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First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial

amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results
for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial
amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its
subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having
moderate amplitudes have a strong influence on their difference frequency. The results show that the
difference frequency can be very unstable when generated by the nonlinear interaction, even though it

may be stable when introduced by itself in the boundary layer.

I. INTRODUCTION

One of the major roads from laminar to turbulent
flow involves the initial linear amplification of distur-
bances which might be present in the flow. However,
as these disturbances grow to appreciable amplitudes,
nonlinear effects set in. The nonlinear mechanisms
that are activated depend on the spectrum of the distur-
bances. In this paper, we investigate two of these
mechanisms.

In his experiments on the transition from laminar to
turbulent flow in a separated shear layer, Sato' ob-
served the appearance of the subharmonic of order one-
half in addition to the higher harmonics of the funda-
mental wave. Wille® observed the development of sub-
harmonic waves while investigating the stability of both
circular and plane jets. Kachanov et al.? observed
that, in addition to the higher harmonics of a fundamen-
tal wave, which was introduced in the flow by a vibrat-
ing ribbon, a subharmonic wave with one-half the fre-
quency of the fundamental wave appeared downstream.
Kelly* showed that the appearance of the subharmonic in
a shear layer is due to a secondary linear instability
associated with a time-dependent flow that consists of
the superposition of the basic flow and a finite-ampli-
tude fundamental wave. Nayfeh and Bozatli® investi-
gated the appearance of the subharmonic in boundary
layers by analyzing the instability associated with a
time-dependent flow that consists of the superposition
of the basic flow and a Tollmien-Schlichting wave. The
results show that the amplitude of the fundamental wave
must exceed a critical value to trigger this parametric
instability. This value is proportional to a detuning
parameter that is the real part of # —2K, where & and
K are the wavenumbers of the fundamental and its sub-
harmonic, respectively. For the Blasius flow, the crit-
ical amplitude is approximately 29% of the mean flow.
For other flows where the detuning parameter is small,
such as free-shear layer flows, the critical amplitude
can be small; thus, the parametric instability might
play a greater role. Since the analysis of Kelly* and
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Nayfeh and Bozatli® are linear, they do not account for
the effect of the subharmonic wave on the fundamental
wave. This effect may be small initially, but as the
subharmonic grows appreciably, its effect on the fun-
damental cannot be neglected. One of the purposes of
the present paper is to determine the nonlinear interac-
tion of a Tollmien~Schlichting wave with its subhar-
monic.

Sato,® Miksad,” Kachanov e/ al.,® and Saric and Reyn-
olds® observed that the nonlinear development of the
waves in the transition region depends on the initial
and external disturbances. Sato® conducted an experi-
ment on the stability of symmetric laminar waves by
exciting two unstable modes with the frequencies f, and
fo. He observed the generation of waves having the fre-
quencies f, +f;. Miksad’ excited two unstable modes of
a laminar asymmetric free-shear layer. He also ob-
served nonlinear triggered instabilities of the difference
mode f, —f;, subharmonics, and higher harmonics of
the fundamental waves. Kachanov ef al.? introduced
two Tollmien—-Schlichting waves in the boundary layer
on a flat plate by using two vibrating ribbons. They
observed the appearance and growth of a Tollmien-
Schlichting wave having the difference frequency f, -f,.
Norman'® also observed the amplification of the differ-
ence harmonic of two introduced disturbance waves in
his experimental study of secondary flows around and
downstream of protuberances in laminar boundary
layers. The second purpose of the present paper is to
determine the nonlinear interaction of three Tollmien-—
Schlichting waves (combination resonance) in boundary
layers and to show that the difference frequency can be
very unstable when generated by the nonlinearity, even
though it is stable when introduced by itself in the boun-
dary layer.

The possibility of resonant wave interactions in boun-
dary-layer flows has been recognized by Craik'* and the
consequences of such interactions have been investi-
gated in a number of papers by Craik and co-workers,
see for example Refs. 12 and 13 for their latest re-
sults. Craik and co-workers considered the interaction
of three waves with the wavenumbers k,, k,, and k,
corresponding to the frequencies w;, w,, and w; and
satisfying the conditions
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K,k 3ks=0, wtw,+w;=0.

Under these conditions, they found an explosive insta-
bility. However this explosive instability occurs only
when the above resonances are perfectly satisfied. In
a boundary layer, however, the resonances are perfect-
ly tuned only at a single location due to spatial detuning.
The present results for two-dimensional waves and
those in Ref. 14 for three-dimensional waves show that
the explosive instability does not occur in a boundary
layer. Moreover, the present results, as well as those
in Ref. 5, indicate that a two-dimensional wave in a
boundary layer on a flat plate cannot affect its two-di-
mensional subharmonic unless its amplitude exceeds
about 299 of the mean flow, when the boundary layer
has already become turbulent. In the case of a boundary
layer on a flat plate, Nayfeh and Bozatli'* found that a
two-dimensional wave does not appreciably affect its
subharmonic oblique waves due to spatial detuning un-
less the two-dimensional wave is unstable. They pro-
posed a four-wave interaction in which a two-dimen-
sional wave pumps energy into its second harmonic,
which in turn pumps energy into its subharmonic ob~
lique wave.

The problem is formulated in Sec. II. The analysis
for the combination-resonance case is contained in
Sec. III, while the results for the second-harmonic
case are stated in Sec. IV. The numerical procedure
is discussed in Sec. V, while the numerical results are
presented in Sec. VI.

Il. PROBLEM FORMULATION

We consider nonlinear interactions of wave packets in
a two-dimensional steady incompressible boundary

layer. The equations describing the motion of the fluid
are
du , ab
—t+—=
ox 3y 9, W
3l -3l | ~ou b 1 ;-
B TR iy R AR R v,
A" vay ax R @)
a_v+1;§£ 56_1}:_%+1_V2" (3)

at ax 3y 3y R ’

#=9=0aty=0, (4)
n—~1lasy—oo, (5)
where
2 2" &
ax® " By®

Here, x and y are made dimensionless by using a ref-
erence length §,, the time is made dimensionless by us-
ing 6,/Uw, and the velocities are made dimensionless
by using the free-stream velocity U,. The Reynolds
number R =U,6,/v with vy being the fluid kinematic vis-
cosity.

The analysis is restricted to basic flows that are
slightly nonparallel (i.e., vary slowly in the streamwise
direction) and to disturbances that are small but finite.
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The slow variation is expressed by using the slow scale
x,=¢€x, where ¢, is a small dimensionless quantity that
characterizes the nonparallelism of the flow and can be
related to R by ¢,=R*. The smallness of the amplitude
of the disturbance is expressed by introducing the small
dimensionless parameter ¢, For a general solution,

we assume that e= O(g;) so that the resulting expansion
accounts simultaneously for the effects of nonparallel -
ism and nonlinearity. When € <¢,, the nonlinear effects
are negligible and the solution reduces to those ob-
tained in Refs. 15 and 16. When ¢>> ¢, the nonparallel
effects are negligible and the solution reduces to equa-
tions with constant coefficients.

We assume that each flow quantity is the sum of a
mean-flow quantity and an unsteady disturbance quan-
tity, which is assumed to be much smaller than the
mean-flow quantity. We can then express the velocity
components and the pressure as

ulx,y, )= Ulx,, v) +eulx,v,t), (6)
U(x, v, ) =€ Volxy,v) +evlx,v,1), M
blx,y,0)=Plx) +ep(x,9,1), ®)

where U,, V,, and P, are the nonparallel basic-flow
quantities. Substituting Eqs. (6)—(8) into Eqs. (1)-(5)
and subtracting the basic-flow quantities, we obtain

du |, v
—+_:
x Ty =0 9
ou au | aU, p 1
— —+yp—L+= V¥V
ot +U°ax vay ax RY
U ou ou ou
—€y—2 - L Y — —m Y —
=-ut-¢ 0%y - 2 (10)
ov v ap 1 _,
— 4 U —+=—= ==V
ot %3 2y R
Y v 8V, av v
— Ey=—=2 _e V. Y _ O o L2 _ep L2
U 2%, 6 °%y €,V 3y o ev 3y’ (11)
u=v=0aty=0, (12)
u, v=-0asy—co, (13)
Without loss of generality, we let e=¢,. To deter-

mine the wave-packet solutions of Eqs. (9)-(13), we
use the method of multiple scales'” and seek an expan-
sion in the form

u=uy(xg, %1, ¥, Toy T1) + €ty (60, %1, %, To, Ty) +** ¢, (14)
v="0o(%0, %1, 5, To, Ty) + v, (x0, %, 9, Toy Ty)+ 0, (15)
P=polxg,%1,9, Ty, T) +epy (g, %1, %, Toy Ty) + 00, (16)

where x,=x, To=t, and T,=¢f, Substituting Eqs. (14)-
(16) into Egs. (9)-(13) and equating coefficients of like
powers of €, we obtain

Ovder €
O an
Sl(uo,vo,po)zg—“T&; + U°Z_Z§ +vo%[;-°- +.Z§_Z "IE V2, =0,
(18)
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£2(uosvo,po) a_o_+U'—Q+_p£ 1

2T, Oax, 2y R V=0, (19)

Uy=v,=0aty=0, (20)

Uy, Vp—~0asy—o, (21)
Order €:

duy avy o 22)

_y. Mo _ ?P&.+2_J_

TaT, T °ax, ox, R axgox,
al, ou ou ou
- J_V =0 _ 270 20
3%, 3y Mgy ~Yogy s 23)
Lol o p= =200 _p, B 2 Pl 0
2 e aT, °ax1 R doxg0%,  ° 9%,
avV, v, Yy
-y, —2 _ _.i_

° 5y axo Vo2 %’ (24)
uy=v,=0aty=0, (25)
U, v, ~0asy—, (26)

where
G a2
V2o —y
° axz

In what follows, we describe the details of the analy-
sis for the combination-resonance case and only state
the results for the second-harmonic resonance case.

1il. COMBINATION RESONANCES

A. First-order problem

For the case of combination resonances, we consider
three wave packets centered at the frequencies w,, w,,
and w,. Then, we examine the resonances that might
exist among them. Thus, the solution of Egs. (17)-(21)
is expressed as a linear combination of three Tollmien~
Schlichting waves; that is,

ug=A,{x;, T (v; %, )expie,) + Ay (x,, T))
X £12(y;5 %, )explif,) + Aglxy, T1)E15(y5 %)
x exp(if,) +c.c., (27)
ve=A, 00y, T)Esn ( v;x)expi6;) + A, lx,, T)
X Lan(¥5%,)exp(E6;) + A2y, Ty)E5a(95 %))
x exp(i6,) +c.c., (28)
= A%y, T (33 x,)expli6;) + Ay lxy, T))

X Caz(y§x1)eXp(i92) +A3(x1: T1)€33(y;x1)
x exp(if,) +c.c., (29)
where
36y _ 3 _ _
a_xo_k"(xl)’ aTO_—wﬂ n=1,2,3), (30)

with the w, being real constants. The quasi-parallel
Orr-Sommerifeld problems for these waves are

~W1(§1,,, §2n;kn)ED§2n+ik1£1n:0, (31)
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My (8 10y Lams Lans By @,)
=i(Ugk, = w1, + £0aDU, + iy Loy, — (1/RUD? = 32, =0,
(32)
My(€105 Eans Tams By @)
=i(Ugk, — @, )85, + D&y, — (1/RND? —E3)L,,=0, (33)
C1,=0(p,=0at y=0, (34)
Cinybany ~0aS y— o0, (35)
where D=13/3y.

B. Second-order problem

Substituting Eqs. (27)-(29) into Eqs. (22)-(26), we
find that the inhomogeneous parts in Eqs. (22)-(26)
contain terms proportional to

exp(i6,), expl(i6,),

expli(6; - 6,)], expli(6, ~ 6,)],

where the overbar indicates the complex conjugate.

The terms that are proportional to these exponential ex-
pressions will create secular terms in the particular
solutions for u,, v,, and p, if ky=k, -k, and w;~w, —w,;
that is, when a combination resonance exists among the
waves. To quantitively express the nearness of the
resonances, we introduce the two detuning parameters
0, and o, defined by

exp(id,),
expli(6, + 6,)],

Wy =Wy Twy=€0y, (36)
Real(k, -k, +k;) = €0, , (37)

where 0,=0(1), The detuning o, is based on the real

parts of the interacting wavenumbers because the imag-
inary parts will disappear from the exponents in the in-
teraction equations if the actual amplitudes of the waves
are used, see Egs. (57)-(59). Using Eq. (30), we have

6,+ 0, — 6, = f(k1+ by —Rp)dxy — (wy + wy = w,) Ty
—_—f (Byy + gy — kg, dxg +1 f(ku +hyy — kg )dxg

— (w3 + wy = )Ty,

which upon using Eqs. (36) and (37) becomes

6, + 6, — 6= f €0,dxy —€0, Ty +1i [ (Ryy + Ry = kg ddx,g

= f Gpdx, —0, T, +1i f (Byy + Rgy — kg )dx, .

Hence,

6, +0y= [ (ks + ko) %o = (w + 09T,

= 92+¢+i_[(ku + gy — gy, (38)

where %,; stands for the imaginary part of %, and

d):f 0ydxy ~0,Ty . (39)

Similarly, it follows from Eqs. (30), (36), and (37) that
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0 =By 6= 6+ [ (kg + oy =)o, (40)

'_91=93-¢+if(ku+k2£"k34)dxo- (41)

To determine the A,, we seek a particular solution for
the second-order problem in the form

u1 = %1(}’;951)9?(1)(2'91) + d’m(y§x1)exP(i92)

+y3(y; x,)explify) + c.c., (42)
0, =Py, ( 33 %,)exp(E6,) + Uy (¥; %, Jexp(i6,)

+Ug(¥; %, Jexp(ify) + c.c., (43)
P1= Vs (¥;x,)exp(i6;) + Y (v; x,)exp(i6,)

+ Pa5( 952 )exp(i6;) + c.c. (44)

Substituting Eqs. (27)~(30) and (38)~(44) into Eqs. (22)-
(26) and equating the coefficients of exp(i4,), exp(i6,),
and exp(i,) on both sides, we obtain the following equa-
tions:

M,y (yyy o3 k) =dyy (45)
Mz(‘l’u, 1”21; lpsjik,, w;)=dg,, (46)
M (g, Yoy Yag3 gy wg) =dsy 5 (4m1)
Yy=1py=0at y=0, (48)
Py, Uy ~0asy—o (49)

for j=1, 2, and 3, where the d,, are given in Appendix
A.

C. Adjoint probiem

Since the homogeneous parts of Eqs. (45)-(49) are
the same as Egs. (31)-(35) and since the latter have a
nontrivial solution, the inhomogeneous equations (45)~-
(49) have a solution if, and only if, the inhomogeneous
parts are orthogonal to every solution of the adjoint
homogeneous problem; that is,

f (dystdy +dy L5y +dyy£3)dy =0 for j=1, 2, and 3,
0

(50)
where the {*’s are the solutions of
M¥ES, £ ky) =ikl - DL =0,
ML, oy, S Ryy w))

=i(Ugky — wy)8gy +£34DU, - Dty - (1/RUD? - KL 4 =0,

(51)

(52)

MEEY, 63y, E85 -y wy)
=i(U oy —w))tgy +ik, bl = 1/RND* =K2)i% =0,  (53)
&y =t$=0aty=0, (54)
Lh, L —~0asy— o, (55)

Substituting for the d;, from Appendix A into Eq. (50)
and defining
X
a;=A4, exp( i k“dxo>, (56)
X

we obtain the following differential equations for the
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evolution of a,, a,, and a;:

1 9a, | 23a, hyy ) -
wj ot e (6 17, F a‘+€f adsexl-ig),  (67)
1 3 h h .
ws a(? ax ( 72_ 2‘)02+e72:1a1a3exp(z¢), 58)
1 3a; , 2a n h - ;
3 5 G (4 - e R i ewleio), - 69)

where w)=duw,/dk, is the group velocity and ¢ is de-
fined in Eq. (39). As discussed earlier, the detuning
arising from the imaginary parts of the interacting
wavenumbers does not appear in the exponents in the
interaction equations (57)-(59). This is the reason for
our basing the detuning on the real parts of the wave-
numbers of the interacting waves, which is contained in
#. For spatial modulation only, o,=0 and 3a,/3t=0;
all the calculations presented in this paper are for this
case. We note that Egqs. (57)~(59) account for the com-
bined effects of the nonparallelism (i.e., growth of the
boundary layer) and the nonlinear interaction. If ¢

<«¢,, the nonlinear interactions can be neglected and
the spatial variations in Eqs. (57)-(59) reduce to the
nonparallel solutions of Refs. 15 and 16. When ¢,

<« ¢, the effects of the nonparallelism are negligible;
that is, one can set ¢, =0and all the coefficients in Egs.
(57)—(59) can be treated as constants.

IV. HARMONIC RESONANCE

The interaction between a fundamental Tollmien—
Schlichting wave and its second harmonic is analyzed
using a procedure similar to that outlined in the pre~
vious section. In this case, instead of Eqs. (57)-(59)

we obtain

1 9a, , oa By h

w_l’a—tl.i-gcl ( 17 _k“>a1+e}33- a,a,exp(ip), (60)

123a, da, [ R

9% 0% Moz _ 3y -

T + v < 17 Ieu)az-#ef dexp(-ip), (61)
where ¢ is defined in Eq. (41),

o, =Real(k, -2k,), €0;,=w, -2w,, (62)

and f, f,, ~
Band C.

115 Mgy R4y, and hy, are given in Appendices

For spatial modulation only, 0;,=0 and 3a,/3f=0. All
the calculations presented in this paper are for this
case,

V. COMPUTATION PROCEDURE

A. Solution of first- and second-order problems

The same procedure is followed in solving the first-
and second-order problems for both harmonic and
combination resonances. Therefore, only the compu-
tation methodology for the solution of the first-order
problem for the first mode is outlined here.

Equations (31)-(33) are expressed as a system of
first-order differential equations in the form

dz

— =Gz , (633.)
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where z is a 4 X 1 matrix with the elements
2= gu(y;’ﬁ) y 22 =D§n(y;x1) N
(63b)

and G is a 4 ¥ 4 matrix; its elements are given in Ap-
pendix D,

23=00(y3%0), 24=8a(y;%,),

We start the integration of Eqgs. (63)at y=+y,, where y, is
larger thanthe boundary -layer thickness. Hence, U,=1,
DU,=0, and D’U,=0 at y,. Then, the matrix G has
constant coefficients at vy =y, and Eqs. (63) have solu-
tions of the form

4

z,= Q) cyexp(ny) fori=1, 2, 3, and 4,
71

(64a)

where the c,, are constants, the A’s are the solutions of
|G -a1|=0, (64b)
and / is the identity matrix. Equation (66) has the roots
Ma=tky, Ay,a=2z[F+ilk, —w)R]'?. (65)

Two of these roots have positive real parts that make
the solution grow exponentially as y — «; hence, they
must be discarded to satisfy conditions (35). This
leaves two linearly independent solutions that decay
exponentially with y.

The eigenvalues are not known a priori and must be
determined along with the eigenfunctions. For given
values of w; and R, we guess a value for %, and inte-
grate Eqs. (63) from y, to ¥y =0. If the guessed value
of %, does not satisfy the boundary conditions at y =0,
k, is incremented using a Newton-Raphson scheme and
the procedure is repeated until the boundary conditions
are satisfied to within a specified accuracy. The inte-
gration is done by using a computer code developed by
Scott and Watts.'® This technique orthonormalizes the
solution of the set of equations whenever a loss of inde-
pendence is detected.

B. Solution of adjoint problem

The solution procedure is exactly the same as that for
the first-order problem. The coefficients of the z ma-
trix are

zy=th(v5x), 2,=Dix(y;x), (66)
66
2=t5(¥5%), za=tHlyixy),
and the adjoint problem has the same eigenvalues as the
first-order problem.

C. Solvability conditions

The calculations are repeated at different streamwise

locations to evaluate f;, #,;, k,;, and the other interac-
tion integrals for a given frequency along the x axis.
A fourth-order fixed step-size Runge-Kutta integration
scheme is used to solve either Eqs. (57)-(59) for com-
bination resonances or Eqs. (60) and (61) for harmonic
resonances to find the amplitudes of the waves for dif-
ferent initial amplitudes of the respective modes.

452 Phys. Fluids, Vol. 23, No. 3, March 1980

VI. RESULTS AND DISCUSSION

The analysis presented in this paper is applicable to
both two- and three-wave interactions. First, we
present and discuss numerical results for the case of
two-wave interactions. Then, we present and discuss
numerical results for the interaction of three waves
whose {requencies are such that F,=F, - F,.

It follows from Eqs. (6), (27), (30), and (56) that, to
a first approximation, the total streamwise velocity
component is

u=Uy(y,x)+¢ z;A"(x);m(y,x)exp <—fk", dx)

Xexp(i_[k”,dx—iwnf>+0(e2),
or

3
d=Uy(y,x)+ 3 a0, (,x)
n=l

X exp <L' f Epy dX - iw"t> +0(a*?), (67)
where
a¥—=ea,,

All results presented here are for the a}, which we re-
fer to as the “amplitudes” of the waves. In the ab-
sence of the interaction, Eqs. (57)-(59) become uncou-
pled and for the case of spatial modulation yield

a*=a*(0)exp [ f (612“ - k“> dx] , (68)

where aX(0) is the value of g at the reference location.
We shall refer to the g* in Eq. (68) as the noninterac-
tion or linear values.

A. Two-wave interactions

The numerical results presented in Ref. 5 show that
the amplitude of a wave a}=¢€a, must exceed a critical
value before it can generate and amplify its subharmonic
due to the spatial detuning. In fact, the detuning in a
boundary layer on a flat plate is so large that the criti-
cal value is approximately 29% of the mean flow., We
note that, before this critical amplitude is reached,
many other instability mechanisms would have taken
place. In fact, the boundary layer would have already
transitioned to turbulence. The analysis in Ref. 5 is
for the case when the subharmonic wave has an in-
finitesimal amplitude. When the amplitude a=¢€a, of
the subharmonic wave is not infinitesimal, its influence
on af should be taken into account. The equations
governing this influence are Eqs. (60) and (61) whose
general solution is not yet available. The previous
results of the parametric instability model® show that
a} oscillates about its noninteraction value until af
reaches the critical value, Figures 1 and 2, obtained
by numerically solving Eqs. (60) and (61), agree with
this conclusion., Initially, a) increases while af oscil-
lates around its noninteraction value.

At R=580, Fig. 1 shows that a} starts to deviate
sharply from its noninteraction value, while it follows
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FIG. 1. Amplitude of a wave at F; =52x10~¢ involved in a sub-
harmonic resonance with a fundamental wave at F' =104x10"5,

from Fig. 2 that lna} = -1.25 or ¢f=0.286 at this lo-~
cation. Hence, when af is less than this critical value,
the resonant interaction is unimportant and a} can be
approximated by its noninteraction (i.e., quasi-parallel
linear) value; that is

a;*:a;"oexp<—fk“dx+ir> , (69)
where af and 7 are the initial amplitude and phase of
the subharmonic wave, respectively. If we substitute
Eq. (69) into Eq. (61) and neglect the nonparallel growth
rate (i.e., &h,,/f,), we obtain

*
%+k2,a2*=}—}§la}‘§exp(—f(2ku+i€°z)dx+2i7)-

{70}

To determine an analytic approximation to the solution
of Eq. (70), we consider the quasi-parallel case in
which %,;, k,,, fz, and 0, are slowly varying functions
of position. Thus, we let &,;, h,,, f,, and 0, assume
their local values, but we neglect their derivatives.
Then, the solution of Eq. (70) that satisfies the initial

r
NUMERICAL INTEGRATION OF
2F EQUATIONS (60) AND (61} e
//
rd
/7
d
7/
o) 1 I ] | 4 |
o 400 450 500 550 4 700
A REYNOLDS NUMBER, R _—<~.____. -
(=
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EQUATION (71)
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FIG, 2. Amplitude of the fundamental wave at Fy =104x10~8
involved in resonance with its subharmonic at Fy =52x10~¢,
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condition aj = a}(0) at x=0 can be written as

_ hgy *2 .
af = (az*(O) +f2(2k1, Tieoy) a}? exp(2z‘r))

h21 %2
X e"p(‘f kay dx) T 52k, +icoy) 10

xexp<-f @2k, +ie(72dx+2i7>. (71)
Equation (71) represents an approximation to a5 as long
as it is less than the critical value needed to trigger the
parametric instability in the subharmonic wave. We
note that Eq. (71) contains the spatial detuning, which
is very important in this problem. Had o, and %;; been
small, Eqgs. (69) and (71) would have been a poor ap-
proximation to the solutions of Eqs. (60) and (61) be-
cause of the importance of the resonant interaction.
However, in a boundary layer, o, is large so that the
effect of resonant interactions is negligible,

Since the low frequency wave affects but is not af-
fected by the high frequency wave when the amplitude of
the high frequency wave is below 29% of the mean flow,
we refer to the low frequency wave as the fundamental
rather than the subharmonic wave and the high frequen-
cy wave as the second-harmonic rather than the funda-
mental wave. Next, we consider the generation and
amplification of a second-harmonic wave by a funda-
mental Tollmien—Schlichting wave. We consider the
following three cases: (i) fundamental wave is stable
while its second harmonic is unstable, (ii) fundamental
wave is unstable while its second harmonic is stable,
and (iii) both fundamental and second-harmonic waves
are unstable,

When the fundamental wave is initially stable while
its second harmonic is unstable, af decays until it
reaches the unstable region and then it increases as
shown in Fig. 1. For Reynolds numbers less than 560,
a} oscillates around its noninteraction value, implying
a small initial influence of its second harmonic on it.
Thus, af can be approximated initially by Eq. (71),
Figure 2 shows that the values obtained from Eq. (71},
based on the quasi-parallel approximation, are in good
agreement with those obtained by numerically integrat-
ing Eqs. (60) and (61) for R < 560, After a short initial
distance, the second term on the right-hand side of Eq.
('71) decays because the fundamental wave is stable
(i.e., By, >0). Then, af can be approximated by

h .
A @, 2_: 7%5,) a2 exp(2i T)>

xexp(—f kz,dx),

as long as af is less than the critical value. Thus, the
effect of the fundamental wave on its second harmonic
is to increase its initial amplitude and hence the effect
is confined to the initial region. Figure 2 shows that
the effect of the fundamental on the second harmonic is
confined to the initial region near R ~400 when the am-
plitude of the second harmonic increases rapidly.
Beyond R =425, the amplitude of the fundamental wave
has decayed so much that ¢} assumes its normal linear

a¥= (az*(O) +

(12)
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growth rate until it reaches the region of strong inter-
action with a} (i.e., subharmonic instability).

For the case when the fundamental wave is initially
unstable while its second harmonic is stable, we per-
formed calculations for waves with the frequencies
F,=46.5x10° and F, =93 x 10", The fundamental
wave is in the unstable region at R =950 where the cal-
culations are started. Thus, it is unstable downstream
of R=950, Figure 3, obtained by numerically inte-
grating Eqs. (60) and (61), shows that a} hardly de-
viates from its noninteraction (quasi-parallel linear)
value. On the other hand, af increases many orders of
magnitude above its noninteraction values, even for
small initial amplitudes of the fundamental wave as
shown in Fig. 4. In these calculations, the initial am-
plitude of the second-harmonic wave is taken to be 0.1%

while the initial amplitudes of the fundamental wave are
0.1% and 0.5%. Since af hardly deviates from its non-
interaction value, the quasi-parallel solution is expected
to be a good approximation to af. Figure 4 shows that
the values obtained from Eq. (71) oscillate about those
obtained by numerically integrating Eqs. (60) and (61).
Since the initial values are very small, a} does not
reach the critical value to influence af. After a short
initial distance, the first term on the right-hand side

of Eq. (71) decays and af can be approximated by

h
¥ — Bl qxZoxpl _ ([ 2k, +ie )d +2']
a, f2(2k1{+1602) ayy exp[ <f 11 Hi€0, jax Ty,
(73)

as long as af is less than the critical value. Equation
(73) shows that the effect of the interaction is to produce

w0

CALCULATED FROM
EQUATION (71)

-20

-40

-50 |-
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NO INTERACTION , G5g= 0.00!

NUMERICAL INTEGRATION OF
EQUATIONS (6Q) AND (61)

FIG. 4. Amplitude of the second-har-
monic wave at F,=93x10% when it is
involved in resonance with a wave at
Fy=46,5x10"°,
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a second-harmonic wave that grows approximately at a
rate that is twice that of the fundamental wave, in
agreement with recent experiments conducted by Saric
and Reynolds.®

For the case when both waves are unstable, we per-
formed numerical calculations for waves having the
frequencies F, =52 x 10°% and F, =104 x 10°° starting
near R =600, Figure 5 shows that initially a} deviates
slightly from its noninteraction (quasi-parallel linear)
values. Hence, the quasi-parallel solution is initially
expected to be a good approximation to af. Figure 6
shows that the numerical values obtained from Eq. (71)
are in good agreement with those obtained by numerical -
ly integrating Eqs. (60) and (61) when aj is less than
0.29, owing to the insignificance of the resonance.
Thus, in this case, the effect of the interaction on the
second -harmonic wave is to increase its initial ampli-
tude and to produce a term that grows at a rate that is
twice the growth rate of the fundamental wave, Due to
the fact that both waves are initially unstable, the in-
teraction is more effective in this case than in the pre-
ceding two cases.

B. Three-wave interactions

In their experimental studies, Kachanov e/ al.,?
Saric and Reynolds,® Miksad,” Norman,'® and Sato® in-
troduced two separate waves of different frequencies
into the flow that was being studied. They observed the
growth of a wave whose frequency is equal to the dif-
ference frequency. Kachanov et al. used the frequency
pairs F, =88 x10"® and F,=104 x 10" and F, =88 x 107°
and F, =120 x 10°% to analyze the growth of the asso-
ciated difference-harmonic waves at F,=16 x 10-®
(i.e., F;=F, —F,;) and F,=32 x 107% in a boundary -layer
flow over a flat plate. Unfortunately, they did not pre-
sent data showing the variation of the amplitude of the
difference frequency with distance. Consequently, we
were unable to compare quantitatively our results with
their experiment, and we had to settle for a qualitative
comparison. Using the same frequency pairs, we de-
termined the amplitudes of the fundamental waves (a}
and a}) and the difference-harmonic wave a} by numer-

r
2
*
0,670.005
.0 1 1 1 — 1 1
*5- 600 625 650 675 700 725 750
ey REYNOLDS NUMBER, R
-2
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a), =003
_6 —

FIG, 5. Amplitude of fundamental wave at Fy =52x10~% in-
volved in resonance with its harmonic at F, =104x1 0-¢,
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NUMERICAL INTEGRATION OF
EQUATIONS (60) AND (61}
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FIG, 6. Amplitude of the second-harmonic wave at Fy =104
%x10~% when it is involved in resonance with a wave at Fy =52
%1076,

ically solving Eqs. (57)-(59). Figures 7 and 8 show

_ the large increases in the amplitudes of the difference-

harmonic waves due to the nonlinear interaction of the
waves with the frequencies F, and F,. The amplitude of
the difference-harmonic wave at R =715 is increased

by 120-200 times its noninteraction value.

However, the amplitudes of the fundamental waves
change very little from their noninteraction values as
shown in Fig, 9 for F, =88 x 10°%, owing to the large
spatial detuning that wipes out the effect of resonance
unless the initial amplitudes are very large. Thus, af
and a} can be approximated by their quasi-parallel 1i-
near values; that is,

af:ai“oexp(—fk”dx +i71>,
(74)
az*za':oexp(_ szidx"'iTz) ’

where af, and af;) are the initial amplitudes and 7, and
T, are the initial phases of the fundamental waves.
Substituting Eq. (74) into Eq. (59) and neglecting the
nonparallel effects, we obtain

d *
J—d‘; +k3ia;‘=%§-¥1a;§,a2*0exp<—f(k“+k2‘+i602)dx
3

+i(T1+T2)), (15)

The solution of Eq. (75) that satisfies the initial condi-
tion a¥ =a(0) at x=0 can be expressed as

h
*— | gx — 7312 00 % ; ;
a¥= <a3 (0) +f3(k1, Ty, ¥ i) akat explit, + 172)>

h
x _ k )_ 312 X ok
exP( f 580 ) = lony + kg, + 70;) 0%
X exp(- f (By; + By + €0, )dx +i(7, + Tz)) . (76)
Equation (76) represents an approximation to a} as long
as the amplitudes of the fundamental waves do not de-

viate from their noninteraction (quasi-parallel linear)
values. Figures 7 and 8 show that Eq. (76) is initially
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FIG. 7. Amplitude of the difference-
harmonic wave at F 3 =32x10"% gener-
ated from a combination resonance of
Fy =88%10~% and 120x10-¢,

| 1 1 L 1 I i
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-4 b EQUATIONS (57)- (59)
» L 3
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ingood agreement withsolutions obtained by numerically
integrating Eqs. (57)-(59). Had k; +k,, +ic0, been
small, Egs. {(74) and (76) would have been a poor ap-
proximation to the solutions of Eqs. (57)-(59) owing to
the resonant interaction. However, in a boundary lay-
er, 0, is large so that the effect of resonant interactions
is negligible.

According to Eq. (76), the difference-harmonic wave
grows at a rate that is the sum of the growth rates of
the fundamental waves. Since the fundamental waves
are unstable at R=430, where the calculations are
started, the difference-harmonic wave amplifies con-
siderably, in spite of the fact that it is stable in the ab-
sence of the interaction. However, this instability is
not of the explosive type due to the spatial detuning.
These results are in qualitative agreement with the ex-
perimental observations of Refs, 6-10.
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APPENDIX A
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Aoy =dyyo Hdyy (A2)
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NUMERICAL INTEGRATION OF
EQUATIONS (57)-(59)

FIG. 8. Amplitude of the difference-

harmonic wave at F3=16x10~% gener-
ated from a combination resonance of
F;=88x10% and F, =104%x105,
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x explid = kg, + by; = Ry )dx, ], (A5)
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d3y=dyyo+dyy, (AT)
oA 21 A
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1
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X exp|~i — (g + kg ~ Ry )dx,] (A9)
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x expl~i¢ — (ky + kg — By )dx,] (A10)
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APPENDIX B
© 2ik
f] =j; {- gugfj "'[( ") -_I) §11 + §3J] gzj
2ik
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FIG, 9. Amplitude of the fundamental
wave at F; =88x10~% involved in a com-
bination resonance with two waves at
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+ (iR3L 1805 + iRy La1815 + 631 Dlas + D§21§23)§§} ay,
(B4)
3 :[ {[i(kz —E1)€1z§_u + gzzDEn +D§12§z1]§2*3
0
+ (—27;1521@12 + ikzgzzgn + §22D521 + D§22521)§§“3}dy .
(B5)

APPENDIX C
hxz ='/0‘ {[§22D511 + E21D§12 + i(kz - ];1)§12£11]§z*1

+ [ik2§22§—11 - Z.E].E21€12 + gZZDEZI + EZngzz] g;“.l} dy >

(c1)
hay = f0 (18,8, + L DT
+ (kL1380 + £an DL )ES Ty . (c2)
APPENDIX D
&11=0, g£,=1, g3=0, £,=0, (D1)
B =iUgk ~w R+, g;,=0, g,= R‘%ﬁ , Za=ikR,
(D2)
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o= =R, gp=g3=g=0, (D3)

ga=0, go=-ik/R, g43='[i(Uok‘W)+kz/R]; 8u=0;
(D4)

@ is a 2 x4 matrix consisting of the lasttwo rows of the

matrix B!, The matrix B has the elements:

byy=b1=b13=01,=1, (D5)
by ==k, by=k, by=k, by=-k, (D6)
bo=i, bp=ik/k, bgy=—i, by=-ik/k, (D7)

by={w/k=1), by=0, by=(w/k-1), b,=0, (D8)

where
E=[R +i(k -w)R]/2. (D9)
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