain here is analogous to the 'one-to-two cells’.
They concluded that the hysteresis is caused by the end effect (imperfection)
which produces unstable solutions. However, our work shows that the unstable
solutions and the resulting hysteresis phenomenon are the inherent properties
of the flow in the infinitely long cylinders. Perhaps, the experiments in short

cylinders make the hysteresis phenomenon more observable.
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6.3 Discussion on the Multi-Mode Method.

The attempt to extend the two-mode method to a multi-mode method
will suffer some troubles. We now point out some of shortcomings of the
multi-mode method based on our experiences on the single-mode and two-
mode methods. First, we should not apply the multi-mode method uncondi-
tionally. We have mentioned that the two-mode method is not appropriate for
T<T,. We can also argue that the three mode method may not be suitable
for those Taylor numbers which have 8, satisfying 8, >8+*/3. For example, at
T =4500, ,=2.45 and #*=>5.16, which means 38, >8*. Of course, for relatively
high Taylor numbers with 8; <g*/3, three mode method may g‘ive us some
. good results such as g,. However, the amount of work needed would increase
significantly. When we apply the 9th order single-mode method, we need to
determine only 5 Landau constants and solve 25 equations. But when we use
the 9th order two-mode method, we have to determine 48 Landau constants
and solve 238 equations. Hence, we can only use low orders in the multi-mode
method due to the ecoﬂomic reasons. More seriously, because the perturbation
method can only be applied to the range of (8-, 8], the multi-mode method is
unable to handle with those disturbances with very small wave number and
their interaction because these wavenumbers are less than g-. In contrast,

there is no such restriction in principle in the numerical method.

Though we shall not establish a multi-mode method, we present a
modified two-mode method to study the interaction of two waves with n 8 and
(n + 1)8, respectively. The method is based on the following two facts appear-

ing in the two-mode method: (1) the intervals of multiple solutions are almost

independent of the order used; (2) for g<4,, A=%=O and the two Landau
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equations are reduced to one equation which turns out to be the Landau equa-
tion of the single-mode. Suppose that there are 3 modes 4, B and ¢ with 3,
26 and 38 respectively. If 3<f~, T <Tr and 28 and 33 are inside [8, B*], then

dA nd % dC

at the steady state, 4 =7T—=0 a =—-—=0. The Landau equation for A is

dropped while the Landau equations for B and ¢ are reduced to (up to the
3rd order)

0=0buB+ b,(BB)B+ b,(CC)B (6.3.1)

0=coC+ ¢,(CC)C+ ¢o(BB)C (6.3.2)

The interaction between 24 and 38 mainly through the distortion of the
mean flow, i.e., terms BB and ¢C. By solving (6.3.1)-(6.3.2), we can study the
interaction of two waves with 28 and 38 respectively. That is, we can obtain

the intervals with stable and unstable solutions for B and C.

The necessary condition for this method is A =0. During the evolution 4
is not always equal to zero. Hence, this method is only useful for the study of
steady state solutions. If ¢ =0 in (6.3.1)-(6.3.2), the jump occurs. Then (6.3.2)

is discarded and (6.3.1) is reduced to
0=boB + b 1323 (6-3.3)

which is exactly the Landau equation for the single-mode method. Therefore,
another condition is that this method should only be applied to those intervals

[8-, B*] where the single-mode method can give good results. Of course, this
method can also be extended to the study of interaction between two waves
with n 8 and (n + 1)8 respectively provided (n- 1)3 is less than #-. The results

of this method will be presented in Sect. 7.2.



CHAPTER 7

STABILITY DIAGRAM AND WAVE INTERACTION

The results of this chapter are obtained from the numerical method
except part of Sect. 7.2. The program designed for the numerical method
allows us to prescribe initial conditions in terms of many modes and study
their nonlinear interaction. However, the number of combinations of many
modes (i.e., the number of disturbance spectra) can be tremendous and thus
makes it difficult to extract systematic information from the results. Hence,
we shall first study the results for a single disturbance, which can be con-

sidered as a continuation of Sect. 5.1.

- 7.1 Stability Diagram for Single-Mode

Let us consider T=6000. We have shown that near 8,, a small change of
the wavenumber can lead to totally different steady states (with g or 248). Such
a wavenumber is called a turning point in this work. Also we showed that a
single disturbance with g=1.3 develops to the steady state with 28=2.6 (see
Fig. 5.6(a)) while the single disturbance with §=1.0 develops to the steady
state with 38=3.0 (see Fig. 5.6(b)). Hence, two questions arise. The first one is
whether there is a new turning point g,, between g=1.0 and =3.0. Another
question is whether the smaller 8 will lead to a steady state with
nB (n=34, ). The numerical results give positive answers for both prob-
lems. We plot V, and V, in the g- A, plane (wavenumber - steady state ampli-
tude plane) in Fig. 7.1(a) and V, and V; in Fig. 7.1(b). As g decreases from g*,

V,,V, and V, draw their individual paths in 8- A, plane. At 3, (labeled by
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1-2(L)) V, drops to zero while at 24, (labeled by 1-2(R )) V. jumps up to the
path formed by V,. Also in Fig. 7.1(b), V; drops to zero at 38,. As 8 decreases
from B;, V, and V; are equal to zero, forming horizontal lines while V, moves
along the path formed by V, (see the corresponding points P, and P, in Fig.
7.1(a)). As g reaches f,;=1.282, labeled by 2-3, V, drops to zero at 28,;=2.564,
labeled by 2-3(L). Meanwhile, V; jumps up from zero to the path formed by
Vy at 38y, labeled by 2-3(R), as shown in Fig. 7.1(b). As g decreases further
from B,;, Vs moves along the path formed by V,. When # reaches another
turning point 83,=0.90, V; also drops to zero at 38,,, labeled by 3- 4(L), while
V, jumps up to the path of V, at 48,,. Note that the interval s (3835 38as]
where the steady state has 38, is smaller than the interval J (282, 28] where
steady state has 28. Following this procedure, we can find other turning points
B.s at smaller wavenumbers and smaller associated intervals I [nBass nBa-1)s)-
But for small wavenumbers, the numerical method becomes rathér inefficient.
If we use 9 harmonics for the interval [g,, 8*], we need to use 18 harmonics for
the interval [B2s, Bs] to obtain the same accuracy because a disturbance leads
to the steady state with 2. For the interval [Bsss Bus], we thus need 45 har-
monics, which takes very long computation time. Hence it is not easy to locate

the turning points.

For diflerent Taylor numbers, we apply the previous procedure to search
for the turning points and associated intervals. The results are summarized in
Fig. 7.2. Let us focus on T==6000 first. The turning points 8;, Bz, Bas, Bas are
located at the lines 1-2(L), 2- 3, 3-4, 4- 5 respectively. And their corresponding
jumps, 28;, 2By, 382y, 3B, - - - are located at the lines 1-2(R), 2-3(L), 2- 3(R),
3-4(L), -, respectively. Any small disturbance with wavenumber located

between the line 1-2(L) and the line 2-3 will lead to the steady state with 28
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inside [28,,, 28,].- Any disturbance with g located between the line (n-1)-n
and the line n —(n+ 1) will lead to the steady state with » 4 inside [n8,;,
n B(a-1)s). Take the point X (#=1.0, T=6000) as an example. Since this point is
located between the line 2-3 and the line 3-4, it will lead to the steady state

with 38=3.0 inside [383,=2.70, 38,;,=23.846].

The 8- T plane of this figure is divided into three regions: 1. stable region
where Couette flow is stable; 2. unstable region where Couette flow is unstable
but stable Taylor vortex flow can not show up; 3. unstable region where
Couette flow is unstable and stable Taylor vortex flow may show up. The line
separating the stable region 1 and the unstable regions 2 and 3 is called the
neutral curve which is a modification of the well-known neutral curve from the
linear theory. According to the linear theory, the neutral curve is the one with
zero linear growth rate. But for the points Y (#=1.5, T=3210) and X, though
they have negative linear growth rates, Couette flow is unstable due to the
nonlinear interaction. Hence, they should be inside the unstable region. The
modified neutral curve is obtained by scaling. The points on the neutral curve
have wavenumber 8- (the left branch) or g* (the right branch). Now we draw
a family of curves with g-/n and g8*/n(n=2,3, - - - ). The envelope of this family
of curves forms the modified neutral curve. The intersection points on the
modified neutral curve such as points P,B,C,D, - play an important role
because the lines 1-2(L), 2-3, 3-4, 4-5 - - - start from these points. Meanwhile,
the parts of these scaled neutral curves which are inside the unstable region

lose their significances though they have zero linear growth rate.

Of course, a single initial disturbance is a very special case which implies

that the path of the evolution always starts from some point of the A,-axis in

an infinite dimensional space of amplitudes. But it represents a special class of
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spectra. In Fig. 7.3, a single disturbance with #=1.3 at T=6000 is prescribed at
t=0. Then at ¢t=0.4 it develops as Spectrum 1 while at ¢t=0.55 to Spectrum 2.
If at t=0, Spectrum 1 or 2 is initialized instead of the single disturbance, we
shall get the same steady state in less time. We have shown in Sect. 6.2 that
for small wavenumber g inside [8;;, ;] it would be enough to study a single
disturbance for two-wave interaction because only the wavenumber plays a
role in the wave selection for this case. Therefore, this result is very important:
the smaller the wavenumber (i.e., the larger the wavelength) of a single distur-
bance, the narrower is the band of steady states it will lead to. In the experi-
ments of finite-length cylinders, the ends have effects on the flow. That is, the
ends may produce strong disturbances with small wavenumber (large
wavelength) determined by the length of the cylinders. This situation may be
approximated by the case of a single disturbance. Hence, the experimental
data points obtained from long cylinders may fall in a smaller band in the

B- T plane than those from short cylinders.
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7.2 Multi-Wave Interaction

In this section, we first present some results at T=Tp,=3666 obtained
from the modified two-mode perturbation method (see Sect. 6.3). Then we

present some numerical results at T=6000. All results are for n=0.5.

At T=Tpr=23666, we have no need to consider the interaction between the
fundamental with 4 and the second harmonic with 23 because either of the
waves has wavenumber located outside (§-, g*). Figure 7.4 shows the result of
interaction between the wave with 28 and the wave with 38. In the interval
[282,=2.47, 2B,y =2.71] there are 3 solutions B1, B2 and B3 for the wave with
28 while in the interval [38,,=3.705, 38,y =4.005] there are 3 solutions C1, C2
and C3 for the wave with 33. The figure has two obvious differences from Fig.
6.5 for the interaction between the wave with g and the wave with 248: (1) at
28,;, the slope of the stable Solution B3 and the slope of the unstable Solution
B2 are not the same, hence forming a cusp; (2) also at 38,;, the unstable Solu-
tion C2 and the stable Solution €3 form a cusp at zero amplitude. The jump
phenomenon occurs at @,;=1.235. That is, the second harmonic drops to zero
at 28,,=2.47 while the third harmonic jumps from zero up to the amplitude
curve created by the fundamental at 38,,=3.705. Hence, for a disturbance with
B<B2;, the fundamental and the second harmonic are zero and the stable
steady state with 38 exists. Now let us consider another case. Suppose there is
a steady state with g inside (8-, 28,,) We know that the steady state can exist
from B~ to 8* as long as T <T, though it may not be always stable. We also
know that in [8-, 28,,] there is only one stable solution for the wave with 23,
that is, the Solution B1 with zero amplitude. Hence, this steady state is
unstable to a very small disturbance with large wavenumber 3=38/2 because

the difference A- B=pF/2 will serve as the fundamental while the disturbance
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with @ will become the third harmonic. Finally, the flow will have wavenumber
3. Therefore, the steady state with 7 is shifted to that with 4=38/2. On the
other hand, the stable Solution B1 and the unstable Solution B2 merge at 28,y
and meanwhile the stable Solution C1 and the unstable Solution C2 merge at
38,y such that a steady state solution with § inside [38,5, 8*] becomes unstable
to a very small disturbance with 3=24/3. Therefore, the steady state with g is
shifted to that with 3=24/3. Hence, the interval I; [28,,, 38,y] is the interval

where stable steady state with 28 or 38 can exist.

Fig. 7.5 shows the result for the interaction between the wave with 33 and
the wave with 48, which is similar to the results in Fig. 7.4. The jump takes
place at a smaller wavenumber 8;;=0.84. The interval Is is smaller than that
in Fig. 7.4. Similarly, the results for the interaction between the wave with
n 8 and the wave with (n + 1)8 can be obtained. But the result for the interac-
tion between the wave with 39 and the wave with 48 in Fig. 7.5 indicates a
problem because 58 is inside [8-=2.20, 8+=4.40|. Hence this result is valid for
the case the fifth harmonic is actually suppressed to zero. Otherwise, we need
to consider the interaction between three waves with 33,48 and 58 respec-
tively. Similar problems occurs for other n (n >4). The calculation shows that
Is has a minimum value. The smallest interval s is that for the interaction
between the wave with 48 and the wave with 58 ( [48,,=2.54, 58,y =3.975 |
where 8,;=0.635).

We have shown some examples of interactions between two waves (8 and
28) for T=06000 in Sect. 5.3. Now we present additional examples of interaction
between two waves where the two waves are not restricted to have

wavenumber 8 and 28. Fig. 7.6 is an example for two waves 8,=3.6 and 5,=4.38.

Because of the nonlinear interaction, the difference of these two waves
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B=pB Bs;=1.2 will play the role of the fundamental. Hence, 3;=3.6 serves as the
third harmonic while 8,=4.8 as the fourth harmonic. In this figure, two small
disturbances are prescribed. The amplitude of the disturbance with g=4.8 is
one thousand times as large as that with =3.6. The disturbance with g=4.8
soon develops to the steady state with finite amplitude while the disturbance
with =36 is still extremely small. But the steady state with g=4.8 can not
suppress the growth of the disturbance with 3=3.6. As time progresses, the dis-
turbance with 8=3.6 grows slowly though it has larger linear growth rate than
that with f=4.8. That is, the existence of the steady state with f=4.8 reduces
the growth of the small disturbance with g=3.6. Finally, the disturbance with
B=3.6 reaches its steady state whereas the original steady state with g=48 is
totally suppressed. Hence, we conclude that the finite amplitude Taylor vortex
flow with §=4.8 is unstable to a small disturbance with 3=3.6. As compared
with f=4.8, the wavenumber A=3.6 is closer to the critical wavénumber

8., =3.16

The second example is shown in Fig. 7.7. The disturbances of the funda-
mental A (0) and the second harmonic B(0) are prescribed. However, the situa-
tion is different from the the case we discussed in Sect. 5.3 because now both
BA=1.2 and 28=2.4 are beyond the interval [3,, 3*]. Hence, neither A or B can
develop to the steady state. The second harmonic B first reaches its peak
value but soon it is suppressed by the fourth harmonic D. The fourth har-
monic keeps its steady state for a certain time but eventually is destroyed by
the third harmonic ¢. Hence, the wavenumber of the flow changes twice dur-
ing the evolution and the final steady state has wavenumber 3=36. Note
that A(0) plays a key role here though it is very small (4(0)=0.01B(0)). If

A (0)=0, then we will obtain the fourth harmonic D as a steady state.
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Now we consider an example of interaction of four waves in Fig. 7.8.
These four waves are f=1.2, 26=2.4, 38=36 and 48=4.8. Their initial ampli-
tudes are also sketched in Fig. 7.8. Though the second harmonic and the
fourth harmonic have larger initial values than the fundamental and the third
harmoniec, the third harmonic finally b.ecomes the fundamental of the steady
state. More cases for this example have been performed and the results are
summarized in Tabie 7.1. Sixteen diflerent spectra are studied and all lead to
the same steady state with 38=3.6. Obviously, these results are caused by two
reasons: (1). a steady state can not exist if the wévenumbef is ‘less than
B;=2.562; (2). the steady state with 44—=4.8 is unstable to the disturbance with
36=3.. '

At T =06000, four examples of the interaction between four waves are stu-
died. In these four examples, the wavenumbers of the fundamental and the
second harmonic are less than g,=2.562. Hence, there will be only two possible
steady states. For each example, different disturbance spectra are prescribed.

we list these examples as follows

EXAMPLE B 28 38 48

1 12 24 36 48
2 11 22 33 44
3 1.08 216  3.24  4.32
4 1.05 210 315 4.20

The underscored indicates the stable steady states. The first three exam-
ples show that the wave with 48 is unstable to the wave with 33. That is, 48 is
not inside the interval I;. The Example 4 shows that either 38 or 48 can exist

as steady state, depending on their initial amplitudes. Hence, 48 is inside the
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interval I;. Consequently, there should be a turning point between 44=4.32
and 48=4.20. However its exact location is not easy and too expensive to ob-

tain by the numerical method.

We also try an example for the interaction between three waves and an

example for the interaction between five waves, which are listed as follows

 EXAMPLE B 28 38 48 5
5 13 26 3.9
6 079 158 237 318  3.95

In the Example 5, either the steady state with 28 or 38 can exist as a
stable steady state while in the Example 6, either the steady state with 438 or
58 can exist as a stable steady state, depending on the initial amplitude spec-

tra.

In summary, the results from the two-mode method and the numerical
method show that there is a subregion containing the critical wavenumber B..
in the 8- T plane. Outside this subregion, stable steady state solutions do not
exist and the wavenumbers of the disturbances determine the wave selection.
If the disturbances are inside the subregion, the selection of the steady state
depends on the initial spectra or the wavenumbers of the disturbances. This
subregion may be defined as

subregion =N all I
where N is the symBol of the intersection and Is is obtained from interaction
between the wave with n 8 and the wave with (n+1)8 for different Taylor
numbers. Of course, this definition is only concerned with the interaction
between two waves. For interaction between more than two waves; the subre-

gion may be smaller or unchanged. This problem needs further investigation.
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7.3 The Oscillation Phenomenon

An unexpected oscillation phenomenon takes place at high Taylor
numbers and some small wavenumbers for a single small disturbance chosen as
an initial condition. Fig. 7.9 is the plot of amplitude growth for a small distur-
bance with f=1.25 at T=0000. The fundamental and other harmonies reach
their individual peaks periodically at different times. Hence, Taylor vortex flow
does not develop into a steady state and its wavenumber can not determined.
According to the relation ¢t=4d% /v in (2.1.12), the period of the oscillation is
short (e.g., t=18.2 seconds if d=3cm and v=0.424cm?fsec for this figure). The
amplitude diagrams corresponding to this case are quite interesting. We plot
the amplitude diagram for the fundamental and second harmonic in Fig. 7.
10(a) as well as the amplitude diagram for the fundamental and third har-
monic in Fig. 7.10(b). From these two figures, we can imagine tl}gt there is a
limit cycle which looks like a ’heart’ in the infinite dimensionaf space. Figs.
10(a) and (b) show two projections of this limit cycle. Figure 7.11 is a plot for
a small disturbance with #=1.16 at T=12000. The oscilia.tion is more compli-
cated 'and is reminiscent of period-doubling. In some cases, the flow shows
oscillatojry behavior for some time but finally approaches a steady state. Figure

7. 12 shows such an example for a disturbance with 4=0.675 at T =9000.

Figure 7.13 is a plot of the intervals of wavenumbers for T=—9000 and
T=12000 where the oscillation lasts for quite a long time and seems not to
approach a steady state. The oscillation occurs at some special wavenumbers
in the left neighborhood of 8,; or g,,. It may be exciting to explore the details
of the oscillation phenomenon. But such exploration is very time consuming
and too expensive because we have to trace the evolution for very long time.

Moreover, we should consider the question: whether such oscillation can be
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realized in experiments. Hence, we introduce two small disturbances with
p=1.25 and 24=250 at T=9000 as shown in Fig. 7.14. The corresponding
amplitude diagrams are given in Fig. 15(a) and (b). We know from Fig. 7.9
that the single disturbance with =1.25 can cause oscillation. Due to the pres-
ence of the second disturbance, however, the oscillation can not last for long
time and a steady state with 33=3.6 is achieved. Accordingly, we may observe
the oscillation for a short time at the beginning of some experiment and

meanwhile the wavenumber of Taylor vortex flow can not be measured.



CHAPTER 8
SIDE-BAND STABILITY

8.1 Introduction

In order to explain the wave selection phenomenon that Taylor vortex
flow actually shows up with wavenumber g close to the critical wavenumber
B... Eckhaus [17] introduced the concept of side-band stability: a Taylor vor-
tex flow with wavenumber with g8 in the unstable region determined by the
linear theory may be unstable to some small axisymmetric disturbances with
different wavenumbers from 8. During the nonlinear interaction with the Tay-
lor vortex flow, the small disturbances may grow with time. As a result, these
small disturbances would destroy the original Taylor vortex flow and finally
develop to a stable Taylor vortex flow with a new wavenumber. In such case,
we are obviously not talking about the stability of circular Couette flow (basic
flow). Rather, we are dealing with the stability of Taylor vortex flow (secon-
dary flow) with respect to some special small disturbances (noises) which are
axisymmetric as the Taylor vortex flow. In other words, we deal with a quite
special problem of secondary stability. Furthermore, this is essentially a linear
stability problem of the secondary flow. Based on this concept, Eckhaus found

the following formula for the neighborhood of the critical point (8,,, T, )

B(T) = B+ % 8°(T) - B.r] (8.1.1)

or equivalently,

= _ L e
ﬂ —ﬂcr \/§(ﬂ" ﬂ)

E+ =,3cr + 713'(ﬂ+ - ﬂcr)
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where 8° is the wavenumber of the neutral curve for a prescribed T, that is,
B8* stands for either g* or §~; A is the wavenumber of the side-band stability
curve for the same T ; 8~ and B* represent the left and the right branches of
the side-band stability curve respectively. Note that T does not appear expli-
citly in (8.1.1). The side-band stability curve g(T) has been shown in Fig. 1.2.
Stable Taylor vortex flow can only exist in the region encompassed by the
side-band stability curve. In the regions between the neutral curve and the

side-band stability curve, there is no steady state Taylor vortex flow.

The analysis of Eckhaus is restricted to a discrete spectrum. Kogelman
and DiPrima [18] extended Eckhaus’ analysis to a band of small axisymmetric
disturbances (continuous spectrum). Eventually, they obtained the same rela-

tion (8.1.1) for the side-band stability curve.

All the aforementioned analyses are based on the single-mode perturba-
tion method (up to the third order) for evolution in which the Landau equa-
tion is applied. Although the concept of the side-band stability is quite simple,
the analyses are regarded as intricate and difficult to understand even by
DiPrima himself [1]. We consider it adequate to rederive (8.1.1) in a relatively

elementary way. We shall present the derivation in Sect. 8.3.

Nakaya [19] proposed a method to carry out the computation up to the
fifth order. He obtained a narrower region of the stable Taylor vortex flow
shown in Fig. 8.1. However, his result seems doubtful. First, the singularity
appearing in the perturbation method was not found in his paper. Second, our
results show that the high-order perturbation method does not change the

side-band stability curve for low Taylor numbers. Our results will be

presented in Sect. 8.4.
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8.2 Formulation

The idea of formulation is as follows: For a Taylor vortex flow with
wavenumber B, a pair of small axisymmetric disturbances with wavenumbers
8- A8 and B+AF respectively is introduced. The Taylor vortex flow is called
mode A and its amplitude is also denoted by A. The disturbances with
wavenumbers g+A8 and g- A8 are called mode B and mode C and their
amplitudes are denoted by B and C respectively. The quantity A8 is called the
wave shift, which is a small but nonzero number. The amplitudes of B and C
are assumed to be very small as compared with A such that any terms associ-
ated with the product composed of these two modes such as
C? B?% BC, B%C,--- can be neglected. If either or both of the disturbances
grow with time due to the interaction with the Taylor vortex flow, the Taylor
vortex flow is regarded as unstable.

We uée two approaches to study the side-band stability. In Approach 1,
the amplitude of Taylor vortex flow is a function of time. Thus we apply the
Landau equation there. In Approach 2, we consider the stability of the steady
state. Thus the parameter expansion is used. Note that previous work by other

researchers only used the Approach 1.

(a) Approach 1
For the Taylor vortex flow (i.e, Mode A), we use the same amplitude
expression and the Landau equation as those in the single-mode perturbation
method. For convenience, we restate them as follows
Uﬂ (z )T) Unm (I )

Vi(z,r) = 2 AMAA) Van(2) | (n20)
W, (z,7) m=0 Wom(z)
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U_,‘(I,T) o . . U-nm(z)
V—u(z :T) = EA"(AA )m V—nm (z) (n >0) (8'2'1)
W_w(z,r)] ™° W_am (z)
;ﬂ=a0A + o AAA) + A (AA P + o =S, A(AA ) (8.2.2)
T k=0

For the small disturbances of Modes B ¢, we derive the following ampli-

tude expressions

Uutz 1) ) UZ,(z) . U (z)
VaH(z,r) 1 =BA*' Y (AA)" {VE(2) | + Ca+ 3 (4d)»-1{VE (z) | (8.2.3)
WyHz ,7) "= WE,(z) e WS, (x)
Uy, (z,7) - U,,(;',,(z) - U,f,i-‘,, (z)
Val(z,7) p=CA™' Y (AA)" (VE(2) |+ BAH Y (441 VE (z) | (8.2.4)
W, (z,7) m=0 WS, (z) " WS, (z)]

where U,* indicates that U is associated with n B+AB while U, indicates that
U is associated with ng-ag; V5 (z=0.5)=V5 (z=0.5)=0.5 and the other func-

tions in (8.2.3)-(8.2.4) are equal to zero at £ =0.5 (normalization).

We list some lower order functions and their corresponding amplitude

combinations as follows

A8 B-O08 B+OB 28-08 28+A8 3-A8 36+48
c B

BA CA BA

cA
CAA  BAA CA? BA?
BA? ca?

Let us consider the following two functions
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Vi —=BVE + B(AA)VE + B(AAPVE + - + CAVE + CAYAA)VG + - -
(8.2.5)

Vi =0VG + C(AA)WVE + CLAAYVE + -+ + BAPVE + BAYAA)VE + -
(8.2.6)
Replacing Vi, VE, V5, - VG, VE, -+ by jB boy by, v, by, byt

in (8.2.5), we obtain

B _poB +b,BAA) + baB(AAR + - + F,CA" + T,CAYAA) + -
= Blbg+by(AA) + bo(AA P + - -]+ C[,1A% + B,A%AA) + - - -]
00 . 0 _ .
=Y 0 B(AA ) + Y5, CAN(AA)-! (8.2.7)
k=0 =1
ic o
Replacing Vi ’VIOerlr"' 11:V12,"' by F’COJCI; 6 o
in (8.2.6), we obtain
dC e Aaa s
F——coC+c10(AA)+c20(AA) + « - + T, BA? + TBAYAA) + - - -

= Cleg+ci(AA) + co(AA ) + -+ - |+ B[E1AZ + T,AMAA) + - - )
— Ve, C(AA) + 37 BAYAA) ! (8.2.8)
k=0

Equations (8.2.7)-(8.2.8) are called the Landau equations and the
coefficients by, by, "~ b0, b1, * - ,¢0 €1, " " " ,E0, €1, - - are called the Landau

constants.

Substituting (8.2.1)-(8.2.4) and (8.2.7)-(8.2.8) into the nonlinear system

(2.3.4)-(2.3.7), we decompose the system into successive linear ordinary
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differential equations according to: (1) same wavenumber; (2) same order; (3)
same combination of A, B and ¢. The program designed can generate and
solve the differential equations and evaluate the Landau constants. Some

resulting differential equations will be shown in the next section.

(b) Approach 2

For Taylor vortex flow (i.e, Mode 4 ), we use the same amplitude expres-
sion and parameter expression as those in the single-mode perturbation
method where A, is used instead of A(r). For convenience, we restate the
parameter expression as follows

00
a

T=To+ Ti(A; A )+ ToAc A, P+ To(A AP+ - - =3 Th (A A ) (8.2.9)
k=0

For the Modes B and ¢, we employ the amplitude expressions (8.2.3)-
(8.2.4) and the Landau equations (8.2.7)-(8.2.8) except that A(r) now is
replaced by 4,.

The rest of this approach is analogous to the Approach 1. These two

different approaches are implemented in a single program.
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8.3 Simplified Derivation of Side-Band Stability Curve

First, we present some relations between the Landau constants which are

useful in the further derivation. We claim that as A3 — 0

agg=bg=cq (8.3.1)
and
b, = 2a, b,= @,
¢ = 2a, T, =, (8.3.2)

We select following examples from the perturbation equations to verify

the above relations

(a) Consider one of the two equations for the functions Ufy, V{,, W{

(associated with the wavenumber g)
(DD*- B%- ag)Viy - Ufh=0

and the corresponding one for the functions U%, V%, W% (associated with the

wavenumber 8+A8)
[DD*- (B+48)* - bV - UR =0
Obviously, as A3—0, due to the normalization of the functions, we obtain
bo=ag UE =Uf VE =V{, (8.3.3)
Equation (8.3.3) is also true if we compare another equation for the func-

tions U4, V4, W{ and the corresponding one for the functions U%, v§, w§

(for simplicity, we do not list these two equations here).

Similarly, we can show that

Cog=—2ag Uﬁ) =U'140 Vﬁ) =V’l40 (8.3.4)
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Hence, Eq. (8.3.1) is verified.
(b) Consider one of the two equations for the functions U4, V4, W,
(associated with 28)

§
1+6z

[DD* - (28 - 28|V - Uty ==—=[2(U{LD* Vi, - iBWHLVi + UHhvyy

- 2A 2475
and the corresponding one for the functions U%, V%, w5 (associated with

28+48)

(DD~ (26+A8) - (botaq V- Uk =otre(UAD* VE+ UBD* Vi

. 5
—iB(WHVE + WHVE )+m(UonVﬁ)+ Uhv)l

It is easy to see that as Ag—0
VE =2V4 U§ =2U% Wi =2ws (8.3.5)
(c) Likewise, it is not difficult to show that as A3—0
Vi=V4  UG=Ub WE =w4 (8.3.6)
(d) As the final example, consider one of the two equations for the func-
tions Uf,, V4, W

(DD~ §2~ 3ag)V - Ul =l=2a:Viy+ UAD* Vi + UDD * Vi + UoD " Vi

(U01V + U VH + UboVio+ U V20

+ UpD* VA - i BWHV +
and the corresponding one for the functions U%, V§, W5 (associated with
B+A8)

[(2“1+b )VIO +U01D V +U D V01+

1
(DD * ~ (B+A8)>- (bo + 2a)] V11 - Ux1—2A15

AD*VE + UBD Vi + UA WD VB + URD* VA - i B(WEVH+ WHVT)
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6
+ T_:g';(UoAlVﬁJ"' UBVhL+ UAVE + URVE + UV + URVA)

By comparison and full use of all the information shown in the previous
examples, it is apparent that
bl =2a1 Vﬁ =2 Vfl (8.3.7)
Thus we verify one of the relations in (8.3.2). The other relations in
(8.3.2) can be verified similarly.

The Landau equations (up to the third order) are

G4 A+ a,A° (8.3.8)
dr
22 —B(bo+ 5147 + C(F4?) (8.3.9)
7"% =C(co+ c,A2) + B(5,A?) (8.3.10)

When % = 0, we obtain the steady state amplitude A4,

Al=- —>0 (8.3.11)

where a,>0 and «,<0.

Consider the vicinity of the critical point (8.,, T..) as shown in Fig. 8.2.
The Taylor number T, is chosen sufficiently close to T,, and greater than T.,.
The first Landau constant e, of Mode A is not a function of time but a func-

tion of 8 and T. We expand a, in Taylor series at fixed T,

dag 1 0%aq ’ o o
’aﬂ_lc, B- Byt 5 T |" (B- B, )+ (8.3.12)

ao(,@,Tl) =&0 +

where do=a4B,,, T,). Note that as T, is close to T.,, the neutral curve is

almost symmetric with respect to 8.. Therefore, it is reasonable to use a
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parabola as an approximation of (8.3.12). That is, ¢, is assumed to be sym-
metric with respect to the point (8.,, T,). We have shown in Fig. 2.2 that the
above assumption is very good (the critical point for this figure is at 8,, =3.13

and T.,=1695). Fig. 8.2 gives the geometric interpretation of the approxima-

tion of ao. Due to the symmetry of the parabola, | 8*- 8., | =| B, - 8- .
Let
ﬁ_l@cr P AB N
— 3 28 _ s 8.3.13
ﬂ+—ﬂcr ﬂ ,3+" ﬂer Aﬂ ( )

where both # and A8 are dimensionless, and their absolute values are not

greater than 1, for example, /=0 when 8 =4,,, and =1 when g =g*.

The approximation of (8.3.12) is expressed in the form of parabola

:3— ﬂcr ﬂ_ﬂcr
ﬁ+— ,Bcr )(l * :Bcr_ﬁ-

) =do(l - %) (8.3.14)

a9 =do(l -

For Modes B and C, the first Landau constants are approximately as

b0 =aolt - (220Ly —ags - (3 + adyy

(ﬂ_ Aﬂ)— :Bcr

=doll - (B - AB)? 3.
Y ] =do[l- (B- A8) (8.3.15)

co=4do[l - (

which implies that 6, and ¢, obey the same parabola of a,, since 5, and ¢,

have the same form as e, for Ag—o0.

In the following derivation, all the second Landau constants are treated as

invariants with respect to 8 and T in the vicinity of the critical point, namely,

a1 =a1" bl =b1" b—l =b-1" 3] =61" C_l =C-1" (8.3.16)

If Mode A is in the steady state, Egs. (8.3.9)-(8.3.10) become
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dB - a —a
T =B(bo + b1A)+C (5,4.5)=B (bo - b1a—?) +C(- bla_0)=B(b0 - 2a9) + C(-ay)
1
(8.3.17)
a
22 —Cleo+ 1 AN+B(RAN=C (co - ¢1 bt B(-T1—2}=Cleo~ 2a¢) + B(- ao)
1 1

(8.3.18)

Egs. (8.3.17) and (8.3.18) are linear homogeneous differential equations.

Let B =pexp(\t), C =uexp(\t), then

(bo—_2zz) - (co-‘szf,’)- x] [Z] - [g] (8.3.19)

which leads to
A2~ N(bo+ co— 4ag) + [boco— 2ao(bo + co) + 3ad] =0
or in terms of the dimensionless quantities (see Eq. (8.3.13))
A2+ 2d0[(1- B%) + A8\ + ad A8%2- 682+ A8 =0 (8.3.20)

where the negative root of A\ has been dropped. The positive root of X is

X =-do(1 - A%+ A8Y + do V(1 - F2)? + 45°A5° (8.3.21)

Note that the amplitude of Mode A is finite while the amplitudes of
Modes B and ¢ are assumed as infinitesimal. The eigenvalue X is indeed the
linear growth rate for the Modes B and C. If A<0, both B and C decay and
the Mode A is in stable steady state. The small axisymmetric disturbances are
suppressed by the existing Taylor vortex flow (Mode 4 ). However, if x>0, both
Modes B and ¢ will grow and one of them will replace Mode A . Consequently,
Mode 4 no longer is a stable steady state. In other words, the study of side-

band stability of Mode A is the study of linear stability of Modes B and C in
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presence of a Taylor vortex flow with finite amplitude.

Note that dq (dg=ao(8.,,T,)) is greater than zero in the region of interest.

For positive \, we obtain

V(1 - B+ 45%°08% > (1 - 3% + A8°
22 1 1, 22
B > 3t FM
or in dimensional form

ﬂ_ﬂer
ﬂ+‘ ﬂcr

P>+ () (8.3.22)

( ﬂ+—ﬂcr

For negative X\, we obtain

V(1 - B2 + 48°08° < (1 - B%) + Af?
52 1 1 22
B < 3t -G'Aﬂ
or in dimensional form

ﬂ— ﬂcr
(i) < §+ %- (ﬂf_‘i’g —F (8.3.23)

The side-band stability curve is obtained when X =0 and Ag—0

- 1
ﬂ_ =/3cr - (ﬂcr - ,B_)
713' (8.3.24)

E+ =f. + W(ﬁ+ - ﬂcr)

Equation (8.3.24) is identical to (8.1.1). Hence, we complete the proof of

(8.1.1) in a simpler way.
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8.4 Results

Because the original analyses of Eckhaus and Kogelman and DiPrima are
restricted to the small gap case (n=%—>1, i.e., 6=1:l—"—->0), we apply the high-
2

order perturbation method to the small gap case (6=0.05, i.e., n=0.95238) as

well as the wide gap case (§=1.0, i.e., n=0.5). For convenience, the side-band
stability curve determined by (8.1.1) (i.e., f=8., + 71_5-([3‘- B..)) is called the

predicted side-band stability curve (3rd order).

(a) Approach 1

First, we consider the wide gap case in Table 8.1. We display the results
of the neutral curve and the 3rd order predicted curve. The wavenumber 3,
and B, are the left and right branches of the predicted curve respectively
whereas g~ and g+ are the left and right branches of the neutral curve respec-
tively. In Table 8.2 and Fig. 8.3, we show the points ((~, T) and (8%, T)) of
the side-band stability curves obtained from different orders. Theoretically,
these points should have exactly zero linear growth rate. But indeed they
correspond to extremely small positive growth rate since it is difficult to accu-

rately locate the points with zero growth rate in the calculation.

By comparison between Tables 8.1 and 8.2, we observe that at low Taylor
numbers (T < Tp=3666), the points from different orders almost coincide with
those of the predicted curve. Such agreement implies: (1) at low Taylor
numbers the previous analyses of Eckhaus and others are very good and the
assumptions they imposed in the analyses are reasonable; (2) the increase of
the order of the perturbation does not narrow the region in which stable Tay-

lor vortex flow can exist.
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As T is increased, we observe from Table 8.2 and Fig. 8.3 that the points
from different orders begin to deviate from the predicted curve. In Fig. 8.3 we
also plot the singularity line of the second Landau constant e, which is also
the zero amplitude line in the single-mode perturbation method. Moreover, we
plot the line of the jump 8, (i.e., the 1-2(L) line) obtained from the numerical
method. We can see the points (8-, T) of the third order approaches to and
then falls on the singularity line as T is increased. Accordingly, we conclude
that due to the singularity of a,, all the points (8-, T) from different orders at

relatively high Taylor numbers (T > Tp ) are not reliable.

Now we turn to describe the results for the small gap case. In Table 8.3.
We display the results for the neutral curve and the 3rd order predicted curve.
In Table 8.4 and Fig. 8.4, we show the points ((~, T) and (8%, T)) of the side-
band stability curves obtained from different orders. Table 8.4 and Fig 8.4
show that the results for the small gap case are similar to those for the wide
gap case at low Taylor numbers. For the left branch of the side-band stability
curve 4~ at high Taylor numbers, the differences between the results of
different orders and the results for the predicted curve are larger than the

differences in the wide gap case.

(b) Approach 2

We apply this approach to both wide and small gap cases. Figure 8.5 is
the results for the wide gap case while Fig. 8.6 is the results for the small gap
case. In both figures, once again we see that at low Taylor numbers (T <Tp)
the perturbation method of different orders produce results very close to to the
third order predicted curve. However, in both figures, the left branches of the

B~ curves produced by the perturbation method of different orders terminate
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as A is decreased to certain values. Obviously, this phenomenon is related to
singularity in the single-mode analysis based on the parameter expansion
described in Sect. 5.5. Furthermore, for the right branch of the side-band sta-
bility curve B* at high Taylor numbers, the differences between the results of

different orders and the predicted curve are larger than those in Approach 1.

Note that the wave shift A3=0.02 is used in both small and wide gap cases
for both approaches. Choosing different values of A8 causes little change in
the the results (i.e., the points in the (8- T) plane) provided A8 is sufficiently
small. In Table 8.5, we give an example of the effect of the wave shift on the

computed Taylor numbers of side-band stability curve by use of Approach 2.

In summary, both approaches confirm the previous analyses (up to the
third order) of Eckhaus, Kogelman and DiPrima at low Taylor numbers. More
importantly, both approaches show that the high-order perturbation method
hardly change the predicted side-band stability curve at low Taylor numbers.
Another important conclusion is that we should not extend the predicted curve
to high Taylor numbers, especially the left branch (), because of the singu-
larity and the poor accuracy at high Taylor numbers in the single-mode per-

turbation method.
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8.5 Discussion

The study of the side-band stability curve is based on a special model of
interaction between three waves. That is, one wave with finite amplitude has
wavenumber 4 and a pair of small disturbances have wavenumbers 8- A3 and
B+A8, respectively. The finite amplitude is obtained from the single-mode
method which produces accurate results for low Taylor numbers T<Tp,. We
may ask the following questions: (1). What will happen to the interaction
between one mode with finite amplitude and one small disturbance with 8- A8
or B+A8? (2). Do we need to introduce more pairs of small disturbances in the

study of side-band stability?

The first question is easy to answer because this is indeed a special case of
two-wave interaction which is a reduced case of the previous three-wave

interaction. The Landau equation is reduced to

% —B(by+ 5,49 (8.5.1)

The derivation of the new side-band stability curve is analogous to the
previous one but simpler. We are not going to present the derivation here.

Rather, we just give the result

=_ 1

B =ﬂcr - _(IBcr - .H_)
V2

e L (8.5.2)

.H ﬂcr + %(ﬂ .Bcr)

The region determined by (8.5.2) is bigger than that given by (8.1.1).
This result makes it necessary to investigate the second question. Let us con-
sider a special model of interaction between five waves. In addition to the pre-

vious model with three waves, a new pair of small disturbances g+A3 (Mode
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D) and B- A8 (Mode E) is introduced. The new wave shift AF is a small quan-
tity which is nonzero and different from A3. For example, AG may be equal to

2A8. The corresponding Landau equations are

_3A —aoA+ a,A° (8.5.3)
T

dB 2 A2

-d_T =B(bo + blA ) + O(bl“l ) (8.5.4)
dC 2 - A2

d—T=C(Co+ ClA )+B(¢.'1A) (8.5.5)
dD 2 T A2

- =D(do+ d,A%) + E(d,A?) (8.5.6)
dE 2 = A2

F=E(CO+CIA )+D(61A ) (8.5.7)

Note that Egs. (8.5.6) and (8.5.7) are not coupled with Egs. (8.5.4) and
(8.5.5). Hence, the derivation is analogous to that in Sect. 8.3 and we still get
the same side-band stability curve as (8.1.1) when A8—0 and AG—0. That is,
the model of three waves is sufficient for the study of the side-band stability

for low Taylor numbers.

The analysis of the side-band stability is based on the consideration that

a steady state of Taylor vortex flow may be unstable to some axisymmetric
disturbances with very small amplitudes. Based on the same consideration, we
define in Sect. 7.2 a subregion where stable Taylor vortex flow can exist. The
boundary of this subregion plays a similar role to the side-band stability curve.
However, the definition is only concerned with the two-wave interaction and
the wavenumber of the small disturbance is not arbitrary (i.e., it is either n g
r (n+ 1)8 where n is an integer). In contrast, the wave shift A3 used in the

side-band stability analysis is arbitrary but small. That is, there are two
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different ways to determine the subregion. Hence, we would like to know
whether the results obtained from these two ways are consistent or not. We
note that at T=3666 the smallest interval Iy during two-wave interaction is
the interval [48,;=2.54, 58,y =3.975] during the interaction between the wave
with 48 and the wave with 58. Note that at T=3666, 3~ =2.20 and g*=4.40.
Thus, Eq. (8.1.1) gives [f~=2.61, 5*=3.80] while Eq. (8.5.2) leads to
[-=2.48, *=4.03|. These results are consistent.

So far it seems that the analysis of the side-band stability is reasonable,
though the results at high Taylor numbers are doubtful. At high Taylor
numbers, perhaps the left branch = of the side-band stability curve should be
replaced by a line which is between the curve 8, (i.e., 1-2 (L) line) and the
vertical line of g, (see Fig. 8.2). The right branch 3* also needs modification.
For example, at T=6000 and 5n=0.5, the third order perturbation gives the
smallest f*=4.67 as shown in Table 8.2. But from the Examples 3 and 4 in
Sect. 7.2, we know that 8% is less than 4.32. Hence, the right branch should be
bent such that it is closer to the vertical line of 3,,. Unfortunately, applying
the numerical method to obtain the side-band stability curve is not a
appropreate way because the computation is too expensive and time consum-
ing. Due to the limitation of the two-mode method (see Sect. 6.3), the
attempt to study the side-band stability at relatively high Taylor numbers
based on the finite amplitude obtained from the two-mode method is not
worthwhile. A better method would be highly desirable for the study of side-

band stability curve at high Taylor numbers.



CHAPTER 9

SUMMARY

We have studied axisymmetric Taylor vortex flow in some range of Taylor
numbers and wavenumbers and its stability with respect to axisymmetric dis-
turbances with different wavenumbers. By use of a numerical method and per-
turbation methods, we find stable and unstable steady state solutions and
some associated phenomena such as the occurrence of jump and hysteresis.
The results indicate that unstable steady state solutions play a key role in
wave selection. Because unstable steady state solutions exist in a small region
of wavenumbers consisting of the critical wavenumber 3,,, a steady state Tay-
lor vortex flow with large (or small) wavenumber is unstable and thus replaced
by a new steady state with wavenumber close to 8,,. In this small region, the
wavenumbers and initial amplitudes of disturbances determine the
wavenumber of the flow; but outside this region, only the wavenumbers of the
disturbances have effect on the wave selection such that the steady state has a
wavenumber close to 4,,. Due to the nonlinear interaction and the existence of
unstable steady state solutions, at high Taylor numbers, a small disturbance
with small wavenumber 8 can develop to a stable Taylor vortex flow with
wavenumber n A3 inside the small region. The wavenumber of this disturbance
may be so small that it is in the stable region determined by the linear theory.
Hence, some concepts such as the stable and unstable regions and the neutral

curve from the linear theory require new interpretations.

We show the existence of multiple steady state solutions for small

wavenumber (large wavelength). We conclude that the smaller the

- 100 -
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wavenumber, the greater the number of possible steady state solutions. This
conclusion is not only valid for the Taylor vortex flow problem but also for
some special cases of Navier-Stokes equations with spatially periodic steady

state solutions (e.g., Benard convection rolls).

The numerical method is very important in this work. Most of discoveries
were obtained first by the numerical method. The two-mode perturbation
method provides good approximations and requires less computation than the
numerical method. The amplitude equations help us gain deeper insight into
the problem. The two-mode perturbation method is successful because it
shows the existence of the stable and unstable solutions, thus explaining the
jump phenomenon and the hysteresis phenomenon, and produces ‘good results

of the amplitudes at wavenumbers close to the jump.

Because the singularity occurs at high Taylor numbers, the single-mode

perturbation method based on the Landau equation gives good results only at

T 3666
T., — 3100

low Taylor numbers ( =1.18 for n=0.5) or high Taylor numbers with

wavenumbers very close to the right branch of the neutral curve (see Fig. 5.9).
Moreover, this method can not be used for the study of wave interaction.

Another method based on a parameter expansion has similar troubles.

The u.nstable solutions and side-band stability are closely related. Hence,
the analysis of the side-band stability is reasonable. The derivation of the
side-band stability curve (up to the third order) given in here is much simpler
than previous analysis by Kogelman and DiPrima. High-order perturbation
methods are applied to the calculation of the side-band stability curve. Our
results show that the side-band stability curve is nearly independent of the

order used at low Taylor numbers. Accordingly, Nakaya’s results for the fifth
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order are doubtful. The side-band stability curve produced is accurate at low
Taylor numbers but incorrect at relatively high Taylor numbers. A better
method would be highly desirable for the study of side-band stability curve at

high Taylor numbers.

Our results show that the hysteresis phenomenon and the overshoot
phenomenon during the evolution of the flow are the inherent properties of
Taylor vortex flow between infinitely long cylinders. Therefore, we should not
overemphasize the end effects in the interpretation of the results of the experi-
ments and the calculations for the finite-length cylinders. The oscillation
phenomenon found in the calculation is interesting. However, such

phenomenon may occur in some experiments only for a short time.
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Fig.2.2. Linear growth rate a, (first Landau constant) at T=1715
for small gap case (n=0.9524 i.e., §=0.05). Note that T, =1695 and
Ber=3.13
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Fig.5.9. The line of occurrence of jump and the shaded domain where the sin-
gle-mode method gives good results (for n=0.5)
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Table 5.1 Comparison of T,
at #=2.200 and f=2.199

T B=2.200 B=2.199

T, 3.6606E+03  3.6620E+03
T, 1.5803E+07 -1.2589E-+07
T, L17791E+14 -9.0773E+13
T3 4.0090E+21 -1.3078E+21
T, 11292E+28 -2.3552E+28
T; 3.5623E+36 -4.7507E+35
Ts 1.2041E+44 -1.0267E+43
T; 4.2636E+51 -2.3245E+50
Ts 15612E+59 -5.4421E+57
T, 5.8632E+66 -1.3068E+65
Ty 2.2460E+74 -3.2006E+72

Table 5.2 Singularities of T,, Ty, T3, and T,

5 ks T, T, T,

2.600 4.1147E+04 1.0307E+06 2.5839E+07 8.5481E+08
2.500 4.6674E+04 1.5356E+06 5.0334E4-07 2.4564E+09
2.400 5.8121E+04 3.3048E+06 2.2847E+-08 2.5241E+10
2.300 9.2857E+04 1.8350E+07 6.4457E+409 3.1694E+12
2.200 1.5803E+07 1.7791E+14 4.0090E+21 1.1292E+29
2.199 -1.2589E+07 -9.0773E+13 -1.3078E+21 -2.3553E+28
2.100 -4.7111E4+04 -1.6322E+07 -6.2478E+09 -3.3040E+12
2.000 -1.1494E+04 -2.4322E+06 2.7813E+07 5.0745E+10
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Fig.5.18. Stable and unstable regions of Couette flow (obtained
from the parameter expansion method for n=0.5). Note that the
shaded region is the unstable region. : ’
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Fig.7.3. Sketch of disturbance spectra at different time
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Table 7.1 Initial disturbance spectra for

four wave interaction at T=6000 and n=0.5

CASE B =12 f=24 f=36 [=—48

1 0.01 0.01
2 0.01 0.003
3 0.01 0.001
4 0.01 0.03
5 0.001 0.01
6 0.0001 0.01
7 0.01 0.01
8 0.00001 0.01
9 0.0001 0.01
10 0.01 0.01 0.01
11 0.0001 0.01 0.01
12 0.00001 0.01 0.01
13 0.001 0.01 0.001 0.01
14 0.001 0.01 0.002 0.001
15 0.01 0.01 0.01 0.01
16 0.01 0.005 0.002 0.001

Note that all above cases lead to

the same steady state with §=3.6
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AMPLITUDE DIAGRAM AT T=8000

i i (a)
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Fig.7.10. Amplitude diagram at §=1.25 and 7=9000 for n=0.5
(a). for A=1.25 and 28=2.50
(b). for g==1.25 and 38=3.75
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Fig.7.15. Amplitude diagram at f=1.25 and T=9000 for n1=0.5
(V1(0)=0.005 and V,(0)=0.0025)

(a). for p=1.25 and 28=2.50

(b). for f=1.25 and 38=3.75
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Fig.8.1. Side-band stability curve (up to the 5th order) by Nakaya [19]
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Table 8.1 Some values at
neutral curve and predicted curve
(3rd order) for wide gap case n=0.5

T |8 B B B
3200 | 271 290 3.45 3.67
3500 | 2.32 267 3.76 4.20
3675 | 2.20 261 3.88 441
4000 | 200 2.49 4.08 4.75
4500 | 1.80 237 431 5.16
5000 | 1.65 229 4.51 5.50
5500 | 1.54 222 4.68 5.80
6000 | 1.45 2.17 483 6.05
6200 | 1.41 2.15 4.89 6.15

Table 8.2 Some values of side-band stability
curves of different orders for wide gap case =05

T B B*

3rd) (5th) (7th) (9th) | (3rd) (5th) (Tth) (9th)
3200 2.90 2.90 2.90 2.90 3.43 3.43 3.43 3.43
3500 2.69 2.69 2.69 2.69 3.70 3.70 3.70 3.70
3675 2.61 2.62 2.62 2.63 3.81 3.81 3.80 3.80
4000 2.48 2.54 2.55 2.56 3.97 3.97 3.96 3.96
4500 2.21 2.47 2.49 2.50 4.17 4.18 4.17 4.17
5000 2.13 2.42 2.45 2.47 4.34 4.36 4.36 4.35
5500 2.11 2.39 2.43 2.45 4.49 4.53 4.52 4.52
6000 2.08 2.35 2.40 2.43 4.67 4.73 4.73 4.73
6200 2.07 2.35 2.40 2.43 4.68 4.73 4.74 4.74
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Table 8.3 Some values at neutral curve
and predicted curve (3rd order) for
small gap case n=0.9524 (6=0.5)

T |8 B, B &8

1715 | 2.85 297 3.30 3.42
1850 | 2.41 2.71 3.62 3.98
2000 | 2.18 2.58 3.83 4.34
2150 | 2.01 248 399 4.62
2300 | 1.89 241 413 4.86
2500 | 1.76 2.34 4.29 5.14
3000 | 1.52 2.20 4.61 5.69
3500 | 1.37 2.11 4.87 6.14

Table 8.4 Some values of side-band stability curves of
different orders for small gap case n=0.9524 (6=0.5)

A B
(8rd) (5th) (Tth) (9th) | (3rd) (5th) (7th) (9th)

1715 2.97 2.97 2.97 2.97 3.29 3.29 3.29 3.29
1850 | 2.68 2.68 2.68 2.68 3.58 3.59 3.59 3.59
2000 | 2.53 2.56 2.54 2.54 3.76 3.78 3.78 3.78
2150 | 2.53 2.51 2.50 2.49 3.90 3.93 3.93 3.93
2300 | 2.56 2.48 2.50 2.47 4.02 4.05 4.06 4.06
2500 | 2.60 2.45 2.50 2.46 4.15 4.20 4.21 4.21
3000 | 2.67 2.41 2.50 2.46 4.40 4.51 4.52 4.53
3500 | 2.74 2.37 2.49 2.45 4.68 4.77 4.79 4.80
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Table 8.5 The effect of wave shift on
the Taylor numbers of side-band stability
curve in Approach 2 (4=3.975 and #=0.5)

T

a8 (3rd) (5th) (7th)

0.2 3953 3985 4004
0.1 3965 3998 4017
0.01 3965 3998 4017
0.001 3966 3998 4017
0.0001 | 3994 4028 4048




10.

11.

REFERENCES

R.C. DiPrima, H.L. Swinney: Instabilities and transition in flow between
concentric rotating cylinders. (Hydrodynamic instabilities and the transi-
tion to turbulence. Second edition. ed. H.L. Swinney & J.P. Gollub).
Topics in Applied Physics 45, 140-180 (Springer-verlag 1985)

D. Coles: Transition in circular Couette flow. J. Fluid Mech. 21, 385-425
(1965)

H.A. Snyder: Wave number selection at finite amplitude in lotatmg
Couette flow. J. Fluid Mech. 35, 273-298 (1969)

J.E. Burkhalter, E.L. Koschmieder: Steady supercritical Taylor vortices
after sudden starts. Phys. Fluids 17, 1929-1935 (1974)

J.E. Burkhalter: Experimental Investigation of supercritical Taylor vortex
flow. Report 30, College of Engineering, Univ. of Texas at Austin (1972)

T.B. Benjamin: Bifurcation phenomena in steady flow of a viscous fluid.
1. Theory; 2. Experiment. Proc. R. Soc. London A359, 1-43 (1978)

T. Mullin: Mutation of steady cellular flows in the Taylor experiment. J.
Fluid Mech. 121, 207-218 (1982)

T.B. Benjamin, T. Mullin: Notes on the multiplicity of flows in the Taylor
experiment. J. Fluid Mech. 121, 219-230 (1982).

G.P. Neitzel: Numerical computation of time-dependent Taylor vortex
flows in finite-length geometries. J. Fluid Mech. 141, 51-66 (1984)

R. Meyer-Spasche, H.B. Keller: Some bifurcation diagrams for Taylor
vortex flows. Phys. Fluids 28, 1248-1252 (1985)

L.D. Landau, E.M. Lifshitz: Fluid mechanics. (Pergamon Press 1959)

- 166 -



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

- 167 -

J.T. Stuart: On the non-linear mechanics of hydrodynamic stability. J.
Fluid Mech. 4, 1-21 (1958)

J.T. Stuart: On the nonlinear mechanics of wave disturbances in stable
and unstable parallel flows. Part 1: The basic behavior in plane Poiseuille
flow. J. Fluid Mech. 9, 353-370 (1960)

J. Watson: On the nonlinear mechanics of wave disturbances in stable
and unstable parallel flows. Part 2: the development of a solution for
plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9, 371-
389 (1960)

A. Davey: The growth of Taylor vortices in flow between rotating
cylinders. J. Fluid Mech. 14, 336-368 (1962)

A. Davey, R.C. DiPrima, J.T. Stuart: On the instability of-Taylor vor-
tices. J. Fluid Mech. 31, 17-52 (1968)

W. Eckhaus: Studies in nonlinear stability theory. (Springer-Verlag 1965)

S. Kogelman, R.C. DiPrima: Stability of spatially periodic supercritical
flows in hydrodynamics. Phys. Fluids 13, 1-11 (1970)

C. Nakaya: Domain of stable periodic vortex flows in a viscous fluid
between concentric circular cylinders. J. Phys. Soc. Japan 36, 1164-1173
(1974)

Th. Herbert: Nonlinear stability of parallel flows by high-order amplitude
expansions. AIAA J. 18, 243-248 (1980)

Th. Herbert: On perturbation methods in nonlinear stability theory. J.
Fluid Mech. 126, 167-186 (1983)

S. Chandrasekhar: Hydrodynamic and hydromagnetic stability. (Oxford
University Press, Oxford University Press 1961)

P.G. Drazin, W.H. Reid: Hydrodynamic stability. (Cambridge University
Press 1981)



24.

25

26.

27.

28.

29.

30.

- 168 -

L. Meirovitch: Computational methods in structural dynamics. (Sijthoff &
Noordhoff 1980)

D. Gottlieb, S.A. Orszag: Numerical analysis of spectral methods: theory
and applications. SIAM, Philadelphia (1977)

W.C. Reynolds, M.C. Potter: Finite-amplitude instability of parallel shear
flows. J. Fluid Mech. 27, 465-492 (1967)

Th. Herbert: In Seventh International Conference on Numerical Methods
in Fluid Dynamics (ed. W.C. Reynolds & R.W. MacCormack). Lecture
Notes in Physics, 141, 200-205. (Springer-Verlag 1981)

L.W. Johnson, R.D. Riess: Numerical Analysis (Addison-Wesley 1982).

J.D. Lambert: Computational methods in ordinary differential equations.
(John Wiley 1973)

A. Davey, H.P.F. Nguyen: Finite-amplitude stability of pipe flow. J. Fluid
Mech. 45, 701-720 (1971)



The vita has been removed from
the scanned document



