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ABSTRACT

Geoscientists and engineers are increasingly using denser arrays for continuous seismic mon-9

itoring, and often turning to ambient seismic noise interferometry for low-cost near-surface10

imaging. While ambient noise interferometry greatly reduces acquisition costs, the com-11

putational cost of pair-wise comparisons between all sensors can be prohibitively slow or12

expensive for applications in engineering and environmental geophysics. Double beam-13

forming of noise correlation functions is a powerful technique to extract body waves from14

ambient noise, but it is typically performed via pair-wise comparisons between all sensors15

in two dense array patches (scaling as the product of the number of sensors in one patch16

with the number of sensors in the other patch). By rearranging the operations involved in17

the double beamforming transform, we propose a new algorithm that scales as the sum of18

the number of sensors in two array patches. Compared to traditional double beamforming19

of noise correlation functions, the new method is more scalable, easily parallelized, and does20
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not require raw data to be exchanged between dense array patches.21

INTRODUCTION AND PRIOR WORK

Recent years have seen the rapid development of new technologies for using off-the-shelf22

MEMS accelerometers, low-cost and low-power nodes, and fiber optics repurposed as dense23

seismic arrays (Evans et al., 2014), (Manning et al., 2018), (Martin et al., 2018). These new24

acquisition techniques have enabled orders of magnitude denser data acquisition particularly25

for long-term monitoring, and are pushing the limits of seismic processing for near-surface26

engineering geophysics. An increasingly popular technique for near-surface imaging with27

these low-cost, dense systems is the use of ambient noise interferometry, which estimates28

signals similar to active seismic source data by performing crosscorrelations on passively29

recorded data responding to random seismic sources and averaging results over many win-30

dows of time (Bensen et al., 2007). In the past, ambient noise interferometry has been pri-31

marily applied at low frequencies (below 1 Hz) with sparse sensor spacing and low-frequency32

sampling in time. However, we wish to image smaller features in the shallow subsurface33

for many applications, and this requires higher frequencies which must be acquired at high-34

density, and several studies have investigated the use of ambient noise interferometry on35

dense DAS arrays already (Ajo-Franklin et al., 2015), (Dou et al., 2017), (Martin et al.,36

2018). Because the cost of calculating crosscorrelations between every pair of sensors grows37

quadratically with the number of sensors, reducing the distance between sensors by a factor38

of 10 (say to move from 100 meter spaced geophones in a node array to 10 meter spaced39

channels in a DAS array) results in a factor of 100 more computation for crosscorrelations.40

This means that packing sensors more densely is a particularly impactful issue in ambient41

noise processing.42

2



Sometimes it is necessary to calculate noise correlation functions. When picking arrival43

times for tomographic imaging of the near surface, these noise correlation functions must44

have been calculated to determine pick times. In such instances, calculations may be sped45

up by performing all crosscorrelations on GPUs (Fichtner et al., 2017), and can be further46

sped up by performing crosscorrelations of data in a compressed matrix-factorized form47

if some information loss is accepted (Martin, 2019). Additionally, having a small sparse48

subset of pairs that have crosscorrelations calculated can be useful for pinpointing quality49

control issues related to local noise sources, which are of particular concern in engineering50

geophysics around infrastructure and in urban areas (Nakata et al., 2011), (Nakata et al.,51

2015), (Huot et al., 2017), (Martin et al., 2018).52

There is reason to calculate noise correlation functions in some cases, but in many53

cases, such as surface wave dispersion analysis through multichannel analysis of surface54

waves (MASW) (Park et al., 2007), or the calculation of double beamforming transforms55

(Boué et al., 2013) the actual goal of this calculation is a transform of the noise correlation56

functions. In MASW, for instance, we calculate the dispersion image: the Fourier transform57

of a τ -p transform of each noise correlation function virtual source gather. Data from N58

receivers is compressed into one value per frequency and slowness pair. By reorganizing59

the calculation, it is possible to perform calculations that go directly from raw data to a60

dispersion image in O(N) calculations, skipping the O(N2) explicit calculations of pair-wise61

noise correlation functions (Martin, 2018). These new algorithms show that for ambient62

noise interferometry to meet the expectation of low-cost near-surface imaging on modern,63

large, dense arrays, we must be willing to let go of the explicit calculation of all noise64

correlation functions.65

Consider two array patches, array patch A with NA sensors, and array patch B with NB66
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sensors. This paper proposes rearranging the calculations in the double beamforming trans-67

form b(t,uA,uB), evaluated at multiple combinations of time lags, t, and two-dimensional68

slownesses u across the two arrays, which would traditionally be done by slant-stacks of their69

averaged noise correlation functions following ambient noise interferometry. The rearranged70

calculations yield a new algorithm that:71

1. is flexible for incorporating a variety of preprocessing workflows (and easily adapted72

for interferometry by crosscorrelation or deconvolution),73

2. avoids explicitly calculating noise correlation functions,74

3. scales as the sum of the number of sensors in both array patches (in serial),75

4. requires just 2 rounds of communication in parallel per time window,76

5. does not require any raw data to be centralized or shared between the two arrays77

The last point is particularly important when seismic arrays are managed by different78

stakeholders, or when a site’s internet connectivity or power resources are limited.79

INTRODUCTION TO DOUBLE BEAMFORMING

Double beamforming has proven useful in better separating body wave energy from surface80

wave energy in ambient noise interferometry between patches of sensors. This has enabled81

higher-resolution subsurface imaging without the expense of seismic source crews (Boué82

et al., 2013), (Boué et al., 2014), even in urban areas where active source seismic surveys83

are often not an option (Nakata et al., 2015). Consider two arrays of sensors, A and B.84

Array A has NA sensors and array B has NB sensors. Let dn(xA,i, t) be an ambient seismic85

noise data trace recorded at time t in the window tn < t < tn+1 at the ith sensor in array A86
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at position xA,i, perhaps with tapers near the ends and some minimal preprocessing applied87

as described in (Bensen et al., 2007). Denote the Fourier transform of the data in the nth88

time window as d̂n(x, ω) = Ft (dn(x, t)). There are three types of interferometry that may89

be done between any receiver pair in the nth time window: crosscorrelation, crosscoherence,90

and deconvolution. For crosscorrelation:91

cn(T,xA,k,xB,j) =

∫ tn+1

tn
d(t,xA,k)d(xB,j , t+ T )dt (1)

so the time series cn(T,xAk
,xBj ) represents the noise correlation function of the nth time92

window of the kth receiver in array A with the jth receiver in array B at time-lag T . We93

refer to the cn(T,xA,k,xB,j) time series as a these sensors’ noise correlation function for the94

nth time window.95

Let uA and uB represent the apparent slowness of a ray path at array A and B, respec-96

tively. To calculate the double beamforming transform of the pair-wise average crosscor-97

relations (only inter-array correlation, none within either array) over Nw windows of time,98

we perform a τ − p transform with movout across both arrays:99

b(t,uA,uB) =
NA∑
k=1

NB∑
j=1

Nw∑
n=1

cn(t− τ(xA,k,uA) + τ(xB,j ,uB),xA,k,xB,j)

NwNANB
(2)

where τ(x,u) is the time lag of a signal from some an origin in the middle of its array100

patch based on the relative location of the point x from the origin and the slowness being101

tested. If one were to calculate all needed pairwise-crosscorrelations ĉn of noise traces102

with Nt samples in the time domain with Nτ time lags of interest, this would require103

O(NANBNtNτ ) operations per time window, followed by scanning over all uA and uB slant104

stacks of interest.105
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DERIVATION OF NEW ALGORITHM

Like the fast dispersion image algorithm in (Martin, 2018), we will separate factors between106

different sensor pairs by calculating the double beamforming transform in the frequency do-107

main (and after calculation, performing an inverse Fourier transform to recover b(t,uA,uB).108

Starting from equation 2 rewritten in the frequency domain, one can use fundamental prop-109

erties of crosscorrelations (frequency-wise multiplication with a complex conjugate) and the110

Fourier transform to rewrite the frequency domain double beamforming transform between111

arrays A and B:112

b̂(ω,uA,uB)

= Ft

NA∑
k=1

NB∑
j=1

Nw∑
n=1

cn(t− τ(xA,k,uA) + τ(xB,j ,uB),xA,k,xB,j)

NwNANB


=

NA∑
k=1

NB∑
j=1

Nw∑
n=1

ĉn(ω,xA,k,xB,j)

NwNANB
e2πi(−τ(xA,k,uA)+τ(xB,j ,uB))ω

=
Nw∑
n=1

NA∑
k=1

e−2πiτ(xA,k,uA)ω
NB∑
j=1

ĉn(ω,xA,k,xB,j)

NwNANB
e2πiτ(xB,j ,uB)ω

=
1

Nw

Nw∑
n=1

NA∑
k=1

e−2πiτ(xA,k,uA)ω
NB∑
j=1

d̂n(ω,xA,k)

NA

d̂∗n(ω,xB,j)

NB
e2πiτ(xB,j ,cB)ω

=
1

Nw

Nw∑
n=1

NA∑
k=1

d̂n(ω,xA,k)

NA
e−2πiτ(xA,k,cA)ω

NB∑
j=1

d̂∗n(ω,xB,j)

NB
e2πiτ(xB,j ,cB)ω

 (3)

The first step is to rewrite a time-lag as a frequency-domain phase-shift, then split up that113

phase shift into parts specific to array A and parts specific to array B. The noise correlation114

function c can be replaced with the (preprocessed) data d involved in the crosscorrelation,115

then every piece of data and information specific to array A can be factored separately from116

array B. In this way, it is clear that within each time step, there is one multi-dimensional117

array (Nω values by the number of u values of interest) that need to be calculated for array118

A, and another for array B, then these two arrays will be multiplied element-wise with an119
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outer product (assuming uA and uB are scanned over the same range of slownesses).120

PROPOSED ALGORITHM

The derivation in the previous section naturally suggests an algorithm that processes data121

one time window and one sensor at a time. At time window n one should calculate a tensor122

of phase-shifted and stacked data for array A, and a similar tensor for array B:123

Rn,A(ω,uA) =
NA∑
k=1

d̂n(ω,xA,k)

NA
e−2πiτ(xA,k,uA)ω (4)

124

R∗
n,B(ω,uB) =

NB∑
j=1

d̂∗n(ω,xB,j)

NB
e2πiτ(xB,j ,uB)ω (5)

We refer to the calculation of each of these Rn factors as the phase 1 calculation. Then125

in the phase 2 calculation these two Rn tensors can be multiplied as an outer product to126

yield the 5-dimensional double beamforming transform within the nth time window for each127

frequency, slowness on array A, and slowness on array B: b̂n(ω,uA,uB). For each slowness128

pair, we calculate the inverse Fourier transform of b̂n(ω,uA,uB) then restrict to the times129

of interest bn(t,uA,uB). As with any ambient noise processing, we will need to average130

the results over many time windows to obtain a reliable estimate of the overall double131

beamforming transform, so we will repeat this process for each of Nw time windows, as132

outlined in the following algorithm:133
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Algorithm 1 Serial Double Beamforming Algorithm

Initialize b(t,uA,uB) with zeros

for time window n = 1, . . . , Nw do

Phase 1 calculation on each array patch:

for each array p ∈ {A,B} do

Initialize Rn,p(ω,up) with zeros

for each sensor k = 1, . . . , Np in array p do

Preprocess, take FFT, yielding d̂n(ω,xp,k)

Rn,p(ω,up) += 1
Np
d̂n(ω,xp,k)e

−2πiτ(xp,k,up)ω for each (ω,up)

end for

end for

Phase 2 calculation comparing the two array patches:

for each (uA,uB) of interest do

β(ω) = Rn,A(ω,uA)R∗
n,B(ω,uB)

b(t,uA,uA) += IFFT (β(ω)) restricted to times of interest

end for

end for

Scale b(t,uA,uB) by 1
Nt

for each (ω,uA,uB)

In practice b̂(ω,uA,uB) gets very large if the number of frequencies and test slownesses134

used is large, so calculating the product of RA and RB and taking the inverse Fourier135

transform one test-slowness pair at a time greatly reduces memory requirements compared136

to calculating all of b̂(ω,uA,uB) prior to calculating the inverse Fourier transform.137
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Complexity Analysis138

Here, we analyze the cost of traditional double beamforming and of the new proposed al-139

gorithm, both in serial. We will only consider the cost of analysis for a single time window140

where each trace has Nt time samples. We are interested in Nτ time lags in our crosscor-141

relations and double beamforming. Again, we will consider array patch A with NA sensors142

and array patch B with NB sensors. Denote the number of slownesses of interest for each143

array as NuA and NuB and the number of angles of interest as NθA and NθB.144

145

As a baseline, consider the traditional algorithm for double beamforming. The first step146

in traditional double beamforming is to calculate all needed crosscorrelations, which would147

cost O(NANBNtNτ ) operations if done in the time domain, and O(NANBNt logNt) opera-148

tions if done in the frequency domain. Then, the double beamforming is performed for Nτ149

time lags based on NuANθANuBNθB slowness combinations, each with contributions from150

NANB noise correlation functions, leading to a total cost of O(NANBNuANθANuBNθBNτ )151

for the double beamforming transform after crosscorrelation.152

Now consider the new double beamforming algorithm. First, phase 1 operates on array153

patch A, looping through NA sensors and for each of O(Nt) frequencies (may be trun-154

cated to nearest power of 2 for efficiency) and NuANθA slownesses calculating the phase155

shifted frequency-domain contribution to RA. The cost of phase 1 for array patch A is156

O(NANuANθANt). Similarly, the cost of phase 1 for array patch B is O(NBNuBNθBNt).157

In phase 2, the algorithm loops over NuANθANuBNθB slowness combinations, and for each158

slowness combination performs O(Nt) operations to multiply part of RA and RB then per-159

forms O(Nt logNt) operations to calculate the inverse Fourier transform. This ultimately160

9



leads to an O(NuANθANuBNθBNt logNt) cost for phase 2. The complexity analyses for161

both the traditional and new algorithms are summarized in the table below.162

Workflow Part Complexity

Traditional crosscorrelations O(NANBNtNτ )

Traditional Double Beamforming O(NANBNuANθANuBNθBNτ )

New Phase 1 O(NANuANθANt) +O(NBNuBNθBNt)

New Phase 2 O(NuANθANuBNθBNt logNt)

163

Note that in the new algorithm, phase 1 splits apart the cost of the number of sensors in164

A and the number of sensors in B, effectively turning the cost of phase 1 into O(NA +NB)165

when it was previously O(NANB) for a given set of slownesses and time lags of interest. If166

all of our data acquisition systems were made more dense, this means we expect a linear167

growth with sensor density using the new algorithm as opposed to quadratic growth with168

the traditional algorithm. Phase 2 of the new algorithm is completely independent of the169

number of sensors, while the second part of the traditional double beamforming algorithm170

grows quadratically with the sensor density. As a note of caution, this order of magnitude171

improvement with respect to the number of sensors may not lead to runtime improvements if172

NA and NB are relatively small compared to the number of slownesses of interest. However,173

as we adopt increasingly dense modern sensing systems, this is rarely the case.174

SCALABILITY TESTS ON FIELD DATA

Using the same subset of broadband Transportable Array (US Array) data as (Boué et al.,175

2014), we test this new double beamforming transform algorithm and compare to the tra-176

ditional process of crosscorrelations followed by double beamforming. Specifically, vertical177

10



data from a patch of 9 broadbands near the North/South Dakota Border and another patch178

of 9 broadbands in Southeastern New Mexico. Boué et al. (2014) previously demonstrated179

that these ambient noise data show significant surface wave and body wave energy after180

stacking 4 hour windows throughout 3 months of recording, and that the double beamform-181

ing transform (not just single beamforming) is needed to identify and distinguish between182

the body wave and surface wave energy in the ambient noise crosscorrelations.183

Data were preprocessed using the same workflow as Boué et al. (2014). To review, this184

includes: removing broadband sensor response, bandpassing from 5 to 150 second periods,185

breaking the data into 4 hour windows, zeroing any windows with large transient signals186

(if energy is more than 1.5 times the daily average energy at the same location), whitening187

the remaining time series between periods of 5 and 150 seconds, removing windows with at188

least 10 % of zero samples (recording issues), time-domain clipping of any values more than189

3.8 times each window’s standard deviation.190

The first four hour window of preprocessed data were fed into both the traditional191

method (crosscorrelations followed by double slant-stacks) and the new algorithm for cost192

comparison. The methods were tested in serial on a laptop with a 2.7 GHz Intel Core193

i7 4-core processor with 256 KB L2 cache per core, 8 MB L3 cache and 16 GB LPDDR3194

memory. These are typical laptop specifications that a scientist would easily have access to195

in the field.196

To verify the theoretical complexity of both methods with respect to the number of197

slownesses (NuA, NθA, NuB, NθB), both methods were run on the same data with 9 sensors198

per array patch, but with Nua = NθA = NuB = NθB increasing from 2, 4, 8, then 16. These199

timings are plotted in Figure 2 and reported in Table 1. Note that preprocessing was not200
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included in any of these times: data were preprocessed and saved to disk prior to analysis201

because preprocessing varies significantly from one dataset to another (thus not relevant202

to the comparison between algorithms). crosscorrelations are performed independently of203

slownesses, so only one crosscorrelation timing is shown. For all Nua = NθA = NuB = NθB204

values tested, the new algorithm (phase 1 time plus phase 2 time) performs faster than the205

traditional algorithm (crosscorrelation time plus double beamforming time). Traditional206

double beamforming and phase 2 were both predicted to take roughly 16x as long to run,207

and phase 1 was predicted to take 4x as long to run as every slowness dimension was doubled.208

The actual growth factors, indicated by the “Growth” column of the table (time for that209

test divided by time for previous line), show that the real data experiments generally agree210

with the predicted trend.211

[Figure 1 about here.]212

[Figure 2 about here.]213

More importantly, we must verify that scalability with number of sensors matches the214

predicted trends, as the growing number of sensors enabled by new technologies is our215

primary motivator in this study. For our intitial testing, we used the same 9 sensors tested216

in Boué et al. (2014). To test the scalability in number of sensors, we simply made a list217

of sensors for each array that repeated through the same sensors multiple times to emulate218

the action of both algorithms on NA = NB equal to 9, 18, 36 and 72. The new algorithm219

was additionally run for 144, 288, and 576. The number of slownesses was held constant.220

The timings are shown in Figure 4 and Table 3. For all tested sensor array sizes, the new221

algorithm was significantly faster than the traditional algorithm. The new algorithm took222
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less time to run on 576 sensors per patch than the old algorithm took to run with just 9223

sensors per patch.224

Each time the number of sensors per array patch is doubled, we expect the time for225

traditional crosscorrelations and double beamforming to increase by 4x, the time for the226

new algorithm phase 1 to increase by 2x, and the time for the new algorithm phase 2 to227

be unaffected. As shown by the ”Growth” column of the table, the predicted growth factor228

for the crosscorrelations and the new phase 1 were reflected in the real data experiment229

timings. However, the traditional double beamforming after crosscorrelation only grows230

by an approximate factor of 2 each time the number of sensors was doubled, although it231

was predicted to grow by a factor of 4. This discrepancy is because the code is written232

such that the dependency on NB is using vectorized Numpy calls, which can greatly reduce233

the cost compared to another for loop over sensors. Even with this efficiency (which is234

particular to this Python implementation), the new algorithm shows significant speedups235

over the traditional algorithm, running in seconds what took many minutes to hours to run236

previously.237

[Figure 3 about here.]238

[Figure 4 about here.]239

Parallelization240

The proposed serial algorithm greatly reduces the cost of double beamforming between array241

patches with many sensors, but as ultra-dense arrays become increasingly common, we must242

also consider scalability with parallel computing. The traditional beamforming algorithm243
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would require all-to-all communication over sensors, which requires a great deal of costly244

data movement. In contrast, both phases of the new proposed algorithm algorithm can be245

easily parallelized. The parallelization within each time window in phase 1 can happen at246

two levels:247

• the calculation of Rn,A(ω,uA) is indepnedent of Rn,B(ω,uB) so these computations248

can be carried out simultaneously,249

• and for each array p ∈ {A,B} the calculation of Rn,p(ω,up) can be parallelized over250

receivers within either array.251

The first level of parallelism is clear, and note that even the data reads can be done com-252

pletely separately, so the raw data between array A and B never need to be shared, just their253

resulting RA and RB factors. To argue for the second type of parallelism, note that many254

preprocessing workflows perform trace-by-trace operations (tapering, whitening, threshold-255

ing large events, etc...) as described in (Bensen et al., 2007). Thus it seems natural to256

assign each sensor to processes independently. After the preprocessing is over, the next step257

in the calculation is to apply a variety of phase shifts to the preprocessed frequency-domain258

data (or its complex conjugate on array B), again, a trace-by-trace operation. Finally,259

those results must be reduced, accumulating through addition into Rn,p(ω,up). This single260

round of collective communication at phase 1 scales as O(NupNθpNt logM) where M is the261

number of machines over which the data in the array are divided. This process of two-level262

parallelism in phase 1 is diagrammed in Figure 5 assuming each array has its receiver data263

distributed over four tasks (for illustrative purposes). Note that the only data that must264

be shared between array A and array B is RA(ω,uA) and RB(ω,uB).265

[Figure 5 about here.]266
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Phase 2 can also be easily parallelized. The calculations in phase 2 are independent of267

the sensors in each array, so the parallelization must happen over tested slowness values.268

Assuming the data in RA is arranged in the order (uA, θA, ω), and the beamforming results269

in b are arranged in the order (uA, θA, uB, θB) with uA being the outermost (slowest) axis,270

one can break up RA along its uA axis (outermost) onto difference processes, so each process271

gets some subset of uA values. Each process would also get a copy all of RB, then each272

process would loop through its subset of uA values, through all θA values, through all uB273

values and through all θB values. At the end, each process would have a subset of b which274

can be easily appended along the outermost axis to make up the full b.275

CONCLUSIONS

As high-density continuous seismic monitoring systems (particularly DAS, low-power nodes,276

and MEMS accelerometers) are being adopted increasingly for near-surface monitoring with277

ambient noise interferometry imaging, we can drastically improve the computational effi-278

ciency of ambient noise analysis by avoiding the explicit calculation of all pair-wise noise279

correlation functions whenever possible. It has been previously shown that the serial algo-280

rithm for calculating dispersion images of noise correlation functions at N sensors respond-281

ing to N virtual sources could be reduced in cost from quadratic to linear by factoring the282

overall dispersion image into virtual source and receiver components that can be calculated283

separately. Using a similar technique, we have shown how to factor the double beamforming284

transform into two factors specific to two array patches.285

This refactoring of the double breamforming transform naturally yields an algorithm286

that scales as the sum of the number of sensors in the arrays, much more scalable than287

the traditional method that scales as the product of the number of sensors in the arrays.288
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Further, this algorithm is easily parallelized both over sensors within either array, as well as289

between the two arrays, and does not require raw data to be sent between the two arrays (a290

major benefit when multiple stakeholders are managing arrays or when internet connectivity291

is limited).292

By adopting this new algorithm, geoscientists and engineers can rapidly calculate the293

double beamforming transform between dense arrays. This processing that previously re-294

quired a long wait time or centralized compute cluster can now easily be performed on295

a laptop, enabling more computation in the field with faster turnaround time for much296

larger-scale problems. By increasing the number of sensors that can be stacked for double297

beamforming with the same computational resources, this opens up the possibility of re-298

processing existing data with a higher stack power (and thus higher sensitivity to possible299

body waves in the data). By enabling fast analysis with fewer computing resources required,300

this algorithm will further enable geoscientists and engineers to test the effect of a wider301

variety of preprocessing techniques, which gives valuable information about the robustness302

and reliability of any imaging results derived from ambient noise interferometry.303
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Workflow, Part NA = NB Nup = Nθp Time Growth

Traditional Crosscorrelation 9 · 4.33× 102 ·
Traditional Double Beamform 9 2 2.27× 10−1 ·

9 4 3.38× 100 14.8
9 8 5.46× 101 16.2
9 16 8.99× 102 16.5

New Phase 1 9 2 2.04× 100 ·
9 4 7.23× 100 3.5
9 8 2.93× 101 4.05
9 16 1.20× 102 4.09

New Phase 2 9 2 2.01× 10−1 ·
9 4 3.21× 100 16.0
9 8 5.36× 101 16.7
9 16 7.93× 102 14.8

Figure 1: This table shows the timing results (in seconds) for each part of the traditional
and new algorithms as the number of sensors per patch (NA = NB) stays constant at 9, and
the number of slownesses and angles tested per patch (NuA = NθA = NuB = NθB) grows.
The growth column indicates the timing at a given size problem divided by the timing of
the smaller problem size on the previous line. The traditional algorithm’s crosscorrelation
phase has no dependence on the number of slownesses or angles.
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Figure 2: The increase in timing as the number of test slownesses increases is plotted for
both the traditional crosscorrelation and double beamforming algorithm (split into its two
parts) and the new algorithm (split into its two phases). In this test the number of sensors
per array patch was held constant at 9. NuA = NθA = NuB = NθB in each test, and this
value is doubled for each experiment. The new algorithm runs faster than the old algorithm,
and has similar scalability as the number of slownesses grows.
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Workflow, Part NA = NB Nup = Nθp Time Growth

Traditional Crosscorrelation 9 4 4.33× 102 ·
18 4 1.69× 103 3.90
36 4 6.66× 103 3.94
72 4 3.03× 104 4.55

Traditional Double Beamform 9 4 3.38× 100 ·
18 4 7.78× 100 2.30
36 4 1.53× 101 1.97
72 4 4.25× 101 2.78

New Phase 1 9 4 6.76× 100 ·
18 4 1.27× 101 1.87
36 4 2.43× 101 1.91
72 4 5.70× 101 2.34
144 4 1.03× 102 1.81
288 4 2.02× 102 1.96
576 4 3.99× 102 1.96

New Phase 2 9 4 3.56× 100 ·

Figure 3: This table shows the timing results (in seconds) for each part of the traditional
and new algorithms as the number of sensors per patch (NA = NB) grows. The number
of slownesses and angles tested per patch (NuA = NθA = NuB = NθB) stays constant in
these tests. The growth column indicates the timing at a given size problem divided by the
timing of the smaller problem size on the previous line. The new algorithm’s phase 2 is
independent of the number of sensors, so timing is only reported for NA = NB = 9.
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Figure 4: The increase in timing as the number of sensors increases for the traditional
crosscorrelation and double beamforming algorithm (split into its two parts) and the new
algorithm (split into its two phases) is plotted. The timings show that the new algorithm
runs much faster than the traditional algorithm, and is much more scalable (lower slope),
primarily driven by the high cost of traditional crosscorrelations. Both the new and old
algorithm were run for NA = NB equal to 9, 18, 36, 72, and only the new algorithm was
run for 144, 288, and 576.
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Figure 5: The proposed algorithm includes a first round of trace-by-trace operations
which are embarrassingly parallel. The next step is a reduce within each array of phase-
shifted data into Rp(ω,up), p ∈ {A,B}, then an entry-wise outer product multiplication of
RA(ω,uA)R∗

B(ω,uB), which is then added into the running average double beamforming
transform over many time windows, b(ω,uA,uB) (which has an additional dimension not
pictured here).
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