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Abstract 

High renewable energy penetration is a goal for many countries to increase energy 

security and reduce carbon emissions from conventional power plants. Wind energy is 

one of leading sources among different renewable resources. However, high wind energy 

penetration in the system brings new challenges to the electric power system due to its 

variable and stochastic nature, and non-correlation between wind and load profiles. The 

term non-correlation is used in this research refers to the fact that wind or any other 

renewable generation, which is nature driven, does not follow the load like conventional 

power plants. 

Wind spill is a challenge to utilities with high wind energy penetration levels. This occurs 

from situations mentioned above and the fact that wind generation sometimes exceeds the 

servable load minus must-run generation. In these cases there is no option but to curtail 

non-usable wind generation. This dissertation presents grid-scale energy storage and 

demand response options as an optimization problem to minimize spilled wind energy. 

Even after managing this spilled wind energy, there is still a challenge in a system with 

high wind energy penetration coming from wind power forecast error. 

Wind power forecast error is handled by having more back-up energy and spilling the 

non-usable wind power. This research offers a way to use the grid-scale energy storage 

units to mitigate impacts of wind power forecast error. A signal processing method is 

proposed to decompose the fluctuating wind power forecast error signal, based on the fact 

that each energy storage or conventional unit is more efficient to operate within specific 

cycling regimes. Finally, an algorithm is proposed to schedule energy storage for 

mitigating both impacts.  
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General Audience Abstract 

Wind energy is increasing to achieve the goal of environmental policies for less carbon 

emissions. High wind energy penetration in the electric power system brings new 

challenges because its generation depends on the wind speed. This makes renewable 

energy sources, including the wind energy, different from conventional power plants that 

follow the load profile. 

Spilled wind energy is a challenge that occurs when wind power exceeds the load minus 

the must-run generation. In these cases there is no option rather than spilling the excess of 

wind generation. Energy storage technologies can be scheduled to store this excess of 

generation and then release it later. Load profile can be changed in such a way to 

decrease this spillage. This is achievable if customers change their demand based on 

incentive contracts they have with utilities or respond to the signal sent by utilities (This 

is called demand response). This dissertation presents the scheduling of energy storage 

and demand response to minimize spilled wind energy. 

The wind power forecast error is another challenge due to the stochastic nature of this 

renewable energy. This research offers an algorithm to schedule energy storage units for 

mitigating impacts of wind power forecast error. The proposed algorithm is based on the 

fact that wind power forecast error signal is a very fluctuating signal and each energy 

storage unit is more efficient to operate within specific cycling regimes. Finally, an 

algorithm is proposed to use energy storage for mitigating both impacts coming from 

high wind energy penetration.  
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1. Introduction 

1.1 Background 

 

High wind energy penetration is a goal for future scenarios influencing from many 

energy and environmental policies. Denmark, Portugal and Spain are top three countries, 

which have the highest percentage of annual wind energy generation to their total 

electricity consumption ‎[1]. In Denmark wind power provided 33.2% of its annual 

electricity consumption in 2013 and is expected to reach 50% by 2020 ‎[1], ‎[2]. U.S. 

annual wind energy generation in 2012 was 3.5% ‎[1]. Wind power is approaching 10% of 

the‎state’s‎total‎electricity‎generation‎in‎Texas.‎Iowa‎is‎producing‎25%‎of‎its‎power‎from‎

wind energy ‎[1]. 80% of the total U.S. electricity generation in 2050 can be supplied by 

renewable generation combined with a more flexible electric system ‎[3].  

Stability and reliability challenges occur due to uncertain and variable characteristics of 

wind resources ‎[3]. In a system with high level of wind energy penetration, wind spill 

energy and negative electricity prices occur when there is an excess of wind generation. 

The negative price in an electricity market can appear due to the high level of inflexible 

generation, and production tax credit for renewable generation ‎[4]. In cases where wind 

generation is more than load minus must-run generation (e.g., large nuclear power 

plants), the excess of wind energy needs to be spilled to keep the balance between 

demand and supply. This challenge can be mitigated by increasing flexible resources in 

the system, such as energy storage technologies and demand response resources. It is 

important to note that it is possible to manage the variable and stochastic generation of 

renewable sources by cycling intermediate power plants, but the downside of this strategy 

is fatigue and increased rates of maintenance for them.  

Scheduling energy storage and demand response to minimize the cost function has been 

studied in ‎[100]. The state of the art of this research compared to ‎[100] is to model 

detailed characteristics of different energy storage technologies such as idle time, as well 

as modeling demand response and its rebound effect to minimize the spillage of wind 
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energy. The demand response modeled in this research is based on the contract that 

customers allow the utility to reduce their demand for limited times and duration to get 

incentive payments. The frequency change is the signal which demand responds to in this 

research, because it varies by the mismatch between total load and total generation. This 

mismatch is due to the wind power forecast error or the highly variable source of wind 

generation. 

Uncertainty of wind power output poses a new challenge to power system operation, 

which is the wind power forecast error. Solutions to overcome this challenge may include 

improvement in wind power forecasting, sub-hourly scheduling, system reserve increase, 

or deployment of energy storage technologies. Energy storage technologies can absorb 

(charge) excess of wind power when the actual wind power output is more than the 

forecasted one, to reduce wind output curtailment. They can also inject (discharge) 

required power when the actual wind power is less than the forecasted one, to reduce 

required back-up generation. Proper sizing and scheduling of energy storage units can 

help reducing spilled wind energy and required back-up generation. Scheduling energy 

storage to mitigate impacts of wind power forecast error by Discrete Fourier Transform 

has been studied in ‎[57] for a general energy storage model. Another state of the art of 

this research is to study other signal processing methods like Discrete Wavelet Transform 

while modeling detailed characteristics of each energy storage technology. 

1.2 Objectives and Scope of the Dissertation 

 

The objective of this dissertation is to propose a planning tool for electric utility 

operators, evaluating impacts of different grid-scale energy storage technologies and 

demand response options on mitigating high wind energy penetration challenges. Spilled 

wind energy is a challenge due to the lack of correlation between load and wind profiles, 

which increases in the existence of must-run generation, such as nuclear power plants. 

Energy storage can absorb the excess of wind energy to help total generation meets the 

load during low wind output periods. The term non-correlation is used in this research to 

refer to the fact that wind or any other renewable generation does not follow the load like 

conventional power plants as their generation is nature driven. Demand response can be 
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scheduled in such a way that the rebound effect coincides with high wind energy output 

periods. Hence, energy storage and demand response can be scheduled to minimize wind 

energy spillage.  

The question is how to schedule different energy storage technologies and demand 

response programs to guarantee the balance between load and generation, while 

minimizing spilled wind energy, in a system with high wind energy penetration. Other 

energy sources to supply the load are must-run generation such as nuclear power plants, 

and conventional generation units including coal and gas-fired power plants. This 

question is answered in Task 1, by solving a mixed integer linear programming problem 

while presenting a detailed modeling of each energy storage technology, and demand 

response, as well as, nuclear, coal, and gas-fired power plants. 

Wind power forecast error is another challenge beside the non-correlation between wind 

and load profiles. This challenge may results in more spilled wind energy and required 

back-up generation, which is addressed in Task 2 by defining an algorithm based on 

signal processing techniques. The novelty is to decompose the wind power forecast error 

signal to components appropriate for controlling each energy storage technology.  

Finally, energy storage technologies are operated to mitigate both mentioned challenges 

(non-correlation between wind and load profiles, and wind power forecast error) by using 

the proposed technique discussed in Task 1, and Task 2. This idea is explained in Task 3 

to update the operation of pre-scheduled energy storage technologies, which were 

scheduled to minimize spilled wind energy due to the non-correlation, for mitigating the 

impacts of wind power forecast error. 

The proposed work includes following tasks: 

 

Task 1: Schedule grid-scale energy storage and demand response at the transmission level 

to mitigate spilled wind energy due to the non-correlation between wind and load 

profiles. 

a) Define a mixed integer linear programming (MILP) problem in MATLAB to 

be solved by IBM CPLEX using real-world load and wind data. 



4 
 

b) Define constraints to include detailed characteristics of grid-scale energy 

storage technologies including compressed air energy storage (CAES), 

adjustable and fixed speed pumped hydro energy storage (PHES) systems, and 

large scale batteries such as NaS, Lead acid, and Vanadium redox. 

c) Define constraints to represent different demand response scenarios while 

considering the rebound effect at the transmission level. Three different 

rebound effect scenarios are considered for the energy ratio of rebound effect 

to demand response of 50%, 100%, and 150%. 

d) Solve MILP for different combinations of energy storage and demand 

response options. The global objective function is to minimize spilled wind 

energy due to the non-correlation between wind and load profiles in the 

existence of must-run generation units as nuclear power plants. 

e) Analyze the impact of different generation mixes, energy storage 

technologies, and demand response on reducing spilled wind energy. 

 

Task 2: Propose an algorithm to schedule grid-scale energy storage units for mitigating 

the impact of wind power forecast error. 

a) Develop an algorithm based on signal processing techniques to decompose the 

wind power forecast error signal to components appropriate for scheduling 

hybrid configuration of grid-scale energy storage technologies including 

CAES, and NaS battery. 

b) Propose an algorithm that considers detailed characteristics of CAES, and 

NaS battery to follow control signals derived by the proposed signal 

processing techniques. 

c) Study the impact of different combinations of energy storage technologies on 

reducing spilled wind energy and required back-up generation. 

d) Analyze the cycle life of NaS batteries and the impact of using CAES in a 

hybrid energy storage combination with NaS battery on increasing the NaS 

battery cycle life. 

e) Evaluate the impact of considering a frequency bias constant on reducing 

spilled wind energy and required back up generation. 
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Task 3: Present an algorithm for optimal operation of energy storage that addresses both 

applications – minimizing spilled wind energy and mitigating wind power forecast errors. 

The idea is to update day-ahead operation of energy storage technologies based on Task 1 

by the algorithm presented in Task 2, to mitigate the wind power forecast error challenge. 

a) First, schedule the day-ahead operation of energy storage to minimize wind 

spillage due to the non-correlation between load profile and day-ahead wind 

power forecast using MILP. 

b) Update energy storage operation in hour ahead by using signal processing 

techniques to mitigate errors between the day-ahead wind power forecast, and 

the hour-ahead wind power forecast. 

c) Update energy storage operation in 5 minutes ahead by using signal 

processing techniques to mitigate errors between the hour-ahead wind power 

forecast, and the actual wind power output. 

d) Compare the final wind spillage and the back-up generation for different 

energy storage units when their operation is not updated, with the case that 

their operation is updated based on the proposed algorithm. 

e) Demonstrate the convexity of the problem by plotting results using different 

initial conditions 

1.3 Contributions 

 

Contributions of each three tasks are defined briefly as follows. 

1.3.1 Energy Storage and Demand Response Scheduling to Mitigate Wind Power 

Spillage 

 

Mixed integer linear programming (MILP) model is proposed for scheduling large-scale 

energy storage units and different demand response options at the transmission level to 

mitigate high wind penetration challenges. The contribution of this research is the 

consideration of detailed characteristics of each energy storage technology into the 
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proposed MILP model. For example, the required idle time for CAES to switch between 

charging and discharging modes has not been considered in the literature. DR modeling 

which also includes rebound effect at the transmission level is one of the contributions of 

this research.  The idea is to schedule demand response in such a way that rebound effect 

occurs during high wind generation periods. The objective of scheduling energy storage 

and demand response is to reduce wind spillage. This MILP model is solved by IBM 

CPLEX for different scenarios of energy storage technologies and DR. 

1.3.2 Mitigating Impacts of Wind Power Forecast Error by Energy Storage Based 

on Signal Processing Techniques 

 

An algorithm is proposed based on signal processing methods to decompose the wind 

power forecast error signal to time-varying periodic components. These components are 

used to schedule the hybrid configuration of grid-scale energy storage units. Two signal 

processing approaches including Discrete Fourier Transform (DFT) and Discrete Wavelet 

Transform (DWT) are considered in this research. The wind power forecast error signal is 

decomposed to intra-hour, intra-day and slow-cycling components to control NaS, CAES, 

and conventional units, respectively. The slow-cycling component is followed by 

conventional generators which are more efficient when operating close to their rated 

capacity. The trade-off between installing more energy storage units and decreasing the 

wind spillage, back-up energy and the standard deviation of residual wind power forecast 

error signal is analyzed. NaS life cycle analysis and CAES contribution on increasing 

NaS life-time are studied. The impact of considering the frequency bias constant to allow 

small frequency deviations on reducing wind spillage and required back-up energy is also 

investigated. 

1.3.3. Mitigating Spilled wind energy and Wind Power Forecast Error by Updating 

Energy Storage Scheduling 

 

An algorithm is proposed to update day-ahead energy storage scheduling presented in 

Task 1 by using signal processing method presented in Task 2, to reduce the error among 
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day-ahead, and hour-ahead wind power forecast with actual wind power. This algorithm 

updates energy storage scheduling based on wind power forecast errors. Then, the 

performance of this algorithm is analyzed based on final spilled wind energy and required 

back-up generation for different number of energy storage units, and day-ahead wind 

power forecast.  
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2. Literature Search 

 

This chapter summarizes the literature search into four categories, including high wind 

energy penetration challenges, energy storage sizing and control, demand response, and 

coordination of demand response and energy storage. Each category contains basic 

knowledge and in-depth information about the research conducted in respective areas. 

2.1 High Wind Energy Penetration Challenges 

 

There are major technical barriers that can be mitigated with flexible resources as 

demand response and energy storage at high renewable energy penetration level in the 

system. These barriers can be listed as follows ‎[9]. 

1. The geographic sites for renewable energy resources are not particularly at the 

same place with load centers. Hence, the usefulness of renewable resources is 

limited to the available transmission capacity. 

2. Because of zero fuel cost, renewable resources are usually held at their maximum 

available output. Hence, they cannot be considered as up-reserve for outages. This 

limits the utilization of renewable generations compared to conventional units that 

provides up-reserve to the system. 

3. Since wind and load profiles are not correlated, at high wind penetration scenarios 

there are times when load minus wind becomes less than must-run generation 

such as large coal and nuclear power plants. Hence, in this case the excess of 

wind generation needs to be spilled. 

4. Wind power forecast error is also a challenge in high wind penetration scenarios. 

This barrier requires more reserve in the system when the actual wind is less than 

the forecasted one. Wind spill occurs when the actual wind exceeds the forecasted 

generation. 

Following solutions can mitigate these challenges ‎[9]. 

1. Wind Forecasting: Day-ahead forecast can be used for unit commitment. Short-

term forecasts are required to schedule the quick-start generators or energy 

storage units with high ramp rates.  
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2. Fast Dispatch and Sub-Hourly Scheduling: This can help the system mitigate the 

variability of wind generation. When generators are set for longer dispatch as an 

hour, then they are not available to adjust their generation for balancing. With 

faster dispatch, load and generation can be matched while reducing the need for 

more expensive regulation services. 

3. Reserve Management: Reserve capacity can be used to mitigate challenges 

regarding wind generation variability in addition to other contingencies. Another 

way to deal with the variability of wind power is to limit its ramping. Tools 

associated for controlling ramps are low cost and have been used in Electric 

Reliability Council of Texas (ERCOT), Ireland, Germany and Hawaii. 

4. Energy Storage: Grid-scale energy storage technologies can help mitigate high 

wind penetration challenges. Since they are not a source of generation, they can 

absorb the excess of wind energy and discharge when there is a need for more 

wind energy. These technologies have high ramp rates, and power and energy 

capacity ratings that can be used to address wind variability, uncertainty. 

5. Demand response: Demand response brings flexibility to the load which can be 

used to solve high wind penetration challenges. Demand response can be used as 

reserve, and for ancillary services and peak reduction.  

6. Flexible generation: Natural gas combustion turbines, hydropower plants, and 

internal combustion engines are the most flexible generators. On the other hand, 

Nuclear and coal base-load power plants are the least flexible (or inflexible) 

generators which are designed to operate at a constant level.  

Curtailment of wind energy is becoming more widespread as renewable energy 

penetration increases. This curtailment happens due to transmission congestion and 

excess generation during low load periods that cause base load power plants reach their 

minimum threshold of generation. Hence, wind curtailment is used for maintaining the 

energy balance. A summary of frequency and reasons for curtailment by several utilities 

and grid operators is provided in Table 2-1. Curtailment levels are in the range of 1% to 

4% of wind generation, but higher levels have occurred in Electric Reliability Council of 

Texas (ERCOT) as shown in Fig. 2-1‎[11]. Grid Operators deploy many strategies to 

minimize renewable energy curtailment, as summarized in Table 2-2. 
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Table ‎2-1 Summary of Curtailment Levels and Reasons ‎[11] 

Utility/Grid Operator Wind and Solar 

Curtailment Levels 

Frequency 

Primary Reasons for 

Curtailment 

Alberta Electric System 

Operator (AESO) 

Infrequent Oversupply; transmission constraints, high 

wind ramps 

Arizona Public Service 

(APS) 

Infrequent Local transmission outages 

or constraints 

Bonneville Power 

Administration (BPA) 

Varies by year; less than 

2% of wind production 

Balancing issues related to 

exhaustion of reserves; 

oversupply 

California Independent 

System Operator (CAISO) 

Infrequent; not tracked Oversupply; transmission 

constraints, congestion 

Electric Reliability Council 

of Texas (ERCOT) 

Varies by year; 2% to 

4% in 2012–2013, but 

higher in previous years 

Transmission constraints; 

oversupply, new transmission 

lagged wind capacity 

Hawaiian Electric Co. 

(HECO), Hawaii Electric 

Light Co., (HELCO) and 

Maui Electric Co. (MECO) 

Substantial curtailment 

on Maui and the island 

of Hawaii 

Oversupply in low load 

periods and balancing 

challenges 

ISO New England (ISO-NE) Infrequent, but some 

plants experienced 

substantial curtailment 

Local transmission 

constraints; 

oversupply; voltage control; 

other (wildlife protection, ice 

formations) 

Midcontinent ISO (MISO) 1%–4% of wind 

generation 

Transmission congestion; 

oversupply handled by 

downward dispatch 

NV Energy Infrequent; 6–7 

occasions per year 

Oversupply; local 

transmission outages 
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PacifiCorp Much less than 1% of 

total wind production 

Transmission congestion; 

avoid area control error 

(ACE) violations 

PJM Interconnection Not tracked Local transmission 

constraints 

Puget Sound Energy (PSE) Infrequent in PSE 

balancing area and not 

tracked 

PSE wind subject to BPA's 

curtailment protocols related 

to balancing and oversupply 

Salt River Project Very infrequent Transmission issues and 

maintenance 

Sacramento Municipal 

Utility District (SMUD) 

Not tracked SMUD not affected by 

curtailments 

Southwest Power Pool (SPP) Some wind generators 

report high levels 

Local transmission 

constraints, expansion of 

wind outpaced new 

transmission build-out 

Tucson Electric Power Very infrequent Local outages 

Western Area Power 

Administration (WAPA) 

None None 

Public Service Company of 

Colorado (PSCO) 

1%–2% of wind 

generation 

Oversupply; transmission 

constraints 

Southwest Power Pool (SPP) Some wind generators 

report high levels 

Local transmission 

constraints, expansion of 

wind outpaced new 

transmission build-out 

Tucson Electric Power Very infrequent Local outages 

Western Area Power 

Administration (WAPA) 

None None 

Public Service Company of 

Colorado (PSCO) 

1%–2% of wind 

generation 

Oversupply; transmission 

constraints 
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Fig.  ‎2-1. Curtailment levels by region, 2007–2012 ‎[11] 

 

Table ‎2-2 Strategies that Mitigate Wind and Solar Energy Curtailment ‎[11] 

Strategy Utility/Grid Operator 

Automation (i.e., AGC) ERCOT, PSCO 

Use curtailed generators for positive 

reserves 

PSCO 

Reduction of minimum generation levels  HECO (Maui) 

Increase scheduling frequency WAPA (adopting) 

Economic dispatch ERCOT, MISO, SPP (adopting) 

Negative pricing  CAISO, ERCOT, MISO, PJM, ISO-NE 

(adopting) 

Energy imbalance market CAISO, PacifiCorp 

Wind power ramp management system AESO 

Increase transmission capacity  ISO-NE, ERCOT, MISO, PJM, SPP 

Improve forecasting ISO-NE, PSCO, NV Energy, SMUD 
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2.2 Grid-Scale Energy Storage  

 

Electricity cannot be stored directly and requires to be converted to other forms of 

energy. These forms of energy includes chemical energy (batteries), kinetic energy 

(flywheels and compressed air), gravitational potential energy (pumped hydroelectric), 

and also magnetic field (capacitors). There are two main terms that define energy storage 

as rated power and energy capacity. Each application such as power quality or load 

shifting requires special range of power or energy capacity to fulfill their goals. Other 

factors of energy storage technologies are efficiency, response time, discharge duration, 

discharge frequency, and depth of discharge. 

 

Fig.  ‎2-2. Energy Storage Applications Based on Discharge Duration and Frequency ‎[12] 

Each energy storage application requires specific type of energy storage technology. 

These applications can be divided into long and short duration categories by considering 

the discharge time. It can also be categorized into frequent and infrequent applications 

based on the discharge frequency. Fig. 2-2 summarizes energy storage applications in 

each category.  

Long duration category needs enough rated energy capacity. On the other hand, short 

duration application requires enough rated power capacity for sudden charge and 
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discharge requests. Infrequent application uses storage few times a year, but frequent 

applications require energy storage to cycle frequently. 

2.2.1  Grid-Scale Energy Storage Technologies 

 

Grid-scale energy storage technologies can be categorized into mechanical as pumped 

hydro energy storage (PHES), compressed air energy storage (CAES), flywheel energy 

storage, and electrochemical ones as large-scale batteries. Batteries can be categorized as 

conventional batteries including Lead Acid (PbA), Nickel Cadmium (NiCad) and 

Lithium Ion (Li-Ion), high temperature batteries as Sodium Sulfur (NaS) and ZEBRA 

(NaNiCl), and flow batteries like Vanadium Redox (VRB) and Zinc Bromine (ZnBr). 

The energy storage capacity in U.S by 2011 is shown in Fig. 2-3. As shown, pumped 

hydro energy storage is the majority among other types of grid-scale energy storage 

technologies.  

 

Fig.  ‎2-3. Energy Storage Capacity (MW) in US by 2011 ‎[12] 

A. Pumped Hydro Energy Storage  

 

Pumped Hydro Energy Storage (PHES) is the most mature technology among other grid-

scale energy storage units. The existing PHES projects in US are shown in Fig.2-4. PHES 
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projects may have negative impacts on environment and ecosystem. They are also limited 

to special geographic situation to design upper and lower reservoirs.  

The concept behind PHES is to convert electrical energy to potential energy by pumping 

water from lower reservoir to higher reservoir. Hence, the electricity is generated when 

the water from higher reservoir is released to lower reservoir to rotate turbine. The simple 

PHES topology is depicted in Fig. 2-5. 

The technical characteristics of PHES are shown in Table 2-3. Most of the PHES projects 

involve two reservoirs, but recently there are other designs suggesting one reservoir to be 

underground while the other one is aboveground. This can alleviate the geographical 

barriers of building PHES projects. The new designs suggest using rivers as above 

ground reservoir and underground pipes as the lower reservoir as shown in Fig. 2-6. 

Another PHES design is based on two water-filled cylindrical shafts in the ground as 

depicted in Fig. 2-6.  

 

Fig.  ‎2-4. Pumped Hydro Existing Projects in US (2009) ‎[13] 
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Fig.  ‎2-5. PHES Technology ‎[13] 

Table ‎2-3 PHES Technical Characteristics ‎[12] 

PHES Capacity 

(MWh) 

Power 

(MW) 

Duration 

 (hrs) 

Efficiency 

(%) 

Lifetime 

(Cycles) 

Small 1,680-5,300 280-530 6-10 80-82 >13,000 

Large 5,400-14,000 900-1,400 6-10 80-82 >13,000 

 

       

Fig.  ‎2-6. Riverbank PHES Technology ‎[13] and Gravity Power-Grid Scale Energy Storage ‎[14] 
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Pumped hydro energy storage can be categorized in two groups based on the range of 

pumping and generation powers, as follows: 

1) Fixed speed (single speed) pumped hydro energy storage: This type of energy 

storage can only pump at the rated power capacity. The generating power range is 

between 100% and 50% of rated power capacity. As a result, it is not suitable 

when energy storage is supposed to change its pumping or generating power such 

as smoothing the wind power output ‎[117]. 

2) Adjustable speed pumped hydro energy storage: This type of pumped hydro 

energy storage is able to pump in a range between 100% and 40% of rated power 

capacity. Its generating power is also adjustable between 1005 and 30% of rated 

power capacity. This adjustable characteristic is very critical when energy storage 

is used to cope up with variable and uncertain renewable power generation ‎[117]. 

B. Compressed Air Energy Storage 

 

CAES technology was first developed in 1978, located in Huntrof, Germany. It was used 

to store off-peak energy from nuclear power plant. It has a storage capacity of 11 million 

cubic feet or 290 MW. It takes 12 hours to charge and up to 4 hours to discharge at 

maximum capacity with 10 hours of exponentially declining power output. The second 

one was built in 1991 in McIntosh, Alabama. The McIntosh facility has a capacity of 19 

million cubic feet, or 110 MW, with a maximum 26 hours output.  It is now used for load 

management, peaking power, ramping duty and spinning reserve. A proposal has been 

under development in Norton, Ohio for 800 MW CAES. There are several plans to 

develop a 540 MW CAES is Matagorda County, Texas and 268 MW CAES in Dallas 

Center, Iowa ‎[13].  

The basic technology of CAES is shown in Fig. 2-4. CAES operates like conventional 

gas turbines while its compression and expansion are not simultaneous. The compressor 

stores the energy as compressed air inside a cavern. The electricity is then generated by 

reheating and mixing the compressed air with fuel and passing through an expansion 

turbine. Various type of caverns as salt, porous and hard rock can be used to form the 
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CAES cavern. Also, hydrogen, natural gas, gasified biomass and oil can be used as the 

fuel. 

 

Fig.  ‎2-7. CAES Basic Technology ‎[13] 

Table ‎2-4. CAES Technical Characteristics ‎[12] 

CAES Size Capacity 

(MWh) 

Power 

(MW) 

Duration (hrs) Lifetime 

(Cycles) 

Under ground Small 1,080 135 8 >13,000 

Large 2,700 135 20 >10,000 

Above ground Small 250 50 5 >10,000 

 

Typical characteristics of CAES as aboveground and underground are summarized in 

Table 2-3.  As shown the duration of storage in CAES can last for 20 hours which results 

in large energy capacity. According to the operation of CAES, the switch from one 

operating mode to the other requires at least 20 minutes idle time ‎[13]. This switch over 

time may have a negative impact when CAES is used as a balancing resource coupled 

with fluctuating wind generation. The reason for this switch over time is because turbines 

are called upon to initiate both generation and compression. Although this can be 
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eliminated by new designs that decouple generation and compression, but it is necessary 

to model this characteristic while using it to mitigate wind generation challenges. 

C. Large-Scale Batteries 

 

Chemical energy storage technologies (batteries) are among grid-scale energy storage 

units that can help alleviate the wind integration challenges. A battery contains different 

electrochemical cells. Electrons are generated from the anode (the negative electrode) to 

do external work. Positive ions migrated inside the cathode (positive electrode) and 

electrons migrate through the external circuit. The electrolyte allows the ions migration. 

The characteristics of Lead-Acid, NaS, Li-Ion and Vanadium Redox batteries are 

summarized in Table 2-5. NAS battery is commercially available in Japan for over 10 

years by NGK Insulators, Ltd, marketed globally, 300 MW (1800 MWh) worldwide, over 

170 projects ‎[14]. More than 20 MW of NAS Batteries have been installed in North 

America, as shown in Fig. 2-8. NaS battery characteristics are summarized in Table 2-6. 

NaS battery modules are shown in Fig. 2-9.  

Table ‎2-5. Grid-Scale Battery Characteristics ‎[13] 

 Lead–Acid NaS Li Ion Vanadium 

Redox 

Anode Pb Na C V
2+
V

3+
 

Cathode PbO2 S LiCoO2 V
4+
V

5+
 

Electrolyte H2SO4 β-alumina Organic 

solvent 

H2SO4 

Open circuit voltage 2.1 2.1 4.1 2.1 

Specific energy 

(Wh/kg) 

10 to 35 133 to 202 150 20 to 30 

Energy density 

(Wh/L) 

50 to 90 285 to 345 400 30 

Discharge profile Flat Flat Sloping Flat 
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Specific power (W) 35 to 50 36 to 60 80 to 130 110 

Cycle life (cycles) 200 to 700 2500 to 4500 1000 12000 

Advantages Low cost, 

good high 

rate 

Potential low 

cost, high 

cycle life, 

high energy, 

goof power 

density, high 

efficiency 

High specific 

energy and 

energy 

density, low 

self-

discharge, 

long cycle 

life 

High energy 

efficiency, high 

charge rate, 

low 

replacement 

cost 

Limitations Limited 

energy 

density, 

hydrogen 

evolution 

Thermal 

management 

safety, seal 

and freeze-

thaw 

durability 

Low rate Cross mixing 

of electrolytes 

 

Table ‎2-6. NaS Characteristics ‎[14] 

Power Capacity  1  MW 

Energy Capacity  6  MWh 

Service Life 15-year 

Cycle Life 2500 cycles at 100% DOD – 4500 at 90% – 6500 at 65% 

Ambient Temp -20 to +45 C 

Ramp Rate prompt response (full power charge to discharge in 2 

millisecond) 

Efficiency AC:75%, DC:85% 

Self-Discharge No 

Energy Density ~1500 ft2/MW, 25 MW/Acre 
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Fig.  ‎2-8. NaS Battery Projects in North America ‎[14] 

 

Fig.  ‎2-9. NaS Battery System ‎[14] 

Large scale batteries have high ramp rate and efficiency comparing to mechanical energy 

storage technologies. The important factor that needs to be taken into consideration for 

planning and operation of these types of energy storage technologies are their life cycle. 

This parameter determines that when large-scale batteries are required to change based on 

their performance. Each type of batteries have different life cycle as shown in Table 2-5. 

Vanadium Redox has the highest cycle life (12000 cycles) and Lead acid has the lowest 

cycle life (200-700 cycles). Advantage and disadvantage of each battery is also listed in 

Table 2-5. For example, NaS battery has high energy and power capacity but has some 

thermal safety problems.  

Pure sodium spontaneously burns in contact with air and moisture, thus NaS battery must 

be protected from water and oxidizing atmospheres. On September 21, 2011, NGK-

manufactured NaS batteries for storing electricity installed at the Tsukuba, Japan, and 

http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/NGK_Insulators
http://en.wikipedia.org/wiki/Tsukuba,_Japan
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plant caught fire. Following the incident, NGK temporarily suspended production of 

NaS ‎[15]. There are upcoming new technologies in the grid-scale battery energy storage 

units with advanced characteristics by various companies. One of the upcoming battery 

technologies is Durathon Battery by General Electric Company, which is based on 

combination of sodium and nickel.  

2.2.2 Grid-Scale Energy Storage Literature Review 

 

In the literature, planning energy storage technology is categorized into two main 

approaches: optimization methods and signal processing approaches. The first approach 

models the system behavior by defining various constraints to size and schedule energy 

storage. The second approach is based on decomposing the fluctuating signal (e.g., wind 

power forecast error signal) into components that are suitable to control energy storage 

technologies. The literature can also be categorized into two other groups based on 

energy storage applications. The first category provides frequency regulation, ramp rates 

and mitigating forecast error in the real-time market. The second category is used in the 

day-ahead electricity market while providing arbitrage to electric power system.  

A. Optimization and Probabilistic Approaches 

 

The problem of sizing energy storage units can be solved by optimization approaches 

considering investment, operation and penalty costs ‎[16]-‎[21] to maximize the revenue or 

smooth out the wind farm output. Sizing energy storage that makes combined wind and 

storage output meet the predicted hour-ahead or day-ahead forecast has been addressed 

in ‎[22]-‎[25]. A variety of heuristic optimization methods ‎[26]-‎[29] and Game Theory 

approaches ‎[30]-‎[31] have been used to solve the energy storage sizing in a system with 

high wind energy penetration. Sizing energy storage based on pre-compensation and 

post-compensation approaches to minimize hourly wind power forecast error was 

proposed in ‎[32]. Sizing Li-Ion batteries based on statistical analysis of wind power 

forecast error has been addressed in ‎[10].   
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Some papers address both variability and uncertainty of wind generation by providing 

extra reserve in the system for forecast error ‎[34]. Sizing energy storage to manage 

hourly energy imbalance charges has been addressed in ‎[35]. The trade-off between 

energy storage size and unserved energy due to the wind power forecast error has been 

studied in ‎[36]. This study neglected any specific energy storage characteristics, for 

example wind ramp rates and wind spill. The impact of additional energy storage as 

PHES to minimize thermal unit operational costs for reducing the wind spill in excess of 

wind generation scenarios has been investigated in ‎[37]. 

Planning grid-scale energy storage units requires a suitable market infrastructure that has 

been discussed in ‎[38]-‎[40]. Planning and operating battery storage in a system with high 

wind penetration by dynamic programming in the hourly electricity market has been 

studied in ‎[39] to compensate for the wind hourly forecast error. The operation of 

independently-operated energy storage with high wind energy penetration has been 

investigated in ‎[41]. This study has used stochastic optimization to maximize the profit of 

energy storage operation in day-ahead and hour-ahead markets. Also, the tradeoff 

between energy storage capacity and total revenue in the market was addressed. The 

comparison between centralized and distributed energy storage scheduling in a day-ahead 

market has been addressed in ‎[42]. The authors of ‎[42], and ‎[42] have scheduled 

distributed energy storage units at the aggregator level to minimize generation costs. The 

results indicate that centralized energy storage reduces peak load and system operating 

costs further than distributed energy storage systems. 

Optimal sizing of the wind-solar-battery hybrid system to minimize investment and 

operational costs, while satisfying reliability and operating reserve constraints, has been 

studied in ‎[43]. The authors of ‎[43] have used this battery to compensate for the 

deficiency of wind and solar power. It is also used to smooth out the power injected to the 

grid by applying a second order filter. Optimal power flow and control strategies to 

smooth wind farm output with reliability evaluations have been addressed in ‎[44]-‎[46]. 

Day-ahead unit commitment in a wind-coal intensive power system is studied 

considering both variability and uncertainty of wind energy ‎[47].  
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The multi agent approach has been studied in ‎[48]-‎[50] to consider battery characteristics 

and operational costs in a hybrid energy system. Classical and intelligent approaches for 

tracking the maximum generation of wind output while minimizing its variability has 

been proposed in ‎[51]. Planning energy storage for a micro-grid with wind farms 

considering the reliability indices to minimize overall costs has been investigated in ‎[52]. 

The contribution of this paper is finding the expansion planning of energy storage for a 

10-year plan while considering the battery lifetime constraint. 

Required reserve in a system with high wind penetration was addressed in ‎[53]-‎[55] 

while considering the reserve provided by interconnections. Temporal and non-temporal 

methods to evaluate the size of required energy storage units for wind output ramp rates 

have been investigated in ‎[56]. 

B. Signal Processing Approaches 

 

The problem of hybrid energy storage sizing can be solved by signal processing 

approaches based on the concept that the efficient operation of energy storage and 

conventional units depends on their cycling. This concept for mitigating wind power 

forecast error is proposed in ‎[57]‎using Discrete Fourier Transform (DFT). The issue of 

capacity planning of energy storage and diesel generators based on DFT to supply a load 

in a micro grid with high wind penetration has been addressed in ‎[58]. Discrete Wavelet 

Transform (DWT) was used for data filtering of day-ahead electricity price forecasting 

in ‎[59]. DWT has also been used to control storage for smoothing the fluctuation of wind 

farm output ‎[60]. These papers determine the rated power and energy capacity of energy 

storage to be able to follow decomposed components completely. Hence, they lead to 

oversizing the energy storage for following infrequent values while neglecting the 

standard deviation of decomposed components. Also, the approach presented in the 

literature does not consider specific types of energy storage technology while neglecting 

its properties, for instance efficiency, ramp rate, depth of discharge and required idle time 

to switch between charge and discharge modes. 



25 
 

The idea of combining different renewable generation types to alleviate their challenges 

has been addressed in ‎[61] . This paper combines wind and concentrating solar power 

plants (CSP) since CSP has the potential of energy storage and will reduce the required 

reserve for the system. Wind and solar energy can also be combined since solar reaches 

its maximum generation at daytime and wind usually reaches its maximum generation at 

night time. 

2.3  Demand Response 

 

According to the Federal Energy Regulatory Commission ‎[62], demand response (DR) is: 

“Changes‎in‎electric‎usage‎by‎end-use customers from their normal consumption patterns 

in response to changes in the price of electricity over time, or to incentive payments 

designed to induce lower electricity use at times of high wholesale market prices or when 

system‎reliability‎is‎jeopardized.” 

DR includes all intentional modifications to consumption patterns of electricity of induce 

customers that are intended to alter the timing, level of instantaneous demand, or the total 

electricity consumption. DR‎ can‎ play‎ different‎ roles‎ in‎ electric‎ power‎ system‎planning‎

and‎operation‎as‎ shown‎ in‎Fig.‎2-7.‎As‎shown,‎DR‎effective‎ time‎horizon‎ for‎planning‎

varies‎ between‎ years‎ to‎ less‎ than‎ 15‎ minutes.‎ DR can be categorized into two main 

groups as price-based demand response and incentive-based demand response as shown 

in Table 2-6. The first category happens due to the change in price signal. The second is 

established by utilities, load serving entities, or a regional grid operator. They give 

customers load reduction incentives that are separate from, or additional to, their retail 

electricity rate, which may be fixed or time-varying.  
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Fig.‎‎‎2-10.‎Role‎of‎DR‎in‎Electric‎Power‎System‎Planning‎and‎Operations‎‎[62] 

Table ‎2-7. Demand Response Options ‎[62] 

Price-based options Incentive-based options 

 Time-of-use (TOU): a rate with 

different unit prices for usage during 

different blocks of time, usually 

defined for a 24 hour day. TOU rates 

reflect the average cost of generating 

and delivering power during those 

time periods. 

 Real-time pricing (RTP): a rate in 

which the price for electricity 

typically fluctuates hourly reflecting 

changes in the wholesale price of 

electricity. Customers are typically 

notified of RTP prices on a day-ahead 

or hour-ahead basis. 

 Critical Peak Pricing (CPP): CPP 

rates are a hybrid of the TOU and 

 Direct load control: a program by which 

the program operator remotely shuts 

down‎ or‎ cycles‎ a‎ customer’s‎ electrical‎

equipment (e.g. air conditioner, water 

heater) on short notice. 

 Direct load control programs are 

primarily offered to residential or small 

commercial customers. 

 Interruptible/curtailable (I/C) service: 

curtailment options integrated into retail 

tariffs that provide a rate discount or bill 

credit for agreeing to reduce load during 

system contingencies. Penalties maybe 

assessed for failure to curtail. 

Interruptible programs have traditionally 

been offered only to the largest industrial 
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RTP design. The basic rate structure 

is TOU. However, provision is made 

for replacing the normal peak price 

with a much higher CPP event price 

under specified trigger conditions 

(e.g., when system reliability is 

compromised or supply prices are 

very high). 

(or commercial) customers. 

 Demand Bidding/Buyback Programs: 

customers offer bids to curtail based on 

wholesale electricity market prices or an 

equivalent. Mainly offered to large 

customers (e.g., one megawatt [MW] and 

over). 

 Emergency Demand Response Programs: 

programs that provide incentive 

payments to customers for load 

reductions during periods when reserve 

shortfalls arise. 

 Capacity Market Programs: customers 

offer load curtailments as system 

capacity to replace conventional 

generation or delivery resources. 

Customers typically receive day-of notice 

of events. Incentives usually consist of 

up-front reservation payments, and face 

penalties for failure to curtail when called 

upon to do so. 

 Ancillary Services Market Programs: 

customers bid load curtailments in 

ISO/RTO markets as operating reserves. 

If their bids are accepted, they are paid 

the market price for committing to be on 

standby. If their load curtailments are 

needed, they are called by the ISO/RTO, 

and may be paid the spot market energy 

price. 
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Table ‎2-8. Total‎Demand‎Response‎Potential‎in‎the‎U.S.‎‎[63]-‎[65] 

 The potential demand response resource contribution from all U.S. 

demand response programs (MW) 

Percentage of U.S. 

peak load 

2008 41,000 5.8 % 

2010 58,000 7.6 % 

2012 72,000 9.2 % 

 

The‎potential‎DR‎in‎U.S.‎is‎evaluated‎9.2%‎in‎2012‎‎[65].‎DR‎evaluations for three years 

are shown in Table 2-7. There are some field experiments of demand response in U.S. 

For instance, ISO New England is planning to fully integrate demand response resources 

in‎ 2017.‎ The‎ PJM’s‎ small‎ customer‎ pilot‎ program‎ operates‎ an‎ integrated‎ load‎

management system that serves the need of rural electric cooperatives located throughout 

the PJM control area. This integrated system comprises 45,000 load control switches and 

delivers an estimated 35 MW of load reduction in summer (50 MW in winter) through 

control of residential electric water heaters, water pumps, and electric thermal storage 

space heaters ‎[66]-‎[72].  

DR needs a market infrastructure to participate in the day-ahead and the real-time 

electricity markets. The optimal DR aggregation in the energy and reserve market has 

been fully investigated in ‎[74]-‎[75]. DR exchange in stochastic day-ahead scheduling 

with wind generation has been discussed in ‎[77]. This paper schedules DR in a two-step 

optimization approach to find the locational marginal price and then schedules DR for 

maximizing the social welfare. The statistical behavior of large aggregators of small 

loads may work well with wind and solar integration. The communication network to 

aggregate DR is studied in ‎[78]. DR can participate also in real time to provide ramp rates 

and frequency stabilization ‎[79]-‎[81]. The security-constrained unit commitment for 

hourly DR as load shifting and load reduction is proposed in ‎[83]-‎[84]. DR cost analysis 

with wind integration by decision tree approach has been addressed in ‎[85]-‎[86]. 

Scheduling DR and conventional units to maximize the social welfare while restricting 

the frequency and quantity of wind power deficiency have been investigated in ‎[87]. 
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A state-queuing model to analyze thermostatically controlled appliances is proposed for 

providing regulation services in ‎[88]-‎[90]. There is much research focusing on the control 

methods of heating/cooling systems as fuzzy controllers ‎[90], fuzzy adaptive 

controllers ‎[91]‎neural network controllers ‎[93] and active controllers ‎[94] to minimize 

the total system cost. Typically, a 100% cycling strategy is employed with water heating 

controls since most water heaters have a tank with sufficient capacity to last several hours 

during control ‎[96]. 

A‎ common‎ phenomenon‎ after‎ demand‎ response‎ is‎ called‎ “Rebound‎ Effect”‎ or‎ an‎

immediate spike (restrike) in power consumption when the thermostat set point is back to 

normal operation ‎[97]. When interrupted water heaters are allowed to return to normal, 

the‎payback‎demand‎can‎be‎several‎ times‎greater‎ than‎the‎amount‎shed.‎“This‎ is‎due‎to‎

the fact that the control signal in the population model synchronizes all loads, resulting in 

a loss of diversification, which takes some time to be re-established.” ‎[96]. For instance, 

there is a threat of rebound peaks in which facilities delay their demands to avoid the 

peak, but causes a new peak when trying to satisfy those delayed demand. The analysis 

in ‎[96] indicates an average consumption reduction per household of approximately 0.5 

kWh/h during disconnection, and an additional average increase in consumption the 

following hour, due to the payback effect, that may reach up to 0.28 kWh/h per 

household. Thus, rebound effect energy is 56% of the load reduction energy based on the 

research proposed in ‎[96]. The demonstration of demand response and rebound effect is 

shown in Fig. 2-11. 

When consumers reduce their consumption during peak pricing events (or due to direct 

load control), a significant portion of the load is shifted to subsequent hours. Air 

conditioners are typically cycled or thermostats are set back in order to reduce 

consumption during DR events. Once the event period ends, the thermostats are returned 

to their original set point. At this point the ambient temperature will be above the original 

set‎ point,‎ resulting‎ in‎ an‎ increase‎ in‎ the‎ air‎ conditioner‎ usage‎ as‎ it‎ “catches‎ up”‎ and‎

returns‎ the‎ temperature‎ to‎ the‎ “normal”‎ range.‎ This‎ catching‎ up‎ process‎ results‎ in‎ an‎

increase in load following the DR event. For low levels of participation in DR programs, 

the impact of the rebound effect is likely to be small. As participation increases, it is 
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necessary for utilities that are managing DR programs to update their load forecasts, 

accounting for the rebound effect. Otherwise, there may be a shortage of generation 

available for the rebound effect.  

 

Fig.‎‎‎2-11.‎DR‎and‎rebound‎effect‎demonstration‎in‎a‎typical‎daily‎load‎profile‎ 

By controlling DR strategies to return to normal condition slowly, demand restrike can be 

avoided. However, without special forethought, HVAC systems tend to use extra energy 

following DR events to bring systems back to normal condition. The simple case to 

manage rebound effect is where the DR event ends or can be postponed until the building 

is unoccupied. Also other strategies that allow HVAC equipment to slowly ramp up or 

otherwise limit power usage during the post DR event can be used to manage negative 

impacts of the rebound effect ‎[98]. 

2.4 Coordination of Energy Storage and DR 

 

While utilizing energy storage and DR to accommodate wind power has been extensively 

investigated separately, the coordination of energy storage and DR operation still 

deserves more research efforts. Coordination of energy storage and DR to mitigate high 
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wind penetration challenges as smoothing out the tie line power or decreasing the carbon 

emission has been addressed in ‎[99]and ‎[100] respectively. The multi-agent approach has 

been proposed in ‎[101] to minimize the cost and peak load by managing DR and energy 

storage on the distribution system level. Simple models for coordination of DR and ES 

for a micro grid case study are presented in ‎[102]-‎[103] to minimize the total operational 

cost of the system with high renewable penetration levels. Coordination of energy storage 

and demand response in an energy hub for combined heat and power (CHP) is 

investigated in ‎[104], minimizing both electricity and gas consumption costs. Optimal 

demand response with energy storage management has also been addressed in ‎[105] to 

find a control policy for an entity by convex optimization. These papers assume very 

simple models for battery energy storage and demand response resources neglecting 

detailed characteristics of each technology. 

2.5 Knowledge Gaps and Contributions 

 

High wind energy penetration challenges at the system level can be categorized into two 

main groups: wind intermittency and wind power forecast error. Wind intermittency leads 

to the non-correlation between load and wind profiles, which can be mitigated by energy 

storage units and demand response implementation. Impacts of wind power forecast error 

can be alleviated by using energy storage units, back up reserve and spilling excess wind 

power.  These two areas are the focus of this research. The knowledge gaps and the 

contributions based on the literature review, discussed in previous sections, are addressed 

as following three bullets, each of this is addressed in subsequent chapters.. 

 The non-correlation between load and wind profiles, in existence of must-run 

generation, leads to spilled wind energy. Wind spill occurs when load minus 

must-run generations is less than wind power. There are various stochastic and 

heuristic approaches that address this challenge by using demand response and 

energy storage units. Energy storage and demand response coordination to 

minimize spilled wind energy is novel as presented in this research. Modeling 

detailed characteristics of grid-scale energy storage technologies, including 

CAES, PHES, and large scale batteries such as NaS, Lead acid, and Vanadium 



32 
 

redox batteries, is the contribution of this work. DR modeling including rebound 

effect at the transmission level is presented in this research. Studying the impact 

of rebound effect on minimizing spilled wind energy is another contribution of 

this work. 

 Signal processing techniques are proposed in this research to schedule energy 

storage units for mitigating the impact of wind power forecast error. The 

advantage of these techniques as compared to other methods is their ability to 

extract control signals appropriate for cycling each energy storage technology. 

The contribution of this research over literature is considering all detailed 

characteristics of energy storage technologies (e.g., idle time to switch between 

charge and discharge modes). The trade-off between increasing the number of 

energy storage units and reducing spilled wind energy and back up generation is 

discussed. The life cycle analysis of grid-scale batteries and the impact of hybrid 

configuration of grid-scale energy storage technologies on increasing their 

lifetime have also been investigated in this research. The impact of considering 

frequency bias constant on reducing spilled wind energy and back up generation 

is also analyzed.  

 

 Extra Reserve constraints are added in the literature to address the wind power 

forecast error challenge in the optimization problem. This constraint implies that 

system reserve has the capability to mitigate the wind power forecast error or any 

other contingencies in the system, such as generation outage. This research 

presents an algorithm to update the energy storage day-ahead scheduling in two 

steps for mitigating the forecast error among day-ahead wind power forecast, 

hour-ahead wind power forecast, and 5 minutes ahead (actual) wind power. The 

impact of updating day-ahead energy storage scheduling is discussed extensively 

on final required back-up generation and spilled wind energy. 
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3. Energy Storage and Demand Response Scheduling 

 

Wind spill is a challenge due to the non-correlation between load and wind profiles in 

existence of must-run generation units. This happens mainly when wind generation 

exceeds load minus must-run generation (e.g., large nuclear power plants). In such 

situations the non-usable wind generation is curtailed. The key to solving this problem is 

to use grid-scale energy storage units and implement demand response to curtail loads. 

This chapter models different types of large-scale energy storage technologies and 

demand response scenarios while considering the rebound effect.  

The over-arching objective is to minimize spilled wind energy. This problem is 

formulated as a mixed integer linear programming in IBM CPLEX. The uniqueness in 

this approach is that the impact of the rebound effect on the system load shape is 

considered, thereby scheduling DR such that the rebound period aligns itself with high 

wind output period. This helps to consume more wind energy, consequently minimizing 

the spilled wind energy. To showcase the applicability of the proposed approach, a case 

study based on the real world 15-minute interval wind and load data obtained from the 

Bonneville Power Administration (BPA) in 2013 is presented.  

The contributions of this work can be summarized as follows: 

 Present a pure technical analysis and objective function to minimize spilled wind 

energy for different energy storage and DR scenarios. 

 Analyze the impact of different generation mixes on reducing wind spill energy. 

This has been achieved by detailed modeling of nuclear, coal, and natural gas 

generation units. 

 Model detailed characteristics of large scale energy storage units such as CAES, 

both fixed speed and variable speed PHES units, and NaS, Lead acid, and 

vanadium redox batteries. 

 Model DR rebound effect such that its rebound is aligned with high wind output 

period to reduce spilled wind energy. This is achieved by simulating different 
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scenarios for DR quantity as well as the ratio of rebound effect energy to DR 

energy. 

 Investigate the impact of scheduling both energy storage and DR on reducing 

spilled wind energy and required energy storage size. 

The rest of this chapter is organized as follows: system modeling, case study and 

discussion, and conclusion. 

3.1. System Modeling 

 

The whole system topology is depicted in Fig. 3-1. Generation is provided by natural gas, 

coal, and nuclear power plants as well as a wind farm. Different large-scale batteries (e.g. 

NaS, Lead acid, and Vanadium redox batteries), CAES, and PHES are considered as 

energy storage units. Electric water heaters and air conditioners represent devices for 

deploying DR in Fig. 3-1. Inelastic loads that do not participate in DR programs are also 

shown in Fig. 3-1.  

 

Fig.  ‎3-1. The System Topology 
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The‎modeling‎presented‎in‎this‎research‎is‎from‎the‎utility‎operators’‎point‎of‎view,‎or‎in‎

other words, transmission level. Transmission lines constraints as thermal limit are 

neglected in this chapter, assuming there are enough transmission lines available in the 

system having sufficient capacity to transfer the power from generators to loads, as well 

as, among energy storage units, generators, and loads. 

Modeling of each energy storage, generation units, and demand response are presented by 

various equality and inequality constraints for a mixed integer linear programming 

(MILP) as follows. 

Energy balance is an equality constraint to keep generation equal to demand at each time 

interval as shown in Eq. 3-1.  

tpppp

pppppqqp

twstBchgtBdchgtMSchg

tMSdchgtNuctCoaltNGtwtrbttl





,,,,,

,,,,,,,

Eq. ‎3-1 

Where,  

tlp ,  
: Continuous variable denoting the quantity of load at time t (MW). 

tq  : Continuous variable denoting the load reduction quantity at time t 

(MW). 

trbq ,  
: Continuous variable denoting the rebound effect quantity at time t 

(MW). 

twp ,  
: Continuous variable denoting the wind power at time t (MW). 

tNGp ,  
: Continuous variable denoting the power of natural gas generation at 

time t (MW). 

tCoalp ,  
: Continuous variable denoting the power of coal generation at time t 

(MW). 

tNucp ,  
: Continuous variable denoting the power of nuclear generation at 

time t (MW). 

tMSdchgp ,  
: Continuous variable denoting mechanical energy storage 

discharging power at time t (MW). 
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tMSchgp ,  
: Continuous variable denoting mechanical energy storage charging 

power at time t (MW). 

tBdchgp ,  
: Continuous variable denoting the battery discharging power at time t 

(MW). 

tBchgp ,  
: Continuous variable denoting the battery charging power at time t 

(MW). 

twsp ,  
: Continuous variable denoting the wind spill power at time t (MW). 

The mechanical energy storage modeling is related to CAES and PHES, while battery 

modeling is related to NaS, Lead acid, and Vanadium redox batteries. As shown in Eq. 3-

1, the rebound effect increases the load while demand response decreases the load at each 

time interval. 

3.1.1 DR Modeling 

 

DR is assumed in this research as a contract between utility and loads at the transmission 

level to reduce percentage of load with certain maximum amount for limited duration and 

times. The modeling presented below is defined for load reduction followed by a rebound 

effect (restrike). The state of the art here is considering the rebound effect and find out its 

impact on spilled wind energy reduction when there is a high penetration of wind energy 

in the system. 

DR amount is limited to its maximum and minimum bounds as shown in Eq. 3-2. 

 
min max     t t t t tu q q u q t                                         Eq. ‎3-2 

Where, 

t  : Index of time intervals 

tu  
: Binary variable denoting whether load is reduced at time t ; 1 if 

the demand is reduced, 0 otherwise. 

min

tq  
: Minimum quantity of load reduction at time t (MW). 
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tq  
: Continuous variable denoting the quantity of load reduction at time 

t (MW). 

max

tq  

: Maximum quantity of load reduction at time t (MW). 

The DR ramp rate is another constraint that needs to be considered if the time interval of 

study is less than an hour. This constraint is shown in Eq. 3-3. 

1,/)( 1   trtqqr U

ttt

D

t                              Eq. ‎3-3 

Where, 

D

tr  
: Ramp down rate limit of DR at time t (MW/min). 

U

tr  
: Ramp up rate limit of DR at time t (MW/min). 

∆t : Time interval (min). 

A constraint of minimum duration of DR, which is based on the contract between utility 

and loads, is stated as Eq. 3-4.  

 

min 1
min     

t T

t t

t t

u T y t
 





                                          Eq. ‎3-4 

Where, 

tu  
: 

Binary variable denoting whether load is reduced at time t ; 1 if the 

demand is reduced, 0 otherwise. 

ty  
: 

Binary variable denoting the starting indicator of DR at time t ; if 

1tu   and 1 0tu   , 1ty   

minT  
: Minimum DR duration (min) 

A constraint that limits the maximum duration of DR, which is based on the contract 

between utility and loads, is shown in Eq. 3-5.  
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max 1

    
t T

t t

t t

z y t
 





                                             Eq. ‎3-5 

Where, 

tz  
: 

Binary variable denoting the stopping indicator of DR at time t ; if 

0tu   and 1 1tu   , 1tz   

maxT  : Maximum DR duration (min) 

A‎constraint‎that‎specifies‎the‎minimum‎duration‎of‎‘idle‎state’‎from‎last‎DR‎event‎is‎

stated in Eq. 3-6. This is also known as the recovery time from the last DR event. 

 
min 1

min1     
Dt T

t D t

t t

u T z t
 





   ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎Eq.‎‎3-6 

Where, 

min

DT  : Minimum‎duration‎of‎‘idle‎state’‎from‎the last DR event (min). 

 

The constraint that specifies the amount of demand rebound from the last DR event is 

shown in Eq. 3-7.  

tzqqqx
rbT

t

tttrbtrbtrbt  


 ,
1'

1'

max

,,

min

, ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎Eq.‎‎3-7 

Where, 

trbq ,  
: Continuous variable denoting the rebound effect at time t (MW). 

min

,trbq  
: Minimum quantity of the rebound effect at time t (MW). 

max

,trbq  
: Maximum quantity of the rebound effect at time t (MW). 

tx  
: Binary variable denoting whether load is rebounded at time t ; 1 if 

the demand is rebounded, 0 otherwise. 
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rbT  
: Duration time of rebound effect profile (min). 

 

The ramping rate limit of the rebound effect is defined in Eq. 3-8. 

 
U

ttrbtrb

D

t rqqr   ,1, ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎Eq.‎‎3-8 

The‎relationship‎between‎the‎energy‎of‎the‎rebound‎effect‎and‎the‎last‎DR‎event‎is‎shown‎

in‎Eq.‎3-9.‎This‎is‎the‎ratio‎of‎the‎rebound‎effect‎energy‎to‎the‎demand‎reduction‎energy‎

caused‎by‎ calling‎ a‎DR‎ event.‎ If‎ it‎ is‎ one,‎ it‎ has‎no‎change‎on‎ total‎ load‎consumption‎

energy.‎But,‎if‎it‎is‎less‎than‎one,‎it‎reduces‎the‎overall‎load‎consumption.‎When‎it‎is‎more‎

than‎one,‎it‎increases‎the‎total‎load‎consumption. 





T

t

trb

T

t

trb qq
11

,  ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎Eq.‎‎3-9 

Where, 

rb  
: The‎ratio‎of‎rebound‎effect‎energy‎to‎DR‎energy. 

The maximum number of weekly DR events is enforced, as indicated in Eq. 3-10. This 

can be based on the contract between a utility and homeowners to satisfy their comfort 

requirement. 

 Weekly

T

t

t Ny 
1

‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎Eq.‎‎3-10 

Where, 

weeklyN  
: Maximum number of DR events per week. 

The maximum number of daily DR events is another constraint that is shown in Eq. 3-11.  

 Daily

Daily

t

t Ny 
1

                                              Eq. ‎3-11 

Where, 
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dailyN  
: Maximum number of DR events per day. 

The relationships among binary variables of DR are shown in Eq. 3-12 and Eq. 3-13. Eq. 

3-12 defines the relationship between the starting and stopping indicators of DR. Eq. 3-13 

states that stopping and starting indicators of DR happens only once at a time. 

1     t t t ty z u u t                                                  Eq. ‎3-12 

1    t ty z t  
‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎Eq. ‎3-13 

The relationship among binary variables of DR and the rebound effect as shown in Eq. 3-

14 indicates that the rebound effect starts right after the DR event ends. 

TTtxz Rt

t

t

t :','

'

1




‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎Eq.‎‎3-14 

3.1.2 Mechanical Energy Storage Modeling 

 

This section describes the incorporation of detailed characteristics of mechanical energy 

storage units including PHES and CAES into the MILP formulation. The state-of-the-art 

modeling methods for both CAES and PHES take into account the required idle time to 

switch between charge and discharge modes. This constraint is not addressed nor 

modeled in the literature. Since the problem is solved by MILP, this constraint is 

presented by linear constraints while defining extra binary variables. Modeling of 

mechanical energy storage units are presented as follows. 

 The final state of charge equals to the initial state of charge every week as shown in Eq. 

3-15. This constraint insures that energy storage is not a source of generation. 

 
weekly

t

tMSdchgMStMSchg tpp
'

',', 0)(                          Eq. ‎3-15 

Where, 
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tMSchgp ,  
: Continuous variable denoting mechanical energy storage charging 

power at time t (MW). 

tMSdchgp ,  
: Continuous variable denoting mechanical energy storage 

discharging power at time t (MW). 

MS  : Mechanical energy storage roundtrip efficiency (%). 

t  : Time interval (min). 

Mechanical energy storage can operate in one mode at a time, charge, discharge, or idle, 

which is stated in Eq. 3-16. 

ttMStMStMS  ,1,,,                                        Eq. ‎3-16 

Where, 

tMS ,  
: Binary variable denoting whether mechanical energy storage is 

charged at time t ; 1 if charge, 0 otherwise. 

tMS ,  
: Binary variable denoting whether mechanical energy storage is 

discharged at time t ; 1 if discharge, 0 otherwise. 

tMS ,  
: Binary variable denoting whether mechanical energy storage is idle 

at time t ; 1 if idle, 0 otherwise. 

The relationship among start and stop of idle time and idle mode indicator are presented 

in Eq. 3-17 and Eq. 3-18. 

1,1,,,,   ttMStMStMStMS                                Eq. ‎3-17 

ttMStMS  ,1,,                                           Eq. ‎3-18 

Where, 

tMS ,  
: Binary variable denoting the starting indicator of the idle mode at 

time t ; if 𝛾𝑀𝑋,𝑡 = 1  and 𝛾𝑀𝑋,𝑡−1 = 0, then 𝜌𝑀𝑋,𝑡 = 1. 

tMS ,  
: Binary variable denoting the stopping indicator of the idle mode at 

time t  ; if 𝛾𝑀𝑋,𝑡 = 0  and 𝛾𝑀𝑋,𝑡−1 = 1, then 𝜑𝑀𝑋,𝑡 = 1. 
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The relationship among binary variables indicating that if the mode of operation changes 

it should remain idle is shown in Eq. 3-19 and Eq. 3-20. 

1,,1,,1,,,   ttMStMStMStMStMStMS                         Eq. ‎3-19 

                    1,1)()(1 ,1,,1,   ttMStMStMStMS                  

Eq. ‎3-20 

Charging and discharging powers are limited to the rated power of energy storage as 

shown in Eq. 3-21 and Eq. 3-22, respectively.  

tNPpNP tMSMSMStMSchgMSchgtMSMSMS  ,,,

min

,              Eq. ‎3-21 

tNPpNP tMSMSMStMSdchgMSdchgtMSMSMS  ,,,

min

,          Eq. ‎3-22 

Where, 

MSP  
: Rated power capacity for mechanical energy storage (MW). 

MSN  : Number of mechanical energy storage. 

The minimum required idle time for mechanical energy storage technologies to switch 

mode is formulated as Eq.3-23. 

tT tMSMS

Tt

tt

tMS

MS






,,

min
1

'

',

min


                                 Eq. ‎3-23 

Where, 

min

MST  
: Minimum duration of idle mode for mechanical energy storage 

(min). 

State of charge is limited to the storage energy rating as shown in Eq. 3-24. Maximum 

and minimum quantities for the state of charge are assumed to be 1 and 0, respectively 

for mechanical energy storage technologies. 
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TkSOC
NE

tpp
i

MS

MSMS

k

t

tMSdchgMStMSchg

:1,1

)(

0 1'

',',











   Eq. ‎3-24 

Where, 

MSE  : Rated energy capacity of mechanical energy storage (MWh). 

i

MSSoC  : Initial state of charge of mechanical energy storage (%). 

Rate of change of storage output is limited to the storage ramp rate as stated in Eq. 3-25. 

1,
)()( 1,1,,,








tNdP

t

pppp
NdP MSMS

tMSdchgtMSchgtMSdchgtMSchg

MSMS

Eq. ‎3-25 

Where, 

MSdP  : Energy storage ramp rate for mechanical energy storage (MW/min). 

3.1.3  Large Scale Battery Modeling 

 

As mentioned before, large scale batteries considered in this research are NaS battery, 

Lead acid battery, and Vanadium redox battery. Large scale batteries are modeled by 

defining following equality and inequality constraints based on their operational 

characteristics. 

Final state of charge equals to the initial state of charge every day as shown in Eq. 3-26. 

Since large scale battery is not a source of energy, it is scheduled to return to its initial 

state of charge every day, or in other words, refill daily. 

 
Daily

t

tBdchgBtBchg tpp
'

',', 0)(                               Eq. ‎3-26 

Where, 
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tBchgp ,  
: Continuous variable denoting quantity of charging power of battery 

at time t (MW). 

tBdchgp ,  
: Continuous variable denoting quantity of discharging power of 

battery at time t (MW). 

B  
: Roundtrip efficiency of battery (%). 

t  : Time interval (min). 

Charge and discharge power quantities are limited to the rated power of energy storage as 

shown in Eq. 3-27.  

tNPpp BBtBdchgtBchg  ,,0 ,,                           Eq. ‎3-27 

Where, 

BN  : Number of large scale batteries 

BP  
: Rated power capacity of large scale battery (MW) 

State of the charge is limited to the energy capacity of large scale battery as shown in 

Eq.3-28 and Eq. 3-29. The maximum and minimum state of charge is defined between 0 

and 1 to avoid overfilling or depleting the battery technology. 

i

B

BB

t

t

tBdchgBtBchg

tB SOC
NE

tpp

SOC 






1'

',',

,

)( 

           Eq. ‎3-28 

TtSOCSOCSOC BtBB :1,max

,

min                          Eq. ‎3-29 

Where, 

tBSoC ,  : State of charge of large scale battery at time t (%). 

BE  
: Rated energy capacity of large scale battery (MWh). 

max

BSoC  
: Maximum state of charge of large scale battery (%). 
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min

BSoC  
: Minimum state of charge of large scale battery (%). 

3.1.4 Equivalent Natural Gas Unit Modeling 

 

A natural gas-fired generator is modeled by defining following equality and inequality 

constraints for it associated binary and continuous variables. 

Power limit: 

tuPpuP tNGNGtNGtNGNG  ,,

max

,,

min
                 Eq. ‎3-30 

Where, 

min

NGP  
: Minimum stable operation power of natural gas generation unit 

(MW). 

max

NGP  
: Maximum stable operation power of natural gas generation unit 

(MW). 

tNGu ,  
: Binary variable denoting whether natural gas unit is on or off at time 

t; 1 if on, 0 otherwise 

 

The relationship among binary variables can be written as: 

1,1,,,,   tuuzy tNGtNGtNGtNG                       Eq. ‎3-31 

tzy tNGtNG  ,1,,                                           Eq. ‎3-32 

Where,  

tNGy ,  
: Binary variable denoting the starting indicator of generation unit at 

time t; if 𝑢𝑁𝐺,𝑡 = 1  and 𝑢𝑁𝐺,𝑡−1 = 0, then 𝑦𝑁𝐺,𝑡 = 1. 

tNGz ,  
: Binary variable denoting the stopping indicator of natural gas unit at 

time t; if 𝑢𝑁𝐺,𝑡 = 0  and 𝑢𝑁𝐺,𝑡−1 = 1, then 𝑧𝑁𝐺,𝑡 = 1. 
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Ramp rate limit: 

tdPtppdP NGtNGtNGNG   ,/)( 1,,                        Eq. ‎3-33 

Where,  

NGdP  
: Natural gas unit ramp rate (MW/min). 

Minimum up time constraint: 

tyTu tNGupNG

Tt

tt

tNG

upNG






,,

min

,

1

'

',

min
,

                            Eq. ‎3-34 

Where,  

min

,upNGT  
: Minimum up time of the natural gas generation unit (min). 

Minimum down time constraint: 

tzTu tNGdnNG

Tt

tt

tNG

dnNG






,)1( ,

min

,

1

'

',

min
,

                      Eq. ‎3-35 

Where,  

min

,dnNGT  
: Minimum down time of the natural gas generation unit (min). 

3.1.5 Equivalent Coal Unit Modeling 

 

A coal-fired generator is modeled by defining following equality and inequality 

constraints for it associated binary and continuous variables. The extra constraint for 

modeling a coal-fired generator as compared to a natural gas-fired unit is the capacity 

factor constraint that is required for the economic operation of coal power plants. 
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Power limit: 

tuPpuP tCoalCoaltCoaltCoalCoal  ,,

max

,,

min
                            Eq. ‎3-36 

Where, 

min

CoalP  : Minimum stable operation power of coal generation unit (MW). 

max

CoalP  : Maximum stable operation power of coal generation unit (MW). 

tCoalu ,  : Binary variable denoting whether coal unit is on or off at time t; 1 if 

on, 0 otherwise. 

The relationship among binary variables is defined as: 

1,1,,,,   tuuzy tCoaltCoaltCoaltCoal                    Eq. ‎3-37 

tzy tCoaltCoal  ,1,,                                               Eq. ‎3-38 

Where,  

tCoaly ,  : Binary variable denoting the starting indicator of coal generation 

unit at time t; if 𝑢𝐶𝑜𝑎𝑙,𝑡 = 1  and 𝑢𝐶𝑜𝑎𝑙,𝑡−1 = 0, then 𝑦𝐶𝑜𝑎𝑙,𝑡 = 1 

tCoalz ,  : Binary variable denoting the stopping indicator of coal generation 

unit at time t; if 𝑢𝐶𝑜𝑎𝑙,𝑡 = 0  and 𝑢𝐶𝑜𝑎𝑙,𝑡−1 = 1, then 𝑧𝐶𝑜𝑎𝑙,𝑡 = 1 

Ramp rate limit: 

tdPtppdP CoaltCoaltCoalCoal   ,/)( 1,,                          Eq. ‎3-39 

Where,  

CoaldP  : Coal generation unit ramp rate (MW/min). 

Minimum up time constraint: 
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tyTu tCoalupCoal

Tt

tt

tCoal

upCoal






,,

min

,

1

'

',

min
,

                             Eq. ‎3-40 

Where,  

min

,upCoalT  
: Minimum up time of the coal generation unit (min). 

Minimum down time constraint: 

tzTu tCoaldnCoal

Tt

tt

tCoal

dnCoal






,)1( ,

min

,

1

'

',

min
,

                      Eq. ‎3-41 

Where,  

min

,dnCoalT  
: Minimum down time of the coal generation unit (min). 

Capacity‎factor‎constraint: 

max

max

1

,
min

coal

Coal

T

t

tcoal

coal CF
TP

p

CF 






                                       Eq. ‎3-42 

Where, 

min

CoalCF  : Minimum capacity factor of the coal generation unit (%). 

min

CoalCF  : Maximum capacity factor of the coal generation unit (%). 

    ∆T : Total duration of simulation (min). 

3.1.6 Equivalent Nuclear Unit Modeling 

 

A nuclear generation unit has a technical barrier related to its inability to be turned off 

and on frequently. Hence, it is considered to be on while having minimum stable 

operation. As a result it does not have minimum required up and down time either. The 

nuclear generation modeling is presented with following constraints. 

Power limit: 
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tPpP NuctNucNuc  ,max

,

min
                                 Eq. ‎3-43 

Where, 

min

NucP  : Minimum stable operation power of nuclear generation unit (MW). 

max

NucP  : Maximum stable operation power of nuclear generation unit (MW). 

 

Ramp rate limit: 

tdPtppdP NuctNuctNucNuc   ,/)( 1,,                       Eq. ‎3-44 

Where,  

NucdP  : Nuclear generation unit ramp rate (MW/min). 

Capacity‎factor‎constraint: 

max

max

1

,
min

nuc

nuc

T

t

tnuc

nuc CF
TP

p

CF 






                                     Eq. ‎3-45 

Where, 

min

NucCF  : Minimum capacity factor of the nuclear generation unit (%). 

min

NucCF  : Maximum capacity factor of the nuclear generation unit (%) 

3.1.7 Objective Function 

 

The objective function is to minimize spilled wind energy as shown in Eq. 3-46. This is 

chosen to study the impact of energy storage and demand response at the transmission 

level while skipping all economic evaluations. Since energy storage and demand response 

are assumed to be available flexible resources in control of utility operators, they appear 

in constraints, not the objective function. 
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Minimize                


T

t

twsp
1

,                                                  Eq. ‎3-46 

3.2 Results and Discussions 

 

To showcase the applicability of the proposed approach, different case studies based on 

real world wind and load data in 15-minute time intervals - obtained from the Bonneville 

Power Administration (BPA) in 2013 - are used ‎[54]. BPA peak load in 2013 was 10.6 

GW, and installed wind capacity is 4.5 GW. The wind energy penetration level is 20% in 

BPA, while neglecting net interchange. BPA load is scaled up to meet the projected load 

in 2040 using the average growth rate of 0.8% per year from 2013 to 2040 ‎[106]. Wind 

data is also scaled up in the same ratio to remain at the level of 20% wind energy 

penetration.  

The mixed integer linear programming (MILP) is modeled in MATLAB and solved by 

IBM CPLEX with the time horizon of one year with 15-minute time resolution. Since the 

optimization constraints are defined independent for each week, the optimization problem 

is simulated for fifty-two weeks (one year) separately and results are the summation of 

the fifty-two week period. 

Parameters for modeling the generation mix by fuel type are presented in Table 3-1. 

Nuclear power plants can ramp down by 20% of its nominal capacity in an hour, but 

ramping up the same amount takes up to 6 to 8 hours ‎[107]. The economic operation of 

nuclear power plant requires the capacity factor to be within the range of 100% to 75%. 

Coal power plants have 1.5-3% of its nominal capacity ramp rate per minute, and their 

economic operation enforces their capacity factor to remain between 45% and 70%. 

Natural Gas units are peaking power plants and their ramp rate is limited to 8% of 

capacity per minute. The maintenance and forced outage rates of conventional power 

plants have been neglected in this study. 

Minimum stable operation of nuclear generation is at 80% of its nominal capacity, while 

minimum operation of natural gas and coal units are at 20% and 30% of their rated 
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capacity, respectively. As shown in Table 3-1, the minimum up or down time for natural 

gas and coal units are 2 hours and 12 hours, respectively. According to the inability to 

shutdown of nuclear units, this yields no down time state. The total nuclear, coal, and gas 

generation capacity provides 100% of annual peak load, to guarantee system reliability in 

existence of stochastic wind generation. If the availability of each generation unit is 90%, 

then the installed capacity is required to be 11% (which is 1 over 90%) more to be able to 

provide the desired generation capacity throughout the year. 

Modeling parameters for mechanical energy storage units (CAES and PHES) and large 

scale batteries are presented in Table 3-2, and Table 3-3, respectively. As shown, CAES 

requires at least 20-minute idle time to switch between charging and discharging modes, 

while PHES requires at least 4-minute idle time. PHES are either fixed speed or 

adjustable speed. Fixed speed PHES can only pump at a constant power (which is rated 

power capacity), while adjustable speed one pumps for a specific range (which is 100% 

to 40% of rated power capacity). Generating power ranges between 100% and 50% for 

fixed speed PHES, while it is between 100% and 30% for adjustable speed PHES. The 

rated energy and power capacities for both CAES and PHES are considered to be 6000 

MWh and 300 MW, respectively, for better comparison between these two technologies. 

Characteristics of large-scale batteries including NaS, and Lead acid are shown in Table 

3-3. As shown, all three have the same power capacity which is 50 MW. NaS battery has 

the highest energy capacity which is 300 MWh and Lead acid battery has the lowest 

energy capacity which is 200 MWh. Vanadium redox energy capacity is between the 

other two batteries which is 250 MWh. Lead acid battery has the highest efficiency which 

is 85%, while Vanadium redox has the lowest efficiency as 70%. All batteries are 

operated in such a way that their state of charge do not exceed 90%, nor get below 10% 

of their rated energy capacity. Another important parameter for battery operation is the 

life cycle, which is shown in the last row of Table 3-3. 

DR potential can be estimated by aggregating the amount of electric water heater and air 

conditioning, participation factor, and capacity response ratio ‎[108]. Total demand 

response capacity in PJM Interconnection is about 10 GW (considering both demand 
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resources and energy efficiency) ‎[109], which is 6% of its annual peak load in 

2013 ‎[110].   

This research assumes 5% and 10% of load at that time for DR maximum amount as 

shown in Table 3-4. Minimum load reduction is defined to be 0.5 of the maximum load 

reduction. This parameter is added to DR modeling to avoid zero values to be counted in 

DR periods. If time resolution of simulation is less than one hour, ramping constraints is 

required for DR modeling ‎[118]. DR ramp rate in 15 minutes is assumed to be half of DR 

value at that time, due to 30-minute DR response time and 15-minute time resolution of 

the study. Maximum and minimum DR durations are considered to be three and two 

hours, respectively. Minimum duration of idle time between DR events is considered to 

be three hours. 

Table ‎3-1. Natural Gas, Coal, and Nuclear Units Modeling Parameters ‎[107] 

Unit 

Type 

Capacity 

(%) 

Min 

(%) 

Ramp Rate Min up/down 

time 

Capacity 

Factor (%) 

Nat Gas 38 20 8% up/down per min 2 hrs --- 

Coal 42 30 1.5%  up/down per min 12 hrs 45-70 

Nuclear 20 80 20% down per hr, 

 20% up per 6 hrs 

--- 100-75 

Table ‎3-2. Large-Scale Mechanical Energy Storage Modeling Parameters ‎[12], ‎[13], ‎[117] 

Energy Storage Technology PHES CAES 

Single Speed Adjustable Speed 

Min Generating Power (%) 50 30 -- 

Min Pumping Power (%) 100 40 -- 

Power Capacity (MW) 600 300, 600 

Energy Capacity (MWh) 6000 6000 

Ramp Rate 4-6% (per second) 18 MW/min 

Efficiency (%) 80 70 

Required Idle Time (min) -- 20 
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Table ‎3-3. Large-Scale Battery Modeling Parameters ‎[12], ‎[13] 

Grid-scale battery  NaS Lead acid 

Power (MW) 50 50 

Energy (MWh) 300 200 

Efficiency (%) 75 85 

Max, Min SoC 0.9,0.1 0.9,0.1 

 

Table ‎3-4. DR and RE Modeling Parameters 

Max Load Reduction Power to Load Ratio 0.05, 0.10 

Min Load Reduction Power to Load Ratio 0.01 

Max Ramp Up/Down Rate of DR to Max Load Reduction Ratio 0.5 

Max Duration of DR (hrs) 3 

Min Duration of DR (hrs) 2 

Min Duration of Idle Time from Last DR (hrs) 3 

Duration of Rebound Effect (HRS) 2 

Max Rebound Effect Power to Load Ratio 0.05, 0.10 

Min Rebound Effect Power to Load Ratio 0.01 

Max Ramp Up/Down Rate of Rebound Effect to Load Reduction 

Ramp Up/Down Rate Ratio 

0.5 

Ratio of Rebound Effect Energy to Load Reduction Energy 0.5, 1,1.5 

Max Number of DR Events in a Week 3 

Max Number of DR Events in a Day 1 

 

Three different rebound effect scenarios are considered based on the ratio of rebound 

effect energy to DR energy and rebound effect energy duration. For example, if rebound 

to DR energy ratio is 0.5, then cutting 1000MWh of energy results in a rebound of 

500MWh energy. These scenarios are listed below: 

1. Rebound effect energy to DR energy ratio is 0.5 with 1 hour duration of rebound. 

2. Rebound effect energy to DR energy ratio is 1 with 2 hours duration of rebound. 

3. Rebound effect energy to DR energy ratio is 1.5 with 2 hours duration of rebound. 
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The maximum rebound effect quantity is considered to be the same as the maximum DR 

quantity. The minimum rebound effect quantity is defined to be 0.5 of the maximum 

rebound effect quantity. This parameter is added to the rebound effect modeling to avoid 

zero values be counted as rebound effect in its duration. The ramp rate of rebound effect 

is considered to 0.5 of its maximum quantity. The last two parameters shown in Table 3-

4, are maximum number of DR events per week and per day which are shown to be three 

and one, respectively. 

Different case studies are simulated for the whole year to study the impact of generation 

mix, DR scenarios, energy storage technologies, and scheduling both DR and energy 

storage on reducing spilled wind energy. The impact of deploying different DR scenarios 

on reduction of total generation is also investigated. These case studies and their results 

are described as follows. 

3.2.1 Impact of Generation Mix by Fuel Type 

 

Four different generation mix scenarios including the projected generation in 2040 by 

U.S. EIA ‎[106] are used to study their impacts on wind spill energy. These percentages 

are calculated as if nuclear, coal, and natural gas are the only generating units in addition 

to wind generation, as shown in Fig. 3-2. The total generation mix capacity provides 

100% of annual peak load to guarantee system reliability, considering the stochastic 

nature of wind generation.  

The spilled wind energy for each generation mix scenario is shown in Fig. 3-2 as a result 

of the proposed mixed integer linear programming to minimize spilled wind energy. As 

shown, the base case results in 952 GWh spilled wind energy. This spillage is 7% of the 

annual wind energy generation.  The base case has the highest spilled wind energy due to 

having the highest nuclear and coal capacity comparing to the other cases. Then, case 1 

with 10% less coal generation and 10% more gas generation units while having the same 

capacity comparing to the base case, results in 552 GWh spilled wind energy. Hence, the 

spilled wind energy has reduced by 400 GWh for case 1 as compared to the base case. 

The nuclear capacity has reduced by 10% and gas has increased by 10% as compared to 
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base case. This generation mix results in 667 GWh less spilled wind energy as compared 

to base case. The spilled wind energy of case 3 is the least which is 84 GWh due to 

having the lowest nuclear and coal generation capacity. 

As a result, wind spill energy depends on the percentage of both nuclear and coal 

generation capacities due to their technical and economic barriers as shown in Table 3-1. 

The minimum loading level of nuclear and coal generation units are 80% and 30% of 

their nominal rated power capacities, respectively. The other limiting characteristic is the 

high capacity factor, which is 75-100% for nuclear generation unit and 45-70% for coal 

generation unit. The other two technical barriers are ramp rate and minimum up/down 

time of these units as shown in Table 3-1 

 

Fig.  ‎3-2. Different generation mix by fuel type and their resultant spilled wind energy 

The generation mix for the rest of case studies is based on U.S. EIA projected generation 

mix for 2040, which results in 952 GWh wind spill energy without considering energy 

storage and DR. 
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3.2.2 Impact of Different DR Scenarios 

 

The novel idea presented in this research is modeling DR rebound effect such that it can 

reduce spilled wind energy, which is a challenge in utilities with high wind energy 

penetration levels. The implementation of this idea is achieved by the proposed mixed 

integer linear programming. The sample result of the optimization problem for a week is 

shown in Fig. 3-3 to illustrate the proposed DR scheduling. As shown, DR is scheduled 

prior to high wind energy penetration periods such that its rebound effect is aligned with 

the time of high wind generation period. This unique DR scheduling can reduce spilled 

wind energy by adjusting the rebound effect occurring time.  

As shown in Fig. 3-3, there are three DR events scheduled right before the time when 

wind power is high but load is low, to reduce spilled wind energy. The number of events 

is limited to the constraint defined in DR modeling which was not more than three times 

per week and once per day. The negative part of the green line shown in Fig. 3-3 is DR 

(load reduction) and the positive one is related to the rebound effect (load compensation). 

The simulation result shown in Fig. 3-3 is when the rebound effect energy to DR energy 

ratio is 1.5 with the rebound effect duration of two hours. As illustrated in Fig. 3-3, 

solving the proposed optimization result in scheduling DR such that rebound effect is 

aligned with the time when wind power is high and load is low, to minimize the wind 

spillage. Results for different scenarios of DR and rebound effect are simulated for the 

whole year and explained as follows. 

The impact of DR scheduling is investigated by simulating the whole year with 15-

minute time intervals. It is important to note that since each week scheduling is 

independent of the other week, optimization problem is simulated for fifty-two weeks 

(one year) separately and results presented, are the summation of all these fifty-two 

weeks. Different DR scenarios as 5% and 10% amount, with 0.5, 1, and 1.5 rebound 

effect energy ratios, are simulated. The impact of these DR scenarios on wind spill 

energy is shown in Fig. 3-4. 
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As shown in Fig. 3-4, 5% DR amount with 0.5 rebound energy ratio, results in 48 GWh 

in spilled wind energy. While, 5% DR with 1 rebound effect energy ratio, results in 61 

GWh reductions in wind spill energy. On the other hand, 5% DR amount with 1.5 

rebound effect energy ratio reduced spilled wind energy by in 63 GWh. As shown in Fig. 

3-4, spilled wind energy is reduced by 30 GWh, 44 GWh, and 50 GWh for 0.5, 1, and 1.5 

rebound effect energy ratios, respectively, if DR amount is increased from 5% to 10%. 

 

Fig.  ‎3-3. Load, wind, and DR followed by rebound effect (Rb) for a week 

 

Fig.  ‎3-4. Spilled wind energy for different DR scenarios 
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3.2.3 Impact of Different Energy Storage Technologies 

 

The impact of large-scale energy storage technologies on spilled wind energy reduction 

are shown in Fig. 3-5. Large-scale mechanical energy storage technologies such as CAES 

and PHES have 20 to 30 times more rated energy capacity than mentioned large-scale 

batteries. The rated power capacity of CAES and PHES is 6 times more than the 

considered large-scale batteries. Hence, mechanical energy storage technologies results in 

less wind spill energy as compared to large scale batteries. This can be observed in Fig. 

3-5. 

The wind spill energy without inserting any type of energy storage technology is 952 

GWh. If one NaS battery is inserted, spilled wind energy reaches 912 GWh. Wind spill 

energy reaches 923 GWh when one Lead acid battery is inserted, due to its lower energy 

capacity as compared to the other two large-scale batteries. If two NaS batteries are 

inserted, then spilled wind energy reaches 873 GWh. If two Lead acid batteries are 

inserted, then spilled wind energy reaches 894 GWh.  

 

Fig.  ‎3-5. Wind spill energy for different energy storage technologies. 
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If one 300 MW CAES is inserted, wind spill energy reaches 655 GWh, as opposed to 952 

GWh for no energy storage scenario. When two 300 MW CAES units are inserted wind 

spill energy reaches 436 GWh. The reason why wind spill energy reduction is not 

doubled by adding an additional CAES is because the remaining wind spill available is 

less than what was available to charge the first CAES. This is important to take into 

consideration for investing on adding more energy storage units. When one 600 MW 

CAES is inserted with the same rated energy capacity as the 300 MW CAES, then spilled 

wind energy reaches 491 GWh. Hence, doubling the rated power capacity while keeping 

the rated energy capacity the same reduce more 164 GWh in spilled wind energy. This 

shows the impact of rated power capacity on spilled wind energy.  

When two fixed speed PHES units are inserted, wind spill energy reaches 321 GWh. If 

two adjustable speed PHES units are inserted, then spilled wind energy reduces to 280 

GWh. Hence, variable speed PHES results in 41 GWh less wind spill energy as compared 

to fixed speed one. This is due to fixed pumping power of fixed speed PHES and lower 

range of generating power as compared to adjustable PHES. 

Although 600 MW CAES and both PHES technologies have the same rated power and 

energy capacity values, the spilled wind energy is reduced more by CAES as compared to 

PHES. This is because CAES has larger range of pumping and generating powers as 

compared to PHES, although it has longer required idle time and less efficiency 

comparing to PHES. 

3.2.4 Impact of scheduling both DR and energy storage 

 

The impact of scheduling both energy storage and DR on reducing wind spillage is 

depicted in Fig. 3-6. The 10% DR amount with 1 rebound effect energy ratio (which 

keeps load consumption the same before and after DR) is considered for this case study. 

Two types of energy storage units – including CAES, as a mechanical energy storage 

technology, and NaS battery, as a chemical energy storage technology – are selected for 

this study. These two energy storage technologies are selected because they can provide 

less wind spillage, as compared to their own group shown in the previous section. 
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Selection of a hybrid energy storage configuration including mechanical and chemical 

energy storage technologies result in better performance by getting benefit from 

characteristic of each energy storage technology category. 

 

Fig.  ‎3-6. Spilled wind energy for different DR and energy storage scenarios 

As shown, if one NaS battery is inserted spilled wind energy reaches 912 GWh as 

opposed to 952 GWh seen earlier without energy storage or DR. The impact of DR is 

seen in the following way. When the load is shifted through DR with 1 rebound effect 

ratio, the spilled wind energy decreases by 105 GWh (from 952 GWh to 847 GWh). If 

both DR and NaS battery are scheduled, wind spill energy reaches 810 GWh as opposed 

to 847 GWh when only DR is scheduled. If one CAES is inserted, spilled wind energy 

reaches 655 GWh. By inserting one CAES, and one NaS batetry, spilled wind energy 

reaches 623 GWh. Scheduling one CAES (but no NaS) and DR, reduces spilled wind 

energy to 569 GWh. This means 383 GWh reduction of wind spill energy by scheduling 

CAES and DR as compared to 329 GWh less in spilled wind energy by scheduling CAES 

and NaS battery. This better overall result in terms of lesser spilled wind energy is 

achieved with 10% DR with 1 rebound effect energy ratio, but without NaS battery.  

The overall decision depends on taking into account the cost issues such as battery 

investment and operational costs, incentive payments by utility to customers allowing 
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load reduction, and the cost of utilizing less wind generation and having spilled wind 

energy from the wind farm operator point of view. 

3.3 Conclusion 

 

The amount of spilled wind energy depends on wind power output, load level, generation 

mix, DR properties, and energy storage characteristics as found in our research. The 

generation mix by fuel type includes nuclear, coal, and natural gas. Since nuclear 

generation has the highest capacity factor and the lowest cycling capability, greater 

amount of nuclear generation results in higher wind power spillage. On the other hand, 

coal generation also needs to be taken into consideration for spilled wind energy, because 

coal generation has higher capacity factor and lower cycling capability than gas-fired 

generation.  

Wind spill energy reduction also depends on energy storage and DR characteristics. 

Energy storage with higher rated power and energy capacity can reduce more of the wind 

spillage. On the other hand, implementing demand response with higher rebound effect 

energy ratio results in less wind spillage. 
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4. Energy Storage for Mitigating Wind Power Forecast Error 

Impacts 

 

The wind power forecast error is a challenge that requires more reserve in the system. 

Energy storage units can be used to mitigate wind forecast error by allowing the storage 

to be charged when actual wind power output is more than the forecasted one and 

discharged when actual wind power output is less than the forecasted one. An energy 

storage sizing problem can be solved by signal processing approaches which are based on 

the concept that the efficient operation of energy storage or conventional units depends 

on their cycling. This is the advantage of signal processing techniques that extract control 

signals with appropriate cycling for a specific type of energy storage technology.   

Wind power forecast error can be considered as a fluctuating signal that can be 

decomposed into different components with signal processing approaches. These 

components are defined based on appropriate cycling of energy storage technologies 

(e.g., intra-hour, intra-day and slow cycling components) to control the hybrid 

configuration of energy storage units. The intra-hour and intra-day components are time-

varying periodic components that have the total energy of zero in a cycle. These 

components are suitable to control Sodium Sulfur battery (NaS) and Compressed Air 

Energy Storage (CAES), respectively. The slow cycling component is supposed to be 

supplied by conventional generators which are more efficient while operating at high 

mean generation levels.  

 The contributions and advantages of the proposed method in this chapter compared with 

other existing signal processing techniques in ‎[57], ‎[58], ‎[60] are summarized as follows. 

 Considering the detailed properties of each energy storage technology: These 

properties include ramp rate, idle time for CAES to switch between charge and 

discharge modes, maximum and minimum state of charge, besides efficiency and 

rated power and energy capacity. 

 Choosing a specific wavelet function for DWT: The wavelet function in ‎[60] is 

chosen based on correlation with the net load signal. Haar wavelet function is 
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selected in this dissertation because; this step-shape wavelet function results in 

intra-day components that are constant for a specific duration. This characteristic 

is convenient to schedule mechanical energy storage units as CAES. DFT and 

DWT with other non-haar wavelet functions change the control command at 

every time interval, which is too frequent for a CAES unit to operate. 

 Analyzing the impacts of energy storage by different scenarios: Results presented 

in ‎[57], ‎[58], ‎[60] are based on the concept that energy storage units are required 

to fully compensate for the wind power forecast error values, even if they are 

infrequent. This chapter analyzes impacts of different combinations of energy 

storage units on reducing wind spill, back up energy, and the standard deviation 

of the residual forecast error signal. Back-up energy is total additional energy 

provided by thermal or hydro generators to make up for the generation shortage. 

 Calculating the service life of NaS: The battery service life is very important in 

long-term planning. The impact of increasing the number of energy NaS and 

CAES units on NaS cycle life is investigated in this chapter.  

 Considering frequency bias constant: This factor can alleviate the wind power 

forecast error impacts. It allows small frequency deviation (0.1 Hz) from 60Hz to 

reduce wind spill and back-up energy. The rest of this chapter is organized as 

follows: the methodology and the storage sizing algorithm, case study and 

discussion.  

4.1 DFT and DWT Analysis 

 

The DFT analysis changes time domain to frequency domain with a sinusoidal basic 

function. First the DFT of the signal is derived as shown in Eq. 4-1, and then it is passed 

through high-pass, band-pass and low-pass filters to get different components. Finally, 

the resultant components are converted into the time domain using inverse DFT as shown 

in Eq. 4-2. 
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                        Eq. ‎4-1 
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                               Eq. ‎4-2 

The DWT changes the signal domain to the time-frequency plane by scaling and shifting 

the basic wavelet function. The set of basic wavelet functions are defined as Eq. 4-3. 

)
2

2
(

2

1
,, j

j

jtkj

kt 
                                       Eq. ‎4-3 

Where‎Ψ‎is‎the‎wavelet‎function‎and‎2
j
 is the scaling factor of t, 2

-j
k is the translation in t. 

The factor 2
j/2 

maintains the norm of the wavelet at different scales.  

The‎“haar”‎wavelet‎function‎is‎described‎in‎Eq.‎4-4. 
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                                           Eq. ‎4-4 

The‎ DWT‎ decomposition‎ with‎ “haar”‎ wavelet‎ function‎ is‎ used‎ among‎ other‎ wavelet‎

functions.‎ Hence,‎ the‎ decomposed‎ signals‎ are‎ shifted‎ and‎ scaled‎ version‎ of‎ “haar”‎

wavelet function, which has step shape and is constant for each half period as shown in 

Eq. 4-4. This characteristic may be desirable to control a large-scale mechanical energy 

storage unit with barriers to allow frequent switch of their operating mode. The signal can 

be represented as shown in Eq. 4-5. 

  
kj

tkjkjt af
,

,,,                                                    Eq. ‎4-5 

Where the two dimensional coefficient aj,k is called DWT of ft. It is calculated by inner 

products as shown in Eq. 4-6. 

ttkjkj fa ,,,,                                                    Eq. ‎4-6 

The signal is decomposed into approximate and detailed signals as shown in Eq. 4-7. 
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Where, 

tnA ,  
: approximate signal at level n decomposition at time t 

tjD ,  
: detailed‎signal‎at‎level‎j‎decomposition‎(j=1,…,n)‎at‎time‎t 

n : level of DWT decomposition 

4.2 Energy Storage Sizing Algorithm 

 

The difference between wind power and its hour-ahead forecast represents the wind 

power forecast error as shown in Eq. 4-8. 

tppp tfwtawtwfe  ,,,,
                          Eq. ‎4-8 

Where, 

twfep ,
 

: Wind power forecast error signal at time t 

tawp ,
 

: Actual wind power signal at time t 

tfwp ,
 

: Forecasted wind power signal at time t 

The wind power forecast error is formulated in an area control error (ACE) as expressed 

in Eq. 4-9. The balancing authority is expected to return the ACE to zero by utilizing its 

contingency reserves to compensate for the error. 

)(10)(ACE sasa ffII  
                               Eq. ‎4-9 

Where, 
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aI
 

: Actual interchange in MW 

sI
 

: Scheduled interchange in MW 

af  

: Actual system frequency in Hz 

sf
 

: Scheduled system frequency in Hz 


 

: System frequency bias constant in MW/0.1Hz 

The frequency bias constant allows the incorporation of intermittent renewable energy 

sources into a power system with a small frequency deviation of up to 0.1 Hz. Many 

balancing authorities take a simple approach and calculate their bias as 1% of their 

forecasted peak load of the year ‎[111].  

The detailed energy storage sizing algorithms for DWT and DFT methods are defined as 

follows. 

4.2.1 Energy Storage Sizing Algorithm Based on DWT 

 

Step1 – Find pwfe,t as described in Eq.4-8. 

Step2 – Decompose the pwfe,t using‎ “haar”‎ as‎ a‎ wavelet‎ function to approximate and 

detailed signals as shown in Eq.4-7. The period of the j
th

 detailed signal is 2
j
 times the 

data time resolution. The duration of its constant command is 2
j-1 

times the data time 

resolution. The approximate signal with n level of decomposition is constant for 2
n
 times 

the data time resolution. Hence, if the data time resolution is 5 minutes and the level of 

DWT decomposition is chosen to be 8, then the approximate signal changes every 21 

hours and 20 minutes. This decomposition level keeps the period of detailed signals less 

than a day. As a result, intra-hour and intra-day components are extracted from detailed 

signals with 8 level of decomposition. 

Step3 – Derive high, medium and low frequency decomposed signals as intra-hour, intra-

day and slow cycling components, respectively, as expressed in Eq. 4-10 to Eq. 4-12. 
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ttlf Ap ,8,                                                Eq. ‎4-12 

The phf,t is the high frequency or intra-hour component as presented in Eq. 4-10. As 

shown, it is the summation of 1st to 3rd detailed signals. Hence, it changes every 5 

minutes and its period is 40 minutes which is less than an hour. This signal is appropriate 

to control large-scale batteries, like NaS that has high ramp rates and less energy capacity 

comparing to CAES. The pmf,t is the medium frequency or intra-day component as defined 

in Eq. 4-11. This signal changes every 40 minutes and its period is 21 hours and 20 

minutes which is less than a day. Hence, it is a good candidate for intra-day component to 

charge/discharge mechanical large-scale energy storage units as CAES. The plf,t is the 

low frequency/slow-cycling component that changes every 21 hours and 20 minutes as 

shown in Eq. 4-12. This can be easily followed by conventional generators, which also 

has high mean value.  

4.2.2 Energy Storage Sizing Algorithm Based on DFT 

 

Step1 - Find pwfe,t as described in Eq. 4-8. 

Step2 - Find the DFT of the pwfe,t to project the signal from time domain to frequency 

domain by using Eq. 4-1. 

Step3 - Use the high pass, band pass and low pass filters, as described in Table 4-1, to 

extract high, medium and low frequency components. Cut-off frequencies were chosen to 

match the DWT method. Hence, results of the two methodologies can be compared and 

the trade-off can be discussed. 
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Step4 - Take the inverse DFT of decomposed components in the previous step and 

change them from the frequency domain to the time domain by using Eq. 4-2. 

Table ‎4-1. DFT Methodology Filters 

Filter 
lf  (mHz) 

uf  (mHz) 
lf1  (Hrs:Min) 

fu1   (Hrs:Min) 

High Pass 0.208 -- 2
4
×5min=01:20 -- 

Band Pass 0.208 0.013 2
4
×5min=01:20 2

8
×5min=21:20 

Low Pass -- 0.013 -- 2
8
×5min=21:20 

 

4.2.3 Applying Large-Scale Energy Storage Properties 

 

Each energy storage technology has its own operating limits as rated power and energy 

capacity, efficiency, ramp rate, etc. These characteristics are shown in Table 4-2 for NaS 

and CAES. In particular, CAES needs at least 20 minutes to remain idle for switching 

between charging and discharging modes ‎[13].  

Table ‎4-2. Energy Storage Technology Characteristics ‎[12]-‎[13] 

Energy Storage Technology NaS CAES 

Power Capacity (MW) 50 300 

Energy Capacity (MWh) 300 6000 

Max Ramp up/down rate (MW/min) 50 18 

Efficiency (%) 75 70 

Required idle Time to switch mode (min) --- 20 

Max state of charge (%) 90 100 

Min state of charge (%) 10 0 

 

In the literature, the sizing based on signal processing approach neglects all energy 

storage characteristics. Hence, the rated power and energy capacity are sized to follow 
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the decomposed components completely as shown in Eq. 4-13 to Eq. 4-15, respectively, 

which result in oversized energy storage units that can provide infrequent required power. 

)max( tcP                                                   Eq. ‎4-13 

tcSoC
t

i

it 


,
1

                                                  Eq. ‎4-14

)min()max( tt SoCSoCE                                         Eq. ‎4-15 

Where, 

tc  
: Decomposed component at time t in MW. 

P  : Rated power capacity in MW. 

tSoC  
: State of charge at time t in MW. 

E  : Rated energy capacity in MWh. 

Energy storage characteristics, that prevent the storage to closely follow the control 

signals, are considered. The intra-day component controls CAES operation. NaS battery 

follows the intra-hour component and also the difference between CAES output and the 

intra-day component. The detailed steps of the algorithm are described as follows. 

Step 1 – Consider medium frequency (intra-day) signal to control the CAES operation as 

shown in Eq. 4-16. 

tpp tmft  ,,
                                      Eq. ‎4-16 

Where, 

tp
 

: Energy storage operation at time t in MW.  

Step2 – Set t=1 to start scheduling. The initial state of the charge before running the 

simulation is assumed to be 50% of the full energy capacity. 
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Step 3 – Operational power limit: the charge/discharge power of any energy storage unit 

is limited to its rated power capacity. 

NPpsignpthenNPpif rttrt )(,, 
                              Eq. ‎4-17 

Where, 

rP
 

: Rated energy storage power capacity. 

N  : Number of energy storage units.  

Step 4 – ramp rate limit: when t>1. 

tppr ttt   /)( 1                                     Eq. ‎4-18 

NRrsignppthenNRrif rtttrt )(,, 
                   Eq. ‎4-19 

Where, 

tr  

: Energy storage ramp rate at time t in MW/min. 

rR  
: Rated ramp rate in MW/min. 

Step 5 – Remain idle for switching between charging/discharging modes: (this is only 

applicable to CAES) 

],[,0,,01 idletimettkpthenpifp ktt       Eq. ‎4-20 

Step 6 – State of the charge limit: 
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Where, 

minSoC
 

: Minimum state of charge in %. 

maxSoC
 

: Maximum state of charge in %. 

rE
 

: Rated energy capacity in MWh. 

  : Efficiency in % 

Step 7 – Check if the simulation has reached the end: 

If t<T, then, t=t+1, go to step 3, else, 
tpp ttC  ,, and go to step8. 

Where, 

T  : Whole period of simulation. 

tCp ,  
: CAES operation at time t in MW. 

Step 8 – NaS battery is supposed to provide the high frequency (intra-hour) component 

and also the difference between CAES operation and the medium frequency component 

as shown in Eq. 4-24. 

tpppp tCtmfthft  ),( ,,,
                               Eq. ‎4-24 

Where, 

tp
 

: NaS control signal at time t in MW. 

Step 9-12– This is the same as steps 2 to 6 except for step 5. 

Step 13 – Check if the simulation has reached the end: 

If t<T, then, t=t+1, go to step 9, else, 
tpp ttN  ,, and go to step14. Where, 
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tNp ,
 

: NaS operation at time t in MW. 

Step 14 – Calculating the wind spill and back-up energy: The residual forecast error 

signal is defined in Eq.4-25. It is the difference between summation of high and medium 

frequency components with the summation of NaS and CAES operation. The wind spill 

and back-up energy are defined as positive and negative parts of this signal, respectively 

as shown in Eq. 4-26 to Eq. 4-27. 

)( ,,,,, tCtNtmfthftr ppppp 
                           Eq. ‎4-25 

2/)( ,,, trtrtws ppp                                                 Eq. ‎4-26 

2/)( ,,, trtrtrs ppp                                                  Eq. ‎4-27 

Where, 

trp ,  
: Residual power at time t in MW. 

twsp ,  
: Wind spill power at time t in MW. 

trsp ,  
: Back-up power at time t in MW. 

4.3 Battery Life Cycle Analysis 

 

When batteries are used to mitigate renewable generation fluctuations and forecast errors, 

these have to cycle frequently to keep up with renewable ramp rates and mitigate the 

forecast error. Battery service life depends on cycles at various depths of discharge 

(DOD). Hence studying the number of cycles at each DOD is important when 

considering batteries as a solution to mitigate wind power forecast error impacts. Cycle 

counting has different methods as described in American Society for Testing and 

Materials (ASTM) - E 104985 ‎[112]. Rain-flow cycle counting is used to count the life 

cycle of NaS battery, which was first proposed by Downing ‎[113].  The result of this 
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approach is the number of cycles at each depth of discharge which includes complete 

cycles and partial cycles.  

The rain-flow cycle counting is used in fatigue analysis. This algorithm is summarized in 

the following six steps.  

Let X denotes the range under consideration; Y, previous range adjacent to X; and S, 

starting point in the history. 

Step1) Read next peak or valley. If out of data, go to Step 6. 

Step2) If, there are less than three points, go to Step 1. Form ranges X and Y using the 

three most recent peaks and valleys that have not been discarded. 

Step3) Compare the absolute values of ranges X and Y. 

a) If X < Y, go to Step 1. 

b) If‎X‎≥‎Y,‎go‎to‎Step‎4. 

Step4) If, the range of Y contains the starting point S, go to Step 5; otherwise, count 

range Y as one cycle; discard the peak and valley of Y; and go to Step 2. 

Step5)  Count range Y as one-half cycle; discard the first point (peak or valley) in range 

Y; move the starting point to the second point in range Y; and go to Step 2. 

Step6) Count each range that has not been previously counted as one-half cycle. 

The number of cycles to failure at each DOD for NaS battery is depicted in Fig. 4-1. 

To study the impact of cycles on battery service life, the DOD is divided into m intervals. 

Then, the number of cycles in a year for each range of DOD is extracted. Finally, the 

battery life-time in years is calculated as follows ‎[114].  
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                                    Eq. ‎4-28 

Where, 
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NaSLife  : NaS battery Life-time in years. 

iN  
: Number of Cycles at each DOD. 

iCF  : Number of Cycles to Failure at each DOD. 

m  : Number of DOD ranges. 

 

 

Fig.  ‎4-1. NaS Battery Number of Cycles to Failure with Respect to DOD.‎[115] 

4.4 Case Study and Discussion 

 

The wind power forecast error is determined by the actual and hour-ahead wind power 

forecast data with 5-minute intervals in the BPA area in 2013 ‎[54]. The BPA installed 

wind capacity was 4.5GW in 2013. The wind power forecast error signal is shown in Fig. 

4-2 for the whole year of 2013, which oscillates between 1.76 and -1.32 GW. The 

normalized histogram of this signal and the normal distribution function that fits, are 

depicted in Fig. 4-3. The wind power forecast error signal characteristics are summarized 

in Table 4-3. As shown, the standard deviation of the wind power forecast error signal is 

216 MW with the mean value of 28 MW. Hence by considering the three-sigma rule, 

99% of the time the forecast error is between 676 MW and -620 MW. 
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Table ‎4-3. Wind Power Forecast Error Signal Characteristics 

Max (MW) MIN (MW) Max ramp up/down 

(MW/5min) 

Mean (MW) Sigma (MW) 

1763 -1316 805/-875 28 216 

 

 

Fig.  ‎4-2. The BPA Wind Power Forecast Error of BPA for 2013. 

 

Fig.  ‎4-3. BPA Wind Power Forecast Error Histogram for 2013 
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The intra-hour, intra-day and slow-cycling components of the wind power forecast error 

signals are extracted and shown in Fig. 4-4 and Fig. 4-10 by DWT and DFT, respectively. 

The difference between DFT and DWT methodologies is the shape of the decomposed 

components as shown in Fig. 4-5 to Fig 4-10.  

 

Fig.  ‎4-4. Wind Power Forecast Error Signal for a Day in 2013. 

 

Fig.  ‎4-5. DWT intra-hour component of the forecast error signal for a Day in 2013 
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Fig.  ‎4-6. . DFT intra-hour component of the forecast error signal for a Day in 2013 

 

Fig.  ‎4-7. DWT intra-day component of the forecast error signal for a Day in 2013 
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Fig.  ‎4-8. DFT intra-day component of the forecast error signal for a Day in 2013 

 

Fig.  ‎4-9. DWT slow cycling component of the forecast error signal for a Day in 2013 
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Fig.  ‎4-10. DFT slow cyling component of the forecast error signal for a Day n 2013 

The properties of decomposed components are shown in Table 4-4. As shown, the mean 

values of the intra-hour and intra-day components are zero, which is desirable to control 

energy storage. The mean of the slow-cycling component for both methods is 28, which 

is equal to the wind power forecast error mean shown in Table 4-3. 

According to the three sigma rule, 99% of the time the value of the intra-day component 

is between ±573 MW for DWT method and ±546 MW for DFT method. According to the 

CAES unit described in Table 3-2, the rated power of one unit is 300MW. Hence for 

running the described algorithm, two units are required neglecting the energy storage 

operational limits. Also, 99% of the time the value of intra-hour component is between 

±201 MW for the DWT method and ±138 MW for the DFT method. Hence, four and 

three 50MW NaS are required for DWT and DFT methods, respectively, while neglecting 

the operational limits and only based on standard deviation analysis. 

 

 

 



80 
 

Table ‎4-4. DWT and DFT Component Characteristics 

M
et

h
o
d

  

Component 

 

Max 

(MW) 

 

MIN 

(MW) 

 

Max ramp up/down 

(MW/5min) 

 

Μ‎

(MW) 

 

Σ‎

(MW) 

D
W

T
 

Intra-hour 912 -779 966/-936 0 67 

Intra-day 964 -1065 987/-1394 0 191 

Slow-cycling 275 -153 296/-312 28 74 

D
F

T
 

Intra-hour 978 -572 778/-749 0 46 

Intra-day 972 -1048 207/-160 0 182 

Slow-cycling 382 -303 6/-6 28 106 

 

In the literature, the required energy storage power capacity has been derived from 

maximum absolute value of the decomposed components. While energy capacity is sized 

to satisfy that at each interval, the state of charge remains positive as stated. Table 4-5 

shows results based on the literature approach that fully compensates the decomposed 

components. As shown in Table 4-5, twenty 50 MW NaS units are required to follow the 

intra-hour component. Also, four 300 MW CAES units are required to follow the intra-

day component. This approach results in oversizing energy storage units while neglecting 

all of their characteristics. Hence, these over-sized energy storage units cannot even fully 

compensate the control signals due to operational barriers.  

Table ‎4-5. DWT and DFT Sizing Results Based on Literature Approach 

Method Component Power (MW)  Energy (MWh) 

DWT Intra-hour 912 279 

Intra-day 1,065 4,776 

DFT Intra-hour 978 187 

Intra-day 1,048 2,265 
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The proposed approach study the energy storage sizing by evaluating the impacts of 

different combination of 50 MW NaS and 300 MW CAES units on reducing wind spill 

and required back-up energy. Hence, 25 different combinations of CAES and NaS battery 

units are considered as scenarios. The standard deviation, spilled wind energy and 

required back-up energy are depicted in Fig. 4-11 to Fig. 4-13. The DWT and DFT 

results are shown in the transparent and colored surfaces, respectively. 

Due to more flexible components of DFT comparing to DWT, results related to DFT 

show better performance than DWT results. As shown in Fig. 4-11, by increasing the 

number of energy storage units, the standard deviation decreases from 202 MW to 70 

MW for DWT by implementing four NaS and CAES units. It also decreases from 187 

MW to 66 MW for DFT by implementing four NaS and CAES units. As shown, the 

standard deviation decrease becomes less by increasing energy storage units and be 

surface becomes flat eventually.  

The wind spill and back-up energy are calculated from the residual wind power forecast 

error signal after scheduling storage units. The wind spill energy shown in Fig. 4-12 

reduces from 600 GWh to 11 GWh for the DWT method by increasing the number of 

energy storage units. It also reaches 4 GWh from 600 GWh for the DFT method by 

increasing the number of energy storage units. The impact of energy storage on 

decreasing the required back-up energy is shown in Fig. 4-13.  

The required back-up energy decreases from 600 GWh to 198 GWh for the DWT method 

and reduces to 178 GWh for the DFT approach. The reason why back-up energy 

reduction is less than wind spill energy reduction is because of considering energy 

storage efficiency. Hence, the storage is able to charge the excess wind energy but since 

its efficiency is not 100% it cannot discharge as required. As shown, the slope of the 

surfaces decreases and becomes flat by increasing the number of energy storage units. 
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Fig.  ‎4-11. Standard Deviation of Residual Forecast Error by DWT and DFT 

 

 

Fig.  ‎4-12. Wind Spill Energy by DWT and DFT Methods 
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Fig.  ‎4-13. Back-up Energy by DWT and DFT Methods 

The impact of energy storage size on the NaS battery life-time is analyzed and shown in 

Table 4-6. The cycle counting and battery life-time estimation is very important for 

planning large-scale batteries. Results show that, by increasing the number of NaS battery 

units, their life-time increases. This is due to increasing the energy capacity of the total 

batteries. Hence, there is less number of cycles at each range of Depth of Discharge. This 

number increases from 20 years to 28 years for DWT, and 25 years to 32 years for the 

DFT method by increasing number of NaS battery units from one to four while operating 

one CAES units. As one can observe from Table 4-6, the NaS battery lifetime for DWT 

method is less than DFT method.  

With an increasing number of CAES, NaS battery life-time increases. The NaS battery 

life-time increases by CAES contribution which can follow the intra-day component. NaS 

battery life-time increases from 20 years to 30 years for DWT and 25 years to 35 years 

for DFT, while increasing the CAES units from zero to four and NaS units from one to 

four. This result is very beneficial for calculating the net present value of battery 

investment for a long-time project by knowing the number of battery replacements during 

the whole project. 
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Table ‎4-6. NaS life-time in years by DFT and DWT methods 

  1 CAES 2 CAES 3 CAES 4 CAES 

DWT 1 NaS 20.65 23.29 23.63 23.64 

2 NaS 23.62 26.27 26.72 26.72 

3 NaS 26.17 28.73 29.14 29.15 

4 NaS 28.01 30.18 30.55 30.50 

DFT 1 NaS 25.40 28.64 29.02 29.02 

2 NaS 28.89 32.71 33.19 33.29 

3 NaS 30.78 34.32 34.75 34.76 

4 NaS 32.31 35.08 35.34 35.37 

 

The impact of considering 100 MW frequency bias constant on reducing the wind power 

forecast error impacts are shown in Fig. 4-14 to Fig. 4-16. This allowable mismatch is 

considered for the residual of wind power forecast error after implementing energy 

storage units. As shown in Fig. 4-14, the standard deviation of wind power forecast error 

without implementing energy storage is 145 MW for DWT and 131 MW for DFT, which 

was about 200 MW before considering frequency bias constant. It will reduce to 48 MW 

for DWT and 46 MW for DFT by implementing four CAES and NaS units.  

As shown in Fig. 4-15, wind spill energy without energy storage is 320 GWh for DWT 

and 275 GWh for DFT method. As shown in Fig. 4-16, the required back-up energy 

considering frequency bias constant is 300 GWh for DWT and 267 GWh for DFT. 

Hence, by considering the frequency bias constant, wind spill and required back-up 

energy decreases about 300 GWh for the no-storage case. 
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Fig.  ‎4-14. Standard deviation of the residual forecast error considering 100 MW bias for DWT 

and DFT 

 

 

Fig.  ‎4-15. Wind spill energy considering 100 MW bias for DWT and DFT 
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Fig.  ‎4-16. Back-up energy considering 100 MW bias for DWT and DFT 

4.5 Conclusion 

 

This research proposes and compares two signal processing methods (based on DFT and 

DWT) to schedule the hybrid configuration of energy storage technologies (e.g., NaS 

battery and CAES) and conventional generators. The defined DWT method results in 

step-shape components, which are more appropriate for controlling large-scale 

mechanical energy storage units that cannot change their output frequently. Hence, 

scheduling based on DWT results in more spilled wind energy and requires more back-up 

energy comparing to DFT method that varies every interval. 

The proposed approach is based on analyzing impacts of increasing the number of energy 

storage units on reducing spilled wind energy and the required back-up energy. Also, the 

standard deviation of the residual wind power forecast signal is studied, which is an 

important factor for planning the additional system flexibility required. This approach 

avoids oversizing the required energy storage by implementing different combinations of 
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energy storage units and analyzing their impacts. Frequency bias constant is considered 

to reduce the final wind spill and needed back-up energy. 

The detailed properties of CAES and NaS units, including efficiency, rated power and 

energy capacity, DoD (only applied to NaS), required idle time for switching between 

charging and discharging modes (only applied to CAES) are considered. NaS battery 

service life depends on the cycles at each DoD. The NaS battery life-time increases by 

adding more NaS and CAES units.  

The information provided is beneficial for investors in energy storage and wind sectors. 

The overall energy storage sizing depends on the economic issues of energy storage 

operation, investment costs, and wind production tax credit in addition to analyzing the 

technical issues.  
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5. Mitigating Spilled Wind Energy and Forecast Error by 

Energy Storage 

 

Among different challenges related to utilities with high wind energy penetration levels, 

non-correlation between wind and load profiles, and wind power forecast errors have 

been discussed separately in previous chapters. Chapter 3 proposed an optimization 

problem modeling various scenarios for energy storage technologies and demand 

response programs to minimize spilled wind energy due to the non-correlation between 

wind and load profiles ‎[119]. That analysis was based on using actual wind generation for 

scheduling energy storage, demand response, and generation units, while neglecting the 

wind power forecast error. Chapter 4 presented a method based on signal processing 

techniques (e.g. Discrete Wavelet Transform (DWT)) to mitigate the error between hour-

ahead wind power forecast and actual wind power by scheduling Sodium Sulfur (NaS) 

battery and compressed air energy storage (CAES) ‎[120]. That study neglected 

differences between day-ahead and hour-ahead wind power forecasts, while only using 

energy storage technologies for the application of mitigating wind power forecast error. 

The algorithm presented in this chapter is the upgraded and expanded version of what has 

been presented in ‎[119], and ‎[120], while using optimization approach in ‎[119] to 

schedule energy storage technologies day-ahead and then update their schedules in hour-

ahead and 5 minutes ahead by proposed signal processing technique ‎[120]. Contributions 

and novelties of this chapter are summarized as follows.  

 Present an algorithm for optimal operation of energy storage that addresses both 

applications – minimizing spilled wind energy and mitigating wind power 

forecast errors, in three steps. First, schedule energy storage day-ahead to 

minimize spilled wind energy due to non-correlation between load profile and 

day-ahead wind power forecast range by MILP. Then, update energy storage 

operation by DWT to mitigate errors between day-ahead wind power forecast, 

hour-ahead wind power forecast, and actual wind power in two steps. 
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 Compare final spilled wind energy and back-up generation for different energy 

storage units when their operation is not updated, with the case that their 

operation is updated based on the proposed algorithm. 

 Compare final spilled wind energy and back-up generation when different day-

ahead wind power forecast scenarios (e.g., maximum, average, and minimum 

values) are used to schedule energy storage units for day-ahead operation. 

The rest of the chapter is organized as follows. Section 5.1 describes the scheduling 

algorithm. Case studies and conclusion are presented in Section 5.2 and Section 5.3, 

respectively. Section 5.4 discusses the convexity of the proposed mixed integer linear 

programming. 

5.1. Energy Storage Scheduling Algorithm 

 

The algorithm to schedule energy storage units for both applications of spilled wind 

energy and wind power forecast error is presented in three steps as shown in Fig. 5-1. As 

shown these three steps are defined in day-ahead, hour-ahead and 5 minutes ahead 

scheduling, which aligns well with electricity market that dispatch energy in day-ahead, 

hour-ahead, and 5 minutes ahead markets. In the first step, the optimization problem used 

for scheduling energy storage units is a simplified version of the one studied in Chapter 3. 

The algorithm used in steps two and three are based on the algorithm presented in 

Chapter 4. 

The algorithm runs for each day, first energy storage units are scheduled based on day-

ahead wind power forecast by MILP to minimize spilled wind energy. Then, their 

scheduling is updated in two steps using DWT based on the error between day-ahead, and 

hour-ahead wind power forecast, and actual wind power. The input for each step besides 

related wind power is the energy storage operation. Three steps of this algorithm are 

defined in details as follows. 
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Fig.  ‎5-1. Energy storage scheduling algorithm 
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5.1.1. Step 1) Day-ahead scheduling: 

 

The whole system in this study includes fossil-fuel (gas-fired) generation, must-run or 

inflexible generation (power plants without cycling capability generating a constant 

power), wind farms, NaS battery, CAES, and load. As mentioned before, this is a 

simplified version of the optimization problem presented in Chapter 3 which is based on 

the model presented in ‎[119]. The mixed integer linear programming (MILP) is defined 

by following constraints. 

The mixed integer linear programming (MILP) defined in Chapter 3 for modeling energy 

storage units, and gas-fired generation is used in this research with following six 

differences. 

1) Energy constraint: day-ahead wind power forecast is used instead of actual wind 

power in the power balance constraint. This constraint ensures that the total 

generation, equals to the total load, at each time interval as shown in Eq. 5-1. 

tpp

pppppPp

twstNchg

tNdchgtCchgtCdchgtfgtdwfigtl





,,,

,,,,,,

Eq. ‎5-1 

Where, 

tdwfp ,  
: Continuous variable denoting the day-ahead wind power forecast at 

time t (MW). 

tlp ,  
: Continuous variable denoting the quantity of load at time t (MW). 

twsp ,  
: Continuous variable denoting the wind spill power at time t (MW). 

tCchgp ,  
: Continuous variable denoting the CAES charging power at time t 

(MW). 

tCdchgp ,  
: Continuous variable denoting the CAES discharging power at time t 

(MW). 
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tNchgp ,  
: Continuous variable denoting the NaS battery charging power at 

time t (MW). 

tNdchgp ,  
: Continuous variable denoting the NaS battery discharging power at 

time t (MW). 

tfgp ,  
: Continuous variable denoting the quantity of fossil-fuel (gas fired) 

generation at time t (MW). 

igP  
: Inflexible generation (MW). 

2) The system is simulated for a month by running each day separately, while in Chapter 

3 each week was simulated individually. The other difference is related to the time 

interval which is every 5 minutes in this chapter, while it was every 15 minutes in 

chapter 3.  

3) The modeling constraints related to demand response and rebound effect is neglected 

in this chapter and load is assumed to be an inelastic load that has no contract to 

change its profile. It is important to note that, similar to Chapter 3, load forecast error 

is also neglected. 

4) The generation unit in this chapter is an equivalent fossil-fuel (gas fired) generation 

unit and an inflexible generation providing constant power. This generation modeling 

is the simplified version of the one presented in Chapter 3 which includes nuclear, 

coal, and gas fired generation units. The equivalent fossil- fuel generation unit is 

modeled by Eq. 5-2 to Eq. 5-7. 

Equivalent fossil-fuel unit power is limited to its minimum and maximum as shown in 

Eq.5-2. 

tuPpuP tfgfgtfgtthfg  ,,

max

,,

min
                               Eq. ‎5-2 

Where, 

tfgp ,  
: Continuous variable denoting fossil-fuel unit generation at time t 

(MW). 

tfgu ,  
: Binary variable denoting whether fossil-fuel unit is on or off at time 

t; 1 if on, 0 otherwise. 
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min

fgP  
: Minimum generation of fossil-fuel unit (MW). 

max

fgP  
: Maximum generation of fossil-fuel unit (MW).  Thermal unit minimum generation 

The relationship among binary variables for the equivalent fossil-fuel unit model 

denoting the starting and stopping indicators is shown in Eq. 5-3. While Eq. 5-4 shows 

that starting or stopping indicators happen once at a time. 

1,1,,,,   tuuzy tfgtfgtfgtfg                        Eq. ‎5-3 

tzy tfgtfg  ,1,,                                              Eq. ‎5-4 

Where, 

tfgu ,  
: Binary variable denoting whether fossil-fuel unit is on or off at time

t ; 1 if on, 0 otherwise. 

tfgy ,  
: Binary variable denoting the starting indicator of fossil-fuel unit 

start up at time t ; if 𝑢𝑓𝑔,𝑡 = 1  and 𝑢𝑓𝑔,𝑡−1 = 0, then 𝑦𝑓𝑔,𝑡 = 1, 

tfgz ,  
: Binary variable denoting the stopping indicator of fossil-fuel unit at 

time t ; if 𝑢𝑓𝑔,𝑡 = 0  and 𝑢𝑓𝑔,𝑡−1 = 1, then 𝑧𝑓𝑔,𝑡 = 1, 

The equivalent fossil-fuel unit ramp rate constraint is shown in Eq. 5-5. 

tdPtppdP fgtfgtfgfg   ,/)( 1,,                   Eq. ‎5-5 

Where, 

fgdP  
: Fossil-fuel unit ramp rate limit (MW/min). 

The equivalent fossil-fuel unit minimum up time constraint is stated in Eq. 5-6. 

tyTu tfgupfg

Tt

tt

tfg

upfg






,,

min

,

1

'

',

min
,

                          Eq. ‎5-6 

Where, 
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min

,upfgT  
: Fossil-fuel unit minimum up time (min). 

The equivalent fossil-fuel unit minimum down time constraint is shown in Eq. 5-7. 

tzTu tfgdnfg

Tt

tt

tfg

dnfg






,)1( ,

min

,

1

'

',

min
,

                                Eq. ‎5-7 

Where, 

min

,dnfgT  
: Fossil-fuel unit minimum down time (min). 

5.1.2. Step 2) Hour-ahead updating: 

 

The DWT method proposed in ‎[120] is used to decompose the error between day-ahead 

and hour-ahead wind power forecast powers for scheduling CAES, and NaS battery. 

First, the error signal is derived as shown in Eq. 5-8. 

tppp thwftdwftfe  ,,,,1
                                      Eq. ‎5-8 

Where, 

tfep ,1
 

: Error between day-ahead and hour-ahead wind power forecast 

powers at time t (MW). 

tdwfp ,
 

: Day-ahead wind power forecast at time t (MW). 

thwfp ,
 

: Hour-ahead wind power forecast at time t (MW). 

Then, high, medium, and low frequency components are derived by using the DWT 

method. The difference between this research and the method proposed in ‎[120] are 

defined below. 

1) First, energy storage units are prescheduled by day-ahead wind power forecast, rather 

than only be used for mitigating forecast error. This modifies the control signal of 

energy storage units which are shown in Eq. 5-9 and Eq. 5-10 for CAES and NaS 
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battery, respectively. As shown in Eq. 5-9, the CAES control signal is the CAES day-

ahead scheduling plus the medium frequency component of the error signal derived in 

Eq. 5-8. 

tpppp tmftCchgtCdchgtC  ,)( ,,,,
                          Eq. ‎5-9 

Where, 

tCp ,
 

: CAES control signal at time t (MW). 

tmfp ,
 

: Medium frequency component at time t (MW). 

tCchgp ,
 

: CAES charge power derived from step1 at time t (MW). 

tCdchgp ,
 

: CAES discharge power derived from step1 at time t (MW). 

2) Then this control signal Eq. 5-9 is the new input to the algorithm proposed in [120] 

that applies CAES properties such as power and energy limits, ramp rate, and 

required idle time at each time interval. The output is CAES discharge and charge 

power at each time interval. Then, the NaS battery control signal is determined as the 

summation of its day-ahead scheduling plus high frequency component and also the 

difference between CAES operation and its initial control signal as shown in Eq. 5-

10. 

tpppppp tCtCAESthftNchgtNdchgtN  ),()( ,,,,,,
       Eq. ‎5-10 

Where, 

tNp ,
 

: NaS control signal at time t (MW). 

thfp ,
 

: High frequency component at time t (MW). 
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tNchgp ,
 

: NaS charge power derived from step1 at time t (MW). 

tNdchgp ,  
: NaS discharge power derived from step1 at time t (MW). 

3) The control signal presented in Eq. 5-10 is the new input to the algorithm proposed in 

[120] that applies NaS battery properties such as power limit, energy capacity limit, 

and state of charge limit. The output is NaS discharge and charge power at each time 

interval. 

5.1.3. Step 3) 5minute-ahead updating: 

 

This step is the same as step 2, with following differences. First, the error signal is the 

difference between the hour-ahead wind power forecast and the actual wind power as Eq. 

5-11. 

tppp tawthwftfe  ,,,,2
                                       Eq. ‎5-11 

Where, 

tfep ,2
 

: Error between hour-ahead and actual wind power at time t (MW). 

tawp ,
 

: Actual wind power at time t (MW). 

Second, the energy storage control signal is the summation of energy storage scheduling 

derived from step 2 and the related decomposed component of error signal in Eq. 5-11 by 

DWT. 

5.1.4. Step 4) calculating final spilled wind energy 

 

The residual power is calculated as shown in Eq. 5-12, which equals to the total 

generation (inflexible generation, thermal units, energy storage discharging power, wind 

power, and low-frequency component) minus total load (load, and energy storage 

charging power) at each time interval. 
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tppppppPp tltlftchgtdchgtgftawigtresidual  ,,,,,,,,      Eq. ‎5-12 

Where, 

tresidualp ,  
: Residual power at time t (MW). 

igP
 

: Inflexible (must-run) generation (MW). 

tgfp ,
 

: Gas-fired generation at time t (MW). 

tlfp ,
 

: Low frequency components derived from DWT of step 2 

and step 3 at time t (MW). 

tlp ,
 

: Load at time t (MW). 

Spilled wind energy and back-up generation are the positive and negative quantities of 

this residual signal, respectively.  

5.2. Case Studies and Discussions 

 

To showcase the applicability of the proposed approach, different case studies based on 

wind and load data with 5-minute interval, obtained from the Bonneville Power 

Administration (BPA) in 2013 are investigated ‎[54]. BPA day-ahead wind power is 

forecasted in a range identified by maximum, average, and minimum values as shown 

Fig. 5-2. The hour-ahead wind power forecast and actual wind power are also depicted in 

Fig. 5-2 for the same day. This figure shows the problem addressed by the proposed 

algorithm that mitigates errors between day-ahead forecast, hour-ahead forecast and 

actual wind power while energy storage units are scheduled based on day-ahead wind 

power forecast at its first step. 

BPA peak load in 2013 is 10.6 GW, and installed wind capacity is 4.5 GW. Wind energy 

penetration is 20% in BPA, while neglecting net interchange. Nuclear generation and gas-

fired generation are considered in this research to be able to provide 100% of annual peak 

load to guarantee system reliability. Nuclear generation is considered to be a must-run 

generation providing 20% of peak load with 95% availability. Hence, nuclear must-run 
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power is 2 GW. Gas-fired generation parameters are shown in Table 5-1. Modeling 

parameters for energy storage technologies including CAES and NaS battery are 

presented in Table 5-2. 

 

Fig.  ‎5-2. A day in BPA 2013 showing actual wind generation, hour-ahead wind power forecast, 

and day-ahead wind power forecast range. 

Different case studies are investigated by simulating BPA data for one month (April) in 

2013 with 5-minute time interval. Characteristics of errors between maximum, average, 

minimum day-ahead wind power forecasts, and hour-ahead wind power forecast with 

actual (real-time) wind power is extracted and shown in Table 5-3. As shown, if energy 

storage units are only used for day-ahead scheduling, extra energy storage units are 

required to be installed for mitigating this error. 

Table ‎5-1. Gas-fired Generation parameters ‎[118] 

Capacity (GW) 9 

Min Stable Generation (%) 20 

Ramp up/down (% of installed capacity per min) 8 

Min up/down Time (hours) 2 
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Table ‎5-2. Large-scale energy storage parameters ‎[12], ‎[13] 

Energy Storage Technology CAES NaS 

Power Capacity (MW) 300 50 

Energy Capacity (MWh) 6000 300 

Ramp Rate (MW/min) 18 --- 

Efficiency (%) 70 75 

Required Idle Time to Switch Modes 

(min) 

20 --- 

Max and Min State of Charge 1,0 0.9,0.1 

 

Table ‎5-3. Wind Power Forecast Error Analysis 

 Mean 

(MW) 

Sigma 

(MW) 

Max 

(MW) 

Min 

(MW) 

Actual wind minus maximum day-

ahead wind power forecast 

-317 1131 3782 -3836 

Actual wind minus average day-

ahead wind power forecast 

-12 1121 3891 -3609 

Actual wind minus minimum day-

ahead wind power forecast 

310 1130 3974 -3374 

Actual wind minus hour-ahead 

wind power forecast 

34 236 1225 -1316 

 

Proposed algorithm updates day-ahead energy storage operation to be able to mitigate 

wind power forecast errors. Hence, the objective of energy storage scheduling based on 

this algorithm is to address both challenges of systems with high wind energy penetration 

levels: spilled wind energy due to non-correlation between load and wind power forecast 

profile, as well as, wind power forecast errors. The results of this algorithm for final 

spilled wind energy of different energy storage technologies, and different scenarios are 

shown in Fig. 5-3. 
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As shown in Fig. 5-3, If day-ahead scheduling was based on actual wind data rather than 

day-ahead wind forecast then wind spillage would be 280 GWh. On the other hand, if 

day-ahead wind power forecast is used, then wind spillage reached 372 GWh. Inserting 

one NaS battery and one CAES while following the proposed updating algorithm results 

in 257 GWh. But, if energy storage units are not updated in hour-ahead and 5 minute 

ahead while being scheduled based on day-ahead wind power forecast, then wind spillage 

would have been 301 GWh. The ideal scenario for one NaS battery and one CAES is the 

result of scheduling based on actual wind generation shown in grey columns which 

results in 142 GWh. By increasing the number of energy storage units, wind spillage 

decreases as shown in Fig. 5-3. 

 

Fig.  ‎5-3. Final spilled wind energy based on different scenarios 

5.3. Conclusion 

 

This chapter presents an algorithm to optimally operate energy storage units based on the 

day-ahead wind power forecast and then update it to mitigate wind power forecast errors. 

This scheduling uses energy storage technologies to mitigate both high wind energy 

penetration challenges - spilled wind energy and wind power forecast error. 
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Tradeoffs between different algorithms and number of energy storage technologies are 

investigated on final spilled wind energy. The proposed algorithm results in less wind 

spillage due to updating energy storage scheduling based on the proposed algorithm. 

Hence, updating based on the proposed algorithm reduces the need to install more energy 

storage units by updating energy storage operation based on wind power forecast error 

signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

5.4. Analyzing Convexity of Proposed Optimization Problem 

 

The optimization problem proposed is a mixed integer linear programming. Hence, it has 

both continuous and integer variables, but all constraints are presented in the linear 

format. All integer parameters in the model are related to on or off values which are 

decision variables presented by binary values (zero or one). This type of optimization 

problem is non-convex by nature due to having integer values. The solution to solve this 

type of optimization problem is to use the branch-and-bound method ‎[116] that is also 

used by IBM CPLEX software.  

The output of the optimization problem is the vector called x for each time interval as 

shown in Eq. 5-15. It contains both continuous and integer variables as shown below. As 

shown, the vector x at each time interval has six continuous variables and eight integer 

variables. On the other hand, the optimization problem presented in this chapter is 

simulated for a day with 5 minutes time interval. This results in 288 time intervals. As a 

result, each optimization has 1728 (288 times 6) continuous variables and 2304 (288 

times 8) integer variables.   

txxx tIntegertContinoust  ],[ ,,                            Eq. ‎5-13 

tppppppx twstNchgtNdchgtCchgtCdchgtfgtContinous  ],,,,,[ ,,,,,,,   Eq. ‎5-14 

tzyux tfgtfgtfgtCtCtCtCtCtInteger  ],,,,,,,[ ,,,,,,,,,     Eq. ‎5-15 

Where, 

tx  
: Output of optimization problem for each time interval t 

tContinousx ,  : Continuous component of the optimization problem output for each 

time interval t 

tIntegerx ,  : Integer component of the optimization problem output for each time 

interval t 
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The fact that the optimization problem has reached its optimal solution when starting 

from different weeks of the year shows the convex nature of this problem. Also, random 

initial values are given to the optimization solver to see if the objective function values 

differ or not, as defined below. 

Random initial variables are derived to be within the upper and lower limits of each 

variable, as shown in Eq. 5-18. Random variables have the uniform distribution function 

as defined for random function in MATLAB. To extract random binary values, the 

random variable between zero and one is rounded which results in 0 if the random 

variable is less than 0.5, otherwise it would be 1.  

txxx tInteger
rand

tContinous
rand

t
rand  ],[ ,,                            Eq. ‎5-16 

txUxsizerandx tContinoustContinoustContinous
rand  )]()).(([ ,,,          Eq. ‎5-17 

txsizerandroundx tIntegertInteger
rand  )))]((([ ,,                    Eq. ‎5-18 

Where, 

t
randx  

: Random initial input of optimization problem for each time interval t 

tContinous
randx ,  

: Random initial continuous component of the optimization problem 

input for each time interval t 

tInteger
randx ,  

: Random initial integer component of the optimization problem input for 

each time interval t 

)( jrand  : Random vector with uniform distribution function with size j 

)(xU  : Upper limit of optimization problem output as x 

)(yround  : Round function of input y 

The objective function for 100 random initial input vectors is simulated for three days 

with the highest wind energy penetration level. The objective function for all these initial 

values for each day is plotted in Fig.5-5 for 170
th

 , 162
th

, and 110
th

 days of the year which 

have the first three highest wind energy penetration levels. The optimization problem is 

solved when there is one 50 MW NaS battery and one 300 MW CAES in the system. As 
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shown, all 100 random vectors result in the same value for the objective function for each 

week that is shown in three lines for each week. This shows the convexity of the 

proposed mixed integer linear programming. 

 

Fig.  ‎5-4. Objective functions for random initial values of three different weeks 
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5.5. The Branch-and-Bound Method 

 

In IBM CPLEX, integer programming is solved by using the technique called the branch-

and-bound method. The branch-and-bound method finds the optimal solution to an 

integer programming by efficiently‎ enumerating‎ the‎ points‎ in‎ a‎ sub‎ problem’s‎ feasible‎

region. A solution obtained by solving a sub problem in which variables have integer 

values is a candidate solution. Because the candidate solution may be optimal, the 

candidate solution must be kept till a better feasible solution to the integer programming 

(if any exists) is found ‎[116]. 

The key aspects of the branch-and-bound method for solving integer programming 

problems are summarized as follows ‎[116]: 

Step 1) if it is unnecessary to branch on a sub problem, then it is fathomed. The following 

three situations result in a sub problem being fathomed: (1) The sub problem is 

infeasible; (2) the sub problem yields an optimal solution in which all variables have 

integer values; and (3) the optimal value of the objective function for the sub problem 

does not exceed the current value of the objective function for the best candidate to date. 

Step 2) a sub problem may be eliminated from consideration in the following situations: 

(1) The sub problem is infeasible; (2) the current value of the objective function for the 

best candidate to date is at least as large as the value of the objective function for the sub 

problem. 

In a mixed integer programming, some variables are required to be integers and others 

are allowed to be either integers or non-integers. To solve a mixed integer programming, 

using the branch-and-bound method, modify the method described by branching only on 

variables that are required to be integers. Also, for a solution to a sub problem to be a 

candidate solution, it needs only assign integer values to those variables that are required 

to be integers ‎[116]. 

To illustrate, let us solve the following mixed integer programming ‎[116]: 

 



106 
 

212max xxz                                         Eq. ‎5-19 

s.t.         825 21  xx                                            Eq. ‎5-20 

321  xx                                                Eq. ‎5-21 

Integerxxx :;0, 121                                   Eq. ‎5-22 

Solving the integer programming begins with linear programming relaxation (this method 

solve the problem while assuming all variables are allowed to be either integers or non-

integers). The optimal solution of the linear programming relaxation is z=11/3, x1=2/3, 

x2=7/3. Because x2 is allowed to be fractional, branching on x2 is discontinued; otherwise, 

points having x2 values between 2 and 3 would be excluded, which is not wanted. Thus, 

branching on x1 is continued.  This yields sub problems 2 and 3 in Figure 5-4. 

 

Fig.  ‎5-5. Branch-and-bound tree for mixed integer programming ‎[116] 

Next sub problem 2 is chosen to solve. The optimal solution to sub problem 2 is the 

candidate solution z = 3, x1 = 0, x2 = 3. Then, sub problem 3 is solved and the candidate 

solution z = 7/2, x1 = 1, x2 = 3/2 is obtained. The z-value from the sub problem 3 
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candidate exceeds the z-value for the sub problem 2 candidate, so sub problem 2 can be 

eliminated from consideration, and the sub problem 3 candidate (z =7/2, x1 = 1, x2 =3/2) 

is the optimal solution to the mixed linear programming. 
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6. Summary, Conclusion, and Future Work 

6.1. Summary  

 

The objective of the dissertation is to propose a planning tool for electric utility operators 

to provide an insight into the sizing and operation of grid-scale energy storage equipment, 

and demand response programs to mitigate challenges of power systems with high wind 

energy penetration levels. The proposed planning tool comprises algorithms that are 

designed to schedule energy storage units and demand response programs to minimize 

wind spillage and mitigate wind power forecast errors. The three main contributions and 

novelties of this dissertation are summarized below: 

First, different energy storage technologies and demand response options are taken into 

account in the proposed mixed integer linear programming method to minimize wind 

spillage due to the non-correlation between wind and load profiles. The objective 

function is to minimize the wind spillage due to the non-correlation between wind and 

load profiles. The contribution is the detailed model of each energy storage technology, 

including CAES, PHES, and different large-scale batteries including NaS, Lead acid, and 

Vanadium redox batteries. DR is scheduled prior to high wind and low load periods, to 

adjust its rebound occurring at this duration, to reduce wind spillage. 

Second, the algorithm based on signal processing techniques is proposed to schedule 

different types of energy storage technologies and conventional generation units for 

mitigating the wind power forecast error. The idea is to decompose the wind power 

forecast error signal using signal processing techniques (e.g. Discrete Wavelet Transform 

and Discrete Fourier Transform) to time-varying periodic components that have specific 

cycling, which is appropriate for the operation of each energy storage technology and 

conventional units. 

Third, an algorithm is presented to mitigate the spilled wind energy due to non-

correlation as well as wind power forecast error impacts in day-ahead, hour-ahead and 

five-minute ahead situations. This algorithm uses day-ahead wind power forecast and 
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load data to schedule energy storage units for minimizing wind spill energy due to the 

non-correlation between these two profiles. Then, energy storage scheduling is updated in 

the hour-ahead time frame using proposed signal processing techniques to mitigate the 

error between day-ahead wind power forecast and hour-ahead wind power forecast 

profiles. Finally, it is updated in 5 minutes ahead to mitigate the error between hour-

ahead wind power forecast and actual wind power generations using the same signal 

processing techniques. 

6.2. Conclusion 

 

High renewable energy penetration is designed to achieve the goal of reducing carbon 

emissions through proactive environmental and energy policies. The leading source for 

renewable electricity generation today is wind energy. But the downside is spilled wind 

energy resulting from the non-correlation between wind and load profiles. The stochastic 

nature of wind energy, causing wind power forecast error, is another challenge that 

makes high wind energy penetration cases more complicated to manage. The planning 

tool proposed in this dissertation mitigates these two challenges as highlighted by the 

following findings and conclusions. 

The amount of wind spill energy depends on wind power generation, load level, and 

generation mix as presented in this dissertation. The generation mix studied in this 

research includes nuclear, coal, and natural gas. Since nuclear and coal generation units 

have higher capacity factors and lower cycling capability as compared to a natural gas 

generation units, greater amount of nuclear and coal generation results in higher wind 

spill energy. Energy storage and demand response are flexible resources that can be 

scheduled to reduce wind spill energy. 

A‎system’s‎ability‎ to‎minimize‎ the‎wind energy spillage depends on the type of energy 

storage technology used, as well as, the characteristics of demand response program 

(contract) deployed. Energy storage technologies with higher energy capacity, like 

CAES, are able to absorb more energy, which results in less spilled wind energy. But, 

these energy storage technologies have their own barriers to cope with intermittent 
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variable wind generation, such as required idle time to switch between the charge and 

discharge modes. Hence, combination of large-scale batteries with mechanical energy 

storage technologies as PHES and CAES is a good option that can benefit from 

characteristics of both technologies. 

In high wind energy penetration scenarios, the peak demand is not the usual peak load. It 

rather depends on the net load, which is the system load minus the wind output. As a 

result, the conventional approach of using demand response at peak load time just to 

reduce peak load needs to be changed. This dissertation proposes a new approach for 

demand response implementation by matching the rebound effect to coincide with a high 

wind power output period, thus potentially reducing wind spill energy. This research 

shows that if DR is scheduled before high wind generation periods, then its rebound 

during the high wind generation period can reduce spilled wind energy significantly. The 

amount of this reduction depends on the rebound effect of demand response and the 

frequency of demand response events, which are based on the contract between a grid 

operator and energy customers. 

The two signal processing techniques proposed in this dissertation are Discrete Wavelet 

Transform (DWT) and Discrete Fourier Transform (DFT). The proposed DWT method 

decomposes the wind power forecast error signal to components with step shape (which 

do not change at each time interval and remain constant for a specific duration). The 

trade-off between scheduling energy storage technologies with DWT as compared to 

DFT is more spilled wind energy and required back-up generation, but the DWT result is 

more appropriate signal to control mechanical energy storage technologies as compared 

to the DFT result. This approach avoids oversizing the required energy storage by 

implementing different combinations of energy storage units and analyzing their impacts. 

Frequency bias constant is considered to reduce the final wind spill and needed back-up 

energy. 

Finally, an algorithm is presented to optimally operate energy storage units based on the 

day-ahead wind power forecast while updating it to mitigate wind power forecast errors. 

Tradeoffs between different case studies such as energy storage technologies are 

investigated on final spilled wind energy and back-up generation required. More energy 
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storage technologies and using minimum day-ahead wind power forecast have better 

overall results in terms of lower spilled wind energy as compared to the case when 

energy storage is not updated. This algorithm reduces the need to install more energy 

storage units by updating energy storage operation based on wind power forecast error 

signals. 

The information provided in this dissertation is beneficial for investors in energy storage 

and wind sectors. The overall energy storage sizing depends on the economic issues of 

energy storage operation, investment costs, and wind production tax credit in addition to 

analyzing the technical issues.  

6.3. Future Work 

 

The proposed planning tool can facilitate additional energy storage and demand response 

research to mitigate challenges in utilities with high wind energy penetration levels. This 

dissertation solved the optimization problem to minimize spilled wind energy using 

branch-and-bound method. One future work is to elaborate more about the proposed 

optimization problem. For example, minimax algorithm, which is a decision rule in game 

theory, can be used for solving other complex objective functions to minimize the 

possible loss for the worst case (maximum loss) scenario. Other possible objective 

functions are stated below. 

The dissertation has analyzed the technical part of this issue while neglecting required 

market infrastructure and economic tradeoffs. One potential future work may be to 

evaluate the impact of energy storage and demand response on increasing wind energy 

penetration from the economic point of view while considering all investment and 

operational costs of different energy storage technologies and demand response 

programs. 

This dissertation has considered high wind penetration challenges and scheduling of both 

energy storage and demand response from the grid (utility) operator point of view. 

Several possible future research works can come from looking at this problem from 
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distribution system level, to accommodate a higher level of renewable energy penetration 

in distribution networks. 
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