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Buckling at the Fluid - Soft Solid Interface;

A Means for Advanced Functionality within Soft Materials

Behrouz Tavakol

(ABSTRACT)

Soft materials and compliant structures often undergo significant deformation without fail-

ure, a unique feature making them distinct from classical rigid materials. These substantial

deformations provide a means for faster or more energy efficient deformations, which can be

achieved by taking advantage of elastic instabilities. We intend to utilize structural insta-

bilities to generate advanced functionality within soft materials. In particular, we use the

buckling of thin, flexible plates to control or enhance the flow of fluid in a micro channel.

The buckling deformation is created or altered via two different stimuli, first a mechanical

strain and then an electrical signal. We investigate the behavior of each system under differ-

ent conditions experimentally, numerically, or theoretically. We also show that the coupled

interaction between fluid and the soft film plays a critical role in the shape of deformation

and consequently in the functionality of the mechanism.

We first embed a buckled thin film in a fluid channel within a soft device. By applying

a mechanical strain to the device, we show both experimentally and numerically that the

height of the buckled film changes accordingly as does the flow rate. We then offer an

analytical solution by extending the classical lubrication theory to higher-order terms as a

means to more accurately describe the flow in a channel with a buckled thin film, and in

general, the flow in channels with any constrictions provided the Reynolds number is low.

Next, we use an electrical signal to make a confined dielectric film undergo out-of-plane

buckling deformation. The thin film is sandwiched between two flexible electrodes and the

mechanism is implemented in a microfluidic device to pump the fluid into a micro channel.

We show that the critical buckling voltage at which the thin film buckles out of the plane is

mainly a function of voltage while the shape of deformation and so the functionality of this

mechanism depend considerably on the applied boundary conditions. Finally, we enhance the

fluid-soft structure response of the actuating mechanism by substituting flexible electrodes

with fluid electrodes, resulting in a significant increase in the actuation frequency as well as

a reduction in the critical buckling voltage.
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Chapter 1

Introduction

1.1 Instability and Functionality

Mechanicians, mathematicians, architects, and engineers have a long history of familiarity

with the buckling of structures. Public safety and structural integrity may be compromised

if a mechanical structure undergoes a buckling instability, therefore, it is believed that the

occurrence of an instability will only serve to interrupt the functionality of the system. This

is generally true for rigid or stiff materials, where a buckled system often experiences large,

irreversible or plastic deformation. This is, however, not true for compliant or soft systems,

which can undergo large, reversible deformations without failure.

In this work, the main focus will be on first exposing a soft material or system to conditions

that cause buckling instabilities, and then using such instabilities for advanced functionality.

We use different stimuli to bring a system to an instable condition and then provide examples

to demonstrate potential applications. A model will be offered for each type of actuation

and the results will be compared with experimental and simulation results. In particular, an

extension to lubrication theory will be offered to estimate the pressure drop within a channel

with a significant change in geometry, e.g. a channel with a buckled arch on one side. We

also show that buckling instability can be used to enhance the nearby flow and pump fluid

into a microchannel.
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1.2 Buckling

We describe the buckling instability phenomenon first via a simple buckling example. We

consider a vertical beam or column that is pinned from both ends. The bottom of the

beam cannot move while the top end moves only in the vertical direction (Figure 1.1a).

The beam remains straight and deforms only in the axial direction under a compressive

axial load, P , that is less than a critical load [1]. The beam is thus in a stable state until

the load reaches the critical value at which a small increase in the axial loading causes

a noticeable lateral deformation (Figure 1.1b) [2–4]. This instable condition is referred

to as bifurcation buckling [4], meaning that the mathematical solution bifurcates and the

deformation can occur on either sides of the lateral direction (Figure 1.1b). We note that

snap-through buckling is another type of buckling in which the geometry undergoes a rapid

deformation directly from one stable state to another one [5, 6]. To estimate the critical load

for a bifurcation buckling, we first write the governing differential equation for the vertical

beam [2]:

E I
d2w

dy2
+ Pw = 0, (1.1)

where E is the elastic modulus, I is the moment of inertia, P is the compressive load, and w is

the lateral deformation. The first term of the governing equation stabilizes the system while

the second term moves the system away from stability when load is compressive (positive

in the provided coordinates). The general solution for the homogeneous, linear differential

equation of (1.1) takes the form of w = A sin
(√

P/EIx
)
+ B cos

(√
P/EIx

)
where A

and B are constant coefficients determined by boundary conditions. Considering pinned

conditions at both ends, we find that B = 0 and A sin
(√

P/EI L
)
= 0. Since A cannot be

zero, sin
(√

P/EI L
)
= 0 or equivalently [3]:

Pcr = n2π2 EI

L2
(1.2)

where L is the length of the beam and n = 1, 2, 3, ... corresponds to different buckling modes

(Figure 1.1a).
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Figure 1.1: a. Schematics of buckling of a pinned column under a compressive load. Based

on different conditions and parameters, a column or beam may experience different modes

of buckling (n). b. axial (d) and lateral (w) deflections of a beam under comprehensive

loading. Large deformations are associated with loads that exceed Pcr.

When the compressive load exceeds the critical buckling load, large post-buckling deforma-

tions may lead to a failure in stiff structures while more compliant structures may withstand

large deformations. We therefore intend to utilize the large buckling deformations within

soft structures towards advanced functionality.

Plates and shells tend to buckle similarly under compressive loading although the buckling

modes might be different in each direction. We consider a circular plate that is hinged at its

circular edge 1.2a. The plate undergoes buckling if the in-plane compressive loading exceeds

the critical buckling load [7]. Since the plate is treated as a surface, i.e. a 2D geometry, we

have a pair of buckling modes, each is associated with one direction (Figure 1.2). For

example, the plate may undergo (1,2) buckling modes, i.e. the first buckling mode in the

radial direction and the second buckling mode in the circumferential direction. Here we

focus on the buckling deformation of circular plates as the actuators we use in this study

are circular. To estimate the critical buckling loads and the associated buckling modes, we

start with the general governing differential equation of equilibrium for a circular plate in

the cylindrical coordinates [3, 7, 8]:(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

Nr

D

)
w(r, θ) = 0, (1.3)

where w is the out-of-plane deflection, Nr is the radial compressive load per unit length,
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Figure 1.2: a. A schematic of a thin, circular plate that is flat before buckling. b. Different

buckling modes of the circular plate. The (nr, nθ) pair corresponds respectively to the number

of circumferential lines and the number of diametrical lines with zero displacement.

D = E h3

12(1−ν2)
is the flexural rigidity of the plate, E is the elastic modulus, ν is the Poisson’s

ratio, and h is the plate thickness. If we look for the axisymmetric modes, e.g. the pair of

(1,0) in Figure 1.2b, all derivatives with respect to θ are zero and Equation (1.3) reduces to:

d2φ

dr2
+

1

r

dφ

dr
+

(
Nr

D
− 1

r2

)
φ = 0, (1.4)

where φ = dw
dr

[3, 7]. Multiplied by r2, the above equation becomes a Bessel’s differential

equation and the general solution will be w(r) = AJp(r) + B Yp(r), where A and B are

constant coefficients, and Jp and Yp are Bessel functions of the first and the second kind of

order p, respectively. Similar to the previous buckling example, we then apply boundary

conditions and the only non-trivial solution is when J0(R) = 0. As a result,

(σr)cr =
4.2D

R2h
, (1.5)

where R is the plate radius and (σr)cr is the critical compressive stress in the radial di-

rection [7]. If we are however interested in non-symmetrical modes, we must use Equation

(1.3). By assuming w =
∑∞

n=1An(r)sin nθ and substituting it into Equation (1.3), we find

an expression for w(r, θ), which can then be substituted into two equations satisfying the

boundary conditions [3]. As we look for a nontrivial solution, the determinant of the coef-

ficients of the two linear, homogeneous equations should vanish [1], proving that a buckled

mode exists. By setting n = 1 to obtain the critical radial stress for the first asymmetric

mode [3], i.e. the buckling mode of (1,1) where half of the plate deforms upward and the

other half deforms downward, we have:

(σr)cr =
13.2D

R2h
. (1.6)
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A similar approach can be used to obtain critical buckling loads for other boundary condi-

tions, which in general take the form of (σr)cr = k D/R2 h, where k is a coefficient determined

by the type of boundary conditions. We note that unless experiments are conducted under

vacuum, the surrounding media play a critical role in the buckling shape of thin plates, which

will be discussed in detail in chapter 4.

1.3 Fluid Flow

Fluids that are being used in this study are Newtonian fluids, i.e. shear stresses due to

the flow are linearly proportional to the strain rate [9]. We also assume that these fluids

are isotropic and incompressible, i.e. fluid properties are independent of directions, and the

volume change due to applied pressure is negligible [9]. To describe the fluid flow within

a channel, we start with the continuity and Navier-Stokes equations for an incompressible

Newtonian fluid [10]:

∇ · u = 0 (1.7a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ ρg, (1.7b)

where ρ is the fluid density, u = (u, v) is the velocity field, p is the applied pressure, µ

is the fluid viscosity, and ρg represents body forces. By assuming a steady-state flow and

neglecting the body forces, the first and the last terms of Equation (1.7b) vanish. We then

choose dimensionless variables X = x/L, Y = y/L, U = uL/q, V = vL/q, and P = pL2/µq

to nondimensionalize the above equations:

∂U

∂X
+

∂V

∂Y
= 0 (1.8a)

Re

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+

∂2U

∂X2
+

∂2U

∂Y 2
(1.8b)

Re

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+

∂2V

∂X2
+

∂2V

∂Y 2
, (1.8c)

where L is a characteristic length, q is the flow rate per unit length, and Re = ρ q/ µ is the
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dimensionless Reynolds number, expressing the ratio of the inertia convective force to the

viscous force.

For small Reynolds numbers, where the viscous forces are dominant, we neglect the left sides

of Equations (1.8b) and (1.8c). Going back to the dimensional variables, we find that the

flow is governed by the Stokes equation [10, 11]:

µ∇2u = ∇p. (1.9)

The linearity of the above governing equations enables us to obtain analytical solutions by

a variety of methods, e.g. perturbation expansion [12–14], and study the physical structure

of the flow.

1.4 Outline

This dissertation contains 4 major studies, each will be discussed in one chapter in detail

and the associated literature review will be presented in the beginning of that chapter.

- Chapter 2: fluid flow within a micro channel is going to be controlled via the buckling

deformation of an arch that is embedded into the channel. With no external forces, the

arch is fully buckled, and therefore the flow is zero. We then use mechanical stimulus,

such as stretching or bending the device, to reduce the buckling deformation and thus

increase the flow rate. We provide a model to describe the buckling deformation of

the flexible arch as a function of externally applied strain. We then develop a second

model to analytically describe the flow within the channel as a function of buckling

deformation that was estimated from the first model. Since the derivation of the second

model is long and also the model can be used for variety of applications, we present

the detailed derivation in next chapter while we compare the analytical solutions to

the experimental and simulation results of the buckled arch in this chapter. Finally, we

show that these flexible arches can be used in series/parallel for further functionality,

e.g. for directing fluid flow toward region of high stress.

- Chapter 3: we develop an extension to lubrication theory by considering higher-

order terms of the analytical approximation to describe the fluid flow within a channel

6



that has a constriction or convexity. We show that this approach can be used for

any channel with a constriction on the order of the channel height as long as the

constriction geometry is known and piece-wise differentiable. This is also true for a

channel with a convex shape. Experimental results qualitatively confirm the higher-

order analytical solutions. We also perform non-dimensional numerical analyses and

obtain the deviation of different orders of the analytical solutions from the simulation

results, providing a threshold for considering higher-order terms in the solution.

- Chapter 4: We look for the use of buckling instability of thin plates for pumping

fluids within micochannels. The plate consists of a dielectric film that is sandwiched

between two flexible, solid electrodes. Not only are these electrodes compatible with

fluids, they also undergo large deformation without failure. Unlike the first study in

which the buckling deformation is altered via mechanical stimulus, we use an electrical

signal to bring this system to a buckling instability condition. We determine the onset

of these voltage-induced buckling instabilities, and present a model to estimate the

critical buckling voltage. We also measure the flow generated by these pumps as a

function of voltage for different boundary conditions. Finally, by coupling/combining

these pumps in series and parallel, we provide a means for further functionalities, such

as bidirectional or vacuum pumps with enhanced flow rates.

- Chapter 5: Flexible, solid electrodes provide a robust tool for making high-flow pumps

that are embeddable into a microfluidic device and compatible with variety of appli-

cations; however, the thickness of electrodes and therefore the total thickness of the

actuating plate cannot significantly be reduced; resulting in two limitations. First, the

actuating plate is not embeddable directly into a micro channel. Second, the buckling

deformation occurs at relatively low frequencies, making it physically infeasible to be

used for high speed applications. In this chapter, We address the two limitations by

introducing fluidic electrodes, which have outstanding features. First, microfabrication

of a micro actuator with fluid electrodes is much easier and faster than the one with

flexible electrodes. In addition, the thickness of actuating plate can be reduced to the

limit of the dielectric film thickness, enabling the plate to undergo the buckling defor-

mation at lower voltages and much higher frequencies. Experimental results show that

these micro actuators are capable of buckling at high frequencies. We characterize the

interaction between the film and the fluid by obtaining the buckling shape of the micro
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actuator and by measuring the volume of fluid disturbed by the film deformation.
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Chapter 2

Buckling Instability as a Means to

Control Fluid Flow

This work has been published in Soft Matter . Here it is reproduced by permission of The

Royal Society of Chemistry.

2.1 Abstract

In this chapter, we demonstrate how to utilize buckling instability of a flexible arch to control

the fluid within a channel. This buckling deformation is caused via mechanical stimulus

applied to a soft device or system. To better elaborate this idea, we make a soft device with

a channel that has a buckled arch on one side. Upon applying a proper mechanical loading,

e.g. stretching or bending, the buckling deformation is reduced, and consequently, the flow

increases. After releasing the load, the device comes back to its initial conditions and so does

the flow. We present an analytical approach to estimate the flow as a function of applied

strain (the analytical solution will be derived in detail in the next chapter). We also perform

experiments and simulations to support our analytical approach. We then combine these

flexible valves to expand the use of buckling instabilities in directing the flow toward regions

of externally applied mechanical stress. The simplicity of this approach enables a general

design for advanced functionality.
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2.2 Introduction

As variety of biological systems use flexible tubes and vessels to carry blood and other

biofluids, there should be superior advantages of soft tubes over rigid channels in such en-

vironments. The interactions between the internal flow, external system pressure, and tube

deformation, though nonlinear, often play a significant role in flow regulation within those

tubes [1, 2]. For example, as a giraffe changes its posture from standing and moves the

head down for drinking water, a pressure-regulated collapse of its jugular vein reduces the

blood flow to the head to maintain the brain’s blood pressure within normal ranges [2, 3]. In

addition, flow in the majority of fluidic systems is from high stress toward low stress regions,

causing the fluid moving away from the external force. There exist, however, some cases

where the fluid moves toward regions of external high stress, as observed in bones’ porosity

in which mechanical strains induce mechanotransduction for rheotaxis [4–6].

We make a device with internal flexible valves that can control and direct fluid flow via

external mechanical actuation for advanced functionalities, e.g. in situ mixing, chemical

reactions, and rapid, portable chemical analysis. In particular, we fabricate internal flexi-

ble valves so that macroscopic deformation leads to valve function that regulates fluid flow

and so can direct flow from low to high regions of external stress. Creating a bio-inspired

method for internal flow regulation will be useful for controlling fluid flow within multifunc-

tional devices[7] and these fluid networks can approach the complexity found in integrated

circuits [8–10]. Fluid can be transported actively using variety of methods, e.g. external

mechanical pumps and electrical signals [11, 12], or passively via surface tension [13] and

swelling [14, 15]. While significant advances in controlling fluid flow continue to be made

using externally actuated valves, the presence of external power and hardware limit a de-

vice’s range of use [16]. The development of a fully internally controlled device will enable

portable or embeddable devices for controlling and manipulating flow, for example, within

self-healing and self-strengthening materials.
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2.3 Design of Experiment

2.3.1 Approach

Here we utilize elastic deformations within a flexible device, driven by mechanical actuation,

to control and direct fluid flow internal to a soft material. In particular, a fluid confined to

one compartment of a channel will flow through a channel when a pressure drop is created

by stretching or bending the material (Figure 2.1). The basis of our approach is a flexible

arch within a milli- or microfluidic channel, which is designed to prevent fluid flow in its

initial, strain-free state. Upon deforming the device, the arch’s curvature decreases and

acts like a valve allowing fluid to flow. The design represents a fluid-control analogue to

the use of a buckled conducting wire in the design of flexible electronic devices.[17, 18]

We use a mathematical model based on the buckling of an Euler column to predict the

deformation of the arch and a perturbation analysis based upon lubrication theory to predict

the corresponding flow rate within the channel for varying degrees of arch deformation. By

extending this design to include multiple arches within a channel, we illustrate how local

material deformations will cause fluid flow towards a region of high applied stress, which,

with appropriate choice of liquids, can serve as the basis for self-healing and active-sensing

materials, as well as metamaterials capable of exhibiting “negative” poroelastic fluid flow.

2.3.2 Fabrication

The device consists of three parts: substrate, superstrate, and a thin film in between (Fig-

ure 2.1); each was fabricated with polydimethylsiloxane (PDMS) (Dow Corning Sylgard

184TM) mixed at a 20:1 ratio of prepolymer to crosslinker, and degassed in a vacuum cham-

ber. This mixture was then molded against a glass template of a channel to form the

substrate and superstrate while the thin film was prepared by spin-coating PDMS on a petri

dish, with the spin speed and time varied to control film thickness (h = O(50 µm)). The

three parts were thermally cured in an oven at 100◦C for 45 minutes.

The substrate, with a channel of length L0 = O(1mm), was clamped at its edges and

uniaxially stretched by length ∆L = O(100µm) in the direction orthogonal to the channel,

and the thin film was bonded to it using oxygen plasma treatment (Electro-Technic BD-
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Figure 2.1: a. Schematics illustrating the fabrication and functionality of a device with an

internal flexible valve. i. The substrate is stretched and then a thin film is bonded to it. ii.

Upon releasing the initial strain, the thin film buckles to an arch, and iii. the substrate is

fabricated into a microfluidic device, and the arch closes the channel. Applying an external

mechanical loads such as iv. stretching and v. bending, partially opens the valve and allows

fluid flow. b. & c. Images of the fabricated device that allows the fluid flow upon stretching

and bending.

20AC Laboratory Corona Treater) for 30 s and incubated at 60◦C for 5 min to enhance

the bond strength (Figure 2.1a-i.). Upon release of the uniaxial strain (ε0 = 0.54), the thin

film buckles to form an arch of height w̃(x) along the length of the channel (Figure 2.1a-ii.).

We measured the deflection w(x), the length between the two points of contact L, and the

extensions ∆L using an optical microscope (Leica DMI4000 B). Finally, the superstrate was

bonded to the other side of the thin film using same oxygen plasma procedure in a way

that the buckled film closes the top channel (Figure 2.1a-iii.). The two ends of the arch

orthogonal to the length of the fluid channel were sealed using PDMS, and the width of the

arch D in the z direction was chosen to be greater than the arch length (D/L ≫ 1) in order
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to reduce the effect of boundaries on the shape of the arch.

2.3.3 Test Setup

For the flow rate experiments, we made inlet and outlet holes in the superstrate layer with a

biopsy punch. To create a pressure drop ∆P from −L/2 to L/2, the inlet was connected to

a water source at a fixed height (1 mm ≤ H ≤ 10 mm) controlled by a vertical micrometer.

This generates a pressure drop across the entire channel of 10 Pa ≤ ∆P ≤ 100 Pa. Since

precise measurement of the pressure drop across the flexible arch was unknown, we calculated

the flow rate at a constant ∆P relative to an open channel, i.e. Q/Qc where Qc refers to

b/W = 1. We determined the flow rate Q by measuring the weight of the water at the outlet

as a function of time. Numerical simulations described below show negligible differences in

flow rate over this range of pressure drops. Based on the channel dimensions and measured

flow rate, the Reynolds number in these experiments was R ≈ 0.1 − 1. The range of

experimental data was limited to small values of b/W because of the stiffness of the device

(Figure 2.2a).

Since this buckled arch is embedded within a microfluidic device, there is a finite volume

below the arch defined by the channel depth d. The ratio of final volume to initial volume

cannot be neglected as this leads to a change in pressure below the arch that is enough to

significantly deform the arch, and change the gap within the channel. The final pressure Pf

compared to the initial atmospheric pressure Patm was calculated by a simple integration of

the geometry before and after fabrication, in conjunction with the ideal gas law. We chose

the strain during fabrication to be ∆L/L ≈ 0.5 with d/L ≈ 1 for the devices described in

this paper, as these values correspond to Pf/Patm ≈ 1.15, which will have a negligible effect

on the arch’s shape.
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Figure 2.2: a. Experimentally measured profiles† of buckled thin films as each structure is

stretched from its initial length L0 = 1.2 mm to a new length L. b. The initial deflection

of the center of the arch w0/L0 after fabrication is plotted as a function of the strain and

equation 2.1, and the inset i. shows the cross section of an arch overlaid with the theoretical

curve. c. The height of the arch at its center w/L is plotted as a function of strain with

equation 2.2 and the identity W = w+b. d. A schematic of fluid flow within the microfluidic

device. A fluid with velocity U⃗ flows from −L/2 to L/2 over an elastic arch with the shape

w(x). The height of the gap is described by the compliment of the arch’s height, b(x), that

spans the channel height W .

14



2.4 Modeling

2.4.1 Flexible Valve

To develop the general construct for an internally controlled fluid flow device, we first consider

the fabrication of a mechanically actuated valve, after which we determine a relationship

between the geometry of the channel, the pressure drop, and the fluid flow rate. For the

mechanically controlled valve, a thin elastomeric film is partially bonded to a uniaxially

strained elastic substrate (Figure 2.1a. i.). Release of the strain on the substrate induces a

uniaxial compressive strain ε0, which buckles the thin film into an arch with a deflection w0

at its center (Figure 2.1a. ii.). If we consider the symmetric buckling of a beam, the profile

of the thin film will adopt a cosine shape [19], such that the arch height along its length

is w̃(x) = w(x)
L0

= 1
π

√
ε0 (ε0 − 1)

(
1 + cos 2πx

L0

)
, where L0 is the original length of the beam

(Figure 2.2a). Therefore, after fabrication the height of the arch at its center, w0 = w̃(0), is:

w0

L0

=
2

π

√
ε0 (ε0 − 1). (2.1)

To confirm this relation, the arch height after fabrication w0 was measured as a function of

compressive strain ε0, and we found good agreement between theory and our experimental

results (Figure 2.2b).

With an accurate model of the arch height, we prepared a superstrate with a channel height

W = w0 for a specific ε0, and bonded it to the flexible device substrate (Figure 2.1a. iii.),

such that the minimum gap height within the channel is initially b = 0. Since the arch

is deformable, uniaxial tension from stretching (Figure 2.1b) or bending (Figure 2.1c) the

material by a strain ε will increase L > L0, thereby decreasing the arch height w ≡ w̃(0),

and increasing the gap height within the channel (Figure 2.2a). To develop a relationship

between the channel geometry and mechanical strain, it is convenient to rewrite equation

(2.1) in terms of the gap between arch’s center and the top wall b = W − w, where w and

b are the maximum arch height and minimum gap height for a given strain ε, respectively.

†Experimental profiles have to be shifted so that the maximum of the profile occurs at x = 0 to compare

with w̃(x)

15



By neglecting higher-order terms in ε, the minimum gap within the channel is:

b

W
= 1− 2

π

L0

W

√(
π

2

w0

L0

)2

− ε. (2.2)

Figure 2.2c shows the change in arch height at its center as a function of uniaxially applied

strain. The theoretical line (dashed) is in good agreement with our experimental results.

2.4.2 Fluid Flow

From equation (2.2), we know the geometry within the channel as an applied uniaxial strain

ε causes the gap to go from closed, b/W = 0, to open, b/W = 1 (Figure 2.2d). Using this

relationship between ε and b, we can now determine by a perturbation calculation the flow

rate Q through the channel for a given pressure drop ∆P . We consider a two-dimensional

flow in a rectangular channel, with a flow rate Qc =
W 3∆P
12µL

, and assume that the aspect ratio

δ = b/L and the Reynolds number R = ρbuc/µ satisfy δ ≪ 1 and Rδ ≪ 1, where uc =
Qc

b

is the characteristic fluid velocity, µ is the fluid viscosity, and ρ is the fluid density. We

have solved this problem numerically and also developed analytical approximations useful

for prediction and design. From the momentum balance, we have two differential equations

for the pressure change in the x and y directions, such that, in dimensionless form, ∂xp =

∂2
yyu + δ2∂2

xxu and ∂yp = δ2∂2
yyv + δ4∂2

xxv, where x is normalized by the length L0, and y

is normalized by the width W . In these equations, δ only exists as even powers, suggesting

that the dimensionless velocities u = U
q0/W

, v = V
q0/L0

, and dimensionless pressure p = Pb2

µucL

can be determined by a series expansion in even powers of δ, e.g. u(x, y) =
∑∞

n=0 δ
2nu2n. We

assume no-slip boundary conditions along the walls and along the arch, and at zeroth order,

we obtain:

∆p0 =
3 (8− 8λ+ 3λ2)

(1− λ)5/2
, (2.3)

where λ = 1− b
W
. By replacing u0 and p0 into the equations for momentum balance at the

second order and solving for the velocities u2, and v2, we determine for the pressure drop at

the second order,

∆p2 =
12π2λ2

5 (1− λ)3/2
. (2.4)
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The fourth-order term, ∆p4, can be determined in the same manner (see Chapter 3). With

the normalized pressure drop at each order of the expansion, we can return these terms

to dimensional quantities by knowing the gap within the channel, and calculate the total

pressure drop ∆P =
∑∞

n=0 δ
2n∆P2n.

Figure 2.3: a. Numerical simulations of pressure-driven flow for several channels with dif-

ferent gap heights b/W . b. The flow rate Q normalized by the two-dimensional flow in a

rectangular channel Qc and plotted versus b/W . The solid lines represent the zeroth, second,

and fourth order solutions to the perturbation approach in lubrication theory.

2.5 Results and Discussion

Using the total pressure drop and normalizing it by the pressure drop in an empty rectangu-

lar channel, ∆Pc = 12µQLW−3, we can calculate the flow rate Q =
∑∞

n=0 δ
2nQ2n normalized
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by the flow rate in an empty channel Qc. To confirm this perturbation calculation exper-

imentally, we applied a constant pressure between the inlet and outlet of the device, and

measured the flow rate at the outlet. In addition to the experimental study, we used com-

putational analysis to verify the analytical solution. The channel was modeled in COMSOL

4.2 with the geometry and boundary conditions identical to the experimental conditions

within the fabricated microfluidic device. The channel was assumed to be filled with water

at the beginning while the flow was driven by a constant pressure of ∆P = 10 Pa and

∆P = 100 Pa. The deformation of the arch was neglected. The Navier-Stokes equation

was used in its full form for incompressible flow to include the role of inertial effects as the

valves open and the flow speeds increase. We performed numerical simulations across the

entire range of microfluidic gap heights (Figure 2.3a). The theory, numerical simulations,

and experimental results are plotted in Figure 2.3b and are in very good agreement. The

higher-order expansions appear to better describe the fluid flow as the gap between the arch

and the wall increases. In this way, we can now predict the magnitude of internal flow within

the deformed microstructured material for a given applied internal pressure difference and a

given opening of the arch.

The above experiments and model provide an approach to have external mechanical stresses

induce internal fluid flow. A primary advantage to this design is that more complex mi-

crofluidic architecture leads to advanced functionality. Internally structured materials of-

ten exhibit unexpected mechanical behavior, such as the strength and stiffness of cellular

solids [20], and the negative Poisson behavior [21] of foams [22] and periodically microstruc-

tured materials [23, 24]. We demonstrate the ability to direct fluid flow towards regions of

high mechanical stress by preparing two arches in series and applying a high pressure in the

channel between them (Figure 2.4a). Both valves are initially closed and the applied fluid

pressure in the middle cannot cause the valves to open, i.e. the pressure is not high enough

to deform the valves; otherwise, the system may behave differently. With this configuration,

locally applied mechanical stress to one end of the device, in this case the right side, will

cause one arch to deform, i.e. b/W > 0, creating a pressure gradient in the direction of

the mechanically applied load. Therefore, opening of a single valve, as seen experimentally

and numerically in Figure 2.4a-c, causes fluid flow from left to right, in the direction of

the applied load. It should be noted that without these internal valves, the fluid can go to

either sides since we have high fluid pressure in the middle and low fluid pressure in both
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sides. Therefore, the fluid pressure only helps to have flow but the direction of the flow

is determined by the externally mechanical stress. In this simple demonstration, the fluid

flows from regions of high fluid pressure to low fluid pressure, yet because of the material’s

internal microstructure, this pressure drop occurs in the direction of the externally applied

mechanical stress.

It is clear that a wide variety of functionality can be attained when the flexible microfluidic

architecture is increased in complexity. Internally directing fluid flow with these structural

valves provides compelling opportunities for moving fluid within microstructured materials.

For example, embedding multiple arrays of flexible valves and microchannels within a porous

material will enable external loads to move fluid in a gradient controlled by the internal

microstructure. Structuring the porosity of a material, and therefore the deformation of

its microstructure, could enable a material to exhibit “negative” poroelasticity, where the

gradient of fluid flow is opposite of a normal poroelastic material, such that the fluid flows

towards the externally applied stress.

Figure 2.4: a. A microfluidic device with two flexible arches in series is clamped at one end

and a line load applied to the opposite end. b. The localized deformation causes the arch

closest to the applied load to deform and allow fluid to flow towards the region of high stress.

c. A numerical simulation of the multichannel arch illustrates the directed fluid flow.
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2.6 Conclusions

We have demonstrated the ability to direct and control fluid flow within a microstructured

device by adjusting the microfluidic architecture. The general experimental and theoretical

framework provides new capabilities for directed fluid flow using internally controlled struc-

tural deformations. By taking advantage of the inherent flexibility of typical microfluidic

devices, advances can be made in microchannels for in situ mixing, chemical reactions, or

rapid, portable chemical analysis. Additionally, proper tuning of material properties will

allow directed fluid flow to be actuated by a variety of triggers, including electrical, thermal,

and osmotic actuation.
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Chapter 3

Extended Lubrication Theory:

Improved Estimates of Flow in

Channels with Variable Geometry

3.1 Abstract

Any constriction or change in geometry of a channel affects the fluid flow within that channel.

This constriction might be due to the buckling of a flexible arch (as discussed in the previous

chapter), swelling of the channel walls, or even any sediment or colloids partially blocking

the channel. In this chapter, we offer an extension to lubrication theory by considering

higher-order terms of the analytical approximation to describe the fluid flow in a channel

with features of a modest aspect ratio. We perform experiments and simulations to verify

the analytical solutions. We show that the extended lubrication theory is a robust tool

for an accurate estimation of pressure drop in channels with constrictions, as long as the

constrictions’ geometries are known, on the order of the channel height, and piece-wise

differentiable.
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3.2 Introduction

Lubrication theory is an approximation to the Navier-Stokes and continuity equations at low

Reynolds numbers for narrow geometries with slow changes in curvature [1–3]. The approach

is used regularly to describe the velocity field and pressure gradient in fluid film lubricants [4,

5], the motion of particles within a fluid and near boundaries [6, 7], the fluid flow passing

through a microchannel with a known geometry [8–11], flow driven by the contracting walls

of a soft channel, e.g., an insect’s trachea [12, 13], and the flow of thin liquid films with free-

surfaces [14], e.g., when a droplet wets a solid surface [15, 16]. Classical lubrication theory

(CLT) is suitable for all of the above cases provided that the ratio of thickness to the axial

length scale is on the order ofO (10−1) or less. Due to its simplicity and versatile applications,

lubrication theory is widely applied. Earlier work on flows in sinusoidally constricted pipe

with radial variations comparable to axial variations was studied numerically, e.g. Tilton

and Payatakes [17], where we note that our higher-order approach below effectively gives an

analytical solution to the problem. A similar higher-order expansion was also used recently

in a study of an electrokinetic flow in a channel of nonuniform shape [18].

In this study, we obtain higher-order terms of the lubrication approximation and present an

extension to lubrication theory, which we refer to as extended lubrication theory (ELT), to

address two limitations of CLT. First, the use of ELT is no longer limited to small gaps and

thin films. Second, the boundaries can be described by any mathematical shape function

with arbitrary curvatures as long as they are continuous and differentiable. In addition, we

show how the differentiability condition may be relaxed at low Reynolds numbers, at least

in practice, by considering geometries that are piece-wise differentiable. We compare the

results of different orders of the analytical solutions with experimental results and also with

direct numerical solutions of the Navier-Stokes equations to define a threshold for considering

higher-order terms in the solution. Accuracy of the analytical solutions are examined for

channels with a differentiable constriction or convexity as well as for channels with shapes

with finite non-differentiable points.
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3.3 Theoretical Approximation

We consider working to higher order in traditional lubrication theory to describe fluid flow

in nonuniform channel shapes with modest aspect ratios. Thus, we consider incompressible,

steady, two-dimensional pressure-driven flow in a channel with shape y = h(x) = h0H(X),

where X = x/L0, L0 is the channel length, h0 is a characteristic channel height, H(X) is

a normalized shape function, and δ = h0/L0 ≪ 1. A typical geometry in the form of a

constriction is shown in Fig. 3.1a. We assume that the Reynolds number is small and so

consider the continuity and Stokes equations

∇ · u = 0 and µ∇2u = ∇p, (3.1)

where u = (u, v) is the velocity field and µ is the fluid viscosity. We denote the constant

flow rate (per unit width) as q0. Consistent with the traditional lubrication approximation

we choose to introduce dimensionless variables according to

X =
x

L0

, Y =
y

h0

, U =
u

q0/h0

, V =
v

q0/L0

, P =
p

∆p
=

p

µq0L0/h3
0

. (3.2)

Note that the scaling for the transverse velocity component v is O(h0/L0) ≪ 1 smaller than

the scaling for u, which is the component of flow along the channel axis. The dimensionless

equations corresponding to (3.1) for a two-dimensional flow are

∂U

∂X
+

∂V

∂Y
= 0 (3.3a)

δ2
∂2U

∂X2
+

∂2U

∂Y 2
=

∂P

∂X
(3.3b)

δ4
∂2V

∂X2
+ δ2

∂2V

∂Y 2
=

∂P

∂Y
. (3.3c)

These equations are to be solved with boundary conditions

U = 0, V = 0 at Y = 0, H(X), and

∫ H(X)

0

U(X, Y ) dY = 1, (3.4)

where the integral constraint states that the total flow rate is prescribed. We will determine

the corresponding pressure drop across the constriction such that the pressure gradient tends

to a constant as X → ±1. Note that the problem statement only involves one dimensionless

parameter δ2.
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Figure 3.1: (a) A schematic of the channel with shape y = h(x) = h0H(x). (b) Shape

function of H(X) = 1− λ
2
(1 + cos (πX)) for different λ.

3.3.1 Perturbation expansion and the leading-order results

Our first steps follow standard discussions in textbooks, e.g. Leal [2]. Because the problem

statement only involves δ2, which is assumed to be small, we seek a solution to (3.3) of the

form

U(X, Y ; δ) = U0(X, Y ) + δ2U2(X, Y ) + δ4U4(X, Y ) + · · · (3.5a)

V (X, Y ; δ) = V0(X, Y ) + δ2V2(X, Y ) + δ4V4(X, Y ) + · · · (3.5b)

P (X, Y ; δ) = P0(X, Y ) + δ2P2(X, Y ) + δ4P4(X, Y ) + · · · (3.5c)

At leading order, we have the familiar classical lubrication problem

∂U0

∂X
+

∂V0

∂Y
= 0 (3.6a)

∂2U0

∂Y 2
=

∂P0

∂X
(3.6b)

∂P0

∂Y
= 0, (3.6c)

with U0 = 0 at Y = 0 and H(X). The solution is

U0(X, Y ) =
1

2

dP0

dX

(
Y 2 − Y H(X)

)
(3.7)
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and the pressure gradient, which only depends on X, follows from applying the integral

constraint(∫ H(X)

0
U0(X, Y ) dY = 1

)
dP0

dX
= − 12

H(X)3
. (3.8)

The corresponding velocity distribution is then

U0(X, Y ) =
6

H(X)3
(
Y H(X)− Y 2

)
. (3.9)

To provide an example, we consider the shape function

H(X) = 1− λ

2
(1 + cos (πX)) (1 > λ ≥ 0) , (3.10)

as sketched in Fig. 3.1b. The leading-order pressure drop ∆P0 is then calculated to be (the

integration was accomplished with Mathematica)

P0(−1)− P0(1) = ∆P0 = −
∫ 1

−1

dP0

dX
dX = 12

∫ 1

−1

1(
1− λ

2
− λ

2
cos (πX)

)3 dX

=
3 (3λ2 − 8λ+ 8)

(1− λ)5/2
. (3.11)

Before proceeding further, we determine the velocity component V0(X, Y ) using the con-

tinuity equation. Although equation (3.6) is first order in Y , we expect it to satisfy two

boundary conditions, as V0(X, 0) = V0(X,H(X)) = 0. Using the continuity equation, and

imposing V0 (X, 0) = 0, we have

V0(X, Y ) = −
∫ Y

0

∂U0 (X,S)

∂X
dS, (3.12)

which yields

V0(X, Y ) = 2Y 3
(
H−3

)′ − 3Y 2
(
H−2

)′
, (3.13)

where primes denotes X derivatives. We then note that at Y = H(X) direct differentiation

shows that (3.13) yields V0(X,H(X)) = 0. Alternatively, we can write

V0(X,H(X)) = −
∫ H(X)

0

∂U0

∂X
dY = − d

dX

∫ H(X)

0

U0 dY + U0(X,H(X))
dH

dX
= 0, (3.14)

as the second term on the right-hand side vanishes owing to the no-slip condition and the

first term on the right-hand side vanishes since the flow rate is constant. The same idea

applies for evaluating the Y -component of velocity at every order in the analysis below and

the no-slip boundary condition is satisfied for both velocity components of u.
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3.3.2 The O
(
δ2
)
term in the perturbation expansion

In most calculations utilizing lubrication theory the development is truncated with the

leading-order term calculated in the preceding section. Here our interest is to improve

the approximation by including additional terms in the perturbation solution. At the next

order, O (δ2), the perturbation expansion yields

∂U2

∂X
+

∂V2

∂Y
= 0 (3.15a)

∂2U2

∂Y 2
− ∂P2

∂X
= −∂2U0

∂X2
(3.15b)

∂P2

∂Y
=

∂2V0

∂Y 2
, (3.15c)

with boundary conditions U2 = 0 at Y = 0 and H(X), and
∫ H(X)

0
U2(X, Y ) dY = 0. This

last integral constraint follows since all of the fluid flux is specified in the scaling used to

establish the leading-order problem. We seek the velocity distribution and pressure drop

∆P2 = P2 (−1)− P2 (1) needed to enforce the constraint on the flux.

We can integrate the last equation of (3.15), and use continuity, to obtain

P2(X, Y ) = −∂U0

∂X
+ c3(X), (3.16)

where the function c3(X) is allowed by the integration. With this pressure distribution, we

use the X-momentum equation to find

∂2U2

∂Y 2
=

dc3
dX

− 2
∂2U0

∂X2
(3.17)

where U0 is given by equation (3.9). Upon integration, and application of the boundary

conditions, we find

U2(X, Y ) = −2
(
H(X)−2

)′′ (
Y 3 −H(X)2Y

)
+
(
H(X)−3

)′′ (
Y 4 −H(X)3Y

)
+

1

2

dc3
dX

(
Y 2 −H(X)Y

)
. (3.18)

Since we have accounted for the specified dimensionless flow rate at leading order, then we

now require∫ H(X)

0
U2(X, Y ) dY = 0, which leads to

dc3
dX

= 6
(
H(X)−2

)′′
H(X)− 18

5

(
H(X)−3

)′′
H(X)2. (3.19)
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Equations (3.18) and (3.19) give the second-order X-component of the velocity U2(X, Y )

for any shape function H(X). To continue with the example of Fig. 3.1, we again use the

shape function in equation (3.10). Integrating (3.16), taking into account that ∂U0

∂X
vanishes

as X → −1 and 1, and using (3.19), we obtain the pressure drop ∆P2 at this order as

P2(−1)− P2(1) = ∆P2 = −
∫ 1

−1

∂P2

∂X
dX = −

∫ 1

−1

dc3
dX

dX =
12π2λ2

5 (1− λ)3/2
. (3.20)

We determine V2(X, Y ) using the continuity equation and imposing V2(X, 0) = 0, which

leads to the expression

V2(X, Y ) =
(
H(X)−2

)′′′(1

2
Y 4 −H(X)2Y 2

)
− 2

(
H(X)−2

)′′
H ′(X)Y 2

−
(
H(X)−3

)′′′(1

5
Y 5 −H(X)3Y 2

)
+

3

2

(
H(X)−3

)′′
(H ′(X))

2
Y 2

− d2c3
dX2

(
1

6
Y 3 − 1

4
HY 2

)
+

1

4

dc3
dX

H ′(X)Y 2. (3.21)

This equation only involves the shape function H(X), since dc3
dX

is given in (3.19). As in the

previous section, it can be verified that V2(X,H(X)) = 0.

3.3.3 The perturbation expansion at O
(
δ4
)

It is useful to go one step further simply to illustrate that the basic analytical steps carry

through at every order. The higher-order terms help to provide a better representation of

flows in geometries with more rapid shape variations. We can continue these basic steps at

O (δ4), where we have the equations

∂U4

∂X
+

∂V4

∂Y
= 0 (3.22a)

∂2U4

∂Y 2
− ∂P4

∂X
= −∂2U2

∂X2
(3.22b)

∂P4

∂Y
=

∂2V2

∂Y 2
+

∂2V0

∂X2
, (3.22c)

with U4 = 0 at Y = 0 and H(X), and
∫ H(X)

0
U4(X, Y ) dY = 0. Using the results obtained

above, these equations can be solved, though the algebraic manipulations involved become
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progressively more cumbersome. We outline the main steps below. First, the Y -momentum

equation can be integrated, which, after using the continuity equation, yields

P4(X, Y ) = −∂U2

∂X
+

∂2

∂X2

∫ Y

0

V0(X,S) dS + c5 (X) . (3.23)

Second, from the X-momentum equation we have

∂2U4

∂Y 2
= −2

∂2U2

∂X2
+

∂3

∂X3

∫ Y

0

V0(X,S) dS +
dc5
dX

. (3.24)

Since U2(X, Y ) is known from equation (3.18), then we calculate

∂2U2

∂X2
=
(
H−3

)′′′′
Y 4 − 2

(
H−2

)′′′′
Y 3 +

[
−
(
H3
(
H−3

)′′)′′
+ 2

(
H2
(
H−2

)′′)′′]
Y

+
1

2

d3c3
dX3

Y 2 − 1

2

(
H

dc3
dX

)′′

Y. (3.25)

Combining the last two results, we find

∂2U4

∂Y 2
= −3

2

(
H−3

)′′′′
Y 4 + 3

(
H−2

)′′′′
Y 3 +

[
2
(
H3
(
H−3

)′′)′′ − 4
(
H2
(
H−2

)′′)′′]
Y

− d3c3
dX3

Y 2 +

(
H

dc3
dX

)′′

Y +
dc5
dX

. (3.26)

It is straightforward to integrate twice and apply U4 = 0 at Y = 0 and H(X) to arrive at

U4(X, Y ) = − 1

20

(
H−3

)′′′′ (
Y 6 −H5Y

)
+

3

20

(
H−2

)′′′′ (
Y 5 −H4Y

)
+

1

3

[(
H3
(
H−3

)′′)′′ − 2
(
H2
(
H−2

)′′)′′] (
Y 3 −H2Y

)
− 1

12

d3c3
dX3

(
Y 4 −H3Y

)
+

1

6

(
H

dc3
dX

)′′ (
Y 3 −H2Y

)
+

1

2

dc5
dX

(
Y 2 −HY

)
. (3.27)

Since
∫ H(X)

0
U4(X, Y ) dY = 0, we obtain dc5

dX

dc5
dX

=
3

14

(
H−3

)′′′′
H4 − 3

5

(
H−2

)′′′′
H3 −

[(
H3
(
H−3

)′′)′′ − 2
(
H2
(
H−2

)′′)′′]
H

+
3

10

d3c3
dX3

H2 − 1

2

(
H

dc3
dX

)′′

H. (3.28)

The equations (3.18), (3.27), and (3.28) give the X−component velocity at this order for

any choice of the shape function H(X). We determine the correction to the pressure drop
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as

P4(−1)− P4(1) = ∆P4 = −
∫ 1

−1

∂P4

∂X
dX = −

∫ 1

−1

dc5
dX

dX

=
8π4

(
−428

(
−1 +

√
1− λ

)
+ 214

(
−2 +

√
1− λ

)
λ+ 53λ2

)
175

√
1− λ

, (3.29)

where we have used Mathematica to accomplish the final integration for the shape function

(3.10).

For a given flow rate (q0), we have determined the dimensionless pressure drop ∆P =

(∆pmeasured) / (µ q0L0/h
3
0) as a function of δ, where ∆pmeasured is the difference in pressure

measured at the two ends of the constriction. In particular, ∆P = ∆P0(λ) + δ2∆P2(λ) +

δ4∆P4(λ) +O(δ6), where λ is defined by the given shape function (3.10).

We next describe experiments and numerical simulations to confirm the improved description

offered by these additional terms in the lubrication approximation.

3.4 Experimental Verification

Our experimental setup consists of a long channel (200 mm) with a rectangular cross section

(5 mm by 5 mm) and an obstruction in the middle (Fig. 3.2a). The sides of the channel

were cut from acrylic sheets (8560K211, McMaster-Carr) using a laser cutter (Epilog Mini

Laser 24, 60 Watts) and bonded together using an acrylic capillary cement (10705, TAP

Plastics). We varied the arch size and shape, similar to Fig. 3.1, while keeping all other

geometrical parameters constant between different tests. We recognize that our theory is

two-dimensional and the experimental geometry is three-dimensional. However, as the arch

amplitude increases, the flow through the narrow gap better approximates a two-dimensional

flow.

The pressure drop within the channel between two fixed points, symmetrically located on

each side of the arch, was measured using a sensitive differential pressure sensor (CPCL04D,

Honeywell). By keeping the flow rate constant for different tests, the pressure drop across

the arch was then obtained by subtracting the pressure drop within the flat part of the

channel from the total pressure drop between those fixed points. The fluid was chosen to

be a standard viscosity oil (N1000, Cannon Instrument) and the temperature was kept at

31



Figure 3.2: a. A schematic of the experimental setup from the top view. A constant

flow rate was applied using a syringe pump and the pressure drop was measured using a

sensitive pressure sensor. A scale was also used to verify the applied flow rate. For all of

the experiments, L0 ≈ h0 ≈ 5mm. b. Comparison of the dimensionless pressure drop across

the arch showing the analytical solutions and experimental results (δ ≈ 1). The inset shows

the difference between the experiment and the theory, suggesting that higher orders of the

analytical solutions are in better agreement with the experimental results.

22.5 ± 0.5oC, resulting in a viscosity of 2.45 Pa.s and density of 848 Kg/m3. We used a

syringe pump (PHD Ultra CP, Harvard Apparatus) to apply a fixed flow at a rate of 14.4

mm3/s so that Re ≈ 0.001 for all the tests. The arch height was measured by taking images

of the setup using a camera (FASTCAM Mini UX100) and then processing those images

using a MATLAB code.

We repeated each test at least three times and the average measured pressure drops along

with their associated standard deviations are shown in Fig. 3.2b. We note that higher

orders of the analytical solutions are in better agreement with the experimental results while

the CLT (red dotted line) underestimates the results by about 40 %. We also note that

the analytical solutions are obtained in a two-dimensional channel while the experimental

results are from a three-dimensional channel, and this is one of the reasons for the difference

between the analytical and experimental results. Although the experimental results confirm
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the trend in the analytical solutions, it may not be feasible to conduct experiments for every

case to verify the higher orders of the analytical solutions due to the sensitivity and the

difficulty of such experiments. So we performed numerical simulations for variety of cases

and compared those results with the analytical solutions in the next section.

3.5 Numerical Simulations

We seek to numerically solve the Navier-Stokes equation in its full form for incompressible,

steady two-dimensional flow. The same scalings and dimensionless parameters introduced in

equation (3.2) are used to obtain the dimensionless continuity and Navier-Stokes equations

∂U

∂X
+

∂V

∂Y
= 0 (3.30a)

Re δ

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ δ2

∂2U

∂X2
+

∂2U

∂Y 2
(3.30b)

Re δ3
(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ δ4

∂2V

∂X2
+ δ2

∂2V

∂Y 2
, (3.30c)

where Re = ρ q0/µ is the Reynolds number, ρ is the fluid density, and µ is the fluid viscosity.

In the lubrication literature, it is common to define the reduced Reynolds number, Re∗ =

Re δ, which also appears in (3.30). A numerical solver often uses the weak form of (3.30). To

do so, we consider an arbitrary pair of P andU = (U, V ) to be a solution to the dimensionless

continuity and Navier-Stokes equations (3.30) for a steady and incompressible flow. If these

equations are multiplied by any pressure and velocity basis functions, i.e. (q, ν1, ν2), and

integrated over the domain Ω, the pair is still a solution, and satisfies the new equations. We

then reduce all the second-order terms to first-order ones using Gauss’s theorem and neglect

the boundary integrals as they are usually handled separately in finite element packages.

Therefore, we have the following weak form of the continuity and Navier-Stokes equations

that can directly be used within numerical solvers:
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Figure 3.3: Velocity magnitude obtained using numerical simulations for Re = 1, δ = 1, and

λ varied from 0 to 0.75 (a-d).

0 =

∫
Ω

[
∂U

∂X
+

∂V

∂Y

]
q dΩ (3.31a)
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Ω
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Re δ
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∂U
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∂U
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)
+

∂P
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)
+ δ2

∂ν1
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∂U
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+

∂ν1
∂Y

∂U

∂Y

]
dΩ (3.31b)

0 =

∫
Ω

[
ν2

(
Re δ3

(
U
∂V

∂X
+ V

∂V

∂Y

)
+

∂P
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)
+ δ4

∂ν2
∂X

∂V

∂X
+ δ2

∂ν2
∂Y

∂V

∂Y

]
dΩ. (3.31c)

We used COMSOL 4.3b for meshing the geometry and also for solving the above equations.

These dimensionless equations depend on two dimensionless parameters: Reynolds number

and the geometric variable δ = h0/L0. In addition, the shape function (3.10) adds another

dimensionless parameter, λ, to this system. While we recognize that our theory, which is

based on Stokes equations, is strictly valid only when Re = 0, we have highlighted that for

problems with two distinct length scales (h0 and L0) the ratio of the inertia to the viscous

terms in the Navier-Stokes equations involves the product of Re and δ. Thus, below we have

also performed some numerical calculations with finite Re to show that the results are still

useful for finite Reynolds numbers.

We performed the numerical simulations for a range of Re = 0 − 20 and δ = 0.2 − 1 while

varying λ from 0 to 0.99. The dimensionless channel height was H0 = 1 and we applied

a flow at the inlet at a fixed rate with a parabolic velocity profile of 6 (Y − Y 2) so that

Q = 1. The outlet pressure was also set to zero. After solving the governing equations, the

pressure drop was measured at two cross sections that are symmetrically located on each
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side of the arch and separated by 2L0. These scales respect the nondimensionalization in

Section II. Simulation results for Re = 1, δ = 1, and different λ are shown in Fig. 3.3. Since

the flow rate is constant, the pressure drop increases rapidly as the gap becomes smaller

(alternatively, λ increases).

The comparison between simulation results and different orders of the analytical solutions

for a channel with a shape function provided in (3.10) is shown in Fig. 3.4. As expected from

textbook discussions of classical lubrication theory, when δ is small, i.e. δ ≤ 0.2, the CLT as

well as higher orders ELT estimate the pressure drop accurately (the errors are within 5%

when Re ≤ 10). By increasing δ → 1, the CLT estimations deviate significantly from the

simulation results (about 20 %) while higher orders ELT are still in very good agreement

with the simulation results, i.e., three terms in the asymptotic expansion in δ (including

terms O (δ4)) provides very good results even when δ → 1 (Fig. 3.4a). We also note that if a

maximum 4% error is acceptable, the second-order ELT would be adequate to estimate the

pressure drop for a simple shape like (3.10) while δ ≤ 1 and Re ≤ 10. As we further increase

the Reynolds number, even the higher orders of the analytical solutions do not estimate the

pressure drop accurately as inertial forces become more dominant than the viscous forces

and can no longer be ignored.

We note that perturbation approximation can still be accurate even if the perturbation

parameter, δ, is not small [19–22]. In fact, the validity of the perturbation method relies

mainly on the good approximation of the leading-order term while a rapid convergence of

higher-order terms may improve the approximation [19]. The leading-order term in this

study, the classical lubrication theory, provides a good estimation of pressure drop. In addi-

tion, the higher-order terms of the pressure drop for a fixed λ converge rapidly. Therefore,

perturbation method provides accurate approximation for this problem even when δ is not

small.

We then investigate the use of higher-order ELT in applications where a channel, instead

of an obstruction, has a convex shape. We choose the shape function (3.10) while varying

λ from 0 (no bulge) to -1 (bulge with the size of the channel height) (Fig. 3.5a). This

convexity alters the flow profile (Fig. 3.5b) and reduces the pressure drop within the channel.

We performed numerical analyses for different δ,Re, andλ and the comparisons are shown

in Fig. 3.5c. Since we have shown that even for δ = 1 the extended lubrication theory
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Figure 3.4: a. and b. Deviation of different orders of the analytical solutions from the simu-

lation results while varying δ and Re, respectively. Each point corresponds to the maximum

difference between the simulation and analytical results when changing λ from 0 to 0.99. We

note that as δ → 1, the deviation of CLT from the simulation results becomes significant

(about 20%) while higher-order analytical solutions are still in a very good agreement with

the simulation results for any Re ≤ 10. c. Comparison of the dimensionless pressure drop

across the arch showing the analytical solutions and simulation results when δ = 0.2 and

δ = 1.
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Figure 3.5: a. A schematic of a channel with a convex shape. The bulge becomes larger as

λ → −1. b. Velocity magnitude of a channel with 50% convexity (λ = −1
2
), when δ = 1 and

Re = 1. c. Comparison of the dimensionless pressure drop between simulation results and

different orders of the analytical solutions for a channel with a convexity shape provided in

a, when δ = 1.

provides a reasonable approximation to the full numerical simulations (Fig. 3.4a), here we

choose δ = 1. For a channel with a sharp convexity, only fourth-order ELT and higher may

accurately estimate the pressure drop (within 5% error) while CLT and the second-order

ELT estimations differ from the simulation results by about 30% and 20%, respectively.

Therefore, higher orders of the analytical solutions significantly improve the estimation of

pressure drop within a channel with a significant change in geometry.

Until now, we have used shape functions that are entirely differentiable. This condition

may not be met in models of all applications. Here we provide of an example showing that

ELT can be applied to a channel whose shape is continuous but piece-wise differentiable, i.e.

the shape function may have finite non-differentiable points. A channel with such a shape

function can be divided into smaller sections where each part has a differentiable shape. The

pressure drop within each piece is estimated using ELT. Since the flow is laminar, the total

pressure drop across the original channel is the summation of the pressure drops within each

part. For example, consider a shape function with a single non-differentiable point as follows

H(X) =

{
1− λ

2γ
(X + 1) −1 ≤ X ≤ 2γ − 1,

1 + λ
2(1−γ)

(X − 1) 2γ − 1 < X ≤ 1,
(3.32)
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Figure 3.6: a. A schematic of a channel with a shape function that is not differentiable at

γ = 0.75 (see equation (3.32) for the definition of γ). The gap size decreases as λ → 1. b.

Velocity magnitude of a channel with a non-differentiable point at γ = 0.75, when δ = 1

and Re = 1. c. Comparison of the dimensionless pressure drop between simulation results

and different orders of the analytical solutions for a channel with a single non-differentiable

point, provided in a, when δ = 1.

where 0 < γ < 1 is a dimensionless parameter that determines the location of the disconti-

nuity in slope and 1 − λ gives the minimum gap height. This shape function is plotted for

γ = 0.75 in Fig. 3.6a. Following the same procedure introduced in Section II, the pressure

drop is

∆P = ∆P0

(
1 +

4

5
λ2 δ2 − 64

225
λ4 δ4 +O

(
δ6
))

(3.33)

where ∆P0 =
12 (2−λ)
(1−λ)2

, and the terms inside the parentheses correspond to CLT, second-order

ELT, fourth-order ELT, and so on, respectively. We used the same shape function (3.32) to

perform numerical simulations, and the comparison is shown in Fig. 3.6b. For channels with

small δ (δ ≤ 0.2), theoretical and numerical results are in good agreement, while for channels

with δ ≈ 1, pressure drop estimated using the higher orders of the analytical solutions follow

the numerical results more closely. These results show that ELT can be applied to a channel

with a piece-wise differentiable shape function. We note that shape functions can appear on

both sides of a channel and the same procedure can be followed to find analytical solutions

at different orders.
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3.6 Conclusions

We extended the lubrication approximation by obtaining higher-order terms in a systematic

perturbation analysis and compared the analytical results with experiment and numerical

simulations. Experimental results were closer to higher-order analytical solutions when the

gap was narrow so that the two-dimensional approximation was appropriate. Very good

agreement was found between higher-order analytical solutions and the simulation results,

confirming that for channels with a high aspect ratio, the higher-order terms of the extended

lubrication theory results in a significant improvement in accuracy as compared to the clas-

sical lubrication theory. For low Reynolds numbers, simple piece-wise differentiable shape

functions can be used with the analytical solutions obtained in this study, which provides a

robust tool to accurately estimate the pressure drop in a channel with positive or negative

constrictions, whose changes in height are comparable to its length.
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Chapter 4

Buckling Instability of Dielectric

Elastomeric Films

This work has been published in Soft Matter . Here it is reproduced by permission of The

Royal Society of Chemistry.

4.1 Abstract

Buckling instability, when properly implemented within soft, mechanical structures, can

generate advanced functionality. In this chapter, we use the voltage–induced buckling of thin,

flexible plates to pump fluids within a microfluidic channel. The soft electrodes that enable

electrical actuation are compatible with fluids, and undergo large, reversible deformations.

We quantified the onset of voltage-induced buckling, and measured the flow rate within the

microchannel. This embeddable, flexible microfluidic pump will aid in new generation of

stand-alone microfluidic devices that require a tunable flow rate.
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4.2 Introduction

Advances in microfluidic technology have introduced innovative ways to control fluid flow

on a small scale [1–5]. The active control of fluid flow within such devices is crucial for

further improvements in nanofluidics [6, 7], biomedical fluidic devices [8–10], and digital

microfluidics [11–13]. The complexity of microfluidic channels has advanced to resemble

integrated circuitry [1, 4, 14], and the mechanisms that move fluid within these channels

now require the same degree of flexibility and precision. Electrically active soft materials

that deform in response to an applied voltage may provide this advanced functionality [15].

In this paper, we present a means for microfluidic control via the electrical actuation of thin,

flexible films within microfluidic channels. These structures consist of a dielectric elastomer

confined between two compliant electrodes that can actively and reversibly buckle out of

the plane to pump fluids in response to an applied voltage. The use of elastic electrodes

enables a robust and reversible pumping mechanism that will have improvements in rapid

microfluidic diagnostics, adaptive materials, and artificial muscles.

Figure 4.1: a. A schematic of the composite plate. b. Schematics of the electrically active

microfluidic pump: A thin composite plate consists of a pre-strained dielectric elastomer

with electrodes bonded on each side while the plate is clamped at its edges. Applying a

voltage across the clamped thin plate causes an out-of-plane deformation, which can be used

to move the fluid within microchannels. c. Actuation of the dielectric elastomer by applying

the voltage pushes fluid (dyed water) with a flow rate of 20 mm3/s into the microchannel.
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When a film of a soft dielectric elastomer (DE) is sandwiched between two electrode films,

creating a composite plate (Figure 4.1a), applying a voltage to the electrodes produces an

electric field within the DE that induces a Maxwell stress through its thickness [16]. As

a result, the DE is compressed by pulling opposite charges on two electrodes closer and

stretched by spreading similar charges on each electrode [17, 18]. If the composite plate

has free edges, the applied voltage will cause it to expand in-plane [19–25]. If, instead, the

plate is clamped at the electrode edges, thus prevented from expanding laterally, the plate

will buckle out of the plane above a critical compressive stress. In this paper, we show

that embedding this confined plate within a microfluidic channel and applying an adequate

voltage (Figure 4.1b) allows the buckling instability to move the fluid and control the flow

(Figure 4.1c). We will discuss the critical voltage required to induce buckling, the subsequent

buckling modes that emerge, and the impact that the pressure around the electro-active plate

has on the fluid flow rate.

4.3 Design of Experiment

4.3.1 Preparation of conductive PDMS as flexible electrodes

Flexible conductive electrodes were made by mixing carbon black (CB) particles into PDMS

using the following procedure: 3 wt.% CB particles (Ketjenblack EC-600JD, AkzoNobel)

were dispersend in 40 mL of tetrahydrofuran (Sigma-Aldrich) for 1 hour using a tip-ultrasonicator

(VirSonic 100). An ice-bath was used to prevent overheating of the suspension. Then, the

suspension was transferred to the uncrosslinked PDMS (vinyl terminated PDMS with 9400

Da molecular weight, Gelest Inc.) that was preheated to 70 ◦C. The mixture was continuously

stirred and heated for about 4 hours to allow the solvent to evaporate. After adding the cat-

alyst (Platinum-Cyclovinylmethylsiloxane Complex, Gelest Inc.) and crosslinker (Tetrakis

(dimethylsiloxy) silane, Gelest Inc.), and manual mixing for 10 minutes before casting on

both sides of the dielectric fim.
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4.3.2 Fabrication of the composite thin plate

VHB 4910 acrylic tape (3M) was used as the dielectric elastomeric film, which was stretched

biaxially to 250% prestraining, and attached to an acrylic frame (8560K171, McMaster-Carr)

for maintaining the prestrain. The electrodes’ geometry was defined using a polyester film

with a circular pattern (diameter: 13.5 mm) and the conductive PDMS mixture was cast

directly on both sides of the prestrained DE film. The cast electrodes were cured at room

temperature for 48 hours prior to use. For easy voltage application to the electrodes, we used

conductive copper tape (SPI Supplies) bonded to the conducting PDMS electrodes using a

silver epoxy paste (CW2400, Ted Pella Inc.).

4.3.3 Characterization of the composite thin plate

The geometrical parameters and material properties of the fabricated pumping device are

as follows: Plate radius was measured using a caliper (R = 6.75 mm). DE thickness was

calculated based on the applied pre-strain (hd = (82± 5) µm). The plate’s total thickness

was measured using a caliper to be h = (180± 20) µm. To determine the residual stress, we

applied constant 250% strain to VHB samples with thickness of 1 mm, gauge length of 128

mm, and width of 25 mm, and measured the changes in force under that strain for 30 min.

Uniaxial residual stress was then obtained by dividing the plateau value of the force curve by

the final cross sectional area of the samples (σi = (100± 40) kPa). After running the stress

relaxation test and while the sample was under 250% strain, we performed a simple tension

test to obtain the elastic modulus of the VHB film under pre-strain and subjected to stress

relaxation condition (Ed = 350 kPa). Electrode modulus was Ee = 800 kPa [19] and we

used rules of mixtures to estimate the plate’s effective modulus (E = 544 kPa). Permittivity

constant is ε0 = 8.85× 10−12 Pa m2/V2 and the relative permittivity of VHB is reported as

ε = 3.21 [19].

4.3.4 Fabrication of the microfluidic pump device

The bottom substrate was made of polyvinylsiloxane (PVS) (Elite double 32, Zhermack) and

molded accordingly to define a cylindrical chamber matching the diameter of the conductive
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PDMS electrodes. Then, a thin layer of uncrosslinked PVS was manually spread on the

surface of the bottom substrate and the thin plate was placed on top to chemically bond the

bottom substrate and the entire film except the circular actuation regime. Similarly, the top

substrate with a cylindrical chamber and a micro-sized channel (h = O(50µm)) was made

from PVS and chemically bonded to the other side of the thin plate.

4.3.5 Measurements and data analysis

A pressure sensor (CPCL04D, Honeywell) was utilized to measure the pressure difference

between the top and bottom chambers. A bidirectional miniature flow meter (HAF-BLF0050,

Honeywell) was used to measure the air flow moving into or out of the channels. Images

of the thin film deformed at different voltages were taken with EO cameras (EO-1312C,

Edmund Optics Inc.) at a rate of 10 fps while a green laser line (LC532-5-3F, 532 nm/5

mW) indicated a desired cross section of the thin film. A LabVIEW code was developed to

generate proper signals for controlling the high voltage amplifier (Trek20/20C, Trek Inc.). In

addition, the code was able to sync and trigger the cameras while reading the output voltages

of the power supply, pressure sensor, and flow meters. We also developed a MATLAB code

and used the Image Processing Toolbox for extracting curvatures, creating 3D meshes, and

calculating the geometrical flow rate, as indicated in the main text.

4.4 Modeling

The composite plate is prepared by biaxially stretching the DE and then bonding the solid

electrodes to it. In addition to a significant thickness reduction which eventually lowers

the actuation voltage, the prestrain mechanism improves the DE’s stability against different

failure modes, and enhances the voltage breakdown for this material.[24] The prestrain also

leaves a residual stress σi in the DE. Applying a voltage V to the electrodes, which are

clamped along their edges, induces a compressive Maxwell stress σe through the DE thickness,

which initially reduces σi. Once the total radial stress, σr = σe − σi, exceeds the critical

buckling stress for the clamped circular plate, it will deform out of the plane.

To examine the topography of the buckled plate, a laser line was imaged by a camera to
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record the deformations of the circular plate at different locations on its surface (Figure 4.2a).

The lines remain unperturbed until the applied voltage generates a stress that exceeds the

critical buckling stress of the plate. As the plate deforms out of the plane (Figure 4.2b),

we extract the deformation profiles of each laser line via image processing (Figure 4.2c) to

obtain a quantitative measure of the entire deformation of the plate (Figure 4.2d).

We determined the onset of buckling by measuring how the length of the line L along diameter

changes as a function of V . We normalized L by the initial length of the cross section, L0,

and plotted it versus applied voltage in Figure 4.3a. The results show a sharp increase in L,

corresponding to an out-of-plane deformation, around V = 6.8 kV. Changing the conditions

surrounding the composite plate, such as the pressure above and below it (Figure 4.3b), has

a dramatic effect on the post-buckled shape of the plate (Figure 4.3c), yet they appear to

have no effect on the onset of buckling (Figure 4.3a).

We first seek to describe the onset of buckling when a voltage is applied to the thin plate.

The relation between V and the radial strain er for a free-standing, thin plate is described

by:

er ≈
εoε

2Ed

(
V

hd

)2

, (4.1)

where Ed is the elastic modulus of the DE, ε0 is the permittivity constant, ε is relative

permittivity of the DE, hd is the thickness of the dielectric layer, and V is the applied

voltage [17]. We assume that near the buckling threshold the material is incompressible

and elastic, therefore the applied voltage causes a stress in the radial direction in the form

σe ≈ εoε
2(1−ν2)

(V/hd)
2, where ν ≈ 0.5 is the Poisson ratio of the DE. At the onset of buckling,

the deflection of the plate is small relative to the plate thickness, so we use the linearized

plate equations as an estimation of the critical buckling stress. A clamped, circular plate

exposed to a radial compressive stress will buckle out of the plane when (σr)cr =
kD
R2h

, where

R is the plate’s radius, D = Eh3

12(1−ν2)
is the flexural rigidity, and k is a numerical factor that

depends on the boundary conditions and the buckling mode; k1 = 14.68 and k2 = 26.4 for

modes 1 and 2 of a clamped plate, respectively [26]. Considering both the residual stress

and the voltage-induced stress, we estimate the critical voltage for plate buckling as:

Vc ≈ hd

(
k E

6 εoε

(
h

R

)2

+
2 (1− ν2)σi

εoε

)1/2

, (4.2)
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which is similar to linearized critical voltage equations reported in other studies.[27] We

consider the effect of prestrain as an initial condition for this system, and use material

properties measured after the applied prestrain. We expect that small deformations should

result in a linear behavior, and therefore, this linearized theory will be accurate in describing

the onset of buckling.∗ When h/R ≪ 1, the critical voltage is dominated by the residual

stress. For example, in our experiments h/R ≈ 0.03, so the experimentally measured residual

stress within the plate, σi = O(102 kPa), is significantly larger than the stress required to

buckle an initially stress-free plate, σc = O(1 kPa). Since the applied voltage in this case

mainly serves to reduce the residual stress in the dielectric film, we approximate the critical

voltage by considering only the residual stress term. Neglecting numerical factors of order

one, we find that for a thin, prestrained film with significant residual stress,

Vc ∼

√
h2
d σi

ε0ε
. (4.3)

Equation (4.3) predicts that the critical voltage for the composite plates shown in Figure 4.3

should be around Vc = (4.8± 0.9) kV, which deviates by about 25% from our experimentally

observed value of Vc ≈ 6.8 kV. Also, equation (4.3) suggests that the critical voltage should

scale linearly with the film thickness. Experiments over a wide range of h will be necessary

to verify this scaling, though this work is beyond the scope of the current article.

4.5 Discussion

While the above calculation is useful for determining the critical threshold for buckling, it

says nothing about the post-buckled shape of the plate. The difference between the pressure

and volume above and below the plate will control the post-buckled shape, which will, in

turn, determine the structure’s ability to move fluid within the microchannel. We can use the

∗To consider nonlinear terms, one can use the Helmholtz free energy along with the neo-Hookean

model to obtain the equation of state for equal-biaxial pre-stretching condition −σi + ε ε0

(
V
hd

)2
=

E
2(1+ν)

(
λ2 − λ−4

)
,[20] where λ = 1 + er is the total film stretch, and the changes in the film thick-

ness caused by the electric field are neglected. Using stress-stretch relation in the neo-Hookean model,

σr = E
2(1+v)

(
λ2 − λ−4

)
, and substituting the critical buckling stress (σr)cr, we find an equation for Vc that

is very similar to equation (4.2).
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Figure 4.2: 3D surface reconstruction of the shape of the thin plate by taking and processing

the images of different cross sections at different voltages. a. Overlaid images of the laser

line at different cross sections when the voltage is zero. b. Raw images of the laser line

for the middle cross section taken at different voltages. c. Extracted profiles of the images

shown in part (b) using image processing. d. 3D surface profile of the thin plate at different

voltages.

imaging technique demonstrated in Figure 4.2 to determine both the plate’s buckling mode,

and the expected fluid flow rate. Since the plate resides in a chamber of known dimensions

(Figure 4.3b), integration of the volume above or below the 3D surfaces in Figure 4.3c allows

us to define a geometrical flow rate, which gives a measure of the net volume change as a

function of time for a given voltage. By assuming the flow is incompressible, this net volume

change yields the fluid flow rate as a function of voltage. This geometrically derived flow rate

was verified using both a flow meter and optical imaging. To determine the effect of chamber

on the post-buckled plate’s deformation, we embedded the plate in a controlled environment,

and varied the surrounding pressure and volume. We identified three important regimes that

determine the plate’s deformation.

First, both sides of the plate are exposed to a constant pressure P0, and reside within a

closed chamber (Figure 4.3b-i). In this case, a mode two, asymmetric out-of-plane defor-

mation was observed once the critical buckling threshold was reached (Figure 4.3c-i). The

amplitude of the deformations increased with the voltage, and the mode two shape remained

well into the post-buckling regime. Since this shape has an up-down symmetry about the

horizontal axis, it does not move any fluid in the top chamber. This result was confirmed by

observing that both the geometrical flow rate and the experimental flow rate from the flow

meter measured zero flow (Figure 4.4a). This buckling mode can be easily understood by

considering that the plate’s surface area increases with the applied voltage, but any axisym-
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Figure 4.3: a. Changes in line length of the middle cross section normalized with the initial

line length at zero voltage. The inset (same units) shows occurrence of the critical buckling

voltage at which the line length starts changing linearly with the voltage. This critical

buckling threshold appears to be independent of the pressure in the surrounding chambers.

b. , c. Schematics and corresponding 3D profiles for the three modes of electrically induced

deformation by varying volume and pressure above and below the thin plate: i. Closed. One

chamber is closed but both chambers initially have the same pressure, ii. Pressurized. One

chamber is closed and at a higher pressure iii. Open. Both sides are open and have the same

pressure.

metric deformation would cause the chamber below the plate to be pressurized. Therefore,

the minimal energy corresponds to an out-of-plane deformation with up-down symmetry,

which will have a negligible change on the pressure in the closed chamber. To understand
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Figure 4.4: a. Flow rate as a function of voltage for different cases measured using a flow

meter (lines) and estimated geometrically from 3D surface profiles (dots). The voltage was

applied at a rate of 100 V/s for all cases. The flow rate of the ‘open’ case was an order of

magnitude higher than the one of the ‘pressurized’ case while the ‘closed’ case resulted in

zero flow rate. b. Cyclic flow rate of the pump, measured using a flow meter, for the ‘open’

case when the voltage stimulus was in the form of a triangle waveform oscillating between

6.8 kV and 7.5 kV. The pump showed a repeatable flow rate profile and the slight decrease

in the maximum flow rate of different cycles can be related to viscoelastic effects of the plate.

Note that for each cycle, we have a pumping mechanism followed by a suction that is useful

for the pumping in the next cycle.

this effect, we consider that the bending energy of the plate scales as Ub ∼ Eh3κ2, where κ

is the curvature, and therefore the work done by bending has the form Wb ∼ Eh3Rκ. The

work done by the pressure is Wp = PV , where V is the volume change above or below the

plate, which we estimate from the volume of a spherical cap V = (3R − w)πw3/3 ∼ R4κ
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for a small cap height of w. The ratio of Wb/WP ∼ (E/P )(h/R)3 ∼ 10−6 indicated that

buckling of a thin plate is energetically more favorable than changing the pressure in the

enclosed chambers. Therefore, the plate will spontaneously adopt a higher mode of buckling

that does not necessitate a change in pressure in the surrounding chambers.

Second, we prescribe one chamber to be at a higher pressure than the other, i.e. P > P0. A

mode one, axisymmetric out-of-plane deformation is observed above the buckling threshold

(Figure 4.3b-ii). We applied a positive initial pressure of P ≈ 500 Pa to the bottom channel

and increased the voltage linearly at a rate of 100 V/s to 7.6 kV. We observed a small

deformation before reaching 6.8 kV, which has also been reported in previous studies [28,

29]; however, the thin film underwent significant deformation when the voltage exceeded

6.8 kV. The axisymmetry of the buckled plate, enabled by the pressure difference between

the two chambers, results in a net positive flow out of the open chamber. We measured a

flow rate that increases slowly with voltage until 6.8 kV, followed by a decrease afterward

(Figure 4.4a).

Finally, we consider the case when both channels are open and exposed to air, so the pressure

difference between two sides of the thin film is zero (Figure 4.3b-iii). In this case, a highly

nonlinear, yet reproducible, shape emerged at the onset of buckling, and varied with in-

creasing applied voltage. Exceeding 7.4 kV caused the entire thin plate to rapidly undergo a

snap-through to compensate the further surface extension. These factors lead to a significant

flow rate, at least one order of magnitude higher than the other two cases (Figure 4.4a). We

suspect this response is because the deformation of the thin film is not restricted by changes

in pressure of each chamber. Further study of coupled interactions between the fluid and the

flexible plate may be necessary to fully characterize the effect of pressure on the buckling

dynamics, which will be left as future work.

Both the shape of the buckled plate and the resulting fluid flow rate are dependent on

the pressures in the chambers above and below it. Positive, directional flow was observed

when one chamber is pressurized, or when both chambers are open to the atmosphere.

Incorporating these concepts into the design of a microfluidic system provides a voltage-

induced means for generating flow. As a demonstration of this pumping mechanism, we

applied a voltage cycle and measured the flow rate as a function of time (Fig. 4.4b), which

produced both pumping and suction within the channel.
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Figure 4.5: a. A schematic of combining two pumps in series; bottom channels are also

connected to enhance the pumping action. b. When the left plate deforms, air is pulled

out from the bottom channel from the right to the left pump, forcing the right plate to

deform in the opposite direction and therefore pulling the air in the top channel in the

reverse direction, from the left to the right and increasing the efficiency of pumping. This

mechanism is reversed when decreasing the voltage to zero. The rate of change of voltage is

100 V/s.

4.6 Toward Coupling and Enhancement

Current microfluidic designs involve closed chambers with equal pressures - matching the

scenario in which no flow was measured. To address this limitation, we provide a simple

solution for generating flow by coupling multiple pumps. We consider two pumps that

are connected in series, i.e. each pump is connected to one end of a microfluidic channel.
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The bottom chambers of the pumps are also connected through the second “controlling”

channel, to couple the pumping action (Figure 4.5a). Since we have a constant volume in

the bottom channels, each pump operates similar to single pump with a closed chamber

and same initial pressure, where the flow rate was zero. By applying the voltage, both

plates buckle, but the deformation of one affects the deformation of the other. In fact,

plates deform by pulling/pushing the air from one chamber to the next one without a need

for changing the volume or pressure of the surrounding medium. Therefore, we observe

higher flow rates due to the coupling of suction and pumping between these two pumps

(Figure 4.5b). This effect is reversed when the voltage is decreased, providing a robust means

for controllable bidirectional flows. Similar bidirectional flows have been observed in the

heartbeat mechanism of the dorsal vessel in some insects, e.g. aperygotes and mayflies [30].

Note that this is a closed and isolated system where outside pressure does not play any

role in plate deformation, so the flow rate of this system is most comparable to the one of

a ‘closed’ pump discussed above, which shows a significant increase in the flow rate. The

versatility of the advanced material design that we present allows these pumps in series or

in parallel to enable bidirectional flows and microfluidic vacuum pumps with enhanced flow

rates.

4.7 Conclusions

We presented the voltage-induced out-of-plane deformation of a confined dielectric thin plate,

and utilized this mechanism as a means to pump fluids within microchannels. We prepared

elastic electrodes that are flexible, and can be in direct contact with fluid. In addition to the

applied voltage, we considered the effect of pressure and volume on the deformation of the

thin plate. The change in surface area depends on the voltage, while the deformation shape,

which significantly affects the flow rate, is a function of voltage, pressure, and volume. The

flow rate was observed to be as high as 20 mm3/s. These pumps can also be utilized in

series and/or parallel in order to enhance the flow rate, or add advanced functionality such

as microchannel vacuums or bidirectional fluid flow. These steps will open new avenues for

microfluidic systems where a low power consumption pump with a tunable flow rate can

easily be integrated.
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Chapter 5

Fluidic Electrodes:

Toward Miniaturization, Higher

Frequencies, and Lower Voltages

5.1 Abstract

Accurate and integrable control of different flows within micro channels is crucial to further

development of micro devices and lab-on-chip applications. In this chapter, we introduce a

flexible micro actuator that undergoes buckling at a high deformation rate and disturbs the

nearby fluid flows. The actuator consists of a confined, thin, dielectric film that buckles out

of the plane when exposed to a certain voltage through conductive fluid electrodes. Similar to

the previous chapter, we offer a model to estimate the onset of the critical buckling voltage.

The buckling shape of this micro actuator is obtained using image processing techniques.

We then investigate the effects of buckling frequency, flow rate, and the pressure difference

between the two sides of the thin film, on the functionality of the micro actuator and on the

disturbance of the adjacent flow. This simple mechanism provides a fast, repeatable, and

robust means to control or disturb fluids within microfluidic devices.
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5.2 Introduction

Microfluidic devices have become primary tools in many applications to control and monitor

variety of parameters [1–3]. Further development and utilization of Lap-on-a-Chip (LoC)

devices are associated with the design of a fully stand-alone system capable of accurately and

appropriately controlling different flows within microchannels while keeping the the cost low.

Numerous studies have been conducted to develop variety of valves [4] and pumps [5, 6] that

are appropriate for specific micro systems, the majority of which need difficult techniques

for fabrication [2] or extensive external equipment during the testing to control different

parameters. Among all, Quake NanoFlexTM valves [7, 8] are shown to be efficient, easy

to fabricate, and reliable to work; however, running these valves at very high frequencies

may not be feasible due to the intrinsic time lag of pneumatic signals. In this study, we

introduce a micro actuator that operates using an electric signal, which minimizes the time

lag, and works at very high frequencies. The latter advantage enables us to observe the

effect of buckling frequency on the disturbance of the fluid flow and study the fluid-soft

solid interaction. Similar to the previous chapter, we use the buckling instability of a thin,

dielectric film for actuation, but significantly increase the frequency of actuation by replacing

flexible electrodes with fluid ones.

Common dielectric actuators usually consist of a dielectric film sandwiched between two

electrodes [9]. When the dielectric film is exposed to an electric field, its thickness reduces

and therefore its surface area increases because of the film incompressibility [10, 11]. If

clamped from its edges, the film cannot extend and at a critical voltage, it undergoes buckling

instability [12]. This out-of-plane deformation is used towards disturbing the adjacent flows.

Different type of electrodes and techniques have been utilized to apply a voltage to the

dielectric film [13]. Gel electrodes are used in robotic applications for structures that do

not undergo large deformations nor become in contact with liquids. On the other hand,

compliant solid electrodes, such as CB-PDMS [11] and ionic elastomers [14], are reliable,

have great compatibility with fluids, and undergo significant deformations; however, it is

difficult to reduce the thickness of this type of electrodes and therefore the total thickness

of the composite actuator. Studies have also been conducted to make a superficial layer of

the dielectric film conductive using ion-bombardment techniques [15], which make the film
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Figure 5.1: a. A schematic of micro actuator that disturbs nearby fluid flows. The dielectric

film separates the crossed top and bottom channels. The main channels are all grounded. b.

By applying adequate positive electrical signal to one of the controlling channels, the thin

film between that channel and the crossing top channel undergoes out-of-plane buckling. We

use this buckling for controlling the flow within the main channel. c. A 3D schematic of a

section of the device showing the main (blue) and controlling (green) channels, which are

separated by the thin dielectric film. d. a 3D schematic of the device showing different micro

actuators at the intersections of top and bottom channels.

stiffen and thus deform less.

5.3 Design of Experiment

5.3.1 Approach

We use conductive fluids as electrodes to apply a voltage to a dielectric film. Fluid electrodes

do not restrict the dielectric film’s deformation nor add any thickness to the total thickness

of the actuating mechanism. Therefore, the film undergoes faster and larger deformations

at lower voltages. In addition, the entire system can now be miniaturized and embedded

into a micro channel while the fabrication is significantly easier than those of gel and soft

solid electrodes. These unique features make fluid electrodes very suitable for applications

requiring high frequency and large deformations.

This microactuating device has three layers: The top layer contains ‘main channels,‘ whose

flows are going to be controlled; the bottom layer has embedded ‘control channels‘ that are

used to send the actuation signal; and the dielectric film that separates the main and control
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channels (Figure 5.1a). The main channels are grounded to reduce the risk of any damage to

components sensitive to electric potential, such as living cells and colloidal particles. Since

the channels are filled with electrically conductive fluids, e.g. salt water, applying a voltage

to a pair of one main and one control channel creates an electric field within the dielectric

film, which generates Maxwell stresses, and at a critical voltage, the film deforms out of the

plane, resulting in a constriction that disturbs the fluid (Figure 5.1b).

5.3.2 Fabrication

The thin film was prepared by spin coating ploydimethylsiloxane (PDMS) (Dow Corning

Sylgard 184) on a Silicon wafer with the spin speed and time varied to control the film

thickness (h = O(40µm)), and then curing it at 90 ◦C for 5 min. The molds for top and

bottom layers were prepared first by patterning the main and control channels on a Silicon

wafer via photo lithography techniques and then etching the wafer using Deep Reactive Ion

Etching (DRIE) technique. We then made the bottom and top layers by casting PDMS onto

molds and curing them at 120 ◦C for 1 hr. Next, we bond the thin film to the top layer

using a Corona treater (Laboratory Cronoa Treater, UV Process Supply Inc). The Bottom

layer was also exposed to corona plasma for about 1 minute, aligned under microscope, and

bonded to the free side of the thin film.

5.3.3 Experimental setup

The fluid electrode solution was prepared by dissolving 20% NaCl salt (Kroger) into distilled

water (Kroger) at 90 ◦C. We then added water soluble dyes to the saltwater solution to

differentiate the flows in different channels. The electrical conductivity of all solutions was

very high (> 200mS/cm measured using Hanna Instruments HI2003 - Edge). The sample

was mounted on a hand made x-y-z stage, and we used a microscopic lens (Navitar Zoom

6000) attached to a Nikon D610 camera to take images and movies of an area of interest

from top view. The main channels were all grounded while one control channel at a time was

connected to the high voltage signal generated using a high voltage amplifier (Trek 20/20C-

HS). We used LabVIEW to generate low voltage signals for controlling the high voltage

amplifier, and track the voltage and the current via an NI DAQ System (NI cDAQ-9174
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with NI 9205 and NI 9269). The fluid in control channels was stationary while the flow in

main channels was pressure driven, simply via raising a reservoir to a certain height. The

pressure difference between the control and the main channels was also applied by relatively

elevating or lowering the corresponding reservoirs.

5.4 Modeling

To estimate the onset of critical buckling voltage, we start with the linearized relation be-

tween the radial strain, er and the applied voltage, V as follows [9]:

er ≈
ϵ0ϵ

2E

(
V

h

)2

(5.1)

where ϵ is the permittivity constant, ϵ0 is the relative permittivity of the dielectric film, h is

the film thickness, and E is the film’s elastic modulus. Using the constitutive relations [16],

we have the radial stress, σr ≈ ϵ0ϵ
2(1−ν2)

(V/h)2. Then we use linearized plate theory to estimate

the critical stresses at which the buckling occurs [17, 18]: σcr =
kD
R2h

where D = E h3

12(1−ν2)
is the

bending stiffness, ν is Poisson’s ration, R is the film diameter, and k is a series of constant

coefficients for different buckling modes, e.g., k1 = 14.68 and k2 = 26.4 for the first and

second buckling modes. By substituting the radial stress into the critical stress equation, we

have:

Vc ≈ h

(
k E h2

6 ϵ0ϵR2

) 1
2

(5.2)

For example, here are the measured parameters for one of our fabricated devices: h ≈
45µm, R = 475µm, ϵ ≈ 3, ϵ0 = 8.85 × 10−12 Pa m2/V2, k = 26.4, and E = 1.2 MPa. Equa-

tion (5.2) therefore estimates that Vc ≈ 3.2 kV, which is in agreement with the experimentally

measured critical voltage of Vc ≈ 3.3 kV for that particular device. We note that equation

(5.2) is very sensitive to the film thickness so it must be used only for a coarse estimation

of the critical voltage if proper techniques are not available to accurately measure the film

thickness.
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5.5 Results and Discussion

By applying an adequate voltage to a control channel, while connecting the main channel to

the ground, the circular intersection of that control channel with the main channel buckles

out of the plane. This deformation is evidenced by two methods, one suggesting the shape of

buckling deformation and the other one revealing the complex interaction between the soft

film and nearby fluid.

5.5.1 Qualitative determination of the buckling shape

Figure 5.2: a. Top view of the device showing the micro actuator, the circular intersection

of the main and the control channels b. 3D patterns of buckling deformations of the micro

actuator in one cycle.

First, we take pictures of the circular intersection between the main and the control channels

from the top view (Figure 5.2a) and use image processing techniques to estimate the shape

of the buckled thin film. By turning the voltage on, the circular intersection actuates and

deforms out of the plane, making a constriction within the channel. On the other hand, the

intensity of the fluid color depends on the fluid height at each point. Therefore, we intent to

determine the buckling shape of this micro actuator by tracking the changes in the intensity

of the fluid from the top view. These intensity changes might not be visible to naked eyes, as

the out-of-plane deformation for the actuators at this scale is on the order of 25 µm. However,

the image processing techniques enable us to track small intensity changes and relate them

to the film’s deformation, thus obtaining a 3D deformation pattern. Figure 5.2b shows that

the thin film is relatively flat - with a negligible concave pattern - at the beginning of a cycle,

when the voltage is off. As the voltage increases, the concave pattern grows gradually but
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reaches its maximum at about 2/3 of the cycle, followed by a quick return to its initial shape

as soon as the voltage goes back to zero. This is consistent with previously reported results

of a similar case [12]. We note that this method provides a qualitative measure of changes in

the buckling shape of such a small plate as a function of voltage or other parameters while

the second method, discussed below, is used to estimate the amount of deformation.

5.5.2 Estimation of buckling deformation and flow changes

We study the micro actuator’s deformation indirectly via its interaction with the adjacent

fluid, which is evidenced by the the changes in flow ratios at the two fluids’ interface (Fig-

ure 5.3a). When the micro actuator buckles out of the plane, it affect the flow in the

corresponding channel, which consequently changes the ratio of two fluids and moves the

interface up or down accordingly. We obtain the interface between two fluids using image

processing techniques (Figure 5.3b) and estimate the changes in the ratio of one flow, for

example, the yellow flow, by averaging the ratio of that flow over a narrow bandwidth shown

in Figure 5.3b. We run each experiment for several cycles to improve the consistency of

results (Figure 5.3c). In addition, we let the film relaxed for one second before switching to

the next frequency test. This relaxation time is at least 3 orders of magnitudes longer than

the time required for charging and discharging the micro actuator.

We note that the mechanism of interaction between the thin film and the adjacent fluid has

four major steps during one voltage cycle. The first one is an equilibrium state where the

voltage is zero (Figure 5.3c-i); the film is insignificantly deformed by the fluid flow over the

film, and the flow is lightly controlled by the deformed thin film. Since both changes are

minor for the current experiments, we simply assume that both the film deformation and

the flow changes are negligible. By increasing the voltage, however, the thin film deforms

significantly into the channel, causing a momentary increase in the flow of that channel

while the changes in the main flow are still not comparable to that increase by the film’s

deformation (Figure 5.3c-ii). At some point, the reduction in the pressure driven flow

due to the film’s deformation becomes dominant and the flow increase caused by the film

deformation into the channel can no longer compensate it (Figure 5.3c-iii). At this step, we

may observe another equilibrium state if the voltage is kept constant. In the last step, the

voltage is reduced to zero and the film tends to go back to its original shape but the coupling
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Figure 5.3: a. Two pressure driven flows merging into one channel b. Sequences of images

showing the disturbance of two fluids’ interface caused by the micro actuator. Extracting

the interface and the channel’s walls is done using image processing and the results are

overlaid on top of the raw images. c. Changes in the ratio of yellow flow when the voltage

is oscillating at a rate of 1 Hz. i − iv bands demonstrate four different stages of coupling

between the thin film’s deformation and changes in fluid flow.

between film’s deformation and flow changes plays a significant role in reducing the film’s

deformation and increasing the flow smoothly to the original equilibrium state. By repeating

the voltage cycle, we observe the same interaction behavior although the maximum change

in flow becomes more consistent usually after the second cycle.

When the micro actuator buckles into the channel, the interface between two fluids adapts

a shape with a maximum (Figure 5.4a) that propagates through the channel while the wave
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amplitude attenuates. The later phenomenon, which can be treated similar to the attenua-

tion of surface waves within viscous fluids [19, 20], suggests that the interface amplitude and

its location can more accurately be obtained at the beginning of merging the two channels.

We use changes in the amplitude’s location to estimate the flow rate within the main chan-

nels due to the applied pressure. To reduce any contribution of higher-frequency actuations

on the fluid disturbances (Figure 5.4b), we first focus on the tests run at 1 Hz to obtain

the flow rate and the film deformation. The accuracy of results at higher frequencies will

be improved by using a high speed camera along with more advanced devices to apply a

constant pressure.

We then track the location of the maximum amplitude within each voltage cycle and com-

pare it to adjacent frames to estimate the flow rate (Figure 5.4c), which be used as the

primary variable to plot other parameters. The fluid viscosity of solution in the main chan-

nel was 1.8 mPa.s (Vibro Viscometer SV-10) and its density, measured by weighing 30 ml

of fluid using an analytical balance (Sartorius Practum 124), was 1120 kg/m3. Knowing the

geometry of the channel (h = 50µm and w = 500µm), Re will be 0.04, 0.45, and 0.66 for

Papplied = 250, 800, and 1600 Pa, respectively.

We also measure changes in the maximum amplitude and plot them versus the estimated

pressure driven flow rate (Figure 5.4d). As we expect, increasing the rate of pressure driven

flows causes a decrease in the maximum amplitude as it becomes more difficult for the yellow

fluid to disturb the other flow and permeate the pink fluid. The change in the maximum

amplitude alone is not adequate to establish a relation between the film deformation and

fluid flow. For example, a disturbance wave with high amplitude but short wavelength may

represent the same amount of fluid volume as a disturbance wave with low amplitude but

long wavelength. Therefore, we intend to obtain the persistence length, the maximum length

of a disturbed interface (Figure 5.4e), These results show that disturbing a medium range

flow may result in the longest persistence length.

We estimate the area under the disturbed interface bounded between zero and the persistence

length using a MATLAB script. Assuming that the interface does not significantly change

across the height of these channels (h = O(50µm)), the fluid volume permeated the second

fluid due to the thin film’s deformation is then estimated by multiplying the surface area

by the channel height (Figure 5.4f). The results demonstrate that the thin film undergoes
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Figure 5.4: a. A disturbed interface between two fluids at the beginning of merging point. b.

Change in the amplitude of disturbed interface plotted for different frequencies. Maximum

amplitudes per each voltage cycle are shown in red dots. c. The rate of pressure driven

flow as a function of applied pressure, measured by tracking the changes in the location of

maximum amplitude using image processing. d.-f. Changes in the maximum amplitude,

persistence length, and the volume of disturbed fluid as a function of measured flow rate.

Only data corresponding to F = 1 Hz were used to calculate the parameters shown in c-f.

The four c-f plots also share the same legend.
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more buckling when the fluid flow is not too low or too high. When the flow is high, it

costs a lot of energy for the thin film to move the fluid so it might be energetically more

favorable for the thin film to deform less or undergo higher, but asymmetric buckling modes

[12]. On the other hand, a regular flow over the thin film may help it to deform more,

similar to the deformation of flexible tubes due to their inner flows [21, 22]. We note again

that the determination of persistence length significantly affects the estimation of disturbed

volume; further investigation is therefore required to verify the trend for other cases, e.g.

when ∆p ≈ 0.

Based on the 3D patterns of deformation, we assume that the thin film undergoes the first

buckling mode when ∆p = 800 Pa or ∆p = 1600 Pa. Therefore, the amount of fluid moved

by the film at its maximum deformation can be estimated from the volume of a spherical cap

V = (3R − w)πw3/3 where R = 500µm is the plate radius, V is the fluid volume estimated

from Figure 5.4f and w is the maximum buckling deformation of the thin film. For example,

when the pressure driven flow rate is about 0.6 mm/s, the average fluid volume moved by

the thin film is about 70 nL. Using the above equation, we then estimate that the maximum

deformation of the thin film under such condition is about 36 µm, which in fact seems to be

very reasonable compared to the channel height of 50 µm.

These micro actuators can work in series and parallel for further advanced functionality,

e.g., bidirectional flows, or for more efficiently enhancing (pumping) or controlling (valving)

different flows within micro channels. Controlling the flow can significantly be improved

by fabricating the main channel with a semicircular cross section. Unlike other types of

electrodes, electrical conductivity of fluid electrodes does not decrease by stretching the

dielectric film, resulting in a consistent, large actuation. Since we use highly conductive

fluid electrodes, the majority of the voltage drop occurs within the thin film. However, if an

experiment needs low conductive fluid electrodes or there are particles and cell very sensitive

to voltage application, we suggest a secondary channel coupled with the main channel would

shield the fluid any applied voltage. For instance, the voltage applied to one actuator deforms

into the secondary channel, which in turn causes the passive micro actuator to partially close

the main channel without any electricity involved.
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5.6 Conclusions

We presented a new means to disturb and control fluid flow using the buckling deformation

of a micro actuator that consists of a thin dielectric film. We used fluid electrodes to aid

in voltage application to the dielectric film, which reduced the critical buckling voltage and

significantly enhanced the rate of deformation. The buckling shape of the micro actuator was

qualitatively obtained via tracking intensity changes within dyed fluids. We showed that the

disturbed interface between two fluids can be utilized to characterize the interaction between

the soft actuator and corresponding fluid, resulting in estimations of fluid flow and the film’s

deformation. The pressure difference between the main and control channels may affect the

buckling shape while the applied pressure and consequently the pressure-driven flow may

considerably alter the film’s deformation. These micro actuators may play a significant role

in the development of stand-alone microfluidics where a fast and robust means is required

to control different flows within micro channels.
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Future Work

- Extension of lubrication theory to axisymmetric or 3D geometries:

We used two-dimensional analysis of perturbation expansion in Chapter 3 to describe

the flow in a two-dimensional channel. The same approach can be used to derive three-

dimensional analytical solutions, which might more accurately describe flow within

three-dimensional geometries. In addition, an axisymmetric solution can be developed

to describe the flow in circular tubes with large constrictions.

- Coupling between the deformation of a flexible channel and its internal flow. This

can be another extension to lubrication theory by considering a shape function that

changes as of a function of the internal flow, providing an analytical tool to describe

the flow in flexible channels.

- Use of electrical stimulus to cause snapping of thin plates for advanced functionality.

We presented a method in Chapters 4 and 5 to use electrical stimulus to make a di-

electric film undergo bifurcation buckling. By modifying the geometry or material,

e.g. making a film with a non-uniform thickness pattern or non-uniform material prop-
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erties across its thickness, the film may undergo snap-through buckling. This might

be beneficial when an accurate and fast response of the film is required for a specific

functionality.

- Soft-hard transition via non-Newtonian fluids within a channel with flexible arches.

The Newtonian fluid used in the first study can be replaced with a non-Newtonian

fluid, e.g. a cornstarch suspension. By applying a mechanical strain, e.g. bending,

stretching, pressing, or twisting, at a low rate, the device deforms similar to the previous

cases. However, if the strain is applied at higher rates, the shear-thickening cornstarch

suspension becomes stiff and reduces the device flexibility. This mechanism can be

used for example in a knee brace to damp sudden falls or impacts beyond a critical

threshold while the brace is flexible during walking and other normal activities.

- Buckling deformation of thin cylindrical tubes via mechanical and electrical stimuli.

This study can be extended to the buckling deformation of thin, flexible tubes, and

the interaction of the buckled tubes with their internal or external fluids. The tube

can undergo buckling mechanically, e.g. by reducing the inside pressure, or electri-

cally, e.g. by applying an electric potential between inner and outer conductive fluids.
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Appendix A. LabVIEW Codes

This LabVIEW code was developed initially to control several equipment, such as linear

stages, cameras, and a high voltage amplifier, while simultaneously monitoring and recording

several parameters, such as pressure from a pressure sensor, flow from a flowmeter, and

voltage from a high voltage amplifier. We are currently working on an event-based version

of this code with improved performance. The new code will be released after debugging

process. Here is an earlier version that is debugged:
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Appendix B. MATLAB Codes

B.1 Extracting curvature profiles from images

The following code extracts the curvature profiles of all the images within one folder and

prepares the results for the next code to generate 3D surfaces:

% By Behrouz Tavakol -- Last Modified on 12/08/2012

% Gets the curvature for each slice.

% -----------------------

clear all; close all; clc

% ------- The desired folder for analysis ... ----------

seldir= uigetdir(’’,...

’Please select your desired folder for image processing’);

if seldir ==0

seldir = ’’;

else

seldir = [seldir,’\’];

end

% ------- z (stage movement relative to the center) ---------
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% positive: further from the camera

% negative: closer to the camera

z_str= inputdlg({’z (mm):’},’Calibration...’,1,{’0’});

z = str2double(z_str{1});

% ------- Reading data from Excel ... ----------

Excelfilename = dir([seldir,’*.csv’]);

Excel_data = importdata([seldir,Excelfilename(end).name]);

ti_s = Excel_data.textdata{1,1};

for i=1:size(Excel_data.colheaders,2)

if size(strfind(lower(Excel_data.colheaders{i}),’time’),2)>0

Tex = Excel_data.data(:,i);

elseif size(strfind(lower(Excel_data.colheaders{i}),’hv voltmon’),2)>0

Vex = Excel_data.data(:,i);

elseif size(strfind(lower(Excel_data.colheaders{i}),’hv currmon’),2)>0

Aex = Excel_data.data(:,i);

elseif size(strfind(lower(Excel_data.colheaders{i}),’pressure’),2)>0

Pex = Excel_data.data(:,i);

end

end

ti_s = ti_s(find(ti_s==’_’)+1:end);

s1_ms = ti_s(end-2:end);

s1_s = ti_s(end-5:end-4);

s1_m = ti_s(end-8:end-7);

s1_h = ti_s(end-11:end-10);

Ti = str2double(s1_ms)/1000+str2double(s1_s)+...

str2double(s1_m)*60+str2double(s1_h)*3600
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if isempty(Vex), break, end

if Tex(1)>1

disp(’** Data Correction was required since time did not start from 0’)

Ti = Ti + Tex(1)-Tex(2)+Tex(1);

Tex(1:10) = Tex(1:10)-Tex(1)+Tex(2)-Tex(1);

%break

end

filelist = dir([seldir,’*.TIFF’]);

if size(filelist,1)==0, return, end

% ----------- simple Calibration ---------------

% dx & dy in (mm/px)

i = 0;

calib = false;

while i<size(filelist,1) && not(calib)

i = i+1;

if size(strfind(lower(filelist (i).name),’calib’),2)>0

calib = true;

end

end

if calib

[dx, dy] = Simple_Calib_Using_2Lines([seldir,filelist(i).name]);

filelist(i)=[];

else

[dx, dy] = Simple_Calib_Using_2Lines([seldir,filelist(1).name]);

end

% --------------- Cropping ... -----------------

I1 = imread([seldir,filelist(end).name]);
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I1 = I1/2 + imread([seldir,filelist(round(end/2)).name]);

I1 = I1 + imread([seldir,filelist(1).name])/2;

[I2,rect]=imcrop(I1);close

rect = round(rect) % [x y width height]

% --------------- Masking ... -----------------

I2 = imcrop(I1,rect);

I2 = rgb2gray(I2);

I2 = imadjust(I2);

masks = ones(size(I2));

mn = 0;

% clear masks

mask_b = true;

while mask_b

for i=1:size(masks,1)

for j=1:size(masks,2)

I2(i,j) = I2(i,j).*masks(i,j);

end

end

I2 = imadjust(I2);

imshow(im2bw(I2,graythresh(I2)));

anw = questdlg(’Would you like to mask any region?’, ...

[’Masking #’,num2str(mn+1)], ’Yes’,’No’,’Reset’,’No’);

switch anw

case ’Yes’

mn = mn+1;

imshow(I2);

[J,BW] = roifill;
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for i=1:size(masks,1)

for j=1:size(masks,2)

masks(i,j) = masks(i,j).*(1-BW(i,j));

end

end

for i=1:size(masks,1)

for j=1:size(masks,2)

I2(i,j) = I2(i,j).*masks(i,j);

end

end

imshow(I2);

case ’No’

mask_b = false;

break

case ’Reset’

I2 = imcrop(I1,rect);

I2 = rgb2gray(I2);

I2 = imadjust(I2);

masks = ones(size(I2));

mask_b = true;

mn = 0;

imshow(im2bw(I2,graythresh(I2)));

end

end

% Static or Dynamic Masking

anw = questdlg(’Which masking technique would you like to apply?’, ...

’Static or Dynamic Masking’, ...
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’Static’,’Dynamic’,’Static’);

switch anw

case ’Static’

StatMask = true;

case ’Dynamic’

StatMask = false;

dmasks = ones(size(I2));

end

%--------------------------------------------

% ------------ Reading Images ... -----------

AnlTime = 0;

tic;

for nn = 1:size(filelist,1)

s = filelist(nn).name;

% ---------- Reading Time ----------------

s1 = s(1:find(s==’.’)-1);

s1_ms = s1(end-2:end);

s1_s = s1(end-4:end-3);

s1_m = s1(end-6:end-5);

s1_h = s1(end-8:end-7);

ti = str2double(s1_ms)/1000+str2double(s1_s)+...

str2double(s1_m)*60+str2double(s1_h)*3600;

T(nn) = ti-Ti;

% ---------- Reading and Analyzing the Image -----------

I1 = imread([seldir,s]);
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if StatMask

% --- Static Masking ...

I2 = imcrop(I1,rect);

I2 = rgb2gray(I2);

for i=1:size(masks,1)

for j=1:size(masks,2)

I2(i,j) = I2(i,j).*masks(i,j);

end

end

I2 = imadjust(I2);

else

% --- Dynamic Masking ....

if mod(nn-1,10)==0

I2 = imcrop(I1,rect);

if nn+9 <= size(filelist,1)

I2=(I2+imcrop(imread([seldir,filelist(nn+9).name]),rect));

end

I2 = rgb2gray(I2);

for i=1:size(masks,1)

for j=1:size(masks,2)

I2(i,j) = I2(i,j).*masks(i,j).*dmasks(i,j);

end

end

I2 = imadjust(I2);

mask_b = true;

dmn = 0;
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fm = figure; imshow(im2bw(I2,graythresh(I2)));

while mask_b

anw = questdlg(’Would you like to modify the dynamic mask?’, ...

[’Masking #’,num2str(dmn+1)], ’Yes’,’No’,’Reset’,’No’);

switch anw

case ’Yes’

dmn = dmn+1;

imshow(I2);

[J,BW] = roifill;

for i=1:size(dmasks,1)

for j=1:size(dmasks,2)

dmasks(i,j) = dmasks(i,j).*(1-BW(i,j));

end

end

for i=1:size(dmasks,1)

for j=1:size(dmasks,2)

I2(i,j) = I2(i,j).*dmasks(i,j);

end

end

imshow(im2bw(I2,graythresh(I2)));

case ’No’

mask_b = false;

break

case ’Reset’

dmasks = ones(size(I2));

mask_b = true;

dmn = 0;

I2 = imcrop(I1,rect);

if nn+9 <= size(filelist,1)

I2=(I2+imcrop(imread(...
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[seldir,filelist(nn+9).name]),rect));

end

I2 = rgb2gray(I2);

for i=1:size(masks,1)

for j=1:size(masks,2)

I2(i,j) = I2(i,j).*masks(i,j);

end

end

I2 = imadjust(I2);

imshow(im2bw(I2,graythresh(I2)));

end

end

close(fm);

refresh

uiwait(gcf,1)

end

I2 = imcrop(I1,rect);

I2 = rgb2gray(I2);

for i=1:size(masks,1)

for j=1:size(masks,2)

I2(i,j) = I2(i,j).*masks(i,j).*dmasks(i,j);

end

end

I2 = imadjust(I2);

end

% ----

level = graythresh(I2);
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F = 1.0; % Modify this to find a good threshold

I3 = im2bw(I2,level*F);

% ---------- Obtaining the curvature -----------

i = 1;

np = 0;

xc = []; bc = []; tc = [];

while i<=size(I3,2)

rem = find(I3(:,i)==1);

if size(rem,1)>0

np = np+1;

xc(np)=i;

bc(np)=rem(end);

tc(np)=rem(1);

if np>1

if abs(bc(np)-tc(np)) > 20

disp([’Modifying the path (unusual path!) @’,num2str(i)])

end

end

end

i = i+1;

end

c_x = xc;

c_y = (tc+bc)./2;

if nn==1

mean_width = mean(abs(tc-bc));

end
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% ---------- Filtering & Smoothing -----------

f = 2; % Hz (sampling frequency)

f_cutoff = 0.04; % Hz (cutoff frequency)

fnorm = f_cutoff/(f/2); % normalized cut off freq

[b1,a1] = butter(10,fnorm,’low’); % Low pass Butterworth filter of order 10

c_y_sm = filtfilt(b1,a1,c_y); % filtering

% ---------- Finding the corresponding voltage and saving -----------

[t_err t_abs_ind] = min(abs(T(nn)-Tex));

tr(nn).ind = t_abs_ind;

tr(nn).t = T(nn);

tr(nn).v = Vex(t_abs_ind);

tr(nn).z = z;

tr(nn).X = c_x+rect(1);

tr(nn).Y = c_y_sm+rect(2);

tr(nn).p = Pex(t_abs_ind);

% % -- Plotting every 10 results

if mod(nn,10)==0

imshow(I1); hold on

plot(c_x+rect(1),c_y_sm+rect(2),’r’)

title([’Frame# ’,num2str(nn),’, V = ’,...
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num2str(Vex(t_abs_ind)/1000,’% 6.3f’),’ kV’])

refresh

uiwait(gcf,1)

end

end

AnlTime = AnlTime+toc;

disp([’Elapsed Time = ’,num2str(AnlTime)]);

%******************************************

% % Plot desired data set:

% nn = 151;

% s = filelist(nn).name;

% I1 = imread([seldir,s]);

% imshow(I1); hold on

% plot(tr(nn).X,tr(nn).Y,’r’)

% title([’Frame# ’,num2str(nn),’, V = ’,...

% num2str(tr(nn).v/1000,’% 6.3f’),’ kV’])

% ------------------------

% % Plot all curves

% for nn = 1:10:size(tr,2)

% figure, hold on;

% title([’Frames# ’,num2str(nn),’-’, num2str(nn+9)])

% xlim([0 size(I1,2)])

% ylim([-size(I1,1) 0])

% for i=nn:nn+9

% plot(tr(i).X,-tr(i).Y,’r’)

% end

% uiwait(gcf,3)
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% close

% end

% ------------------------

% % Plot maximum height vs. pressure

clear Xt Zt

Xt = tr(nn).X;

Zt = tr(nn).Y./cos(pi/6);

theta = atan((mean(Zt(end-4:end))-mean(Zt(1:5)))/...

(mean(Xt(end-4:end))-mean(Xt(1:5))));

Xarr = Xt.*cos(-theta) + Zt.*-sin(-theta);

Zarr = Xt.*sin(-theta) + Zt.*cos(-theta);

x0 = 0;

z0 = Zarr(1);

MH = zeros(1,nn);

MaxZ = -1000;

for nn = 1:size(tr,2)

clear Xt Zt Xarr Zarr

Xt = tr(nn).X;

Zt = tr(nn).Y./cos(pi/6);

Xarr = Xt.*cos(-theta) + Zt.*-sin(-theta)-x0;

Zarr =(Xt.*sin(-theta) + Zt.*cos(-theta)-z0).*(-1);

if max(Zarr)>MaxZ

[MaxZ MaxZ_ind] = max(Zarr);

MaxZ_x = Xarr(MaxZ_ind);

end

end
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for nn = 1:size(tr,2)

clear Xt Zt Xarr Zarr

Xt = tr(nn).X;

Zt = tr(nn).Y./cos(pi/6);

Xarr = Xt.*cos(-theta) + Zt.*-sin(-theta)-x0;

Zarr =(Xt.*sin(-theta) + Zt.*cos(-theta)-z0).*(-1);

P_MH(nn) = tr(nn).p;

T_MH(nn) = tr(nn).t;

CH_x(nn) = (min(Xarr) + max(Xarr))/2;

[MH(nn) mxh_ind] = max(Zarr);

[MinH(nn) mnh_ind] = min(Zarr);

if mxh_ind<CH_x(nn)/2 || mxh_ind>CH_x(nn)*3/2

H(nn) = MH(nn);

else

H(nn) = MinH(nn);

end

[MaxZ_xn MaxZ_ind] = min(abs(Xarr-MaxZ_x));

HH(nn) = Zarr(MaxZ_ind);

end

HHn = HH - HH(1); P_MHn = P_MH - P_MH(1);

MaxZ = max(HHn);

MaxP = max(P_MHn);

figure, plot(T_MH,(P_MHn)./MaxP,’b’)

hold on; plot(T_MH,(HHn)./abs(MaxZ),’r’)

title(’Pressure and Deformation vs. Time’)

xlabel(’Time (s)’)
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ylabel(’Norm. Pressure & Norm. Max Deformation’)

legend(’Norm. Pressure’,’Norm. Max Deformation’)

ylim([-1.2 1.2])

figure, hold on;

title(’Maximum Deformation vs. Pressure’)

box on; grid on;

xlabel(’Pressure (in H_2O)’);

ylabel(’Max Deformation (mm)’);

dx = 0.0118; % based on the common calibration factor

plot(P_MH,HH.*dx)

% ------------- saving into a file -----------------

FileName= seldir(1:end-1);

FN = find(FileName==’\’);

FileName=FileName(FN(end)+1:end);

% All data W/O calibration (for x,y,z), W/O angle correction (for y,z)

save([FileName,’_Analyzed_Data.mat’],’tr’)

%******************************************

B.2 Generating 3D surfaces and making 3D movies

This code generates 3D patterns of deformation for two purposes: extracting the geomet-

rical fluid flow as well as saving high quality 3D images and movies for publications and

presentations:
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% By Behrouz Tavakol - Last modified on 12/09/2012

% Combines different slices and generates a 3D surface

% -----------------------

clear all; close all; clc

% ------- The desired folder for analysis ... ----------

seldir= uigetdir(’’,...

’Please select the folder containing different slices’);

if seldir ==0

seldir = ’’;

else

seldir = [seldir,’\’];

end

% ------- Reading data from .mat files ... ----------

Filelist = dir([seldir,’*.mat’]);

i = 1;

nn = size(Filelist,1);

while i<=nn

if size(strfind(lower(Filelist(i).name),’analyzed_data’),2)==0

Filelist(i)=[];

nn = size(Filelist,1);

else

i = i+1;

end

end
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clear tr Vrn Trn V T Z

for nn=1:size(Filelist,1)

data = load([seldir,Filelist(nn).name],’tr’);

tr{nn} = data.tr;

Ytr(nn) = tr{nn}(1).z;

end

% --------- sorting based on z (y) values -----------

% positive: further from the camera

% negative: closer to the camera

sy = size(Filelist,1);

[Y Yind] = sort(Ytr);

for nn=1:sy

trn{nn} = tr{Yind(nn)};

for i=1:size(trn{nn},2)

trn{nn}(i).used = 0;

trn{nn}(i).Y = trn{nn}(i).Y ./ cos(pi/6);

Vrn{nn}(i) = trn{nn}(i).v;

Trn{nn}(i) = trn{nn}(i).t;

end

sx(nn)= size(Vrn{nn},2);

Y(nn) = trn{nn}(1).z;

end

clear tr

% --------- Matching the positions of different slices --------------

for nn=1:sy
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clear Xt Zt

Xt = trn{nn}(1).X;

Zt = trn{nn}(1).Y;

theta(nn) = atan((mean(Zt(end-4:end))-mean(Zt(1:5)))/...

(mean(Xt(end-4:end))-mean(Xt(1:5))));

Xarr{nn} = Xt.*cos(-theta(nn)) + Zt.*-sin(-theta(nn));

Zarr{nn} = Xt.*sin(-theta(nn)) + Zt.*cos(-theta(nn));

x0(nn) = 0;

z0(nn) = mean(Zarr{nn}(1:5));

end

nn = 7;

figure, hold on

for i=1:5:size(trn{nn},2)

plot(trn{nn}(i).X,trn{nn}(i).Y,’Color’,[1/i 1-1/i 1-1/i])

end

clear Xarr Zarr

for nn=1:sy

% Finding V maximum voltage

[vmax vmax_ind(nn)] = max(Vrn{nn});

[vo v_ind(nn)] = min(abs(Vrn{nn}(1:vmax_ind(nn))-vmax));

clear Xt Zt

Xt = trn{nn}(v_ind(nn)).X;

Zt = trn{nn}(v_ind(nn)).Y;

Xarr{nn} = Xt.*cos(-theta(nn)) + Zt.*-sin(-theta(nn))-x0(nn);

Zarr{nn} =(Xt.*sin(-theta(nn)) + Zt.*cos(-theta(nn))-z0(nn)).*(-1);

end
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y0ind = find(Y==0);

zmax = max(Zarr{y0ind});

zmin = min(Zarr{y0ind});

xn = load( ’xn_2013.mat’,’xn’, ’-ascii’);

zn = load( ’zn_2013.mat’,’zn’, ’-ascii’);

% ------------------------- Calibration ---------------------------

[filename, pathname] = uigetfile({’*.TIFF’;’*.*’}, ’Select an image file’);

if isequal(filename,0)

disp(’User selected Cancel’)

sx = max(Xarr{y0ind})-min(Xarr{y0ind}); % px (apparent length in x)

lx = 13.4; % mm (real length in x)

dx = lx/sx % Calibration factor

else

I1 = imread([pathname,filename]);

x0(1:sy) = round(size(I1,2)/2);

figure, imshow(I1)

hold on

[cx1,cy1] = ginput(1);

plot(cx1,cy1,’b+’)

[cx2,cy2] = ginput(1);

plot(cx2,cy2,’b+’)

line([cx1 cx2],[cy1 cy2], ’Color’,’b’);

dxy= inputdlg({’Length of first line (mm):’},’Calibration...’,...

1,{’13.45’});

if isempty(dxy)

lx = 1;

else

lx = str2double(dxy(1));

end
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dx = lx/sqrt((cx2-cx1)^2+(cy2-cy1)^2)

end

close

% dx = 0.0116 for most cases of this experiment

% -------- Genrating the surface for a specific Voltage/Time ------------

vmax = 7600;

vmin = 6800;

vint = 200;

fps = 100/vint;

% --------------- Initialization for saving avi movie -----------------

avifile = VideoWriter([’movie_’,date],’MPEG-4’);

avifile.FrameRate = fps;

avifile.Quality = 100;

open(avifile);

% -------- Initialization of main surface figure

figure(’color’,[1 1 1],’position’, [0 0 1920 1280]);

view(gca,[-26.5 56]);

zlim(1.2*dx.*[zmin-1 zmax])

set(gca,’CLim’,dx.*[zmin,zmax])

colorbar(’peer’,gca,[0.18 0.411 0.0127 0.347],’LineWidth’,1);

set(gca,’nextplot’,’replacechildren’);

set(gcf,’Renderer’,’zbuffer’);
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uiwait(gcf,3)

refreshdata

% --- Finding the corresponding indices for a specific voltage/time ----

mn = 0;

vv = [vmin:vint:vmax , vmax-vint:-vint:vmin];

VVind = zeros(size(vv,2),sy);

for v = vv

mn = mn+1;

clear Xarr Zarr V T

for nn=1:sy

if mn<= round(size(vv,2)/2+0.1)

[vo v_ind(nn)] = min(abs(Vrn{nn}(1:vmax_ind(nn))-v));

Temp = ’V_Up’;

else

[vo v_ind(nn)] = min(abs(Vrn{nn}(vmax_ind(nn):end)-v));

v_ind(nn) = v_ind(nn)+vmax_ind(nn)-1;

Temp = ’V_Down’;

end

clear Xt Zt

Xt = trn{nn}(v_ind(nn)).X;

Zt = trn{nn}(v_ind(nn)).Y;

Xarr{nn}=(Xt.*cos(-theta(nn))+Zt.*-sin(-theta(nn))-x0(nn)+xn(nn)).*dx;

Zarr{nn}=(Xt.*sin(-theta(nn))+Zt.*cos(-theta(nn))-z0(nn)-zn(nn)).*(-1).*dx;

end
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% ------ Filling (interpolating) the empty cells -------

Xg = []; Yg = []; Zg = [];

for nn=1:sy

i = size(Xg,2);

j = size(Xarr{nn},2);

Zg(i+1:i+j)= Zarr{nn};

Xg(i+1:i+j)= Xarr{nn};

Yg(i+1:i+j)= Y(nn);

end

ylin = linspace(min(Y),max(Y),100);

xlin = linspace(min(Xg),max(Xg),100);

[xq,yq] = meshgrid(xlin,ylin);

zq = griddata(Xg,Yg,Zg,xq,yq,’cubic’);

surf(xq,yq,zq)

% Overlaying desired cross sectional curvatures

hold on

for nn=7:7 % or 1:sy if you want all cross sections

i = size(Xarr{nn},2);

clear Yy

Yy(1:i)= Y(nn);

plot3(Xarr{nn},Yy,Zarr{nn},’linewidth’,4,’Color’,[0,1,0])

end

hold off

grid off;

zlim(1.2*dx.*[zmin-1 zmax])

set(gca,’CLim’,dx.*[zmin,zmax])
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colorbar(’peer’,gca,[0.18 0.411 0.0127 0.347],’LineWidth’,1);

set(gca,’nextplot’,’replacechildren’);

set(gcf,’Renderer’,’zbuffer’);

axis off;

view(gca,[-26.5 56]);

uiwait(gcf,1)

refreshdata

print(’-dtiff’, ’-r1200’,[’3D_Map_’,date,’_’, num2str(v),Temp,’.tiff’])

frames(mn).xq = xq;

frames(mn).yq = yq;

frames(mn).zq = zq;

frames(mn).v = v;

VVind(mn,:) = v_ind;

frame = getframe;

writeVideo(avifile,frame);

end

close(avifile);

% ------------- saving into a file -----------------

FileName= seldir(1:end-1);

FN = find(FileName==’\’);

FileName=FileName(FN(end)+1:end);

save([FileName,’_SurfaceMesh.mat’],’frames’)
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Appendix C. Mathematica Codes

The following Mathematica script is written to examine the validity of the analytical solutions

of Extended Lubrication Theory provided in Chapter 3. The code is parametric, so we

only need to substitute an appropriate shape function for obtaining the analytical solutions

associated with that shape.
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Written by: Behrouz Tavakol (btavakol@vt.edu)
Version: Mathematica 9.0 and higher

Extended Lubrication Theory

In[1]:= Clear["Global`*"]
Needs["PlotLegends`"]

General::obspkg : PlotLegends` is now obsolete. The legacy version being loaded

may conflict with current functionality. See the Compatibility Guide for updating information.

Primary dimensionless equations are: 

In[3]:=
eq1 = ∂{X,1}U[X] + ∂{Y,1}V[Y] ⩵ 0

eq2 = δ2 ∂{X,2}U[X] + ∂{Y,2}U[Y] ⩵ ∂{X,1}P[X]

eq2 = δ4 ∂{X,2}V[X] + δ2 ∂{Y,2}V[Y] ⩵ ∂{Y,1}P[Y]

Out[3]= U′[X] + V′[Y] ⩵ 0

Out[4]= δ2 U′′[X] + U′′[Y] ⩵ P′[X]

Out[5]= δ4 V′′[X] + δ2 V′′[Y] ⩵ P′[Y]

The boundary conditions are:

In[6]:=
BC1 = U[0] ⩵ 0
BC2 = U[H[X]] ⩵ 0

BC3 = 
0

H[X]

U[X,Y]ⅆY ⩵ 1

Out[6]= U[0] ⩵ 0

Out[7]= U[H[X]] ⩵ 0

Out[8]= 
0

H[X]

U[X, Y] ⅆY ⩵ 1

Perturbation Expansion:

U[X,Y;δ] = U0[X,Y] + δ 2 U2[X,Y] + δ 4 U4[X,Y]+...

V[X,Y;δ] = V0[X,Y] + δ 2 V2[X,Y] + δ 4 V4[X,Y]+...

P[X,Y;δ] = P0[X,Y] + δ 2 P2[X,Y] + δ 4 P4[X,Y]+...
Pluging into primary dimensionless equations and sorting w.r.t δ coefficients, we have:
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Shape Function

In[9]:= Shape = 1 - λ / 2 (1 + Cos[π X]); (* eq 10 *)

Plot[{Shape /. λ → 0, Shape /. λ → 0.25, Shape /. λ → 0.5,
Shape /. λ → 0.75, Shape /. λ → 1}, {X, -1, 1}, Frame → True]

Out[10]=

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Leading Order
In[11]:=

eq1LeadingOrder = ∂{X,1}U0[X]+∂{Y,1}V0[Y] ⩵ 0 (* eq 6 *)

eq2LeadingOrder = ∂{Y,2}U0[Y]-∂{X,1}P0[X] ⩵ 0 (* eq 6 *)

eq3LeadingOrder = ∂{Y,1}P0[Y] ⩵ 0 (* eq 6 *)

BC1LeadingOrder = U0[0] ⩵ 0;

BC2LeadingOrder = U0[H[X]] ⩵ 0;

BC3LeadingOrder = 
0

H[X]

U0[Y]ⅆY ⩵ 1;

Out[11]= U0′[X] + V0′[Y] ⩵ 0

Out[12]= -P0′[X] + U0′′[Y] ⩵ 0

Out[13]= P0′[Y] ⩵ 0

In[17]:= U0Sol = Simplify[DSolve[{eq2LeadingOrder, BC1LeadingOrder, BC2LeadingOrder},
{U0[Y]}, Y]][[1]][[1]]

(* eq 7 *)

Out[17]= U0[Y] →
1

2
Y (Y - H[X]) P0′[X]

In[18]:= dP0dXSol = Solve[BC3LeadingOrder /. U0Sol, P0′[X]][[1]][[1]]
(* eq 8 *)

Out[18]= P0′[X] → -
12

H[X]3
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In[19]:= U0Sol = U0Sol /. dP0dXSol
(* eq 9 *)

Out[19]= U0[Y] → -
6 Y (Y - H[X])

H[X]3

In[20]:= V0 = Simplify-
0

Y

∂{X,1}(U0[Y] /. U0Sol) ⅆY

(* eq's 12 & 13 *)

Out[20]= -
6 Y2 (Y - H[X]) H′[X]

H[X]4

In[21]:= (* Comparing V0 and eq 13 *)

Simplify 2 Y3 ∂{X,1}H[X]
-3 - 3 Y2 ∂{X,1}H[X]

-2 - V0 

Out[21]= 0

Verifying the other two boundary conditions: V0 (X, Y=0) = 0 & V0 ( X, Y = H(X) ) = 0

In[22]:= V0 /. Y → 0
V0 /. Y → H[X] (* eq 14 *)

Out[22]= 0

Out[23]= 0

Yes! Boundary conditions are all satisfied. 

Applying the shape function: 

In[24]:= P0′[X] /. dP0dXSol /. H[X] → Shape

Out[24]= -
12

1 -
1
2
λ (1 + Cos[π X])

3

In[25]:= DelP0 = Simplify-
-1

1

(P0′[X] /. dP0dXSol /. H[X] → Shape) ⅆX,

Assumptions → { λ ∈ Reals, -1 < λ < 1, λ ≠ 0} (* eq 11 *)

Out[25]=

3 8 - 8 λ + 3 λ2

(1 - λ)5/2
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Second Order
In[26]:=

eq1SecondOrder = ∂{X,1}U2[X]+∂{Y,1}V2[Y] ⩵ 0 (* eq 15c *)

eq2SecondOrder = ∂{Y,2}U2[Y]-∂{X,1}P2[X] ⩵ Expand[-∂{X,2}(U0[Y]/.U0Sol)] (* eq 15a *)

eq3SecondOrder = ∂{Y,1}P2[Y] ⩵ ∂{Y,2}V0 (* eq 15b *)

BC1SecondOrder = U2[0] ⩵ 0;

BC2SecondOrder = U2[H[X]] ⩵ 0;

BC3SecondOrder = 
0

H[X]

U2[Y]ⅆY ⩵ 0;

Out[26]= U2′[X] + V2′[Y] ⩵ 0

Out[27]= -P2′[X] + U2′′[Y] ⩵
72 Y2 H′[X]2

H[X]5
-
36 Y H′[X]2

H[X]4
-
18 Y2 H′′[X]

H[X]4
+
12 Y H′′[X]

H[X]3

Out[28]= P2′[Y] ⩵
(-24 Y - 12 (Y - H[X])) H′[X]

H[X]4

In[32]:= P2Sol = FullSimplify[DSolve[{eq3SecondOrder}, {P2[Y]}, {Y}]][[1]][[1]]
P2Sol = P2Sol /. C[1] → C3[X]
Simplify[-∂{X,1}(U0[Y] /. U0Sol)]

Out[32]= P2[Y] → C[1] +
6 Y (-3 Y + 2 H[X]) H′[X]

H[X]4

Out[33]= P2[Y] → C3[X] +
6 Y (-3 Y + 2 H[X]) H′[X]

H[X]4

Out[34]= -
6 Y (3 Y - 2 H[X]) H′[X]

H[X]4

In[35]:= aa = eq2SecondOrder /. P2′[X] → ∂{X,1}(P2[Y] /. P2Sol);

U2Sol = Expand[FullSimplify[
DSolve[{aa, BC1SecondOrder, BC2SecondOrder}, {U2[Y]}, Y]]][[1]][[1]]

(* eq 18 *)

Out[36]= U2[Y] →

1

2
Y2 C3′[X] -

1

2
Y H[X] C3′[X] +

12 Y4 H′[X]2

H[X]5
-
12 Y3 H′[X]2

H[X]4
-
3 Y4 H′′[X]

H[X]4
+
4 Y3 H′′[X]

H[X]3
-
Y H′′[X]

H[X]

In[37]:= (* Comparing this result to eq. 18: *)

Expand

-2 ∂{X,2}H[X]
-2 Y3 - H[X]2 Y + ∂{X,2}H[X]

-3 Y4 - H[X]3 Y +
1

2
C3′[X] Y2 - H[X] Y

- (U2[Y] /. U2Sol)

Out[37]= 0
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In[38]:= dC3dXSol = Solve[BC3SecondOrder /. U2Sol, C3′[X]][[1]][[1]]
(* eq 19 *)

Out[38]= C3′[X] → -

6 6 H′[X]2 + H[X] H′′[X]

5 H[X]3

In[39]:= (* Comparing this result to eq. 19: *)

FullSimplify 6 ∂{X,2}H[X]
-2 H[X] -

18

5
∂{X,2}H[X]

-3 H[X]2 - (C3′[X] /. dC3dXSol)

Out[39]= 0

In[40]:= U2SolFul = U2Sol /. dC3dXSol

Out[40]= U2[Y] →
12 Y4 H′[X]2

H[X]5
-
12 Y3 H′[X]2

H[X]4
-
3 Y4 H′′[X]

H[X]4
+
4 Y3 H′′[X]

H[X]3
-

Y H′′[X]

H[X]
-

3 Y2 6 H′[X]2 + H[X] H′′[X]

5 H[X]3
+

3 Y 6 H′[X]2 + H[X] H′′[X]

5 H[X]2

In[41]:= V2 = Expand-
0

Y

∂{X,1}(U2[Y] /. U2SolFul) ⅆY

(* eq 21) *)

Out[41]=

12 Y5 H′[X]3

H[X]6
-
12 Y4 H′[X]3

H[X]5
-
18 Y3 H′[X]3

5 H[X]4
+
18 Y2 H′[X]3

5 H[X]3
-
36 Y5 H′[X] H′′[X]

5 H[X]5
+
9 Y4 H′[X] H′′[X]

H[X]4
+

2 Y3 H′[X] H′′[X]

H[X]3
-
19 Y2 H′[X] H′′[X]

5 H[X]2
+
3 Y5 H(3)[X]

5 H[X]4
-
Y4 H(3)[X]

H[X]3
+
Y3 H(3)[X]

5 H[X]2
+
Y2 H(3)[X]

5 H[X]

Using the shape function

In[42]:= dC3dX = FullSimplify[
C3′[X] /. dC3dXSol /. {H[X] → Shape, H′[X] → ∂{X,1}(Shape), H′′[X] → ∂{X,2}(Shape)}]

Out[42]= -
6 π2 λ (2 (-2 + λ) Cos[π X] + λ (-5 + 7 Cos[2 π X]))

5 (-2 + λ + λ Cos[π X])3

In[43]:= DelP2 = Simplify-
-1

1

dC3dX ⅆX, Assumptions → {λ ∈ Reals, 1 > λ > -1, λ ≠ 0}

(* eq 20 *)

Out[43]=

12 π2 λ2

5 (1 - λ)3/2

Comparison of the second-order pressure drop between first and second cases:
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In[44]:= Plot[{DelP0, DelP2 }, {λ , 0, 1}]

Out[44]=

0.2 0.4 0.6 0.8 1.0

200

400

600

800

1000

Fourth Order
In[45]:=

eq1FourthOrder = ∂{X,1}U4[X]+∂{Y,1}V4[Y] ⩵ 0 (* eq 22a *)

eq2FourthOrder = ∂{Y,2}U4[Y]-∂{X,1}P4[X] ⩵ Expand[-∂{X,2}(U2[Y]/.U2Sol)] (* eq 22b *)

eq3FourthOrder = ∂{Y,1}P4[Y] ⩵ Expand[Simplify[∂{Y,2}V2 +∂{X,2}V0]] (* eq 22c *)

BC1FourthOrder = U4[0] ⩵ 0;

BC2FourthOrder = U4[H[X]] ⩵ 0;

BC3FourthOrder = 
0

H[X]

U4[Y]ⅆY ⩵ 0;

Out[45]= U4′[X] + V4′[Y] ⩵ 0

Out[46]= -P4′[X] + U4′′[Y] ⩵ -
360 Y4 H′[X]4

H[X]7
+
240 Y3 H′[X]4

H[X]6
+ Y H′[X] C3′′[X] +

1

2
Y C3′[X] H′′[X] +

360 Y4 H′[X]2 H′′[X]

H[X]6
-
288 Y3 H′[X]2 H′′[X]

H[X]5
+
2 Y H′[X]2 H′′[X]

H[X]3
-
36 Y4 H′′[X]2

H[X]5
+

36 Y3 H′′[X]2

H[X]4
-
Y H′′[X]2

H[X]2
-
1

2
Y2 C3(3)[X] +

1

2
Y H[X] C3(3)[X] -

48 Y4 H′[X] H(3)[X]

H[X]5
+

48 Y3 H′[X] H(3)[X]

H[X]4
-
2 Y H′[X] H(3)[X]

H[X]2
+
3 Y4 H(4)[X]

H[X]4
-
4 Y3 H(4)[X]

H[X]3
+
Y H(4)[X]

H[X]

Out[47]= P4′[Y] ⩵
120 Y3 H′[X]3

H[X]6
-
72 Y2 H′[X]3

H[X]5
-
108 Y H′[X]3

5 H[X]4
+

36 H′[X]3

5 H[X]3
-
72 Y3 H′[X] H′′[X]

H[X]5
+
54 Y2 H′[X] H′′[X]

H[X]4
+
12 Y H′[X] H′′[X]

H[X]3
-

38 H′[X] H′′[X]

5 H[X]2
+
6 Y3 H(3)[X]

H[X]4
-
6 Y2 H(3)[X]

H[X]3
+
6 Y H(3)[X]

5 H[X]2
+
2 H(3)[X]

5 H[X]
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In[51]:= P4Sol = Expand[FullSimplify[DSolve[{eq3FourthOrder}, {P4[Y]}, {Y}]]][[1]][[1]];
P4Sol = P4Sol /. C[1] → C5[X] (* eq 23 *)

Out[52]= P4[Y] → C5[X] +
30 Y4 H′[X]3

H[X]6
-
24 Y3 H′[X]3

H[X]5
-
54 Y2 H′[X]3

5 H[X]4
+

36 Y H′[X]3

5 H[X]3
-
18 Y4 H′[X] H′′[X]

H[X]5
+
18 Y3 H′[X] H′′[X]

H[X]4
+
6 Y2 H′[X] H′′[X]

H[X]3
-

38 Y H′[X] H′′[X]

5 H[X]2
+
3 Y4 H(3)[X]

2 H[X]4
-
2 Y3 H(3)[X]

H[X]3
+
3 Y2 H(3)[X]

5 H[X]2
+
2 Y H(3)[X]

5 H[X]

In[53]:= eq4subs = eq2FourthOrder /. P4′[X] → ∂{X,1}(P4[Y] /. P4Sol);

U4Sol = Expand[FullSimplify[
DSolve[{eq4subs, BC1FourthOrder, BC2FourthOrder}, {U4[Y]}, Y]]][[1]][[1]]

(* eq 27 *)

Out[54]= U4[Y] →
1

2
Y2 C5′[X] -

1

2
Y H[X] C5′[X] -

18 Y6 H′[X]4

H[X]7
+
18 Y5 H′[X]4

H[X]6
+
18 Y4 H′[X]4

5 H[X]5
-

18 Y3 H′[X]4

5 H[X]4
+
1

6
Y3 H′[X] C3′′[X] -

1

6
Y H[X]2 H′[X] C3′′[X] +

1

12
Y3 C3′[X] H′′[X] -

1

12
Y H[X]2 C3′[X] H′′[X] +

18 Y6 H′[X]2 H′′[X]

H[X]6
-
108 Y5 H′[X]2 H′′[X]

5 H[X]5
-
21 Y4 H′[X]2 H′′[X]

5 H[X]4
+

97 Y3 H′[X]2 H′′[X]

15 H[X]3
+
4 Y H′[X]2 H′′[X]

3 H[X]
+

1

30
Y H′′[X]2 -

9 Y6 H′′[X]2

5 H[X]5
+
27 Y5 H′′[X]2

10 H[X]4
+

Y4 H′′[X]2

2 H[X]3
-
43 Y3 H′′[X]2

30 H[X]2
-

1

24
Y4 C3(3)[X] +

1

12
Y3 H[X] C3(3)[X] -

1

24
Y H[X]3 C3(3)[X] +

1

15
Y H′[X] H(3)[X] -

12 Y6 H′[X] H(3)[X]

5 H[X]5
+
18 Y5 H′[X] H(3)[X]

5 H[X]4
+
2 Y4 H′[X] H(3)[X]

5 H[X]3
-

5 Y3 H′[X] H(3)[X]

3 H[X]2
+
3 Y6 H(4)[X]

20 H[X]4
-
3 Y5 H(4)[X]

10 H[X]3
+
Y4 H(4)[X]

20 H[X]2
+
7 Y3 H(4)[X]

30 H[X]
-

2

15
Y H[X] H(4)[X]
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In[55]:= C3Peq = C3′[X] /. dC3dXSol

FullSimplify

∂{X,4}H[X]-3 Y4 - 2 ∂{X,4}H[X]-2 Y3 +

-∂{X,2}H[X]
3 ∂{X,2}H[X]

-3 + 2 ∂{X,2}H[X]
2 ∂{X,2}H[X]

-2 Y -

C3′′′[X] Y2 + (∂{X,2}(H[X] C3
′[X])) Y + C5′[X] /.

{C3′[X] → C3Peq, C3′′[X] → ∂{X,1}(C3Peq), C3′′′[X] → ∂{X,2}(C3Peq)}

(* eq 25 modified *)

Out[55]= -

6 6 H′[X]2 + H[X] H′′[X]

5 H[X]3

Out[56]=

1

5 H[X]7

5 H[X]7 C5′[X] + 1800 Y4 H′[X]4 - 600 Y3 H[X] H′[X]2 2 H′[X]2 + 3 Y H′′[X] + 5 Y H[X]8 C3(3)[X] +

12 Y2 H[X]2 36 H′[X]4 + 120 Y H′[X]2 H′′[X] + 15 Y2 H′′[X]2 + 20 Y2 H′[X] H(3)[X] -

5 Y H[X]6 H(4)[X] + Y H[X]5 -H′′[X]2 - 2 H′[X] H(3)[X] + 6 Y H(4)[X] +

2 Y H[X]4 -83 H′[X]2 H′′[X] + 24 Y H′[X] H(3)[X] + 10 Y 3 H′′[X]2 + Y H(4)[X] -

3 Y H[X]3 -72 H′[X]4 + 168 Y H′[X]2 H′′[X] + 80 Y2 H′[X] H(3)[X] + 5 Y2 12 H′′[X]2 + Y H(4)[X]

In[57]:= dC5dXSol = Simplify[Solve[BC3FourthOrder /. U4Sol, C5′[X]]][[1]][[1]]
(* eq 28 *)

Out[57]= C5′[X] →
1

700 H[X]3

2088 H′[X]4 + 3484 H[X] H′[X]2 H′′[X] - 2 H′[X] 175 H[X]4 C3′′[X] + 194 H[X]2 H(3)[X] -

H[X]2 175 H[X]2 C3′[X] H′′[X] + 410 H′′[X]2 + 70 H[X]3 C3(3)[X] + 226 H[X] H(4)[X]

In[58]:= FullSimplify[eq2FourthOrder /. {U4′′[Y] → ∂{Y,2}(U4[Y] /. U4Sol), C5′[X] → dC5dXSol}]

Out[58]=

1

H[X]
-1800 Y4 H′[X]4 + 2 H[X] 5 H[X]6 (C5′[X] - P4′[X]) +

300 Y3 H′[X]2 2 H′[X]2 + 3 Y H′′[X] - 2 Y H[X]4 19 H′′[X]2 + 20 H′[X] H(3)[X] +

2 Y H[X]3 92 H′[X]2 H′′[X] + 15 Y H′′[X]2 + 12 Y H′[X] H(3)[X] +

6 Y H[X]2 -18 H′[X]4 - 42 Y H′[X]2 H′′[X] + 15 Y2 H′′[X]2 + 20 Y2 H′[X] H(3)[X] -

6 Y2 H[X] -36 H′[X]4 + 120 Y H′[X]2 H′′[X] + 15 Y2 H′′[X]2 + 20 Y2 H′[X] H(3)[X] +

Y H[X]3 15 Y3 - 20 Y2 H[X] + 6 Y H[X]2 + 4 H[X]3 H(4)[X] ⩵ 0
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In[59]:= FullSimplify[eq2FourthOrder /. U4′′[Y] → ∂{Y,2}(U4[Y] /. U4Sol) /. dC5dXSol]

Out[59]=

1

H[X]
24 5250 Y4 - 3500 Y3 H[X] - 1260 Y2 H[X]2 + 630 Y H[X]3 - 87 H[X]4 H′[X]4 -

4 H[X] 31 500 Y4 - 25 200 Y3 H[X] - 8820 Y2 H[X]2 + 6440 Y H[X]3 + 871 H[X]4 H′[X]2 H′′[X] +

2 H[X]2 H′[X] 175 H[X]6 C3′′[X] +

2 4200 Y4 - 4200 Y3 H[X] - 840 Y2 H[X]2 + 1400 Y H[X]3 + 97 H[X]4 H(3)[X] +

H[X]2 175 H[X]6 C3′[X] H′′[X] + 12 600 Y4 H′′[X]2 + 70 H[X]7 C3(3)[X] +

H[X]5 700 P4′[X] + 226 H(4)[X] + 10 H[X]4 41 H′′[X]2 - 28 Y H(4)[X] +

140 Y H[X]3 38 H′′[X]2 - 3 Y H(4)[X] + 1400 Y2 H[X]2 -3 H′′[X]2 + Y H(4)[X] -

1050 Y3 H[X] 12 H′′[X]2 + Y H(4)[X] ⩵ 0

Here we show that d
2
U2

dX2
 vanishes when X → {-1,1} if we plug any of the shape functions :

(as long as  H [ X = -1] =  H [ X = 1] = 0) 

In[60]:= ∂{X,1}(U2[Y] /. U2SolFul /.

{H[X] → Shape, H′[X] → ∂{X,1}(Shape), H′′[X] → ∂{X,2}(Shape)}) /. X → {-1, 1}

Out[60]= {0, 0}

Shape function:

In[61]:= Simplify
-1

1

∂{X,2}(U2[Y] /. U2SolFul /. {H[X] → Shape, H′[X] → ∂{X,1}(Shape),

H′′[X] → ∂{X,2}(Shape)}) ⅆX , Assumptions → {λ ∈ Reals, 1 > λ > 0}

Out[61]= 0

Also, ∂2

∂X2 ∫0

Y
V0(X , s)ⅆs vanishes as X →{-1,1} [ as long as H′[X ] = H′′′[X ] = 0 when X→ 

{-1,1} ] :

In[62]:= ∂{X,2} 
0

Y

V0 ⅆY /. {H[X] → Shape, H′[X] → ∂{X,1}(Shape),

H′′[X] → ∂{X,2}(Shape), Derivative[3][H][X] → ∂{X,3}(Shape)} /. X → {-1, 1}

Out[62]= {0, 0}

Substituting the shape function

In[63]:= dC5dX = C5′[X] /. dC5dXSol /. {C3′[X] → C3Peq, C3′′[X] → ∂{X,1}(C3Peq),

Derivative[3][C3][X] → ∂{X,2}(C3Peq)}; dC5dX = FullSimplify[

dC5dX /. {H[X] → Shape, H′[X] → ∂{X,1}(Shape), H′′[X] → ∂{X,2}(Shape),

Derivative[3][H][X] → ∂{X,3}(Shape), Derivative[4][H][X] → ∂{X,4}(Shape)}]

Out[63]=

1

5600 (-2 + λ + λ Cos[π X])3

π4 λ 2 (-2 + λ) (1136 + λ (-1136 + 651 λ)) Cos[π X] + λ 35 (112 + λ (-112 + 19 λ)) -

48 (153 + λ (-153 + 35 λ)) Cos[2 π X] - 4150 (-2 + λ) λ Cos[3 π X] - 1833 λ2 Cos[4 π X]
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In[64]:= DelP4 = FullSimplify-
-1

1

dC5dX ⅆX, Assumptions → {λ ∈ Reals, 1 > λ > -1, λ ≠ 0}

(* eq 29 *)

Out[64]= -

8 π4 -428 -1 + 1 - λ  + 214 -2 + 1 - λ  λ + 53 λ2

175 1 - λ

In[65]:= (* If using the compact equation 28 provided in the text: *)

dC5dXTextSol = C5′[X] →
3

14
∂{X,4}H[X]-3 H[X]4 -

3

5
∂{X,4}H[X]-2 H[X]3 -

∂{X,2}H[X]
3 ∂{X,2}H[X]

-3 - 2 ∂{X,2}H[X]
2 ∂{X,2}H[X]

-2 H[X] +

3

10
∂{X,3}(C3[X]) H[X]2 -

1

2
∂{X,2}(H[X] C3

′[X]) H[X] /.

{C3′[X] → C3Peq, C3′′[X] → ∂{X,1}(C3Peq), Derivative[3][C3][X] → ∂{X,2}(C3Peq)};

In[66]:= dC5dXText = FullSimplify[
C5′[X] /. dC5dXTextSol /. {H[X] → Shape, H′[X] → ∂{X,1}(Shape), H′′[X] → ∂{X,2}(Shape),

Derivative[3][H][X] → ∂{X,3}(Shape), Derivative[4][H][X] → ∂{X,4}(Shape)}]

Out[66]=

1

5600 (-2 + λ + λ Cos[π X])3

π4 λ 2 (-2 + λ) (1136 + λ (-1136 + 651 λ)) Cos[π X] + λ 35 (112 + λ (-112 + 19 λ)) -

48 (153 + λ (-153 + 35 λ)) Cos[2 π X] - 4150 (-2 + λ) λ Cos[3 π X] - 1833 λ2 Cos[4 π X]

In[67]:= DelP4Text =

FullSimplify-
-1

1

dC5dXText ⅆX, Assumptions → {λ ∈ Reals, 1 > λ > -1, λ ≠ 0}

Out[67]= -

8 π4 -428 -1 + 1 - λ  + 214 -2 + 1 - λ  λ + 53 λ2

175 1 - λ

In[68]:= Simplify[DelP4 - DelP4Text]

Out[68]= 0

ΔP0, ΔP2, andΔP4 for the shape function
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In[69]:= Plot[{DelP0, DelP2, DelP4}, {λ , 0, 1}, PlotLegend → {"ΔP0", "ΔP2", "ΔP4"} ,
LegendShadow → None, LegendBorder → None, LegendTextSpace → 0.7,
LegendSpacing → 0.1, LegendPosition → {-0.6, 0.02}, LegendSize → 0.55,
PlotStyle → {{Thick, Black}, {Thick, Red}, {Thick, Blue}}, FrameLabel → {λ, ΔP},
Frame → True, FrameStyle → {{Directive[Thick, Black], FontSize → 18},

{Directive[Thick, Black], FontSize → 18}, {Directive[Thick, Black],
FontSize → 18}, {Directive[Thick, Black], FontSize → 18}}, ImageSize → Large]

Out[69]=
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ΔP2 n = ∑ i=0
2 n ΔPi and Q2 n = C /ΔP2 n

In[70]:= ΔP0 = DelP0

ΔP02 = DelP0 + d2 DelP2

ΔP024 = DelP0 + d2 DelP2 + d4 DelP4
Plot[{ΔP0 /. d → 1, ΔP02 /. d → 1, ΔP024 /. d → 1}, {λ , 0, 1},
PlotStyle → {{Thick, Black}, {Thick, Red}, {Thick, Blue, Dashed}},
FrameLabel → {"λ", "ΔP"}, Frame → True,
FrameStyle → {{Directive[Thick, Black], FontSize → 18},

{Directive[Thick, Black], FontSize → 18}, {Directive[Thick, Black],
FontSize → 18}, {Directive[Thick, Black], FontSize → 18}}, ImageSize → Large]

Out[70]=

3 8 - 8 λ + 3 λ2

(1 - λ)5/2

Out[71]=

12 d2 π2 λ2

5 (1 - λ)3/2
+

3 8 - 8 λ + 3 λ2

(1 - λ)5/2

Out[72]=

12 d2 π2 λ2

5 (1 - λ)3/2
+

3 8 - 8 λ + 3 λ2

(1 - λ)5/2
-

8 d4 π4 -428 -1 + 1 - λ  + 214 -2 + 1 - λ  λ + 53 λ2

175 1 - λ

Out[73]=
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In[74]:=

Plot
24

ΔP0
/. d → 1,

24

ΔP02
/. d → 1,

24

ΔP024
/. d → 1,

{λ , 0, 1}, PlotRange → {{0, 1}, {0, 1}},
PlotStyle → {{Thick, Black}, {Thick, Red}, {Thick, Blue, Dashed}},

FrameLabel → "λ", "
Q

Qc
", Frame → True,

FrameStyle → {{Directive[Thick, Black], FontSize → 18},
{Directive[Thick, Black], FontSize → 18}, {Directive[Thick, Black],

FontSize → 18}, {Directive[Thick, Black], FontSize → 18}}, ImageSize → Large

Out[74]=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

λ

Q Q
c

Behrouz_Tavakol_Extended_Lubrication_Mathematica_Scripts.nb |   13

Printed by Wolfram Mathematica Student Edition
125



Shape function with negative λ

In[75]:= Plot[{Shape /. λ → -1, Shape /. λ → -0.75, Shape /. λ → -0.50, Shape /. λ → -0.25,
Shape /. λ → 0, Shape /. λ → 0.25, Shape /. λ → 0.5, Shape /. λ → 0.75, Shape /. λ → 1},

{X, -1, 1}, PlotStyle → {Thickness[0.002], Thickness[0.002],
Thickness[0.002], Thickness[0.002], Thickness[0.002], Thickness[0.002],
Thickness[0.002], Thickness[0.002], Thickness[0.002]}, Frame → True,

Axes → False, FrameStyle → {{Directive[Thick, Black], FontSize → 18},
{Directive[Thick, Black], FontSize → 18}, {Directive[Thick, Black],
FontSize → 18}, {Directive[Thick, Black], FontSize → 18}},

FrameLabel → {"X", "Y"}, ImageSize → Large]

Out[75]=
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In[76]:= Plot[{ΔP0 /. d → 1, ΔP02 /. d → 1, ΔP024 /. d → 1}, {λ , -1, 0},
PlotStyle → {{Thick, Black}, {Thick, Red}, {Thick, Blue, Dashed}},
FrameLabel → {"λ", "ΔP"}, Frame → True,
FrameStyle → {{Directive[Thick, Black], FontSize → 18},

{Directive[Thick, Black], FontSize → 18}, {Directive[Thick, Black],
FontSize → 18}, {Directive[Thick, Black], FontSize → 18}}, ImageSize → Large]

Out[76]=
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In[77]:= Plot
24

ΔP0
/. d → 1,

24

ΔP02
/. d → 1,

24

ΔP024
/. d → 1, {λ , -1, 0},

PlotStyle → {{Thick, Black}, {Thick, Red}, {Thick, Blue, Dashed}},

FrameLabel → "λ", "
Q

Qc
", Frame → True,

FrameStyle → {{Directive[Thick, Black], FontSize → 18},
{Directive[Thick, Black], FontSize → 18}, {Directive[Thick, Black],

FontSize → 18}, {Directive[Thick, Black], FontSize → 18}}, ImageSize → Large

Out[77]=
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In[78]:= datalistneg0 = Table[{λ , f0[λ ]}, {λ , -0.99, 0.99, 0.01}];
datalistneg02 = Table[{λ , f02[λ , 2.0], f02[λ , 1.0], f02[λ , 0.1], f02[λ , 0.01]},

{λ , -0.99, 0.99, 0.01}];
datalistneg024 = Table[{λ , f024[λ , 2.0], f024[λ , 1.0], f024[λ , 0.1], f024[λ , 0.01]},

{λ , -0.99, 0.99, 0.01}];
Export["datalistneg0.xlsx", datalistneg0]
Export["datalistneg02.xlsx", datalistneg02]
Export["datalistneg024.xlsx", datalistneg024]

Out[81]= datalistneg0.xlsx

Out[82]= datalistneg02.xlsx

Out[83]= datalistneg024.xlsx

In[84]:= SystemOpen[DirectoryName[AbsoluteFileName["datalistneg024.xlsx"]]]
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