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Semiparametric Time Varying Coefficient Model for Matched

Case-Crossover Studies
Ana Maria Ortega Villa

(ABSTRACT)

Semiparametric modeling is a combination of the parametric and nonparametric models in which
some functions follow a known form and some others follow an unknown form. In this dissertation
we made contributions to semiparametric modeling for matched case-crossover data.

In matched case-crossover studies, it is generally accepted that the covariates on which a case
and associated controls are matched cannot exert a confounding effect on independent predictors
included in the conditional logistic regression model. Any stratum effect is removed by the condi-
tioning on the fixed number of sets of the case and controls in the stratum. However, some matching
covariates such as time, and/or spatial location often play an important role as an effect modifi-
cation. Failure to include them makes incorrect statistical estimation, prediction and inference.
Hence in this dissertation, we propose several approaches that will allow the inclusion of time and
spatial location as well as other effect modifications such as heterogeneous subpopulations among
the data.

To address modification due to time, three methods are developed: the first is a parametric ap-
proach, the second is a semiparametric penalized approach and the third is a semiparametric
Bayesian approach. We demonstrate the advantage of the one stage semiparametric approaches
using both a simulation study and an epidemiological example of a 1-4 bi-directional case-crossover
study of childhood aseptic meningitis with drinking water turbidity.

To address modifications due to time and spatial location, two methods are developed: the first one
is a semiparametric spatial-temporal varying coefficient model for a small number of locations. The
second method is a semiparametric spatial-temporal varying coefficient model, and is appropriate
when the number of locations among the subjects is medium to large. We demonstrate the accuracy
of these approaches by using simulation studies, and when appropriate, an epidemiological example
of a 1-4 bi-directional case-crossover study.

Finally, to explore further effect modifications by heterogeneous subpopulations among strata we
propose a nonparametric Bayesian approach constructed with Dirichlet process priors, which clus-
ters subpopulations and assesses heterogeneity. We demonstrate the accuracy of our approach using
a simulation study, as well a an example of a 1-4 bi-directional case-crossover study.
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Chapter 1

General Introduction

1.1 Background

1.1.1 The Turbidity and Aseptic Meningitis Relationship

Aseptic meningitis is an inflammation of the layers of the brain associated with non bacterial

elements. In children aseptic meningitis is the most common infection of the central nervous

system and is one of the main causes of children mortality and morbidity. Park et al. (2003)

found that contact with contaminated water is one of the principal methods of transmission

of the disease. Additionally Kim et al. (2003) showed that drinking water turbidity is

associated with the emergence of aseptic meningitis in children under 15 years of age.

1.1.2 Semiparametric Regression Models

Semiparametric regression incorporates flexibility in the estimation of nonlinear relationships

inside regression analyses by combining parametric and nonparametric modeling. These

1



Chapter 1. General Introduction

semiparametric models are more flexible in the sense that the relationships are not deter-

mined a priori but are gathered from the data. Our approach to semiparametric regression is

that of Rupert et al. (2003), incorporating penalized regression, more specifically a varying

coefficient model to matched case-crossover studies.

1.1.3 Semiparametric Varying Coefficient Models

In this dissertation we are implementing semiparametric varying coefficient models in which

the effect of one covariate conditional on a fixed value of a second covariate is modeled by

a linear relationship. Let X be a covariate, for given values of another covariate (called

modifier covariate) T has a linear relationship with the mean of a response variable Y . The

respective varying coefficient model is:

yi = β(ti)xi + εi

β(ti) is modeled using penalized linear splines, allowing the slope coefficient to be smooth

functions of T .

β(ti) = α0 + α1ti +
L∑
k=1

α1+k(ti − κk)+

where κ1, . . . , κL are knots over the ti values.

The finalized model is

yi =
(
α0 + α1ti +

L∑
k=1

α1+k(ti − κk)+

)
xi + εi

2
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1.1.4 Matched Case-Crossover Studies

A matched case-crossover study is a special case of matched case-control study. An important

feature of the matched case-crossover study is that the control information for each patient is

based on his or her own exposure experience. The analysis of matched case-crossover study

can be viewed as a stratified data analysis of retrospective, self-matched follow-up studies,

each with a sample size of one, see Navidi (1998). A matched case-crossover design uses a

sample from a study population of individuals all of whom have experienced the outcome of

interest. When the measurements are taken on each subject in an exposed and unexposed

setting, each subject acts as their own control. Here we are interested in the situation where

there is one measurement for the case period, and M measurements for the control periods.

The analysis of the study with binary responses is based on an extension of the classi-

cal prospective logistic regression model where each subject is considered its own stra-

tum. For 1 − M matched case-crossover studies, the model with the binary outcomes

(Y1, Y2, ...., YM+1) and continuous covariate (X1, X2, ..., XM+1) with a scalar Xj,

j = 1, ...,M , matching covariate V , and stratum level S is

Pr(Yj = 1|Xj, V, S) =
1

1 + exp[−(Xjβ + q(V, S)}]
,

where q(•) is an arbitrary function that includes the intercept and unknown effects of the

strata and matching covariate. The stratifying variable is the individual patient in a matched

case-crossover study.

It is generally accepted that covariates for which cases and controls are matched cannot

exert a confounding effect on independent predictors included in analysis. This is because

a conditional logistic regression model removes any stratum effect and matching covariates,

i.e. q(•) disappears (Hosmer et al., 1989) conditioning on the one case and M controls in

3
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the stratum. Therefore, the retrospective conditional logistic regression model with binary

outcomes (Y1, Y2, . . . , YM+1) for 1 case-M controls is then expressed as

Pr
(
Y1 = 1|X1, ..., XM+1, S, V,

M+1∑
j=1

Yj = 1
)

=
1

1 +
∑M+1

j=2 exp{(Xj −X1)β}
. (1.1)

Hence, the conditional logistic regression model is not able to detect any effects due to the

matching covariates by stratum variable.

1.1.5 Spatial Data

Spatial Data can be considered to be of one of three forms: point-referenced data, in which

we consider our variables as random vectors of data at a specific location which is considered

to vary continuously across an area, areal data in which our area of interest is partitioned

into a finite number of units with clear boundaries, and point pattern data in which the

interest lies in the spatial pattern of occurrences over an area.

Our proposed spatial-temporal method is focused on point-referenced data in which we

consider our response and covariate to be observed at a specific location which is assumed

to vary continuously. In point-reference data it is assumed that the covariance between two

random variables observed in two locations depends on the distance between them.

1.1.6 Spatial Covariance Functions

In Spatial Statistics the covariance function C(si, sj) describes the spatial covariance of a

random field, say Y (s), on a domain D at specific locations si and sj. Commonly the

covariance function has a parametric form. Some common covariance structures for spatial

data are given by Table 1.1. Ee are using a Gaussian covariance structure in our spatial

4
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simulation and estimation models.

Covariance Function Parameters

Exponential σ2exp
(
−||d||
ρ

)
σ2 > 0, ρ > 0

Gaussian σ2exp
(
−||d||2
ρ

)
σ2 > 0, ρ > 0

Spherical σ2
(

1− 3||d||
2m

+ ||d||3
2m3

)
σ2 > 0, ||d|| ≤ m

Table 1.1: Some covariance functions; d=distance between locations si and sj ; σ
2 is the scale

parameter for the overall variability of the process; ρ is the dependence range; m is the maximum
range of dependence

1.1.7 Bayesian Nonparametric Models

Bayesian Nonparametric Models (BNP) provide solutions to a variety of problems like deter-

mining the number of clusters in a mixture model, the number of factors in a factor analysis,

the number of variables to keep in a model, cluster identification, among others, by fitting a

single model that can adapt to the data (Hjort et al., 2010).

In Chapter 4 we are concerned with the determination of functional clusters among the data.

In traditional clustering approaches, we are required to specify the number of clusters before

analyzing the data. The BNP approach estimates the number of clusters needed to analyze

the data, as well as allows future data to manifest new clusters that have been previously

unseen.

In this dissertation cluster selection is done using the Dirichlet Process (DP) along with the

Pölya urn representation. The Dirichlet Process (Antoniak, C., 1974; Ferguson, 1973) places

a prior on an infinite-dimensional space of random measures, by providing a nonparametric

prior specification over the class of possible distribution functions. The details of the DP are

presented in Chapter 4.

5
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1.2 Motivation

The main goal in this dissertation is to make contributions to semiparametric modeling for

matched case-crossover studies. We do this by addressing the problem of detecting effect

modifications arising from time, time and spatial location of the subjects, or heterogeneous

subpopulations among the data.

In order to detect modifications arising from time, we propose three different alternatives

to detect modifications due to time, of the effect of a covariate over the presence of disease.

The first alternative is a two stage parametric approach in which the first stage consists of

individually estimating the effect coefficients for each particular time period and the second

stage consists of fitting a polynomial regression of these estimated coefficients and time.

The second alternative is a one stage semiparametric penalized likelihood based approach in

which we incorporate a semiparametric time varying coefficient model to the analysis and

conduct estimations using the Newton-Raphson method and a penalized likelihood approach.

The third alternative is a fully Bayesian semiparametric time varying coefficient model using

Adaptive Rejection Metropolis Sampling within Gibbs Sampling.

In order to detect modifications arising from time and spatial location we propose two meth-

ods under the Bayesian hierarchical model framework. The first method is appropriate when

there is a small number of locations among the subjects. This method incorporates the es-

timation of a semiparametric time varying coefficient model, along with its first derivative.

The second method is a two-stage spatial-temporal varying coefficient model. The first stage

consists in estimating a covariance structure precision parameter using the empirical semi-

variogram. The second stage consists of using this precision parameter as a hyper parameter

in a fully Bayesian approach modeling spatial dependencies under a Gaussian covariance

structure.

6
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In order to detect modifications arising from time and heterogeneous subpopulations among

the data we propose a functional nonparametric Bayesian method in order to determine

functional clusters of time varying coefficients among strata. The main interest in this

method is assessing in which way the time varying coefficient function changes between

clusters. To achieve this goal we propose the functional nonparametric Bayesian time varying

coefficient model. The time varying coefficient model is estimated using regression splines,

clustering of time varying coefficients among strata is assessed using a Dirichlet process, and

parameter estimation is done using adaptive rejection Metropolis sampling (ARMS) within

Gibbs sampling.

1.3 Overview

The rest of this dissertation is organized as follows. In Chapter 2, we introduce three varying

time coefficient models to assess the effect modification by time, along with a comparison

between them. In Chapter 3, we present two alternatives for spatial-temporal varying coef-

ficient models In Chapter 4, we present the functional nonparametric Bayesian time varying

coefficient model. In Chapter 5 we present a general review of the work that we have pre-

sented as well as directions for future research.
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Chapter 2

Semiparametric Time Varying

Coefficient Model for Matched

Case-Crossover Studies

2.1 Background

The use of conditional logistic regression in the analysis of matched case-crossover studies

does not permit the the estimation of the effect of matching covariates. However, in some

cases an effect modification arising from time exists and it is of interest to assess it in order

to make correct statistical estimation, prediction and inference.

In the application example, a 1-4 bi-directional matched case-crossover study, our main

research goal is to assess the relationship between drinking water turbidity and the presence

or absence of aseptic meningitis in children under fifteen years of age. Additionally we are

interested in determining whether an effect modification arising from time exists.

8
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The example data comes from a a bidirectional matched case-crossover study design to assess

the risk of hospital admissions from aseptic meningitis after exposure to turbidity increase

in drinking water. For each subject, the case period was matched to 4 control periods

which are 35 and 42 days before and after the case day. For each patient, thirty one case

measurements were collected. These measurements are associated with the latent period of

the disease, leading to hospital admission. For each of the thirty one case measurements two

control periods (35 and 42 days) prior to the case period and another two control periods

(35 and 42 days) posterior to the case period are matched. This scheme was used in Kim

et al. (2003).

By matching the day of the week for the case and control periods, potential confounders from

the variation of the day of the week were controlled and control days were selected further

than the possible latent period. Furthermore, we investigate how drinking water turbidity is

associated with an increased risk of aseptic meningitis in children. We also estimate the time

interval between increase in drinking water turbidity and the peak risk of aseptic meningitis

The methods for assessing the functional relationship between time varying coefficient and

matched binary outcomes are quite limited. To do this we propose a time varying coefficient

model in order to evaluate effect modification and make correct statistical inference. Three

methods are developed: one is a parametric approach and the other two are semiparametric

approaches. Our parametric time varying coefficient approach is a two-stage method de-

veloped by using both conditional logistic and polynomial regressions, while our other two

semiparametric time varying coefficient approaches are both one-stage methods developed

by using regression splines. The first semiparametric is a penalized likelihood based ap-

proach and the second, is a full Bayesian approach. Our proposed approaches allow us to

not only detect the parametric relationship between the predictor and binary outcomes, but

also evaluate parametric or semiparametric relationships between the predictor and time.

9
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The reminder of this chapter is organized as follows. In Section 2.2, we introduce time

variation to the analysis of matched case-crossover studies. In Section 2.3 we present a para-

metric two stage approach to assess effect variation due to time. In Section 2.4, we describe

a semiparametric one-stage penalized approach. In Section 2.5, we present a semiparametric

one-stage Bayesian approach. In Section 2.7 we present two simulation studies; one is to

compare the parametric two stage approach and the semiparametric one stage penalized

approach and the other is to compare the semiparametric one stage penalized approach and

the Bayesian approach. Our simulation results suggest that the semiparametric one stage

Bayesian approach performs better than other two approaches in terms of mean squared

error (MSE) and R2. It is also more efficient and flexible than the penalized approach in

terms of estimating the smoothing parameter. In Section 2.8, we apply our approaches to

the 1-4 bi-directional case-crossover study. Concluding remarks are provided in Section 2.9.

2.2 Time variation in Matched case-crossover studies

We consider 1 −M matched case-crossover study with kth stratum, k = 1, . . . , N , where

each stratum is the individual subject. Let x1k represent the value of the covariate of interest

for the case of stratum k, and x2k, x3k, x4k and xM+1,k the values for the controls of stratum

k.

The conditional logistic regression model with time varying coefficient for kth stratum can

be written as

P
(
Y1k = 1|x1k, ..., xM+1,k, k, V,

M+1∑
j=1

Yjk = 1
)

=
exp{x1kβ(t) + q(•)}∑M+1
j=1 exp{xjkβ(t) + q(•)}

=
1

1 +
∑M+1

j=2 exp{(xjk − x1k)β(t)}
≡ lk{β(t)} (2.1)
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where β(t) is a function of time t, t = 1, . . . , T .

This time varying coefficient model replaces the parameter β in (1.1) by the unknown function

β(t). We consider β(t) to be of either parametric or nonparametric form.

2.3 A Parametric two-stage approach

The function β(t) can be estimated using a parametric function of t. We can use a two-stage

approach described as the follows:

Step 1: For each t, fit the model (2.1) using the conditional likelihood lk{β(t)} and full

conditional likelihood l{β(t)} which is

l{β(t)} =
N∏
k=1

lk{β(t)}, (2.2)

where x∗jk = xjk − x1k for j = 2, ...,M + 1; we obtain estimated parameter, β̂(t),

for given t, using Newton-Raphson algorithm with Gradient and Hessian functions

described in the Appendix A.1.

Step 2: Fit the pth polynomial regression of β̂(t) on t, where p = 1, ..., Pmax, and select

the best the p polynomial model using AIC.

This two stage parametric approach can detect not only parametric relationship between

the predictor and binary outcomes but also evaluate the parametric relationship between

the predictor and time. It is also simple and easy to use. However, it only evaluates

the parametric relationship between the predictor and time. To allow the estimation of

nonparametric relationships, we further develop semiparametric one stage approaches.
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2.4 Semiparametric one-stage penalized approach

We model β(t) nonparametrically so that we estimate β(t) via a pth order regression splines.

For a pth order regression spline with a truncated power series basis and with L knots,

we define a pth order regression spline with a truncated power series basis and with L

knots, {1, t, t2, . . . , tp, (t− ξ1)p+, (t− ξ2)p+, . . . , (t− ξL)p+}, where (u)p+ = upI(u ≥ 0) and knots

ξ1 < . . . < ξL. Knots can be selected a priori, e.g., at sample quantiles of observed t’s which

are scaled in [0,1]. Let α0, α1, . . . , αp be the regression coefficients and αp+1, . . . , αp+L be

the regression coefficients of the truncated power series basis. With this setup, β(t) can be

written as

β(t) = α0 + α1t+ . . .+ αpt
p +

L∑
l=1

α1+l(t− ξl)p+. (2.3)

The conditional likelihood lk{β(t)} for stratum k and the full conditional likelihood are

Pr(y1k = 1|β(t), x1k, . . . , xM+1,k,
M+1∑
j=1

yjk = 1) =
exp{x1kβ(t) + q(•)}∑M+1
j=1 exp{xjkβ(t) + q(•)}

=
1

1 +
∑M+1

j=2 exp{x∗jkβ(t)}
≡ lk{β(t)} (2.4)

and

L{β(t)} =
N∏
k=1

lk[{β(t)}],

respectively.

We estimate all unknown parameters using penalized log-likelihood approach. Let λ be a
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smoothing parameter. The penalized log likelihood is

l{β(t)} ≡ log[L{β(t)}]

= −
N∑
k=1

log

[
1 +

M+1∑
j=2

exp
{

(α0 + α1t+ . . .+ αpt
p +

L∑
l=1

α1+j(t− ξl)p+)x∗jk

}]
+
λ

2

L∑
l=1

α2
l+1.

The Newton-Raphson method is used to estimateα, whereα = (α0, α1, . . . , αp, αp+1, . . . , αp+L).

The Gradient vector and Hessian matrix are summarized in the Appendix A.2. The smooth-

ing parameter λ is estimated by using a grid search within a preselected range. We choose

the smoothing parameter minimizing the AIC or AICc criteria,

AIC = 2(L+ 1)− 2ln[L{β(t)}]

AICc = AIC +
2(L+ p+ 1)(L+ p+ 1 + 1)

N − (L+ 1)− 1

= AIC +
2(L+ p+ 1)(L+ p+ 2)

N − L− p− 2
,

where L represents the number of knots, p represents the order of the polynomial regression

and N represents the number of strata.

This one stage penalized approach allows us to not only detect the parametric relationship

between the predictor and binary outcome but also simultaneously evaluate the semipara-

metric relationship between the predictor and time. Hence it is more flexible than the

parametric two stage approach. However, the performance of this approach is affected by

the choice of smoothing parameter which is estimated using a grid search within preselected

ranges. Hence it is important to select appropriate range of smoothing parameter values.
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2.5 Semiparametric one-stage Bayesian approach

The alternative one-stage approach is developed under a Bayesian framework. Instead of

using a grid search for the smoothing parameter within preselected range, we specify the

prior distributions and therefore, estimate the smoothing parameter in the whole domain of

the prior distribution. Hence the semiparametric one stage Bayesian approach can estimate

parameters more accurately and efficiently than the one stage penalized approach.

Let α = (α1, α2)T , where α1 = (α0, . . . , αp)
T and α2 = (αp+1, . . . , αp+L)T . We first specify

the prior distributions of parameters as the follows:


α0

...

αp

 ∼ N(0, φ−1
1 I),


αp+1

...

αp+L

 ∼ N(0, φ−1
α I),

φα ∼ Gamma(u, v),

where φ−1
1 is a fixed large number and u and v are uninformative hyperparameters of the

gamma distribution.

Using these prior specifications, our joint likelihood (L) is then expressed as

L =

[
N∏
k=1

1

1 +
∑M+1

j=2 exp
{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξj)

p
+

)
x∗jk

}]

×

{
φp1

(
√

2π)p
exp
(
− φ1α1

Tα1

2

)}{ φLα
(
√

2π)L
exp
(
− φαα2

Tα2

2

)}
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×

{
1

Γ(u)vu
φu−1
α exp(−φα

v
)

}
. (2.5)

The full conditional likelihoods for αi, i = 1, . . . , p, are

p(αi|−) ∝
φ1exp

(
− φ1α2

i
2

)
∏N
k=1

[
1 +

∑M+1
j=2 exp

{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξl)

p
+

)
x∗jk

}] .(2.6)

The full conditional likelihoods for αp+i, i = 1, . . . , L, are

p(αp+i|−) ∝
φαexp

(
− φαα2

p+i

2

)
∏N
k=1

[
1 +

∑M+1
j=2 exp

{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξl)

p
+

)
x∗jk

}] .(2.7)

The full conditional likelihoods for φα is

p(φα|−) ∝ φ(u+L)−1
α exp

{
− φα

( L∑
l=1

α2
p+l

2
+

1

v

)}

= Gamma

{
u+ L,

( L∑
l=1

α2
p+l

2
+

1

v

)−1
}
. (2.8)

Since the full conditional distributions of parameters except for φα do not have closed forms, we

use Adaptive Rejection Metropolis Sampling (ARMS) within Gibbs sampling as proposed by Gilks

et al. (1995). The detailed procedures of our ARMS are provided in the Appendix A.3. ARMS

algorithm for Matched Case Crossover studies is summarized in Algorithm 1.
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2.6 Test hypothesis for time varying coefficient

Our test of interest is whether the time varying coefficient is significant or not. Our null hypothesis

(H0) and alternative hypothesis (H1) can be expressed as

Ho : β(t) = β vs H1 : β(t) 6= β, (2.9)

where β is a constant parameter.

To evaluate these hypotheses we implement Bayes Factor (Jeffreys, 1961; Kass and Raftery, 1995)

defined by

B10 =
P (D|H1)

P (D|H0)
,

where D represents the data, P (D|H0) and P (D|H1) are the marginal likelihoods under H0 and

H1, respectively. The marginal likelihoods are calculated as follows

P (D|H0) =

∫
P (D|β,H0)p(β|H0)dβ,

where β is the constant parameter under H0 and p(β|H0) is its prior distribution, and

P (D|H1) =

∫
P (D|β(t), H1)p(β(t)|H1)dβ,

where β(t) is estimated by regression splines (2.3) and p(β(t)|H1) represents the set of prior distri-

butions presented in section 2.5.

Large values of BF represent evidence in favor of H1. This indicates that H1 is more strongly

supported by the data under consideration than H0. By following Jeffreys (1961), we interpret the

value of BF as weak if BF ≤ 3, positive if 3 < BF ≤ 12, strong if 12 < BF ≤ 150 and decisive if

BF > 150.
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Difficulty lies in calculating P (D|H0) and P (D|H1), therefore the estimation of the Bayes Factor

is obtained following procedures presented by Weinberg (2012) as follows:

Step 1: Set Z0 = P (D|H0) and Z1 = P (D|H1)

Step 2: Set i = 0, 1, n = 1, . . . N ′ the number of MCMC samples, Lin = P (D|θin), θ1n represents

the n-th sample of θ1 = {α0, . . . , αp, αp+1, . . . , αp+L} which is the set of parameters under

the alternative hypothesis, and θ2n represents the n-th sample of the θ2 = {β} which is the

set of parameters under the null hypothesis

Step 3: Calculate estimates for Z0 and Z1 based on the MCMC samples using

Zi =

(
1

N ′

N ′∑
n=1

1

Lin

)−1

where

L1n =
1∏N

k=1

[
1 +

∑M+1
j=2 exp

{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξl)

p
+

)
x∗jk

}]
L0n =

1∏N
k=1

[
1 +

∑M+1
j=2 exp

{
βx∗jk

}]

2.7 Simulation

We conducted two simulation studies. One is to compare the parametric two-stage approach with

the semiparametric one stage penalized approach in Section 2.7.1, while the other is to compare the

semiparametric one stage penalized approach with semiparametric one stage Bayesian approach in

Section 2.7.2. For each simulation study, two approaches are compared to evaluate how much each

approach accurately estimates parameters and correctly predicts the probability at time t+ 1. Our

semiparametric approaches are obtained from the linear regression splines model (p = 1).
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Additionally, we conducted Bayes Factor estimations and interpretations for all the simulated

datasets for the Semiparametric Bayesian alternative.

2.7.1 Comparison between the parametric two stage and semi-

parametric penalized one stage approaches

Simulation setting

We consider a 1-4 matched case-crossover study which is motivated by our childhood aseptic menin-

gitis example. We set the number of stratum as 100 and the number of time periods as 100 for

each stratum, that is, K = 100 and T = 100 for each dataset.

The covariates X were generated from a N(0, 1) distribution. Three different functions for β(t)

are used: (1) β(t) = 0.5t, (2)β(t) = t2, and (3) β(t) = cos(πt). The 1-4 matched case-controls are

generated from the prospective model

Pr(Yk = 1|Xk, t, q) =
exp{Xkβ(t) + q(•)}

1 + exp{Xkβ(t) + q(•)}
(2.10)

where q(•) is unknown effect including intercept; q(•) can be generated from any distribution.

However, it is disappeared under the condition
∑5

j=1 Yj = 1 for each stratum k, k = 1, . . . , N

regardless of distribution of q(•).

For each function β(t), we simulated 100 data sets with N = 100 and T = 100. We then apply the

two approaches. We compare these two approaches in terms of mean squared error (MSE) and R2

which is the square of correlation between β(t) and β̂(t). This MSE is calculated as follows:

MSE = Bias2 + Variance
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where

Bias2 =
1

100

[
100∑
d=1

1

100

100∑
t=1

{β(t)− β̂d(t)}2
]
,

Variance =
1

100

[
100∑
d=1

1

100− 1

100∑
t=1

{β̂d(t)−
¯̂
β(t)}2

]
.

Here β̂d(t) represents the estimated β(t) using the d simulated data and

¯̂
β(t) =

1

100

100∑
d=1

β̂d(t).

Before conducting the complete simulation, we first performed a small simulation to choose the

possible number of knots and smoothing parameters. The estimation of β(t) = 0.5t and t2 is not

sensitive to the number of knots and smoothing parameter values because the functions are smooth

enough. We selected the number of knots in the range of [25, 50, 75] which are the 25, 50 and

75% of the total number of time periods. The grid range of smoothing parameter λ is [0.1, 0.5,

1, 5, 10, 15, 30, 50, 75, 100, 500, 1000]. However, the estimations for β(t) = cos(πt) are sensitive.

Hence we selected the smaller grid of the number of knot and the range of smoothing parameter

around the Bayesian results. After we fixed the number of knots and location of knots using sample

quantile, we then select the smoothing parameters using AIC and AICc. The number of knots and

smoothing parameters for semiparametric one-stage penalized approach are summarized in Table

2.1.

β(t) Number of Knots (L) Smoothing Parameter (λ)

0.5t 25 15

t2 25 100

cos(πt) 5 0.04

Table 2.1: Number of knots (L) and smoothing parameter (λ) using small simulation for the
semiparametric one-stage penalized approach
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Evaluation of Estimation Accuracy

We performed 100 simulations under the setting described in section 2.7.1. The parametric two

stage approach was performed using the conditional logistic and then quadratic regression for three

different functions of β(t). For the semiparametric one stage approach, we fixed the number knots

and chose the location of knot using sample quantiles. The smoothing parameter λ was chosen

using AIC and AICc.

Figure 2.1 shows the MSE, R2, and an estimated β̂(t), when the true β(t) is 0.5t. Figure 2.1

(a) shows the MSE values for both methods: solid line represent one stage approach with symbol

circle and dashed line with symbol × represents two stage approach. Figure 2.1 (b) shows the R2

values for both methods. Figure 2.1 (c) shows the estimated function, β̂(t) obtained from both

approaches. As shown in Figure 2.1 (a) and (b), the semiparametric one stage approach provides

smaller MSE and larger R2 values, suggesting the outperformance of the semiparametric one stage

approach.

We also observe similar results using β(t) = t2. Figure 2.2 shows the MSE, R2, and estimated β̂(t)

when true β(t) is t2. Figure 2.2 (a) shows the MSE values for both methods: solid line represent one

stage approach with symbol circle and dashed line with symbol × represents two stage approach.

Figure 2.2 (b) shows the R2 values for both methods. Figure 2.2 (c) shows the estimated function,

β̂(t) obtained from both approaches. As shown in Figure 2.2 (a) and (b), the semiparametric one

stage approach provides smaller MSE and larger R2 values, suggesting the outperformance of the

semiparametric one stage approach.

For simulation using β(t) = cos(πt), Figure 2.3 presents the results obtained. Similar to the results

shown in Figures 2.1 and 2.2, part (a) and part (b) shows a favorable performance of the one-stage

semiparametric method. Part (c) shows an example of the fit in which both methods perform well,

obtaining a smoother fit from the one-stage semiparametric method. Table 2.2 presents a summary

of the results presented in Figures 2.1 - 2.3.
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Figure 2.1: Comparison between parametric two stage and semiparametric one stage approaches
for Estimation Accuracy using true function β(t) = 0.5t; solid line represent one stage approach
with symbol circle and dashed line with symbol × represents two stage approach; (a) shows the
MSE values for both methods; (b) shows the R2 values for both methods; (c) shows the estimated
function, β̂(t) obtained from both approaches.

Evaluation of Prediction Accuracy

We also compare the two approaches in terms of prediction accuracy. We forecast P (Y1,t+1 =

1|X1,t, ..., XM+1,t, t + 1,
∑M+1

j=1 Yj,t+1 = 1) as a measure of prediction accuracy. We consider the
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Figure 2.2: Comparison between parametric two stage and semiparametric one stage approaches
for Estimation Accuracy using true function β(t) = t2; solid line represent one stage approach
with symbol circle and dashed line with symbol × represents two stage approach; (a) shows the
MSE values for both methods; (b) shows the R2 values for both methods; (c) shows the estimated
function, β̂(t) obtained from both approaches.

true forecast probability for a particular stratum k as follows:

Pr(Y1k,t+1 = 1|X1k,t, ..., XM+1k,t,
M+1∑
j=1

Yjk,t+1 = 1) =
1

1 +
∑M+1

j=2 exp{x∗jk,tβ(t+ 1)}
, (2.11)
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Figure 2.3: Comparison between parametric two stage and semiparametric one stage approaches
for Estimation Accuracy using true function β(t) = cos(πt); solid line represent one stage approach
with symbol circle and dashed line with symbol × represents two stage approach; (a) shows the
MSE values for both methods; (b) shows the R2 values for both methods; (c) shows the estimated
function, β̂(t) obtained from both approaches.

where β(t+ 1) represents the function β(t) evaluated at t+ 1.

Two stage approach computes the forecast probability as

Pr(Y1k,t+1 = 1|X1k,t, ..., XM+1k,t,
M+1∑
j=1

Yjk,t+1 = 1) =
1

1 +
∑M+1

j=2 exp{x∗jk,tβ̂(t+ 1)}
,
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β(t) Method MSE R2

0.5t
Semiparametric One Stage 0.0097 0.9890

Parametric Two Stage 0.0272 0.6670

t2
Semiparametric One Stage 0.0298 0.9970

Parametric Two Stage 0.0314 0.8670

cos(πt)
Semiparametric One Stage 0.0059 0.9972

Parametric Two Stage 0.0345 0.9839

Table 2.2: Average MSE and average R2 for the semiparametric one-stage penalized method and
the parametric two-stage method using 100 simulated data sets

where β̂(t) is estimated using polynomial regression, while the one stage approach calculates

Pr(Y1,t+1 = 1|X1,t, ..., XM+1,t,

M+1∑
j=1

Yjk,t+1 = 1) =
1

1 +
∑M+1
j=2 exp{(α̂0 + α̂1(t+ 1) +

∑L
l=1 α̂1+l[(t+ 1)− ξl]+)x∗j,t}

. (2.12)

Figure 2.4 presents the results of forecasted probabilities using both approaches for 50 simu-

lation data sets. Figure 2.4 (a), (b), and (c) show the forecasted probabilities for β(t) = 0.5t,

β(t) = t2, and β(t) = cos(πt), respectively. The solid line, the dotted line, the dashed lines

represent the true probability, forecasted probability using the two-stage parametric method,

forecasted probability using the one-stage semiparametric method.

We summarize the results of forecasted probabilities using both approaches for 50 simulation

data sets. We provide root mean squared prediction bias (RMSPB) and mean absolute

prediction bias (MAPB) given by

RMSPB =

√√√√ 1

50

50∑
d=1

(p̂t+1 − pt+1)2
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Figure 2.4: Forecasted probabilities using one and two stages approaches for fifty simulated data sets;
(a), (b), and (c) showed the forecasted probabilities for β(t) = 0.5t, β(t) = t2, and β(t) = cos(πt)
respectively; The solid, the dotted, the dashed lines represent the true probability, forecasted prob-
ability using the two-stage parametric method, forecasted probability using the one-stage semipara-
metric method.

and

MAPB =
1

50

50∑
d=1

|p̂t+1 − pt+1|
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where pt+1 = Pr(Y1k,t+1 = 1|X1k,t, ..., XM+1k,t,
∑M+1

j=1 Yjk,t+1 = 1) and p̂t+1 is the estimated

forecast probability.

Table 2.5 shows our semiparametric one stage approach provides better prediction accuracy

than two stage approach.

2.7.2 Comparison between semiparametric one stage penalized

and Bayesian approaches

Evaluation of Estimation Accuracy

We performed a simulation study to compare two approaches: the penalized and Bayesian

one stage approaches. The simulation study was conducted under the simulation settings

described in Section 2.7.1. Using a small simulation, we first chose the number of knots for

the three different β(t) functions. This result is summarized in Table 2.3. We then conducted

50 simulations and calculated MSE and R2.

β(t) Number of Knots (L)

0.5t 5

t2 10

cos(πt) 5

Table 2.3: Number of knots (L) using small simulation for the semiparametric one-stage Bayesian
approach

In Table 2.4 we present the numerical results for the MSE and the smoothing parameters.

It can be seen that Bayesian approach has smaller MSE so that it performed better than the

penalized approach in terms of MSE.

We also summarize the MSE results in Figures 2.10-2.7 for β(t) = 0.5t, β(t) = t2, and

β(t) = cos(πt), respectively. The dashed line represents Bayesian approach and the dotted
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β(t) Semiparametric One stage Smoothing parameter L MSE

0.5t
Penalized λ = 15 25 0.0110

Bayesian φα = 0.05 5 0.0003

t2
Penalized λ = 100 25 0.0143

Bayesian φα = 0.097 10 0.0038

cos(πt)
Penalized λ = 0.04 5 0.0034

Bayesian φα = 0.048 5 0.0002

Table 2.4: Average MSE of semiparametric one stage penalized and Bayesian approaches with
smoothing parameter and the number of knots (L) using 50 simulated data sets

line represents penalized approach. Figure 2.10 (a) shows the R2 values of semiparametric

one stage Bayesian and penalized approaches: the dashed line represents Bayesian approach

and the dotted line represents penalized approach. Figure 2.10 (b) showed the estimated

function β̂(t) when true β(t) = 0.5t. Similar figures are displayed in Figure 2.6 (a) and (b)

when true β(t) = t2 and in Figure 2.7 for β(t) = cos(πt). Overall, semiparametric one stage

Bayesian approach performs better than semiparametric one stage penalized approach in

terms of MSE and R2.

Evaluation of Prediction Accuracy

As we described in Section 2.7.1, we forecast this probability Pr(Y1,t+1|X1,t, . . . XM+1,t, t +

1,
∑M+1

j=1 Yjk,t+1 = 1) to evaluate prediction accuracy of two approaches. The true probability

is the same as before used in equation (2.11), and the one-stage semiparametric method

probability for both the penalized and Bayesian approaches are also calculated as before

shown in equation (2.12).

Figure 2.8 presents the results of forecast probabilities using penalized and Bayesian ap-

proaches for fifty simulated data sets. Figure 2.8 (a), (b), and (c) showed the forecast

probabilities for β(t) = 0.5t, β(t) = t2, and β(t) = cos(πt), respectively. The solid, the
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Figure 2.5: Comparison between parametric two stage and semiparametric one stage approaches
for Estimation Accuracy using true function β(t) = 0.5t; dashed line represent one stage Bayesian
approach and dotted line represents one stage penalized approach; (a) shows the R2 values for both
methods; (b) shows the estimated function, β̂(t) obtained from both approaches and true function
which is solid line

dotted, the dashed lines represent the true probability, forecasted probability using the one

stage penalized method, forecasted probability using the one-stage Bayesian method. Figure

2.8 (a)-(c) show a competitive performance of both methods which are close to the true prob-

ability values. This result is summarized in Table 2.5 which shows our two semiparametric

one stage approaches are comparable and both better prediction accuracy than two stage

approach.

Bayesian Inference based on Bayes Factor

We simulated fifty datasets under our three different β(t) functions. For each of these

functions we followed the procedure:

1. Calculate the Bayes Factor for each of the 100 strata as outlined in Section 2.6.
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Figure 2.6: Comparison between parametric two stage and semiparametric one stage approaches
for Estimation Accuracy using true function β(t) = t2; dashed line represent one stage Bayesian
approach and dotted line represents one stage penalized approach; (a) shows the R2 values for both
methods; (b) shows the estimated function, β̂(t) obtained from both approaches and true function
which is solid line

β(t) Prediction Bias Parametric Semiparametric Penalized Semiparametric Bayesian

0.5t
RMSPB 0.0194 0.0053 0.0058

MAPB 0.0147 0.0039 0.0042

t2
RMSPB 0.0135 0.0088 0.0092

MAPB 0.0135 0.0051 0.0052

cos(πt)
RMSPB 0.0271 0.0035 0.0033

MAPB 0.0186 0.0026 0.0025

Table 2.5: Summary of root mean squared prediction bias (RMSPB) and mean absolute prediction

bias (MAPB) of three approaches using 50 simulated data sets: RMSPB =
√

1
50

∑50
d=1(p̂t+1 − pt+1)2

and MAPB = 1
50

∑50
d=1 |p̂t+1 − pt+1|; pt+1 = Pr(Y1k,t+1 = 1|X1k,t, ..., XM+1k,t,

∑M+1
j=1 Yjk,t+1 = 1)

and p̂t+1 is the estimated forecast probability.

2. The Bayes Factor for the dataset will be the average of the 100 calculated Bayes

Factors.

3. Assess the average Bayes Factor with Jeffreys (1961) suggestion.
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Figure 2.7: Comparison between parametric two stage and semiparametric one stage approaches for
Estimation Accuracy using true function β(t) = cos(πt); dashed line represent one stage Bayesian
approach and dotted line represents one stage penalized approach; (a) shows the R2 values for both
methods; (b) shows the estimated function, β̂(t) obtained from both approaches and true function
which is solid line.

4. The probability of rejection of H0 is calculated by counting how many times among

the 100 strata the BF was rejected.

The estimated probability is summarized in Table 2.6. This result suggests that semipara-

metric one-stage Bayesian approach has a high power to make the correction decision.

Function under H1 Probability of Rejection of H0

β(t) = 0.5t 96%

β(t) = t2 100%

β(t) = cos(πt) 100%

Table 2.6: The estimated power of semiparametric one stage Bayesian approach using Bayes Factor

30



Chapter 2. Semiparametric Time Varying Coefficient Model for Matched Case-Crossover
Studies

0 10 20 30 40 50

0.
1

0.
2

0.
3

0.
4

0.
5

Simulation

P
ro

ba
bi

lit
y

0 10 20 30 40 50

0.
1

0.
3

0.
5

0.
7

Simulation

P
ro

ba
bi

lit
y

(a) (b)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Simulation

P
ro

ba
bi

lit
y

(c)

Figure 2.8: Forecasted probabilities using two semiparametric one stage approaches for fifty sim-
ulated data sets; (a), (b), and (c) showed the forecasted probabilities for β(t) = 0.5t, β(t) = t2,
and β(t) = cos(πt) respectively; The solid, dotted, the dashed lines represent the true probabil-
ity, forecasted probability using the one stage penalized method, forecasted probability using the
semiparametric one-stage Bayesian method.
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2.8 Example: 1−4 bi-directional matched case-crossover

study

As we mentioned in Section 2.1, the principal interest of our 1−4 bidirectional case-crossover

example is to understand the relationship between the effect of drinking water turbidity and

the risk of aseptic meningitis in children as well as to explore the importance of potential

effect modification on the turbidity effect by time. The analysis of a case-crossover study is

a stratified data analysis of retrospective, self-matched follow-up studies, each with a sample

size of one. In this study, the stratifying variable is the individual child who is less than 15

years old, diagnosed in one of two years and lives on one of two urban communities in South

Korea. Our potential effect modification is time effect and the covariate of interest is water

turbidity.
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Figure 2.9: Estimated β̂(t) using aseptic meningitis data: β̂(t) are obtained from the parametric
two-stage method (solid line), the semiparametric one-stage method (dotted line) and the semi-
parametric one-stage Bayesian method (dashed line).

We estimated the varying coefficients model using three methods: a two-stage parametric

approach and two semiparametric one-stage approaches. The parametric two stage approach
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is obtained using quadratic regression in the second Step. The semiparametric one stage

penalized approach is performed using L = 16 and λ = 5. The semiparametric one stage

Bayesian approach is also performed using L = 16 knots. The estimated function β̂(t)s are

displayed in Figure 2.9, where the solid line represents the parametric two-stage method, the

dashed line represents the semiparametric one-stage Bayesian method and the dotted line

represents the semiparametric one-stage method.

We also predict the forecast probability using the following procedures;

Step 1: For each time value do the following:

Step 2: Delete time t and name it t∗.

Step 2.1: Estimate β̂(t) using both approaches using all the data except for t∗.

Step 2.2: Estimate β̂(t∗) with the correct approach:

• Parametric Approach: Using the polynomial regression coefficients (in this

case quadratic regression θ̂0, θ̂1, θ̂2):

β̂(t∗) = θ̂0 + θ̂1t
∗ + θ̂2t

∗2

• Semiparametric Approaches: Using the estimated coefficients for the regres-

sion splines:

β̂(t∗) = α̂0 + α̂1t
∗ +

L∑
l=1

ˆα1+l(t
∗ − ξl)+

Step 2.3: For t∗ calculate Pr(Y1k,t∗ = 1|X1k,t∗ , . . . , XM+1k,t∗ ,
∑M+1

j=1 Yjk,t∗ = 1) for
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each stratum;

Pr(Y1k,t∗ = 1|X1k,t∗ , . . . , XM+1k,t∗ ,

M+1∑
j=1

Yjk,t∗ = 1) =
1

1 +
∑M+1

j=2 exp{x∗jk,t∗ β̂(t∗)}

Step 2.4: Calculate the success probability for time t∗, which is the number of fore-

casted probabilities greater than 0.2 (threshold) divided by the total number of

strata for both methods; we use 0.2 because 1 out of 5 is the probability of case

in a 1-4 matched case-control study;

Step 3: The success probability for each method is the average of the success probabilities

of all considered time periods.

The estimated success probabilities of three approaches are summarized in Table 2.7. Show-

ing the outperformance of the semiparametric time varying coefficient models. Semiparamet-

ric one-Stage Penalized and Bayesian approaches provide 0.9275 and 0.9354, while parametric

Two-Stage approach provides 0.7097.

Method Predicted Success Probability

Parametric Two-Stage 0.7097

Semiparametric One-Stage Penalized 0.9275

Semiparametric One-Stage Bayesian 0.9354

Table 2.7: Predicted success probabilities of aseptic meningitis data

Figure 2.10 presents the forecasted probabilities for each of the forecasted times for both

semiparametric methods, the dashed line with symbol × represents the Bayesian alternative

and the dotted line with symbol ⊕ represents the penalized alternative showing very similar

results for both methods. This Figure 2.10 suggests that the peak risk of aseptic meningitis

was 4th day after the admission. The risk increases in an interval [1,4], decreases in an

interval [5,15] and disappears after day 15.
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Figure 2.10: Forecasted probabilities for each of the forecasted times for both semiparametric
methods, the dashed line with symbol × represents the Bayesian alternative and the dotted line
with symbol ⊕ represents the penalized alternative.

In addition, we also perform a test of whether the time varying coefficient is significant

H0 : β(t) = β vs H1 : β(t) 6= β

with the procedure outlined in section 2.6. The estimated Bayes Factor is 5.3808 which cor-

responds to a Positive evidence against Ho, concluding that β(t) depends on time. Therefore,

the effect of drinking water turbidity on aseptic meningitis in children, changes over time.

2.9 Discussion

In this chapter, we have proposed a parametric two stage approach and two semiparametric

one stage approaches. They allow us to detect relationships between a predictor X and the

relative risk of disease or binary outcome, as well as determine effect modifications by time.

The parametric alternative is a two-stage method in which the relationships of interest are

estimated for particular time periods and time dependencies are posteriorly estimated by

35



Chapter 2. Semiparametric Time Varying Coefficient Model for Matched Case-Crossover
Studies

a polynomial regression. The semiparametric alternative is a semiparametric time varying

coefficient model where the time dependencies are model by regression splines in either a

penalized likelihood or a Bayesian way.

Simulation results show that the semiparametric one stage penalized one has performed bet-

ter than parametric two stage approach and is also comparable with semiparametric one

stage Bayesian approach. The performance of semiparametric one stage penalized approach

is highly affected by the choice of smoothing parameter. On the other hand, semiparamet-

ric one stage Bayesian approach automatically estimates this smoothing parameter under

Bayesian framework. Hence, the semiparametric one stage approach is more efficient and

flexible. Because of this, the semiparametric one stage Bayesian approach performs better

than its penalized counterpart in terms of MSE, R2, and efficiency of choosing smoothing pa-

rameter. Our example also shows the prediction improvement using the Bayesian approach.

Simulation results show that the semiparametric one stage penalized method has performed

better than parametric two stage approach and is also comparable with semiparametric

one stage Bayesian approach. The performance of the semiparametric one stage penalized

approach is highly affected by the choice of smoothing parameter. On the other hand,

the semiparametric one stage Bayesian approach automatically estimates this smoothing

parameter under Bayesian framework. Hence, the semiparametric one stage approach is

more efficient and flexible.

The semiparametric one stage Bayesian approach performs better than its penalized counter-

part in terms of MSE, R2, and efficiency of choosing smoothing parameter. Our example also

shows the prediction improvement using the Bayesian approach. Additionally, the Bayesian

approach allows to test hypothesis of interest via Bayes Factors, providing more advantages

over the other alternatives.
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Since our varying coefficient model has been developed to detect the parametric relationship

between the predictor and binary outcomes as well as simultaneously evaluate nonparametric

relationships between the predictor and time. We will further develop our varying coefficients

model to allow both nonparametric relationship between the predictor and binary outcomes

and between the predictor and time. Furthermore we will also incorporate spatial dependence

into our time varying coefficient models because our data is also obtained from different

spatial locations.
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Chapter 3

Semiparametric Spatial-Temporal

Varying Coefficient Model for

Matched Case-Crossover Studies

3.1 Background

The methods for assessing the functional relationship between time varying coefficients, spa-

tial dependencies and matched binary outcomes are extremely limited. In order to solve this

problem we propose two semiparametric spatial-temporal varying coefficient model alterna-

tives in order to evaluate the effect modification and make correct statistical inference. The

choice between these two proposed alternatives will be determined by the number of geo-

graphical locations among the subjects. When the number of locations is small, around two

or three it is recommended to use alternative 1, a semiparametric spatial-temporal varying

coefficient model for a small number of locations. When the number of locations is medium to

large, then it is recommended to use the semiparametric spatial-temporal varying coefficient
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model.

In both methods we propose a semiparametric approach using regression splines to estimate

the time varying coefficient portion. When the number of locations is small, we evaluate the

effect modification due to spatial location by estimating the time varying coefficient model

presented in Chapter 2 for each individual region. In addition we propose the examination of

the relationship between the estimated function and its first derivative with respect to time

in order to assess effect modification due to time and spatial location among the subjects.

When the number of locations is medium to large we propose a random effect to assess

the spatial effect with the use of the empirical semivariogram. Our approach allows us to

detect the parametric relationship between the predictor and binary outcomes and evaluate

parametric or semiparametric relationships between the predictor and time as well as effect

modification due to geographical location.

The rest of this chapter is organized in two main sections: In section 3.2, we propose the

semiparametric spatial-temporal varying coefficient model for a small number of locations.

In section 3.3, we propose the semiparametric spatial-temporal varying coefficient model.

Each section will contain all the elements of each method along with a discussion.

3.2 Semiparametric Spatial-Temporal Varying Coeffi-

cient Model for a Small Number of Locations

3.2.1 Background

The use of conditional logistic regression in the analysis of matched case-crossover studies

does not support the estimation of any effect modification due to time or spatial location.
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The main interest of this section is to determine whether an effect modification due to time

or spatial location exist for a small number of location among the subjects.

The application example, 1-4 bi-directional matched case-crossover study, in which the in-

terest lies in assessing the relationship between drinking water turbidity and the presence or

absence of aseptic meningitis in children, gathers data from two provinces in South Korea.

In this section, he goal is to assess whether the effect of drinking water turbidity over the

presence or absence of the disease changes between regions, and furthermore if there is an

effect modification due to time.

The methods for assessing the functional relationship between time varying coefficients,

spatial dependencies and matched binary outcomes are limited. To address this problem we

propose a semiparametric spatial-temporal varying coefficient model for a small number of

locations among the subjects. This model can be used to evaluate effect modification by

time and spatial location so that we can make correct statistical inference. This model is

designed to be implemented when the number of spatial locations is small. We estimate a

spatial-temporal varying coefficient model and its derivative model using regression splines.

It is important to estimate these two models simultaneously. We estimate them under the

Bayesian hierarchical model framework. The estimated function and its derivative function is

then studied to determine differences in effect modification due to time and spatial location.

The remainder of this section is organized as follows: In section 3.2.2, we propose our

approach, the spatial-temporal varying coefficient model for small number of locations. In

section 3.2.3, we describe our Bayesian hierarchical model framework and explain how to

estimate the model and its derivative function. In section 3.2.4 we present testing procedures

for the existence of features. In section 3.2.5, we present the simulation study and results.

Section 3.2.6 presents the estimation of the 1-4 bidirectional matched case-crossover study.

Section 3.2.7 contains concluding remarks.
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3.2.2 Spatial-Temporal Varying Coefficient Model for a Small Num-

ber of Spatial Locations

We consider a 1 −M matched case-crossover study with k-th stratum, k = 1, ..., N . We

consider the r-th region, r = 1, 2, ..., R. Let x1k,r represent the value of the covariate of

interest for the case of stratum k in region r, and x2k,r, x3k,r, . . . , xM+1,k,r represent the

covariate values for the controls of stratum k in region r.

The spatial-temporal varying coefficient model replaces the parameter β in (1.1) by the

unknown function βr(t) for given r. We model βr(t) semiparametrically so that we estimate

βr(t) via p(> 1)-th order regression splines. We define pth order regression spline with a

truncated power series basis and with L knots, {1, t, t2, . . . , tp, (t − ξ1)p+, (t − ξ2)p+, . . . , (t −

ξL)p+}, where (u)p+ = upI(u ≥ 0) and knots ξ1 < . . . < ξL. Knots can be selected a priori, for

example, at sample quantiles of observed t’s which are scaled in [0,1]. Let α0,r, α1,r, . . . , αp,r be

the regression coefficients and αp+1,r, . . . , αp+L,r be the regression coefficients of the truncated

power series basis. With this setup, βr(t) can be written as

βr(t) = α0,r + α1,rt+ · · ·+ αp,rt
p +

L∑
l=1

αp+l,r(t− ξl)p+.

Since p is larger than 1, we can take the first derivative of βr(t) with respective t so that we

can obtain its derivative function,

d

dt
βr(t) ≡ β′r(t) = α1,r + 2α2,rt+ · · ·+ pαp,rt

p−1 + p
L∑
l=1

αp+l,r(t− ξl)p−1
+ .

Estimation of these two functions simultaneously are of our main fundamental interest. We

estimate them under the Bayesian hierarchical framework. We note that Frequentist ap-

proach (Jarrow et al., 2004), using penalized splines usually estimated the function first
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and then estimated the derivative of the estimated function. This two step procedure caused

some problems because it used the same smoothing parameter in both functions, although the

smoothing function of the derivative may be different from that of the function. The deriva-

tive estimates are typically more noisy than estimate of function. However, the Bayesian

approach can estimate these two functions simultaneously using hierarchical framework.

3.2.3 Bayesian Hierarchical Model Framework

Let α1,r = (α0,r, . . . , αp,r)
T , α2,r = (αp+1,r, . . . , αp+L,r)

T , and αr = (α1,r, α2,r)
T , with

r = 1, ..., R. We first specify the prior distributions of parameters as follows:

α1,r ∼ N(0, φ−1
1 I),

α2,r ∼ N(0, (φα,r)
−1I),

φα,r ∼ Gamma(uα, vα), for all r = 1, ..., R,

where φ−1
1 is a fixed large number, uα and vα, are the hyperparameters of the Gamma

distribution.

The joint likelihood for each region (Lr) is expressed as:

Lr ∝

[
N∏
k=1

1

1 +
∑M+1

j=2 exp
{(
α0,r + α1,rt+ . . .+ (αp,r)tp +

∑L
l=1 αp+l,r(t− ξj)

p
+

)
(xjk,r)∗

]

×

{
exp
(
− φ1α1,r

Tα1,r

2

)}{
(φα,r)

Lexp
(
− φα,rα2,r

Tα2,r

2

)}{
(φα,r)

uα−1exp
(
− φα,r

vα

)}
,

where (xjk,r)
∗ = xjk,r − x1,r.
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The full conditional likelihoods for αq,r, q = 1, . . . , p, are

p(αq,r|−) ∝
φ1exp

(
− φ1(αq,r)2

2

)
∏M+1
k=1

[
1 +

∑M+1
j=2 exp

{(
α0,r + α1,rt+ . . .+ (αp,r)tp +

∑L
l=1 αp+l,r(t− ξj)

p
+

)
(xjk,r)∗

] .

The full conditional likelihoods for αp+q,r, q = 1, . . . , L, are

p(αp+q,r|−) ∝
φα,rexp

(
− φα,r(αp+q,r)2

2

)
∏M+1
k=1

[
1 +

∑M+1
j=2 exp

{(
α0,r + α1,rt+ . . .+ αp,rtp +

∑L
l=1 αp+l,r(t− ξj)

p
+

)
(xjk,r)∗

] .

The full conditional likelihood for the smoothing parameters φα,r is

p(φα,r|−) ∝ (φα,r)
(uα+L)−1exp

{
− φα,r

( L∑
l=1

(αp+l,r)
2

2
+

1

vα

)}

= Gamma

{
uα + L,

( L∑
l=1

(αp+l,r)
2

2
+

1

vα

)−1
}
.

Since the full conditional distributions of parameters except for φα,r do not have closed forms, we

use Adaptive Rejection Metropolis Sampling (Gilks et al., 1995) within Gibbs Sampling(ARMS).

The detailed procedures of our ARMS algorithm are provided in the Appendix A.3. The ARMS

algorithm for Matched Case Crossover studies is summarized in Algorithm 1.

Let α
(s)
1,r =

(
α

(s)
0,r, . . . , α

(s)
p,r

)T
, α

(s)
2,r =

(
α

(s)
p+1,r, . . . , α

(s)
p+L,r

)T
with r = 1, . . . , R corresponding to the

region of interest and s = 1, . . . , S corresponding to the MCMC sample point obtained from the

ARMS procedure. The βr(t) and β′r(t), r = 1, . . . , R, are of our fundamental interest.

We construct the following two functions simultaneously:

βr,s(t) = α
(s)
0,r + α

(s)
1,rt+ · · ·+ α(s)

p,rt
p +

L∑
l=1

α
(s)
p+l,r(t− ξl)

p
+

β′r,s(t) = α
(s)
1,r + 2α

(s)
2,rt+ · · ·+ pα(s)

p,rt
p−1 + p

L∑
l=1

α
(s)
p+l,r(t− ξl)

p−1
+
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Then the βr(t) and β′r(t) are estimated as follows using MCMC samples, for each time t = 1, . . . , T ,

βr(t) ≈
1

S

S∑
s=1

βr,s(t),

β′r(t) ≈
1

S

S∑
s=1

β′r,s(t).

Let βr(t) = {βr,1(t), . . . , βr,S(t)} and β′
r(t) = {β′r,1(t), . . . , β′r,S(t)}. The (1 − γ)100% Bayesian

credible bands for βr(t) and β′r(t) can be calculated using the γ/2 and 1 − γ/2 quantiles of βr(t)

and β′
r(t) respectively.

3.2.4 Testing for the Existence of Features

In this section, we explain how to test whether an effect modification arising from time exists, as

well as determining if this effect modification changes in spatial location. We propose the empirical

procedures under the Bayesian paradigm for 1−M matched case-crossover studies.

Testing for the Existence of Modification by Time

We conduct the following approach to assess the presence of effect modification due to time.

Step 1: For each region, estimate the αr coefficients for βr(t), r = 1, . . . , R;

Step 2: Use the estimated αr coefficients to find the first derivative of βr(t) with respect to time

and denote it as β′r(t);

Step 3: Find a (1− γ)100% Bayesian credible interval at each time period for β′r(t);

Step 4: Determine the existence of a time varying function according to the following criteria:

If the credible bounds β′r(t) are above zero, the βr(t) function is a monotonic increasing

function in regions; If the credible bounds β′r(t) are below zero, the βr(t) function is a
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monotonic decreasing function in regions; If the credible band covers a portion of the zero

line, there is no significant increasing or decreasing pattern of the β′r(t) function.

Testing for Existence of Modification by Spatial Location

We conduct the following approach to determine whether there is a difference between the βr(t)s

for r = 1, . . . , R.

Step 1: Find the paired differences between the βr(t), for example β2(t)− β1(t);

Step 2: For each set of paired differences, find a (1 − γ)100% Bayesian credible interval at each

time period;

Step 3: Calculate the proportion of these credible intervals that do not include zero.

3.2.5 Simulation Study

Simulation Setting

We consider a 1-4 matched case-crossover study motivated by our childhood aseptic meningitis

example. We set the number of stratum to 100 (N = 100), the number of time periods to 100

(T = 100) and two locations (R = 2). The covariates X were generated from a standard normal

distribution N(0,1).

The 1-4 matched case-controls are generated from the prospective model

Pr(Yk = 1|Xk, t, r, q) =
exp{Xkβr(t) + q(•)}

1 + exp{Xkβr(t) + q(•)}
,

where q(•) is an unknown effect which disappears under the condition
∑5

j=1 Yj = 1 for each stratum

k, k = 1, . . . , N regardless of the distribution of q(•). For the estimation and method evaluation,
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we simulated 50 datasets. We consider two cases. Case 1 is for estimating true positive rate and

Case 2 is for estimating false positive rate.

• Case 1: K = 100, R = 2, β1(t) = cos(πt), β2(t) = t2.

• Case 2: Same setting as Case 1 except for β1(t) = β2(t) = t2

Testing of the Existence of Time Varying Coefficients under Case 1

It is of interest to examine whether increasing and decreasing patterns in the estimated βr(t) are

significant, or not. Figure 3.1 presents an example of the estimated βr(t) with credible bounds. The

shaded area corresponds to 99% credible bounds, the dashed lines correspond to the 95% credible

bounds and the solid line corresponded to the estimated function. Parts (a) and (b) correspond to

the estimated β1(t) and β2(t) functions respectively. Parts (c) and (d) correspond to the estimated

β′1(t) and β′2(t) functions respectively.

When examining Figure 3.1 (a) and (b), it appears that β1(t) is decreasing, which means there

would be a negative effect modification of our covariate over the presence or absence of disease for

subjects in region one. β2(t) shows an increasing pattern, which means there would be a positive

effect modification of our covariate over the presence or absence of disease for subjects in region

two.

In order to assess whether these patterns are significant we further examine and obtain Figure

3.1 (c) and (d). We see that for all time t, β′1(t) < 0 and β2(t) > 0, this means that β1(t) is

significantly decreasing and β2(t) is significantly increasing. Therefore, the effect modifications

that we suspected are significant. This figure illustrate that for the entire time β′1(t) is significantly

decreasing and β′2(t) is significantly decreasing.
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Figure 3.1: Example of the estimated βr(t) with credible bounds. The shaded area corresponds
to 99% credible bounds, the dashed lines correspond to the 95% credible bounds and the solid
line corresponded to the estimated function. (a) and (b) correspond to the estimated β1(t) and
β2(t) functions respectively. (c) and (d) correspond to the estimated β′1(t) and β′2(t) functions
respectively, where β′r(t) = d

dtβr(t), r = 1, 2.

Testing of the Existence of Modification by Spatial Locations under Case 1

In order to assess the difference of the time varying coefficient functions between regions we consider

the proportion of credible intervals for β2(t)−β1(t) per each simulated dataset that do not include

zero. Table 3.1 presents the average proportion of 95% and 99% credible intervals that do not
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include zero. These high (97.08% and 93.20%) proportion values support the significant of the

difference between two regions, β2(t) 6= β1(t).

95% 99%

β2(t)− β1(t) 0.9708 0.9320

β′2(t)− β′1(t) 1 1

Table 3.1: Average proportions of credible intervals that do not include zero, to test the difference
between regions when β1(t) = t2 and β2(t) = cos(πt).

Another quantity of interest to assess the difference of the time varying coefficient functions between

regions is the proportion of credible intervals for β′2(t)−β′1(t) per each simulated dataset that do not

include zero. Table 3.1 presents the average proportion of 95% and 99% credible intervals that do

not include zero. These high proportions (100% for both) support the significant of the difference

between two regions, β′2(t) 6= β′1(t). This result also supports the significance of β2(t) 6= β1(t).

Testing of the Existence of Modification by Spatial Locations under Case 2

In order to assess the difference of the time varying coefficient functions between regions, we consider

the proportion of intervals for β2(t)− β1(t) and β′2(t)− β′1(t) that contain zero. These proportions

will represent the false positive rate which is the average proportion of times in which a difference in

regions is detected, when in fact, no difference is present. Table 3.2 summarizes these proportions,

presenting low values of the false positive rate for both β2(t)− β1(t) and β′2(t)− β′1(t).

95% 99%

β2(t)− β1(t) 0.0844 0.0242

β′2(t)− β′1(t) 0.0108 0.0056

Table 3.2: Average proportions of credible intervals that do not include zero, to test the difference
between regions when β1(t) = β2(t) = t2.

These values mean that 8% of the 95% credible intervals do not include zero (support the difference

in regions hypothesis), and that 2% of the 99% credible intervals do not include zero. Low false
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positive rates are evidence for the accuracy of the method.

3.2.6 Example: 1 − 4 bi-directional matched case-crossover study

Estimation

The main interest of our 1−4 bidirectional case-crossover example is to understand the relationship

between the effect of drinking water turbidity and the risk of aseptic meningitis in children as well

as to explore the presence of potential effect modification on the turbidity effect by time and spatial

location. The analysis of a case-crossover study is a stratified data analysis of retrospective, self-

matched follow-up studies, each with a sample size of one. In this study, the stratifying variable

is the individual child who is less than 15 years old, diagnosed in one of two years and lives on

one of two urban communities in South Korea. Our potential effect modification includes a time

effect and a spatial modification, where the covariate of interest is water turbidity. We applied the

testing approaches presented in Section 3.2.4, by first estimating the time varying coefficients β1(t)

and β2(t) for the two regions, respectively.

For testing of differences between two regions, we obtain Figure 3.2 which presents a graphical rep-

resentation of this estimation with the solid line representing β1(t) and the dashed line representing

β2(t). This figure shows a visible difference in the relationship between the coefficients and time,

β(t), for each region. It seems like both time varying coefficient functions are decreasing, however,

the estimated function β2(t) drops more dramatically than for β1(t). Figure 3.2 (b) presents the

estimated β2(t)− β1(t) .

Upon inspection of this figure we concluded that β1(t) and β2(t) are significantly different. Figure

3.2 (c) presents the estimated β′2(t) − β′1(t) along with their credible bands. This figure supports

the conclusion obtained from (b), β1(t) and β2(t) are significantly different. We also created 95

and 99% credible intervals for β2(t)− β1(t) and for β′2(t)− β′1(t). The proportions of these credible

intervals that do not include zero are presented in Table 3.3. These high proportion values (93.55%
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Figure 3.2: (a) Estimated Varying Coefficient Functions for each region. The solid line represents
β1(t) (region 1) and the dashed line represents β2(t) (region 2). (b) Estimated β2(t) − β1(t) and
confidence bounds. (c) Estimated β′2(t) − β′1(t) and confidence bounds, where β′r(t) = d

dtβr(t),
r = 1, 2.

and 87.10%) support the claim β2(t) 6= β1(t). This result means that the spatial location of the

subjects modifies the effect of water turbidity and binary outcomes of presence or absence of aseptic

meningitis in children.

For testing of existence of effect modification due to time, we generated Figure 3.3 which presents
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95% 99%

β2(t)− β1(t) 0.9355 0.8710

β′2(t)− β′1(t) 1 0.9032

Table 3.3: Average proportions of credible intervals that do not include zero, to test the difference
between regions for the 1-4 bidirectional matched case-crossover example.

the results of the estimation of β1(t) (a), β′1(t) (c), β2(t) (b) and β′2(t) (d). By examining these

two functions together, we can conclude that even though β1(t) seems to be decreasing (part (a)

only), the fact that the credible bounds for β′1(t) include zero for all t shows that this decrease is

not significant. Therefore, in region one the effect of water turbidity on the presence of aseptic

meningitis in children does not vary over time. However, by examining t (b) and (d) together, we

conclude that β2(t) is decreasing, and since β′2(t)’s credible bounds do not include zero for most

values of t, this decrease is significant. Therefore, in region two the effect of water turbidity on the

presence of aseptic meningitis in children does varies over time.

3.2.7 Discussion

In this section, we have proposed a semiparametric spatio-temporal varying coefficient model, which

is appropriate when the number of spatial locations is small. This method allows us to detect

relationships between a predictor X and binary outcome, as well as determine effect modifications

by time and/or spatial location.

Simulation results show that the method performs well in estimating unknown β(t) functions.

Additionally, simulation results show that the method is successful at detecting differences in effect

modification for subjects located in different regions, as well as detecting if the obtained functions

vary through time significantly. We present an application for a 1-4 bidirectional matched case-

crossover study of aseptic meningitis in children in two provinces in South Korea. We applied our

approach and concluded that the effect modification of water turbidity on the presence or absence

of disease varies according to the location of the subject. Moreover, we concluded that there is no

51



Chapter 3. Semiparametric Spatial-Temporal Varying Coefficient Model for Matched
Case-Crossover Studies

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5
1.

0

Time

β 1
(t)

0 5 10 15 20 25 30

−
3

−
2

−
1

0
1

Time

β 2
(t)

(a) (b)

0 5 10 15 20 25 30

−
4

−
2

0
1

2

Time

d dt
β 1

(t)

0 5 10 15 20 25 30

−
8

−
6

−
4

−
2

Time

d dt
β 2

(t)

(c) (d)

Figure 3.3: Estimated βr(t) with credible bounds in the 1-4 Bidirectional Matched Case-Crossover
Study. The shaded area corresponds to 99% credible bounds, the dashed lines correspond to the 95%
credible bounds and the solid line corresponded to the estimated function. (a) and (b) correspond
to the estimated β1(t) and β2(t) functions respectively. (c) and (d) correspond to the estimated
β′1(t) and β′2(t) functions respectively, where β′r(t) = d

dtβr(t), r = 1, 2.

effect modification by time for subjects in region one, and there is an effect modification due to

time, present for subjects in region two.

We will further develop our approach for the case when there is a large number of locations present

in the next section.
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3.3 Spatial-Temporal Varying Coefficient Model

3.3.1 Background

In Section 3.2 we proposed a method that allows the assessment of effect modification due to time

and spatial location for a small number of locations among the subjects of a matched case-crossover

study. In this section we further develop the spatial-temporal approach for the case in which we

have a medium to large number of locations.

The proposed method is created to model semiparametrically the effect modification by time using

regression splines, and the effect modification by spatial effect using a Gaussian random process.

This model allows us to not only detect the parametric relationship between the predictor and

binary outcomes but also evaluate a semiparametric relationship between the predictor and time

as well as an association between the predictor and spatial effect. We refer to this model as

semiparametric spatio-temporal varying coefficient model. We develop the procedure to estimate

an empirical semivariogram in order to incorporate spatial dependence to matched case-crossover

study estimation.

This section is organized as follows: In section 3.3.2, we propose the framework for our approach.

In section 3.3.4 we present two different semivariogram estimation methods: a logistic regression-

semivariogram and a conditional logistic regression-semivariogram. In section 3.3.5, we present the

framework and results of our simulation study. In general, our simulation results suggest that the

method perform well at estimating time varying functions as well as detecting effect modification

due to spatial location among the subjects. Section 3.3.6 contains concluding remarks.

3.3.2 Spatial-Temporal Varying Coefficient Model

In this section, we propose a semiparametric spatial-temporal varying coefficient model. We con-

sider a 1 −M matched case-crossover study with kth stratum, k = 1, . . . , N . Let x1k represent
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the value of the covariate of interest for the case of stratum k, and x2k, x3k, . . . xM+1,k the co-

variate values for the controls of stratum k. Let Z1 represent the model matrix corresponding to

the locations of the case, and Z2, Z3, . . .ZM+1 represent the model matrices corresponding to the

locations of the controls, where the k-th row corresponds to information for stratum k. In this way,

Zi is created by row vectors zi1, zi2, . . . , ziK, where zik represents location information for stratum

k = 1, . . . ,K, and i = 1 represents location information for the case and i = 2, . . . ,M+1 represents

location information for the controls.

To illustrate the construction of the Z1 . . . XM+1 consider a 1-2 matched matched case-crossover

study with 4 subjects and 3 locations as presented in Table 3.4.

Subject Case Control Control

1 Location 1 Location 1 Location 1

2 Location 1 Location 1 Location 2

3 Location 3 Location 2 Location 3

4 Location 1 Location 3 Location 3

Table 3.4: Example for the construction of the Z1k . . . XM+!,k model matrices.

Let Z1 = (z11, z12, z13, z14)T , Z2 = (z21, z22, z23, z24)T and Z3 = (z31, z32, z33, z34)T , where

Z1 =



1 0 0

1 0 0

0 0 1

1 0 0


, Z2 =



1 0 0

1 0 0

0 1 0

0 0 1


, Z3 =



1 0 0

0 1 0

0 0 1

0 0 1


.

Let us consider the parametric association between a covariate and binary outcomes and the semi-

parametric association between the time varying coefficient and binary outcomes. We replace the

parameter β in (1.1) by the unknown function β(t) and also incorporate spatial information. The

conditional logistic regression model with time varying coefficient and spatial random effects for
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kth stratum can then be written as

P
(
Y1k = 1|x1k, ..., xM+1,k, k,

M+1∑
j=1

Yjk = 1
)

=
exp{x1kβ(t) + Z1kγ + q(•)}∑M+1
j=1 exp{xjkβ(t) + Zjkγ + q(•)}

=
1

1 +
∑M+1

j=2 exp{(xjk − x1k)β(t) + (Zjk − Z1k)γ}
≡ lk{β(t),γ} (3.1)

where β(t) is a function of time t, t = 1, . . . , T , and γ is the Gaussian random vector associated

with spatial location.

The function β(t) and γ are modeled semiparametrically. The function β(t) can have semipara-

metric form via regression splines. For a pth order regression spline with a truncated power series

basis and with L knots, we define a pth order regression spline with a truncated power series basis

and with L knots, {1, t, t2, . . . , tp, (t − ξ1)p+, (t − ξ2)p+, . . . , (t − ξL)p+}, where (u)p+ = upI(u ≥ 0)

and knots ξ1 < . . . < ξL. Knots can be selected a priori, e.g., at sample quantiles of observed t’s

which are scaled in [0,1]. Let α0, α1, . . . , αp be the regression coefficients and αp+1, . . . , αp+L be the

regression coefficients of the truncated power series basis. With this setup, β(t) can be written as

β(t) = α0 + α1t+ . . .+ αpt
p +

L∑
l=1

α1+l(t− ξl)p+.

The spatial information (γ) is modeled using Gaussian random process as follows:

γ ∼ MVN(0,
1

φs
Σ),

Σii′ = exp(−φρ ‖ si − si′ ‖2) (3.2)

where φs is the precision parameter for the spatial random effect, φρ is the covariance structure

precision parameter, and ‖ si − si′ ‖ represents the distance between location i and i′, which are

calculated using Great Circle distances, i, i′ = {1, 2, ....nL} with nL being the total number of

locations. Longitudinal and latitudinal information are used to calculate these distances.

55



Chapter 3. Semiparametric Spatial-Temporal Varying Coefficient Model for Matched
Case-Crossover Studies

3.3.3 Bayesian Hierarchical Model Framework

Let α1 = (α0, . . . , αp)
T and α2 = (αp+1, . . . , αp+L)T . Define α = (α1, α2)T .

We first specify the prior distributions of parameters as follows:


α0

...

αp

 ∼ N(0, φ−1
1 I),


αp+1

...

αp+L

 ∼ N(0, φ−1
α I),

γ ∼ MVN(0,
1

φs
Σ),

φα ∼ Gamma(uα, vα),

φs ∼ Gamma(us, vs)

where φ−1
1 is a fixed large number, uα, us, vα and vs are the hyperparameters of the Gamma

distributions, and Σ is the Gaussian covariance structure given by:

Σii′ = exp(−φρ ‖ si − si′ ‖2) (3.3)

where ‖ si − si′ ‖ represents the distance between location i and i′, where i, i′ = {1, 2, ....nL}, with

nL being the total number of locations.

For φρ, we do not specify the prior distribution because φs and φρ are not identifiable under one of

the following situations: (i) φs → 0, (ii) 1/φρ → 0 and φs ∼ O(φcρ) for any positive c; or (iii)φρ → 0.
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To avoid this identification situation, we estimate the covariance structure parameter φρ using the

semivariogram. This estimation is presented in section 3.3.4.

Once the covariance structure parameter φρ is estimated, our joint likelihood (L) is then expressed

as

L ∝

[
N∏
k=1

1

1 +
∑M+1

j=2 exp
{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξj)

p
+

)
x∗jk + z∗jkγ

}]

×

{
exp
(
− φ1α1

Tα1

2

)}{
φLαexp

(
− φαα2

Tα2

2

)}{
φuα−1
α exp

(
− φα
vα

)}

×

{
φus−1
s exp

(
− φs
vs

)}{
φnL/2s exp

(−φsγTΣ−1γ

2

)}
(3.4)

where x∗jk = xjk − x1k and zjk∗ = zjk − z1k.

The full conditional likelihoods for αq, q = 1, . . . , p, are

p(αq |−) ∝
φ1exp

(
−
φ1α

2
q

2

)
∏N
k=1

[
1 +

∑M+1
j=2 exp

{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξl)

p
+

)
x∗jk + z∗jkγ

}] (3.5)

The full conditional likelihoods for αp+q, q = 1, . . . , L, are

p(αp+q |−) ∝
φαexp

(
−
φαα

2
p+q

2

)
∏N
k=1

[
1 +

∑M+1
j=2 exp

{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξl)

p
+

)
x∗jk + z∗jkγ

}] (3.6)

The full conditional likelihood for γ is

p(γ|−) ∝
exp(φs(−γTΣ−1γ))∏N

k=1

[
1 +

∑M+1
j=2 exp

{(
α0 + α1t+ . . .+ αptp +

∑L
l=1 αp+l(t− ξl)

p
+

)
x∗jk + z∗jkγ

}] (3.7)

The full conditional likelihoods for the smoothing parameters φα and φs are:

p(φα|−) ∝ φ(uα+L)−1
α exp

{
− φα

( L∑
l=1

α2
p+l

2
+

1

vα

)}
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= Gamma

{
uα + L,

( L∑
l=1

α2
p+l

2
+

1

vα

)−1
}

(3.8)

p(φs|−) ∝ φ(us+nL/2)−1
s exp

{
− φs

(γTΣ−1γ

2
+

1

vs

)}

= Gamma

{
us + nL/2,

(γTΣ−1γ

2
+

1

vs

)−1
}

(3.9)

Since the full conditional distributions of parameters except for φα and φs do not have closed

forms, we use Adaptive Rejection Metropolis Sampling (Gilks et al., 1995). The detailed

procedures of our ARMS algorithm are provided in the Appendix B.1. ARMS algorithm for

Matched Case Crossover studies is summarized in Algorithm 2.

3.3.4 Semivariogram Estimation

In the model, we do not specify the prior distribution because φs and φρ due to identifiability

problems. To overcome this situation we estimate the covariance structure parameter φρ

using a semivariogram. We propose an empirical way to estimate semivariogram for matched

case-crossover studies. The empirical semivariogram is calculated by following procedures:

Step 1: Fit the conditional logistic regression under the model

Pr(Y1k = 1|x1k, . . . , xM+1,k, k,
M+1∑
j=1

Yjk = 1) =
exp(θx1k)∑M+1
j=1 exp(θxjk)

, where k = 1, . . . , N,

Notice: time is ignored for this estimation.
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Step 2: Compute p̂k which is given by

p̂k =
exp(θ̂x1k)∑M+1

j=1 exp(θ̂xjk))
, where k = 1, . . . , N,

Step 3: Compute rk(si) which represents the residual for stratum k of the case at location

si

rk(si) =
1− p̂k√
p̂k(1− p̂k)

,

Step 4: Calculate the empirical semivariogram given by

γ̂(h) =
1

2N(h)

∑
(i,i′)|hij=h

[{
rk(si)− rk(si′)}2

]

where N(h) is the total number of pairs for which hij = h, hij = si− si′ and r(si) and

r(si′) represent the set of all residuals from locations si and si′ , respectively including

all strata k = 1 . . . N .

Step 5: The semivariogram is characterized primarily by three measures: (1) the nugget

which represents variability that cannot be explained by the distance between observa-

tions; (2) the sill, which represents the maximum observed variability of the data and

(3) the range, which represents the value at which the semivariogram stops increasing,

i.e. the distance at which two observations are unrelated. The estimation of φρ is done

by calculating the inverse of the range ρ at which 90% of the sill is reached.
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3.3.5 Simulation Study

In this section we conduct the simulation to investigate the estimation accuracies of the

model for β(t)

Simulation Setting

We consider a 1-4 matched case-crossover study. We set the number of stratum (N) as 100

and the number of time periods (T ) as 100 for each stratum, that is, N = 100 and T = 100.

We also consider nL = 9 locations corresponding to the nine provinces in South Korea. The

latitude and longitude of these locations are presented in the Appendix B.2.

The covariates X were generated from a N(0, 1) distribution. Three different functions for

β(t) are used: (1) β(t) = 0.5t, (2) β(t) = t2, and (3) β(t) = cos(πt). Values of φs are

considered to be φs = {1, 2, 3} and φρ = 2. Spatial random effects are generated from mul-

tivariate normal distribution, γ ∼MVN(0, 1
φs

Σ) where Σ is the spatial covariance structure

given by (3.2). Distances are calculated using the Great Circle Distance method under an

ellipsoid earth mechanism. The Great Circle Distance method calculates the shortest dis-

tance between two points on the surface of an ellipsoid, measured along the surface of the

ellipsoid, taking into account the radius of the earth.

The 1-4 matched case-controls are generated from the prospective model

Pr(Yk = 1|Xk, t, q) =
exp{Xkβ(t) + Zkγ + q(•)}

1 + exp{Xkβ(t) + Zkγ + q(•)}
,

where q(•) is unknown effect including intercept and can be generated from any distribution.

However, q(•) disappears under the condition
∑5

j=1 Yj = 1 for each stratum k, k = 1, . . . , N

regardless of the distribution of q(•).
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β(t) Number of Knots (L)

0.5t 5

t2 10

cos(πt) 5

Table 3.5: Number of knots (L) for estimations in simulated data sets

For each function β(t), we simulated 50 data sets and applied our proposed approach. Table

3.5 summarizes the number of knots used during estimations for each of the β(t) functions.

We then determine the accuracy of our approach in terms of the mean squared error (MSE)

and R2 which is the square of correlation between β(t) and β̂(t). This MSE is calculated as

follows:

MSE = Bias2 + Variance

where

Bias2 =
1

100

[
50∑
d=1

1

50

100∑
t=1

{β(t)− β̂d(t)}2

]
,

Variance =
1

100

[
50∑
d=1

1

50− 1

100∑
t=1

{β̂d(t)− ¯̂
β(t)}2

]
.

Here β̂d(t) represents the estimated β(t) using the d simulated data and

¯̂
β(t) =

1

50

50∑
d=1

β̂d(t).
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Simulation Results

We studied three different simulation cases. Case 1 is for evaluating the performance of

the method without the use of a semivariogram, that is known φρ. Case 2 and Case 3 are

considered to evaluate the performance of the method with all parameters unknown.

Case 1: Known φρ

Case 2: Unknown φρ using empirical semivariogram under conditional logistic regression.

Case 3: Unknown φρ using under logistic regression ignoring stratum effect.

For Case 1, we estimated all parameters by fixing the number of knots to the quantities

presented in Table 3.5. We chose the location of knots using sample quantiles of the data,

and set φρ = 2, the true value of the parameter used to generate the data.

For Case 2 and Case 3 we performed estimations with the settings for number and location

of knots as in Case 1, with the difference that φρ is estimated using semivariogram under

both conditional logistic and logistic methods respectively.

Figure 3.4 presents a comparison between the true and estimated function using the proposed

method. Part (a) presents β(t) = 0.5t, part (b) presents β(t) = t2 and part (c) presents

β(t) = cos(πt). In this figure the solid line represents the true function and the dashed line

represents the estimated function. This figure shows that the proposed method is successful

at capturing the true structure of all the simulated functions.

Table 3.6 summarizes the results of the estimation of precision parameters φα and φs. This

table shows the accuracy of the estimation of φs for all simulated functions, and different

values of φs = {1, 2, 3}. The average squared bias for φs is 0.0199. Table 3.7 presents

accuracy measures for all simulated functions under different values of φs. The results
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Figure 3.4: Example of the estimated β(t) under the known spatial covariance parameter: (a)
β(t)= 0.5t, (b) β(t)= t2 and (c) β(t)= cos(πt). Solid line represents true function, dashed line
represents estimated function.

presented in this table, show that our approach performs well in estimating unknown β(t)

from the large R2 ≥ 0.97 and small MSE (≤ 0.0005).

For Case 2, we estimate φρ using semivariogram estimation under conditional logistic re-

gression. Table 3.8 summarizes the results of the estimation of precision parameters φα φs,

and φρ. In this table we can see the accuracy of our method, since the estimated values for
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β(t) = 0.5t β(t) = t2 β(t) = cos(πt)

φs 1 2 3 1 2 3 1 2 3

φ̂α 0.0505 0.0499 0.0598 0.0507 0.0519 0.0601 0.0499 0.0594 0.0502

φ̂s 1.0966 1.8325 2.8729 0.9657 1.8901 2.7961 1.1324 1.7740 2.9503

Table 3.6: Estimated precision parameter under the known φρ case using the Spatio-Temporal
Varying coefficient model with semivariogram for β(t).

β(t) = 0.5t β(t) = t2 β(t) = cos(πt)

φs 1 2 3 1 2 3 1 2 3

MSE 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004 0.0001

R2 0.9715 0.9788 0.9830 0.9915 0.9817 0.9905 0.9935 0.9940 0.9947

Table 3.7: Average MSE and R2 under the known spatial covariance parameter φρ case using the
Spatio-Temporal Varying coefficient model with semivariogram for β(t).

φs, and φρ are very close to the true values. Furthermore, the average squared bias for φs

is 0.0191 and for φρ is 0.0277. These estimations are competitive with the results obtained

from the logistic-regression-semivariogram method.

β(t) = 0.5t β(t) = t2 β(t) = cos(πt)

φs 1 2 3 1 2 3 1 2 3

φ̂α 0.0590 0.0552 0.0499 0.0521 0.0470 0.0501 0.0493 0.0499 0.0490

φ̂s 0.8822 2.0900 2.6200 0.9912 1.9801 3.0513 0.9739 2.0156 3.0334

φ̂ρ 1.8260 1.7998 1.7789 1.9880 2.0415 2.1858 1.9161 1.7057 1.9826

Table 3.8: Estimated precision parameter under the unknown spatial covariance parameter φρ case
using the Spatio-Temporal Varying coefficient model with semivariogram for β(t) with conditional
logistic regression semivariogram estimation.

Table 3.9 presents the accuracy measures for the estimation of our three functions under

different values of φs. This table suggests that our method performs well in estimating the

unknown β(t) functions in terms of R2 and MSE. It shows large R2 values, with all R2 > 0.95

and small MSE values, with all MSE ≤ 0.0005. These estimations are competitive with the

results obtained from the logistic-regression-semivariogram method.
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β(t) = 0.5t β(t) = t2 β(t) = cos(πt)

φs 1 2 3 1 2 3 1 2 3

MSE 0.0003 0.0003 0.0004 0.0004 0.0005 0.0002 0.0005 0.0002 0.0001

R2 0.9904 0.9677 0.9873 0.9901 0.9914 0.9851 0.9602 0.9754 0.9845

Table 3.9: Average MSE and R2 under the unknown spatial covariance parameter φρ case using the
Spatio-Temporal Varying coefficient model with semivariogram for β(t) with conditional logistic
regression semivariogram estimation.

For Case 3, we estimate φρ using semivariogram estimation under logistic regression. Table

3.10 summarizes the results of the estimation of precision parameters φα φs, and φρ. In this

table we can see the accuracy of our method, since the estimated values for φs, and φρ are

very close to the true values. Furthermore, the average squared bias for φs is 0.0154 and for

φρ is 0.0368.

β(t) = 0.5t β(t) = t2 β(t) = cos(πt)

φs 1 2 3 1 2 3 1 2 3

φ̂α 0.0490 0.0502 0.0497 0.0501 0.0490 0.0502 0.0495 0.0489 0.0499

φ̂s 0.8839 2.1400 2.8200 0.9611 1.9179 2.8583 0.9971 1.7956 2.9484

φ̂ρ 1.7264 1.7799 1.8782 1.7780 2.1467 2.1858 2.0077 1.7057 2.0274

Table 3.10: Estimated precision parameter under the unknown spatial covariance parameter φρ
case using the Spatio-Temporal Varying coefficient model with semivariogram for β(t) with logistic
regression semivariogram estimation.

Table 3.11 presents the accuracy measures for the estimation of our three functions under

different values of φs. This table suggests that our method performs well in estimating the

unknown β(t) functions in terms of R2 and MSE. It shows large R2 values, with all R2 > 0.95

and small MSE values, with all MSE ≤ 0.0004.

Figure 3.5 presents three estimated functions obtained from our method under the logistic-

regression-semivariogram: part (a) for β(t) = 0.5t, part (b) for β(t) = t2 and part (c) for

β(t) = cos(πt). In this figure the solid line represents the true function and the dashed
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β(t) = 0.5t β(t) = t2 β(t) = cos(πt)

φs 1 2 3 1 2 3 1 2 3

MSE 0.0004 0.0003 0.0004 0.0004 0.0004 0.0002 0.0003 0.0002 0.0002

R2 0.9634 0.9737 0.9825 0.9699 0.9805 0.9801 0.9912 0.9984 0.9915

Table 3.11: Average MSE and R2 under the unknown spatial covariance parameter φρ case using
the Spatio-Temporal Varying coefficient model with semivariogram for β(t) with logistic regression
semivariogram estimation.

line represents the estimated function. This figure shows that the proposed method under

unknown φρ is just as successful at capturing the true structure of all the simulated functions,

as the method with assumed φρ.

3.3.6 Discussion

In this section, we have proposed a semiparametric spatial-temporal varying coefficient model

which allows us to detect relationships between a predictor X and binary outcome, as well

as determine effect modifications by time and/or spatial location.

We proposed an alternative to evaluate semiparametric relationships between the predictor

and time, and parametric relationships between the predictor and binary outcome under

two different semivariogram estimation methods. The first one allows the construction of

a semivariogram with residuals from a logistic regression, and the second one constructs

a semivariogram with residuals from a conditional logistic regression. Estimations under

both methods are satisfactory, however, the logistic regression method is faster and easier to

implement.

Simulation results show that the method under both semivariogram estimations, perform well

in estimating the unknown function β(t), spatial parameters φρ, and φs as well as finding a

suitable smoothing parameter for the semiparametric estimation φα, providing satisfactory
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Figure 3.5: Example of the estimated β(t) under the unknown spatial covariance parameter: (a)
β(t)= 0.5t, (b) β(t)= t2 and (c) β(t)= cos(πt). Solid line represents true function, dashed line
represents estimated function.

results in terms of accuracy of the estimation, that solve the problem at hand.

This research can be expanded by developing a method that allows us to detect semipara-

metric relationships between the predictor and binary outcomes, and semiparametric rela-

tionships between the predictor and time, as well as detection of effect modification due to

spatial location. This can be accomplished by modeling the β(t) function using the method
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proposed in this paper, and in addition, modeling the relationship between the covariate and

binary response in a semiparametric way, using regression splines.
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Chapter 4

Functional Nonparametric Bayesian

Time Varying Coefficient Model for

Matched Case-Crossover Studies

4.1 Background

The methods for assessing the functional relationship between time varying coefficients and

matched binary outcomes while assessing for a clustering structure within the data for

matched case-crossover studies are very limited. Our main goals in this chapter are (1)

to understand the functional relationship between drinking water turbidity and the relative

risk of of aseptic meningitis in children, (2) to explore the modification in these effects by

association with the potential latent period and (3) to determine functional clusters of time

varying coefficients among strata. We are interested in assessing in which way the time

varying coefficient function changes between clusters. To achieve these three goals, we pro-

pose a nonparametric Bayesian approach constructed with Dirichlet process priors, which
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automatically cluster subpopulations among strata and assess heterogeneity.

We develop our nonparametric Bayesian approach under semiparametric time varying co-

efficient models in matched case-crossover studies. The time varying coefficient model is

estimated using regression splines, clustering of time varying coefficients among strata is

assessed using a Dirichlet process, and parameter estimation is done using adaptive rejection

Metropolis sampling (ARMS) within Gibbs sampling.

The rest of this chapter is organized as follows: In section 4.2, we propose our approach, the

functional semiparametric Bayesian time varying coefficient model in matched case-crossover

studies. Section 4.3 contains the MCMC sampling scheme. In section 4.4 we provide the

detailed procedure for cluster determination. In section 4.5 we present the simulation study

framework and accuracy results. Section 4.6 presents the estimation of the 1-4 bidirectional

matched case-crossover study. Section 4.7 contains concluding remarks.

4.2 Functional Semiparametric Bayesian Approach

We consider the conditional logistic regression model with time varying coefficient for kth

stratum from equation 2.1, in which we model β(t) in the conditional logistic regression

semiparametrically via a pth order regression splines.

4.2.1 Semiparametric Bayesian Hierarchical Framework

Let α1
(k) = (α

(k)
0 , α

(k)
1 , . . . , α

(k)
p )T be the coefficients associated with the parametric portion of

the time varying coefficient function for stratum k = 1, . . . , N , and α2
(k) = (α

(k)
p+1, . . . , α

(k)
p+L)T

be the coefficients associated with the nonparametric portion of the time varying coefficient

function for stratum k. Also let α(k) =
(
α1

(k),α2
(k)
)
. Our main interest is to estimate
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functional clusters of time varying coefficients among strata.

Prior Distributions

In order to estimate functional clusters of time varying coefficients among strata, we specify

the prior distribution of the parameters α(k) in the semiparametric time varying coefficient

function for each stratum as Dirichlet Process (DP) priors (Ferguson, 1973; Ray and Mallick,

2006), which leads to mixtures of Dirichlet processes.

That is, the prior distribution of α(k) is following an unknown distribution, denoted by F .

The DP provides a nonparametric prior specification over the class of possible distribution

functions. The DP has two parameters F0 and γ, where γ is known as the concentration

parameter and F0 is the base measure.

The base measure, F0, is a distribution used to approximate the true nonparametric shape of

F . This means that F0 is a parametric function, that depends on its own known parameters.

The concentration parameter (γ), a scalar, reflects our prior belief about the similarity

between the nonparametric distribution F and the base function F0.

We can express the prior distribution of α(k) as follows:

α(k) ∼ F,

F ∼ DP
(
γ, F0

)
,

where γ > 0 is concentration parameter and F0 is the base measure.

As γ →∞, F → F0, so that the base measure is the parametric prior distribution for α(k).

Also if α(k) ≡ α, the same is also true, i.e., F = F0. Where α is a common set of coefficients

for the semiparametric spline function.
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We set the prior distribution of γ as a discrete uniform distribution γ ∼ Unif [0.01, 0.1, 1, 10, 100].

The base measure F0 is specified as F0 = N(0, φ−1
k I), where the φks play a role as smoothing

parameters. We set φk = φ1, for α1
(k) and φk = φk,α for α2

(k). Here φ1 is a fixed small

number, for global pattern estimation but set φk,α ∼ Gamma(u, v) for local pattern esti-

mation. Here, u and v are the hyperparameters of the Gamma distribution chosen to be

uninformative.

Our prior specifications are summarized as follows:

α(k) ∼ F,

F ∼ DP
(
γ, F0

)
,

γ ∼ Unif[0.01, 0.1, 1, 10, 100],

F0 = N(0, φ−1
k I),

φk,α ∼ Gamma(u, v).

4.2.2 Posterior Distribution of the α Coefficients under unknown

F

We subsequently use the Pölya urn representation (Blackwell and MacQueen (1973)) to

obtain the clustered sample points. The conditional posterior distributions of α(k) is derived

as the following mixture distribution:

p(α(k)|, k 6= l) ∝

{∑
l 6=k

1∏T
t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)βl(t)

]}
}
δα(l)

+

{
γ

∫ ∫
. . .

∫
N(α0; 0, φ−1

1 )
∏M+1

j=1 N(αj|0, φ−1
k )∏T

t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)βk(t)

]}dα0dα1 . . . dαM+1

}
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× N(α0; 0, φ−1
1 )

M+1∏
j=1

N(αj|0, φ−1
k )

1∏T
t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)βk(t)

]} .

Let q0 and qz be denoted as follows:

q0 =

∫ ∫
. . .

∫
N(α0; 0, φ−1

1 )
∏M+1

j=1 N(αj|0, φ−1
k )∏T

t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)βk(t)

]}dα0dα1 . . . dαM+1

qz =
1∏T

t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)βk(t)

]}
where z = 1, . . . , k − 1.

With the previous notation, the Pölya urn is then constructed as follows:

α(k) =



α̃ with probability γq0
γq0+q1+···+qk−1

α(1) q1
γq0+q1+···+qk−1

...

α(k−1) qk−1

γq0+q1+···+qk−1

(4.1)

where α̃ are sampled from the full conditional distributions described in next section. In

this way, groups of clusters are obtained from the sampling of identical coefficients.

4.2.3 Posterior Distribution of the α Coefficients under F = F0

Here α̃ are sampled from the full conditional distributions of α under F = F0. The full

conditional distributions are summarized as follows:
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• Full conditional distribution of αi, i = 0, 1, . . . , p of α̃1:

p(αi|−) ∝
exp
(−φ1α2

i

2

)∏N
k=1

∏T
t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)β(t)

]} ;

• Full conditional distribution αp+i, i = 1, . . . , L of α̃2:

p(αp+i|−) ∝
exp
(−φk,αα2

p+i

2

)∏N
k=1

∏T
t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)β(t)

]} ;

• Full conditional distribution of φk,α:

φk,α ∝ Gamma

[
L + u,

( L∑
l=1

α2
p+l/2 + 1/v

)−1
]
.

Since the full conditional distributions of parameters except for the precision parameters

(φk,α) do not have closed form, we use Adaptive Rejection Metropolis Sampling (ARMS)

(Gilks et al., 1995) within Gibbs Sampling. The detailed procedures of our ARMS algorithm

are provided in the Appendix B.1. The ARMS algorithm for Matched Case Crossover studies

is summarized in Algorithm 1.

4.3 MCMC Sampling Scheme

In this section, we describe how to sample {α̃, α(1), . . . ,α(k−1)}, q0, and qz in order to

sample the coefficients associated with stratum k, α(k), using the frame of Pölya urn (4.1).

The MCMC sampling scheme is summarized in the following steps:

Step 1: Initiate α(1) as α̃ obtained from the full conditional distributions described in

section 4.2.3.

74



Chapter 4. Functional Nonparametric Bayesian Time Varying Coefficient Model for
Matched Case-Crossover Studies

Step 2: Sample γ from a prior distribution Unif[0.01, 0.1, 1, 10, 100];

Step 3: Approximately calculate q0 using ARMS samples by following procedures:

Step 3.1: Sample the coefficients αi,k,s which is the sth ARMS for the parametric

coefficients at a given stratum k, i = 0, 1, . . . , p,

p(αi,k,s|−) ∝
exp
(−φ1α2

i,k

2

)∏T
t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)β(t)

]} ;

Step 3.2: Sample the coefficients αp+i,k,s, i = 1, . . . , L from ARMS,

p(αp+i,k,s|−) ∝
exp
(−φk,αα2

p+i,k

2

)∏T
t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)β(t)

]} ;

Step 3.3: Construct βk,s(t), which is semiparametric time varying coefficient function

at iteration s of the MCMC scheme and stratum k,

βk,s(t) = α0,k,s + α1,k,st+ . . .+ αp,k,st
p +

L∑
l=1

αp+l,k,s(t− ξl)p+;

Step 3.4: Calculate f(Y |α)
(k)
s approximately using ARMS sampling

f(Y |α)(k)
s ≈

N(α0,k,s; 0, φ−1
1 )
∏M+1

j=1 N(αj,k,s|0, φ−1
k )∏T

t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)βk,s(t)

]} ;

Step 3.5: Repeat Step 3.1-Step 3.5, for s = 1, . . . , S;
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Step 3.6: Calculate q0 approximately using MC;

q0 ≈
1

S

S∑
s=1

f(Y |α)(k)
s

Step 4: Obtain qz, z = 1, . . . , k − 1;

qz =
1∏T

t=1

{
1 +

∑M
j=2 exp

[
(xjkt − x1kt)βz(t)

]} ,

where βz(t) = α
(z)
0 +α

(z)
1 t+ . . .+α

(z)
p tp+

∑L
l=1 α

(z)
p+l(t− ξl)

p
+, α

(z)
1 = (α

(z)
0 , α

(z)
1 , . . . , α

(z)
p )

and α
(z)
2 = (α

(z)
p+1, . . . , α

(z)
p+L), as defined in section 4.2.1;

Step 5: Calculate probabilities for Pölya urn (4.1);

Step 6: With probability of γq0/(γq0 + q1 + · · ·+ qk−1), α(k) is α̃; with probability of qk−1/(γq0 + q1 + · · ·+ qk−1),

α(k) is α̃(k−1);

Step 7: Sample φk,α from the following Gamma distribution

φk,α ∝ Gamma

[
L + u,

( L∑
l=1

(
α

(k)
p+l

)2
/2 + 1/v

)−1
]
.

Step 8: Repeat Step 2 - Step 7 until the MCMC chain converges.

4.4 Cluster Determination

The obtained functional clustering estimated from the Pölya urn often yields a large number

of clusters which may not be informative. Hence in this section, we provide a procedure to

determine an informative clustering scheme.
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Let αi,k = {αi,k,1, . . . , αi,k,S} represent the set of all sampled values for coefficient α
(k)
i where

i = 1, . . . , p of stratum and k = 1, . . . , N . Let αp+l,k = {αp+l,k,1, . . . , αp+l,k,S} represent the

set of all sampled values for coefficient α
(k)
p+l where l = 1, . . . , L of stratum and k = 1, . . . , N .

All these values are sampled based on the Pölya urn from section 4.3. We further define α̂
(k)
i

and α̂
(k)
p+l be the estimates of α

(k)
i and α

(k)
p+l. Then their estimates are calculated by taking

the sample means, that is,

α̂
(k)
i =

1

S

S∑
s=1

αi,k,s

α̂
(k)
p+l =

1

S

S∑
s=1

αp+l,k,s

where i = 1, . . . , p and l = 1, . . . , L.

Let α̂(k) be the row vector containing all coefficient estimates for stratum k, that is, α̂(k) =(
α̂

(k)
0 , α̂

(k)
1 , . . . , α̂

(k)
p , α̂

(k)
p+1, α̂

(k)
p+L

)
. By collectin all the estimated stratum coefficients α̂(k), k =

1, . . . , N , we then obtain matrix A =
(
α̂(1), α̂(2), . . . , α̂(N)

)T
, where A is N × (1 + p + L)

matrix.

We then obtain the number of cluster by the following the procedure:

Step 1: Apply the k-means clustering algorithm (Hartigan, 1975) to matrix Ausing the

following the k means algorithm:

Step 1.1 Consider a set number of clusters, k∗, where k∗ = 1, 2, . . . ,
√
N/2 and ini-

tialize k∗ means, denoted bym1, m2, . . . ,mk∗ , which are initialized by randomly

choosing k∗ random centers;

Step 1.2 Assign each stratum to the cluster that has the smallest within-cluster sum

of squares (WCSS), which is defined as the squared value of the euclidean distance
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of the observation and the mean of the assigned cluster. That is, calculate

WCSSr = ||α(k) −mr||2

for r = 1, . . . , k∗, and assign the stratum to the cluster with minimum WCCSSr.

Step 1.3 One the stratum is assigned to a particular cluster, say cluster r∗, calculate

the new mean of the cluster, mr∗ ;

Step 1.4 Repeat Steps 1.2 and 1.3 until all points have been assigned;

Step 1.5 Repeat steps 1.1-1.4 until convergence which is reached with the assignments

to clusters no longer change;

Step 2: Create a plot of the total within groups sum of squares in the y-axis and number

of clusters extracted in the x-axis; once the clustering assignment is done for each of

the k∗ clusters, proceed the following steps:

Step 2.1 For each k∗ clustering assignment, with k∗ = 1, 2, . . . ,
√
N/2, calculate the

total within cluster sum of squares (TWCSS).

TWCSS =
k∗∑
r=1

WCSSr

Step 2.2 Plot the number of clusters extracted, (i.e., k∗), in the x-axis and the total

within groups sum of squares in the y-axis;

Step 3: The final number of clusters is determined by examining the plot and choosing the

number of clusters at which the plot presents a bend, followed by a flat trend.
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4.5 Simulation Study

We conducted simulations to understand the performance of our functional semiparametric

Bayesian approach. Two simulation cases are considered in terms of the number of clus-

ters. We consider a 1-4 matched case-crossover study motivated by our childhood aseptic

meningitis example. We set the number of stratum to 100 (K = 100) and the number of

time periods to 100 (T = 100). The covariates X, were generated from a standard normal

distribution N(0,1).

The 1- 4 matched case-controls are generated from the prospective model

Pr(Yk = 1|Xk, t, q) =
exp{Xkβ(t) + q(•)}

1 + exp{Xkβ(t) + q(•)}
,

where q(•) is an unknown effect which disappears under the condition
∑5

j=1 Yj = 1 for each

stratum k, k = 1, . . . , N regardless of the distribution of q(•).

The following two cases were simulated:

Case 1: K=100, T=100, the number of cluster = 2, where 50% of the strata are in cluster

1 and 50% in cluster 2.

β(t) =


cos(πt) if cluster 1

t2 if cluster 2

Case 2: K=100, T=100, the number of cluster = 3, where 33% of the strata are in cluster
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1, 33% in cluster 2 and 34% are in cluster 3.

β(t) =


cos(πt) if cluster 1

t2 if cluster 2

0.25t if cluster 3

We consider these two cases because one cluster has the nonparametric curve but the other(s)

has(have) the parametric curve. We randomly assign the cluster label into strata. For the

estimation and method evaluation, we simulated 50 datasets of 1-4 matched case-crossover

studies.

4.5.1 Case 1: two clusters

For each stratum, we first apply the semiparametric time varying coefficient model from

Chapter 2 which is a parametric Bayesian approach under F = F0. Figure 4.1 presents an

example of the estimated time varying coefficients using a parametric Bayesian approach.

By examining the individual estimations, it is evident that there are two underlying cluster

structures, one group of functions increasing, and the other group of functions decreasing,

which is expected given the data generating structures β(t) = cos(πt) and β(t) = t2.

We then applied our functional semiparametric Bayesian approach. Figure 4.2 displays the

plot used to determine the number of clusters. This plot presents the graphical representation

of the total within sum of squares against the number of extracted clusters. Two clusters

are selected because it is the location at which the plot presents a bend, followed by a flat

trend.

In table 4.1, we can see that at least in 90% of the generated datasets the correct number of
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Figure 4.1: Simultaneous representation of β(t) for an example dataset from Case 1 simulations.
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Figure 4.2: Graphical representation of the total within sum of squares vs. the number of extracted
clusters for an example dataset from Case 1 simulations.

clusters were selected. For those datasets the minimum success cluster probability allocation

is 0.92 for γ = 0.01, and increases as the value of γ increases because the true number of
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cluster is small. When γ is small, a large number of automatically selected clusters is often

created. These simulation results suggest that our functional semiparametric Bayesian time

varying coefficient model is pretty accurate at capturing the underlying cluster structure.

γ The proportion of case where The proportion of strata that

correct number of cluster was estimated were correctly assigned

0.01 0.90 0.9211

0.1 0.94 0.9554

1 0.94 0.9375

10 0.98 0.9682

100 0.98 0.9850

Table 4.1: Proportions of cases where the correct number of clusters was estimated and of strata
that were correctly assigned using our functional semiparametric Bayesian approach when the true
number of cluster is three and the true strata is assigned under simulation Case 1.

The estimated the time varying coefficient function obtained from using our functional semi-

parametric approach is displayed in Figure 4.3. In part (a) and (c), the gray lines represent

the parametric estimations for the strata in the cluster, and the dashed black line represents

the nonparametric estimation of the time varying function in the cluster. In part (b) and

(d) the gray lines represent the nonparametric estimations for the strata in the cluster, and

the black line represents the nonparametric estimation of the time varying function in the

cluster. Parts (a) and (b) present the estimated functions for cluster 1 and parts (b) and (d)

present the estimated functions for cluster 2. It is clear that the underlying structure of the

simulated data was successfully captured for this dataset.

4.5.2 Simulation Case 2: Three Clusters

We randomly selected a dataset from this simulation set up to present as an example. Figures

4.4-4.6 present an example estimation for this selected dataset. Figure 4.4 presents the
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Figure 4.3: Estimation of the time varying coefficient function for each of the two extracted clusters
using parametric and nonparametric Bayesian approaches: In part (a) and (c), the gray lines rep-
resent the parametric estimations for the strata in the cluster, and the dashed black line represents
the nonparametric final estimation of the time varying function in the cluster. In part (b) and
(d) the gray lines represent the nonparametric estimations for the strata in the cluster, and the
black line represents the nonparametric final estimation of the time varying function in the cluster.
Parts (a) and (b) present the estimated functions for cluster 1 and parts (b) and (d) present the
estimated functions for cluster 2.

simultaneous representation of the parametric estimation of the dataset. In this figure, we

can see that there are three underlying cluster structures in the data.
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Figure 4.4: An example of varying coefficient β(t) generated from simulation case 2.

We then applied our functional semiparametric Bayesian approach. Figure 4.5 presents the

plot used to determine the number of clusters for this example dataset. Based on this figure,

we should extract three clusters, since at this location the plot presents a bend, followed by

a flat trend.

Accuracy of the estimation was also evaluated using the proportion of correct cluster allo-

cation. Table 4.2 provides the proportion of number of cases in which the correct number of

clusters (3) was selected. Table 4.2 also presents the proportions of strata that were correctly

assigned to the clusters, for the datasets in which the correct number of clusters was selected.

From Table 4.2, we can notice that at least in 80% of the generated datasets the correct

number of clusters was selected. For those datasets the minimum success cluster probability

allocation is 0.76 for γ = 0.01 because small values of γ create the larger number of auto-

matically selected clusters because the true number of cluster is small. The success cluster

probability is 0.92 when γ = 100 because the true number of cluster is small. Therefore
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Figure 4.5: Plot of the total within sum of squares vs. the number of extracted clusters obtained
from our functional Bayesian approach using a simulated dataset under simulation Case 2.

γ The proportion of cases where The proportion of strata that

correct number of cluster was estimated were correctly assigned

0.01 0.80 0.7628

0.1 0.82 0.8065

1 0.86 0.8186

10 0.90 0.8645

100 0.92 0.9203

Table 4.2: Proportions of cases where the correct number of clusters was estimated and of strata
that were correctly assigned using our functional semiparametric Bayesian approach when the true
number of cluster is three and the true strata is assigned under simulation Case 2

the accuracy increases as the value of γ increases. These results show that our functional

semiparametric Bayesian approach accurately captures the underlying cluster structure of

the data.

Figure 4.6 presents the estimated time varying coefficient function obtained from our func-
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tional semiparametric Bayesian approach for each of the three extracted clusters. In parts (a),

(c) and (e), the gray lines represent the parametric estimations for the strata in the cluster,

and the dashed black line represents the nonparametric final estimation of the time varying

function in the cluster. In parts (b), (d) and (f) the gray lines represent the nonparametric

estimations for the strata in the cluster, and the black line represents the nonparametric

final estimation of the time varying function in the cluster. Part (a) and (b) present the

estimated functions for cluster 1, part (c) and (d) present the estimated functions for cluster

2 and parts (e) and (f) present the estimated functions for cluster 3. Based on this figure,

we conclude that the underlying structure of the simulated dataset was captured using our

approach.

Therefore our simulation results support that our functional semiparametric approach can

determine the functional clusters among time varying coefficients, understand the functional

relationship between predictors and clustered binary outcomes, and assess heterogeneity.

4.6 Example: 1-4 Bi-directional Matched Case-Crossover

Study Estimation

Our main goals of interest in this matched case-crossover study are (1) to understand the

functional relationship between drinking water turbidity and the relative risk of of aseptic

meningitis in children, (2) to explore the modification in these effects by association with the

potential latent period and (3) to determine functional clusters of time varying coefficients

among strata. We are also interested in assessing in which way the time varying coefficient

function changes between clusters. In this study, the stratifying variable is the individual

child who is less than 15 years old, diagnosed in one of two years and lives on one of two
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urban communities in South Korea. There are 92 children. Our potential effect modification

includes a time effect and a potential underlying clustered structure which may be due to

two urban communities.

The motivation behind the development of our functional semiparametric Bayesian approach

in this example dataset comes from the application of the parametric Bayesian approach. The

total number of strata is 92. For each stratum, we apply the parametric Bayesian approach

and estimate a semiparametric time varying coefficient model presented in Chapter 2 is

estimated for each stratum. Figure 4.7 presents an example of the estimated time varying

coefficient for nine randomly selected strata out of 92. This figure 4.7 shows that there

are several curve patterns present in the time varying coefficient functions. Figure 4.7 (a),

(e), (g) and (h) seem to have an increasing time varying function, while Figure 4.7 (b) and

(c) seem to have a curved pattern that increases and later decreases. Since the parametric

Bayesian approach requires to estimate time varying coefficient for each strata and provides

large number functions, it is difficult to summarize a potential underlying clustered structure.
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Figure 4.7: Parametric estimation of β(t) for nine randomly chosen strata for the example data of
1-4 bi-directional matched case-crossover design.

Figure 4.8 presents the estimation of the parametric approach for ninety two strata simulta-

neously. Upon examination of this figure, we can observe that there are several underlying

cluster structures in the data. Based on this examination we applied our functional semi-

parametric Bayesian approach which consists of first using the Pölya urn sampling scheme
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and then calculating the k-means clustering approach.

Figure 4.9 displays the plot used to determine the number of clusters for the ninety two

selected strata. This plot is a graphical representation of the total within sum of squares

against the number of extracted clusters. The final number of clusters is selected, by ex-

amining the plot and choosing the number of clusters at which the plot presents a bend,

followed by a flat trend. According to this criteria, we select three time varying coefficient

clusters for these selected strata. The proportions of three clusters are 31.5%, 54.35%, and

14.15%. Cluster 1 consists of 29 strata from different regions and years. Cluster 2 contains

50 strata, all the region 1 collected in year 2002 and most of region one collected in year

2001. Cluster 3 consists of 13 strata, from different regions but all from year 2002.

Figure 4.10 exhibits the estimated time varying coefficient function for each of the extracted

clusters. In parts (a), (c) and (e), the gray lines represent the parametric estimations for the

strata in the cluster, and the dashed black line represents the nonparametric final estimation

of the time varying function in the cluster. In parts (b), (d) and (f) the gray lines represent

the nonparametric estimations for the strata in the cluster, and the black line represents the

nonparametric final estimation of the time varying function in the cluster. Part (a) and (b)

present the estimated functions for cluster 1, part (c) and (d) display the estimated functions

for cluster 2 and parts (e) and (f) present the estimated functions for cluster 3.

Figure 4.10 provides three distinct trends among the estimated time varying coefficient func-

tions, each one captured by its respective final estimated function. In cluster 1, β̂(t) is

increasing until 15th days and then decreasing. This means that the risk of aseptic menin-

gitis is increasing until 15th days but afterwards it decreases. In cluster 2, β̂(t) is overall

rapidly decreasing which means that the risk of aseptic meningitis is decreasing a time passes.

However, in cluster 3, β̂(t) is increasing which means that the risk of aseptic meningitis is

increasing as days go by.
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Hence, these three clusters are considered as the effect modification. Without using our func-

tional semiparametric Bayesian approach, we can not detect these modifications. Therefore,

our functional semiparametric Bayesian approach allows us to achieve our three goals and

provide the following three results. First we found the functional relationship between drink-

ing water turbidity and the relative risk of of aseptic meningitis in children using the time

varying coefficient function as time passes. Second, since the estimated time varying coeffi-

cients among three clusters are different, these three clusters can represent the modification

in these effects by association with the potential latent period. Third, cluster one contains

individuals for which the effect of water turbidity over the presence of aseptic meningitis

in children seems to remain constant over time, cluster two contains individuals for which

the effect of water turbidity over the presence of aseptic meningitis seems to decrease over

time, and cluster three contains individuals for which the effect of water turbidity over the

presence of aseptic meningitis seems to increase over time.

4.7 Discussion

In this chapter, we have proposed a functional semiparametric Bayesian time varying coeffi-

cient model for matched case-crossover studies. This method allows us to detect parametric

relationships between a covariate of interest and the binary outcome of presence or absence

of disease, semiparametric relationships between the covariate and time, as well as obtain

functional clusters of time varying coefficients among strata. Our model was developed

under a nonparametric Bayesian approach constructed with Dirichlet process priors, which

automatically cluster subpopulations among strata and assess heterogeneity.

The results of the presented simulation studies show that the method performs well in

estimating the unknown time varying functions, by capturing the underlying structure of the
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data. Simulation results also show, that the proposed method performs well at identifying

underlying clustering structures by determining the correct number of clusters and assigning

the correct strata to the extracted clusters.

We present an application for a 1-4 bi-directional matched case-crossover study in which the

condition of interest is aseptic meningitis in children under fifteen years of age, collected in

South Korea, in which the covariate of interest is water turbidity. The estimation of a reduced

subset of ninety two patients yielded the construction of three clusters. Cluster one contains

individual for which the effect of water turbidity over the presence of aseptic meningitis in

children seems to remain constant over time , cluster two contains individuals for which

the effect of water turbidity over the presence of aseptic meningitis seems to decrease over

time, and cluster three contains individuals for which the effect of water turbidity over the

presence of aseptic meningitis seems to increase over time.

We note that although our approach is developed under the nonparametric Bayesian ap-

proach and has allowed us to automatically estimate the cluster, it often provides a large

number of clusters which may not be informative. Hence we use the k-means clustering

approach to determine an informative clustering scheme. This may be influenced by the

estimation of γ, which is based on the prior distribution, and not the posterior distribution.

We may further use a Gamma prior for γ to further study the determination of the number

of clusters for this approach.

This problem may be solved by using weighted Dirichlet process (WDP). We will conduct

further research, to develop our approach using weighted Dirichlet process (WDP), without

using k-means clustering. However, the extension of our approach to WDP will require heavy

computational burden and derivation of marginal likelihood. We consider further research

on WDP to be worthwhile.
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Figure 4.6: Estimation of the time varying coefficient function for each of the three extracted cluster
using parametric and nonparametric Bayesian approaches for simulations in Case 2: In parts (a),
(c) and (e), the gray lines represent the parametric estimations for the strata in the cluster, and
the dashed black line represents the nonparametric final estimation of the time varying function
in the cluster. In parts (b), (d) and (f) the gray lines represent the nonparametric estimations for
the strata in the cluster, and the black line represents the nonparametric final estimation of the
time varying function in the cluster. Part (a) and (b) present the estimated functions for cluster
1, part (c) and (d) present the estimated functions for cluster 2 and parts (e) and (f) present the
estimated functions for cluster 3. 92
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Figure 4.8: Simultaneous representation of β(t) for ninety two strata from the example data of 1-4
bi-directional matched case-crossover design.
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Figure 4.9: Plot of the total within sum of squares vs. the number of extracted clusters for ninety
two strata in the example data of 1-4 bi-directional matched case-crossover design.
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Figure 4.10: Estimation of the time varying coefficient function for each of the three extracted
clusters for the example data of 1-4 bi-directional matched case-crossover design. In parts (a), (c)
and (e), the gray lines represent the parametric estimations for the strata in the cluster, and the
dashed black line represents the nonparametric final estimation of the time varying function in the
cluster. In parts (b), (d) and (f) the gray lines represent the nonparametric estimations for the
strata in the cluster, and the black line represents the nonparametric final estimation of the time
varying function in the cluster. Part (a) and (b) present the estimated functions for cluster 1, part
(c) and (d) present the estimated functions for cluster 2 and parts (e) and (f) present the estimated
functions for cluster 3.
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Chapter 5

General Conclusions and Further

Research

Major conclusions and contributions of this dissertation are summarized in this chapter and

possible future research areas are introduced.

5.1 General Conclusions and Contributions

In Chapter 2, we proposed three different methodologies to detect relationships between a

predictor and the relative risk of disease or binary outcome, as well as detect effect modifi-

cations by time. We presented model comparison in terms of estimation accuracy as well as

prediction accuracy.

The first method is a parametric two-stage approach. The first stage consists on fitting

a conditional logistic regression at each time period. The end result of this stage is an

effect coefficient for each time. The second stage, consists on fitting a p-th polynomial
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regression regression of the coefficients (response) on time (predictor). Parametric tests can

be performed to determine whether an effect modification from time exists.

This two-stage approach can detect parametric relationships between the predictor and bi-

nary outcomes and parametric relationships between the predictor an time. An advantage

of this method is that it is simple and easy to use. However, a disadvantage of this method

is that it only detects parametric relationships between the predictor and time.

The second method, is a semiparametric one-stage penalized approach. The effect of a covari-

ate over the binary outcome is evaluated via p-th order regression splines with a truncated

power series basis. All unknown parameters are estimated using a penalized log-likelihood

approach. The smoothing parameter associated with the penalty is obtained by using a grid

search within a preselected rang, minimizing the AIC and AICc criteria.

This one-stage penalized approach allows us to detect parametric relationships between the

predictor and binary outcomes and simultaneously evaluate the semiparametric relationship

between the predictor and time. The advantage of this method is that is more flexible

than the parametric two-stage approach. However, the disadvantage is that its performance

affected by the choice of smoothing parameter. In order to overcome this disadvantage, we

further develop the semiparametric one-stage Bayesian approach.

The third method, is a semiparametric one-stage approach developed under the Bayesian

hierarchical model framework. We also evaluate the effect of a covariate over the binary

outcome is evaluated via p-th order regression splines with a truncated power series basis.

However, the choice of smoothing parameter is selected in the entire domain of the prior

distribution, allowing the estimation of parameters to be more accurate and efficient than

the one-stage penalized approach.

In addition to the effect estimation, we also provided hypothesis testing for the time varying
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coefficient, via Bayes Factors. This hypothesis test allows us to determine whether an effect

modification arising from time exists. The advantages of this method include the more

accurate and flexible estimation of the parameters as well as the ability to conduct hypothesis

tests via Bayes Factors.

Simulation results showed that the semiparametric time varying coefficient model under the

Bayesian framework performs best in terms of estimation and prediction accuracy. Addi-

tionally the Bayesian alternative automatically estimates the smoothing parameter value in

the domain of the prior distribution providing this approach with more flexibility than its

penalized counterpart.

Additionally we provided estimations of a 1-4 bi-directional matched case-crossover study

in which the covariate of interest is water turbidity and the condition of interest aseptic

meningitis in children under 15 years of age. The results of the Bayesian approach showed

that there is a modification in the effect of water turbidity over the presence or absence of

aseptic meningitis in children. Additionally, we concluded that the peak risk of disease was

the fourth day of hospital admission.

In Chapter 3, we proposed two different methodologies to detect relationships between a

predictor and the relative risk of disease or binary outcome, as well as detect effect modi-

fications by time and spatial location. The choice between these methods depends on the

number of locations from which the data was collected.

When the number of locations among the subjects is small, we propose a semiparametric

spatial-temporal model for a small number of locations in which the effect modification due

to time is explored by using the semiparametric time varying coefficient model under the

Bayesian framework presented in Chapter 2. The effect modification due to spatial location

among the subjects is explored by examining the relationship between the estimated function
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and its first derivative with respect to time, within and between the different locations.

We provided the details of testing procedures to determine whether an effect modification

due to time exists. The time effect test is conducted by examining the first derivative of

the semiparametric time varying coefficient function with respect to time and its credible

bounds. We also provided details for testing procedures to determine whether an effect

modification due to spatial location exists. This spatial effect test is conducted by exam-

ining credible bounds of the pairwise differences between the semiparametric time varying

coefficient functions at the different locations.

Simulation results showed that the proposed method performed well in estimating the un-

known time varying coefficient functions, determining whether this functions vary through

time significantly, as well as detecting differences in effected modification for subjects lo-

cated in different regions. We also considered the example data of 1-4 bi-directional matched

case-crossover study in which the covariate of interest is water turbidity and the condition

of interest is aseptic meningitis in children under 15 years of age located in two different

provinces in South Korea. We applied our approach and concluded that there is an effect

modification arising from the spatial location among the subjects. For region 1, there is no

effect modification due to time, however, for region 2, an effect modification due to time

exists.

When the number of locations among the subjects is medium to large, we propose a semipara-

metric spatial-temporal model in which the effect modification due to time is also explored

using the semiparametric time varying coefficient model from Chapter 2, but the effect of

spatial location among the subjects is examined by using a random effect and the estimation

of an empirical semivariogram.

This spatial-temporal semiparametric varying coefficient model was developed under the
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Bayesian hierarchical model framework. Due to identifiability issues, the precision parameter

associated with the Gaussian covariance structure of the random effect is estimated using

the empirical semivariogram using the residuals of either a conditional logistic regression or

a logistic regression.

This method allows the detection of the parametric relationship between the predictor and

binary outcomes, the semiparametric relationship between the predictor and time and po-

tential effect modifications due to spatial location among the subjects.

Simulation results show that the spatial-temporal semiparametric varying coefficient model

performs well in estimating the unknown time varying function, spatial parameters and find-

ing a suitable smoothing parameter for the semiparametric estimation. Additionally, simu-

lation results show that empirical semivariogram estimations using conditional logistic and

logistic regression present similar results. However, the logistic regression estimation method

is faster and easier to implement than the conditional logistic, for empirical semivariogram

estimation.

In chapter 4, we proposed a functional semiparametric Bayesian time varying coefficient

model for matched case crossover studies. The main goals of this method are to understand

the functional relationship between a covariate of interest and the binary outcome that

represents the presence or absence of disease, to explore effect modification due to time as

well as to determine functional clusters if time varying coefficients among strata.

The proposed method is a nonparametric Bayesian approach constructed with Dirichlet

process priors with a Pölya Urn sampling scheme, in combination with a k-means clustering

procedure for the semiparametric time varying coefficient model which is developed using

p-th order regression splines.

Simulation results showed that the proposed model performs well at estimating the unknown
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time varying functions by capturing the underlying structure of the data and at identifying

the correct number of clusters and assigning the correct strata to the extracted clusters. In

addition, we applied the proposed method to the example data of1-4 bi-directional matched

case crossover study, in which the condition of interest is aseptic meningitis and the covariate

of interest is drinking water turbidity. The application of this approach yielded the identi-

fication and assignment of the data to three clusters, each one with a specific structure of

time varying coefficient function.

Section 5.2 presents different ways in which the research presented in this dissertation can

be extended.

5.2 Further Research

The work in this dissertation can be extended in several ways:

1. Extension of the semiparametric spatial-temporal model to be more flexible:

This flexible model can be developed to detect nonparametric relationships between the

predictor and binary outcomes and between the predictor and time. The nonparametric

spatial-temporal model provides the ability to detect only parametric relationships

between our predictor and binary outcome as well as parametric and nonparametric

relationships between our predictor and time through β(t)xjk, j = 1, . . . ,M + 1, t =

1, . . . T . Hence this extension will allow us to also detect nonparametric relationships

between our predictor and binary outcome as well as between our predictor and time.

By replacing β(t)xjk by the following nonparametric function m(·, ·),

m(xjk, tk) = β1(t)xjk + · · ·+ βpx(t)x
px
jk +

Lx∑
lx=1

βp+lx(t)(xjk − ξxlx)
px
+
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where

βi(tk) = α
(i)
0 + α

(i)
1 tk + · · ·+ α(i)

pi
tpi +

Ri∑
r=1

α
(i)
pi+1(tk − ξ(i)

r )+.

Here px denotes the order of the polynomial regression forX, i = 1, . . . , px, pi represents

the order of the polynomial regression for each βi(tk), ξ
x
lx

are the corresponding knots for

X. βi(tk) represents the semiparametric time varying coefficient function as defined in 2

with knots ξ
(i)
r , parametric coefficients α

(i)
0 , α

(i)
1 , . . . , α

(i)
pi and nonparametric coefficients

α
(i)
pi+1, α

(i)
pi+2 . . . , α

(i)
pi+Ri

.

We have developed this method under Bayesian hierarchical model framework and have

studied this model via a small simulation which is not included in this dissertation.

Further intensive simulation works need to be done to understand the performance of

this model in different situations before applying this model to an example dataset.

2. Derivation of the relationship between prospective and retrospective models for matched

case-crossover data:

We have developed our semiparametric time varying coefficient model under the ret-

rospective model. However, this model can be developed under the prospective model

too. We have not yet studied whether they are equivalent and under which conditions

this equivalency holds. Theoretical derivation is required to provide this relationship

and is further validated using simulation studies.

3. Sensitivity analysis of prior distributions on γ in the nonparametric Bayesian approach:

We note that although our approach is developed under the nonparametric Bayesian

approach and is allowed us to automatically estimate the cluster, it often provide the

large number of clusters which may not be informative. Hence we use the k means

clustering to determine an informative cluster. This may be, because the estimation of
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γ is based on a prior distribution, not the posterior distribution. We may further use

the Gamma prior of γ to further study the determination of the number of clusters.

4. Extension of our functional semiparametric Bayesian approach to be more flexible:

We need to refine the clustering scheme presented in the functional semiparametric

Bayesian time varying coefficient model for matched case-crossover studies. We used

the k-means clustering procedure to estimate the informative number of cluster. Our

further research is to develop our approach using weighted Dirichlet process (WDP)

without using k mean clustering. However, the extension of our approach to WDP will

require a heavy computational burden and derivation of marginal likelihood. Further

research will using WDP will be worthwile.

5. Extension of our functional semiparametric Bayesian approach to the functional spatial-

temporal semiparametric Bayesian approach: We have developed the functional semi-

parametric Bayesian approach under semiparametric time varying coefficient model.

However it will be very useful if we further develop it under spatial-temporal model.

The spatially and temporally correlated data is very popular. As a result, the research

is rapidly growing. Hence the development of our approach to be used in spatial-

temporal data is worthwhile future research.
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Appendix A

Gradient, Hessian and ARMS for

Time Varying Coefficient Model

In Section A.1-A.2, we summarize the Gradient and Hessian matrix for parametric two stages

and semiparametric one stage approach, respectively. In Section A.3, we provide the arms

procedure for semiparametric one stage Bayesian approach.

A.1 Gradient and Hessian for two stage approach

Gradient l′(β) and Hessian value l′′(β) with respect to β for the parametric two-stage ap-

proach are calculated as follows;

l′(β) =
∑
k

x1k −
∑
k

{∑M
j=1 xjkexp(xjkβ)∑M
j=1 exp(xjkβ)

}
;

l′′(β) = −
∑
k

[∑M−1
l=1

{∑M
j=l+1 exp(xjkβ)

(
x2
lk − 2xlkxjk + x2

jk

)}
exp(xlkβ){∑M

j=1 exp(xjkβ)
}2

]
.
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We estimate parameters via Newton Raphson method with these gradient and Hessian value.

A.2 Gradient and Hessian for one stage approach

On the other hand, Gradient and Hessian with respect to the parameters for the one-stage

semiparametric approach are the following. Gradient and Hessian with respect to α0 are the

following

l′(α0) =
N∑
k=1

∑M
l=2 exp[{α0 + α1t+ . . .+ αpt

p +
∑L

l=1 α1+l(t− ξl)p+}x∗lk]x∗lk
1 +

∑M
l=2 exp[{α0 + α1t+ . . .+ αptp +

∑L
l=1 α1+l(t− ξl)p+}x∗lk]

l′′(α0) =
N∑
k=1

{∑M−1
l=2

(∑M
z=l+1 exp{[α0 + α1t+ . . .+ αpt

p +
∑L

l=1 α1+l(t− ξl)p+]x∗zk}(x2
lk(

1 +
∑M

l=2 exp{[α0 + α1t+ . . .+ αptp +
∑L

l=1 α1+l(t− ξl)p+]x∗lk}
)2

−2xlkxzk + x2
zk) + x2

lk

)
exp{[α0 + α1t+ . . .+ αpt

p +
∑L

l=1 α1+l(t− ξl)p+]x∗lk}(
1 +

∑M
l=2 exp{[α0 + α1t+ . . .+ αptp +

∑L
l=1 α1+l(t− ξl)p+]x∗lk}

)2

}

Gradient and Hessian with respect to α1 are the following

l′(α1) =
N∑
k=1

[∑M
l=2

{
exp{[α0 + α1t+ . . .+ αpt

p +
∑L

j=1 α1+j(t− ξj)p+]x∗lk}
}
x∗lk
]
tk

1 +
∑M

l=2 exp{[α0 + α1t+ . . .+ αptp +
∑L

j=1 α1+j(t− ξj)p+]x∗lk}

l′′(α1) =
N∑
k=1

{[∑M−1
l=2

(∑M
z=l+1 exp{[α0 + α1t+ . . .+ αpt

p +
∑L

j=1 α1+j(t− ξj)p+]x∗zk}(x2
lk(

1 +
∑M

l=2 exp{[α0 + α1t+ . . .+ αptp +
∑L

j=1 α1+j(t− ξj)p++]x∗lk}
)2

−2xlkxzk + x2
zk) + x2

lk

)
exp{[α0 + α1t+ . . .+ αpt

p +
∑L

j=1 α1+j(t− ξj)p+]x∗lk}
]
t2k(

1 +
∑M

l=2 exp{[α0 + α1t+ . . .+ αptp +
∑L

j=1 α1+j(t− ξj)p+]x∗lk}
)2

}

Gradient and Hessian with respect to α1+l, l = 1, ..., L are the following.

l′(α1+l) =
N∑
k=1

[∑M
l=2

{
exp{[α0 + α1t+ . . .+ αpt

p +
∑L

l=1 α1+l(t− ξl)p+]x∗lk}
}
x∗lk
]
(tk − ξj)+

1 +
∑M

l=2 exp{[α0 + α1t+ . . .+ αptp +
∑L

l=1 α1+l(t− ξl)p+]x∗lk}
+ α1+lλ
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l′′(α1) =
N∑
k=1

{[∑M−1
l=2

(∑M
z=l+1 exp{[α0 + α1t+ . . .+ αpt

p +
∑L

l=1 α1+l(t− ξl)p+]x∗zk}(x2
lk − 2xlkxzk(

1 +
∑M

l=2 exp{[α0 + α1t+ . . .+ αptp +
∑L

l=1 α1+l(t− ξl)p+]x∗lk}
)2

+x2
zk) + x2

lk

)
exp{α0 + α1t+ . . .+ αpt

p +
∑L

l=1 α1+l(t− ξl)p+]x∗lk}
]
(tk − ξj)2

+(
1 +

∑M
l=2 exp{[α0 + α1t+ . . .+ αptp +

∑L
l=1 α1+l(t− ξl)p+]x∗lk}

)2

}
+ λ

We estimate parameters via Newton Raphson method with these gradient vector and Hessian

matrix.

A.3 Adaptive Rejection Metropolis Sampling within

Gibbs Sampling for Semiparametric one stage Bayesian

approach

We implemented Adaptive Rejection Metropolis Sampling within Gibbs sampling (Geman

and Geman, 1984; Gelfand and Smith 1990) in order to obtain sequential samples from the

posterior distributions of our parameters: (α0, . . . αp, α1+l, ; l = 1, . . . , L) and φα. During

each iteration of the Gibbs sampler, each of the parameters listed above is updated by a

sample drawn from its full conditional distribution. The full conditional distributions for the

α parameters provided in section 2.5 are not of closed form and therefore we implemented

Adaptive Rejection Metropolis Sampling (ARMS) within the Gibbs sampler to draw samples

from their full conditional distributions.

ARMS Gilks et al. (1995) is an extension of Adaptive Rejection Sampling (Gilks and Wilde

1992) with the inclusion of a Metropolis-Hastings (Metropolis et al., 1953) step, using ARS

to generate a proposal distribution and evaluating it using Metropolis-Hastings acceptance

probabilities. {α0, . . . αp, α1+l, ; l = 1, . . . , L), φα} is the set of variables to be sampled
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using the Gibbs sampler. In general let us represent each individual α variable by α∗ as this

procedure will be repeated for each one. The goal is to sample α∗ from its full conditional

distribution which is proportional to f(α∗), where f(α) is

f(α) =
φ exp

(
−φ2α2

2

)
∏N

k=1

(
1 +

∑M
j=2 exp

[{
α0 + α1t+ . . .+ αptp +

∑L
j=1 α1+j(t− ξj)p+

}
x∗jk

]) .

Here we set φ = φ1 for α0, . . . αp and φ = φα for αp+i, i = 1, . . . , L.

Let α∗c represent the current value of α∗ at a given iteration of the Gibbs sampler. We want

to replace α∗c with a new value α∗M sampled from f , where f is the posterior distribution of

α∗. We create a new function

hn(α∗) = max
(
Li,i+1(α∗, Sn),min{Li−1,i(α

∗, Sn), Li+1,i(α
∗, Sn)}

)
,

where Sn = {α∗i , i = 0, . . . , n + 1} is the current set of abscissas in ascending order and α∗0

and α∗n+1 are the lower and upper limits of the the domain of f . Li,i′(α
∗, Sn) represents the

straight line through points [α∗i , lnf(α∗i )] and [α∗i′ , lnf(α∗i′)]. Therefore, a sampling density

gn(α∗) is given by

gn(α∗) =
1

mn

exp
{
hn(α∗)

}
,

mn =

∫
exp
{
hn(α∗)

}
.
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Algorithm 1: ARMS Algorithm for Matched Case-Crossover Studies

Data: Input 1-M Matched Case-Crossover Data

Result: Samples α∗ from the following loop:

Step 0: Initialize n and Sn;

for The total number of Samples do

Step 1: Sample α∗ from gn(α∗);

Step 2: Sample U from uniform(0,1);

Step 3: if U > f(α∗)/exp
(
hn(α∗) then

set Sn+1 = Sn ∪ {α∗}; Relabel points in Sn+1 in ascending oder, increment n and go

back to Step 2. (Rejection step) ;

else

Set α∗A = α∗(Acceptance step);

end

Step 4: Sample U from uniform(0,1);

Step 5: if

U > min

[
1,
f(α∗A)min{f(α∗c), exp(hn(α∗c))}
f(α∗c)min{f(α∗A), exp(hn(α∗A))}

]

then

α∗M = αc (Metropolis-Hastings rejection step);

else

α∗M = αA (Metropolis-Hastings acceptance step);

end

Step 6: Return α∗M .;

end
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Appendix B

ARMS and Spatial information for

Spatial-Temporal Varying Coefficient

Model

In Section B.1, we provide the arms procedure for semiparametric one stage Bayesian ap-

proach.

B.1 Adaptive Rejection Metropolis Sampling within

Gibbs Sampling for Semiparametric one stage Bayesian

approach

We implemented Adaptive Rejection Metropolis Sampling within Gibbs sampling (Geman

and Geman, 1984; Gelfand and Smith 1990) in order to obtain sequential samples from the
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posterior distributions of our parameters: (α0, . . . αp, αp+l, ; l = 1, . . . , L), γ, φα and φs.

During each iteration of the Gibbs sampler, each of the parameters listed above is updated

by a sample drawn from its full conditional distribution. The full conditional distributions

for the α and γ parameters provided in section 3.3 are not of closed form and therefore we

implemented Adaptive Rejection Metropolis Sampling (ARMS) within the Gibbs sampler to

draw samples from their full conditional distributions.

ARMS Gilks et al. (1995) is an extension of Adaptive Rejection Sampling (Gilks and Wilde

1992) with the inclusion of a Metropolis-Hastings (Metropolis et al., 1953) step, using ARS

to generate a proposal distribution and evaluating it using Metropolis-Hastings acceptance

probabilities. {α0, . . . αp, αp+l, ; (l = 1, . . . , L), γ, φα, φs} is the set of variables to be sampled

using the Gibbs sampler. In general let us represent each individual α variable by α∗ as this

procedure will be repeated for each one. The goal is to sample α∗ from its full conditional

distribution which is proportional to f(α∗), where f(α) is

f(α) =
φ exp

(
−φ2α2

2

)
∏N

k=1

(
1 +

∑M
j=2 exp

[{
α0 + α1t+ . . .+ αptp +

∑L
j=1 α1+j(t− ξj)p+

}
x∗jk + z∗jkγ

]) .

Here we set φ = φ1 for α0, . . . αp and φ = φα for αp+i, i = 1, . . . , L.

Let α∗c represent the current value of α∗ at a given iteration of the Gibbs sampler. We want

to replace α∗c with a new value α∗M sampled from f , where f is the posterior distribution of

α∗. We create a new function

hn(α∗) = max
(
Li,i+1(α∗, Sn),min{Li−1,i(α

∗, Sn), Li+1,i(α
∗, Sn)}

)
,

where Sn = {α∗i , i = 0, . . . , n + 1} is the current set of abscissas in ascending order and α∗0

and α∗n+1 are the lower and upper limits of the the domain of f . Li,i′(α
∗, Sn) represents the
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straight line through points [α∗i , lnf(α∗i )] and [α∗i′ , lnf(α∗i′)]. Therefore, a sampling density

gn(α∗) is given by

gn(α∗) =
1

mn

exp
{
hn(α∗)

}
,

mn =

∫
exp
{
hn(α∗)

}
.

Also, we need to sample γ from its full conditional distribution which is proportional to

f(γ), where f(γ) is

f(γ) =
φs exp

(
−φsγΣ−1γ

2

)
∏N

k=1

(
1 +

∑M
j=2 exp

[{
α0 + α1t+ . . .+ αptp +

∑L
j=1 α1+j(t− ξj)p+

}
x∗jk + z∗jkγ

]) .

Let γc represent the current value of γ at a given iteration of the Gibbs sampler. We want

to replace γc with a new value γM sampled from f where f is the posterior distribution of

γ.

We create a new function

hn(γ) = max
(
Li,i+1(γ, Sn),min{Li−1,i(γ, Sn), Li+1,i(γ, Sn)}

)
,

where Sn = {γi, i = 0, . . . , n + 1} is the current set of abscissas in ascending order and γ0

and γn+1 are the lower and upper limits of the the domain of f . Li,i′(γ, Sn) represents the

straight line through points [γi, lnf(γi)] and [γi′ , lnf(γi′)]. Therefore, a sampling density
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gn(γ) is given by

gn(γ) =
1

mn

exp
{
hn(γ)

}
,

mn =

∫
exp
{
hn(α∗)

}
.

Let θ be either α∗ or γ.
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Algorithm 2: ARMS Algorithm for Matched Case-Crossover Studies

Data: Input 1-M matched Case-Crossover data

Result: Samples θ from the following loop:

Step 0: initialize n and Sn;

for Total Number of Samples do

Step 1: Sample θ from gn(θ);

Step 2: Sample U from uniform(0,1);

Step 3: if U > f(θ)/exp
(
hn(θ) then

set Sn+1 = Sn ∪ {θ}; Relabel points in Sn+1 in ascending oder, increment n and go

back to Step 2. (Rejection step) ;

else

Set θA = θ (Acceptance step);

end

Step 4: Sample U from uniform(0,1);

Step 5: if

U > min

[
1,
f(θA)min{f(θc), exp(hn(θc))}
f(θc)min{f(θA), exp(hn(θA))}

]

then

θM = θc (Metropolis-Hastings rejection step);

else

θM = θA (Metropolis-Hastings acceptance step);

end

Step 6: Return θM .;

end
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B.2 Nine provinces in South Korea and their Latitude

and Longitude Coordinates

Province Latitude Longitude

North Chungcheong 36.6175641 127.2893383

South Chungcheong 36.5212735 126.7988864

Gangwon 37.8665198 128.2039048

Gyeonggi 37.598322 127.1173206

North Gyeongsang 35.3565811 128.6892794

Souh Gyeongsang 35.2210613 128.3910462

Jeju 33.3354988 126.5690003

North Jeolla 35.7275835 126.9387574

South Jeolla 34.7255374 126.8139992
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