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ABSTRACT 

Coronary artery disease (CAD) remains the leading cause of death in both the United States and the world 

at large. This is primarily due to the extreme difficulty associated with preemptive diagnosis of CAD. 

Currently, only about 20% of all patients are diagnosed with CAD prior to the occurrence of a heart 

attack. This is the result of limitations in current techniques, which are either noninvasive, extremely 

expensive, or have very poor correlation with the actual disease state of the patient. Phonoangiography is 

an alternative approach to the diagnosis of CAD that relies upon detection of the sound generated by 

turbulent flow downstream from occlusions. Although the technique is commonly used for the carotid 

arteries, in the case of the coronary arteries the technique is hampered by signal-to-noise problems as well 

as uncertainty regarding the spectral characteristics associated with CAD. To date, these signal processing 

difficulties have prevented the use of the technique clinically. This research introduces an alternative 

approach to the processing of phonoangiographic data based upon knowledge of the acoustic transfer 

within the chest. The validity of the proposed approach was examined using transfer functions which 

were calculated for 14 physiologically relevant locations within the chest using a 2-D Finite Element 

Model (FEM) generated from physiologic data. These transfer functions were then used to demonstrate 

the technique using test cases generated with the FEM. Finally, the vulnerability of the technique to noise 

was quantified through calculation of matrix condition numbers for the chest acoustic transfer at each 

frequency. These results show that while in general the technique is susceptible to noise; noise tolerance 

is greatly improved within the frequency range most likely to correspond to an occlusion. Taken together, 

these results suggest that the proposed technique has the potential to make phonoangiography viable as a 

screening technique for CAD. Such a technique would greatly reduce the cost of CAD, measured in terms 

of both financial cost as well as lives. 
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1. INTRODUCTION & PRIOR ART 

 

1.1. CORONARY ARTERY DISEASE  

Coronary artery disease (CAD) is currently the leading cause of death in both the United States and the 

world[1]. In 2009, CAD was responsible for more than 20% of all deaths within the United States and had 

a total financial cost of $165.4 billion USD[2]. CAD occurs due to the buildup of atherosclerotic plaques 

in the coronary arteries, which are responsible for providing oxygenated blood to the heart muscle itself. 

While these plaques themselves are often asymptomatic, these plaques can rupture, exposing the 

thrombogenic core of the plaque to the blood and triggering clot formation[3]. These clots can then flow 

downstream and block arteries, resulting in a myocardial infarction, commonly known as a heart attack. 

Significantly, this means that CAD can progress suddenly, and without warning, to an infarction.  

However, the process of plaque rupture provides only a partial explanation of the extremely low rate of 

CAD diagnosis that was discussed previously. Much of the reason for this is due to the limitations of 

current technology for CAD diagnosis. To be useful for CAD screening, a technique needs to be relatively 

inexpensive and noninvasive, but also relatively accurate. No currently available technique is able to meet 

these criteria, as shown in Figure 1-1, which categorizes available techniques[4, 5]. The current gold 

standard for CAD diagnosis remains x-ray angiography, which images arteries using a contrast agent 

which allows arteries to appear on x-ray images. X-ray angiography is relatively inexpensive and quite 

accurate, but requires coronary catheterization, which requires hospitalization and exposes the patient to 

significant risk. Intravascular ultrasound (IVUS) detects CAD using an ultrasonic probe attached to a 

catheter, which allows imaging of arterial walls. Although the technique is accurate, like x-ray 

angiography it requires catheterization. Due to the risks associated with catheterization, these techniques 

are not used unless the presence of CAD is already suspected.  

 

Figure 1-1: Schematic representation of the 

current state of the art for CAD diagnosis. 

Techniques fall into three different categories, 

categorized by the limitations of the techniques, 

which are either invasive, prohibitively 

expensive, or insufficiently accurate 

Other techniques include magnetic resonance 

angiography, which uses a contrast agent to 

make arteries visible on MRI scans, and electron 

beam CT, which allows rapid imaging of the 

heart and arteries. These techniques are 

relatively accurate, but require large, 

specialized, and expensive equipment. As a 

result, like invasive techniques, these techniques 

are useful only when CAD is already suspected, 

but the techniques cannot be practically 

implemented for general screening of the 

population. Stress tests involve challenging the 

patient with exercise, and monitoring the heart 

for signs of ischemia using EKG, and are 

currently the only diagnostic modality used for 

CAD screening. Unfortunately, studies have 

shown that stress test results have very poor 

correlation with actual heart attacks[6].  This is 

most likely due to the previously discussed role 

of plaque rupture; plaques that are sufficiently 
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small to have little impact on blood flow are still vulnerable to sudden rupture and produce clots. 

1.2. CONCEPT OF PHONOANGIOGRAPHY  

Phonoangiography is a diagnostic technique that seeks to detect CAD noninvasively through passive 

detection of the sounds associated with CAD. The underlying concept is quite simple. Under normal 

circumstances, blood flow through the circulatory system is laminar in nature [Insert citation]. However, 

in the case of CAD, obstructions in the artery can result in transition to turbulence flow[7]. This is 

significant acoustically because turbulent flow generates broadband sound, while laminar flow is 

relatively quiet, and what sound is produced is at low frequency. As a result, a diseased artery sounds 

significantly different from a healthy one. In phonoangiography, the goal is to detect the sounds 

associated with a diseased artery using a microphone or an array of microphones located on the chest 

surface. This type of approach is already applied to the detection of carotid artery disease, where the 

sounds associated with a blocked artery are known as “bruits” (the French word for sound). Because the 

carotid arteries are so close to the surface of the neck, carotid blockages are commonly detected simply by 

listening to the artery using a common stethoscope. Thus, the current techniques for the detection of 

carotid artery disease represent a validation of the underlying concepts of phonoangiography. 

However, for the coronary arteries, clinical and experimental experiences have found the technique to be 

impractical[8-10]. This is primarily due to two major difficulties associated with actually detecting the 

sound generated by an occluded coronary artery. First, the sound generated by a diseased artery is 

relatively faint. In the case of the carotid arteries, this is mitigated against by their superficial position. In 

contrast, the coronary arteries are located relatively deep within the chest behind a layer of bone (the 

sternum and rib cage). As a result, the acoustic signature reaching the skin surface in CAD is significantly 

less than the sound reaching the surface in carotid artery disease. The other main difficulty is due to the 

other sources of sound generation located within the chest. The circulatory, respiratory, and even 

digestive systems all produce large amounts of noise, even under normal, healthy conditions. As a result, 

the sounds generated by a diseased coronary artery are often drowned out by a din of background noise.

 

 Figure 1-2: Flow waveform for the coronary 

artery. Flow in the coronary peaks during 

diastole, when the heart muscle relaxes. This is 

in contrast to the result of the circulatory system, 

where peak flow occurs when the heart contracts 

at systole[3]. 

Fortunately, this affect is reduced by the nature 

of coronary blood flow. As shown in Figure 1-2, 

peak flow (and peak sound generation) occurs 

during diastole, when the heart is relaxed. In 

contrast, the rest of the circulatory system 

experiences peak flow and generates the most 

sound during systole, when the heart contracts. 

Thus, the severity of the background noise is 

reduced when signal strength is strongest. 

Despite this beneficial effect, background noise 

remains a major difficulty in efforts to perform 

phonoangiography. 

The net effect of these two factors (faint signal 

and high background noise) is that 

phonoangiography can be cast as the detection 

of a faint signal in a noisy environment. As a 

result, sophisticated signal processing techniques 

are required to perform CAD; a schematic 

representation of the current paradigm is shown
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in Figure 1-3. Previous attempts have used techniques as varied as spectral feature detection, phased array 

techniques, and fractal analysis of acoustic signals. Unfortunately, as discussed in the following section, 

the sounds generated by stenosed arteries are irregular and differ between blockages. This makes an 

already difficult signal processing problem even more difficult due to the uncertainty in the characteristics 

of the signal whose detection is being attempted. A review of experimental and theoretical results 

examining the fluid flow in stenosed arteries and the sounds produced by such flows is presented next, 

followed by a discussion of previously developed signal processing techniques which have been applied 

to phonoangiography. However, to date, no signal processing technique has performed sufficiently to 

allow for clinical phonoangiography.  

 

Figure 1-3: Schematic representation of the current paradigm for phonoangiography. Surface acoustic 

measurements are obtained at the chest surface, which are amplified. Sophisticated signal processing is 

then applied to detect the presence or absence of CAD. The majority of prior work has focused on the 

signal processing portion of the system[7]. 

1.3. FLUID MECHANICS OF STENOSED ARTERIES 

Under normal circumstances with clean, healthy arteries the coronary artery flows are periodic in time 

and laminar in nature[11, 12]. Reynolds numbers are on the order of 100, with transition to turbulence in 

a cylindrical tube occurring at a Reynolds number of 2300[13].  However, in the case of a partially 

occluded artery, the blockage acts in similar manner to a nozzle, and turbulence can occur. This 

turbulence results from the development of a strong shear layer between the central jet exiting the 

stenosis, and the recirculation regions located near the wall which develop as a result of flow separation 

downstream of the stenosis, and has been extensively studied experimentally in both steady and pulastile 

flow[14-19]. Giddens and colleagues performed a series of experiments studying pulsatile flow through 

an axisymmetric model of a stenosed artery using laser Doppler velocimetry[20-24]. In these experiments 

flow separation immediately downstream from the blockage has been shown to occur at Reynolds 

numbers as low as 10 for a 70% reduction in area stenosis (reduction in lumen area is the measure of 

stenosis severity most commonly used clinically)[25]. Moreover, such a stenosis was found to lead to 

turbulence at Reynolds numbers as low as 300. In a pulsatile flow, this generation of turbulence becomes 

time dependent, reaching its peak during flow deceleration, and being minimized during flow 

acceleration[25]. However, for stenoses of 50% of greater reduction of area, turbulence has been shown to 
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be generated throughout the flow cycle[22]. It is important to note that while this flow separation leads to 

the development of turbulence in the flow, this turbulence is at its strongest 6-12 diameters downstream 

from the blockage[26, 27].   

More recently, numerical simulations have allowed more detailed examinations of turbulent flow 

downstream from stenoses. Stroud et al. performed computational fluid dynamics (CFD) simulations of 

flow through a model of the carotid artery based upon a specimen obtained from an endarterectomy. This 

model was tested with steady flow at Reynolds numbers of 300, 600, and 900, using both the Chien and 

Goldberg varieties of the k-ε turbulence model. The velocity profiles calculated in this study was 

compared to experimental data from Giddens and colleagues, and good agreement was obtained[20]. 

These results showed the presence of vortex separation downstream from the blockage, but suggested that 

the flow was actually transitional, rather than fully developed turbulence, based upon the ratio of 

turbulent and laminar viscosity[28]. Mittal et al. simulated pulsatile flow through a planar channel with a 

semicircular blockage using direct numerical simulation (DNS) as well as large-eddy simulation (LES), 

the validity of which for stenotic flow has been studied by Varghese et al., who compared LES with 

results with DNS and found agreement[29]. These simulations revealed in greater detail the previously 

described role of the shear layers separating the central jet from the recirculation near the wall in driving 

the turbulent flow. Moreover, these studies suggested that the flow first transitions to turbulence 

downstream of where the flow reattaches to the channel walls[30].  

In a more recent series of simulations, Varghese et al. performed DNS simulations of stenotic flows with 

a 75% reduction in area under both steady and pulsatile flow conditions at Reynolds numbers of 500 and 

1000. The steady flow simulations flowed transition to turbulence about five diameters downstream from 

the stenosis through the breakup of streamwise hairpin vortices. This mechanism for transition to 

turbulence is in agreement with that predicted by the DNS simulations of Sherwin and Blackburn, who 

moreover were able to characterize the transition as a subcritical period double bifurcation[31]. In 

addition, the simulations also considered the effect of eccentricity in the stenosis, and found that an 

eccentricity of 5% of the vessel diameter was sufficient to cause the jet to deflect towards the wall, 

causing it to break down at sufficiently high Reynolds numbers[32]. In the case of the pulsatile flow, 

introduction of stenosis eccentricity also resulted in localized, periodic transition to turbulence. The 

pulsatile simulations also supported the experimental results that suggested that peak turbulence occurred 

during flow deceleration, which they suggested was due to breakdown of streamwise vortices formed 

during the acceleration of the flow[33, 34]. These simulations predicted a turbulent velocity spectra with a 

broadband nature with a -5/3 slope that is common in turbulent flows[32]. The simulations by Mittal et al. 

suggest that the behavior is more complicated than this, with the proper choice of slope depending on the 

frequency range of interest, but they also report broadband velocity spectra behaves in a similar manner to 

that reported by Varghese over a substantial portion of the frequency range[30]. A recent series of 

experiments by Karri & Vlachos, which utilized digital particle image velocimetry (DPIV) to study 

pulsatile flow through asymmetric stenotic arteries; these experiments also show broadband velocity 

spectra, validating the experimental conclusions discussed previously[35].  

1.4. SOUND GENERATION BY STENOSED ARTERIES 

Because the velocity spectra downstream from the stenosed region of the artery is broadband in nature, 

one might expect a stenosed artery to produce broadband noise over a large frequency range. However, 

both experimental and analytical literature suggests that the situation is somewhat more complicated. The 

vast majority of these studies have suggested that the acoustic pressure spectra generated by a stenosed 

artery consists of two narrowband peaks. Akay et al. recorded the sounds produced downstream of an 

occlusion (with a 72% reduction in area) artificially generated in the femoral arteries of dogs, and 

analyzed the sounds using both discrete Fourier transforms (DFT) and autoregressive (AR) methods. The 
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averaged spectra (over 75 periods) showed a narrowband peak at a frequency of about 400 Hz, as well as 

a second peak at less than 100 Hz, which was also present in the healthy artery[36]. Similar results were 

obtained from human patients by Semmlow et al., except that the frequency of the peak associated with 

coronary artery disease was found to be located between 100-200 Hz, depending upon the level of 

stenosis[7, 37]. Experiments by Borisyuk which considered steady flow in an elastic tube with a rigid, 

axisymmetric constriction show similar peaks, except in this data an additional 3
rd

 peak is present in 

sounds recorded downstream from the obstruction. The frequency range of these peaks agrees well with 

the results of Semmlow et al[38]. An additional series of experiments by Akay et al. found the peak 

associated with coronary artery disease to be above 600 Hz.[39, 40] 

The patent application of Mohler includes short-time Fourier transforms of the sounds recorded from a 

patient with known CAD. In this data, narrowband diastolic murmurs with a frequency of approximately 

800 Hz were found to be indicative of disease[41]. In a series of benchtop experiments on an 

experimental model of a stenosed artery, Yazicioglu et al. recorded the pressure spectra generated 

downstream from a blockage using miniature hydrophones, coupled with measurements of the vibration 

of the tube wall using laser Doppler vibrometry. These measurements were performed for both rigid 

tubes, as well as compliant tubes in water and air, at diameter Reynolds numbers of 1000 and 2000. These 

experiments considered only steady flow. The pressure measurements show broadband noise immediately 

downstream from the blockage, with narrowband peaks between 100 and 200 Hz occurring further 

downstream at both Reynolds numbers[42]. These results are similar to those of Borisyuk and Semmlow 

et al. It is important to note that these results show substantially different behavior in rigid tubes, with a 

single strong band located at higher frequencies. This suggests that the structural behavior of the tube 

itself plays a significant role. Additionally, examination of the vibration spectra of the outside of the tube 

(measured using laser Doppler vibrometry) show the presence of narrowband peaks that occur further 

downstream, the broadband noise located near the exit of the stenosis is largely absent when the tube is 

placed in water (this was not observed when the tube was placed in air)[42].  

Wang et al. examined the transfer functions associated with a segment of coronary artery. The transfer 

functions were then used to calculate the sounds output from the artery in response to internal forcing. 

The authors used the model of Tobin and Chang to determine the internal forcing. This model was fit to 

experimental data, and predicts broadband noise[27]. The predicted output of the artery, calculated by 

multiplying the transfer function and the forcing, showed two peaks in the output sounds, similar to those 

predicted by Semmlow et al. Based upon these results, the authors suggest that the narrowband signals 

characteristic of stenosed arteries are the result of the broadband turbulent noise exciting the resonant 

Author Approximate Peak Frequency Flow Condition 

Akay et al. 300 Hz Physiologic 

Akay et al. 400 Hz Physiologic 

Semmlow et al. 120 Hz Physiologic 

Borisyuk (1
st
 peak)  110 Hz Benchtop 

Borisyuk (2
nd

 peak) 160 Hz Benchtop 

Akay et al. 600 Hz Physiologic 

Yazicioglu et al. 200 Hz Benchtop 

Mohler 800 Hz Physiologic 

Table 1-1: Summary of the frequencies of reported features associated with CAD. These frequencies are 

spread throughout a frequency range of 0-800 Hz. Most of these data are from studies on human patients 

or animal models; the data from Yazicioglu was obtained using a benchtop experiment. The data from 

Mohler was recorded using short-time Fourier transforms. 
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modes of the stenosed artery, which leads to narrowband signals located at the resonant frequencies of the 

artery[43]. The model of Goral-Wojcicka also shows the presence of strong narrow frequency bands in 

the sounds released by the artery[44]. The different peak frequencies which have been calculated in 

different studies are summarized in Table 1-1. 

1.5. STATIONARY SPECTRAL FEATURE DETECTION  

As mentioned previously, the universal starting point in the processing of acoustic signals for 

phonoangiography is the isolation of the diastolic window of the data. As a result, in a simple, first 

approach to the acoustic detection of CAD, Semmlow and colleagues, who have performed much of the 

signal processing work in the field, examined the frequency spectra of acoustic signals recorded during 

diastole, and examining the ensemble averaged spectra for anomalous high frequency noise[37]. 

However, while this approach occasionally is successful, often the spectra are not so clearly indicative of 

the disease state, and this approach is insufficient. As a result, the authors defined the ratio of total 

acoustic energy above 90 Hz as a diagnostic statistic to determine whether or not CAD was present. The 

patient was diagnosed with CAD if more energy was contained in the higher frequency range than the 

lower range. In a small sample of 24 patients, the authors reported that this statistic led to sensitivity and 

specificity of 83%[37]. Follow-up studies by the group substituted the autoregressive (AR) and later the 

autoregressive moving average methods (ARMA) for the Fourier transform in an attempt to improve 

noise tolerance[39, 45, 46]. The sensitivity of these approaches is similar to that obtained using Fourier 

transforms (85% in the ARMA study). It should be noted, however, that the sample sizes in these follow 

up studies remained small (15 patients in the AR study, 20 patients in the ARMA study). In all the follow-

up studies, the authors continued to use ratio of energy above and below a threshold frequency as the 

diagnostic statistic. The threshold frequency used was different in each study. A separate study by another 

group showed that the order of the model used in the AR/ARMA methods is very important, and 

suggested approaches for selecting the appropriate order[47]. 

Because the approaches used in previous studies continued to suffer from issues with the high level of 

background noise, a later study used adaptive line enhancement (ALE) was used to filter the data prior to 

application of spectral techniques (DFT, AR, ARMA, etc.)[48, 49]. ALE works by attempts to create a 

reference channel with noise which is similar to that in the actual signal. This reference signal is then 

subtracted from the original signal prior to further processing. Thus, the end affect of ALE is to apply a 

form of adaptive noise cancellation. In this study, diastolic recordings from 20 patients were filtered using 

ALE, and then modeled using both AR and ARMA. The results showed that the use of ALE improved the 

detection ability of both the AR and ARMA approaches[48]. The patient data used in this study was also 

used to compare the performance of DFT, AR, and ARMA approaches on the same data (previous studies 

had used different data in each study). As shown in Table 1-2, the AR and ARMA methods performed 

similarly, while the DFT and eigenvector method had a higher sensitivity, but lower specificity. However, 

the eigenvector outperformed the DFT in both categories of performance[50].  

1.6. NON-STATIONARY SPECTRAL FEATURE DETECTION  

The methods described in the previous section implicitly assume that the signal associated with CAD is 

statistically stationary, an assumption which is clearly invalid, considering that the signals is being 

generated by the turbulence produced by pulsatile flow through the stenosis. As discussed in section 1.3, 

this turbulence may be present only during part of the flow cycle, and even when the turbulence persists 

throughout the strength of the turbulence is strongly dependent on time. This has lead to several studies 

examining the use of techniques for non-stationary signals for the detection of CAD. Akay et al. applied 

zero tracking filters to both the pre- and post-angioplasty signals of the same patients, as well as a 

population of healthy and known diseased patients[49, 51, 52]. In the first case, the approach successfully 
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represented the pre-angioplasty and post-angioplasty signal from each patient. In the second study, the 

technique was shown to have a sensitivity of 84% and a specificity of 81%. However, it should be noted 

that the threshold value of the diagnostic statistic (which was the mean amplitude of the second zero of 

the filter during the diastolic window) was chosen to produce the highest percentage of correct 

identifications, rather than on any physical knowledge or expectation of the system[52]. The same author 

also attempted the use of fuzzy neural networks, based upon wavelet analysis, to detect CAD. The 

spectral content at frequencies of 200, 400, and 600 Hz was combined with age, weight, sex, smoking, 

systolic blood pressure, and diastolic blood pressure were combined to create a feature vector for the 

neural network. A population of 30 patients (evenly split between healthy and diseased) was used to train 

the model, which was then applied to the remainder of the available patient population. The model was 

able to achieve a sensitivity of 85% and a specificity of 89%. The use of wavelet analysis for the acoustic 

detection of CAD has also been examined by Shertukde, who developed a system which allowed lesion 

size to be determined from the wavelet coefficients[53]. However, the proposed system was not clinically 

evaluated. 

A company, SonoMedica, Inc. has also produced a device which attempts the phonoangiographic 

detection of CAD. The prototype device of this company records heart sounds and calculates the short-

time Fourier transform (STFT)[41]. The device then examines the frequency, strength, and time-

characteristics of the signal to produce a “murmur score”, which serves to indicate the likelihood of CAD. 

An array of sensors is placed at nine different locations on the chest, and a score is calculated at each 

location, with the final score being taken as the weighted average of the scores from each location. In a 

clinical study with 113 patients, this approach yielded a sensitivity of 87%, but a specificity of only 52% 

for male patients. Much better results were obtained with female patients, with a sensitivity of 95% and a 

specificity of 96%. 

Detection Method Sensitivity Specificity 

Discrete Fourier Transform (DFT) 75% 62.5% 

Autoregressive Model (AR) 72% 88% 

Autoregressive Moving Average Model (ARMA) 71% 88% 

Eigenvector Methods (Minimum norm) 91% 79% 

Zero-tracking filters 84% 81% 

Neural Networks 85% 89% 

STFT-based murmur score 95% 96% 

Table 1-2: Sensitivity and specificity values calculated from the spectral analysis of diastolic heart 

sounds. Note that methods listed in normal text assume stationary signals, while those listed in italics are 

designed for non-stationary signals. Among the stationary techniques, the DFT method had better 

sensitivity but less specificity than the AR and ARMA methods, which performed similarly. The 

eigenvector method had by far the best sensitivity, but its specificity was inferior to that of the AR and 

ARMA methods. Both zero-tracking filters and neural networks outperformed the stationary techniques, 

while the best performance was the murmur score based upon STFTs calculated by the SonoMedica, Inc. 

prototype. 

1.7. NON-SPECTRAL DETECTION  

A major limitation of the previously described spectral techniques, regardless of whether they are 

stationary or non-stationary, is the requirement of some a priori knowledge about the acoustic signature 

of diseased coronary arteries, and also the assumption that something about this noise is unique in 

comparison to all other signals produced in vivo. It has been apparent even from the early work of 
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Semmlow et al. [37, 45] that there is not a uniform signature corresponding to CAD in all patients. As a 

result, several non-spectral approaches have been attempted. Padmanabhan et al. attempted to detect CAD 

by attempting to measure the fractal dimension of the diastolic heart sounds[54]. The idea underlying this 

approach was that the turbulence (a chaotic process) producing the noise in diseased arteries. As a result, 

a fractional dimension, representing the presence of chaos in the sounds, and hence indicating the 

presence of CAD. Unfortunately, while the approach was shown to work extremely well on noise-free 

signals, the sensitivity of the algorithm to noise caused the approach to fail when even moderate amounts 

of noise are encountered[54].  

Another approach was taken by Xiao et al., who looked for differences between resting and exercise 

phonocardiograms[55]. The primary metric for the detection of CAD in these studies was the ratio of the 

S1 amplitudes in the resting and exercise phonocardiograms. The authors determined that a ratio greater 

than three was indicative of a disease state; no reason was given to justify this threshold. However, this 

approach is extremely dependent upon the individual patient, as the appropriate level of exercise is 

different for different individuals, and an appropriate level is not clear. This represents a major limitation 

of the technique. Zhao studied the use of instantaneous frequency to detect CAD, which has been 

previously shown to be of use in analyzing heart valve sounds[56, 57]. In this work, a learning algorithm 

was used to analyze the statistical properties of the weighted instantaneous frequency function, which was 

trained with a set of 40 evenly split patients. The authors reported a sensitivity of 85%, with a 100% 

specificity[56]. 

Most relevant to the current work are those studies which have utilized signals from multiple 

microphones to detect CAD, known as array phonoangiography. Owsley et al. used an array of 

microphones to create an image of the energy distribution within a model of the body. This was done 

utilizing nearfield (focused) beamforming [58, 59]. The advantage of such a technique is that it permits 

spatial separation of the sounds associated with CAD, as well as the spectral and temporal separation 

which are allowed by the previously described spectral and non-spectral techniques. The technique 

produced good results for acoustic phantoms, but has not been able to produce reliable results in human 

subjects[7]. Another similar approach was taken by MedAcoustics, Inc., who took a phased-array 

approach to the detection of CAD[7]. The array used in this study consisted of rows of contact 

microphones, so as to provide directional sensitivity. Unfortunately, the technique works well only in the 

farfield. In the case of CAD, this would require microphones to be placed more than 5 feet away from the 

chest, which causes such approaches to be ineffective when used with surface microphones. 
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2. SOURCE SEPARATION PHONOANGIOGRAPHY: THEORY AND METHODS 

 

2.1. INTRODUCTION  

In reviewing the previously discussed attempts to detect the sounds associated with a diseased artery, the 

ultimate conclusion is that conventional techniques are simply incapable of the task. While the signal 

associated with coronary artery disease clearly manifests itself as higher frequency energy, the general 

consensus in literature is that the previously discussed experimental and theoretical studies have shown 

that the signal is too variable and too faint for any of the feature-detection based techniques attempted to 

date to accurately detect the signal under the noisy conditions of the chest. It is appropriate here to repeat 

the thoughts of Semmlow, who was one of the pioneers of the field. Rather than paraphrase and dilute the 

meaning, instead I quote directly from the conclusions from his recent review article[7]: 

“Considerable work has been directed toward fulfilling the promise of detecting CAD 

from heart sounds recorded at the chest. The problem is essentially one of resolving a 

very faint signal buried in a substantial amount of noise. Many powerful signal 

processing techniques address this type of signal-to-noise problem, but they require 

some a priori knowledge about the signal characteristics. Unfortunately, little is 

known about the signal produced by blocked coronary arteries. Modeling and 

mathematical studies on idealized blockages where a continuous flow flows through a 

fixed blockage in a straight tube suggest the signal will be narrowband as a result of 

resonances in tube walls. The success of spectrally based methods suggests that this 

assumption must be at least partially true. However, coronary blood flow is highly 

variable, even more so than in other arteries, owing to the continuous changes in 

vessel wall tension. Moreover, the arteries themselves undergo a variety of 

contortions as the surface of the heart moves during contraction and relaxation. 

Finally, the blockages themselves are often diffuse and distributed over a section of 

artery. Thus, it is unlikely that the signal generated by coronary blockages is a simple 

narrowband signal, but in many patients, it is distributed over a range of frequencies 

following complex timing. Improving on results described above will likely require 

searching for quite different features than those outlined above” (Emphasis mine) 

                        -John Semmlow & Ketaki Rahalkar, 2007 

 

This passage states in no uncertain terms that despite the results contained in the literature described 

previously (much of which was performed by Semmlow and colleagues) applying feature detection to 

diastolic sounds to detect CAD remains uncertain an uncertain affair. In contrast, the fundamental concept 

behind the beamforming and acoustic imaging approaches is sound. If one knows the spatial location of 

sound sources within the chest, one can examine the sounds emitted solely from the coronary arteries, and 

exact knowledge of the spectral characteristics is no longer very important – a noisy artery is most likely 

an unhealthy artery. This would represent sufficient evidence to justify more determinate tests, such as 

convention angiography. Unfortunately, such techniques are limited by the fact that the size of the chest is 

too small compared to the applicable wavelengths for such techniques to be effective. The size of the 

chest is on the order of a single meter, while the wavelength of sound in water (which has similar acoustic 

properties to soft tissue), even at 1000 Hz, is 1.5 m. This places the entire chest within the nearfield, 

where such techniques perform poorly, if at all.  
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Nevertheless, the promise offered by a technique that could separate sources based upon their location is 

hard to ignore, particularly in light of the failings of feature-based detection. This promise provides the 

motivation for this work. In the first portion of this chapter, a novel approach to phonoangiographic signal 

processing is discussed. This approach is based upon separation of signals based upon knowledge of the 

acoustic transfer within the chest. Hence, the fundamental questions regarding the validity of the 

technique involve the similarity of acoustic transfer functions between different source locations within 

the chest and sensor locations on the chest surface. To answer these questions, finite element modeling of 

a physiologically accurate human chest geometry was performed. The development of this finite element 

model, as well as the matrix algebra tools used to analyze the finite element model are discussed in the 

later portions of this chapter, the results from the model are saved for chapter 3. 

2.2. PROPOSED TECHNIQUE 

The proposed approach relies fundamentally upon the observation that the amplitudes of sound waves 

within the chest are sufficiently small so that they can be treated with the theory of linear acoustics. 

Fortunately, the sounds emitted by the circulatory and respiratory systems are sufficiently small that this 

is indeed the case. As a result, the signal reaching the skin surface from an acoustic point source located 

at some location within the chest can be represented using a transfer function Hij, which is a function of 

frequency: 

 
 

 
i

ij

j

v
H

s





  Eq.  2-1 

where vi represents the acoustic particle velocity encountered at the i
th
 location on the chest surface. 

Similarly, sj represents the particle velocity associated with the j
th
 acoustic point source located inside the 

chest. Note that an acoustic point source is defined as a small (but finite) cylinder (2-D) or sphere (3-D) 

which is vibrating radially[60]. A further description of acoustic point sources appears in Appendix A. 

The particle velocity of the source is defined as the radial velocity of this cylinder of sphere so that each 

value Hij is a unitless ratio. ω represents angular frequency. In acoustics, a distributed acoustic source can 

represented by a series of acoustic point sources[60]. This leads to the observation that all sounds within 

the chest can be thought of as being generated by some number of point sources, distributed throughout 

the chest.  

Since we are within the realm of linear acoustics, in the frequency domain the velocity at any given 

surface location can be calculated using a linear system of equations: 

       H s v  Eq.  2-2 

where H is a m x n matrix, where m represents the number of surface locations, and n represents the 

number of point sources modeled within the chest; this matrix will henceforth be known as a mixing 

matrix. s represents a n x 1 column vector, corresponding to the amplitude of the particle velocity of each 

acoustic source, and v represents a m x 1 column vector, corresponding to the amplitude of the particle 

velocity at each surface location. However, in a clinical scenario, the variable of interest is not the surface 

velocity, v (which can be measured), but rather the source strengths, s. Note that this system in general is 

not square (m≠n), so that the solution is not strictly speaking invertible, and cannot be solved using the 

normal methods of linear algebra (LU-decomposition, matrix inversion, Gaussian elimination, etc.). 
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However, a best fit solution to this matrix can be obtained through the process of pseudoinversion, which 

is essentially a least squares equivalent to the inversion of a square matrix. Whereas matrix inversion 

provides the solution to a square system of linear equations, pseudoinversion provides the best fit solution 

to the solution of an over- or under-determined system of linear equations. Applying pseudoinversion to 

the linear system described by equations 2.2, one obtains: 

       s W v  Eq.  2-3 

where matrix W represents the pseudoinverse of the mixing matrix H, and is known henceforth as the 

demixing matrix. As a result, with knowledge of the demixing matrix W, and measurements of the surface 

velocity, v, it is possible to estimate the acoustic source strength at each point source location for which a 

set of transfer functions exists. 

This pseudoinverse can be obtained by performing a singular value decomposition of the mixing matrix 

H. The singular value decomposition of H can be represented by: 

*H U V  Eq.  2-4 

where matrix U is an m-by-m unitary matrix, Σ is an m-by-n diagonal matrix where the terms on the 

diagonal are the singular values of H, and  V* is the conjugate transpose of V, which is a n-by-n unitary  

 

Figure 2-1: Graphical representation of the proposed source separation. In the physical system, acoustic 

sources within the chest generate sounds which propagate out and cause the chest surface to vibrate. To 

estimate the source strengths based upon surface measurements, the pseudoinverse of the mixing matrix is 

multiplied by the surface measurements. 

matrix. Note that if the values of V* are purely real, this is simply the transpose. After performing the 

singular value decomposition, the pseudoinverse W can be calculated by: 



 

 12 

1 *W V U  Eq.  2-5 

Once this pseudoinverse has been obtained, the source signals can be estimated using equation 2.3. The 

overall algorithm is represented graphically in Figure 2-1. 

2.3. FINITE ELEMENT MODEL DEVELOPMENT  

As previously described, the proposed technique depends heavily upon the ability to practically invert the 

acoustic transfer matrix of the chest, and a major portion of this work involves calculation of the matrix 

condition number of this matrix at different frequencies. Clearly, such an analysis requires knowledge of 

the acoustic transfer within the chest. A 2-D finite element model of the chest was developed to obtain 

such information using ANSYS 11.0 (ANSYS, Inc., Canonsburg, PA). An overview of the process used 

to develop this model is shown in Figure 2-3; a discussion of this process follows. The 2-D geometry for 

the model was obtained from the Visible Human Project Server, supported by École Polytechnique 

Fédérale de Lausanne, which has published cryosection images of an entire human body. The cryosection 

image utilized in this study, shown in 

 Figure 2-2, represents a transverse slice of the chest geometry passing through the chest at a level 

corresponding to the most common site of occlusion of the main left coronary artery. This represents the 

„worst-case scenario for the occurrence of a coronary blockage, and the prognosis for such an event is 

sufficiently poor as to be commonly referred to as the „widowmaker‟. The geometry for the model was 

obtained by manually fitting splines to the interfaces between different tissue types appearing in the 

cryosection image, which was performed in SolidWorks (Dassault Systèmes SolidWorks Corp., Concord, 

MA). In this step, four different regions were identified: 

 

 Figure 2-2: Transverse cryosection image 

obtained from the École Polytechnique Fédérale 

de Lausanne Visible Human Project Server. The 

axial location of this slice within the chest 

corresponds to the most common location for the 

occurence of main left coronary artery 

occlusions 

 

1) Soft tissue (muscle, skin, fat, etc.) 

2) Bone  

3) Air 

4) Blood 

 

Additionally, both internal and external free 

surfaces were identified and marked in this 

step (internal free surfaces occur in the right 

and left primary bronchi, which carry air to the 

lungs). Using these splines, areas representing 

like materials were defined, resulting in a 

surface geometry which was imported into 

ANSYS, where it was meshed and material 

properties were assigned. 
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Figure 2-3: Overview of the process used to build the finite element model. The model geometry was 

obtained from a cryosection created by the Visible Human Project. A CAD geometry was created based 

upon this image was created by fitting splines to the boundaries between tissue layers in the image. The 

resulting CAD geometry was exported to ANSYS where the finite element model was built by meshing 

the imported geometry. 

2.4. MATERIAL PROPERTIES AND MESH GENERATION  

 

 

Figure 2-4: Initial mesh produced from the cryosection geometry. Teal regions correspond to skin and 

sub-cutaneous fat. Purple regions correspond to muscle, while light blue regions correspond to cardiac 

muscle. Red regions correspond to lung parenchyma, while yellow regions correspond to internal air. 

Finally, magneta regions correspond to blood. Note that the unmeshed „holes‟ in the model (appearing 

white) correspond to bony regions. Elements bordering such holes were assigned rigid boundary 

conditions. All soft tissue was assigned identical material properties. 

Four different tissue types were identified during the previous spline fitting step. Both soft tissue and 

blood were assigned material properties corresponding to those of water. Bone was assumed to be 
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acoustically rigid, and thus was not meshed, but instead a fixed boundary condition was applied at the 

interface of soft tissue with bone. Finally, lung parenchyma was assigned material properties identical to 

those used in the analyses of Royston et al. and Mansy et al., who studied the propagation of sounds 

within the chest with the aim of acoustically detecting the presence of pneumothorax[61, 62]. The use of 

material properties of water to represent soft tissue and blood also follows the analyses of Royston et al. 

and Mansy et al. The assigned acoustic properties are summarized below in Table 2-1. Air is treated two 

separate ways in this model. Internal air pockets are meshed within the model, while external air is 

accounted for by applying a pressure release (P=0) boundary condition. 

 

The geometry was meshed using ANSYS FLUID29 elements. These elements are linear quadrilaterals 

developed through discretization of the 2-D wave equation. It is important to note that this element does 

not possess the capability to model dissipative (viscoelastic) materials. Thus, it was model necessarily 

assumes that elastic behavior (alternatively, that the speed of sound is purely real) and that the model is 

undamped. The importance of this assumption will be discussed later. Where necessary, reduced 

triangular versions of these elements were used to generate valid meshes, however, very few (less than 

one percent) such elements exist in the final mesh. A maximum element size of less than 1 mm was used 

in the initial mesh. This initial mesh is shown in Figure 2-4. 

 

 

Tissue Type Speed of Sound (m/s) Density (kg/m
3
) 

Bone  -- (modeled as rigid) -- (modeled as rigid) 

Soft Tissue (muscle, skin, etc) 1500  1000  

Blood 1500  1000 

Lung Parenchyma 30 300 

Table 2-1: Material properties assigned to each tissue type represented in the finite element model. Note 

that the material properties assigned to both soft tissue and blood are identical to those of water. These 

values are consistent with those used in the previous acoustic analyses of Royston et al. and Mansy et 

al.[61, 62] 

2.5. MESH VALIDATION  

As previously discussed a necessary assumption made in the development of the model was that the 

behavior of the elements is strictly elastic. This assumption leads to a significant limitation of model. It is 

a well known result in vibration theory that driving a purely elastic model near a resonant frequency leads 

to infinite harmonic response. Thus, as the driving frequency approaches a resonant frequency, the 

behavior of this finite element model can be expected to trend towards infinity. In reality, the behavior 

near such frequencies is limited by the viscoelastic properties of the model, but, these properties have 

been neglected. Because driving the model near resonance does not affect the shape of the response, this 

assumption is acceptable when comparing the acoustic transfer functions, which depends upon the excited 

mode shapes. However, it makes validation of the mesh more difficult, since the actual response of the 

model is extremely sensitive to the mesh.  

As a result, the resonant frequencies of the model (as determined by modal analysis) were used as system 

response quantities for mesh validation. The mesh was assumed to acceptable if the resonant frequencies 

converged asymptotically, since this indicates that the mesh is sufficiently fine that the errors involved in 

computation are decreasing with mesh size as would be predicted theoretically by the order of the 

elements and the degree of mesh refinement. To demonstrate that the mesh does indeed exhibit such 

behavior, two systematic refinements of the mesh were performed, each halving the mean element length, 
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with resonant frequencies being calculated for the initial mesh as well as both refinements. An additional 

benefit of this approach is that it allowed explicit, independent examination of the validity of the mesh at 

different frequencies, since there are a large number of resonant frequencies within the frequency range of 

interest. 

To confirm that the mesh size is sufficiently small for asymptotic reduction in model errors, the observed 

order of convergence of the series of meshes was calculated using the resonant frequencies calculated for 

each of the three previously described meshes. According to Roache, the observed order of convergence 

can be calculated by[63]:    
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,1 ,2
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k k

k k

k

f f

f f
p

r
 

Eq.  2-6 

where pk represents the order of convergence calculated using the k
th
 resonant frequency. fk,i represents the 

value of the k
th
 resonant frequency calculated using the i

th
 iteration of mesh refinement. Hence, i=0 refers 

to the initial mesh, while i=1 and i=2 refer to the meshes produced by the 1
st
 and 2

nd
 iterations of mesh 

refinement, respectfully. Finally, r represents the ratio of the previous (parent) mesh to the refined mesh. 

Since in this study the length of elements were approximately halved each iteration of mesh refinement, 

r=2.  

The results from applying  Eq.  2 6 to the resonant frequency calculations from each mesh are shown in 

Figure 2 5. The expected, theoretical order of accuracy of the solution for the resonant frequencies is p=2. 

Inspection of the results shows fairly good agreement between the theoretical and observed orders of 

accuracy at lower frequencies, and exceptional agreement at higher frequencies. Since such agreement 

can be observed only if all three of the meshes used in the calculation are sufficiently fine so as to have    

 

Figure 2-5: Comparison of the theoretical and observed orders of convergence from the mesh verification 

study. These results show good agreement in the lower portion of the frequency range of interest, and 

exceptional agreement at the higher end of the frequency range. As a result, it can be concluded that the 

initial mesh is sufficiently fine to possess asymptotic error behavior, and is suitable for use in calculations 
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asymptotic error behavior, it can be concluded that the initial, coarse mesh is sufficiently fine so as to 

possess asymptotic behavior. This means that the results are within a well-defined error (which decreases 

asymptotically with increasing mesh size) of the true solution, and that the mesh is sufficiently to produce 

reliable results within the range of this error. 

2.6. TRANSFER FUNCTION CALCULATION  

In this study, fourteen separate acoustic point sources were applied to the previously described and 

validated finite element model. The locations of these point sources appear in Figure 2-6, and descriptions 

of their locations appear in Table 2-2. Although the use of fourteen source locations is almost certainly  

 

Figure 2-6: Locations of the point sources for 

which transfer functions were calculated. 

Fourteen different point sources were 

considered. Transfer functions were calculated 

between each source location and each surface 

node 

 

 

insufficient for clinical use of the technique, it is 

a sufficient number of point sources to examine 

the variation of acoustic transfer functions 

originating from different locations within the 

chest. To calculate transfer functions, a point 

source of unit amplitude was applied to the node 

corresponding to the point source location. This 

was implemented in ANSYS using the FLOW 

load command. The harmonic solutions of the 

model were then produced over a range of 0-800 

Hz, with frequency steps of .66 Hz. An overview 

of this process is shown in According to the 

definition of an acoustic transfer function 

presented in Eq.  2-1, the transfer function 

between the current point source and a given 

surface node is simple equal to the calculated 

response of the node, since the point source is of 

unit strength. Transfer functions were calculated 

for each surface node present in the mesh, and 

were used to assemble the acoustic transfer 

function matrix H(ω), as described in the 

previous theory portion of this chapter.

Table 2-2: Positions of the point source locations for which transfer functions were calculated. Note that 

the transfer function between each listed source location and all surface nodes was calculated. 

Descriptions in italics represent point sources associated with the respiratory system, as opposed to the 

cardiovascular system 

Point Source Locations 

Left Coronary Artery Left Primary Bronchus 

Right Coronary Artery Right Ventral Lung 

Right Ventricle Right Mid-Lung 

Right Atrium Right Dorsal Lung 

Left Atrium Left Ventral Lung 

Descending Aorta Left Mid-Lung 

Right Primary Bronchus Left Dorsal Lung 
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2.7. MATRIX CONDITION NUMBER & ERROR PROPAGATION CALCULATIONS  

As previously shown with Eq.  2-2 and Eq.  2-3, the proposed technique depends heavily upon the 

inversion of the acoustic transfer matrix H(ω). Much of the vulnerability of this technique to 

measurement error depends heavily upon how easily this matrix can be numerically inverted, as defined 

by the matrix condition number, k. A low matrix condition number corresponds to a well conditioned 

system of equations, which is easily invertible. With such a system, errors in the forcing vector produce 

only small errors in the solution. In the context of the current work, if the condition number of the 

acoustic transfer matrix H(ω) is small, then errors occurring in the measurement of the surface velocity 

will produce only small errors in the estimates of the amplitudes of internal sources. Conversely, if the 

matrix condition number of the system is large, then the technique is susceptible to measurement errors, 

and even small errors in surface velocity measurements may produce large errors in the estimated source 

 

Figure 2-7: Overview of the process undertaken to calculate the transfer functions of each source 

location. An outer loop looped over the 14 source locations within the chest. A point source of unit 

strength was applied at this location, and the model was solved, sweeping over a frequency range of 0-

800 Hz. After having solved the model, another loop recorded both components of the surface velocity at 

each node on the outside of the model. Once this surface velocity has been retrieved, the value of the 

transfer function between the i
th
 source location and the j

th
 surface node at the k

th
 frequency can be 

calculated by dividing the the surface velocity by the source strength. A total of 8498 transfer functions 

were calculated. Note that hollow (unfilled) boxes indicate for loops, while filled boxes indicate steps 

taken within the loop. The variable in the upper right hand corner of the loop is the index variable for the 

loop. 
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strengths. As a result, the matrix condition number of the acoustic transfer functions of the chest 

represents a major interest throughout this work. 

The condition number of a matrix is calculated by taking the product of the operator norms of a matrix 

and its inverse: 

1( )k A A A  Eq.  2-7 

Because there are multiple operator norms, there are multiple different definitions of the condition 

number. In the case of this work, the decision was made to use the ℓ-2 operator norm, in which case the 

matrix condition number can be calculated by taking the ratio of the maximum and minimum singular 

values of the acoustic transfer matrix, H(ω): 

 
 

 

max

min
k





A  Eq.  2-8 

Note that this definition guarantees that the minimum possible value of the matrix condition number is 1. 

The mathematical significance the condition number of a matrix is that it supplies a bound on the 

propagation of error that occurs when solving a linear system of algebraic equations. The error in the 

solution to the system is governed by the inequality[64]: 

 s k H v     Eq.  2-9 

where δs, δH, and δv represent the relative errors present in the source strength vector, the transfer 

function matrix, and the surface velocity vector. The relative error of a vector or matrix is defined as: 

ˆ
s




s s

s
 Eq.  2-10 

where   represents the approximate vector contaminated with error. From Eq.  2-9 it is apparent that while 

the condition numbers does not tell us what there is, it does give us a threshold which the error will be 

below. More formally, the matrix condition number bounds the norm of the relative error in the solution. 

In this work, however, one further step was taken, and a series of numerical experiments was performed 

to estimate the amplification of the error which occur in solving the system. At each frequency, a set of 

arbitrary source strength vectors was generated, which were then used to calculate an exact vector of 

surface velocities, using the already calculated transfer functions, according to Eq.  2-2. This velocity 

vector was then contaminated with random error. This was done with errors on the order of 10
-11

 through 

10
-3

. Forty iterations were performed at each level of error. In each iteration, Eq.  2-3 was used to 

calculate an estimate of the source strength vector based upon the contaminated velocity vector. Relative 

errors were calculated for both the contaminated source strength vector,   and the contaminated surface 

velocity vector,   . The results from each simulation were then used to fit a linear relationship between the 

amount of error present in the surface velocity vector, and the mean error present in the source strength 

vector: 
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s v   Eq.  2-11 

 The fitted constant β, henceforth referred to as the error amplification factor represents the average 

amount by which errors in the surface velocity vector are increased in the resulting estimate of source 

strength vector. This error amplification factor can be thought of as an estimate of the actual value of the 

quantity which the matrix condition number bounds.  
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3. NUMERICAL RESULTS & DISCUSSION 

 

3.1. TRANSFER FUNCTIONS & IMPLICATIONS FOR FEATURE DETECTION  

As discussed previously in Section 2.6, transfer functions were calculated between each of fourteen 

different acoustic source locations within the chest, and the full set of surface nodes. The resulting sets of 

transfer functions for the left and right coronary arteries are shown in Figure 3-1 and Figure 3-2. Similar 

plots can be produced for the other source locations listed in Table 2-2, however, for brevity, most of 

these results are shown in Appendix B. Several important observations can be made immediately from 

examination of the transfer functions for the left coronary artery. First, this data clearly confirms that any 

signal associated with CAD reaching the skin surface will be extremely faint, subject to signal losses at 

least on the order of -100 to -200 dB. Additionally, this data suggests that resonant frequencies of the 

chest populate the entire frequency range which is of interest in phonoangiography. This suggests that the 

use of spectral feature detection algorithms will have to overcome an additional problem on top of those 

discussed previously. Specifically, the acoustic transfer functions of the chest will act as a very 

complicated filter, which will act upon the CAD signal before it is ever received by sensors located on the 

skin surface, thus distorting the spectra before it is ever recorded by a microphone. As discussed earlier, 

many research studies have performed animal or benchtop experiments, where microphones could be 

placed near the artery, and this affect was not significant. However, the primary advantage of 

phonoangiography remains its potential for noninvasive detection. Noninvasive detection requires that 

sensors be placed on the skin surface; as a result, the described affect is a significant one that 

conventional techniques would have to overcome. 

 

 

Figure 3-1: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the left coronary artery. right: acoustic transfer function for the y-component of velocity. Radial 

coordinate corresponds to frequency, while the angle coordinate corresponds to surface position, 

measured by angle from the anterior mid-sagittal plane. Colorbar units: dB. 
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Figure 3-2: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the right coronary artery. right: acoustic transfer function for the y-component of velocity. Radial 

coordinate corresponds to frequency, while the angle coordinate corresponds to surface position, 

measured by angle from the anterior mid-sagittal plane. Colorbar units: dB. 

Of more interest to the current technique, is the spatial variation of the acoustic response along the chest 

surface and the variation between the responses corresponding to different source locations. Here, both 

good and bad news is encountered. Inspection of results in both Figure 3-1 and Figure 3-2 show that 

surface response depends heavily upon the location on the chest. The observed pattern is one of regions of 

high response, separated by narrow regions of low response. The existence of this variation is excellent 

news for the proposed algorithm, since it suggests that microphones located at different locations on the 

chest will hear very different signals. However, the results presented in Figure 3-1 and Figure 3-2 can 

give little physical insight into why this pattern arises, since these figures present only the surface 

response.  

To explain this pattern, the acoustic field inside the chest is examined. Recall that the results in Figure 3-1 

and Figure 3-2 are only from the skin surface. Figure 3-3 shows the magnitude of the  particle velocity 

field inside the chest, resulting from a point source located in the left coronary artery oscillating at 50 Hz. 

Note that this frequency was chosen somewhat arbitrarily – there is nothing particularly special about 50 

Hz, but it is not practical to plot the internal field throughout the frequency spectrum. Examination of 

these internal fields leads to the conclusion the pattern observed on the chest surface is due to the 

interaction of the acoustic field with the bony structures of the chest, especially the rib cage. These bony 

structures reflect incident sounds waves, leading to acoustically shadowed regions on the skin surface 

behind the structure.  

Although there is large variation in response at different locations on the chest, variation between 

different sources appears to be much more modest. Examination of Figure 3-1 and Figure 3-2 shows that 

although differences in the two sets of transfer functions do exist, there is also a great deal of similarity as 

well. To some extend this is expected, since the right and left coronary artery are relatively close together 
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in their anatomical position. For comparison, Figure 3-4 shows the same transfer functions for the left 

dorsal lung, which is located in a much more dorsal position than the coronary arteries, as well as off to 

one side. Comparison of these transfer functions with those corresponding to the left and right coronary 

arteries reveals that even in the case of further removed source locations, a great deal of similarity 

remains in the acoustic transfer functions. This suggests that the acoustic transfer function matrix may 

represent a poorly conditioned system of equations, which would lead to the algorithm being vulnerable 

to inevitable errors in the measurement of surface velocities. 

 

 

Figure 3-3: Internal acoustic particle velocity field resulting from an acoustic point source oscillating at 

50 Hz located within the left coronary artery. These results suggest that the interaction of the acoustic 

field with the ribs leads to shadowed regions of low surface response of the chest surface. 

 

Figure 3-4: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the left dorsal lung. right: acoustic transfer function for the y-component of velocity. Radial coordinate 

corresponds to frequency, while the angle coordinate corresponds to surface position, measured by angle 

from the anterior mid-sagittal plane. Colorbar units: dB. 
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3.2. MATRIX CONDITION NUMBERS & SOURCE SEPARATION RESULTS 

Before examining the matrix condition numbers of the acoustic transfer matrix, the ability of the proposed 

approach to detect CAD in a numerical environment lacking measurement errors but possessing high 

levels of background noise is considered. Towards this end, data vectors corresponding to random noise 

were created for each of the fourteen point sources considered in the study (listed in Table 2-2). The RMS 

values of the vectors corresponding to the left and right coronary arteries were one thousand times less 

than those applied to the remaining twelve sources, so as to simulate the much weaker signals emitted by 

these arteries. The Fourier transforms of these data vectors were taken, and used to apply source strengths  

   

Figure 3-5: True and estimated source strength time series for the left coronary artery, produced in the 

previously described test case without measurement error but in a noisy environment. Top: Actual signal 

input into the source Bottom: Estimate of the source strength time series produced by applying the 

proposed algorithm to the surface velocity data. These results clearly demonstrate the effectiveness of the 

technique in the absence of measurement error. 

to the point sources in the finite element model. The frequency spectrum of the surface response of each 

node was then obtained by performing a harmonic analysis in ANSYS, sweeping the entire frequency 

range of 0-800 Hz.            

The results from this test case are shown in Figure 3-5. Inspection of these results reveals excellent 

agreement the true input signal and the estimate calculated from the surface velocity spectra. This 

demonstrates the ability of the technique to separate the sounds coming from an individual source 

location, based upon knowledge of the acoustic transfer functions. The test case also demonstrates the 

immunity of the technique to background noise, since this test case was performed in the presence of 

many background noise sources whose RMS strength was orders of magnitude greater than the source 

located at the left coronary artery. However, these results say nothing about the vulnerability of the 
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proposed technique to measurement errors, which is examined through the calculation of matrix condition 

numbers and the propagation of errors. 

3.3. MATRIX CONDITION NUMBERS & ERROR PROPAGATION  

The approach used in this study for the calculation of matrix condition numbers is described in Section 

2.7. Condition numbers were calculated for the acoustic transfer matrix at each frequency for which 

transfer functions were calculated. The resulting condition numbers are shown in Figure 3-6. As a brief 

reminder, this metric measures the propagation of error that occurs in solving a linear system of equations  

 

Figure 3-6: Condition numbers of the acoustic transfer function matrix over a frequency range of 0-800 

Hz. The condition numbers of the matrix are prohibitively high at lower frequencies, but reduce to more 

manageable levels for frequencies above 550 Hz. The peaks present in the data correspond to the resonant 

frequencies of the model. The black line corresponds to a trendline, which looks at the error propagation 

outside of the resonance spikes. 

through inversion of the coefficient matrix. The high condition numbers observed at lower frequencies 

suggest that in that frequency range the proposed technique is not practical. In contrast, the results show 

that these condition numbers level off to about k=100 for frequencies above 550 Hz. Thus, while the 

system is still sensitive to numerical errors, this affect is significantly reduced in this higher frequency 

range. 

These results strongly suggest that the proposed technique is most likely be to be effective if the sounds 

associated with CAD have strong components at frequencies greater than 550 Hz. For a more intuitive 

representation of the sensitivity of the system to measurement error, the propagation of errors through the 

system were calculated, according to the procedure described in Section 2.7. The resulting error 

amplification factors are shown in Figure 3-7. The same trends are observed in these results as were 

observed in the condition numbers shown in Figure 3-6, with extremely low error tolerance and very large 

amplification of errors at low frequencies, but with manageable levels at frequencies above 550 Hz. Note 

that these error amplification factors, especially above 550 Hz, tend to be at least an order of magnitude 
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less than the matrix condition number. Thus, on average the error propagation through the system tends to 

be about an order of magnitude better than the theoretical worst case. 

 

Figure 3-7: Error amplification factors representing the average propagation of error through the system. 

The same trends are observed in this data as are observed in matrix condition numbers shown in Figure 

3-6, with high amplification of the error at lower frequencies, but much more manageable increases in the 

error at frequencies above 550 Hz. Note that the actual behavior of the system is rather more forgiving 

than the theoretical limit. Above 550 Hz, the amplification of the errors tends to be on the order of 10, 

while the matrix condition numbers are on the order of 100. Thus, the actual error tolerance of the system 

is on average about an order of magnitude better than the theoretical limit. 

3.4. DISCUSSION & FUTURE WORK 

The results shown in the previous subsections have demonstrated the ability of the approach described in 

Section 2.2 to separate the acoustic signals produced by stenosed coronary arteries from the background 

noises in the chest based upon the differences in the acoustic transfer functions from each source location. 

However, the matrix condition numbers (which represent a theoretical limit on the levels of error) and the 

error propagation factors (which represent the actual average errors encountered) results shown in Figure 

3-6 and Figure 3-7 show that at frequencies below 550 Hz the technique has severe issues with tolerance 

of errors in the measurement of the surface velocities. At frequencies near or above 550 Hz, these errors 

are manageable. This leads directly to the observation that the usefulness of the technique is heavily 

dependent upon the actual frequencies of the CAD associated sounds which the technique is attempting to 

detect. If the spectral content of these sounds is below this threshold frequency the proposed source 

separation breaks down; above this frequency it is quite feasible.  

 

Examination of the prior work in this area, discussed previously in Section 1.4, and summarized in Table 

1-1, reveals an uncertain picture. While many of these studies have shown frequencies for which the 

proposed technique is feasible, others reported sounds at lower frequencies, between 100 and 200 Hz, for 

which technique is impractical. There is an observed trend that the more recent studies, which have used 

more sophisticated signal processing algorithms intended for stationary signals such as those associated 
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with CAD, have tended to predicted content at higher frequencies. Most notable here are the STFT results 

of Mohler[41], which predicted frequencies at around 800 Hz. However, there is still much uncertainty 

with regard to actual characteristics of the sounds associated with CAD, which, as discussed previously is 

one of the main motivations for the approach taken in this work. This presents the first of several avenues 

for future work in this area. There is a great need in this area for rigorous, benchtop experiments (where 

more factors can be controlled) which examine the sounds produced by stenosed arteries with 

complicated cross sections in pulsatile flow, rather than merely studying axisymmetric cross sections. 

Additionally, the structural properties of the vessel should be varied in these experiments. The acoustic 

recordings obtained in the proposed experiments should be coupled with hydrodynamic and structural 

measurements, to gain insight into the exact mechanisms producing the sound under different 

circumstances. Such data would both give the community a better idea of the expected frequencies of 

interest, as well as how consistent these frequencies can be expected to be between patients. If there is a 

high degree of variability in these results, as is expected, this suggests that source separation approaches 

should be pursued over feature detection approaches, since these spectral features associated with CAD 

may be quite different between individuals. In contrast, the location of the left coronary artery is relatively 

constant.  

 

Another important avenue for future work involves relaxing several important limiting assumptions 

which are present in the numerical simulations performed as a part of this work. As discussed in Section 

2.3, the simulations assumed both that damping was negligible (due to restrictions on the ANSYS 

elements used in the study) and the geometry was 2-D. Clearly, in the actual chest neither assumption is 

true. Away from resonance, the assumption of negligible damping is justifiable, since the entire domain 

lies in the near field of the source; waves have not propagated a far enough distance through the media for 

damping to be significant. Moreover, the conclusions drawn in this study were based upon the results at 

frequencies away from resonance, where the assumption is justifiable. In contrast, the assumption of a 2-

D geometry is clearly not valid in the human body. As a result, the work described here should be seen as 

a preliminary first step. Performing similar simulations to calculate transfer functions for a 3-D 

physiologically accurate geometry is an extremely important next step, and is probably a more critical 

future work than the previously described artery experiments. 

 

The expectation for the proposed 3-D simulations is that they will actually show the proposed technique 

to be even more feasible than the 2-D study presented here. The technique is built upon the assumption 

that the transfer functions between different locations on the skin surface and a given source location are 

significantly different. If the transfer function which populate the linear system shown in Eq.  2-2 are very 

similar, high condition numbers and corresponding poor error tolerance will be encountered. As a result, 

the proposed technique thrives and depends upon the geometric complexity of the chest. The 3-D 

geometry of the chest is even more complicated than the 2-D geometry. Thus, it is expected that the 

results from an in-depth 3-D study will reveal improved error tolerances, since there will be increased 

variation in the individual equations population equation Eq.  2-2 as compared to the 2-D case.  

 

One final issue remains that has not been addressed hereto, which is the real world implementation of the 

proposed approach. Since the proposed approach is intended to fill the lack of a screening technique 

which currently leads to CAD causing 20% of all deaths in the country, it is apparent that to be practical 

and clinically useful, the technique must work without requiring patient specific finite element models. 

There are two proposed approaches to avoid requiring such a model. Recall that Eq.  2-9 relates the error 

in the source strengths to both the error in the forcing vector of surface velocities and the matrix of 

transfer functions. If the system has is relatively tolerant to surface velocity errors, it will also be resistant 

to errors in the matrix of transfer functions. It may be possible to build a set of generic transfer functions 

for different body types, and use these transfer functions in Eq.  2-3 to determine source strengths, rather 

than patient specific ones. The alternative to this approach would be to attempt to build the transfer 

functions experimentally prior to recording data by equipping the recording apparatus to be able to “ping” 
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the chest acoustically in the frequency range of interest at a series of locations on the chest, and calculate 

the transfer functions based upon the attenuated ping heard at the recording locations. Such an approach 

would be much more complex than the former approach, which is considered the more desirable one. 

 

Under ideal circumstances, the recording apparatus used to implement the proposed technique would be 

able to take spatially continuous measurements of surface velocity over the entire chest surface, since one 

wants as much information as possible. In practice, this could take the form of a very light compliant band 

which is placed around the chest with a large number of embedded microphones/accelerometers. 

Unfortunately, such a device would to some extent alter the transfer functions of the chest by changing 

the boundary condition on the chest surface. A more desirable approach may be to use some form of laser 

vibrometry to record the vibration of the chest. The use of scanning laser vibrometry would have the 

additional advantage of being able to record the surface velocity at a large number of locations. However, 

regardless of the instrumentation technique used, the sites where data is recorded in any real world system 

will be finite, and as a result these sites will need to be chosen so as to maximize the error tolerances of 

the system. For example placing all the sensors very close together would lead to very poor error 

tolerances all of the transfer functions populating Eq.  2-2 would be very similar, leading to a poorly 

conditioned system with poor error tolerance. A final immediate follow-up project would be to examine 

the optimal choice of recording locations, so as to maximize the error tolerances of the proposed 

technique. Further down the road, the hope would be for the future works described here to lead to 

experiments in cadavers, animals, and ultimately, human patients. 
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4. CONCLUDING REMARKS 

Coronary artery disease continues to be the leading cause of death in this country, due primarily to our 

inability to screen effectively for the disease. Accurate diagnostic tests exist, but their invasive nature 

prevents their use for general screening. Phonoangiography has the potential to be an outstanding 

screening test for CAD, but has historically been plague due to signal to noise problems and uncertainties 

regarding the actual acoustic spectra which a diseased artery can be expected to emit. This study has 

proposed an alternative approach to the acoustic detection of CAD which detects the sounds based upon 

the location of the source from which they are released, rather than the spectral content of the signals. The 

problems associated with uncertainty in the acoustic spectra associated with disease are rendered moot, 

and one need only examine the sounds produced by the coronary arteries – a noisy artery is almost 

certainly not a healthy artery. More to the point, the technique is intended only as a screening technique 

which need not make a conclusive diagnosis. To be useful it need only provoke enough suspicion to 

justify the risk associated with conventional, invasive tests. 

 

A series of numerical experiments using a physiologically accurate, 2-D model of the chest were 

performed to test the validity of the technique. The primary concern with the proposed technique is that it 

would have such poor error tolerance that the technique is impractical. The results showed that while this 

is true for low frequencies, in the higher frequency range where many studies have reported sounds 

associated with CAD, the numerical errors associated with the technique are actually quite manageable. 

However, the strength of the conclusions that can be drawn from this initial study is limited by the 

assumptions made in the development of the finite element model, most notably the assumption of a 2-D 

model geometry. To completely verify the validity of the proposed approach, it will be necessary to 

perform 3-D simulations, followed by experimental validation of the approach. Based upon the behavior 

of the model, however, it seems likely that the technique will actually perform better in a 3-D 

physiologically accurate model than in the 2-D geometry. If so, then while a long road lies ahead, the 

concept of using source separation to screen and preliminarily diagnose CAD holds tremendous promise 

to revolutionize the treatment of coronary artery disease.  
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APPENDICES 

A. DESCRIPTION & ANSYS  IMPLEMENTATION OF ACOUSTIC POINT SOURCES  

The ANSYS Fluid 29/30 elements use pressure as their degree of freedom. In standard FEA, forces can 

be applied to nodes; with these acoustic elements FLOW loads are applied. This flow load represents the 

pumping of fluid in and out of the system at the node, and has units of mass/time
2
. For a 2-D geometry, 

the strength of the FLOW load can be calculated by: 

2
2

2

d u
FLOW R

dt
   Eq. A-1 

here R represents the radius of a circular point source so that πR
2
 represents the area of the point source. u 

represents the radial displacement of the perimeter of the point source. In other words, u represents how 

far in or out the edge of the circular point source has moved. Thus, the second time derivative of u 

represents the acoustic particle acceleration. In the case of this work the primary interest is the acoustic 

particle velocity. If we assume that the radial displacement u is harmonic, then FLOW load can be 

calculated by: 

2 du
FLOW j R

dt
   Eq. A-2 

This is the expression used in this work when calculating the acoustic transfer functions. 

B. ADDITIONAL RESULTS 

In Section 3.1, the acoustic transfer functions associated with point sources located in the left coronary 

artery, the right coronary artery, and the left dorsal lung are shown. This portion of the appendix contains 

the transfer functions associated with the point sources at the remainder of the locations listed in Table 

2-2. Figure B-1 through Figure B-4 present the transfer functions for the remainder of the sources 

associated with the cardiovascular system, while Figure B-5 through Figure B-11 represent the results for 

the remainder of the sources associated with the respiratory system. 
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Figure B-1: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the left atrium. right: acoustic transfer function for the y-component of velocity. Radial coordinate 

corresponds to frequency, while the angle coordinate corresponds to surface position, measured by angle 

from the anterior mid-sagittal plane. Colorbar units: dB. 

 

Figure B-2: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the right atrium. right: acoustic transfer function for the y-component of velocity. Radial coordinate 

corresponds to frequency, while the angle coordinate corresponds to surface position, measured by angle 

from the anterior mid-sagittal plane. Colorbar units: dB. 



 

 36 

 

Figure B-3: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the right ventricle. right: acoustic transfer function for the y-component of velocity. Radial coordinate 

corresponds to frequency, while the angle coordinate corresponds to surface position, measured by angle 

from the anterior mid-sagittal plane. Colorbar units: dB. 

 

Figure B-4: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the aorta. right: acoustic transfer function for the y-component of velocity. Radial coordinate 

corresponds to frequency, while the angle coordinate corresponds to surface position, measured by angle 

from the anterior mid-sagittal plane. Colorbar units: dB. 
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Figure B-5: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the left primary bronchus. right: acoustic transfer function for the y-component of velocity. Radial 

coordinate corresponds to frequency, while the angle coordinate corresponds to surface position, 

measured by angle from the anterior mid-sagittal plane. Colorbar units: dB. 

 

Figure B-6: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the right primary bronchus. right: acoustic transfer function for the y-component of velocity. Radial 

coordinate corresponds to frequency, while the angle coordinate corresponds to surface position, 

measured by angle from the anterior mid-sagittal plane. Colorbar units: dB. 
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Figure B-7: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the right dorsal lung. right: acoustic transfer function for the y-component of velocity. Radial 

coordinate corresponds to frequency, while the angle coordinate corresponds to surface position, 

measured by angle from the anterior mid-sagittal plane. Colorbar units: dB. 

 

Figure B-8: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the left mid lung. right: acoustic transfer function for the y-component of velocity. Radial coordinate 

corresponds to frequency, while the angle coordinate corresponds to surface position, measured by angle 

from the anterior mid-sagittal plane. Colorbar units: dB. 
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Figure B-9: left: x-velocity component acoustic transfer function corresponding to a point source located 

in the right mid lung. right: acoustic transfer function for the y-component of velocity. Radial coordinate 

corresponds to frequency, while the angle coordinate corresponds to surface position, measured by angle 

from the anterior mid-sagittal plane. Colorbar units: dB. 

 

Figure B-10: left: x-velocity component acoustic transfer function corresponding to a point source 

located in the left ventral lung. right: acoustic transfer function for the y-component of velocity. Radial 

coordinate corresponds to frequency, while the angle coordinate corresponds to surface position, 

measured by angle from the anterior mid-sagittal plane. Colorbar units: dB. 
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Figure B-11: left: x-velocity component acoustic transfer function corresponding to a point source 

located in the left atrium. right: acoustic transfer function for the y-component of velocity. Radial 

coordinate corresponds to frequency, while the angle coordinate corresponds to surface position, 

measured by angle from the anterior mid-sagittal plane. Colorbar units: dB. 

 


