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(ABSTRACT)
%‘ Taylor vortex How is one of the basic problems of nonlinear hydro-

”

dynamic stability. In contrast with. the wide region of wavenumber predicted

by the linear theory, experiments show that Taylor vortex flow only appears in

a small region containing the critical wavenumber ß„. This phenomenon is
I

called wave selection. In this work, several high-order perturbation methods

and a numerical method are established. Both evolution and steady state of

the How caused by single or several disturbances. are studied. The existence of

multiple steady states for disturbances with small wavenumber ·‘is discovered

and proved. The stable and unstable steady state solutions and some associ-

ated phenomena such as jump phenomenon and hysteresis phenomenon are

found. and explained. In the small region, the wavenumbers and initial ampli-

tudes of disturbances determine the wavenumber of the How. But outside this
region, only the wavenumbers of the disturbances have effect on the wave

selection. These results indicate that unstable solutions play a key role in wave

selection. The side-band stability curve produced by the high-order perturba-

tion methods is accurate at low Taylor numbers but incorrect at relativcly

high Taylor numbers. The relation of the unstable solutions and side-band

stability is discussed. Besides, the overshoot and the oscillation phenomena

during evolution are studied in detail. Connections between this work and

experiments are discussed.
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CHAPTER 1

INTRODUCTION

1.1 Problem and Previous Work

The instability of the viscous incompressible How between two concentric

rotating cylinders is one of the classic and important problems in the theory of

hydrodynamic stability. In most of the studies of this problem, the outer

cylinder is fixed. At low rotation speeds the Huid forms a coaxial laminar How

called circular Couette How. W”hen the rotation speed exceeds a certain critical

value, the Couette How becomes unstable and a new kind of motion occurs.

The new How, now called (axisymmetric) Taylor vortex How, consists of

toroidal vortices spaced equally along the axis of the cylinders as shown in Fig.

1.1. Any two adjacent vortices have opposite directions of circulation. Each

vortex is referred to as a cell. The length of two cells, X, is defined as the

Wavelength of the How. The wavenumber of the flow, B, is defined as ,ä=21r/X.

The parameter characterizing the stability of the How is the Taylor number,

T, which is proportional to the square of the rotation speed, or equivalently

the Reynolds number R,. The definitions of these two parameters will be given

in Sect. 2.1. The critical Taylor number was measured and calculated based

on the linear theory by G. I. Taylor in 1921-1923. The agreement between the

experiment and the theory Was excellent. Since Taylor’s work, the How

between two concentric cylinders has been studied widely and deeply. As the
A

Taylor number is increased beyond a second critical value, Taylor vortex How

becomes unstable. Traveling azimuthal Waves With a definite Wave velocity

and wavenumber are superimposed on the Taylor vortex How such that the
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boundaries between adjacent cells become wavy. Hence, the How is called the

wavy vortex How. Experiments show that as the Taylor number is further

increased the How experiences subsequent transitions from wavy vortex How to

quasi·periodic How, and finally to turbulence (chaos).

A new and comprehensive review of the studies on the instabilities and

transition in the How between concentric rotating cylinders was completed by

DiPrima and Swinney [1], in which 122 papers are cited.

Our work is restricted to the transition from Couette How (basic How) to

Taylor vortex How (secondary How) when the outer cylinder is at rest and the

two cylinders are assumed to be inHnitely long. Our work is concerned with

the nonlinear hydrodynamic stability. Therefore, we only brieHy describe some

previo11s nonlinear studies on the transition from Couette How to Taylor vor-

tex How. These studies can be classified into three categories: experimental

work, numerical work and theoretical work.

The experiments conducted by Coles [2], Snyder [3], Burkhalter and Kos-

chmieder [4],[5] are frequently mentioned in literature. Coles showed that the

wavenumber of Taylor vortex How is not unique for a given Taylor number.

Snyder showed that the wavenumber obtained from the experiments depends

on the initial conditions. He concluded that any method which neglects the

time-dependent behavior of the problem can not select the final state from the

manifold of solutions of the nonlinear problem. Figure 1.2 shows the results

obtained by Burkhalter and Koschmieder. The ratio of the inner cylinder to

the outer cylinder is equal to 0.727. The dimensionless wavelength, >„, is

deHned as X/d where d is the gap of the cylinders. In this experiment, three

methods are employed to obtain Taylor vortex How: ’sudden start’, ’quasi-

steady variation’ and ’slow Hlling’. In sudden start method, the inner cylinder
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is brought from rest to some Taylor number almost instantaneously (less than

one second) and the How changes from Couette How to Taylor vortex How in

seconds. In the quasi-steady method, the Taylor number is changed very

slowly as smooth as possible. In the Hlling method, the gap is slowly Hlled with

Huid from the bottom while the inner cylinder is rotating at some constant

supercritical angular velocity. In Fig. 1.2., we can see that the quasi-steady

variation method gives the wavelength almost equal to the critical wavelength.

The sudden start method results in shorter wavelengths while the slow filling

method produces longer wavelengths. The curve separating the wavelength-

Taylor number plane (>„- T plane) into stable and unstable regions is obtained

from the linear stability theory. According to the linear theory, an axisym-

metric disturbance with wavelength >„ dies out in the stable region or grows

and thus develops into Taylor vortex How in the unstable region. The lowest

Taylor number on the curve is called the critical Taylor number, T„, and the

corresponding wavelength (or wavenumber) is the critical wavelength, >„„ (or

critical wavenumber, ß„ Though the linear theory predicts T„ and >„„ (or ‘

,8,,) quite successfully, it has at least two drawbacks. First, at high Taylor

numbers, the linear theory indicates that the dimensionless wavelength >. could

be very big or very small (note that in Fig. 1.2 >„ is of log scale). However, all

the forementioned experiments showed that the wavelengths appear in a nar-

row band consisting of the critical wavenumber in spite of the methods used to

create the Taylor vortex How. Hence, the values of >. are close to 2, which

means the cross section of cells is almost square. The second drawback result-

ing from the linear theory is that amplitudes of the How can not be evaluated.

Some experimental work is concerned with the end effects which become

important in short cylinders. Benjamin and Mullin [6],[7],[8] discovered in the
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short cylinder experiments the hysteresis phenomenon which indicates the mul-

tiplicity of the How. We shall discuss this phenomenon in Sect. 6.2.

Some numerical work has been done. Most of the early studies were

focused on the steady state of the How. Recently, Neitzel [9] performed compu-

tations of time-dependent Taylor vortex How in Hnite length-cylinders. The

objective of his work was to compare the results of the computation with the

experimental results by Burkhalter and Koschmieder. The values of the

wavelength determined numerically are in good agreement with the

wavelengths measured for 1< T /T„<16. Very recently, computations of the

steady state have been done by Meyer-Spasche and Keller [10]. Unstable

steady state solutions were found in some cases.

At present the mathematical tool available for the analytical study of the

nonlinear hydrodynamic stability is the perturbation method where an expan-

sion in the amplitude is used. In 1944, based on a heuristic argument, Landau

[11] proposed an amplitude equation now referred to as the Landau equation

whose modified and generalized form is

-jT%= a„+a,A2+a,A‘+a3A°+··· (1.1)

where A is the time-dependent amplitude of a disturbance and ao, 41,,ai.,are

Landau constants. Note that ao is the growth rate of the disturbance

predicted by the linear theory. In 1958, Stuart [12] derived the Landau equa-

tion from the energy principle for Poiseuille How between parallel planes and

for the How between rotating cylinders. Since Stuart’s work, the Landau equa-

tion has been widely accepted and applied to problems of nonlinear hydro-

dynamic stability. For Taylor vortex How, Stuart and Watson [13],[14] pro-

posed a formal asymptotic expansion (third order) which was later used by
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Davey [15],[16] to compute the amplitude and the torque on the inner cylinder

for the Taylor numbers slightly greater than the critical Taylor number.

Davey’s calculation of the torque was in good agreement with the experimental

measurements.

We have mentioned that in experiments Taylor vortices always show up

in a much narrower region (see Fig. 1.2) than that predicted by the linear

theory. One explanation for such discrepancy is that Taylor vortices are

unstable to a side band of axisymmetric disturbances. Hence, such instability

of secondary How is sometimes called side-band instability or Benjamin-Feir

instability. To investigate the side-band stability, Echkaus [17], Kogelman

and DiPrima [18] developed an approach based on the Landau equation and

the concept of wave interaction. Their asymptotic expansions in the amplitude

were carried out to the third order. They found that inside the unstable region

predicted by the linear theory, there is a subregion where stable Taylor vortex

How can exist. The boundary of this subregion is called the side-band stability

curve which is the dashed line shown in Fig. 1.2. However, as compared with

the experiment results, the region encompassed by this third order side-band

stability curve seems too wide at large Taylor numbers. Nakaya [18] designed

a method to compute the side-band stability curve up to the Hfth order. The

subregion he obtained is somewhat narrower than that from the third order

approximation. But his result is subject to doubt as we shall discuss in Chap.

8. Hence, a natural question arises: whether or not the side-band stability

curve will become narrower if a higher order asymptotic expansion is used.

The asymptotic expansions in amplitude used by Stuart, Waston and oth-

ers suffer some shortcomings such that the Landau constants ag, aß, ar, · · · are

not uniquely determined and their results are restricted to the third or fifth
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order. Herbert [19],[20] improved the expansion by introducing a new

definition of amplitude based on reasonable normalization. In Herbert’s pro-

cedures, all high order terms in the expansion are uniquely determined. Hence,

the calculation can be carried out to arbitrarily high order.

1.2 Objectives

The initial motivation of our work was to apply high order asymptotic

expansions developed by Herbert to study

(1) the evolution and the steady state of the amplitude of Taylor vortex

flow;

(2) wave selection, more precisely, the effect of the high order terms of the

asymptotic expansions on the side-band stability curve.

In the course of this research, we realized the limitations of the perturba-

tion method which described the evolution of a single disturbance (single-

mode). Therefore, a new perturbation method called the two-mode method

and a (pure) numerical method are developed. Consequently, we use two

approaches in our study: perturbation methods and numerical method. These

two approaches support, supplement and sometimes correct each other. Good

and reliable results are thus obtained. More importantly, some new phenomena

such as jump phenomenon and hysteresis phenomenon are discovered and

explained.



CHAPTER 2

GOVERNING EQUATIONS AND CONCEPTS OF STABILITY

2.1 Governing Equations

It is natural to employ cylindrical polar coordinates (1-,0,:) to study circu-

lar Couette How and axisymmetric Taylor Vortex How. Note that both Hows

are independent of the azimuthal angle 0. The Velocity components V,,V,,1Q

and the pressure P satisfy the reduced Navier-Stokes equations for viscous

incompressible fluid

6V, BV, 614 V,2 -1 ap BZV, 1 6V, BZV, V,7+ "·7+ lC77° 7—77+”(v+77+v‘ 7l
‘_

(2.1.1)

BV, BV, BV, V, V, B2V,
1 BV, BQV, V,

8lC 6V. BV. -1 6P 82Vz 1 öllé 82V.
2 7 + "·7+ K7 -77 +”(v + TT + vl (2·1·3l

and the equation of continuity

BV, V, BV,——Üwith

the boundary conditions

at

TV,$Vz $0 V; $TgS-22 Gt T

$T2wherer1 and r2 are the inner and outer radii, respectively; Q, and Q 2 are the

- 7 -
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angular velocities of the inner and outer cylinders, respectively; p is the den-

sity; u is the kinematic viscosity; t is the time.

The simplest solution (basic How) of (2.1.1)-(2.1.5) is Couette How

V„(r) =Ar + g

VÖP1, =P;, (r) =fp—7dr + const. (2.1.6)

- 2 1- r Q 4
W1'1€I‘€A =Ü1%, B =Ü1r12·-j- , r) =i , }1 =—(f .

Taylor vortex How (secondary How) is also a solution of (2.1.1)-(2.1.5),
· which results from the unstable disturbed Couette How. Thus, its Velocity

components and pressure can be expressed as

2 V,(r,z,t) () Ü(r,z,t) I
V,(r,z,t) = V„(r) + V(r,z,t) · (2.1.7)
V„(r,z,t) 0 W(r,z,t)

P =P,, + F

where Ü, V, W are the axisymmetric disturbance Velocity components and F

is the disturbance pressure.

We substitute (2.1.7) into (2.1.1)-(2.1.5), reduce the three momentum

equations to two equations by eliminating F, and nondimensionalize the

resulting equations and the boundary conditions. Finally, we obtain

621/ 61/ 1 61/ 1 UVDD'V ——— —— U =—— UDV W— —+l— 2.1.8+6;2 8r 2,4
6( + 8;)+2,4 1+:6 ( )

82U 8U 62 62U 8U 621/DD‘DD'U DD'2————— —————2TO——+ (
8S·2 ÜT

) +
8g2( ögz ÖT

)
8g2

_ 1 82 8U 6 8W T Ä 2 2 1 9—m[?(UDU + WE)- äD(UDW + + -1+ I5 ögg V ( . . )
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, 8W
D U —=0 . .+ 8; (2 1 10)

with boundary conditions at :1:=0 (inner cylinder) and 1:=1 (outer cylinder)

V =U =D'U =O (2.1.].1)

where

Q — Q _

G1 '7 '1

d2
t =T/-r z =gd r =r1+2d =r1(l+26) (0$2$1)

L :iL L :iL L —LL
är d ä2 äz d äg ät

—
d2 är

— 11 G1 — — 11 G1 — 112 G1
i ilill-•iU112,46U "¤‘V W d2A6W P pd22A6p

1 A 1;- r;2 V60 1 B *12 2 + ::5
Q1 1-T12 (I) 'Q1 O1( T2)

#7(1+v7)(1+::6)2

8 ._ 8 6D-; D-‘;+1+„6)
and the Taylor number

20 2d2
T :2-L(1,1,), + U V, ( )

Note that 1- , g , r ,U , V, W and p are dimensionless variables, and

Q =Q (2) represents the dimensionless basic flow.

We define the Reynolds number as

Q dR, :2 (2.1.13)
1/

Hence, the relation between the Taylor number and the Reynolds number

is

- - L L11. 2 (2114)
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We shall only study the case when the outer cylinder is fixed while the

inner cylinder is rotating with Q ,, hence

..,72 T12

Qg=Ü }l=Ü
’1=12

A' =l. Q = _ 2: 2 + 2:61—q’ (Z) 1
v7(1+v7)(1+::6)2

T :.27.3..2.ää
1 — r}2 u2

Q d -R =Äi..i.. T =ÄilÄRJ2 (2_1_15)
u 1 + n

Since z=gd, the dimensional wavenumber B and wavelength X are

expressed as

2 1 16ß J J J ( - - )

where ß and >« are dimensionless wavenumber and wavelength, respectively. If

ß=1¤-, then X=2d , that is, the cross sections of cells are squares.
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2.2 Linear Stability

The fact that Taylor vortex How is axisymmetric and periodic in the axial

direction suggests that small axisymmetric disturbances destabilize Couette

How. Furthermore, these axisymmetric disturbances can be decomposed into

periodic functions of z (modes). Following the standard procedure of linear

stability analysis, we consider the inlinitesimal axisymmetric disturbances

which are so small that all the nonlinear terms in (2.1.8)-(2.1.11) can be·

neglected. Thus, we obtain the following linearized disturbance equations

. 82V av _0.0 nä- y- U-o (2.2.1)
• . . 82U 8U 82 82U 8U 82VDD DD U DD ————— ——————— T0—= 2.2.2

. 8W _D U + -0
A

(2.2.3)

with boundary conditions at z =0 and z =1

V =U =D'U =0 (2.2.4)

We apply the normal mode method, in which modes are handled

separately because-each of them satisües (2.2.1)·(2.2.4). The solution is

assumed as

U(¤„s,r)} {Uwlü} (W -6;+;) 9

where ao is called the linear temporal growth rate and ß is the dimensionless

wavenumber. Couette How is considered unstable as long as one of the axisym-

metric periodic disturbances (modes) has a positive ao.

Substituting (2.2.5) into (2.2.1)-(2.2.4) leads to
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[DD'- ([62+ «,,)]vm- Um=o (2.2.6)

[DD ‘DD '— (2492 + a„)DD '+ ß’(ß2 + a0)]Um + 2TQ ß2Vm =0 (2.2.7)

D
‘

Um - ißwlo =o (2.2.8)

with boundary conditions at z =0 and z=1

Uw(z) =Vm(z) =D ' Um(z) =0 (2.2.9)

which are a set of linear ordinary dilferential equations with independent vari-

able z. The independent variables r and g have been replaced by the parame-

ters, ag and ß, respectively.

There are three parameters ao, ß, and T in (2.2.6)—(2.2.9). Two basic

problems considered in the linear stability are

(1) find the neutral curve, that is, the relation between ß and T when

ao =0;

(2) determine whether Couette flow is stable or unstable for given ß and

T, that is, find ao.

Problem (2) is obviously an eigenvalue problem. Problem (1) can also be

treated as an eigenvalue problem since the neutral curve is obtained pointwise

by solving for T at different given values of ß. Nowadays, by use of comput-

ers, both problems are solved very quickly and accurately.

Since we are interested in the nonlinear theory, we shall not discuss the

details of the linear theory, which can be found in the book by Chandrasekhar

[22] or the book by Drazin & Reid [23]. Instead, we present the numerical

technique for solving the boundary value problem of ordinary differential equa-

tions. The technique involves the spectral-collocation method (see Meirovitch

[24], Gottlieb & Orszag [25]), which will also be used in the computation for
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the nonlinear theory.

The disturbance Velocity components are expressed as

112
V1¤(¢) =Z”1¢1(¢)

1-1

114
U1„(2) = E ui ¢>i (2) (2.2.10)

5-1

where ¢i(2) is the Chebyshev polynomial of order j- 1; ui and vi are constant

coefficients; JJ is the number of the collocation points in (0, 1); JJ 2 =JJ+2 and

JJ4 =J]+4.

We substitute (2.2.10) into (2.2.6)-(2.2.9) and then apply the operator
fol

6(2- 2i).( ) d2 at the collocation points 2i where 6(2— 2,) is the Dirac delta

function. Thus, at the i-th collocation point, we obtain

112 _
2 114

Evi [DD — (ß +a„)]¢i(2i) — Zui¢i(zi )=O (2.2.11)
5-.4 5-1

114 112
E ui [DD 'DD

‘—
(2,62+a„)DD '+ ß2(ß2+ a„)]¢i (2i )+ 2TQ (zi ),62

E vi¢i(2i )=0
i-1 1=4

(2.2.12)

with boundary conditions

112 114 114 _
Zvi¢i(0)=0 Ev,-¢i(0)=0 ZD uiq$i(0)=0
1=l 1=l 1=l

112 114 114 _
Zvi~¢i(1)=0 Z«i¢i(1)=0 ZD ui¢i(1)=0 (2.2.13)
f=l f=l 1'=l

For convenience, we define

L=DD'—ß2 P=DD'DD‘—2ß2DD'+ß‘ Q=2Q ß2T

R=* DD·"l‘ ßz
Y[=[v1; ° ° ° 1vJJ21u 11
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Then Eqs. (2.2.11)-(2.2.13) can be written in matrix form. For the case

that a„ is treated as an eigenvalue, we have

(M+ a0N)Y1=0 (2.2.15)

where the matrices are (2 *JJ +6) by (2 #JJ+6) and expressed as

¢1(0) - - ¢J./'2(O) O · · O
¢¤(l) · · ¢u2(l) O · · O

L¢1(¢1) · · L¢J12(¢1) ·¢x(I1) · · ‘¢JJ4(¢1)

L¢¤(1u) - — L¢./J2(I./J) —¢>¤(¤¢1.1) - - 'd’Jf·1(xJJ)
O - · O ~ · d’IJ1(O)l

M: O · ~ 0 ¢»(l) ~ · ¢11«(l) (2.2.16)
0 — - 0 D'¢>¤(O) ~ - D’¢>11«(0)
0 · · O D‘¢1(l) · · D'¢JJ·•(])

Q¢i(¢'1)
- · Q¢JJ2($1) P¢1(Ix) · - P¢JI+(I1) _

Q ¢1(='.u) · ~ Q ¢112(¢11) P ¢l(z./J) - · P ¢114(¢11)

·
O . . O 0 . . 0
O . . 0 0 . . 0

—¢‘x(Zx) - · '¢JJ2(¢1) O · · O

0 ~ — O
N = 0 . . 0 0 . . _ 0 (2.2.17)

0 . . 0 O . . O
O . . O O . . 0
0 . . 0 0 . . 0
0 · · 0 R¢¤(I1) ~ · R¢JJ•(¥1)

0 . . 0
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Since the Chebyshev polynomials are known functions, the matrices M

and N can be determined. The boundary value problem of ordinary differential

equations is thus reduced to a set of algebraic equations. After solving for au

and Y1, we can evaluate the eigenfunctions 14111 and v10 at any value of z by use

of (2.2.10). Among all the eigenvalues obtained, we are only interested in the

principal eigenvalue (the largest one) which governs the stability. Note that

Eq. (2.2.15) will give 6 abnormal eigenvalues which should not be taken into

account. The matrix N is singular since the eigenvalue ao does not show up in

6 boundary conditions. Equation (2.2.15) can be changed to

(M—‘N+ %1)Y1=o (2.2.18)
0

which implies

den (M‘ ‘N+%I)=0 (2.2.19)
0

Obviously, if then det (M"N)=det(M")det(N)=0. That is, there
0

appear 6 extremely large but spurious eigenvalues in the eigenvalue spectrum.

An alternative method is designed to search the principal eigenvalue and the

associated eigenfunction only and thus save a lot of computation time. For

brevity, we do not present this method here. For the case that T is treated as

an eigenvalue, the problem can be cast in a similar way.

Figure 2.1 is an example of the neutral curve for the wide gap case r;=0.5.

Eight collocation points (JJ =8) are used. Figure 2.2 is an example of the varia-

tion of the linear growth rate Go with ß at T=1715 for the small gap case

q=0.95238 (i.e., ö=0.05 T is slightly greater than T„=1695. In this case, the

curve a11 vs. ß can be well approximated by a parabola which will be useful in



r 16 -

Sect. 8.3. where the equation of the parabola will be given.

The use of the Chebyshev polynomials and an appropriate choice of the

collocation points guarantee high accuracy of the results. Let us take the com-

putation of the principal eigenvalue at ,6=3.0 and T=4500 as an example. The

variation of Go with the number of collocation points JJ is listed as follows

]J=8 ao=5.313056

]J=1O a0=5.312527

JJ=16 a0=5.312501

The relative error of dg is about 0.01% for JJ=8 and 0.0047% for JJ=10 if

we regard ao for JJ=16 as an ’exact’ value.
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2.3 Nonlinear Stability and Fourier Analysis

In the nonlinear stability, we study the disturbances of finite size. All the

nonlinear terms are taken into account. Because Taylor vortex How is periodic

in the g direction, it is natural to represent the disturbances by the Fourier

series in g

U 1‘,§,T oo Un (Z rr) ,
v 6,;; : E V,(¤:,r) 6 <--··ß<> (2.3.1)
W I rgar) ""°° W,. (I,7')

Of course, we may use laß in (2.3.1) instead of —la ß, which is optional

because U, V, W, are real functions

U, =U_, V, =V_, W, =W_, (2.3.2)

Hence we only need to solve U,, V,, W, for non-negative values of a . We

define the amplitudes as follows

AQ = l/0(I =0.5,T)

{A, :2v,(„ :0.6;) („ : 0) (2-3-3)

where Ac is a measure of the distortion of the mean How (basic How) and A,

are measures of the spatial harmonics in g. For example, A, =2V,(z =0.5r).

Substitution of (2.3.1) into (2.1.8)-(2.1.11) leads to

[DD'- n3ß3 — 7%-] V,. — U„ =—Z4213—u§lo[U„D ' V„-„ — (¤—ß)ß(¢W„)V»-,1]

(2.3.4)

2TQ 6121121/,
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_
("—ß)ß({Wß)Ul·ß]

_ Vß•"I|}

ß2ß2 co . 2 „ . .+—«—
E {DU„D(•W,_„) + U„D («W,,_„)— (n—p)ß[D(•W„)(•W,_„)2A 6

„__,„

+ (;w„)1> (iW,_„)]) (2.3.5)

D‘U, - mßw, =o (2.3.6)

with the boundary conditions at z=0 and z=1

U, =v, =D'U, =o (2.3.7)

where the independent variable g has been replaced by the dimensionless wave

number ,9.

Based on the above Fourier analysis, we shall apply two approaches to

solve the set of nonlinear equations (2.3.4)-(2.3.7):

(1) numerical method;

(2) high-order perturbation methods.

In the linear theory, a small single disturbance (single-mode) with positive

linear growth rate ao is assumed to develop independent of other disturbances.

In the nonlinear theory, due to the nonlinear interaction, a small single distur-

bance with wavenumber /3 will generate corresponding harmonics with

wavenumber nß (1•=2,3,...) and distort the mean flow during the evolution of

the flow. More features of the nonlinear theory will be discovered and

explained.



CHAPTER 3

THE HIGH-ORDER

PERTURBATION METHOD FOR. SINGLE-MODE

3.1 Formulation for the Evolution of Taylor Vortex Flow

In the single-mode perturbation method, the distortion of the mean flow

and higher harmonics are assumed to be exclusively generated by the funda-

mental through the nonlinear terms. Based on this strong assumption, Herbert

[19],[20] proposed the following amplitude expansion

Un (2 ,1*) N
Uma (I)

V, (2:,r) -2A I" H2"' V,„, (x) (— oo<n <oo) (3.1.1)
w„(¤„¢) ""‘° w,„,,(«)

where

(T) UIM
g U- IM VIM

2 V- IM Wnm
2 W- IM

U„„,= V„„= W„„=0 (3.1.2)

and

V„,(z =0.6)=0.s
{V,„„ (x =0.5)=0 (n 56 1 and m 560) (3'L3)

As compared with the definition of amplitudes in (2.3.3), we have

A ,=2 V1(z =0.5,r)=2A (1·)V„,(z =0.5)=A (1-)=A (3.1.4)

Obviously, A(1-) is the amplitude of the fundamental. In (3.1.1), the lead-

ing term (m =0) in the fundamental is of order A; the leading term in the

second harmonic is of order A2; the leading term in the third harmonic is of

- 19 -
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order A3. Those terms with m >0 are the higher order corrections to the har-

monics or the distortion of the mean How. Therefore A(r) plays the role of a ‘

perturbation parameter. Now the single—mode has more meaning than a small

single disturbance because it also implies that there is only one perturbation

parameter A(1-). Later, in the two-mode perturbation method (see Chap. 6),

two parameters, A(r) (the amplitude of the fundamental) and B(1-) (the ampli-

tude of the second harmonic) are introduced.

For the time derivatives, we apply the well-known Landau equation

=a0A +
a1A3

+
a2A5

+ a3A7 + a,A° + ··· =§)a,,A2"+‘ (3.1.5)
1=o

where 4,, is indeed the linear growth rate as A—»0; a,, az, · ·~ are called the

second, third, · · · Landau constants, respectively. Note that these constants

are regarded as constants in the sense that they are not functions of time, but

they are functions of ß and T.

Now we introduce the equivalent forms of (3.1.1) and (3.1.5)

U,, (1* ,1*) oo
U,„„ (2*)

V,,(z,1·) = E/1"(AÄ)"' V,„„ (z) (n go)
W„(¤„7)

”°=° W„„„(¤)

U_,,(x,1*) oo
U_,„„(x)

V-„(= ,1) = E Ä"(AÄ )'" V-„m(¢) (21 >0) (3-1-6)
W-„(=,7)

”°”° W-„„„(¤)

JA ^ ‘ 2 — °° ‘
'· 6 1 7‘l*or

,1 dÄ . . ¤¤ .
äj? =·% F=¢o+ ¢1(/1/1)+ ¤¤(AA)3+ "‘ =§)¤1(AA)"



- Q1 -

where A =Ä . Both A and Ä are real. If A is associated with ezp(— iß), then Ä

is associated with ezp(£ß). This is helpful and convenient when we construct

and check the perturbation equations by hand. For example, in (3.1.7), it is

easy to see that all the terms on both sides of the Landau equation are associ-

ated with the same wavenumber ß.

It is not diücult to generate (3.1.1). The procedure can be demonstrated

as follows. We first compute the functions associated with A, and its counter-

part Ä(i.e., Vw and V_w). Then, due to the quadratic terms, we generate the

functions associated with A2, AÄ and their counterparts at higher order (i.e.,

V,,,, Vw and Vlw). By use of all known functions, we produce at the third

order the functions associated with A2Ä ,A3 and their counterparts (i.e.,

V,,,Vw,V_,, and V_w). In such a way, we can generate the functions at arbi-

trarily high order. We list some lower order functions as follows
V

06 6 26 36 46 56 66

AÄVO, A21/w
A2ÄV,, Aßvw

A=A?v,„ ‘
_ ASÄVQ, ,4*1/,,,

· A°A°v,, A‘ÄV3, Aövw
A=A“v„, A*A*v„ A**AV,, A°v,,,

The first column represents the distortion of the mean flow because A" Ä"

implies zero wave number. The second column means

V,=Av,,,+,4=AV,, +A=A°v,,+ (3.1.8)

When we compare (3.1.8) with (3.1.7), we can see the inherent relation

between the fundamental V, and the corresponding Landau equation.
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Replacing V, by —;AÄ; and V,,,, by a„, in (3.1.8), we obtain (3.1.7). This idea will

be used later in the two-mode perturbation method (see Chap. 6) and the

side-band stability (see Chap. 8).

We substitute (3.1.6) and (3.1.7) into the system of nonlinear disturbance

equations (2.3.4)-(2.3.7). Then we decompose the system into successive linear

ordinary diiferential equations according to: (1) same order; (2) same wave

number. As an example of the application of the Landau equation, we show

d . . . dV1
the term -F(AV,„), which IS the Hrst term in Ty,

%(AV,„)=a„V„, + a,A (AA )V,„ -1- a2A (AA )2V,„ + · · - (3.1.9)

The term a„V„ will show up in the equations of Vw where ao will be

determined. The term a,V„, will be added to the equation of V1, since a,V,„ is

associated with A(AA) where a, will be solved. The resulting successive linear

perturbation equations are

[DD °- (¤ ß)2 — (#1 + 2m )¤¤]V„„— U„„ =— R1
l¤ä

(3.1.10)

{DD ' DD '— [2(n ß)2+(n +2m )a0]DD ' +(n ß)2[(n ß)2+(n +2m )a„] }U,„„ + 2TQ (n ß)2 V„„,

=-ä(¤+2m-2()lDD'-(¤ß)2]¤1 V„(-.-1;+Rz (3-1-11)
l=l

0*0,,,,, - 6„ßw„„, =o (3.1.12)

with the boundary conditions at z =0 and z=1

U..„ =v„.. =1>‘ U.„. =¤ (3-1-13)
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where

um (¤

Ußl, (11 +11)(m - 11- ;1)[+N [(11 +11)(m - 11- 11), - 11;.1]} (3.1.14)
v¤¤lv=0

and

M lußr (n(nN

(1lThe

expressions for the nonlinear terms R, and R2 are tedious. As an

example, we show the equations for U20, V20, W20 (Le., n =2,m =0)

[DD '— (2ß)2 — 2<=¤]V2o — U20 V10 (3-1-16)

[DD ' DD '— [2(2ß)2+ 2a 0]DD '+ (2ß)2[(2ß)2+ 2110] [U20+ 2TQ
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(3.1.17)

D' Vw- 623 w,_,„,=o (3.1.18)

With the boundary conditions at z =0 and z=1

0,,,: 1/,,:0 ' U„„=o (3.1.19)

where

R Vio — ßiW10V10) (3-1-20)

— . TRz(V1¤Vm) =(2ß)2{·§v%lUioDU1o · ß(#W1o)U1¤] — V1oV1¤}

+ j·b—(2ß){DUmD(=°Wm) + U1oD2(¥Wio) · ßlD(iW1o)(¥Wio) + (¥W1o)D(¥W1¤)]}

(3.1.21)

Note that the bold face letter V is used here. The symbol Vw stands for

any one among Uw, Vw, Ww. This symbolic notation will be used later in Sect.

3.3.

We design a program to automatically generate and solve the complicated

and lengthy equations (3.1.10)-(3.1.13) for ’arbitrarily high’ order.

We can also point out some shortcomings of this method. The amplitude

expansion (3.1.1) implies that if the fundamental A =0, all the harmonics and

the distortion of the mean flow are automatically equal to zero. We shall see

that is not always true. Another shortcoming is that we can only prescribe

different values of the initial disturbance of the fundamental A(0) in the Lan-

dau equation (3.1.5). Hence, the method is incapable of dealing with the

interaction between different modes with different initial amplitudes. Other

shortcomings will be seen later.
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3.2 Formulation for Steady States of Taylor Vortex Flow

The method we use to directly compute steady states relies on the param-

eter expansion used by Reynolds and Potter [26] to study steady states of the

Poiseuille How and later by Herbert [27] to study steady states of Taylor vor-

tex How.

To study steady states, all the time derivatives are dropped from the non-

linear system (2.3.4)-(2.3.7). The amplitude expression is the same as (3.1.1)

except that A(r) is now replaced by the steady state amplitude, A, , which is

no longer a function of time. Of course, the Landau equation is not used. In

(2.3.4)-(2.3.7), there are two parameters, wavenumber ß and the Taylor

number T. The wavenumber appears nonlinearly while the Taylor number T

appears linearly. Heuce, it is easier to expand T than ß. For a Hxed ,8, we

expand T as

T; To + T1A¢2 + T2A,* + T,A,° + TlA,8 + - · · ;;T,,A,2* (3.2.1)

or equivalently,

T;T„ + Tl(A,Ä,) + T2(A,Ä, )2 + T3(A,Ä, )@· + - ~ - =;i;]0T,,(A,Ä, )'· (3.2.2)

where Tl, is the Taylor number at the neutral curve; Tl, T2, ·· ·· are the

coefficients to be determined.

We substitute (3.2.1) and the amplitude expression into the nonlinear sys-

tem (2.3.4)-(2.3.7) with the time derivatives dropped. Note that we should

apply (3.2.1) to both sides of the equations. The program designed takes care

of generating and solving the differential equations and evaluating To, Tl,

T2, . . .
·
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A

After computing TQ, T,, T2 · · · , we can obtain A, for given T , or obtain

T for given A, by use of (3.2.1). The advantage of this method is obvious if

we are only interested in steady states. By use of (3.2.1), it is easy to compute

A, for many different values of T at a fixed ,8. In contrast, if we use the

method for evolution to ünd A, , we can only get a single value of A, for a

group of 4Q, 4,, 42, · · · at fixed ß and T. For many different values of T, we

need to compute many groups of Landau constants.

Success and shortcomings of this method will become more obvious as

compared with the results of the numerical method. For this reason, the

presentation of the results is postponed to Sect. 5.5.
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3.3 Results of the Evolution

Figures 3.1(a) and 3.1(b) describe the evolution of the amplitude A(1·)

(indeed, 0.5A) at ß=3.3 and T=3675 for the wide gap case 1;=0.5, where 9th

order is used. In these two figures, we observe that A (1-) grows almost exponen-

tially at the beginning, which implies that the linear theory is adequate. With

growth, the nonlinear terms become more and more important and reduce the

growth rate of A until finally a steady state is reached. By comparison of the

iigures, we recognize that the change of the initial amplitude of a disturbance

changes only the time to reach the steady state but not the value of the steady

state, A,. This is a typical example of supercritical stability. For different

values of ,8 and T, the single-mode method gives figures similar to Fig. 3.1.

Now we turn our attention to the study of nonzero steady states of A .

Figure 3.2 shows the steady states at T=3500 for 1;=0.5. We get nonzero

steady states of A from ß‘ (the wavenumber of the left branch at the neutral

curve) to ß* (the wavenumber at the right branch of the neutral curve). Figure

3.3 shows the steady states at T=6000 for q=0.5. The results of both 9th and

15th orders are given. In this figure, the curves for the steady state do not

cover the whole interval [ß‘, 19+]. We have two points ßS=2.078 and ß+=6.05

with A, =0. Note that ßs >ß“=1.45. It is easy to understand that ·A,=0 at /3+

because there the linear growth rate is ao=0. However, 11,, is still positive at

ßs. We try diiferent orders of the perturbation expansions (from 3rd to 15th

order). The value of ßs does not vary with the increase of the order used

though the nonzero amplitude varies with the orders as shown. W'hen we

recall the truncated Landau equation (up to the 3rd order)

%=«,,A +11,/1** (3.3.1)
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we can easily obtain the expression for the steady state by setting that

is

A2:-¢
a 1

For the positive 4,, at ßs, we conclude that the second Landau constant 4,

must tend to -eo for A, =0. This conclusion is conürmed by Fig. 3.4., where 4,

‘ vs. ß is plotted and 4, does show the singularity at ßs. For those wavenumbers

,8 satisfyiug ß<ßs, a, is sometimes positive, producing meaningless result

A,’<0; sometimes it is negative, giving positive A}. But we realize such posi-

tive A, is incorrect. Hence, we find the single-mode method is to be only valid

in the interval [ßs, ,8+] rather than the interval [ß', ß+]. Furthermore, we know

that those nonzero values of A, at wavenumbers close to ßs are not correct

because of the singularity at ßs. We shall explain in the next section why and

where this singularity occurs.
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3.4 Singularity

Having found the singularity phenomenon in the single mode method, we

now derive the equation for the occurrence of the singularity from the pertur-

bation equations (3.1.10)—(3.1.13).

For simplicity, we only present the first equation (3.1.10) in (3.1.10)-

(3.1.13). From (3.1.10), we get the following equations for Um, Vm

(DD'- [62- „„)vm- Um=o (3.4.1)

which is an eigenvalue problem. Solving this equation and its accompanying

equations in (3.1.11)-(3.1.13) for Um, Vm, Wm, we obtain ao, Um, Vm, Wm.

For Um, Vm, we have

[DD °— (2ß)2 · 2¢olV2o · U20=R1(v10vl0) (3-4-2)

_ which is an inhomogeneous equation. This equation is not always solvable. To

show this, let us consider the equation for Üm, Vm associated with a

wavenumber E which is equal to 2ß

[DD '—E2— EO] Vm — Üm=0 (3.4.3)

that is

By comparing (3.4.2) with (3.4.4), we know from the theory of ordinary

differential equation that U20 and V2,) will have a unique solution if

In the case that

E=2ß E0=2a0 (3.4.6)
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the equations for U2,, V2, will have no solutions unless they satisfy solvability

condition. For this case, the inner product of the inhomogeneous terms and

the eigenfunction of the adjoint system must be equal to zero. Since there is

no Hexible (undetermined) constant in the inhomogeneous term R, (also in R2),

the solvability condition can not be satisfied. Thus in general U2,,, Vw have no

solution and become abnormal (extremely large) in the numerical method.

For U,, and V,,, we have

where the second Landau constant a, is to be determined. When Eq. (3.4.6) is

satisfied, a, has a singular value because of the abnormal V2,. For example, we

have shown that the singularity of a, occurs at ß=2.078 and T=6000 in Fig.

3.4. The calculation shows that a,,=5.3795 at ß=2.078 whereas E,,=10.7639 at

F=2,8=4.156. Hence, E,,=2a,,, which coniirms (3.4.6).

Since the singularity occurs in the low order, increasing the order in the

perturbation method, for example, from 3rd to 15th order, does not change the

wavenumber for A, =0 where a, is singular.

In Fig. 3.5, we plot the singularity line of ßs which is also the line with

A,=0 in the ß- T plane. Note that this line starts from a particular point P.

The corresponding Taylor number, called TP, intersects the neutral curve at

two points, P and Q, such that ßq =2ßp. These two points, especially the

point P, have special significance since ,8,2 =0.5ßQ and (a,,)P=0.5(a,,)Q =0. For

the wide gap case (q=0.5), TP=3666 , ßP=2.2 and ßq =4.4. For those Taylor

numbers satisfying T,, 5 T 5 TP, we can get the steady states of A from ß' to

ß+. That is, no singularity occurs.
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Moreover, we should point out that we shall obtain abnormal functions

Uno, Vso,

Wn0IIndis

satisüed (n 3 2). Taking n =3 as an example, it is easy to show that 4, will

have a singularity at the wavenumber ,8 which satisfies

:sß=E 3,;,,:6,, (3.4.9)

The wavenumber ß satisfying Eq. (3.4.9) is smaller than that satisfying

Eq. (3.4.6). For example, at T=6000, the wavenumber satisfying (3.4.9) is

ß=1.703 which is smaller than ß$=2.078 as shown in Fig. 3.6. In fact, a,,=2.320

for ß=1.703 while a,,=6.954 for 3ß=5.109. Hence, Eq. (3.4.6) is a special but

important case in Eq. (3.4.8) since it causes a singularity in larger wavenumber

than other values of n .



CHAPTER 4

FORMULATION OF THE NUMERICAL METHOD

4.1 Formulation

First, we rearrange (2.3.4)~(2.3.7) as

=(DD '- „2ß2)V„- U„ (n -;1)ß(£W„)V,,_„]

(4.1.1)

*- n’ß2)U,, =(00 *00 *- 2n2ß2DD *+ „*ß·*)U„ + 2TO „=ß=V„

_
(n —u)ß(iWß)Uß·ßl- V7¢·Il}

2 2 oo—% E {DU„D(¢W»--1)+ U„D2(¢W„-1.)- (¤—1·)ß[D(¢W„)(¢W„-„)
}l¤-OO

· + (='W„)D (1%-,.)]) (4.1.2)

0* 11,, - ¢„ßw,_ =o (4.1.3)

with boundary conditions at 1 ==0 and 1 =1

V,,(1,1*) = U,,(1,1*) =D ° U,,(1,1*) =0 (4.1.4)

Then we separate the variables and apply a spectral—collocatio11 method.

We assume that

11
VßJ.(T)¢J' (Q:)

_1=l

112
U„ (1 ,1) = U,,,—(1)¢,~(1) (4.1.5)

;=l

- 32 ..
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where is the Chebyshev polynomial of order j—1; u,~ and 0, are constant

coefficients; JJ is the number of the collocation points in [0,1] and JJ2= JJ +2.

We substitute (4.1.5) into (4.1.1)-(4.1.4) and then apply the operator

f
01

6(z - z,).( ) dz at the collocation points z, . The resulting equations are sets

of ordinary differential equations with the independent variable r at the collo-

cation points :1:,-. However, the boundary conditions have no time derivatives

which make it dißicult to write the sets of equations in matrix form. To over-

come this obstacle, we convert the boundary conditions to the following ordi-

nary differential equations with respect to time and with initial conditions

[
U, (r,-) :- 1.% U, (1-,-)

U" (E'?) :0 : U, (?,0) :0

[
V,(E:',1·)=— 1% v,
v, :0

[D ' U, (i',1·) =— käß ' U, (?,1·)

D * U, (ar) :0 : D , Un (7,0) :0 (4.1.6)

where :F=z„=0 or ?=z,=1.

Note that 6 constants k are introduced in (4.1.6). If we drop the nonlinear

terms in (4.1.l)—(4.1.2) and solve the resulting linear equations, these constants,

- k , will show up in the eigenvalue spectrum as spurious eigenvalues. Theoret-

ically, their values are arbitrary. But from the viewpoint of numerical stabil-

ity, k should be positive. Hence, —k is chosen somewhere between the max-

imum (principal) and minimum eigenvalues. If —k is greater than the principal

eigenvalues, it will contaminate the system. Note that for high harmonics (big
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values of n), the principal eigenvalue will be negative with a large absolute

value. In actual computations, k is of the order 103.

After we apply the operator to the boundary conditions, we obtain

JJ
-

JJ 8E V·•1(T)¢1(=‘)=·"E;—V„1(T)¢1(?)
11 _ ;..; ,·.,„ T

V,} (1')¢j(Z) =0 -* jj
-’”‘

E V«•1(0)¢1 (T) =0
;=x

for brevity, only one boundary condition is shown.

Now we present the resulting equations at z,(i =2, · · · ,JJ— 1):

‘ 11 6 11
' 2 2 112

V,jfli=|
f*l f=l

1 °° .lUuD• Vu-16 ' (”“l‘)·B(‘Wu)V¤—ul (4•1·8)
}I$··X

112 8
_

2 112 _
· 2 2 ·E$U„j(1·)(DD -11 ß3)¢j(x,) = ZUM-(r)(DD DD — 2n ß DD + n‘,8‘)¢,·(z,)

5=i ;=1

11
+ 2TQ5=1

2 2 oo—% E {DU„D(‘W«•—„)+ U„D2(‘W•—„) — (¤—#)ßlD(*W„)(*W«-1)
[I?-X

+ (¥W„)D (TW}-„)l} (4-1-9)

112
·

_
m ßww-(x;)]=0 (4.1.lÜ)

5-1

where all the nonlinear terms are not expanded intentionally. The reason will

be clear later.

First we solve the linear part of the problem as a check. That is, we drop

all nonlinear terms in (4.1.7)-(4.1.10). The harmonics U„,V„ and W„ are thus
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decoupled. For each value of 71 , we can formulate (4.1.7)-(4.1.10) as

s lY =Q Y (4 1 11)I 67 I II Il ' '

where

The method used to form S, and Q, is analogous to that to form M and

N in the linear theory (see (2.2.16) and (2.2.17) With the explicit Euler

method, (4.1.12) is expressed as

S, -Ä7[Y, (1*; + A1') — Y, (1*;)] =Q, Y, (r;) (4.1.13)

where A1 is the time step size and 1-,=1'A1-. For II =1 at given ß, the eigen-

function with a very small amplitude (norm) is prescribed as an initial distur-

bance. This disturbance should grow approximately with ezp(a„) if the linear

growth rate is positive. However, in the numerical results the disturbance

grows much faster. Hence, we need to check the eigenvalue spectrum. Taking

ß=3.0 and T =4500 as an example, the largest (principal) eigenvalue is 5.312501

while the smallest one is -59659.18 when JJ =16 collocation points are used.

The stiifness ratio (see Johnson & Riess [28] or Lambert [29]) || is

as large as 10*. In fact, the more collocation points (i.e., the more terms of the

Chebyshev polynomials) we use, the stiffer the Eq. (4.1.13). Therefore, use of

an implicit method is imperative. Eq. (4.1.11) is then expressed as

S, é[Y,(1·, + A1) - Y,(1-,)]=Q,Y,(1,+ A1-)

or

(1*1 + A1') (4-1-14)
T
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which turns out to be successful. Now let us reconsider the nonlinear system

(4.1.7)-(4.1.10). We can formulate this as

Y
S0 0 0 : 0 0

Qg 0 0 : 0
NO

0S10:08Y1 0Q10:0 N1

(4.1.15)

6 6 6 E 6* = 6 6 6 E * =1v YN Qu NN

or

Sa Yu + Nu (Y0vY!r · · · r YN)

where No, N,, N2, · · · , NN are nonlinear terms and each of them is a function of

Yo, Y1, · · · ,YN. Direct application of the implicit method to (4.1.15) is quite

involved. Hence, we use an implicit method to handle the linear terms and an

explicit method for the nonlinear terms. The formula is expressed as

S, (Tg + AT)* Y, [Y, (Tg (Tg N, [Yo(Tg ),Yl(Tg ),...,YN

(Tg(4.1.16)

If we drop the nonlinear term N,,, Eq. (4.1.16) is reduced to the implicit

trapezoidal method with accuracy (A1-)3. The nonlinear term N,, is evaluated at

time 1*,, thus Y„ can be solved separately at 1-,+ Ar. Equation (4.1.16) can also

be written as

Y.(n + Ar) =(S„— ·%iQ„)"i(S„+ ·?Q„)Y„(¤) + ArN„(r6)] (*1-1-17)

This method which is similar to those called semi-implicit or linearly-

implicit method (see Lambert [29]) is successful in our work. Other formula-

tions based on the semi-implicit method but with higher accuracy were tried.
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But those formulatious are not convenient and the improvemeut im the accu-

racy is insiguificaut. Heuce, Eq. (4.1.17) is used for most of our uumerical

work.
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4.2 Some Remarks ou the Method

The numerical method in general requires more computation time than

the perturbation method. For the cases with large positive linear growth rate,

ao (i.e., at high Taylor numbers and the wavenumber not too far away from

the critical wavenumber), the time for a small disturbance to develop into the

steady state is often short. But for those cases with small positive linear

growth rate, this time is quite long and the perturbation method is more desir-

able. However, the numerical method reveals some important phenomena

which would be hardly discovered by the perturbation method. Moreover, the

, numerical method can model actual experimental situations much better than

the perturbation method. The numerical method is good for the study of the

wave interaction. For example, if we use 45 harmonics in the calculation, we

can start with 45 nonzero small disturbances and investigate their interaction,

which would be impossible for the perturbation method. More advantages and

the shortcomings of the numerical method will be discussed later.

The numerical method is indeed a combination of Fourier analysis in the

g direction, spectral-collocation method in the 1 direction, and a finite

difference method in 1 (time). The major errors come from the following

sources: the truncation of the Fourier series, the truncation of the Chebyshev

polynomials and the step size in the finite difference method. That is, the

errors depend on the values of N, JJ and A1. There is no criterion available to

· estimate the magnitude of errors. Hence we perform numerical experiments to

gain some confidence. In Sect. 4.1. we shall show the excellent agreement

between the numerical method and the perturbation method in prototype

cases. For all the numerical calculations, 8 collocation points (JJ=8) are used.

Depeuding on the Wavenumbers, the harmonics N =9, 18, 27, 36, 45 are used.
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The step size of time Ar is varied from 0.002 to 0.02 based on the linear growth

rate. The numerical method is applied to the wide gap case n=0.5 only. In this

case, axisymmetric Taylor vortex flow can exist for values of T much greater

than T„ .



CHAPTER 5

SOME RESULTS OF THE NUMERICAL METHOD

5.1 The Evolution and the Overshoot Phenomenon

In this section, we present the results of the numerical method and make

some comparison with the single-mode method. For convenience, let us fix the

Taylor number at T =6000. We shall present results at the following points in

l>l18 B- T pl2.I1€Z M(5.2, 6000), N(3.5, 6000), R(2.57, 6000), L (2.56, 6000), G(1.3, 6000),

H(1.0, 6000) shown in Fig. 5.1. Note that the wavenumbers are arranged in des-

cending order. For comparison with the single-mode method, only a single

small disturbance V,(0) is chosen as initial condition for the numerical method

for the time being. Recall the normalization of the eigenfunction is

V,0(z =0.5)=0.5. The amplitude of the disturbance is expressed as

. V,(o)=o.sA (o)=o.6c (5.1.1)

where
ic

is a small constant at our disposal.

For the point M (ß=5.2 and T=6000), we show the results of both the

perturbation and the numerical method. Figure 5.2(a) is the result of the

numerical method where 9 harmonics and the distortion of the mean flow are
u

computed and VO, V,, V2, V2, V, are plotted. Figure 5.2(b) describes the evolu-

tion of the amplitude A(1·) (indeed, 0.5A is shown in the figure) where Qth

order perturbation expansion is used. Note that in the single-mode method,

9th order is associated with the 9th harmonic. When we plot these two figures

and superpose them, we find that the curve of 0.5A in Fig. 5.2(b) is almost

identical to the curve of V, in Fig. 5.2(a). In the steady state, 2V,=0.1074 while

- 4O -
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A=0.1089. This excellent agreement gives us confidence that both methods

and the designed programs are correct.

For the point N(3.5, 6000), Fig. 5.3(a) is a plot for the results of the numer-

ical method (9 harmonics) while Fig. 5(b) is a plot for the results of the single-

mode method (9th order). When we plot these two fzigures and superpose them,

we see that the curve of 0.5A in Fig. 5.3(a) is identical to the curve of V, in

Fig. 5.3(b) from the time t=0 to the time when the maximum amplitudes are

reached. However, after reaching the maximum amplitude, 0.5A (1-) keeps this

maximum amplitude as its steady state while V, decreases to some value and

then keeps this new value as its steady state, thus forming an ’overshoot’ of

the curve V,. Due to this overshoot, the steady state of A is slightly different

from that of V, (2 V,:0.16ss, A :0.1712).

The overshoot phenomenon during the evolution was reported by Neitzel

[9] on the study of the Taylor vortex How in ünite-length cylinders. In his

paper, the amplitude is deüned by use of the stream function rather than the

fundamental V, we use. He suspected that the overshoot was caused by the

effect of the iinite-length of the cylinders. Our results, however, sl1ow that the

overshoot exists even for the case of two iniinitely long cylinders. The results

show that the harmonics take different times to reach their individual steady

states. If the fundamental V, reaches its maximum but some higher harmonics

are still growing and these harmonics have Hnite values, the interaction

between the fundamental and such harmonics may produce the overshoot. In

Fig. 5.3(b), we can see that the third harmonic causes the overshoot thougl1

not very clearly. To gain a better view, we present an example as sl1own in

Fig. 5.4 at ß=2.80 and T=9000 (i.e., the point K in Fig. 5.1.). The maximum

of the third harmonic corresponds to the ’valley’ of the overshoot of the
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fundamental and the second harmonic. We thus claim that the overshoot is an

inherent property of Taylor vortex How independent of the length of the

cylinders.

The single-mode method is unable to model the overshoot phenomenon.

The reason is quite simple. If we differentiate the Landau equation (3.1.5) with

respect to time, we get

T‘:%=%[a„+3a,(AÄ)+5a„(AÄ)’+ ···] (5.1.2)

Obviously, is satisHed automatically if However, for the

overshoot, %_i=o but at the maximum of V, (see the point P in

Fig. 5.4.).

Because of the overshoot and the singularity we have shown in Sect. 3.3,

the results of the single-mode method are inaccurate for smaller wavenumbers

at T =6000. We are not going to present the results for the evolution of the

single-mode method in this section.

In Figs. 5.5(a) and 5.5(b), we show the results of two neighboring points

R(2.57, 6000) and L(2.56, 6000), respectively. Fig. 5.5(a) is similar to the previous

Hgures for the numerical method such as Fig. 5.2(a). However, Fig. 5.5(b)

displays something new. The fundamental V, and all the odd harmonics such

as third, Hfth, finally vanish in the steady state. The second harmonic (with

2,8=5.12) takes the place of the fundamental. Hence the How possesses 2,8=5.12

as its wavenumber. More interestingly, the results show that the small distur-

bance with ß=2.56 develops to the same steady state as a small disturbance

with ,Ö=5.12. The following is a comparison between the steady state of ß=2.56
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and that of 6:5.12

_ 6:2.66 6:6.12

V0=— 1.612339E- 02 V0=— 1.612339E- 02

V2=5.567141E— 02 V1=5.567141E- 02

V4=8.991310E— O4 V2=8.991310E— 04

V5=0 -

V°= 1.820990E — 04 V3= 1.820990E — 04

Of course, above results are not occasional. We will explain these results

in Sect. 5.4.

According to the linear theory, there will be no Taylor vortex flow if the

wavenumber, 6, of a small disturbance is less than
6‘

( the left branch of the

neutral curve This is not true in the nonlinear case. Note that at T:6000,

6':1.45. Figure 5.6(a) is a plot for 6:1.3. The small disturbance with 6:1.3

finally leads to the steady state with 26:2.6. The small disturbance with

6:1.3 decays at first, which indicates the validity of the linear theory. How-

ever, this small disturbance generates higher harmonics through the nonlinear

interaction before it vanishes. The second, third and fourth harmonics soon

grow because they have positive growth rate. As we can see from this figure,

the interaction between the second, third and fourth harmonics with finite

amplitudes is complicated. Finally, the second and all the even harmonics sur-

vive while the fundamental and all odd harmonics vanish. Figure 5.6(b) is the

plot for a small disturbance with 6:1.0 which leads to 36:3.0. The following is

a comparison between the steady state of 6:1.0 and that of 6:3.0
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3:1.0 3:6.0

V0=- 5.316461E- 02 Vo=— 5.316461E — 02

Vl=Ü

V2=Ü

V3=8.319775E — 02 V1=8.319775E - 02

V5=Ü

V,=1.049402E — 02 V2=1.049402E — 02

These results will alse be further discussed in Sect. 5.4.
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5.2 Steady States and the Jump Phenomenon

In Fig. 5.7, we plot the steady state of 2V, obtained from the numerical

method (9 harmonics) and A obtained from the single-mode method (9th

order) at T=3675 for q=0.5. The Taylor number is almost equal to T,,=3666.

The agreement between the results of the two methods is very good.

Now we plot the steady state of the fundamental, 2V,, and the second

harmonic, 2V2, at T=6000 in Fig. 5.8. The steady state A, obtained from the

single-mode method is also plotted for comparison. We observe that 2V, drops

to zero at ßj whose value is between 2.562 and 2.565. Also, at 2ß,, 2V2 jumps

up from a smaller value to a bigger value which is exactly the value of 2V, at

2,8,. This phenomenon is called the jump phenomenon. For different Taylor

numbers, T (TQTP), we can End such jumps and the corresponding

wavenumbers, ß,. In Fig. 5.9, the line of occurrence of jump is plotted. Note

that this line starts from the particular point P of the neutral curve. We know

that the singularity line in the single—mode method also starts from this point.

We shall show that the jump phenomenon is a result of the existence of the

unstable steady state solution in Sect. 6.2.

By comparison, we can see the difference between the steady state of the

numerical method and that of the single-mode method may be caused by the

overshoot, the jump or the singularity. For those wavenumbers ß>ß,, the

difference between two methods are approximately equal to the magnitude of

the overshoot. The overshoot phenomenon takes place at high Taylor numbers

with wavenumbers close to the critical wavenumber. For those wavenumbers

satisfying ßs <ß<,8,, the difference is due to the jump and the singularity. The

results of the numerical method are more accurate and reasonable results than

those of the single-mode method. In Fig. 5.9, we sketch the shaded domain
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where the the results of the single-mode method are in excellent agreement

with those of the numerical method. Hence, we conclude that the single-mode

method and the Landau equation produce good results for the values of ß and

T in the shaded domain.

5.3 Amplitude Diagram and Two-Wave Interaction

So far we have only considered the single small initial disturbance. What

would happen if we introduce two initial disturbances to the How? To answer

this question, we show two cases at ß=2.58 and T=6000 in Figs. 5.10(a) and

5.10(b). In these two figures, V,(0) is the same only V2(0) is slightly different.

However, these two neighboring initial conditions lead to different steady

states. We can plot many figures like Fig. 5.10(a) and Fig. 5.10(b) for many

different pairs of A (0) and B(0) at fixed ß and T. But the easier way to study

two-wave interaction is to draw an amplitude diagram for the fundamental

and the second harmonic. Of course, the evolution and the steady states

should be represented in an infinite dimensional space and the amplitude

diagram of two harmonics is only a subspace. Figure 5.11 is the amplitude

diagram at ß=2.58 and T =6000. We observe that there are two attractors A

and B which stand for two different stable steady states. More interestingly,

there exists a repellor R between the two attractors. This repellor corresponds

to an unstable solution. Without drawing the amplitude diagram, it is not easy

to discover the repellor because such an unstable solution is never achieved

during the evolution. A small part of the path corresponding to the overshoot

is also shown. Note that the overshoot only occurs for some pairs of initial

amplitudes A(0) and B(0) including the single initial disturbance (A (0);é0 but



B(0)=0). Indeed there is no overshoot in Figs. 5.10(a) and 5.10(b). Due to the

existence of the repellor (the unstable steady solution), the time for a pair of

A(0) and B(0) to reach the steady state varies quite largely. If a path of the

evolution is close to the repellor, this time will be very long. Hence, the time

to reach the steady state depends not only on the wavenumber but also on the

combination of the initial amplitudes (i.e., the spectrum of initial distur-

bances).

We have shown that for some wavenumbers and Taylor numbers, the

magnitudes of two initial disturbances will play a very important role. But this

is not the complete answer for the problem of two-wave interaction. In fact,

for other cases, only the wavenumber of one disturbance will determine the

steady state. Thus the magnitudes of the nonzero A(0) and B(0) have no effects

on wave selection. We find that as ß decreases from 2.58, t·he distance between

the attractor A and the repellor R is shortened. And at ßj, the attractor A is

canceled by the repellor R . Hence, the jump phenomenon is caused by the can-

cellation of the attractor and the repellor. For ß<ßJ, for example ß=2.55, there

is only one attractor B as shown in Fig. 5.12. Obviously, no matter how we

introduce A (0) and B(0), we always obtain the stable steady state with ß=5.10.

On the other hand, as ß increases from 2.58, the distance between the attractor

A and the repellor R is enlarged while the distance between the attractor B

and the repellor R is shortened. At a certain wavenumber, the repellor R can-

cels the attractor B and only attractor A exists. Fig. 5.13 is an example with

only one attractor A . We always get the stable steady state with ß=2.9 pro-

vided B(0) is nonzero. A very important case in this example is the pair of

V1(0)=0.25E—11 and V2(0)=0.25E-02. Note that V,(0) is extremely small and

V2(0) is 109 times as big as V,(0). Hence, V2 reaches its steady state first. But
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the final stable steady state has ß=2.9. The corresponding figure of evolution

for this case will be shown in Fig. 6.9. From this example, We conclude that

the steady state with ß=5.8 is unstable to any small disturbance with ß=2.9.

It is quite expensive and difficult to apply the numerical method to the

study of the interaction of two Waves, especially searching the location of the

· repellor in the amplitude diagram (i.e., the value of the unstable solution). To

overcome such difiiculties, We establish the tWo·mode perturbation method

given in Chap. 6.
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5.4 Existence of Multiple Steady States

We are going to show the following important fact for steady state solu-

tions which may be stable or unstable:

If velocity components U (z), V(z), W(z) are the steady state solution for a

fixed wavenumber ,6, they are also one of the steady solutions for

wavenumbers ,6/n where n =2, 3, 4, · · · .

The above fact indicates the possibility of multiple steady state solutions

for small wavenumber (large wavelength), which will be shown in Fig. 5.14.

To study the steady state, we drop all the time derivative terms in

(2.3.4)-(2.3.7). The Fourier series (2.3.1) then becomes

U ,' U. .[Vi; = ä V, 6 (****/39
‘

(5.4.1)
W(¢.s' ~-—<>¤ W,,(z)

Now the harmonics U,,, V,,, W, are functions of :6 only. It will be enough

to consider only one equation (i.e., Eq. (2.3.4)) in this derivation. Eq. (2.3.4) is

reduced to

U
[DD'- n2ß2]V,, - U„=ü%,—g- ä [U„D'V„_„ - (n-p)ß(iW„)V„_„] (5.4.2)

Suppose that at a fixed ß, there exists a steady state solution

U U_ U_ U_ _ U
6 (—F3ß:)+ Vj 6 (—¢2H<).[. V_: 6 (-•ß<).[. V;

W(:¤) w_3 w_3 w_, W3

U1 U2 U3 .
+ V1 6 (¢ß¢).[. V2 6 (/219:).,. V3 6 (¤3ßs‘)+ - . . (5_4_3)

W, W3 W3



..For

n =0, Eq. (5.4.2) becomes

DD V-. - <— (5-4-4)

and the subscripts jl and -,1 are listed as follows

,1:... -5-4-3-2-10 1 2 3 4 5...

-,1:... 5 4 3 2 10-1-2-3-4-5...

For n =1, Eq. (5.4.2) becomes

[DD'- (6.4.6)

and the subscripts ,1 and 1- ,1 are listed as follows

,1:...-5-4-3-2-1012345... I
1-,1: 6 5 4 3 21 0-1-2-3-4...

For n =2, Eq. (5.4.2) becomes
D

[DD'- (2ß)2]V2— U2Tu§°°lUßD·V2'ß— (2“l‘)ß(iWu)V2-ul (5-4-6)

and the subscripts ,1 and 2-,1 are listed as follows

‘
,1:...-5-4-3-2-1012345...

2-,1: 7 6 5 4 32 1 0-1-2-3

Now let us consider the steady state solution Ü}, V}, W} at E=ß/2.

Equation (5.4.2) becomes

(DD'- (5-4-7)
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For 1T=0, Eq. (5.4.7) becomes

DD
‘ 17,, - Ü, V_; - (- p)E(¢W;)V_;] (5.4.8)

[4*-X

For :T=1, Eq. (5.4.7) becomes

l
1

·-
1 i

Q I i
1 ,1 1[DD - BHV, — U,=m_E [U;D V,_;- (1-;4)ß(«W;)V,_;] (5.4.9)

[4*-X

For 1?=2, Eq. (5.4.7) becomes

[DD
‘-

2BH 7, - Ü, =-é-j,?- ä [Ü;D ' 72_; - (2- ;7)B(iW;)72_;]* (5.4.10)
[4*-X

Let us consider (5.4.7). Besides the zero (trivial) solution, one possible

solution is that Ü;,, 7;, W; are all nonzero. Furthermore, the third possible

solution is that Ü°;, 7;, W; with odd E are all zero but Ü;, 7;, W; with even E

are all nonzero. Now let us focus on the third possible solution. For rT=0, if 7

is odd, all the terms with odd E vanish on the right hand side of (5.4.8).

Hence, the list of the subscripts is reduced to

ii: -4 -2 0 2

4-;7:4 2 O -2

-4ForrT=1, all the terms on the right hand side of (5.4.9) are equal to zero

since either of E and 1-E must be odd. And all the terms on the left hand side

are also equal to zero since Ü,, 7,, W, are equal to zero. That is, Eq. (5.4.9) can

be dropped. Similarly, we can see that all the equations with odd subscript 1T

in (5.4.2) vanish.

For 1T=2, the list of the subscripts is reduced to
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;7: -6 -4 -2 0 2 4 6

8 6 4 2 0 -2-4Now

in (5.4.10) both E and 2—;T are even. If we do the following replace-

ments in (5.4.10):

2l? —· ß

(2 — F)? —· (1 — #)ß

_E ·· E
[4*-%

I‘="® ‘

Ü2: V2: Ü2: V2: vi/2

(;T is even) ( p is all integer)

then we can rewrite (5.4.10) as

1 [DD'- 16*}:7,- ü,=jT ä [U„1>*:>,_„- (1-„),6(6°v7„)V,_„] (5.4.11)
[4*-%

Obviously, Eq. (5.4.11) is essentially the same as (5.4.5) except that

Ü,, V,, W, are used in (5.4.11) rather than U,, V,, W,.

For other even subscripts, we do the following replacements in (5.4.7):

EF —-• Tl ß

(F — F)? —· (1¤ — u)ß

E —· E
7--oo

l4=·°°

Ü;T:V;T: Wi —°
Ünrvnrwn

(H is even) ( ;1 is all integer)

then all the equations with even E in (5.4.7) are rewritten as
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[DD'- n2ß2]V„ — 17,,--l,— ff [U,,1>·1>„_,,- („-„)ß(.·W„)V„_„} (5.4.12)
2A 5,,-,,,,,,

By comparing (5.4.12) with (5.4.2), we obtain

ÜF=Ü,,=U,, VF=V,,=v, WF-—W„=w, (5.4.13)

Based on (5.4.3) and (5.4.13), we conclude that the steady state solution

U,, V,, W, for ß is also a steady state solution for ÜF, VF, WF for ,?=ß/2 where

all ÜF, VF, WF with odd E are equal to zero. We have shown an example for

this case in Sect. 5.1, that is, the example for ß=1.3 and T=6000._
”

The previous procedure of proof can be easily extended to E=ß/n (n 23).

For example, if the steady state solution (U,, V,,, W,) does exist, there is at

least a possible steady solution (ÜF, VF, WF) for E=ß/3 which is nonzero as

ä'= · · · ,-9, -6, -3, 0, 3, 6, 9, · - · and zero for other values of 1T. We have

shown an example for this case in Sect. 5.1, that is, the example for ,B=1.0 and

T=6000.

We now explain why there are multiple steady state solutions for small

wavenumbers (large wavelengths). In Fig. 5.14, the curve labeled by ß is the

steady state amplitude V, (the amplitude of the fundamental) obtained by the

numerical method at T=6000 for r)=0.5. According to the fact we have just

proved, we can generate a curve labeled 2ß by use of the curve labeled ,8. A

point P, on the curve labeled by ß is moved horizontally to the point P2 on

the curve labeled 2,6 with the wavenumber one half of the wavenumber of the

point P, and the same amplitude as that of the point P,. This new curve

(labeled by 2,8) tells us that a small single disturbance, for example, with

ß=2.50 will develop to a steady state with wavenumber 2ß=5.0. Similarly, we

can generate an inünite number of curves labeled by nß (n 22). Only several
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such curves are shown in Fig. 5.14. From this figure, we know that for a dis-

turbance with small wavenumber, there is a multiplicity of steady state solu-

tions. For example, the disturbance with ß=1.0 will have four possible solu-

tions: 3ß=3.0, 4ß=4.0, 5ß=5.0, 6ß=6.0 because if we draw a vertical line at

ß=1.0, it will intersect the curves labeled 3,6, 4/9, 5ß, 6ß.

Obviously, the smaller the wavenumber, the greater the number of possi-

ble steady state solutions. Note that according to the linear theory, the distur-

bances with ß=2.0, 3.0, 4.0, 5.0,6.0 have positive linear growth rates, but the

numerical method excludes the steady state for ß=2.0. ‘

In the experiments, only one steady state solution will be realized. In

Sect. 6.2 and Sect. 7.2, We shall show that some stable steady state solution

for a large wavenumber ß may become unstable steady state solution for a

small wavenumber. For example, a stable steady state solution for ß may

become an unsteady state solution for where n =1, 2, 3, · · · .

From the derivation, we realize that the important fact results from the

quadratic terms of the Navier-Stokes equations. Hence, we conclude that the

fact is not only valid for the Taylor vortex flow problem but also for some spe-

cial cases of the Navier-Stokes equations with spatially periodic steady state

solutions (e.g., Benard convection rolls).
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5.5 Comparison on Steady States with the Parameter Expansion

Method

In Sect. 4.2, we formulated the perturbation method based on a parame-

ter expansion. We now compare the results of this method with those of the

numerical method.

In Fig. 5.15, we plot three curves of the steady state amplitude of the fun-

damental, A,, at ,8=4.0 corresponding to the Qth, 15th, 21st orders, respec-

tively. Also we plot three data points of the numerical method in which 9 har-

monics are computed. The numerical method shows that A, becomes horizon-
u

tal as T is greater tl1an about 6000. For example, A, =.14957438 at T=6000 and

A, =.15008064 at T=9000. When we apply the numerical method, both T andßare

fixed. However, for the perturbation method based on the parameter

expansion, only ß is fixed while T is expanded. I—Ience it is difiicult to deter-

mine what order in the perturbation method based on the parameter expan-

sion is comparable with 9 harmonics in the numerical method. That is, there is

no direct relation available for us to compare the accuracy of these two

methods. \«Vhat we observe is that the higher the order in the parameter

expansion,. the better the agreement with the numerical method.

From the numerical method, we know that the amplitude of the funda-

mental A,=0 in the region with small ß and large T. What would happen if

we apply the parameter expansion in such region? Figure 5.16 answers this

question. At ß=2.5, the parameter expansion produces finite amplitudes at

T=6000 and T=9000 whereas the numerical method gives zero amplitude at

these two values of T and shows a sudden drop (jump) of the amplitude

between T=4500 and T=6000. \rVe sketch the amplitude A, in Fig. 5.17. We
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know that the jump phenomenon at a fixed T is due to the existence of the

unstable solution. Now we can see that there should be jump phenomena for

some fixed wavenumbers, one of which is the case we are discussing. It is not

a surprise that the parameter expansion can not model such jump phenomenon

which needs at least two values of T for a fixed A, at a given ß. However, the

parameter expansion, T=T3+ T,A,2+ T3A,"+ ···, is a polynomial which can

give only one value of T for a fixed A, .

We now conclude that the parameter expansion is unable to model the

jump phenomenon no matter how many terms in the expansion are calculated.

Note this above conclusion is not only valid for the expansion in terms of

parameter T, but also valid for the parameter expansion ß=ß3+ ß,A,°+ ~ · - as

T is fixed. Consequently, there is no need to try an expansion of ß, which is

more complicated since ß appears nonlinearly in (2.3.4)-(2.3.7).

The results show that all the coeflicients T, are positive as long as ßg 2.2.

However, if we decrease ß a little away from 2.2, for example, ß=2.199, an

interesting phenomenon occurs. All the coeflicients become negative sudclenly

except To (the Taylor number at the neutral curve). Table 5.1 is the com-

parison of the coefiicients at ß=2.2 and ß=2.199. We realize that the sudden

change of the sign for all T,,(k >0) is caused by singularities of T,. Table 5.2

illustrates the singularity of T,, T3, T3, and T,. As all T, (I: >0) become nega-

tive, the only physically possible solution of A, is A, =0. The reason is simple

because any nonzero A, will lead to meaningless results, T<TO, from

T=T3+ T,A,°+ T3A,‘+ · · · .

When ß is decreased further away fro1n ß=2.2, for example, ß=2.0, many

coefficients T,,(k 3 3) change tl1e sign from negative back to positive. Hence, we

get A,=0 at the 3rd and 5th orders but get nonzero A, at higher orders.
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Obviously, such nonzero A, is incorrect. Hence, we conclude that A,=0 for

ß<2.2 as shown in the unshaded region in Fig. 5.18. Note that one of the boun-

daries of the shaded region is a vertical line at ß=‘2.2 which intersects the neu-

tral curve at the particular point P. We have seen this special point P before

in the results of the single-mode perturbation method.



CHAPTER 6

THE HIGH-ORDER

PERTURBATION METHOD FOR TWO MODES

To gain deeper insight into the jump phenomenon discovered by the

numerical method, we propose a high order perturbation method for two

modes (two-mode method). In this method, the singularity appearing in the

single·mode method will be removed. Also the stable and unstable solutions of

the fundamental and the second harmonic will be found.

6.1 Formulation for the Evolution of Taylor Vortex Flow

We introduce two perturbation parameters: A (1-) and B(r). Both A(r) and

B(1-) are assumed to be of the same order. The general expressions for ampli-

tudes are difficult to obtain. Rather, we present the first several terms of the

fundamental as

U,(:z ,1*) U111 (I) UIQZ (I) Uiiso (I) U1? (I)

V,(1,1) :,4 vg, (1) +,46 V,$(z) +A2Ä V,§,°(1) +,466 V,§5(z)+W1(1
J) W1‘1 (1) W12 (1) WIESO (1) Wläö (1)

(6.1.1)

and the first several terms of the second harmonic as

(1:) +A2 V2°§(z)+AÄBW2(1

J) wä (1) W22 (1) W12? (1) 111*1*11)

(6.1.2)
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where

VIII (2 =O.5)=0.5 Vä (2 =0.6)=0.s (6.1.3)

and the hat has the same meaning as in the single-mode method.

Other functions V,g, for the distorted mean How, fundamental, second har-
monic and higher harmonics are equal to zero at :=0.5, where the first sub-
script n indicates the multiple of the wavenumber (for example, 2 indicates

2ß); the second subscript p indicates the order; and the superscript q stands
for the ordinal number of the functions showing up in the program. Since

W U„, V,,, W„ are real, we have

U,,',, =U! „,, V,f,, =V1„,, W„‘(, =W1,,I, (6. 1 .4)

As compared with the definition of amplitudes in (2.3.3), we have

'V A (2

(:1: =O.5)=B (1‘)=B (6.1.5)

which‘show that A (1-) is indeed the amplitude of the fundamental whereas B(r)
the amplitude of the second harmonic. In this method, the distortion of the
mean How and the higher harmonics are assumed to be exclusively generated
by the fundamental and the second harmonic through the nonlinear terms.

We list the first several functions (up to the third order) as follows

oß ,6 2ß 3ß 4ß 519 öß

AV111 Bl/zi

Bévg;

A=§v„,;= A 2A v,;° AABv,;2 A 2 vg; A 2Bv,;* AB2 vg? B2 v,;'
AB1§v,;5 B21§v,;2 AB2v;;:
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From the second column and the third column, it is easy to understand

how we derive the amplitude expressions. Note that terms A2ÄVl§’ and

ABBVl§ are associated with the same wavenumber ß and the same order (third

order) but they have different combinations of A and B, which is a new

feature of this method.

Replacing Vl, Vlll, V; by $1%-, all, al, · · · in (6.1.1), we get

dA ^ 2
‘

^F=GoA + alAB + a2A A + a3ABB

+ alA°B + al,AB2B +a„A“Ä2 + alÄ2B2 + allAB2B2 + ··· (6.1.6)

Replacing V2, V22, V; by gg, bc, bl, · · · in (6.1.2), we get

dB
b

2 ^ 2 ^
F= llB +blA +b2AAB +bllBB

+ 6,A=*.·i + b5Ä2B2+ b„A2Ä2B + 6,AAB*’1§ + 6,8319*+ (6.1.7)

Both equations (6.1.6) and (6.1.7) are called the Landau type equations

and the coeflicients all, al, · · · , bg, bl, · · · are called the Landau constants in

the sense that they are not functions of time. As one example of applications

of the Landau equations, we show the term jl;-(BV; ), which is the first term

_ dV2“‘ 7,

%(BVä ) =bllBV22 + blA2V22l +b2 AÄBV22 + bllB2BV22 + · · · (6.1.8)

In Eq. (6.1.8), the term bllV2‘l will show up in the equation of V22 which is

an eigenvalue problem for bll. The term blV22Q will be added to the equation of

V; since blV22l is associated with A2. Recall that the singularity occurs in the
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functions associated with A2 in the single-mode method. Now this singularity

is removed because the Landau constant bl is determined by satisfying the sol-

vability condition for equation of V;. The term b2V; will be added to the

equation of V;} since b2V; is associated with AÄB .

As another example of the application of the Landau equations, we show

the term %(}LBV; ), which is the second term in

4lABBVl‘; (6.1.9)

where the term (40+ b0)V; will show up in the equation of Vlä, the term

4lV; will be added to the equation of Vl§ , and the term blV; will be added

to the equation of Vl§’. In the derivation of (6.1.9), both Landau equations

have been used.

Substituting (6.1.1)-(6.1.7) into the nonlinear system (2.3.4)-(2.3.7), we

decompose the system into successive linear ordinary differential equations

according to : (1) same wavenumber; (2) same order; (3) same combinations of

A and B. As before, the program designed can generate, solve the differential

equations and evaluate the Landau constants.
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6.2 Applications of the Method

After determining the Landau constants, we can use the Landau equa-

tions (6.1.6)—(6.1.7) to study:

(1) the interaction the fundamental A (1-) and the second harmonic B(1);

(2) the jump phenomenon and steady state solutions, A, and B, ;

The properties of the Landau equations approximate some of the proper-

ties of the Navier-Stokes equations. Note that solving the Landau equations is

a very simple task. Now the study of the Navier-Stokes equations is converted

to the study of the Landau equations.

First, we present the application to the evolution of disturbance ampli-

tudes. Figure 6.1.(a) is obtained by the two-mode perturbation method (9th

order) at ß=2.58 and T=6000 while the Fig. 6.2(b) is obtained by the numeri-

cal method (9 harmonics) at the same ,6 and T. In both figures, only a small

disturbance of A (1-) is initialized while the initial value of B(1-) is equal to zero.

When we plot these two Hgures and superpose them, we can see that 0.5A (1-)

and 0.5B(r) obtained by the two-mode method are almost identical to the .

corresponding curves V, and V2 by the numerical method from the time c=0

to the time that 0.5A (1-) and 0.5B(1-) almost reach their maximum values. How-

ever, unlike V, and V2, A(1) and B(1) do not exhibit any overshoot. Conse-

quently, the steady states of 0.5A and 0.5B are different from those of V, and

V2•

The two-mode method can be used to study two wave interaction. In

Figure 6.2.(a), two nonzero small disturbances A(O) and B(0) are initialized at

ß=2.58 and T=6000 for the wide gap case. As compared with Fig. 6.2.(b)

obtained from the numerical method, we can see that the two-mode method
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gives good approximate results of the evolution. At any fixed ß and T, we can

easily plot a family of such figures of two wave interaction by choosing

different pairs of A (0) and B(0) since solving Landau equations (6.1.6)-(6.1.7) is

a simple and quick process. On the other hand, the numerical method requires

tens and sometimes hundreds times of computation time used for the two-

mode method to obtain same family of curves.

Amplitude diagrams are useful in the study of wave interaction. Figure

6.3 is an amplitude diagram at ß=2.58 and T=6000. As compared with Fig.

5.11 obtained from the numerical method, we observe that both figures agree

qualitatively and show the existence of a repellor, R. However, both figures

only give the rough location of the repellor. The main difference between

these two figures is that the locations of the attractor, A , and the repellor, R,

are not the same and there is no overshoot showing up in the two-mode

method.

The question why the two-mode method can not exhibit the overshoot is

not solved yet. We wrote two different programs for the method. But we

obtained exactly the same results, which seems to exclude the possibility of

errors in programming. Perhaps, to model the overshoot, a three mode method

is needed since we have seen the indication in Fig. 5.4 where the overshoot

corresponds to the growth of the third harmonic. Another question is that the

steady states A, obtained from the two-mode method sometimes have better

accuracy but sometimes have worse accuracy than the single-mode method.

The reason for this is unknown as yet.

To solve the steady states directly, we set in (6.1.6)-(6.1.7)

then obtain the following equations
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0 =aoA + alÄB + a2A2Ä + a3ABÜ

+ a,A3Ü + a0AB2B +a0A3Ä2 + a-,Ä°B’ + a0AB2B2 + ··· (6.2.1)

o :608 + b,A2 + b2AÄB + 608*8

+ b,A3Ä + 6,A*8* + 60A*/i*8 +6,/1.-i8*8 + 608*8* + --· (6.2.2)

which can be solved by some numerical techniques similar to the bisection

method.

Figures 6.4 and 6.5 are the plots of steady states at T=-1500 and T=6000,

respectively. In these two figures, both A, and B, obtained from the 9th order

two-mode method are plotted. Besides, A, from the 9th order single-mode

method and the steady state of 2V, from the numerical method are also plot-

ted. At some wavenumbers, Eqs. (6.2.1)-(6.2.2) give three solutions with phy-

sical significance. For example, at ß=2.58 and T=6000, we get

solution A, B,

1 0. 1.11171E-01

2 1.04846E- O1 6.41049E — 02

3 1.62391E- 01 3.56543E- 02

In Fig. 6.5, we label these three solutions by A 1, A 2 and A3 for the funda-

mental and B1, B2 and B3 for the second harmonic. Obviously, Solutions 1

and 3 are stable and Solution 2 is unstable. By recalling Fig. 6.3 which is the

amplitude diagram for ß=2.58 and T=6000, we observe that the stable Solu-

tions 1 and 3 correspond to the locations of the attractors, A and B, in the

amplitude diagram while the unstable Solution 2 corresponds to the location of

the repellor, R . In Figs. 6.4 and 6.5, the Solutions 2 and 3 are plotted with the -

triangle symbol. As for the Solution 1, we notice that when A, =0, Eqs.
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(6.2.1)-(6.2.2) are reduced to one equation

0:6.,6+ 6,6219+ b8B3Ü2+ - -· (6.2.3)

which is same as the Landau equation of the single-mode method. To avoid

confusing the Hgures, we do not plot the Solution 1 with the triangle symbol.

By varying wavenumbers, we obtain curves representing the three solutions.

When the unstable Solution 2 merges the stable Solution 3, the jump

phenomenon occurs, which implies that only Solution 1 can exist. Hence, Tay-

lor vortex How has wavenumber 2ß. Note that the slope of the amplitude

curve is vertical at the jump in both Figs. 6.4 and 6.5. At T=4500, the jump

takes place at the same wavenumber as that obtained from the numerical

method - a very good agreement. At T=6000, the agreement is not as good as

that at T=4500. As T increases further, for example at T=9000, the

discrepancy between the two methods becomes bigger. The ß, from the

numerical method is 2.61 while the ß_, from the two-mode method is 2.48.

The intervals where the unstable solutions exist are listed as follows

T {6,, ß„1 l2ß1,2ßu]
. 4500 2.446- 2.475 4.892- 4.95

6000 2.51- 2.78 5.20- 5.56

9000 2.48- 3.22 4.96- 6.44

Figure 6.6 is an illustration of the intervals obtained at the 9th order.

The results of the calculation show that the location of the jump (wavenumber

ßj) is almost not affected by the order used. For example, the 3rd order gives

the same ß, as the 9th order.



- 66 - _

We know that in the single-mode method, the results of A, are good only

for those large ß if T is large. In contrast, the two-mode method is only suit-

able to the right neighborhood of ß,. Note that in Figs. 6.4 and 6.5, we only

display A, in the right neighborhood of ß,. For those wavenumbers ß satisfy-

ing ß>0.5ß+, the mode B will have wavenumber 2ß greater than ß+ (the

wavenumber of the right branch of the neutral curve). Hence, mode B has the

negative linear growth rate bg which would cause a failure of the perturbation

method. Davey & Nguyen [30] found that the perturbation method based on

the Landau equation is invalid in the stable domain where the linear growth

rate is negative. Indeed, when wave number is increased to some value beyond

ß>0.5ß+, singularities of some Landau constants appear and the amplitude of

B becomes abnormal (infinitely large). Consequently, we conclude that the

two-mode method is not suitable for T < T, .

The presence of the unstable solution is very important in the stability

analysis. Besides the jump phenomenon, we are able to explain some

phenomena of wave interaction.

Figure 6.7 is a sketch of the steady state amplitude. As /i</3, but ß is

close to ßj, the single disturbance (i.e., A(0);é0 but B(0)=0) will lead to the

steady state with 2ß no matter how small A (0) is. Now if we start with A (0);é0

and B(0);é0 (B (0) may be small or big ), we can delinitely say that the steady

state must have wavenumber 2ß. In such a case, the single disturbance is a

special but very important case since the wave selection depends only on the

wavenumber, ,8, and the magnitudes of A (0) and B(0) do not play any role pro-

vided A(0) is nonzero. Furthermore, we can conclude that the steady state

with 2ß is stable to the small disturbance ß if ß<ß, but ß is close to ß,.
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For the two intervals [ßj, ßU] and [2ß_,, 2ßU] where the three solutions

exist, the initial amplitudes, A(0) and B(0), play a role in wave selection (see

Fig. 6.7 Depending on the magnitudes of A (0) and B(0), we may get a steady

state with ,6 or 2ß.

Now let us investigate the interval [ß„, 0.5,6+] and the associated interval

[2ß„, ß+]. Note that the fundamental and the second harmonic of the

unstable Solution 2 merge to the corresponding ones of the stable Solution 1 at

ßy and 2ßU, respectively. Hence, there is only one solution with A,;é0 and

B,;·é0 in these intervals. This conclusion is very interesting. Suppose that

there is a steady state with ß inside the interval [2ß„, 79+] which may result

from a small disturbance with ß. This steady state will be stable if there are

no disturbances with smaller wavenumbers in the How. However, this steady

state is unstable to the disturbance inside the interval [ß„, 0.5ß+] since in such

case the steady state becomes the ’second’ harmonic. Figure 6.8 is a convincing

example at ß=5.8 and T=6000. At Hrst, a disturbance with ß=5.8 is intro-

duced which soon develops to its steady state. At t=4.0, a new disturbance

with E=ß/2=2.9 is introduced. This disturbance is very small but it affects the

steady state with ß=5.8. Finally, the How has new wavenumber Zi-=2.9. The

original steady state with ß=5.8 now has smaller value of amplitude and

becomes the second harmonic in the steady state of the How. The numerical

method also produces similar result as shown in Fig. 6.9. Since V,(0) is

extremely small, V2 soon grows to its steady state with Hnite amplitude while

V, is still very small. But V, continues to grow and eventually becomes the

fundamental of the steady state while V2 becomes smaller and serves as the

second harmonic of the steady state. Thus we conclude that the steady states

in [2ßU, ß+] are unstable to the small disturbances in [ß„, 0.5ß+]. The steady
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state in [2ß„,ß*] is shifted to the steady state inside [ß„,0.5ß+]. Such shift

phenomenon is similar to the jump phenomenon because the steady state of

the fundamental changes from zero to finite while the steady state of the

second harmonic decreases to a smaller finite value. In Fig. 6.7, we denote such

shift (’jump’) by arrows at ßy and 2ß„. Also we denote the jump phenomenon

by arrows at ß, and 2ßJ.

We can use Fig. 6.6. to explain the hysteresis phenomenon. Suppose that

a steady state is set up at the point 0. As the Taylor number T decreases

quasi-steadily to the point 1 (2ß„), the steady state is shifted to the point 2

(ß„) according to the previous discussion. That is, the number of the cells in a

finite length of cylinder is reduced by one half. If T decreases further, the flow

keeps this new wavenumber. But instead if we increase T to the point 4, the

wavenumber of the flow will be changed from ß back to 2,6 (point 5) because of

the jump phenomenon. The Taylor number for the change from 2ß to ß is

smaller than that for the change from ß to 2/3. This is the so—called hysteresis

phenomenon, which was studied by Benjamin and Mullin [6],[7],[8] for some

short cylinders. The case we explain here is analogous to the ’one—to-two cells’.

They concluded that the hysteresis is caused by the end effect (imperfection)

which produces unstable solutions. However, our work shows that the unstable

solutions and the resulting hysteresis phenomenon are the inherent properties

of the flow in the infinitely long cylinders. Perhaps, the experiments in short

cylinders make the hysteresis phenomenon more observable.
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6.3 Discussion on the Multi-Mode Method.

The attempt to extend the two-mode method to a multi-mode method

will suffer some troubles. We now point out some of shortcomings of the

multi-mode method based on our experiences on the single-mode and two-

mode methods. First, we should not apply the multi-mode method uncondi-

tionally. We have mentioned that the two-mode 1nethod is not appropriate for

T<T,,. We can also argue that the three mode method may not be suitable

for those Taylor numbers which have ß, satisfying ß, >ß+/3. For example, at

T=4500, ß,=2.45 and ß+=5.16, which means 3ßJ>ß*. Of course, for relatively

high Taylor numbers with ,6, <ß+/3, three mode method may give us some

I good results such as ß,. However, the amount of work needed would increase

significantly. W'hen we apply the Qth order single-mode method, we need to

determine only 5 Landau constants and solve 25 equations. But when we use

the 9th order two-mode method, we have to determine 48 Landau constants

and solve 238 equations. Hcnce, we can only use low orders in the 1]1l1iI;i·I’I1OCi€

method due to the economic reasons. More seriously, because the perturbation

method can only be applied to the range of [ß‘, ,8+], the multi-mode method is

unable to handle with those disturbances with very small wave number and

their interaction because these wavenumbers are less than
ß‘.

In contrast,

there is no such restriction in principle in the numerical method.

Though we shall not establish a multi-1node method, we present a

modified two-mode method to study the interaction of two waves with n ß and

(n + 1)ß, respectively. The method is based on the following two facts appear-

ing in the two-mode method: (1) the intervals of multiple solutions are almost

independent of the order used; (2) for ß<ß,, .4=§ij-=0 and the two Landau
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equations are reduced to one equation which turns out to be the Landau equa-

tion of the single-mode. Suppose that there are 3 modes A , B and G with ß,

2ß and 3ß respectively. If ß<ß", T STP and 2ß and 3ß are inside [ß‘, 19+], then

at the steady state, A and %= The Landau equation for A is

dropped while the Landau equations for B and O are reduced to (up to the

3rd order)

o :1,.,12+ b,(BB)B+ b„(GÖ)B (6.3.1)

0=c0C'+ c,(C'Ö')C'+ c2(BB)C' (6.3.2)

The interaction between 2ß and 3ß mainly through the distortion of the

mean flow, i.e., terms BB and OÖ. By solving (6.3.1)-(6.3.2), we can study the

interaction of two waves with 2ß and 3ß respectively. That is, we can obtain

the intervals with stable and unstable solutions for B and G.

The necessary condition for this method is A =0. During the evolution A

is not always equal to zero. Hence, this method is only useful for the study of

steady state solutions. If C=0 in (6.3.1)—(6.3.2), the jump occurs. Then (6.3.2)

is discarded and (6.3.1) is reduced to

0?boB +

b1B2Bwhichis exactly the Landau equation for the single-mode method. Therefore,

anotl1er condition is that this method should only be applied to those intervals

[ß-, ß+] where the single-mode method can give good results. Of course, this

method can also be extended to the study of interaction between two waves

witl1 nß and (n+ 1)ß respectively provided (n- 1),8 is less than ß‘. The results

of this method will be presented in Sect. 7.2.



CHAPTER 7

STABILITY DIAGRAM AND WAVE INTERACTION

The results of this chapter are obtained from the numerical method

except part of Sect. 7.2. The program designed for the numerical method

allows us to prescribe initial conditions in terms of many modes and study

their nonlinear interaction. However, the number of combinations of many

modes (i.e., the number of disturbance spectra) can be tremendous and thus

makes it difficult to extract systematic information from the results. Hence,

we shall first study the results for a single disturbance, which can be con-

sidered as a continuation of Sect. 5.1.

· 7.1 Stability Diagram for Single-Mode

Let us consider T=6000. We have shown that near ß,, a small change of

the wavenumber can lead to totally different steady states (with ß or 2ß). Such

a wavenumber is called a turning point in this work. Also we showed that a

single disturbance with ß=1.3 develops to the steady state with 2ß=2.6 (see

Fig. 5.6(a)) while the single disturbance with ß=1.0 develops to the steady

state with 3ß=3.0 (see Fig. 5.6(b)). Hence, two questions arise. The first one is

whether there is a new turning point ßw between ß=1.0 and ß=3.0. Another

question is whether the smaller ß will lead to a steady state with

nß (n=3,4, · · ~ ). The numerical results give positive answers for both prob-

lems. We plot V, and V2 in the ß- A, plane (wavenumber - steady state ampli-

tude plane) in Fig. 7.1(a) and V, and V3 in Fig. 7.1(b). As ß decreases from ß+,

V,,V3 and V3 draw their individual paths in ß- A, plane. At ß, (labeled by

- 71 -
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1- 2(L)) V, drops to zero while at 2ß, (labeled by 1- 2(R)) V2 jumps up to tl1e

path formed by V,. Also in Fig. 7.1(b), V2 drops to zero at 3,9,. As ,8 decreases

from /3,, V, and V2 are equal to zero, forming horizontal lines while V2 moves

along the path formed by V, (see the corresponding points P, and P2 in Fig.

7.1(a)). As ß reaches ß2,=1.282, labeled by 2- 3, V2 drops to zero at 2ß2,=2.564,

labeled by 2- 3(L). Meanwhile, V2 jumps up from zero to the path formed by

V, at 3ß2,, labeled by 2- 3(R), as shown in Fig. 7.1(b). As ß decreases further

from ß2J’ V2 moves along the path formed by V,. When ,6 reaches another

turning point ß3_;=0.90, V2 also drops to zero at 3ß2,, labeled by 3- 4(L), while

A V, jumps up to the path of V, at 4ß2,. Note that the interval I [3ß2_,, 3ß2,]

where the steady state has 3ß, is smaller than the interval 1 [2ß2,, 2ß,] where

steady state has 2ß. Following this procedure, we can find other turning points

ß,,, at smaller wavenumbers and smaller associated intervals I [n ,3,,,, nß(,,_,,,].

But for small wavenumbers, the numerical method becomes rather inefficient.

If we use 9 harmonics for the interval [ß], 19+], we need to use 18 harmonics for

the interval [ß2,, ß,] to obtain the same accuracy because a disturbance leads

to the steady state with 2ß. For the interval [/35,, ,6,,], we thus need 45 har-

monics,‘which takes very long computation time. Hence it is not easy to locate

the turning points.

For dilierent Taylor numbers, we apply the previous procedure to search

for the turning points and associated intervals. The results are summarized in

Fig. 7.2. Let us focus on T=6000 first. The turning points ß,, ß2]’ 792],19,; are

located at the lines 1- 2(L), 2- 3, 3- 4, 4-5 respectively. And their corresponding

jumps, 2,6,, 2ß2,, 3ß2,, 3ß2,_
· · · are located at the lines 1- 2(R), 2- 3(L), 2- 3(R),

3-4(L), · · ~ , respectively. Any small disturbance with wavenumber located

between the line 1- 2(L) and the line 2-3 will lead to the steady state with 2ß
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inside [2ß„, 2ß,]. Any disturbance with ß located between the line (n-1)-n

and the line n -(n+ 1) will lead to the steady state with nß inside [ri ß„,,

nß(,,_,),]. Take the point X (ß=1.0, T=6000) as an example. Since this point is

located between the line 2-3 and the line 3- 4, it will lead to the steady state

with sß=6.0 inside [3ß3_;=2.70, 3ß2)=3.846].

The ß- T plane of this figure is divided into three regions: 1. stable region

where Couette flow is stable; 2. unstable region where Couette flow is unstable

but stable Taylor vortex flow can not show up; 3. unstable region where

Couette flow is unstable and stable Taylor vortex flow may show up. The line

separating the stable region 1 and the unstable regions 2 and 3 is called the

neutral curve which is a modification of the wel1·known neutral curve from the

linear theory. According to the linear theory, the neutral curve is the one with

zero linear growth rate. But for the points Y (ß=1.5, T=3210) and X, though

they have negative linear growth rates, Couette flow is unstable due to the

nonlinear interaction. Hence, they should be inside the unstable region. The

modified neutral curve is obtained by scaling. The points on the neutral curve

have wavenumber ß‘ (the left branch) or ß+ (the right branch). Now we draw

a family of curves with ß'/n and ß+/n (n =2,3, · · · ). The envelope of this family

of curves forms the modified neutral curve. The intersection points on the

modified neutral curve such as points P,B,G,D, · ·· play an important role

because the lines 1- 2(L), 2- 3, 3- 4, 4-5 · · · start from these points. Meanwhile,

the parts of these scaled neutral curves which are inside the unstable region

lose their significances though they have zero linear growth rate.

Of course, a single initial disturbance is a very special case which implies

that the path of the evolution always starts from some point of the A,—axis in

an infinite dimensional space of amplitudes. But it represents a special class of
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spectra. In Fig. 7.3, a single disturbance with ß=1.3 at T=6000 is prescribed at

t=0. Then at t=0.4 it develops as Spectrum 1 while at t=0.55 to Spectrum 2.

If at t=0, Spectrum 1 or 2 is initialized instead of the single disturbance, we

shall get the same steady state in less time. We have shown in Sect. 6.2 that

for small wavenumber ß inside [ßw, ß,] it would be enough to study a single

disturbance for two-wave interaction because only the wavenumber plays a

role in the wave selection for this case. Therefore, this result is very important:

the smaller the wavenumber (i.e., the larger the wavelength) of a single distur-

bance, the narrower is the band of steady states it will lead to. In the experi-

ments of finite-length cylinders, the ends have effects on the flow. That is, the

ends may produce strong disturbances with small wavenumber (large

wavelength) determined by the length of the cylinders. This situation may be

approximated by the case of a single disturbance. Hence, the experimental

data points obtained from long cylinders may fall in a smaller band in the

ß- T plane than those from short cylinders.
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7.2 Multi-Wave Interaction

In this section, we first present some results at T=TP=3666 obtained

from the modified two-mode perturbation method (see Sect. 6.3). Then we

present some numerical results at T=6000. All results are for q=0.5.

At T =Tp=3666, we have no need to consider the interaction between the

fundamental with ß and the second harmonic with 2ß because either of the

waves has wavenumber located outside (ß', [3+). Figure 7.4 shows the result of

interaction between the wave with 2ß and the wave with 3ß. In the interval

[2ß2,=2.47, 2ß2„=2.71] there are 3 solutions B1, B2 and B3 for the wave with

2ß while in the interval [3ß„=3.705, 3ß2„ =4.005] there are 3 solutions C1, C2

and G 3 for the wave with 3ß. The figure has two obvious differences from Fig.

6.5 for the interaction between the wave with ß and the wave with 2ß: (1) at

2ß2,, the slope of the stable Solution B3 and the slope of the unstable Solution

B2 are not the same, hence forming a cusp; (2) also at 3ß„, the unstable Solu-

tion 02 and the stable Solution C3 form a cusp at zero amplitude. The jump

phenomenon occurs at ß2,=1.235. That is, the second harmonic drops to zero

at 2ß2_;=2.47 while the third harmonic jumps from zero up to the amplitude

curve created by the fundamental at 3ß2;=3.7O5. Hence, for a disturbance with

,8<ß2;, the fundamental and the second harmonic are zero and the stable

steady state with 3ß exists. Now let us consider another case. Suppose there is

a steady state with E inside (ß‘, 2ß2,) We know that the steady state can exist

from
ß‘ to ,6+ as long as T$Tp though it may not be always stable. We also

know that in [ß', Qßz,] there is only one stable solution for the wave with 2ß,

that is, the Solution Bl with zero amplitude. Hence, this steady state is

unstable to a very small disturbance with large wavenumber ß=3B/2 because

the difference E- ,Ü=B°/2 will serve as the fundamental while the disturbance
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with will become the third harmonic. Finally, the flow will have wavenumber

3. Therefore, the steady state with 3 is shifted to that with 3=33/2. On the

other hand, the stable Solution B1 and the unstable Solution B2 merge at 232,,

and meanwhile the stable Solution G1 and the unstable Solution G2 merge at

33,,, such that a steady state solution with 3 inside [332; , 3+] becomes unstable

to a very small disturbance with 3=23/3. Therefore, the steady state with 3 is

shifted to that with 3=23/3. Hence, the interval I5 [232,, 332,,] is the interval

where stable steady state with 23 or 33 can exist.

Fig. 7.5 shows the result for the interaction between the wave with 33 and

the wave with 43, which is similar to the results in Fig. 7.4. The jump takes

place at a smaller wavenumber ß3,=0.84. The interval Is is smaller than that

in Fig. 7.4. Similarly, the results for the interaction between the wave with

nß and the wave with (n + 1)3 can be obtained. But the result for the interac-

tion between the wave with 33 and the wave with 43 in Fig. 7.5 indicates a

problem because 53 is inside [3‘=2.20, 3+=4.40]. Hence this result is valid for

the case the Fifth harmonic is actually suppressed to zero. Otherwise, we need

to consider the interaction between three waves with 33, 43 and 53 respec-

tively. Similar problems occurs for other n (n 34). The calculation shows that

IS has a minimum value. The smallest interval IS is that for the interaction

between the wave with 43 and the wave with 53 ( [43,,:2.54, 534;,:3.975 ]

where ß,,,=O.635).

We have shown some examples of interactions between two waves (3 and

23) for T=6000 in Sect. 5.3. Now we present additional examples of interaction

between two waves where the two waves are not restricted to have

wavenumber 3 and 23. Fig. 7.6 is an example for two waves 33=3.6 and ß.,=4.8.

V Because of the nonlinear interaction, the difference of these two waves
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6=6,- 63=1.2 will play the role of the fundamental. Hence, 63=3.6 serves as the

third harmonic while 6.,=4.8 as the fourth harmonic. In this figure, two small

disturbances are prescribed. The amplitude of the disturbance with 6=4.8 is

one thousand times as large as that with 6=3.6. The disturbance with 6=4.8

soon develops to the steady state with finite amplitude while the disturbance

with 6=3.6 is still extremely small. But the steady state with 6=4.8 can not

suppress the growth of the disturbance with 6=3.6. As time progresses, the dis-

turbance with 6=3.6 grows slowly though it has larger linear growth rate than

that with 6=4.8. That is, the existence of the steady state with 6=4.8 reduces

the growth of the small disturbance with 6=3.6. Finally, the disturbance with

6=3.6 reaches its steady state whereas the original steady state with 6=4.8 is

totally suppressed. Hence, we conclude that the finite amplitude Taylor vortex

flow with 6=4.8 is unstable to a small disturbance with 6=3.6. As compared

with 6=4.8, the wavenumber 6=3.6 is closer to the critical wavenumber

ß„=3.16

The second example is shown in Fig. 7.7. The disturbances of the funda-

mental A (0) and the second harmonic B(0) are prescribed. However, the situa-

tion is different from the the case we discussed in Sect. 5.3 because now both

6=1.2 and 26:2.4 are beyond the interval [6,, 6+]. Hence, neither A or B can

develop to the steady state. The second harmonic B first reaches its peak

value but soon it is suppressed by the fourth harmonic D. The fourth har-

monic keeps its steady state for a certain time but eventually is destroyed by

the third harmonic G. Hence, the wavenumber of the flow changes twice dur-

ing the evolution and the final steady state has wavenumber 36=3.6. Note

that A(0) plays a key role here though it is very small (A (0)=0.01B (0)). If

A (0)=0, then we will obtain the fourth harmonic D as a steady state.
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Now we consider an example of interaction of four waves in Fig. 7.8.

These four waves are ß=1.2, 2ß=2.4, 3ß=3.6 and 4,6=4.8. Their initial ampli-

tudes are also sketched in Fig. 7.8. Though the second harmonic and the

fourth harmonic have larger initial values than the fundamental and the third

harmonic, the third harmonic finally buecemes the fundamental of the steady

state. More cases for this example have been performed and the results are

summarized in Table 7.1. Sixteen different spectra are studied and all lead to

the same steady state with 3,6=3.6. Obviously, these results are caused by two

reasons: a steady state can not exist if the wavenumber is less than
ßJ=2.562; the steady state with 4ß=4.8 is unstable to the disturbance with

3ß=3.6.
A

At T=6000, four examples of the interaction between four waves are stu-

died. In these four examples, the wavenumbers of the fundamental and the

second harmonic are less than ßJ=2.56‘2. Hence, there will be only two possible

steady states. For each example, different disturbance spectra are prescribed.

we list these examples as follows ·

EXAMPLE ß 2ß 3,8 4ß

1 1.2 2.4 4.8
. 2 1.1 2.2 Q 4.4 ‘

3 1.08 2.16 Q 4.32

4 1.052.10The

underscored indicates the stable steady states. The first three exam-

ples show that the wave with 4ß is unstable to the wave with 3ß. That is, 4ß is

not inside the interval IS. The Example 4 shows that either 3ß or 4ß can exist

as steady state, depending on their initial amplitudes. Hence, 4,6 is inside the
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interval IS. Consequently, there should be a turning point between 4ß=4.32

and 4ß=4.20. However its exact location is not easy and too expensive to ob-

tain by the numerical method. ‘

We also try an example for the interaction between three waves and an

example for the interaction between five waves, which are listed as follows

A EJMMPLE ,6 2ß 3,6 4ß 5ßI
51.36

0.79 1.582.37In

the Example 5, either the steady state with 2f? or 3ß can existas a
”

stable steady state while in the Example 6, either the steady state with 4ß or
5,6 can exist as a stable steady state, depending on the initial amplitude spec-

tra.

In_summary, the results from the two-mode method and the numerical
method show that there is a subregion containing the critical wavenumber ß„

in the ß- T plane. Outside this subregion, stable steady state solutions do not
exist and the wavenumbers of the disturbances determine the wave selection;
If the disturbances are inside the subregion, the selection of the steady state

depends on the initial spectra or the wavenumbers of the disturbances. This
subregion may be defined as

subregion = O all IS

where O is the symbol of the intersection and lg is obtained from interaction

between the wave with nß and the wave with (n+ 1)ß for different Taylor

numbers. Of course, this definition is only concerned with the interaction

between two waves. For interaction between more than two waves, the subre—

gion may be smaller or unchanged. This problem needs further investigation.
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7.3 The Oscillation Pheuomenon

An unexpected oscillation phenomenon takes place at high Taylor
numbers and some small wavenumbers for a single small disturbance chosen as
an initial condition. Fig. 7.9 is the plot of amplitude growth for a small distur-
bance with ß=1.25 at T=9000. The fundamental and other harmonics reach

their individual peaks periodically at different times. Hence, Taylor vortex flow

does not develop into a steady state and its wavenumber can not determinecl.
According to the relation t=d’1·/u in (2.1.12), the period of the oscillation is
short (e.g., t=18.2 seconds if d=3cm and u=0.4‘24cm2/sec for this figure). The

_ amplitude diagrams corresponding to this case are quite interesting. We plotI
the amplitude diagram for the fundamental and second harmonic in Fig. 7.
10(a) as well as the amplitude diagram for the fundamental and third har-
monic in Fig. 7.lO(b). From these two figures, we can imagine that there is a
limit cycle which looks like a ’heart’ in the infinite dimensionall space. Figs.
l0(a) and (b) show two projections of this limit cycle. Figure 7.11 is a plot for
a small disturbance with ß=1.16 at T=12000. The oscillation is more compli-

cated land is reminiscent of period-doubling. In some cases, the flow shows
oscillatory behavior for some time but finally approaches a steady state. Figure
7. 12 shows such an example for a disturbance with ß=0.675 at T=0000.

Figure 7.13 is a plot of the intervals of wavenumbers for T=9000 and
T=12000 where the oscillation lasts for quite a long time and seems not to
approach a steady state. The oscillation occurs at some special wavenumbers
in the left neighborhood of ßw or ,8,,. It may be exciting to explore the details

of the oscillation phenomenon. But such exploration is very time consuming
and too expensive because we have to trace the evolution for very long time.

Moreover, we should consider the question: whether such oscillation can be
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realized in experiments. Hence, we introduce two small disturbances with

ß=1.25 and 2ß=2.5O at T=9000 as shown in Fig. 7.14. The corresponding

amplitude diagrams are given in Fig. 15(a) and We know from Fig. 7.9

that the single disturbance with ß=1.25 can cause oscillation. Due to the pres-

ence of the second disturbance, however, the oscillation can not last for long

time and a steady state with 3ß=3.6 is achieved. Accordingly, we may observe

the oscillation for a short time at the beginning of some experiment and

meanwhile the wavenumber of Taylor vortex flow can not be measured.



CHAPTER 8

SIDE-BAND STABILITY

8.1 Introduction

In order to explain the wave selection phenomenon that Taylor vortex

flow actually shows up with wavenumber ,6 close to the critical wavenumber

,8„. Eckhaus [17] introduced the concept of side-band stability: a Taylor vor-

tex How with wavenumber with ß in the unstable region determined by the

linear theory may be unstable to some small axisymmetric disturbances with

different wavenumbers from ß. During the nonlinear interaction with the Tay-

lor vortex How, the small disturbances may grow with time. As a result, these

small disturbances would destroy the original Taylor vortex How and finally

develop to a stable Taylor vortex How with a new wavenumber. In such case,

we are obviously not talking about the stability of circular Couette How (basic

How). Rather, we are dealing with the stability of Taylor vortex How (secon-

dary How) with respect to some special small disturbances (noises) which are

axisymmetric as the Taylor vortex How. In other words, we deal with a quite

special problem of secondary stability. Furthermore, this is essentially a linear -

stability problem of the secondary How. Based on this concept, Eckhaus found

the following formula for the neighborhood of the critical point (ßc, , TC,)

Em (8-1-1)
or equivalently,

F =ß„ ß·)
3+ =ß„ + — ß„)

- gg -
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where ß' is the wavenumber of the neutral curve for a prescribed T, that is,

ß' stands for either ,8+ or F; F is the wavenumber of the side-band stability

curve for the same T ; F and F represent the left and the right branches of

the side-band stability curve respectively. Note that T does not appear expli-

citly in (8.1.1). The side-band stability curve F(T) has been shown in Fig. 1.2.

Stable Taylor vortex How can only exist in the region encompassed by the

side-band stability curve. In the regions between the neutral curve and the

side-band stability curve, there is no steady state Taylor vortex How.

The analysis of Eckhaus is restricted to a discrete spectrum. Kogelman

and DiPrima [18] extended Eckhaus’ analysis to a band of small axisymmetric

disturbances (continuous spectrum). Eventually, they obtained the same rela-

tion (8.1.1) for the side-band stability curve.

All the aforementioned analyses are based on the single-mode perturba-

tion method (up to the third order) for evolution in which the Landau equa-

tion is applied. Although the concept of the side~band stability is quite simple,

the analyses are regarded as intricate and diflicult to understand even by

DiPrima himself We consider it adequate to rederive (8.1.1) in a relatively

elementary way. We shall present the derivation in Sect. 8.3.

Nakaya [19] proposed a method to carry out the computation up to the

Hfth order. He obtained a narrower region of the stable Taylor vortex How

shown in Fig. 8.1. However, his result seems doubtful. First, the singularity

appearing in the perturbation method was not found in his paper. Second, our

results show that the high-order perturbation method does not change the

side-band stability curve for low Taylor numbers. Our results will be

presented in Sect. 8.4.



- 84 -

8.2 Formulation

The idea of formulation is as follows: For a Taylor vortex How with

wavenumber ß, a pair of small axisymmetric disturbances with wavenumbers

ß—Aß and ß+Aß respectively is introduced. The Taylor vortex flow is called

mode A and its amplitude is also denoted by A. The disturbances with

wavenumbers ß+Aß and ß—Aß are called mode B and mode 0 and their

amplitudes are denoted by B and 0 respectively. The quantity Aß is called the

wave shift, which is a small but nonzero number. The amplitudes of B and 0

are assumed to be very small as compared with A such that any terms associ-

ated with the product composed of these two modes such as

02, B2, B0, B20, · ·· can be neglected. If either or both of the disturbances

grow with time due to the interaction with the Taylor vortex flow, the Taylor

vortex flow is regarded as unstable.

We use two approaches to study the side-band stability. In Approach 1,

the amplitude of Taylor vortex flow is a function of time. Thus we apply the

Landau equation there. In Approach 2, we consider the stability of the steady

state. Thus the parameter expansion is used. Note that previous work by other

researchers only used the Approach 1.

(a) Approach 1

For the Taylor vortex flow (i.e, Mode A), we use the same amplitude

expression and the Landau equation as those in the single·mode perturbation

method. For convenience, we restate them as follows

oo (Um (Il}
V„(¤.T) = E/*"(AÄ)"' V„„„(¢) (¤ 20)
W„(a:,1·) m=0 W„,„(1·)
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U-n (I rr) M U- nm
>0) (8-2·l)

w_„(„,r) ""‘° w_„„,(„)

M — A A
‘

A
‘ 2 — °° ‘

'= 8 2 2
F—a°+a1(AA)+a2(AA)+···—l§oa),A(AA)For

the small disturbances of Modes B G, we derive the following ampli-

tude expressions

U„*(=w) N U„’?„(=) N
L

U„?j„(=)
V„+(z,r) =BA~-1 E (AA )··· vg„(„) +

GA··+‘
E (AA)···—* 1{„<iq(„·) (8.2.6)w„+<«.r> ""° wm) "" wm)

U„'(::,r) U„(;'„(::) Uff; (2:)
[V„'(:1:,·r)]=CA"" E (AA)”* {I/„?„(z)

}
+

BA'*+‘
E (AA )"*·‘{V,§,}(z) ](8.2.4)

W„‘(=¤„r) MG W,-‘i(¤) m-1
W„€„(¢)

where U„+ indicates that U is associated with rzß+Aß while U; indicates that
U is associated with riß- Aß; V§,(z=0.5)= V{€,(z=0.5)=0.5 and the other func-
tions in (8.2.3)-(8.2.4) are equal to zero at z=0.5 (normal-ization). 5

We list some lower order functions and their corresponding amplitude

combinations as follows

Qß p-4,6 ß+Aß 2ß—A6 2ß+A„6 3ß—Aß 3ß+Aß
— G B

BA GA BA
ÖA

GAA BAA GA2 BA2
BA2 GA2

Let us consider the following two functions
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V;(8.2.5)

Vl·(8.2.6)

ReplaciugVl+rin

(8.2.5), we obtain

dB b B . . 2 .. . 2 - . 2 .
ll +blB(AA)+ b„B(AA) + ··· + blGA + b2G'A (AA)+ -·~

= 6(6,,+6l(AA)+ b2(AÄ)2+ -—-1+ ö·[1T,A2+ F2/12(AÄ)+···]

OO A OO _
A A

= Z6,.B(AA)'= + Z6, 0A='(AA)‘·* (8.2.7)
hä l=l

Replacing Vl' , Vfll, by %,Cll, Cl,···,Fl,€2,~·-

in (8.2.6), we obtain

JG “ ^ 2 — ‘
2 — ‘

2
“

COC00 A OO A A

= E C,. c(AA )* + Za BA 2(AA )'·* (8.2.8)
hä l=l

Equations (8.2.7)-(8.2.8) are called the Landau equations and the

coeilicients bll, bl, · · · ,l7ll, Fl, ···,Cl,, cl, · · · ,?l,, El, · ·· are called the Landau

constants.

Substituting (8.2.l)·(8.2.4) and (8.2.7)-(8.2.8) into tl1e nonlinear system

(2.3.4)—(2.3.7), we decompose the system into successive linear ordinary
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differential equations according to: (1) same wavenumber; (2) same order; (3)

same combination of A, B and G'. The program designed can generate and

solve the differential equations and evaluate the Landau constants. Some

resulting differential equations will be shown in the next section.

(b) Approach 2

For Taylor vortex How (i.e, Mode A), we use the same amplitude expres-

sion and parameter expression as those in the single-mode perturbation

method where A, is used instead of A(r). For convenience, we restate the

parameter expression as follows

T=T0+ T,(A, Ä, )+ T„(A, Ä, )2+ T3(A,Ä, )"+ · · · =ä T, (A, Ä, )" (8.2.9)
#.-6

For the Modes B and G, we employ the amplitude expressions (8.2.3)-

(8.2.4) and the Landau equations (8.2.7)-(8.2.8) except that A(1-) now is

replaced by A, .

The rest of this approach is analogous to the Approach 1. These two

different approaches are implemented in a single program.



8.3 Simplified Derivation of Side-Band Stability Curve

First, we present some relations between the Landau constants which are

useful in the further derivation. We claim that as Aß —· 0

(102 602

Coand

bl 2 2a, gl 2 El

Cl 22a,We

select following examples from the perturbation equations to verify

the above relations

(a) Consider one of the two equations for the functions U;",, Vf,, W5,

(associated with the wavenumber ß)

(DD'- /92- <=¤)Vi‘¤ - Ufo =0

and the corresponding one for the functions U5, , V5, , W5, (associated with the

wavenumber ß+Aß)

[DD'- (ß+Aß)2— bo[VfB — Uiia =O

Obviously, as Aß—·0, due to the normalization of the functions, we obtain

bo =¤o Uiia =Ufo Viia =Vfo (8-3-3)

Equation (8.3.3) is also true if we compare another equation for the func-

tions
U;‘,,

V5, , W5, and the corresponding one for the functions U5, , V5, , W5,

(for simplicity, we do not list these two equations here).

Similarly, we can show that

C, =„, U5, = Uä, 1/5, = 1/;*, (8.3.4)



Hence, Eq. (8.3.1) is verified.

(b) Consider one of the two equations for the functions Ug, , Vgo, Wg ,

(associated with 2ß)

[DD'- (2ß)”- 2¤¤lV€¤ — Udo =—éj,Lrgl2(UfoD' Vfo — ·‘ßw1‘„v¢„+ äl/f¤V?¤’]

and the corresponding one for the functions U5,, V§,, W5, (associated with

2ß+Aß)

{DD'- Vfo

It is easy to see that as Aß—»0

vg =2V§, Ug, =2U§0 wg, =2W§0 (8.3.5)

(c) Likewise, it is not difficult to show that as Aß—~0

V6 = vs. U3 =¤/6. Wä = WS. (8-3-6)

(d) As the Hnal example, consider one of the two equations for the func-

tions U5 , V5 , W5

(DD'- ß2— 3<¤¤)Vi‘i — Ufi=;,%[2¤iVf‘o+
U€iD'

V?o+ Ui‘oD'V6‘i + U£‘i¤D'Vé‘¤

+ U;„D‘ vé,-„— ¢ßw6‘,v(*„+ éjvä-vro +
Ui‘¤V6‘i

+ véwv-éo +
U;-„v:‘-0 )1

and the corresponding one for the functions U5, vg , wg (associated with

ß+Aß)

[DD °—(ß+Aß)2— (bo + 2“o)lVii — vä =?,%l(€’¤i +l>i)Vii¤ +U6‘1D' Vigo +Uil>D ' Vöi +

Ugp · vg + Ugp * vg, + U9 ,,,.0 * vg, + Ug,1> * v;*,,, - iß(W,5 vg}, + W(,‘,V5,)
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vtvä J1

By comparison and full use of all the information shown in the previous

examples, it is apparent that _

blThuswe verify one of the relations in (8.3.2). The other relations in

(8.3.2) can be verified similarly.

The Landau equations (up to the third order) are

=a,,A + a,A" (8.3.8)

JB 2 — 2=B(b0+ 6,.4 )+ O(b,A) (8.3.9)

dC' C, 2
_

2((:0+

c,AWhen= 0, we obtain the steady state amplitude A,

A} =- Q > 0 (8.3.11)
1

where a0>0 and a,<0.

Consider the vicinity of the critical point (/3,,, T,,) as shown in Fig. 8.2.

The Taylor number T, is chosen sufiiciently close to T,, and greater than T,, .

The first Landau constant ao of Mode A is not a function of time but a func-

tion of ,6 and T. We expand ao in Taylor series at fixed T,

A 8 1 62a
J¤(ß,T1)=¤¤ + j2%I„(ß — ßcr) + E- jlcjß — ß„)” + ··· (8-3-12)

where ä2=a,,(ß,,, T,). Note that as T, is close to T,,, the neutral curve is

almost symmetric with respect to ß,,. Therefore, it is reasonable to use a
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parabola as an approximation of (8.3.12). That is, ao is assumed to be sym-

metric with respect to the point (B„, T,). We have shown in Fig. 2.2 that the

above assumption is very good (the critical point for this figure is at B„=3.13

and T„=1695). Fig. 8.2 gives the geometric interpretation of the approxima-

tion of ao. Due to the symmetry of the parabola, | B+— B„ | = | BC, - B' |.

Let

ß- ß„ - AB -——l= ß, ——-——= 8.3.13ß+_

ßtf
ß+—

ßtf
( )

where both B and AB are dimensionless, and their absolute values are not

greater than 1, for example, B°=0 when B =B„, and B=1 when B =B+.

The approximation of (8.3.12) is expressed in the form of parabola

“° =‘i°(1 ' (1 + =‘l¤(1 ‘ E2) (8-3-14)

For Modes B and G , the first Landau constants are approximately as

„ (ß+Aß)-ß„ _ . .bo =¤¤ ll -
(—-;i)”]

=¤¤l1 - (ß + MV)

. (ß- M)- ß„ . - -¤¤ =¤¤l1 - (T?-)2l =¤¤l1 - (ß - M)2l (8-3-15)

which implies that bo and Co obey the same parabola of ao, since bo and co

have the same form as ao for AB—•0.

In the following derivation, all the second Landau constants are treated as

invariants with respect to B and T in the vicinity of the critical point, namely,

Gl bl

ClIfMode A is in the steady state, Eqs. (8.3.9)~(8.3.10) become
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dB _ 2
—

2 ao — ao
E- —B(% + b1A„)+6'(b1A„)=B(%— b1T)+ C(— 2%)+ C'(-%)

1 1

(8.3.17)

dc, 2 ,. 2 a0 _ a0=<7(% + ¢1A„)+B(¢1A.)=6'(% — ¢1;)+ B(— ¤1T)=6'(% — 2%)+ B(- %)
1

(8.3.18)

Eqs. (8.3.17) and (8.3.18) are linear homogeneous diH‘erential equations.

Let B =pexp()«t), C =;1exp()«t), then

(b - 2a )— X — a P 00
u = 0 (8‘3’19)

which leads to

C0— 400) + (b0C0— 200(Ö0 + 60) +
3002) =0

or in terms of the dimensionless quantities (see Eq. (8.3.13))

22 + 26.,)(1 - 62) + AÖ2])\ + 6.,2 AÄ2(2 - 662 + A62) = 0 (8.3.20)

where the negative root of >. has been dropped. The positive root of >„ is

2 =- 6.,)(1 - 62) + A62) + 6., ,/(1 - 62)2 + 4ß2AÜ2 (8.3.21)

Note that the amplitude of Mode A is Hnite while the amplitudes of

Modes B and G are assumed as inünitesimal. The eigenvalue >„ is indeed the

linear growth rate for the Modes B and G. If >„<0, both B and G decay and

the Mode A is in stable steady state. The small axisymmetric disturbances are

suppressed by the existing Taylor vortex How (Mode A However, if >„>0, both

Modes B and O will grow and one of them will replace Mode A. Consequently,

Mode A no longer is a stable steady state. In other words, the study of side-

band stability of Mode A is the study of linear stability of Modes B and O in
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presence of a Taylor vortex How with finite amplitude.

Note that do (ä2=a2(ß,,,T,)) is greater than zero in the region of interest.

For positive >„, we obtain

(1 _ E2) + A32

*2 1 1 *2.8 >+or

in dimensional form

5- 566 2 1 1 Aß 2— — — —-—l 8.3.22

For negative >., we obtain

~/(1 — 52)2 + 452A52 < (1 — 52)+ A52

*2 1 1 *2.6 <+or

in dimensional form

5-56, 2 1 1 Aß 2 83,,3
(ß-_ß¢I’)

< -.-)

The side-band stability curve is obtained when >. =0 and Aß——»0

- 1Ü- =Ü„ — (Ü66 — Ü-)7276+ :6 6 6 ‘2‘2‘22
CY

Ä
CT

Equation (8.3.24) is identical to (8.1.1). Hence, we complete the proof of

(8.1.1) in a simpler way.
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8.4 Results

Because the original analyses of Eckhaus and Kogelman and DiPrima are

restricted to the small gap case (r;=%—»1, i.e., 6=%—»0), we apply the high-

order perturbation method to the small gap case (ö=0.05, i.e., q=0.95238) as

well as the wide gap case (6=1.0, i.e., r;=0.5). For convenience, the side-band

stability curve determined by (8.1.1) (i.e., ,Ü=ß„+ &.ä·(,6‘— ß„ is called the

l
predicted side-band stability curve (3rd order). _

(a) Approach 1

First, we consider the wide gap case in Table 8.1. We display the results

of the neutral curve and the 3rd order predicted curve. The wavenumber E;

and Ef are the left and right branches of the predicted curve respectively

whereas ß' and ,8+ are the left and right branches of the neutral curve respec-

tively. In Table 8.2 and Fig. 8.3, we show the points ((F‘, T) and (Fi T)) of

the side-band stability curves obtained from different orders. Theoretically,

these points should have exactly zero linear growth rate. But indeed they

correspond to extremely small positive growth rate since it is difficult to accu-

rately locate the points with zero growth rate in the calculation.

By comparison between Tables 8.1 and 8.2, we observe that at low Taylor

numbers (TgTp=3666), the points from different orders almost coincide with

those of the predicted curve. Such agreement implies: (1) at low Taylor

numbers the previous analyses of Eckhaus and others are very good and the

assumptions they imposed in the analyses are reasonable; (2) the increase of

the order of the perturbation does not narrow the region in which stable Tay-

lor vortex flow can exist.
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As T is increased, we observe from Table 8.2 and Fig. 8.3 that the points

from different orders begin to deviate from the predicted curve. In Fig. 8.3 we

also plot the singularity line of the second Landau constant al which is also

the zero amplitude line in the single-mode perturbation method. Moreover, we

plot the line of the jump ß, (i.e., the 1- 2(L) line) obtained from the numerical

method. We can see the points (F, T) of the third order approaches to and

then falls on the singularity line as T is increased. Accordingly, we conclude

that due to the singularity of al, all the points (F, T) from different orders at

relatively high Taylor numbers (T > TP) are not reliable.

Now we turn to describe the results for the small gap case. In Table 8.3.

We display the results for the neutral curve and the 3rd order predicted curve.

In Table 8.4 and Fig. 8.4, we show the points ((F, T) and (F*, T)) of the side-

band stability curves obtained from different orders. Table 8.4 and Fig 8.4

show that the results for the small gap case are similar to those for the wide

gap case at low Taylor numbers. For the left branch of the side-band stability

curve F at high Taylor numbers, the differences between the results of

different orders and the results for the predicted curve are larger than the

differences in the wide gap case.

(b) Approach 2

We apply this approach to both wide and small gap cases. Figure 8.5 is

the results for the wide gap case while Fig. 8.6 is the results for the small gap

case. In both figures, once again we see that at low Taylor numbers (T<TP)

the perturbation method of different orders produce results very close to to the

third order predicted curve. However, in both figures, the left branches of the

F curves produced by the perturbation method of different orders terminate
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as 6 is decreased to certain values. Obviously, this phenomenon is related to

singularity in the single-mode analysis based on the parameter expansion

described in Sect. 5.5. Furthermore, for the right branch of the side-band sta-

bility curve
F“

at high Taylor numbers, the differences between the results of

different orders and the predicted curve are larger than those in Approach 1.

Note that the wave shift Aß=0.02 is used in both small and wide gap cases

for both approaches. Choosing different values of A6 causes little change in

the the results (i.e., the points in the (6- T) plane) provided A,6 is sufficiently

small. In Table 8.5, we give an example of the effect of the wave shift on the

computed Taylor numbers of side-band stability curve by use of Approach 2.

In summary, both approaches confirm the previous analyses (up to the

third order) of Eckhaus, Kogelman and DiPrima at low Taylor numbers. More

importantly, both approaches show that the high-order perturbation method

hardly change the predicted side—band stability curve at low Taylor numbers.

Another important conclusion is that we should not extend the predicted curve

to high Taylor numbers, especially the left branch (F), because of the singu-

larity and the poor accuracy at high Taylor numbers in the single-mode per-

turbation method.



I

- 97 -

8.5 Discussion

The study of the side-band stability curve is based on a special model of

interaction between three waves. That is, one wave with linite amplitude has

wavenumber ß and a pair of small disturbances have wavenumbers ß—Aß and

,8+-Aß, respectively. The linite amplitude is obtained from the single-mode

method which produces accurate results for low Taylor numbers T_§TP. We

may ask the following questions: Wihat will happen to the interaction

between one mode with linite amplitude and one small disturbance with ß—Aß

or Do we need to introduce more pairs of small disturbances in the

study of side-band stability?

The first question is easy to answer because this is indeed a special case of

two-wave interaction which is a reduced case of the previous three—wave

interaction. The Landau equation is reduced to

=B(b„+ b,A2) (8.5.1)

The derivation of the new side-band stability curve is analogous to the

previous one but simpler. We are not going to present the derivation here.

Rather, we just give the result

I

E- =ß., — gw., - rr) l
_+

1 +
(8.5.2)

ß =ß„ + EU? — ß.,)

The region determined by (8.5.2) is bigger than that given by (8.1.1).

This result makes it necessary to investigate the second question. Let us con-

sider a special model of interaction between live waves. In addition to the pre-

vious model with three waves, a new pair of small disturbances ß+AF (Mode
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D) and ß—AE (Mode E) is introduced. The new wave shift AE is a small quan-

tity which is nonzero and different from Aß. For example, AE may be equal to

2A,8. The corresponding Landau equations are

=„,,A + alA3 (8.5.3)

=B(b0 +
b,A’)

+ 0(F,.42) (8.5.4)

=C(c„ + 1:,,42) + B(E',A2) (8.6.6)

=D (do + d1A2) + E(¢Y,A2) (8.5.6)

=E(¤„ + ¢,A2) + D(?,A2) (8.5.7)

Note that Eqs. (8.5.6) and (8.5.7) are not coupled with Eqs. (8.5.4) and

(8.5.5). Hence, the derivation is analogous to that in Sect. 8.3 and we still get

the same side-band stability curve as (8.1.1) when Aß—·0 and AE—»0. That is,

the model of three waves is sufficient for the study of the side-band stability

for low Taylor numbers.

The analysis of the side-band stability is based on the consideration that

a steady state of Taylor vortex flow may be unstable to some axisymmetric

disturbances with very small amplitudes. Based on the same consideration, we

define in Sect. 7.2 a subregion where stable Taylor vortex flow can exist. The

boundary of this subregion plays a similar role to the side-band stability curve.

However, the definition is only concerned with the two-wave interaction and

the wavenumber of the small disturbance is not arbitrary (i.e., it is either 11,8

or (11+ 1)ß where fl is an integer). In contrast, the wave shift Aß used in the

side·band stability analysis is arbitrary but small. That is, there are two
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different ways to determine the subregion. Hence, we would like to know

whether the results obtained from these two ways are consistent or not. We

note that at T=3666 the smallest interval IS during two-wave interaction is

the interval [4,8„=2.54, 5ß,„=3.975] during the interaction between the wave

with 4ß and the wave with sß. Note that at :/*:2666, ß°=2.20 and ß+=4.40.

Thus, Eq. (8.1.1) gives [F'=2.61,E+=3.80] while Eq. (8.5.2) leads to

[,F°=2.48, ,§+=4.03]. These results are consistent.

So far it seems that the analysis of the side-band stability is reasonable,

though the results at high Taylor numbers are doubtful. At high Taylor

numbers, perhaps the left branch F' of the side-band stability curve should be

replaced by a line which is between the curve ß, (i.e., 1-2 (L) line) and the

vertical line of ß„ (see Fig. 8.2). The right branch E* also needs modification.

For example, at T=6000 and r;=0.5, the third order perturbation gives the

smallest F+=4.67 as shown in Table 8.2. But from the Examples 3 and 4 in

Sect. 7.2, we know that F* is less than 4.32. Hence, the right branch should be

bent such that it is closer to the vertical line of ß,,,. Unfortunately, applying

the numerical method to obtain the side-band stability curve is not a

appropreate way because the computation is too expensive and time consum-

ing. Due to the limitation of the two-mode method (see Sect. 6.3), the

attempt to study the side-band stability at relatively high Taylor numbers

based on the finite amplitude obtained from the two-mode method is not

worthwhile. A better method would be highly desirable for the study of side-

band stability curve at high Taylor numbers.



CHAPTER 9

SUMMARY

We have studied axisymmetric Taylor vortex How in some range of Taylor

numbers and wavenumbers and its stability with respect to axisymmetric dis-

turbances with different wavenumbers. By use of a numerical method and per-

turbation methods, we find stable and unstable steady state solutions and

some associated phenomena such as the occurrence of jump and hysteresis.

The results indicate that unstable steady state solutions play a key role in

wave selection. Because unstable steady state solutions exist in a small region

of wavenumbers consisting of the critical wavenumber ß„ , a steady state Tay-

lor vortex How with large (or small) wavenumber is unstable and thus replaced

by a new steady state with wavenumber close to ßc, . In this small region, the

wavenumbers and initial amplitudes of disturbances determine the

wavenumber of the How; but outside this region, only the wavenumbers of the

disturbances have effect on the wave selection such that the steady state has a

wavenumber close to ß„. Due to the nonlinear interaction and the existence of

unstable steady state solutions, at high Taylor numbers, a small disturbance

with small wavenumber ß can develop to a stable Taylor vortex How with

wavenumber nß inside the small region. The wavenumber of this disturbance

may be so small that it is in the stable region determined by the linear theory.

Hence, some concepts such as the stable and unstable regions and the neutral

curve from the linear theory require new interpretations.

We show the existence of multiple steady state solutions for small

wavenumber (large wavelength). Vi/e conclude that the smaller the

- 100 -
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wavenumber, the greater the number of possible steady state solutions. This

conclusion is not only valid for the Taylor vortex How problem but also for

some special cases of Navier·Stokes equations with spatially periodic steady

state solutions (e.g., Benard convection rolls).

The numerical method is very important in this work. Most of discoveries

were obtained first by the numerical method. The two-mode perturbation

method provides good approximations and requires less computation than the

numerical method. The amplitude equations help us gain deeper insight into

the problem. The two-mode perturbation method is successful because it .

shows the existence of the stable and unstable solutions, thus explaining the

jump phenomenon and the hysteresis phenomenon, and produces good results . q
of the amplitudes at wavenumbers close to the jump.

Because the singularity occurs at high Taylor numbers, the single—mode

perturbation method based on the Landau equation gives good results only at

low Taylor numbers (-:% =1.18 for n=0.5) or high Taylor numbers with

wavenumbers very close to the right branch of the neutral curve (see Fig. 5.9).

Moreover, this method can not be used for the study of wave interaction.

Another method based on a parameter expansion has similar troubles.

The unstable solutions and side-band stability are closely related. Hence,

the analysis of the side-band stability is reasonable. The derivation of the

side-band stability curve (up to the third order) given in here is much simpler

than previous analysis by Kogelman and DiPrima. High-order perturbation

methods are applied to the calculation of the side-band stability curve. Our

results show that the side-band stability curve is nearly independent of the

order used at low Taylor numbers. Accordingly, Nakaya’s results for the fifth
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order are doubtful. The side~band stability curve produced is accurate at low

Taylor numbers but incorrect at relatively high Taylor numbers. A better

method would be highly desirable for the study of side·band stability curve at

high Taylor numbers.

Our results show that the hysteresis phenomenon and the overshoot

phenomenon during the evolution of the flow are the inherent properties of

Taylor vortex flow between infinitely long cylinders. Therefore, we should not

overemphasize the end effects in the interpretation of the results of the experi-

ments and the calculations for the finite—length cylinders. The oscillation

phenomenon found in the calculation is interesting. However, such

phenomenon may occur in some experiments only for a short time.
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Table 5.1 Comparison of T,.

at ß=2.200 and ß=2.199

T ,B=2.2OO ß=2.199

Tg 3.6606E+03 s.6620E+0s

T4 1.5803E+07 -1.2589E+07

T2 1.7791E+14 -9.0773E+13

T2 4.0090E+21 -1.so7sE+21

T4 1.1292E+29 -2.3552E+28

T5 3.5623E+36 -4.7507E+35 -
T, 1.2041E+44 -1.0267E+43

T1 4.2636E+51 -2.3245E+50

Tg 1.5612E+59 -5.4421E+57

Tg 5.8632E+66 -1.3068E+65

Tw 2.2460E+74 -3.2006E+72

. Table 5.2 Singularities of Tl, T2, T2, amd T4

ßß T1 T2 T4 T4
l

2.600 4.1147E+04 1.0307E+06 2.5839E+07 8.5481E+08

2.500 4.6674E+04 1.5356E+06 5.0334E+O7 2.4564E+09

2.400 5.8121E+04 3.3048E+06 2.2847E+08 2.5241E+10

2.300 9.2857E+04 1.8350E+07 6.4457E+09 3.1694E-4-12

2.200 1.5803E+07 1.7791E+14 4.0090E+21 1.1292E+29

2.199 -1.2589E+07 -9.0773E-+-13 -1.3078E+21 -2.3553E+28

- 2.100 —4.7111E+04 -1.6322E+07 -6.2478E+09 -3.3040E+12

2.000 -1.1494E+04 —2.4322E+06 2.78l3E+07 5.0745E+10
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TIHE5
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D: 10.32
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TIMEFig.6.1. Evolution of amplitudes at T=6000 for q=0.5 (ß=2.58,
6:6.16)

(2.). two mode perturbation method (9th order)
(b). numerical method (9 harmonics)
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Table 7.1 Initial disturbance spectra for

four wave interaction at T=6000 and r;=0.5

OASE ß =1.2 ß =2.4 /3 =3.6 ß =4.8

1 0.01 0.01

2 0.01 0.003

3 0.01 0.001

4 0.01 0.03

5 0.001 0.01

6 0.0001 0.01

7 0.01 0.01

8 0.00001 0.01

9 0.0001 0.01

10 0.01 0.01 0.01

11 0.0001 0.01 0.01

12 0.00001 0.01 0.01

13 0.001 0.01 0.001 0.01

14 0.001 0.01 0.002 0.001

15 0.01 0.01 0.01 0.01

16 0.01 0.005 0.002 0.001

Note that all above cases lead to

the same steady state with ß=3.6
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AMPLITUDE DIAGRAM AT T=9000
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Fig.7.10. Amplitude diagram at ß=1.25 and T=9000 for q=0.5
(a). for ß=1.25 and 2ß=2.50
(b). fer ß=l.25 and 3ß=3.75
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Fig.7.l5. Amplitude diagram at ß=1.25 and T=9000 for r;=0.5
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Table 8.1 Some values at
neutral curve and predicted curve

(3rd order) for wide gap case 17=0.5

T F B'; FJ /3+

3200 2.71 2.90 3.45 3.67

3500 2.32 2.67 3.76 4.20 „

3675 2.20 2.61 3.88 4.41

4000 2.00 2.49 4.08 4.75

4500 1.80 2.37 4.31 5.16

5000 1.65 2.29 4.51 5.50

5500 1.54 2.22 4.68 5.80

6000 1.45 2.17 4.83 6.05

6200 1.41 2.15 4.89 6.15

Table 8.2 Some values of side-band stability
curves of different orders for wide gap case q=0.5

T F F‘
(3rd) (5:/;) (7:/;) (9:/;) (3rd) (5:/;) (7:/;) (9:/;)

3200 2.90 2.90 2.90 2.90 3.43 3.43 3.43 3.43

3500 2.69 2.69 2.69 2.69 3.70 3.70 3.70 3.70

3675 2.61 2.62 2.62 2.63 3.81 3.81 3.80 3.80

4000 2.48 2.54 2.55 2.56 3.97 3.97 3.96 3.96

4500 2.21 2.47 2.49 2.50 4.17 4.18 4.17 4.17

5000 2.13 2.42 2.45 2.47 4.34 4.36 4.36 4.35

5500 2.11 2.39 2.43 2.45 4.49 4.53 4.52 4.52

6000 2.08 2.35 2.40 2.43 4.67 4.73 4.73 4.73

6200 2.07 2.35 2.40 2.43 4.68 4.73 4.74 4.74
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Table 8.3 Some values at neutral curve
and predicted curve (3rd order) for

small gap case r;=0.9524 (6=0.5)

T ß- F; F; ß+

1715 2.85 2.97 3.30 3.42

1850 2.41 2.71 3.62 3.98

2000 2.18 2.58 3.83 4.34

2150 2.01 2.48 3.99 4.62

2300 1.89 2.41 4.13 4.86

2500 1.76 2.34 4.29 5.14

3000 1.52 2.20 4.61 5.69

3500 1.37 2.11 4.87 6.14

Table 8.4 Some values of side-band stability curves of
different orders for small gap case r;=0.9524 (6=0.5)

T F F“
(ard) (5:/;) (7:/;) (9:/;) (ard) (6:/;) (7:/;) (9:/;)

1715 2.97 2.97 2.97 2.97 3.29 3.29 3.29 3.29

1850 2.68 2.68 2.68 2.68 3.58 3.59 3.59 3.59

2000 2.53 2.56 2.54 2.54 3.76 3.78 3.78 3.78

2150 2.53 2.51 2.50 2.49 3.90 3.93 3.93 3.93

2300 2.56 2.48 2.50 2.47 4.02 4.05 4.06 4.06

2500 2.60 2.45 2.50 2.46 4.15 4.20 4.21 4.21

3000 2.67 2.41 2.50 2.46 4.40 4.51 4.52 4.53

3500 2.74 2.37 2.49 2.45 4.68 4.77 4.79 4.80
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Table 8.5 The effect of wave shift on
the Taylor numbers of side-band stability
curve in Approach 2 (ß=3.975 and r;=0.5)

T

(ard) (seh) (7th)

0.2 3953 3985 4004

0.1 3965 3998 4017

0.01 3965 3998 4017

0.001 3966 3998 4017

0.0001 3994 4028 4048
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