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Chapter

2. Literature Review of Properties

2.1. Rheology

Having established the structural consequences of degradation as well as methods

of measurement, we now turn to the properties of polycarbonate.  It is well known that

degradation leads to changes in molecular weight, which subsequently causes changes in

material characteristics.  One of the areas most sensitive to this is rheology.

Recently, a comprehensive review of polycarbonate rheology was published1.  As

such, no review will be attempted here, but a summary of the relevant points of the

aforementioned article will be given.

One study2 referred to in the review article examines linear PC with weight

average molecular weights ranging from 16,600-35,000 g/mol.  Polydispersities all fall in

the range 2.4-2.6, and the temperatures of interest are those far above Tg (i.e., Tg + 50°C).

Data have been generated for G′, G″, andη *  versus frequency at temperatures ranging

from 205°C (Tg + 50°C) to 324°C, which is the upper limit for processing.  Time-

temperature superposition has been applied to produce master curves with a reference

temperature of 275°C.  Reduced variables are
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                             Equation 2.1-1

                                                

1 Jordan, T. C. and W. D. Richards in Handbook of Polycarbonate Science and Technology, D. G. LeGrand
and J. T. Bendler, ed., Marcel Dekker, Inc., NY, p. 179, 2000.
2 Yoshimura, D. K. and W. D. Richards, ANTEC Proc., 1603-1606, 1990.
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where T0 is the reference temperature, T is the temperature where the data were

generated, ρ0 is the density at T0, and ρ is that at T.  An empirical relationship between

density and temperature is also given for PC:

( )2/35

3

T1086.1307.0exp
10

−×+−
=ρ                      Equation 2.1-2

where T is in absolute units and density is in kg/m3.  The original derivation3 of this

expression took no account of any dependence on molecular weight because it involved

only a single sample.  However, since other researchers1 have used Equation 2.1-2 over a

range of molecular weights, it will be applied here in the same manner.

Shift factors for the PC master curves exhibit nonlinearity, thus precluding the use

of the Arrhenius fit.  Instead, a WLF (Williams-Landel-Ferry) formalism with two

empirical constants, C1
0 and C2

0, best fits the data:
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An equivalent form of the WLF expression is
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This equation is derived on the basis of free-volume arguments for the temperature-

dependence of viscoelastic properties.  Thus, β is related to the thermal expansion

coefficient of the fractional free volume.  The Vogel temperature, T∞, is the temperature

where free volume would go to zero in the absence of Tg.  Fractional free volume can be

shown to be proportional to β(T-T∞).  This expression offers the advantage that the

parameters β and T∞ are independent of T0, which is not true for C1
0 and C2

0. β and T∞

are related to the WLF constants by
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3 Zoller, P., J. Polym. Sci.: Poly. Phys., 20, 1453, 1982.
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Values for β and T∞ have been found by fitting to appropriate data.  For PC, β

exhibits no molecular weight dependence and is found to be 8.0×10-4 K-1. T∞ shows an

inverse proportionality to a function of molecular weight, decreasing as molecular weight

falls.  Analogous to the Fox-Flory expression, which will be discussed in Section 2.2, for

Tg, T∞ is expected to depend on Mn
1/2.  Since polydispersity does not change with

molecular weight, both Tg and T∞ can be taken as inverse functions of Mw:
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                      Equation 2.1-6

Regarding the data presented in the review, two points should be made.  First, one

feature of the storage modulus, G′, curve, shown in Figure 2.1-1, is the so-called plateau

modulus, GN
0, present at high frequencies.  This quantity is related to the molecular

weight between entanglements, Me, by

e
0
N M/RTG ρ=                             Equation 2.1-7

(ignoring the 4/5 factor of Doi and Edwards).  Therefore, a master curve including these

high frequencies is one way to predict the value of Me.

Figure 2.1-1 Storage master curve at a reference temperature of 275°C for various
polycarbonate samples.1

Secondly, the empirical Cox-Merz rule can be applied to these data:
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ω=γωη=γη &
& )(*)(                           Equation 2.1-8

This merely states that the frequency dependence of η *  is analogous to the shear rate

dependence of )(γη & .  Thus, this allows a value for η0 (a steady shear quantity) to be

extracted from dynamic data.

It should be noted here that literature values have been reported4 for both Me and

Mc, the critical (entanglement) molecular weight of PC.  Me has been shown to be in the

range 1.2-1.6 × 103 and Mc varies from 3.9-6 × 103.  This agrees with the trend that Mc ≈

2-3 Me.5

Jordan and Richards also outline a viscosity model for linear PC.  An important

point to note for the polycarbonate studied here is that there is no significant variation in

the molecular weight distribution.  Consequently, there should be no changes in the shape

of the viscosity-shear rate curves at different molecular weights.  This allows one

viscosity model with a single set of parameters to describe all molecular weights.  For

this purpose, a modified Cross model has been chosen:

( )[ ] 18.0
0 1

−
γλ+η=η &                                      Equation 2.1-9

It should be noted that λ is a characteristic relaxation time which is a function of both

molecular weight and temperature.  At low shear rates ( 0→γ& ), η→η0.  At high shear

rates, the Cross model reduces to a power law model where n = 0.2:

1n
0 )( −γλη=η &                                    Equation 2.1-10

Equation 2.1-9 shows excellent agreement with data (Figure 2.1-2) and allows

determination of η0 and λ.

                                                

4 Fetters, L. J., D. J. Lohse, S. T. Milner, and W. W. Graessley, Macro., 32, 6847, 1999.
5 Colby, R. H., L. J. Fetters, and W. W. Graessley, Macro., 20, 2226, 1987.
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Figure 2.1-2 Experimental viscosity data and viscosity model for polycarbonate.1

It is possible to relate the zero shear rate viscosity η0 to the characteristic

relaxation time λ:

λρ=η Tk0                                Equation 2.1-11

where k is a constant.  Clearly, plotting η0 versus ρTλ should be linear with slope k.  For

the linear PCs of this study, k was found to be 1.5.  Then Equation 2.1-9 becomes

( )[ ]8.01
T5.1)(
γλ+

λρ=γη
&

&                           Equation 2.1-12

The characteristic relaxation time λ can be determined by fitting Equation 2.1-12 to the

viscosity master curves.

From Equation 2.1-1 and Equation 2.1-11, one can relate the shift factor aT to λ:

0
Ta

λ
λ=                                   Equation 2.1-13

In the usual manner, λ0 is the characteristic relaxation time at the reference temperature.

From Equation 2.1-4, the dependence of λ on molecular weight and temperature is

described by
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λb is a function of wM as given by

4.3
w

21
b )M(104.1 −×=λ                       Equation 2.1-15

Equation 2.1-12 and Equation 2.1-14 fit both high and low molecular weight over the full

temperature and shear rate range with an error of less than 15% as can be seen in Figure

2.1-3.

Figure 2.1-3 Comparison of the viscosity model predictions to the viscosity data of
polycarbonate.1

This viscosity model can now be used to predict the viscosity behavior of PC with

confidence.  It should be pointed out that more drastic changes in polydispersity may lead

to a broadening in the transition zone from Newtonian to power law behavior as seen in

Figure 2.1-4 where PDI increases from 2.6 to 3.0.
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Figure 2.1-4 Influence of polydispersity on the shape of the viscosity curve.  Squares
represent a polydispersity of 3.0, circles are 2.6.1

The rheological model just outlined provides a relationship between molecular

weight and viscosity specifically for polycarbonate.  However, it does entail a certain

level of complexity.  Many simpler general expressions relating viscosity and molecular

weight have been developed.  Flory and Fox6 were some of the first researchers to study

this type of relationship.  Fractions of polystyrene and polyisobutylene with a range of

molecular weights were prepared.  Molecular weight was measured by intrinsic viscosity,

and, for these fractions, vM was taken to be equivalent to wM .  Melt viscosities in the

range 1-100 poises were measured using a capillary viscometer.  A coaxial viscometer

was used to determine higher (105-1011 poises) viscosities.  Viscosities for some mixtures

of these fractions were also examined.

It was found that PS showed an increase in viscosity versus molecular weight up

to a critical value, and then a plateau as shown in Figure 2.1-5.  Fox and Flory also report

that their empirical relationship,

2/1
wMCAlog +=η                       Equation 2.1-16

where A and C are constant at a given temperature, does not strictly hold for the

polymers investigated.  It is suggested that the relationship can perhaps be used as a
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rough estimate over a narrow range of molecular weights, but cannot accurately predict

values of viscosity in general.

Figure 2.1-5 Viscosity versus molecular weight for polystyrene fractions.6

By examining fractions of polyisobutylene7, it was also found that a linear

relationship existed between log log (η / ηref) and 1/Mn, as well as between log log η and

Mn for molecular weights above a critical value.  Fitting data to both of these expressions

can enable prediction and even limited extrapolation.

Fox and Loshaek8 first advanced the theory of a universal viscosity law for

polymers above a critical (entanglement) molecular weight.  The linear relationship is as

follows:

KZlog4.3log w +=η                                  Equation 2.1-17

where K is a function of temperature and Zw is the weight average chain length,

∑= iiw ZwZ                                       Equation 2.1-18

where wi is the weight fraction of chains having a chain length Zi.  This expression

showed good fit to data for various polymer systems.

Closmann and Seba9 studied the physical properties of oils of various molecular

weights.  They found the following correlation between viscosity, density, and molecular

weight:

                                                                                                                                                

6 Fox, T. G. and P. J. Flory, J. Am. Chem. Soc., 70, 2384, 1948.
7 Fox, T. G. and P. J. Flory, J. Phys. Colloid Chem., 55, 221, 1951.
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MlnDCMlnBAln ++ρ+=η                     Equation 2.1-19

where viscosity is in units of cP (mPa⋅s), density is given by g/cm3, and molecular

weight, M, is in g/mol.  The constants are determined by a least squares fitting technique.

Most rheological models, while taking into account non-Newtonian nature, do not

include terms for polydispersity.  Dobkowski10,11 expands on previous work by adding a

polydispersity term to some common equations.  For example, melt viscosity is related to

molecular weight by

x2 )a(4.3
x0 qMA=η                     Equation 2.1-20

where xM is either wM or nM (traditionally, wM ), q is the polydispersity, wM / nM ,

and (a2)x is the polydispersity exponent, reportedly –0.074 ± 0.004 for wM  or 0.741 ±

0.005 for nM  of commercial polycarbonate, and A is a constant in the range 0.0124-

0.0132 for PC.  It should be noted that taking q as 1 (monodisperse) results in the

Bueche12 expression commonly used for melt viscosity.

Lomellini13 studied the rheology of PC with the aim of determining whether WLF

or Arrhenius formalisms provided a better description of the data.  Samples were tested in

a parallel plate rheometer in an oscillatory strain mode at frequencies ranging from 0.1-

100 rad/s at a maximum strain of 20% (within the linear viscoelastic region).

Measurements were made at temperatures ranging from 200-330°C, and master curves

were produced from these data.

It is generally accepted that the WLF methodology is best applied at temperatures

close to Tg (Tg < T < Tg + 100°C), while the Arrhenius expression fits better at higher (T

> Tg + 100°C) temperatures.  This is due to the fact that the WLF equation takes into

account that free volume is linearly dependent on temperature above Tg.  However, at

high enough temperatures, free volume is no longer the rate limiting factor.  However,

Lomellini’s study concluded that the WLF expression actually provides a slightly better

                                                                                                                                                

8 Fox, T. G. and S. Loshaek, J. Appl. Phys., 26, 1080, 1955.
9 Closmann, P. J. and R. D. Seba, J. Canad. Petroleum Tech., 29, 115, 1990.
10 Dobkowski, D., Eur. Polym. J., 17, 1131, 1981.
11 Dobkowski, D., Eur. Polym. J., 18, 1051, 1982.
12 Bueche, F., J Chem. Phys., 40, 484, 1964.
13 Lomellini, P., Makromol. Chem., 193, 69, 1992.
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fit over the entire range studied.  Thus, for PC, either expression could theoretically be

utilized for describing the master curves resulting from rheological testing.

Several groups14,15,16 have investigated methods to obtain molecular weight

distribution information from viscosity data.  Some begin with the equation

∫ ∫
∞
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Here, cγ&  is the characteristic shear rate for the viscosity function, η, α is usually taken as

3.4, M is the molecular weight, Mw is the weight average molecular weight, γ&  is the

shear rate, η0 is the zero-shear-rate viscosity, and -ν is the final slope of the power law

region.

One method of analysis for Equation 2.1-21 is the differential approach adopted

by a few groups.14,16 They differentiate Equation 2.1-21 using Leibniz’s rule and then

apply the resulting equation to the viscosity data.  An advantage here is that no

assumption regarding the shape of the molecular weight distribution is necessary, but the

method does incorporate an assumed shape for the viscosity function at both ends of the

frequency range.  However, too narrow a frequency range on the viscosity data can cause

misleading results such as ghost peaks.

An alternative is to solve Equation 2.1-21 via an integral approach.  The

integrated form can be fitted to the experimental data using a constrained nonlinear least

squares fitting procedure.  It does become necessary, though, to assume a shape for the

                                                

14 Tuminello, W. H. and N. Cudré-Mauroux, Polym Eng. Sci., 31, 1496, 1991.
15 Liu, Y., M. T. Shaw, and W. H. Tuminello, J. Rheol., 42, 453, 1998.
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molecular weight distribution.  Hence this approach would be less favorable than the

differential technique.

Liu et al.15 utilized both of these methods on a given set of data to determine

which approach gave better results.  While the differential method is fast and fairly

sensitive, the integral method appears more robust, particularly with incomplete viscosity

data.  At present, inconsistencies from both methods are significant.

Another group17,18,19 has been working on a similar technique to obtain the

molecular weight distribution of a linear, narrow molecular weight distribution polymer

from viscoelastic data, specifically, G′(ω).  While all the mathematical details will not be

covered here, the main equation relies on the plateau modulus, GN
0:
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where τ0 and c are numerical parameters.  This equation can be linearized as
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such that plotting the left-hand-side versus log ω gives a slope of –c and an intercept

related to τ0.  The determination of these numerical parameters then allows calculation of

a normalized relaxation spectrum, H(τ):
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16 Malkin, A. Y. and A. E. Teishev, Polym. Eng. Sci., 31, 1590, 1991.
17 Yu, T. L., J. Macromol. Sci.-Phys., B31, 175, 1992.
18 Yu, T. L., S. C. Ma., and J. C. Chen, J. Macromol. Sci.-Phys., B32, 229, 1993.
19 Yu, T. L. and S. C. Ma, Polym. J., 24, 1321, 1992.
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Once H(τ) is known, the next step is generating a weight fraction differential

molecular weight distribution curve, W(τ).  This is accomplished via a computer iteration

procedure.  It is known that

∫
∞

τ
τττ=τ

jln
kkjj lnd)(h)(h2)(H                    Equation 2.1-27

where h(τ) = W(τ)τ.  Plots of H(τ) versus ln τ and W(τ) versus ln τ are generated and the

ln τ axes divided into N intervals each equal to ∆.  Then Equation 2.1-27 is integrated

using the trapezoid rule.  Next, τ can be converted to molecular weight by

a
ii kM=τ                                 Equation 2.1-28

where a = 3.4 for 1 < Mw/Mc < 50 and

a
M
M

k
w

wr=                               Equation 2.1-29

where Mwr is the relative weight average molecular weight and Mw is obtained from some

other method like GPC or light scattering.  To find Mwr, k=1 in Equation 2.1-28.  Then

Mw and Mn can be calculated.  In fact, Yu successfully applied this method to PS and

generated the molecular weight distribution from rheological data.

In order to account for polydispersity in the polymers, a shift factor must be

introduced in the aforementioned method.  This application is detailed in another study

by Yu18 where binary mixtures of monodisperse PS were prepared to yield a broad

overall distribution.  This shift factor is defined as

m,iim,i Aτ=τ                                Equation 2.1-30

where τi,m is the relaxation time of chain i mixed with other chains, τi is the relaxation

time of chain i without mixing with other chains, and log(Ai,m) is the shift factor.

Equation 2.1-30 then leads to

)A,(H)(H m,iim,i τ=τ                      Equation 2.1-31

The shift factor is related to the weight average molar mass of the mixture, Mw,m, by
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b
m,im,wm,i )M/M(A =                  Equation 2.1-32

where b = 1.4.

The same iterative procedure is then utilized with the only difference being the

use of the shifted relaxation time spectrum, H(τi,m).  In a later work19, it is also

demonstrated that an analogous procedure can be applied to loss modulus data.

While these techniques present an interesting relationship between molecular

weight distribution and rheology, their utility may not be so high considering the ease of

measuring both quantities.  The procedure to generate the molecular weight distribution

is somewhat laborious, involving an iterative technique and some computer

programming.  Since gel permeation chromatography readily gives the same information,

it is still the preferred method.

From this summary, it is evident that several relationships exist to relate rheology

to molecular weight.  These range from simple proportionalities to more complex

equations taking into account other aspects of the polymer, such as polydispersity.

Applying these equations can help link structurally-caused molecular weight changes to a

downstream property such as viscosity.

2.2. Material Properties

Degradation is well-studied on a fundamental, structural level.  To lend practical

utility, it is necessary to relate it to measurable properties. Predicting polymer properties

from degradation conditions requires accurate structure-property correlations.  These

expressions relate some known structural feature of the polymer, such as molecular

weight, to a property of interest, like tensile strength, viscosity, glass transition

temperature, or even specific volume.  Some such applicable relations will be

summarized here.

It is generally accepted that Flory20 was the first to relate molecular weight and

certain properties, such as tensile strength, T, in polymers.  He began by proposing a

series functionality:

                                                

20 Flory, P. J., J. Am. Chem. Soc., 67, 2048, 1945.
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It is known that, for homogeneous blends of two polymers, properties are additive and are

functions of  <Mn> :
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Substituting Equation 2.2-4 into the series expansion of Equation 2.2-1 yields
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Again, it is known that some blend properties are additive functions of weight fraction,

∑=
i

iiblend TwT .  In order for this functionality to agree with Equation 2.2-5, terms a2

and higher must be identically zero, leading to

n
0 M

KaT +=                             Equation 2.2-6

While this expression has been used for over 50 years, it does not lead to

satisfactory results in some cases, most notably for broad molecular weight distribution

polymers.  However, it does serve as a good starting point for any structure-property

relationship, and, in the absence of a better model, is still favored.  It should be noted that

when the property in question is the glass transition, Equation 2.2-6 is commonly referred

to as the Fox-Flory expression.
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A systematic study21 to test the Fox-Flory equation was carried out on several

samples of polystyrene with an assortment of both molecular weights and distributions.

It was found that tensile strength and elongation were linearly dependent on nM -1, but

that narrow and broad molecular weight distribution samples showed varying linear fits.

Another result of the study was the finding that the narrower the distribution, the poorer

the property at a given nM , and the better the property at a given wM , suggesting a

dependence on a molecular weight average somewhere between nM  and wM .  By

contrast, tensile impact strength was seen to follow quite well a relationship with weight

average molecular weight.

A minor modification of the  Fox-Flory relationship was proposed by Ogawa22.

Instead of an inverse dependence on number average molecular weight, this author

utilized the square root of the product of the weight average and number average values:

( ) 2/1
wn MM

KTT −= ∞                                Equation 2.2-7

It was shown that this functional relationship also can be used to predict tensile strength

and demonstrated good agreement for both elongation at yield and flexural modulus for

polystyrene.

In addition to the Fox-Flory relationship, another functional relation has been

proposed23 to relate the glass transition temperature to molecular weight:

M
1

T
K

T
1

T
1

2
,g,gg ∞∞

+=                           Equation 2.2-8

This expression was successfully applied to several polymers including polystyrene,

polymethylmethacrylate, and polyisobutylene.  It should be noted that the K constant in

both the Fox-Flory relation and in Equation 2.2-8 appear to be the same.  Recent

research24 has indicated that K can be given by

                                                

21 McCormick, H. W., F. W. Brower and L. Kin, J. Poly. Sci., 39, 87, 1959.
22 Ogawa, T., J. Appl. Polym. Sci., 44, 1869, 1992.
23 Fox, T. G. and S. Loshaek, J. Polym. Sci., 15, 371, 1955.
24 Bicerano, J., Prediction of Polymer Properties, 2nd ed., Marcel Dekker, NY, 1996.
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3
,gT002715.0K ∞≈                        Equation 2.2-9

Rheological properties were also examined.  Narrower distribution samples

behaved in a more Newtonian manner than broader ones, and decreasing molecular

weight also led to more Newtonian character.  Zero shear rate melt viscosity was

determined to relate to wM .  However, high shear melt viscosity measurements indicated

a separate relationship for narrow and broad samples although both were also related to

wM .

As a consequence of the rheological work covered in Section2.1, Dobkowski10,11

extended the Fox-Flory equation by including a term for polydispersity.  The first step

involved rewriting the equation for some property P as

1KMP)(P −
∞ =−                          Equation 2.2-10

Adding a polydispersity term leads to

x2 )(aa
xqMAP)(P =−∞                    Equation 2.2-11

For Tg of polycarbonate, the above equation yields Tg∞ = 436 K, A = 3.4 × 105, and a = -

1.  The value of (a2)x as reported here is –0.63 and (a2)w is 0.38.  Note that the Fox-Flory

expression was derived on the basis of number-average values, so those values would

likely be utilized in Equation 2.2-11.

Other researchers who applied Flory’s results included Golden and coworkers25

who looked at the relationship between mechanical properties and molecular weight for

polycarbonate.  Different molecular weights, as measured by intrinsic viscosity, were

attained by irradiating samples for various times.  Samples were tested both in tension

and flexure, but flexure was reported to be more reliable for brittle specimens.  It was

found that, in the region of brittle failure ( vM < 13,000), the flexural strength  σF could

be calculated according to a linear relationship dependent on vM , the viscosity average

molecular weight.  Golden also presents a relationship between radiation dose R and vM ,

and expressions for the tensile yield strength, and flexural modulus and strength for the

                                                

25 Golden, J. H., B. L. Hammant, and E. A. Hazell, J. Poly. Sci. Part A, 2, 4787, 1964.
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ductile region in terms of R.  Clearly, with the aforementioned R- vM  expression, one

could easily develop equations relating tensile strength and flexural properties directly to

molecular weights.  It is unclear whether these equations have application beyond the

particular system for which they were developed.

In an extension of this work26, the authors looked at a range of testing rates for

flexural tests.  They found that for modulus, there is essentially no rate dependence but

there does exist an increase in modulus with decreasing molecular weight except for the

lowest molecular weights.

The authors then prepared master curves of stress versus molecular weight for

various strain rates as in Figure 2.2-1.  Once this procedure was shown to give acceptable

results, it was also determined that a master curve of flexural strength versus the

logarithm of the strain rate could be prepared by shifting the data both horizontally and

vertically.  The resulting master curve is shown in Figure 2.2-2.  These master curves

allow prediction of flexural strength-molecular weight or flexural strength-log (strain

rate) curves at a specified molecular weight or strain rate.  Golden concludes that rate and

molecular weight act in equivalent ways on the stress properties of polycarbonate.

Figure 2.2-1 Stress versus molecular weight in the brittle region.  Squares represent a
strain rate of 1 min-1, triangles a rate of 0.0001 min-1.26

                                                

26 Golden, J. H., B. L. Hammant, and E. A. Hazell, J. Appl. Poly. Sci., 12, 557, 1968.
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Figure 2.2-2 Stress versus strain for molecular weights ranging from 5300-21,900 and at
various strain rates.26

Pezzin and coworkers27 also looked at the relationship between the resulting

properties and polymeric structure, specifically that between the glass transition

temperature and molecular weight of PVC.  Using the Fox-Flory relationship,

n
g,g M

KTT −= ∞                              Equation 2.2-12

yielded good results only for nM  > 3000.  In an effort to describe the Tg over a wider

range of molecular weights, several other approaches were considered.  A free volume

treatment, for example, yields an identical relationship where K is given by 2θρN/αf

where θ is excess free volume (from an end group), ρ is density, N is Avogadro’s

number, and αf  is the difference of expansion coefficients above and below Tg.  Because

the functional dependence is identical, this method was found to also be unsatisfactory.

                                                

27 Pezzin, G., F. Zilio-Grandi, and P. Sanmartin, Eur. Polym. J., 6, 1053, 1970.
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The next approach tried was that of Somcynsky and Patterson which relies on the

theory of corresponding states.  This more complicated fit also yields the same

relationship where K is now bM0Tg,∞/a where b/a is a quantity which is inversely related

to flexibility of the chain, M0 is the molecular weight of a chain segment, and Tg,∞ is the

glass transition at infinite molecular weight.

As a last approach, the authors turned to Gibbs’ and DiMarzio’s statistical

mechanical theory of supercooled liquids.  Quite a complicated relationship results from

this:
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Equation 2.2-13

where β=ε/kTg.  Here, ε is the flex energy (energy difference between rotational

conformers), k is Boltzmann’s constant, x is the number of chain atoms in the polymer,

and v0 is the fraction of holes (free volume fraction at Tg).  Pezzin reports that this

expression quite well describes the Tg behavior over the entire range of molecular

weights studied.

It was not mentioned in Pezzin’s study what the entanglement molecular weight is

for PVC.  Quite likely, it is somewhere in the range where the Fox-Flory relationship

ceases to hold (i.e., around 3000).  If a researcher is only interested in behavior above

entanglement, Fox-Flory is quite adequate and offers much greater simplicity than the

Gibbs-DiMarzio approach, and is thus favored.

Adam et. al.28 looked at the effect of degradation on the structure-property

relationships for polycarbonate.  Specifically, they studied how molecular weight affects

thermal properties, such as thermal degradation and the glass transition.  Molecular

weights were measured using vapor pressure osmometry and intrinsic viscosity.  Thermal

degradation was examined via thermogravimetric analysis as well as infrared

spectroscopy.  The results from TGA indicate that degradation is greater for lower

molecular weight samples, suggesting that endgroup effects are involved.  However, it

should be noted that more volatile fragments are expected with a lower molecular weight

                                                

28 Adam, G. A., J. N. Hay, I. W. Parsons, and R. N. Haward, Polymer, 7, 517, 1976.
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sample even with random scission.  FTIR was employed to track changes in the

endgroups which correspond to degradation rates.  Finally, glass transition measurements

were performed and the data fitted to the Fox-Flory equation (Equation 2.2-12) such that

Tg,∞ = 432 K and K = 1.45 × 105 mol⋅K.

While the Fox-Flory functional relationship has been shown to be inexact, many

newer studies have still used it as their basis.  Colby et al.29looked at the relationship

between molecular weight and various properties for polybutadiene.  They point out that

density, thermal expansion coefficient, and glass transition temperature all exhibit linear

inverse molecular weight dependences, the same relationship as in Equation 2.2-12.

Bicerano24 presents a slight variation on the well-known expression by presenting

an equation as follows:

)MK(
KTT

n
,gg +′′

′
−= ∞                        Equation 2.2-14

Here, the mathematical interaction between K′ and K″ allow fitting over a broader range

of number average molecular weight and with greater sensitivity as would be expected

when another adjustable parameter is added.  The values for the constants are found by

simply fitting the data to the expression.

More recently, researchers have tried to refine the Flory’s approach.  Bersted and

Anderson30 examined the influence of molecular weight and molecular weight

distribution on the tensile properties of numerous samples of PS.  These samples

exhibited a range of molecular weights and, in some cases, blends were prepared to

produce varying distributions.  All molecular weight values were measured via gel

permeation chromatography.  Specimens were then injection molded into tensile bars and

subsequently annealed to relax orientation before mechanical testing.

Many authors still use Flory’s relationship (Equation 2.2-6) between mechanical

properties and molecular weight.  However, this particular study shows that such an

expression only fits narrow distributions well.  Other researchers have attempted

correlations with zM  which reflects the high molecular weight tail.  This type of

                                                

29 Colby, R. H., L. J. Fetters, and W. W. Graessley, Macro., 20, 2226, 1987.
30 Bersted, B. H. and T. G. Anderson, J. Appl. Poly. Sci., 39, 499, 1990.
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formalism again fails to describe the broad distributions.  This study points out that the

use of wM  better describes both narrow and polydisperse samples, but ascribes this to

coincidence.

Bersted and Anderson’s proposed new model takes tensile strength proportional

to entanglement density.  Any chain with molecular weight less than a threshold

molecular weight, MT (≅  MC
1.5) does not contribute to the strength.  So for a sample with

any polydispersity,

∑ ⋅∝ )Mweightmolecularofmoleculesformoleculeperntsentanglemeofnumber( iinσ
Equation 2.2-15

on a unit volume basis.  Then,
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with ρ being density, Me the molecular weight between entanglements, and wi the weight

fraction of i.  As mentioned above, chains of molecular weight less than MT do not

contribute to strength, so this species will be considered as a diluent with fraction (1-φ).

The above equation then becomes
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ww  where iw is the renormalized molecular

weight distribution excluding weight fractions of Mi ≤ MT.  Then,

∑ ∑
∞

=

∞

=
φ=≡

Ti Ti
ii wand1w               Equation 2.2-19

This leads to
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where 
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T
M
M1  is called the failure property parameter and σ∞ is the tensile strength

at infinite molecular weight.  Equation 2.2-20 is identical in form to Flory’s equation.

The exceptions are the φ term and the use of *
nM , both of which have been corrected for

chains of molecular weight less than MT.

The method to find MT, as described by Bersted and Anderson, is essentially an

exercise in fitting.  One should calculate the failure property parameter for several values

of MT (FP(MT)), then fit tensile strength versus FP(MT) to either a linear or logarithmic

expression:

)]M(FPlog[BKloglog
)]M(FP[KA

T

T
+=σ

+=σ
           Equation 2.2-21

The proper value of MT is then the one that gives the best fit for both narrow and broad

distributions.  This means that for a linear fit, the intercept approaches zero and for the

logarithmic equation, the slope approached 1.

For predictive purposes, this technique has a distinct disadvantage.  A researcher

would need to actually measure tensile properties for several different molecular weight

samples in order to find MT.  However, having to perform the measurements negates the

utility of being able to predict results without testing.  If values of MT were tabulated for

numerous polymers, this procedure would then be much more attractive.

With computers becoming more commonplace and powerful, a more rigorous

approach to structure-property relations has been tried recently.  One research group31,32,

Katirzky et al., has been attempting to correlate Tgs of various polymers using a

Quantitative Structure-Property Relationship (QSPR).  The method looks at descriptions

which are calculated strictly from structural information of a small (3 repeat unit)

                                                

31 Katirzky, A. R., P. Rachwal, K. W. Law, M. Karelson, and V. S. Lobanov, J. Chem. Inf. Comput. Sci.,
36, 879, 1996.
32 Katirzky, A. R., P. Rachwal, K. W. Law, M. Karelson, and V. S. Lobanov, J. Chem. Inf. Comput. Sci.,
38, 300, 1998.
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fragment of the polymer.  Descriptors include constitutional, geometrical, topological,

electrostatic, quantum –chemical, and thermodynamic classes of data.

Katirzky reports success using a five-parameter correlation which takes into

account shape and bulkiness of the polymer as well as intermolecular electrostatic

interactions.  However, the correlation is limited to linear polymers of relatively high

(>50,000) molecular weight where Tg is essentially independent of chain length.  At

present, such a method is therefore not applicable to the proposed study.

To meet the proposed goal of relating properties to molecular weight changes,

there are obviously several methods to choose from.  This review provides an idea of

some of these techniques as well as their advantages or drawbacks.
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