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CHAPTER 1 

INTRODUCTION 

1.1 Experimental Designs 

An experimental design may be considered to be an arrangement of 

the levels of certain factors in a plan of investigation (experiment). 

Such an arrangement may be useful in choosing an experiment that is 

efficient according to some criteria. A multi-factor, fixed effect 

design may be referred to as a multidimensional design (MD). These 

experimental designs mayor may not contain all possible factor level 

combinations. In this work, we shall discuss the more general situa­

tion: designs which do not contain all factor level combinations 

(incomplete designs or fractional factorials). 

There are many different criteria that one may use when choosing 

a plan of experimentation. Of greatest importance may be physical 

characteristics of the experiment. For instance, we may desire a design 

for which the data collection is simple or inexpensive. Probably this 

criterion is always considered to some extent, since otherwise we would 

no doubt use a complete design if it is possible to do so. 

Then there are what we will call statistical criteria. We may 

require such design properties as balance or orthogonality of main 

effects. To achieve properties of this type, we often have to sacrifice 

with respect to one or more of the physical characteristics which we 

-1-
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desire. Similarly, we may have difficulty achieving certain statistical 

criteria because of some inherent physical property of the experiment. 

For instance, we might find it impossible to use an orthogonal main 

effect plan because we are unable to make the assumption of no inter­

action. 

Certainly in most real world situations, we must consider economy 

of experimentation. The time or money necessary to obtain the data may 

be at a premium. We need to choose a design that reflects this property 

of the experiment. Often what has been done in the past, is to try to 

find a design that provides for some economy, but still has certain 

features that make the analysis relatively simple. For example, we 

might take a fractional factorial instead of the complete design. Some­

times, however, we are willing to sacrifice balance or complete orthogo­

nality in order to make more progress toward obtaining a design which 

allows a more economical experiment. Of the many approaches to this 

problem, we shall concentrate on only two in this work. 

1.2 Review of the Literature 

We shall be interested in the estimation of all main effect linear 

contrasts, and in the estimation of two-factor interaction contrasts 

when interactions are believed to exist. The concept of connectedness 

will be used throughout this work when discussing procedures to obtain 

deSigns that are useful when estimating contrasts. 

Definition 1.1 (Bose, (1947)) 

"A treatment and a block are said to be associated if the treat­

ment is contained in the block. Two treatments, two blocks, or a 
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treatment and a block may be said to be connected if it is possible to 

pass from one to another by means of a chain consisting alternately of 

blocks and treatments such that any two [adjacent] members of the chain 

are associated. A design (or a portion of a design) is said to be a 

connected design (or a connected portion of the design) if every block 

or treatment of the design is connected to every other." 

Anderson (1968) and Srivastava and Anderson (1970) have discussed 

the connectedness of multidimensional designs with respect to factor main 

effects. There will exist an unbiased estimator for every main effect 

linear contrast for a given factor under the usual additive model, if 

and only if the design is connected with respect to the factor. Sennetti 

(1972) has extended the concept of connectedness to models where we have 

assumed one or more two-factor interactions. 

We have said that we desire a design which allows for as much 

economy of experimentation as possible. One approach to this problem, 

is to choose the design that will allow us to accomplish the task we 

have chosen with only the minimum number of design points possible. 

The problem of connecting a design when there is some restriction on 

the number of design points that may be used has been approached in 

many ways. For instance, the orthogonal main effect plans of Addelman 

and Kempthorne (1961) allow us to estimate main effect contrasts in 

each factor while allowing some economy in the number of required fac­

tor level combinations (assemblies). 

Prior to 1972, there was little or no work in the literature that 

was directed specifically toward minimal designs. The term multidimensional 
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design was first coined by Potthoff (1958). His work on construction 

and analysis of designs for which main effects and some interactions can 

be estimated, does consider to some extent economy of experimental units. 

Daniel (1971) presents a minimal 2 3 factorial plan for estimating main 

effects. Federer, Hedayat, and Raktoe (1972) also discussed minimal 

designs. All the work cited, and generally all the work that appeared 

in the literature prior to 1972, considered only certain families of 

designs. 

Since the early 1960's, much has been written on augmenting existing 

designs. Daniel (1962), Addelman (1963), and John (1966), all discussed 

ways of adding factorial fractions to established designs in order to 

estimate contrasts not previously estimable or not previously assumed 

present. These works center on developing balanced fractions, rather 

than minimal designs. Federer (1961) develops a procedure for adding 

new factor levels to a design in order to be able to estimate contrasts 

that were nonestimable in the original design. His procedure accomplishes 

this with a minimum number of new assemblies. However, it seems reason­

able that there will exist many situations where it is impractical or 

even impossible to obtain new additional levels of a given factor. 

We will consider two approaches for obtaining a minimal design. 

One approach is to choose a completely new experiment using only those 

factor levels suggested to us by the experimenter. Using this approach, 

Sennetti (1972) develops a procedure for constructing a connected design 

using the minimum number of assemblies. That is, if the linear model 

associated with a multidimensional design, D, is 
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E(yn) = ~n 

where Y
n 

is the observation vector, Xn is the design matrix, and En is 

the parameter vector, then we need only [v(~n)+l] assemblies to generate 

a connected multidimensional design. The term v(~n) denotes the number 

of degrees of freedom for the parameter vector. Such a design is called 

a minimal multidimensional design (MMD). Of course the properties of 

complete orthogonality or balance may not hold for these designs. 

The other approach to use in obtaining a minimal design would be 

to augment an existing design. The minimum number of new assemblies 

necessary to connect an existing design is [V'(En)-r(X
n
)], where r(Xn) 

denotes the rank of the X matrix and v'(£n) is the degrees of freedom 

for the parameter vector and includes one degree of freedom for the 

mean. Such a design is called a minimal augmented multidimensional 

design (MAMD). We shall consider the use of MMD's and MAMn's in esti­

mating linear contrasts in main effects and interaction type contrasts. 

In Chapters 2 and 3 we shall attempt to clarify and extend some of 

the work done by Sennetti (1972) in generating minimal designs. In 

Chapter 4 we will discuss connecting existing designs by adding certain 

selected design points. 

There may be instances when, rather than emphasize economy in terms 

of number of observations, we would rather consider how we can increase 

the usefulness of the factor level replicates that we have in the design. 

That is, we want to be able to improve the quality of an existing design, 

when we are unable to increase the number of design points, or even to 

change the number of replicates of any factor level. We will try to 

change a connected design into a design that possesses a stronger type of 
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connectedness, pseudo-global connectedness, defined by Eccleston and 

Hedayat (1974). This change will allow for more estimates for main 

effect linear contrasts. In addition, we will discuss how changing a 

design to a pseudo-globally connected design may improve the design 

with respect to certain optimality criteria. In particular, we shall 

discuss S-optimality as defined by Shah (1960) and a new optimality 

criterion, C-optimality. Chapter 5 through Chapter 8 of this work will 

concern pseudo-globally connecting designs and some of the properties 

of the resulting arrangements. 

The next two chapters of this work will combine some of the con­

cepts discussed in Chapters 2, 3, and 4 with some of those discussed 

in Chapter 5 through Chapter 8. In Chapter 9, we shall consider the 

quality of a design obtained by pseudo-globally connecting an existing 

connected design for level combinations. In particular, we will be 

interested in situations where the assumption of only one two-factor 

interaction is appropriate. In Chapter 10, we shall consider an optimal 

way of augmenting an existing design when obtaining a minimal augmented 

multidimensional design. Using the S-optimality criterion at each step 

in the augmentation procedure, we shall obtain what will be called the 

sequentially S-optimal MAMD. 



CHAPTER 2 

MINIMAL MULTIDIMENSIONAL DESIGNS, 

NO INTERACTIONS PRESENT 

2.1 Introduction 

In this chapter we shall consider the problem of generating a 

minimal multidimensional design (MMD). Under the assumption of no 

interaction, we want to be able to estimate all main effect linear 

contrasts in factor F
S

' for S=l, 2, ... , m for an m-factor design, 

while keeping the number of assemblies used in the design at a minimum. 

There will exist an unbiased estimator for all main effect linear con-

trasts if and only if the design chosen is a connected design. Thus we 

will seek a design that is connected but has the minimum number of 

design points possible. 

Using the notation of Sennetti (1972), let D be a multidimensional 

design (MD), with m factors Fl , F2 , ... , Fm' with Fi having ni levels. 

The linear model for D will be 

Where Y
D 

is the observation vector (h x 1), ~ is the design matrix (h x M) 
m 

with M= Ln., and ED is the parameter vector (M x 1) which may be written as 
i-I 1 

n
2 

1 2 
. . ., • • ., P2 ' . . ., . . ., 

-7-
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j 
Here Pi denotes, [or all i, the rn.:tin effect of the j th level of factor F i. 

R.. R.'. 
1. 1. 

We want to estimate all contrasts of the form Pi -Pi where R.i and £'i 

are two levels of F .• Recall that an MMD will allow us to do this while 
1. 

using only one more assembly than there are degrees of freedom for En" 

2.2 The General Approach for Obtaining MMD's 

Sennetti (1972) has shown the existence of an MMD in m factors. We 

shall concentrate on specific procedures that may be used to obtain such 

a design. Sennetti suggests the following general steps for constructing 

an MMD in m factors: First construct a two-factor MMD, then a three-

factor MMD, " . ., then an m-factor MMD. At each step in the procedure, 

four things should be considered, of which two are pertinent to the 

present discussion: 

(a) To construct an MMD in k factors, we augment a design of k-l factors. 

(b) Starting with the MMD of k-l factors, F
l

, F2 , ... , Fk_
l

, if Fk has 

n
k 

levels, nk-l additional assemblies in the k-l factors are added so that 

the resultant design has the following property: If Fe is anyone of the 

k-l factors already in the design, then 

Property I nS-a
S 

levels of Fe occur Ve times and a
e 

levels of Fe 

occur VS+l times in the design. 

(Parts (c) and (d) of Sennetti's considerations concern how the augmenta-

tion should be carried out so as to maintain property I.) 

We will attempt to maintain property I for the k th factor as well 

as for the first k-l factors. At this point we shall consider the justifi-

cation for maintaining I (if possible) during the augmentation procedure. 
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The argument given by Sennetti (1972) may be summarized as follows: 

Most of the commonly used MD 1 s require that all level frequencies 

be the same for any given factor. Examples of this are complete block 

designs and balanced or partially balanced incomplete block designs. In 

addition, most orthogonal designs occur with factor levels (of a given 

factor) having a constant frequency. (There are instances when this is 

not true J however; see Addelman and Kempthorne (1961).) Finally, it 

seems reasonable that we want a fairly uniform variance for contrast 

estimators. This attempt to achieve equal level frequencies may estab­

lish some uniformity of variance on estimators of contrasts in factor FS' 

This quest for uniformity of variance seems rightly justified, since 

often we would have no way of deciding which contrasts are more important. 

In some designs which have equal level frequencies, we do obtain a uniform 

variance on all contrasts involving a given factor, as can be seen from 

the following definition and theorem: 

Definition 2.1 

A connected design is said to be variance balanced for a given 

factor if every effect of the factor is estimated with the same variance 

and every two effects of the factor with the same covariance. (Certainly, 

if a design is variance balanced for a given factor, then any main effect 

linear contrast in the factor can be estimated with the same variance.) 

Theorem 2.1 (Rao, (1958» 

Any binary, two-factor design that has all levels of one factor 

equally replicated will be variance balanced for the other factor if and 

only if the levels of the other factor are equally replicated. (A binary 



-10-

design is one in which every level combination occurs either zero times 

or one time in the design. All MMD's are binary designs.) 

The theorem by Rao seems to justify trying to maintain property I 

for both factors in a two-factor design. In fact, in an m-factor design, 

if we consider level combinations of any (m-l) of the factors as being 

levels of some factor Fn ., where F. is the other factor, then we would 
-1 1 

seem to be justified in trying to maintain property I for factor F., for 
1 

i = 1, Z, •.• , m. There are instances when equal level frequencies do 

not insure uniformity of variance contrasts. Certainly though, the con-

cept of equal level frequencies has intuitive appeal. 

Sennetti (197Z) describes a general method for constructing a mini-

mal multidimensional design in two factors, that is connected for both 

factors. What we will present is essentially the same method, but with 

what seems to be a significant simplification in notation and some simp li-

fication in procedure. After presenting this procedure and giving sev-

eral examples of its use, we will prove that use of this procedure always 

produces a design that is connected for both factors. Then we will con-

sider a method for generating an MMD in three factors that is a simplifi-

cation of Sennetti's three-factor method. We will prove that any design 

generated by this procedure is connected for all three factors. 

Z.3 Constructing Two-factor MMD's 

Consider two factors F1 and FZ" Factor F1 has nl levels and factor 

FZ has nZ levels, where n
1 

~ nZ• We wish to construct a minimal multi-

dimensional design that is connected for factor Fl and factor FZ. If the 

design is to be minimal, we shall need only one more assembly than there 
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are degrees of freedom for Fl and F2 . That is, we need (nl-l) + (n2-l) + 1 

= n
l 

+ n2 - 1 assemblies. First we choose the (nl +n2-l) levels of Fl. 

Then we show how the levels of F2 are chosen to occur with the chosen levels 

of Fl' The procedure to be used to obtain the MMD is as follows: 

(1) 

(2) 

Certainly all nl levels of FI must be used once. Then any n2-l levels 

of factor Fl may be chosen to be repeated. 

Any n2-l of the n2 levels of factor F2 may be paired with the n2-l 

repeated levels of Fl to give n2-l of the assemblies. 

(3) To obtain the assemblies that contain the second replicates of the 

repeated levels of F
l

, we attach to each of these levels, the level 

of F2 that is one higher (mod n
2

) than the level of factor F2 previ­

ously attached to the level of Fl in question. 

(Only in step (3) are we restricted somewhat in the assemblies that 

we choose; however, this restriction rests solely on what we did in (1) 

and (2), steps upon which no restrictions were placed.) 

(4) Now we attach any levels of F2 to the remaining levels of F
l

, just 

being careful to maintain property I of section 2.2 for factor F2 . 

(1) above guarantees that property I is maintained for Fl. 

Example 2.1 

Factor A has 4 levels, factor B has 3 levels. The minimal number 

of assemblies will be na+nb-l = 6. We will use all 4 levels of A, but 

then we can repeat any nb-l = 2 levels of A that we wish. Suppose we 

repeat levels 3 and 4 of A. The levels of A in our 6 assemblies will 

be 
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a 2 

a
3 

a4 
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We choose any two levels of B, say bl and b
3

, for the assemblies that 

contain the first replicates of the repeated levels of factor A. At this 

point we have 

Next we have to pair b2 with the second replicate of a
3 

and b
l 

(which 

is b3+l mod 3) with the second replicate of a4 " This gives 

a
l a

3
b2 

a2 a
4
b

l 

a
3
b

l 

a4b
3 

As the final step, we assign the other two levels of B so as to maintain 

property I for B. One way to do this would be 

a
l
b

2 a
3
b2 

a2b
3 

a4b
l 

8
3
b

l 

a4b
3 

This final design is connected for factor A and for factor B since any two 

levels of A are connected by a chain, as are any two levels of B. We also 
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note that no assembly is wasted because it is repeated. 

2.2 

Factor A has 7 levels, factor B has 7 levels. The number of assem­

blies needed will be (7+7-1)=13. If the repeated levels of A are levels 

1 through 6, then we get, by using step (1) of the procedure, 

as 

a6 

a
7 

a
1 

a2 

a
3 

a
4 

If we choose to use the first six levels of factor B with the replicated 

levels of A, then we get 

albl 
a

l 

a2b2 a2 

a
3
b

3 
a

3 

a4b4 a4 

aSbS as 

a
6

b6 
a

6 

a
7 

Then we attach the appropriate levels of B to the second replicates of 

the repeated A levels. 
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albl albZ 

aZb Z aZb
3 

a
3

b
3 

a
3
b4 

a
4

b
4 

a4b5 

a
5

b
5 a5b6 

a6b6 a
6

b
7 

a
7 

To obtain our final design we use b
l 

or b7 with a 7 in the seventh assembly. 

Either choice of these levels will allow us to maintain property I for 

factor B. If we use level b
7

, then level b
l 

will be replicated one time, 

and all other levels of B will be replicated twice. The final design, 

which is an MMD that is connected for both factors, is as follows: 

albl a
l 

b
Z 

aZbZ aZb
3 

a
3

b
3 

a
3
b4 

a4b4 a4b5 

a5b5 
a

5
b

6 

a6b6 a6b
7 

a
7
b

7 

For simplicity, we will usually denote the (nb-l) repeated levels of fac-

tor A by aI' a 2 , . . ., a l' as we did in this example. 
~-

In either of the examples just given, we can easily specify the 

chain connecting any two levels of A or any two levels of B. For instance, 

in Example 2.2, the chain (aZ' b
3

, a
3

, b
4

, a4) connects levels aZ and a4 

of A. 
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We shall now prove that this procedure does in general, what we 

have illustrated in these two examples. 

Theorem 2.2 

Any minimal two factor design that is generated by the outlined 

procedure is connected for both factors and fulfills the following 

requirement for factor F
S

' where FS can be either of the factors: 

Property I nS-aS levels of FS occur Vs times and as levels of FS 

occur VS+I times in the design. 

Proof: 

We will call the two factors A and B, where the number of levels of 

factor A is greater than or equal to the number of levels of factor B. 

> 
That is, na -~. The procedure itself guarantees that property I is 

maintained for both factors. We only have to show that any design 

generated by the outlined procedure is connected for both factors, 

Under the procedure, (nb-l) levels of factor A are replicated in 

the design. > 
Since na - ~, we know that at least (~-l) levels of fac-

tor B are replicated; these (~-l) levels of B occurring with the (~-l) 

levels of A that are replicated in the design. If it exists, denote the 

non-replicated level of factor B by hI' If there is no non-replicated 

level of B, let hI be any level of B. We see that every level of B, 

except perhaps b
l

, will occur with two levels of A; one of these two 

levels of A will be replicated, occurring with two different levels of 

factor B. Denote by aI' the replicated level of A with which bl occurs 

in the design. Denote by b2 , the other level of B with which a l occurs. 

Denote by a2 , the other level of A with which b2 occurs, and by b
3

, the 
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other level of B with which a2 occurs. We continue this process until 

we denote by b ,the other level of B with which a I occurs in the 
nb nb-

design. 

Certainly this chain connects levels b
l 

and b of factor B. 
~ 

Using the notation above, this chain can be obtained from any design that 

is generated by our procedure. Note that this chain contains all levels 

of factor B. Eccleston (1972) proved that a design is connected for a 

factor if and only if there exists a chain between two levels of the fac-

tor that contains all levels of either that factor or the other factor. 

Thus our design is connected for factor B. Eccleston and Hedayat (1972) 

showed that if a two-factor design is connected with respect to one fac-

tor, then it is connected with respect to the other factor also. Since 

our design is connected for factor B, it must also be connected for fac-

tor A. 

Theorem 2.2 assures uS that we can always construct a minimal, two-

factor deSign, from which we can estimate all main effect, linear contrasts 

in either factor (since the design is connected for both factors). 

2.4 Three-factor Main Effect MMD's 

Next we will consider the problem of generating an MMD in three 

factors. In particular, our interest will lie in situations where there 

are two factors of major interest and a third factor of lesser interest 

or no interest to us. We will still be able to estimate all main effect, 

linear contrasts in all factors, but we may not be able to maintain 
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property I for the third factor. In some instances, though not all, this 

third factor would be blocks. As in the two-factor situation, we assume 

that no interactions exist. 

Consider three factors, A, B, and C, with na , nb , and nc levels 

respectively. Suppose that factors A and C are the factors of greatest 

importance, with n ~ n , and B is the factor for which we may not be 
a c 

able to maintain property I. The MMD we are seeking will have 

First we will consider the level combinations of factors A and B. 

The first (n +nb-l) assemblies will have the same levels of A and B as a . 

we chose in the two-factor case. If na ~ ~, then these combinations 

(using the notation of Theorem 2.2) will be 

a b 
nb+l el 

a b 
nb+2 e2 

be 
na-nb 

Here the be for j=l, 2, ..• , na-n
b 

are arbitrary levels of factor B 
j 

that will allow us to maintain property I for factor B at this stage. 

We need (n -1) more level combinations of A and B. It may not be 
c 

possible to choose (nc-l) of the original (na+nb-l) level combinations and 

still be able to maintain property I for both A and B. Thus level com-

binations are replicated that will allow us to maintain property I for 
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the first factor of prime importance, factor A. Note that a ,a +1, 
nb nb 

a +2' · .. , a have only been used one time so far. These levels 
nb na 

must be used in the last (n -J) assemblies before any other levels of 
c 

A can be used. One way to choose the last (n -1) level combinations of 
c 

A and B would be 

a b 
nb+l 81 

a b 
n

b
+2 82 

an. +n _2b8 
b C n-2 

c 

That is, we choose the n. th combination and the next (n -2) combinations t> . c 

from our original set. 

Next the levels of factor C are attached in a manner that is similar 

to the method used to attach the levels of the second factor in the two-

factor case. The first level of C, c l ' will be used with combination 

The second level of C, c 2 ' is attached to combination anb+lb8l 

and c3 is attached to anb+2b82. The process is continued until we attach 

level c 1 to combination a b 
n - nb+n -2 8 2 c c n-

Then, just as would have 

c 

been done under Theorem 2.2, the second through n th levels of factor C 
c 

are attached to the last n -1 (A x B) level combinations. Any levels of 
c 

C may be used in the remaining assemblies. The only restriction on how 
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we attach levels of C to the remaining combinations is that we do so in 

a manner that will guarantee that property I is maintained for factor C. 

If nb > na , we have to adjust our procedure slightly. After obtain­

ing the first na+nb.,-l (A x B) level combinations, we need to repeat (nc-l) 

of the combinations while maintaining property I for factor A. Certainly, 

the combinations we choose will depend on what levels of A were used with 

the unreplicated levels of B, b b .•. , b n' n +1' n Example 2.4 will 
a a b 

illustrate that no difficulty arises in choosing suitable (A x B) level 

combinations to repeat. After we have chosen the (n -1) combinations to 
c 

replicate, the rest of the procedure is carried out as before. That is, 

we attach levels c l ' c 2 ' • . ., c 1 to the first replicates of the re­
n -

c 

peated (A x B) combinations and levels c 2 ' c
3

' . . ., c to the second 
n 

c 

replicates of the repeated combinations. Levels of C are attached to the 

remaining (A x B) combinations so as to maintain property I for factor C. 

Several examples will illustrate the procedure fully. 

Example 2.3 

Factor A has 10 levels, factor C has 3 levels, factor B (the one 

for which property I may not be maintained) has 7 levels. First we give 

the na+nb-l = 16 level combinations of factors A and B. 

alb l as b l 
a

l
b 2 

a 2b2 ag b 2 
a 2b

3 

a 3b3 
a lOb

3 
a

3
b

4 

a4b4 
a

4
bS 

aSbS 
a

S
b

6 

a6b6 
a6b

7 

a
7

b
7 
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Next we repeat the nb = 7 th combination and the next nc-Z = 1 combina­

tions. These combinations are a
7
b

7 
and a8b

l
. We can now append the 

levels of factor C by the procedure outlined. First levels c
l

' c z ' c
3

' 

., c I of factor C are attached to combinations a b ,anb+lbsl' 
nc- nb nb 

anb+Zbsz' ... , anb+nc-ZbSn -Z (in this case to combinations a 7b7 and 

c 

a8b l ). At this point we have for assemblies 7 and 8, the following: 

a
7 

b7c
1 

a
8 

b
1

c2 

Next levels c2 through cn 
c 

of factor C are attached to the last n -1 = Z 
c 

assemblies, obtaining 

As the final step, we attach levels of C to the remaining combinations 

that will insure that property I is satisfied for factor C. One way to 

do this would be as follows: 

a
l bic i 

ag bZc
3 

a l bZcZ 

aZ b2cZ alOb
3

c1 a2 b 3c3 

a
3 

b
3

c3 
a3 b4c

l 

a4 b4c
I 

a4 b5c2 

as bScZ as b6c3 

a 6 b6c 3 a6 b7c1 

The final design, which is connected for all three factors, is then 
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a
1 blcl 

a lOb
3

cl 

a2 b2c2 a
1 

b2c2 

a3 b3c3 
a 2 b3c3 

a
4 b4c l 

a
3 b4c

1 

as bSc2 a4 bSc2 

a
6 b6c3 as b6c

3 

a
7 

b7cI a6 b7cI 

b
l

c2 a
7 b

7
c2 

a
9 

b2c
3 as b

l
c

3 

Note that levels a
l through as of factor A occur twice, while level a

9 

and level ala occur once. Thus property I is satisfied for factor A. 

All levels of factor C occur six times. Thus property I is satisfied 

for factor C as well. 

Example 2.4 

Suppose that na=4, n
b

=6, and n
c

=3; factor B will be the one for 

which we may not be able to maintain property I. Since nb ~ na , we first 

give the levels of factor B to be used in the first (na+~-l) assemblies 

These are 

Next we attach the appropriate levels of factor A to get the first nine 



two-factor combinations: 

alb l 

a2b 2 

a)b) 

a
4

b
4 

albS 

a
2

b
6 
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We now choose any n -1 = 2 combinations to be repeated that will allow us 
c 

to maintain property I for factor A. If we choose a)b) and a 4b4 , then 

level a
l 

of A will occur twice in the design, while all other levels of 

A will occur three times. Thus property I will be satisfied for factor 

A. If we attach the first through n -1 = 2 nd levels of C to the first 
c 

replicates of these combinations and levels c 2 through cn =c) of C to the 
c 

last replicates of these combinations, we get the assemblies 

a)b)cl 

a
4

b4 c 2 

a)b)c2 

a 4b4c) 

Next the levels of C are attached to the remaining combinations so as to 

maintain property I for factor C. One way to accomplish this would give 

as the final design 



alblcl 

a 2b 2c
3 

a
3

b
3

c
1 

a
4

b
4

c
2 

al bSc3 

a
2

b
6

c
2 

a 2bl c 3 

a 3b2c I 

(l4 b 3('2 
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This design is connected for all three factors, as shown in the follow-

ing theorem: 

Theorem 2.3 

Any design in three factors, A, B, and C, that is constructed by the 

preceding procedure is cOnnected for all three factors and fulfills the 

following requirement for factor F
S

' where FS can be either factor A or 

factor C: 

Property I nS-aS levels of FS occur Vs times and as levels of FS 

occur VS+l times in the design. 

Proof: 

The procedure itself guarantees that property I is maintained for factors 

A and C. All we need to show is that the design is connected for all 

three factors. In order to do this, we will rely on a definition and 

theorem given essentially by Srivastava and Anderson (1970). 

Definition 2.2 

For any m-factor multidimensional design D, let D. be the (m-i+l)-
1 

dimensional design obtained from D by ignoring the factors F
l

, F2 , ••• , 

F. 1. Then F. is said to be connected with respect to factors 
1- 1 
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., F in the original design D, if D. is connected with 
m 1 

respect to F
i

. 

Theorem 2.4 

A multidimensional design D is connected with respect to all m 

factors if and only if the factor Fi is connected with respect to Fi +l , 

., F for i-I, 2, •• 0, m-l. m 

For our particular situation, all we need to show is that the design, 

prior to adding the levels of our third factor, C, is connected with re-

spect to factor A, and that the final design is connected with respect to 

factor C. Our factors, C, A, and B will correspond to F
I

, F2 , and F3 of 

the theorem respectively. 

Recall that we obtained the (A x B) level combinations in the same 

manner that we did in the two-factor case. Thus, by Theorem 2.2, the 

design, prior to attaching levels of factor C, is connected with respect 

to factor A. 

Consider (A x B) level combinations as levels of some new factor, 

say factor J. As far as factors C and J are concerned, we can apply 

Theorem 2.2 again, since we connected the design for factor C just as 

we did in the two-factor situation (where factor J is the first factor). 

Thus the final design is connected with respect to factor C. 

This procedure for constructing an MMD in three factors can quite 

easily be extended to a design of m factors where we desire to estimate 

main effect linear contrasts in all m factors. We may not be able to 

maintain property I for all factors, but we can do so for the two factors 

which we consider to be the important ones. 



CHAPTER 3 

MINIMAL MULTIDIMENSIONAL DESIGNS, 

TWO-FACTOR INTERACTIONS PRESENT 

3.1 Introduction 

In the previous discussion of constructing MMD's, we have assumed 

that no interactions exist. In many instances, this assumption would 

be unrealistic. If there is a good possibility that two-factor inter-

actions do exist, then we would be interested in being able to estimate 

contrasts in these interactions. 

Consider the model for design D, 

where Y
D 

is the observation vector and ~ is the design matrix. The 

parameter vector, £D' will be of the form 

ED (E.! , E.! , r 1 .E.! . ) ., 1:. , 1:
j 

. , . . . , 
11 12 1q lJ2 J rJ s 

1 2 n 
with ~ = (pc,pc' c) and . , Pc 

Here E. refers to the factor F , which does not interact with any other 
c c 

factor and E.ab refers to a pair of factors that interact with each other. 

Definition 3.1 
2 2' 

c c 
Contrasts of the form Pc -Pc are called main effect or type I 

contrasts. 

-25-
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Definition 3.2 
~ ~ ~'~' ~'~ ~~' a b a b a b a b 

Contrasts of the form Pab + Pab - Pab - Pab are called inter-

action or type II contrasts. 

3.2 Type II Connectedness 

Definition 3.3 

Any design which allows estimation of all type I contrasts (of fac-

tors that do not interact) is said to be type I connected. 

Definition 3.4 

Any design which allows estimation of all type II contrasts is said 

to be type II connected. 

We will mainly be interested in three-factor designs, although the 

procedure may easily be extended to the m-factor situation. In these 

three-factor designs we will consider the possibility of one, two, or 

three two-factor interactions. Our procedure will be a modification of 

Sennetti's (1972), but will show some simplification of notation as well 

as providing an easier method of construction. In section 3.6, we will 

outline some of the advantages of this procedure over Sennetti's. 

Recall property I of Chapter 2: 

If FS is any factor in the design, then nS-a
S 

levels of FS 

occur Vs times and as levels of FS occur VS+l times in the 

design. 

If we consider Fe to be any non-interacting factor, then we can try to 

maintain property I for that factor under the model of this chapter. If 

we think of factor Fe as having levels that are actually level combina­

tions of two factors that interact, then we can try to maintain property 
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I for these level combinations. That is, we will consider property I 

for type I and type II contrasts. Sennetti (1972) only considers this 

property with respect to type I contrasts. 

Our model will contain at least one term of the form (as) .. , where 
1J 

here (as) .. is the effect of the level combination of the i th level of 
1J 

factor A and the j th level of factor B. This effect will include the 

main effect of the i th level of A, the main effect of the j th level 

of B, and the interaction effect. Using the notation of section 3.1, 

(aB)ij may be written as p!l. 

The following results by Sennetti give a general way of determining 

whether type II contrasts can be estimated. 

Theorem 3.1 (Sennetti, (1972» 

The linear function (uS)ij-(aS)i'j' is estimable if and only if 

level combination a.b, is connected by a chain to level combination a. ,b." 
1 J 1 J 

where a and b denote the u th level of factor A and the v th level of 
u v 

factor B, respectively. 

Theorem 3.2 (Sennetti, (1972» 

Type II contrasts of the form [(as), .-(aB)",-(aS) .,.+(as).,. ,] 
1J 1J 1 J 1 J 

are estimable if either (aB) .. -(aB) .. , and (aB) .,.-(as)i'" or (aB).,-
1J 1J 1 J J 1J 

(uS) _,_ and (uS) .. ,-(as) _ ,., are estimable. 
~ J ~J ~ J 

The following corollary is a direct result of the two theorems by Sennetti. 

Corollary 3.1 

If a design is connected with respect to level combinations of two 

factors, FI and F2 , then all type II contrasts in (FI x F2) are estimable. 
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3.3 Model A--One Two-factor Interaction 

First we will consider the model 

where Yk is the effect of the k th level of factor C, a factor that does 

not interact with factors A and B. (aB) .. will denote the effect of the 
1J 

ij th level combination of factors A and B. There will be (nanb-l) inde-

pendent differences in (A x B), and (n -1) independent type I con-
e 

trasts in factor C. To be able to estimate all of the type II and type I 

contrasts, we require (na~-l) + (nc-l) = nanb + nc - 2 degrees of free­

dom. Thus if we use an MMD to do this estimation, we will need only 

(n nb+n -1) assemblies. a c 

Since we want to connect the design for level combinations of A 

and B, we can think of these (A x B) level combinations as being levels 

of a new factor, which we might call Fl. As before in the two-fac·tor, 

no interaction problem, we put the nl , i.e., nanb' levels of FI in the 

first n
l 

assemblies, and then repeat (nc-l) of the levels for the last 

(nc-l) assemblies. We will choose the levels of factor FI to repeat and 

attach the levels of C in such a way that property I will be maintained 

for factor Fl «A x B) level combinations) and for factor C. We accom­

plish this in the same manner that we did in the two-factor, no inter-

action situation. 

Example 3.1 

Suppose n =4 
a ' 

Using the procedure outlined above, we would obtain the following design: 



a
l 
b

l 
cl 

al bZcZ 

a 2bl c3 

a 2b2c
l 

a
3

b
l 

c
l 

a 3bZcZ 

a 4b
l

c
3 

a4b2cl 
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From Theorem 2.2, we know that all levels of C are connected as are all 

(A x B) level combinations. Thus in addition to being able to estimate 

all type I contrasts in factor C, Corollary 3.1 tells us that all type II 

contrasts in (A x B) are estimable also. 

Example 3.2 

Suppose n =2, nb=3, and n =7. We will need (2)(3) + (7) - 1 = 12 
a C 

assemblies. Since n > n a , we will first assign the levels of Factor C. 
c a 0 

The levels of C would be 

When we attach the levels of (A x B) as we would the levels of the second 

factor in the two-factor, no interaction problem, we obtain as one possible 
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MMD, the fOllowing: 

alblcl a
l
b2c

l 

a l b2c2 a
l 
b

3
c2 

a
l
b

3
c

3 a 2bl c
3 

a2b
l

c
4 a2b2c

4 

a2b2c
S a2b

3
c

S 

a2b
3

c
6 

a
l

b
l

c
7 

We can estimate a type I contrast such as (Yl-Y2) by the expression 

a l b2cl - a
1

b2c2 . We can estimate a type II contrast such as [(as)ll+ 

(as)22-(aS)12-(aS)21] by the expression (alblcl+a2b2c4-alb2cl-

Theorem 2.2, along with Sennetti's two theorems that are given in 

this chapter, guarantee that we can estimate any type I contrast or 

type II contrast in this model. 

Under models Band C, which we shall discuss in the rest of this 

chapter, we shall give a procedure for generating an MMD that is a sig-

nificant simplification of the procedure suggested by Sennetti (1972). 

3.4 Model B--Two Two-factor Interactions 

Next we will consider model B, 

If we are going to be able to estimate all type II contrasts, we will 

need (n -1) + (nb-l) + (n -1) + (n -l)(~ -1) + (~-l)(n -1) = n ~ + 
a c a 0 0 c ao 
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~n - n - 1 degrees of freedom. o c b 

assemblies in our MMD. 

For model B, as well as model C which we will discuss later, the 

intuitively appealing chain concept of connectedness, as defined by 

Bose (1947), is not applicable. Instead we will use the following defi-

nition, which is more general than the definition given by Bose: 

Definition 3.5 

A design is connected with respect to a factor (or a factor 

combination) if and only if all contrasts in that factor (or factor 

combination) are estimable. 

For the two and three two-factor interaction situations, Sennetti 

(1972) illustrates his procedure for the case of n = n = n . in par­abc' 

ticular for a 3 3 factorial. We will illustrate how our procedure may 

be applied to the more general situation of any na , nb , and nco For 

definiteness, let n ~ n . 
a c 

We know that there are (na-l)(~-l) independent contrasts in as. 

Without loss of generality, we will choose a set of contrasts of the form 

(as)11-(aS)12-(aS)2l+(aS)22 

(as)11-(aS)13-(aS)21+(aS)23 

(as)11-(aS)14-(aS)21+(aS)24 

(as)11-(aS)12-(aS)3l+(aS)32 

(as)11-(aS)13-(aS)31+(aS)33 
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We can easily estimate these contrasts by taking the corresponding 

level combination expressions (each effect is replaced by the correspond-

ing level combination). Of course, we have to keep the level of factor C 

constant for all four assemblies in anyone expression, in order to do 

this estimation. That is, any contrast of the form 

(as) .. -(as)., .-(as) .. ,+(as).,.,) 
1J 1 J 1J 1 J 

can be estimated by the level combination expression 

(a. b . ck-a. ,b. ck-a . b. ,ck+a. ,b. ,ck ) 
1J 1 J 1J 1 J 

for some level k of factor C. This expression has as its expected value 

the contrast we want to estimate. 

Recall that we are trying to obtain a design for which we can 

estimate all type II contrasts with a minimum number of three-factor 

assemblies. If we use the same level of C, denoted cI ' with all the 

(ua-l)(nb-l) expressions, then we would need only nana assemblies to 

estimate the (na-l)(nb-l) independent contrasts. Using level cl ' we 

obtain the following set of expressions that can be used to estimate 

the chosen set of independent contrasts: 
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Set I 

The particular set of contrasts used was chosen for two reasons: 

First, we know this to be a set of (na-l)(~-l) independent contrasts 

since each contrast contains a two-factor assembly of the form (as) '0' 
1.J 

for i, j ~ 1, which occurs only in that particular contrast. Second, 

it can be immediately noted how many times a given (A x B) combination 

occurs in Set I. The combination denoted by alb
l 

occurs (na-l)(nb-l) 

times, aibl , for i ~ 1, occurs (nb-l) times, alb j for j + 1, occurs 

(n -1) times, and a,b, for i, j # 1, occurs one time. This will be im-
a 1. J 

portant when we need to generate our last set of (nbnc-~) assemblies to 

connect the design for (B x C). 

Having obtained Set I, we need to choose an additional (nb-l)(nc-l) 

factor level combination expressions that may be used to estimate a set 

of (nb-l)(nc-l) independent contrasts in the effects of (B x C) level 

combinations. An easy way to determine a set of (nb-l)(nc-l) independent 

contrasts in (B x C) is just to consider that would happen if we used a 
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different level of C, c
k 

for k=2, 3, . . ., n , with the first two 
c 

(A x B) combinations in ("b -1) (n
c 
-1) of the expressions in Set I. 

We will use level 2 of C with the first combination difference in 

(nb-l) of these expressions, then level 3 of C with the first differ­

ence in another "b-l of these expressions, ... , then level nc of 

factor C with the first difference in the last chosen set of (nb-l) 

expressions. These sets of (nb-l) expressions are chosen so that we 

obtain all possible combinations of our third factor, factor C, and the 

factor that interacts with C, factor B. The sets of assembly combina-

tions that we obtain are 

Set II 

albIc -alb c -a blcl+a b cI n nb n n n n. c c a c D 

We have attached the remaining (n -1) levels of C, one time each, to each 
c 

of the first differences in the (A x B) expressions. This gave us an 

additional (nb-l)(nc-l) three-factor level combination expressions. The 

expected value of any of the expressions given above will be the sum of 

a contrast in (A x B) and a contrast in (B x C). As an example, for the 
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expression Calblck-albjck-aiblcl+aibjcl)' we would get the expected value 

[(O:S)11-Cctf3)lj .... (O:S)il+(O:S)ij] + [CSY)lk-(SY)jk-(SY)ll+(SY)jlJ· We can 

estimate the (B x C) contrast by taking the difference between the level 

combination expression given above and the one that estimates [(as)ll­

(o:S)lj-CO:S)il+CaS)ij] in Set I. Thus for each of these (nb-l)(nc-l) 

expressions that we have formed, there is a corresponding estimable 

contrast in (B x C). These contrasts are independent since each contains 

a term of the form (SY)jk which only occurs in that particular contrast. 

(This is the second term of the contrast.) 

If we put our two sets of expressions together, we see that we can 

estimate (na-l)(nb-l) independent interaction contrasts in (A x B), and 

(~-l)Cnc-l) independent interaction contrasts in (B x C). Now we need 

to consider how many assemblies were used in estimating these contrasts. 

In obtaining the first (na-l)(nb-l) expressions, we used only na~ 

assemblies. In Set II, it can be noted that expressions 1, nb , 2n
b
-l, 

3~-2, .•. , Cn
c
-2)nb-(n

c
-3), each have two new assemblies. Or in these 

n -1 expressions, we have 2(n -1) new assemblies. In each of the remain-
c c 

ing (~-2)Cnc-l) expressions, we have only one new assembly each. Thus 

the total number of new assemblies used in Set II is 2(n -1)+(~-2)(n -1) 
c b c _ 

= nbne-nb " The total number of assemblies used in the procedure is 

(nanb+nbnc-nb)' the minimum number possible for a completely connected 

design under model B. Thus our design will be an MMD. 

3.3 

We want to obtain an MMD for the following situation: A three-level 

factor and a five-level factor, which do not interact. A four-level 
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factor which interacts with both the other two factors. In order to use 

the same notation as in our description of the general procedure, \.,7e 

will call the four-level factor, factor B, the five-level factor, factor 

A, and let factor C be the three-level factor. 

First we will give the (na-l)(~-l) = (4)(3) = 12 contrasts in 

(A x B). We choose (as)ll (just some convenient level combination effect) 

to repeat in each of these contrasts. 

(as)11-(aS)12-(aS)2l+(aS)22 

(as)ll-(aS) (as)2l+(aS)23 

(as)11-(aB)14-(aB)21+(aS)24 

(as)11-(aB)12-(aB)3l+(aS)32 

(aB)II-(aS)13-(aS)31+(aS)33 

(as)11-(aS)14-(aS)3l+(aS)34 

(as)11-(aB)12-(aS)4l+(aB)42 

(aB)11-(aS)13-(aB)41+(aB)43 

(as)11-(aS)14-(aS)4l+(aB)44 

(as)11-(aS)12-(aS)Sl+(aS)S2 

(as)11-(aS)13-(aB)Sl+(aS)S3 

(as)11-(aS)14-(aS)Sl+(aS)S4 

To estimate these 12 contrasts we attach some convenient level of factor 

C (denoted c
l

) to each of the (A x B) level combinations that correspond 

to the effects in the chosen contrasts. We get the following assembly 

expressions: 
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Set I 

alblcl-alb2cl-a2blcl+a2b2cl 

alblcl-alb3cl-a2blcl+a2b3cl 

alblcl-alb4cl-aZblcl+a2b4cl 

alblcl-alb2cl-a3blcl+a3b2cl 

alblcl-alb3cl-a3blcl+a3b3cl 

alblcl-slb4cl-a3blcl+a3b4cl 

alblcl-alb2cl-a4blcl+a4b2cl 

alblcl-alb3cl-a4blcl+a4b3cl 

alblcl-alb4cl-a4blcl+a4b4cl 

alblcl-alb2cl-aSblcl+aSb2cl 

alblcl-alb3cl-aSblcl+aSb3cl 

alblcl-alb4cl-aSblcl+aSb4cl 

The assemblies used in these expressions are 

albic i 
a2b4c

1 

a
l
b2c

l a3b
l

c
i 

a
l
b

3
c

1 
a

3
b2c

1 

a
1

b
4

c
1 

a
3
b

3
c

1 

a2bl c l a3b 4 c i 

a2b2cl 
a4b

1
c

l 

aZb3c1 
a4bZcl 

a4b
3

cI 

a 4b4cI 

aSb1cl 

a Sb2c
I 

a Sb
3

c
I 

a Sb4c
l 

Next we need to obtain assembly combinations expressions to esti-

mate (nb-l)(nc-l) = (3)(2) = 6 independent, type II contrasts in (B x C). 

To obtain these, we vary the level of C used with the first two terms of 
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each of the appropriate 6 expressions chosen for (A x C). These new 

assembly expressions are 

Set II 

alblc2-alb2cZ-a2blcl+a2bZcl 

alblc2-alb3c2-a2blcl+a2b3CI 

alblc2-alb4c2-a2blcl+aZb4cl 

alblc3-alb2c3-a3blcl+a3b2cl 

alblc3-alb3c3-a3blcl+a3b3cl 

alblc3-alb4c3-a3blcl+a3b4cl 

Here the expressions chosen from Set I to be modified were the first six. 

We needed to insure that every level of B would occur with every level of 

factor C. Levell of C occurs with every level of B in Set I. All other 

levels of C occur with all levels of B in Set II. The expected values of 

the expressions in Set II are 

[(as)11-(aS)12-(aS)2l+(aS)22 J + [(SY)12-(SY)Z2-(SY)II+(SY)2I J 

[(as)11-(aS)13-(aS)21+(aS)23] + [(SY)12-(SY)32-(SY)11+(SY)3I J 

[(as)II-(aS)14-(aS)21+(aS)Z4] + [(SY)12-(SY)42-(SY)11+(SY)4I J 

[(as)11-(aS)12-(aS)31+(aS)32 J + [(SY)13-(SY)Z3-(SY)11+(SY) Zl l 

[(as)11-(aS)13-(aS)31+(aS)33] + [(SY)13-(SY)33-(SY)11+(SY)3l1 

[(as)11-(aS)14-(aS)31+(aS)34] + [(SY)13-(SY)43-(SY)11+(SY)4l] 

The six (B x C) contrasts above are independent and can be estimated by 

taking the appropriate expression from Set II and subtracting the corre­

sponding expression in Set I. For instance, to estimate [(SY)13-(SY)23 

-(SY)II+(SY)2l], we would use the difference 
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The new assemblies in Set II are 

a l bl c2 a
l
b

l
c3 

a
l
b2c2 a

l
b2c3 

a
l
b

3
c2 a

l
b

3
c

3 

a
l
b4c2 a

l
b

4
c

3 

We know that the design is connected for (A x B) and for (B x C). Thus 

the design will be an MMD if it has (nanb+nbnc-nb) = 28 assemblies, the 

minimum number possible for a connected design under this model and these 

conditions. Since we have a total of 20 (set I) and 8 additional (Set II) 

assemblies, we know that the design generated above is an MMD. 

3.5 Model C--Three Two-factor Interactions 

Under model C, 

we have the assumption that all possible two-factor interactions exist. 

We want to construct an MMD with which we can estimate all type II con-

trasts in (A x B), (A x C), and (B x C). We will need 

[(na-l) + (nb-l) + (nc-l) + (na-l)(~-l) + (na-l)(nc-l) + (~-l)(nc-l) + 1] 

= [nanb+nbnc-nb] + [(na-l)(nc-l)] assemblies. For model C, we will use 

the same [na~+nbnc-nb] assemblies to estimate the (na-l)(nb-l) independent 

ccntrasts in (A x B) and the (nb-l)(nc-l) independent contrasts in (B x C) 

as we did under model B. All we need is an additional set of (n -l)(n -1) a c 

new assemblies to use in estimating a set of (n -l)(n -1) independent 
a c 
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contrasts in (A x c). In order to be able to estimate such a set of 

contrasts t we certainly will need all possible level combinations of 

(A x C) in our design. 

In Set I for our design under model Bt we had level one of factor 

A occurring with level one of C. In Set II, we had level one of A 

occurring with all other levels of C. Thus we need to let the remaining 

(n -1) levels of A occur with the remaining (n -1) levels of C. 
a c 

For definiteness, let n ~ n and nb~ n. With this ordering of 
a c c 

numbers of levels, we can first choose the assemblies necessary to esti-

mate the (A x B) contrasts, then choose the additional assemblies neces-

sary to estimate the (B x C) contrasts, as we did under model B. Since 

we know (n -l)(~ -1) ~ (n -l)(n -1). 
a 0 a c 

Thus we can get 

(n -l)(n -1) level combination expressions (Set III) that will be used a c 

when we estimate the (A x C) contrasts from the (na-l)(nb-l) expressions 

used to estimate the (A x B) contrasts. One way to obtain these expres-

sions is as follows: Use level 1 of C with the second and fourth terms 

of the expressions used to estimate the (A x B) contrasts (Set I) and 

levels Z, 3, ... , n of C with the first and third terms of the expres­
c 

sions. For instance, the first new expression will be (alblcZ-albZcl 

-aZblcZ-aZb2cl)' This expression has an expected value of 

[(as)ll-(aS)lZ-(aS)Zl+(aS)Zz] + [(SY)lZ-(SY)ZI-(SY)lZ-(SY)ZlJ 

+[(aY)IZ-(aY)ll-(aY)ZZ+(aY)Zl] 

We already have the assemblies to estimate the (A x B) contrast and the 

(B x C) contrast is O. Thus this expression, along with the appropriate 

expression from Set I, can be used to estimate the (A x C) contrast. 
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We will apply this same modification to (n -l){n -1) of the expressions 
a c 

in Set T. We choose the expressions to be used that will give us, in 

the third term of the expression, all possible (A x C) combinations that 

have not occurred in Set I or Set II. The entire set of (n -l)(n -1) 
a c 

new assembly expressions would be 

alblc2-alb2c1-a2blc2+a2b2c1 

a1b1c3-a1b3c1-a2blc3+a2b3cl 

Set III 

Each of the expressions above has an expected value that is the sum of 

an estimable (A x B) contrast and a contrast in (A x C). Since the third 

term of each of these (A x C) contrasts occurs in only that contrast, we 

know the contrasts are independent. 

Each of these new expressions contains only one new assembly, the 

one that is the third term in the expression. Thus by the addition of 

(n -l)(n -1) new assemblies, we are able to estimate a set of (n -l)(n -1) 
a c a c 

independent contrasts in (A x C). We use the assemblies chosen under 

model B and augment these with the assemblies first used in Set III. We 

obtain a three-factor, three two-factor interaction, minimal design in 

which all type II contrasts are estimable. 
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Example 3.4 

Suppose we have a three-factor experiment and suspect that all 

three two-factor interactions exist. The three factors have three, four, 

and two levels respectively. To be consistent with the notation pre­

viously used, we can denote the four-level factor, factor B, the three­

level factor, factor A, and the two-level factor, factor C. Using the 

procedure of model B, we can get a set of (na-l)(nb-l) = 6 independent 

contrasts in (A x B). The assembly expressions required to estimate one 

such set of contrasts would be 

Set I 

alblcl-alb2cl-a2blcl+a2b2cl 

alblcl-alb3cl-a2blcl+a2b3cl 

alblcl-alb4cl-a2blcl+a2b4cl 

alblcl-alb2cl-a3blcl+a3b2cl 

alblcl-alb3cl-a3blcl+a3b3cl 

alblcl-alb4cl-a3blcl+a3b4cl 

The assemblies used in Set I are 

alblcl 
a 2b

l
c

1 

a
l

b2c
l 

a2b2c
l 

a
l

b
3

c
l 

a2b3c
l 

al b4c
l 

a2b
4

c
l 

a
3

b
l

c
l 

a
3
b2c

1 

a3b3cl 

a
3
b

4
c

l 

Next we obtain the (nb-l)(nc-l) • 3 assembly expressions that may be used 

to estimate a complete set of three independent contrasts in (B x C). 



-43-

Set II 

alblcZ-albZcz~aZblcl+aZbZcl 

alblcZ-alb3cZ-aZblcl+aZb3cl 

alblcZ-alb4cZ-aZblcl+aZb4cl 

The new assemblies required here are 

To get the (n -l)(n -1) = Z assembly expressions necessary to estimate a 
a c 

complete set of independent (A x C) contrasts, we use level Z of factor C 

with the first and third terms and level 1 of C with the second and fourth 

terms of expressions 1 and 4 of Set I. The expressions obtained are 

Set III 

alblcZ-albZcl-aZblcZ+aZbZcl 

alblcZ-alb2cl-a3blcZ+a3bZcl 

The only new assemblies required for Set III are 

Thus our final design is 

a l bl c i 
aZb3c

I alblcZ 

albZcl 
aZb

4
c

I albZcZ 

a
1 

b
3

c
1 

a
3
b

l
c

i 
a

1
b

3
cZ 

a1b4cI 
a

3
bZc

I a1 b 4 C z 

aZblcl 
a

3
b

3
c

I aZblcZ 

aZbZcI 
a

3
b

4
c

1 
a

3
b

l 
Cz 

Using this design it is possible to estimate all possible type II 
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contrasts in (A x B), (A x C») and (B x C). The design is a minimal multi-

dimensional design since only {[n nb+nbn -nb ] + [en -l)(n -I)]} = 18 a cae 

assemblies were used. 

3.6 Advantages of the Procedure 

Sennetti (1972) comments on the difficulty of constructing even one 

MMD for the situation we had in model B or model C. He suggests that the 

construction of a single MMD for these cases might in itself be an opti-

mality criterion. We have shown, in this chapter, a relatively simple 

. way to construct one particular design with which we can estimate all 

type II contrasts from a given set. Actually we have a certain amount 

of flexibility in generating our deSign. We could vary our choice of 

repeated (A x B) combination in Set I or vary the chosen level of factor 

C in Set I. This actually gives us a choice of n nbn different designs. 
a c 

No matter which of these designs we choose, we can estimate any linear 

contrast in the chosen complete independent set of contrasts for the 

factors in question. Since the set is complete, any possible linear con-

trast in the factors will be a linear combination of the contrasts in the 

set, and can be estimated. 

Certainly the procedure we have outlined for constructing an MMD 

for the model B and model C situations is not the only one that could be 

used. Since this is true, we need to say a few words about the advantages 

of this procedure over other possible procedures (such as the one used by 

Sennetti (1972) for the simple case of a 3 3 factorial). 

The first advantage of our procedure lies in its simplicity of use; 

the procedure is easy to apply and can be used for any experiment under 
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model B or model C, no matter how many levels the factors have. 

Sennetti's procedure is difficult or perhaps impossible to apply for 

this general situation of unequal n's. 

The next thing to consider is ease of contrast estimation. In any 

MMD, we know that every possible contrast is estimable. However, it may 

be quite difficult to determine what combination of observations to use 

in this estimation. It is with respect to ease of estimation of any 

arbitrary contrast, that we notice a very interesting and useful property 

of designs generated by our procedure: If the repeated (A x B) combina-

tion of Set I is denoted alb
l

, and the repeated level of C in Set I is 

denoted cI ' then for 

(a) Contrasts in (A x B): Every possible (A x B) level combination 

occurs with level I of C. To estimate any (A x B) contrast of the 

form [(as)'j-(aS) 'j,-(aS)., .+(as).,.,], we can use the assembly 
1 1 1 J 1 J 

combination (aibjcl-aibj ,cl-ai,bjcI+ai,bj,cI). 

(b) Contrasts in (B x C): All possible (B x C) combinations of the form 

bjcI for j=l, 2, ... , nb occur with level I of A in Set I. All 

other (B x C) level combinations occur with level I of A in Set II. 

Thus we can estimate any (B x C) contrast of the form 

[(SY)jk-(SY)jk,-(SY)j'k+(SY)j 'k'] by the expression 

(albjck-albjck,-albjtck+albj'Ck') · 

(c) Contrasts in (A x C): All (A x C) combinations of the form aicl for 

i=l, 2, ..• , na occur with level 1 of factor B in Set I. All (A x C) 

combinations of the form alc
k 

for k=2, 3, ..• , nc occur with level 

1 of B in Set II. All other (A x C) combinations occur with level 
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1 of B in Set III. Thus, we can estimate any (A x C) contrast of 

the form I(aY)ik-(aY)ik,-(aY)i'k+(aY)i'k,J by the expression 

(aiblck-aiblck,-ai,blck+ai,blck')' 

The preceding discussion illustrates probably the biggest advan-

tage of designs generated by our procedure: It is always immediately 

obvious how to estimate any type II contrast. We never have to search 

for the proper linear combination of contrasts in our set in order to 

decide how to estimate any given contrast of interest. 

Sennetti (1972) has discussed type II connectedness with respect 

to a model of the form E(y"k ) = (as) .. +(yo)k ' in addition to our 
1J m 1J m 

models A, B, and C. If we let level combinations whose effects are 

the (yo)km be levels of our factor C, then this design is equivalent 

to our model A. All definitions and theorems of this work which are 

given for model A will apply to this model also. For this reason, we 

will not discuss this model explicitly throughout this work. 



CHAPTER 4 

MINIMAL AUGMENTED MULTIDIMENSIONAL DESIGNS 

4.1 Introduction 

At this point in the work, we have discussed the generation of 

designs with certain desirable properties. In each case, we have tried 

to obtain the entire design to be used in a given experiment. However, 

the occasion may arise when we wish to add one or more additional 

assemblies to an existing design. This may occur because some data 

has been taken and this data is too valuable to waste. In this chapter 

we will discuss how we can "best" augment an existing design under con­

ditions such as these. 

Consider the following situation: An experimenter has assumed a 

certain model to be correct and has run the experiment using an appro­

priate design. The model chosen will reflect the effects the experimen­

ter thinks are present. The design chosen will reflect this information, 

and perhaps what contrasts are of interest, as well as the restrictions 

placed on the design by practical considerations such as high cost per 

observation. Suppose, after part or all of the experiment has been run, 

the experimenter obtains information (either from the data or from some 

other source) that makes him believe that the design chosen may not be 

adequate. The experimenter could just discard the data already obtained 

(and the design used) and attempt to generate a completely new, appropriate 

-47-
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design. However, often it would be impractical or even impossible to 

obtain all new data. Thus a more practical approach would be to augment 

the original design in order to obtain a new design which is adequate in 

light of the new model and the additional information now desired. 

As an example, the experimenter may desire to run a 33 factorial 

experiment. Since he believes that all interactions are insignificant, 

he uses a design which is useful for estimating main-effect contrasts 

only. If he later decides that perhaps there is one two-factor inter­

action present, he would augment the design so as to be able to estimate 

the appropriate type II contrasts as well as the remaining main-effect 

contrasts. 

4.2 Augmenting Existing Designs 

There are many ways to add new design points so as to make the new 

design completely connected (type I and type II connected). If the num­

ber of new assemblies added is minimal, then the new design would be a 

minimal augmented multidimensional design (MAMD). 

Definition 4.1 (Sennetti (1972» 

The multidimensional design D* is said to be a minimal multidimen­

sional design (MAMD) with regard to the multidimensional design (MD), D, 

if T* has the minimum number of assemblies such that D* = D + T* is 

completely connected. 

The concepts and procedures involved in generating MMD's in Chap­

ters 2 and 3 can be employed to obtain minimal augmented multidimensional 

designs under certain conditions. Consider the usual linear model 
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The following theorem was given by Sennetti (1972); 

Theorem 4.1 

For a given MD, D, there exists an MAMD, D* = D + T* with the 

number of assemblies in D* equal to h(D*), where h(D*) = hen) + h(T*), 

and h(T*) = v('£n) - r(Xn) , v('£D) is the number of degrees of freedom 

for ED and r(Xn) is the rank of ~. 

(Note that here v(E
D

) includes one degree of freedom for the overall 

mean.) 

4.3 HA.MD' s--Model A 

For model A, 

it is quite easy to get T*. We first insure that the design is con-

nected for factor C. Then we add assemblies until all possible (A x B) 

combinations occur in the design. 

Example 4.1 

Suppose n =2, nb=3, n =3 with n given as follows: 
a c 

a
l

b2c 3 

a l b2c2 

a l b3c l 

a2bl c2 

a2b2c 3 

To connect the design for C, we would repeat level combinations of (A x B), 

just as we did in Chapter 3. We attach a level of C to each of these 
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combinations that is one higher (mod n ) 
c 

than the level of C used pre-

viously with the (1\ x B) combination. Here if we repeated a
l
b2 , then 

we would use level one of C since a
l

b2c
3 

is in the design. Of course, 

a
l
b2c2 is in the original design also, but it would be of no value to 

add al bZc
3 

since this would be repeating an entire assembly. Other 

possible new assemblies would be a l b3cZ' a 2bl c3 , or a 2bZc
l

• We decide 

which combination to repeat by noting which levels of C need to be con-

nected. That is, if we need to connect levels two and three of C, we 

can do this by adding a new assembly with level three of C, since level 

two of C already occurs with the same (A x B) combination in the design. 

In this example, we need to connect levels one and two or to connect 

levels one and three. Thus either a l b3c2 or albZcl may be used. If we 

use a l b3cZ' then we have, at this point, for our design 

a
l

bZc
3 

albZcZ 

a
l

b
3

c
l 

a2b
l

c Z 

a ZbZc 3 

a
l

b
3

c 2 

This design is connected for factor C. Now we need to insure that all 

(A x B) level combinations are included in the design. In these new as-

semblies, the level of C is not important, since we know that if the 

design is connected for factor C, then it will be connected for (A x B) 

combinations. (This is based on the theorem by Eccleston and Hedayat 

(1974) which says that any two-factor design that is connected for one 
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factor is connected for the other factor also.) We only need to add 

the (A x B) combinations alb l and a2b3 . If we use levels one and three 

of C, respectively, with the two combinations, we get as our final 

design 

D* 

a
l

b2c3 a2b2c3 

al b2c2 a l b
3

c2 

a l b3c
l alblc l 

a 2bl c2 a 2b
3

c3 

D* is completely connected and all type I contrasts in C and type II 

contrasts in (A x B) are estimable. The number of assemblies we added 

was V(ED) - r(~) = 8 - 5 = 3. Thus by Theorem 4.1, D* is an MAMD. 

4.4 MAMD's--Model B 

Consider model B, 

Although the procedure here will not be as simple as for model A, we can 

still show how to augment the design. We will first augment the design 

to connect it with respect to (A x B) and then with respect to (B x C). 

To augment the design for (A x B), we first need to insure that all level 

combinations of (A x B) occur in the design. In fact, if we had all 

possible level combinations of (A x B) occurring with a constant level of 

C, then the design would be type II connected for (A x B). (This is the 

same procedure used to get Set I when we were generating a completely 
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connected design for model B in Chapter 3.) We choose the level of 

C that will allow us to do this with the least number of new assemblies. 

Next we add additional assemblies until all possible (B x C) level com­

binations occur in the design. The levels of A used with this last set 

of (B x C) level combinations is immaterial. 

Example 4.Z 

We shall consider the same original design as in example 4.1, but 

under the assumption of model B. 

D 

al b2c
3 

albZcZ 

a l b
3

cl 

a2b
l

c 2 

a Zb2c
3 

Level combinations albZ and aZbZ both occur with c3 • Also, albZand a 2bl 

occur with cz. No other level of C occurs with as many (A x B) combina­

tions. Thus C z or c
3 

would be the appropriate level of C to use with 

the (A x B) combinations to be added. If we choose c3 , then we would 

add assemblies a
l
b l c3 , a l b

3
c

3
, aZbl c

3
, and aZb3c

3
" The augmented design 

will be type II connected for (A x B). 

Next we add assemblies so as to have all possible (B x C) combi­

nations in the design. The assemblies a
1

b
l

c
l

, a Zb2c
l

, and a2b
3

c2 will 

accomplish this. As noted before, the level of A used with these last 

three assemblies is of no consequence. The final design, D*, will be 

type II connected for (A x B) and for (B x C). 
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D* 

a
l
b 2c

3 
a

l
b

l
c

3 

a l b2c2 
a

l
b

3
c

3 

a l b3cl a 2b
l

c
3 

a 2bl c2 a 2b
3

c
3 

a2b2c
3 

a
2

b
2

c
I 

a2b
3

c 2 

a
l

b
l

c
1 

Here the degrees of freedom for the parameter vector (independent of 

design) is V(E-
D

) = ([1+2+2+(2) (1)+(2) (2)] +l} = 12, the last degree of 

freedom being for the overall mean. The rank of the X matrix for the 

original design is r(~) = 5. Thus v(E
D

) - r(~) = 7. Since we added 

only seven assemblies to completely connect the design, we know that 

D* is an MAMD. 

4.5 MAMD's--Model C 

For model C, 

E(yijk) = (as)ij + (aY)ik + (SY)jk' 

we follow the same general procedure. First we add assemblies to type II 

connect the design for (A x B), using a constant level of C. Then we add 

assemblies to type II connect the design for (B x C) using a constant 

level of A. Finally, we add assemblies that will insure that all possible 

level combinations in (A x C) occur in the design. 

Example 4.3 

Same original design as in 4.1 and 4.2. All two-factor interactions 



will be assumed present. 

D 

a l b2c 3 

a
l 

b 2c
Z 

a
l

b
3

c
l 

aZblcZ 

a Zb2c
3 
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To type II connect for (A x B), we add the same four assemblies as in 

4.Z. These are 

alblc3 

a
l

b
3

c
3 

a Zb
l

c
3 

a
Z

b
3

c
3 

Next we get all possible (B x C) combinations with a constant level of 

factor A. If we choose level aI' then we can do this with only four 

additional assemblies. (If we had chosen level a2 , it would have re­

quired five additional assemblies.) Using level one of A, we get the 

new assemblies 

albic i 

alblcZ 

a
l

b2c I 

a
l

b3c 2 

Finally we add assemblies to insure that all possible (A x C) level 

combinations occur in the design. The single assembly 

a Zb3c I 
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will accomplish this. The final design is completely connected. 

D* 

a
l
b2c

3 
a

l
b

l
c

3 

a
l

b2c2 a
l
b

3
c

3 

a l b3cl a 2bl c3 

a2bl c2 a2b
3

c
3 

a2b2c
3 alblcl 

a l b
l

c2 

a
l
b2c

l 

a
l
b

3
c2 

a 2b
3

c
l 

We note here that V(ED) = [1+2+2+(1)(2)+(1)(2)+(2)(2)] + 1 = 14, while 

r(~) = 5. Since we only had to add 14 - 5 = 9 assemblies to completely 

connect our design, we know that D* is an MAMD. 

Under models A, B, and C, we did not have to worry about augment­

ing the design to type II connect it with respect to the last effect 

considered. We only have to insure that all possible level combinations 

associated with the effect are in the design. Actually, this also 

happened in Chapter 3 when we were generating MMD's. That is, another 

way to interpret our procedure to get Set II under models A and B, and 

to get Set III under model C, is as an orderly way of insuring that all 

level combinations associated with the last effect considered, actually 

occur in the design. We proved in Chapter 3 that the last effect 

considered was type II connected by using the following argument; Since 

the complete set of independent contrasts of Set II (or Set III under 
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model C) is estimable, the design is type II connected for the effect 

considered in Set II (Set III for model C). Sennetti (1972) has stated 

an equivalent result, uSing the reasoning of the augmentation procedure 

of this chapter, as one result of the following theorem: 

Theorem 4.2 

An MD, T, is completely connected if and only is there exists a 

sequence of designs T , w=O, 1, •.• , M*(T)-2 such that T is connected 
w 

w. r. t. at least one S , where S belongs to T. 
a a 

represents the set of all factor levels (or factor level combi-

nations) associated with the effect in question.) 

There certainly is another possible consideration with respect to 

augmenting existing designs so as to obtain MAMDls. That is, of the 

possible sets of additional assemblies that will give us an MAMD, is one 

set better than another? We would like to be able to state and justify 

some criterion for choosing a particular design from the set of designs 

that may be obtained by the procedure of this chapter. 

First of all, it seems reasonable that if the property of equal 

level frequencies was desirable when trying to generate an MMD, then the 

property would be desirable here. That is, we will try to obtain a design 

for which the following property of Chapter 2 is satisfied: 

If Fe is anyone of the k factors in the design, then nS-aS 

levels of FS occur Vs times and as levels of Fe occur VS+l 

times in the design. 

The reasons for attempting to maintain property I have been given 

in Chapter 3. Of course, it may not always be possible to maintain 
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this desirable property, but we will do so if possible. On the other 

hand, we may have a set of potential MAMD's that are equally good 

according to the criterion of property I. There should be some way 

of choosing a design, using a different criterion than the one we 

have just discussed. Such an optimality criterion will be considered 

in the following chapters and applied to the present situation in 

Chapter 10. 



CHAPTER 5 

TYPES OF CONNECTEDNESS--S AND C-OPTIMALITY 

5.1 Introduction 

We have discussed generating an entire design with certain 

desirable properties or improving a given design with the addition of 

new assemblies. However, the occasion may arise in which we have a 

given design and are unable to increase the design size by adding new 

assemblies. In Chapters 5, 6, and 7, we discuss some possible criteria 

to be used in comparing existing designs, and procedures that may be 

used to improve certain existing designs with respect to two of these 

criteria. 

Consider some design with two factors, A and B. 

interested in estimating contrasts in effects of A: 

Suppose we are 

i . e ., (a, -a, ,) 
J J 

for j1j'. To say that (a,-a,,) can be estimated (or to say that there 
J J 

is a chain between a, and a, ,) is equivalent to saying that at least 
J J 

one replicate of a, is connected by a chain to at least one replicate of 
J 

a
j

" or that at least one replicate of a
j 

can be used in the estimation 

of (a,-a, ,), If we have m , replicates of a, in the design, then as far 
J J aJ J 

as estimation of (aj-a
j

,) is concerned, many of these replicates may be 

wasted. Connectedness does not imply full utilization of factor level 

replicates in the estimation of contrasts. 

We will consider a procedure that will increase the utilization of 
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factor level replicates in the estimation of contrasts. This is a 

question of improving an existing design when we are unable to increase 

the number of design pOints or even to change the number of replicates 

of any factor level. That is, if m .. is. the number of replicates of 
1J 

level j of factor I, then we will unable to change m
ij 

for any i,j. 

5.2 Pseudo-global Connectedness 

In developing a procedure to improve an existing design without 

altering any of the m .. , we will use the following concepts and termi-
1J 

nOlogy: 

Definition 5.1 (Eccleston and Hedayat, (1974» 

A locally connected (I-connected) design is any two-factor, no 

interaction design that is connected for both factors according to the 

definition of Bose (1974). 

Definition 5.2 (Hedayat, (1971» 

A globally connected design is any two-factor, no interaction design 

in which every pair of levels of one of the factors is globally connected. 

Two levels of a factor, i and j, for i1j, are said to be globally con-

nected if every replicate of i is connected by a chain, as defined by 

Bose (1947), to every replicate of j. 

Definition 5.3 (Eccleston, (1972» 

Two levels of a factor, i and j, for ifj, of a two-factor, no 

interaction design, are said to be pseudo-globally connected (pg-connected) 

if each replicate of i is connected by a chain, as defined by Bose (1947), 

to at least one replicate of j and vice versa. A design is pg-connected 

for a factor if every pair of levels of that factor is pg-connected. 
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The major importance of having a design that is globally connected 

or pg-connected may be seen in the following discussion: For a globally 

connected design, every replicate of level j of factor A and every re-

plicate of level j' of factor A can be used together in the estimation 

of the linear contrast (a.-a.,). This yields a maximum of m .m ., esti-
J J ~ ~ 

mates of (a.-a. I)' For a pg-connected design, we still have utilization 
J J 

of every replicate of any given factor level involved, when estimating a 

linear contrast. That is, every replicate of each factor level in the 

contrast can be used at least once in the estimation of the contrast. 

No replication is wasted. (See Eccleston and Hedayat, 1974.) We have 

at least max(m .,m .,) estimates of the contrast. For a I-connected 
aJ aJ 

design, we only are insured that at least one replicate of any factor 

level involved can be used in the estimation of the contrast. We may 

have only one estimate for the contrast. 

We see that designs generally improve (with respect to number of 

contrast estimates) when we go from I-connected to pg-connected to 

globally connected designs. At each step, we use more and more obser-

vations in the estimation procedure. We will try to change an I-connected 

design into a pg-connected design in order to more fully utilize our 

factor level replicates. 

5.3 S-optimal Designs 

There is another reason to consider pg-connected designs. Under 

some conditions, the pg-connected design will be better (according to 

certain optimality criteria which we will discuss) than the I-connected 

design. In order to discuss these criteria, we need to consider another 
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definition of connectedness (or I-connectedness), which uses the concept 

of the coefficient matrix. The coefficient matrix has traditionally been 

defined as follows: 

Definition 5.4 

Consider the class of incomplete block designs, D , with v treat­
vm 

ments arranged in m blocks. Treatment j is replicated r. times and block 
J 

i is of size ki • The intrablock estimates of treatment effects may be 

given by 

cf = Q 

where T is the parameter vector and C is defined as 

. . ., 

where N is the incidence matrix of the design. C is called the coefficient 

matrix. -1 -1 g = T - N[diag(kl ' k2 ' •.. , 

of treatment and block totals. 

k-l)]B, where T and B are vectors 
m -

We will uSe the concept of the coefficient matrix with respect to 

any design that has two or more factors and no interaction. If we are 

considering a particular factor, say factor F, then we can obtain eF, the 

coefficient matrix for F. The rj of the definition will be the numbers of 

replicates of the levels of F and the ki will be the numbers of replicates 

of the levels of the other factor (or the number of replicates of the 

level combinations of the other factors). If T' = (T
l

,T 2 , ., T ) 
V 

is the parameter vector corresponding to factor F, then we want to be 

able to estimate contrasts of the form (T.-T.,) for all j and j'. 
J J 
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Definition 5.5 (Chakrabarti, (1973» 

A design is connected for factor F if the rank of the coefficient 

matrix for factor F is one less that the number of levels of factor F. 

That is 

From Chakrabarti's definition, we know that if a design is con-

nected for a factor, then the coefficient matrix for the factor will have 

v-I non-zero eigenvalues. We will denote these eigenvalues of C by 

Y l' Y 2' Y 3' • • ., Y v-I· 

Three of the most commonly used optimality criteria may be given in 

terms of the non-zero eigenvalues of the coefficient matrix. These are 

(1) A-optimality: minimize the average variance of all elementary 
v-I 

ment contrasts by minimizing (over all competing designs) l 
j=l 

(2) D-optimality: minimize the generalized variance by minimizing 
v-I -1 

(over all competing designs) TI y .• 
j=l J 

treat-

(3) E-optimality: minimize (over all competing designs) the maximum 

-1 (over all j) of the y. or maximize (over all competing designs) 
J 

the minimum (over all j) of the Y
j

. This criterion allows maximiza-

tion of power for a given value of ~'~/a2, where p is a complete 

set of v-I orthogonal normalized contrasts. 

In the general case, it may not be easy to find a design that is 

optimal under anyone of these criteria or to completely justify choosing 

one criteria to use over another. 
v-I 

matrices were all equal (i.e., E 
j=l 

If the traces of the coefficient 

y .. = constant for i=l, 2, ... , n 
1J 
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competing designs), then the optima for all these criteria are reached 

when Yl = Y2 = . = Yv- l . Thus Shah (1960) suggests choosing the 

design for which the y. have 
J 

the least dispersion. That is, we want to 
v-I 

minimize (over all competing designs with I Y
j 

constant) 
j=l 

var(y) = 
v-I 

Definition 5.6 (Shah (1960» 

If the coefficient matrices of all competing designs have the same 
v-I 

trace, then the S-optimal design is the one for which I y.2 is a 
j=l J 

minimum. 
v-I 

Minimizing I 
j=l 

y.2 is equivalent to minimizing tr C2 • 
J 

We will discuss 

later whether the assumption that the coefficient matrices of all compet-

ing designs have the same trace is reasonable. 

In Chapter 6, we will discuss how we can improve an existing design 

with respect to S-optimality when we are improving it with respect to 

factor level utilization by pg-connecting the design. 

Definition 5.7 

For any two designs, D and D*, the S-better design will be the one 

which has the smaller tr C2 . 

5.4 C-optimal Designs 

S-optimality, as well as most other previously defined optimality 

criteria, is used solely in situations where we wish to optimize with 

respect to one factor, even though there may be two, three, or more 
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factors in the experiment. It seemH rL'LlHonablc that, in mnny instances, 

one might desire to optlmize witll respecL to two factors, since each may 

be of equal importance. With view toward this, we will describe and 

justify the use of a new optimality criterion, one that relates to both 

factors, A and B, of a completely randomized design under the assumption 

of nO interaction. 

We will denote the reduced normal equations for factor A by 

where factor A has m levels and the rank of C
A 

will be m-l since we are 

considering connected designs. We will denote the m-l non-zero eigen-

Similarly the reduced normal equations for factor B will be denoted 

by 

where factor B has v levels and rank of CB is v-I since we are consider-

ing connected designs. The v-I non-zero eigenvalues of CB will be denoted 

by Y I' Y 2' • • ., Y v-I' 

We would like to find a design such that all the A. are equal and 
1 

all the y. are equal. Such a design would be A, D, and E optimal for 
J 

factor A as well as factor B. Let us consider the difficulty of finding 

a design for which the coefficient matrix for even one of the factors, 

say factor A, has all equal eigenvalues. 
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When searching for the S-optimal design for factor A, we require 

that all competing designs have C matrices, for factor At with the same 

m-I 
trace. That is L Ai = p, for some constant p, for any competing de­

i=l 

sign. If a design from this set has all equal eigenvalues, then 

, = ~ for i=l 2 m-l That is, we can fl.'nd what this common 
1\ i m-l " • • ., . 

value of A is. Knowing this value of A, however, does not allow us to 

find the C matrix for the design we seek, since the equation ICA-AII = 0 

can not be solved explicitly for CA. Nor will any other procedure allow 

us to find the design for which all the eigenvalues of C
A 

are exactly 

equal. Thus for all practical purposes, we will not be able to find the 

design for which all the Ai are equal or for which all the y. are equal. 
J 

Even though we cannot find the design for which all the A. are 
l. 

equal and all the Yj are equal, we can find the design, from among all 

competing designs, that is closest (with respect to factor A and B to-

gether, not individually) to this unattainable end. At the same time, 

though, we want to protect ourselves against choosing a design that is 

very far from being S-optimal for one factor, even though it is close 

to S-optimal for the other (since the two factors are of equal importance). 

That is, we would like to minimize (over all competing designs) 

m-l v-I 

var (A+y) = i~l (A i -X)2 + jfl (Yj_y)2 

v-I 

while protecting against extreme values. for var (A) or.var (y). We can 

accomplish this by choosing the design which is optimal according to the 
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following new optimality criterion: 

Definition 5.8 
m-l 

Let ¢ be the class of all connected designs for which L 
i=l 

v-I 

A. = 
1 

constant for factor A and I y. = constant for factor B. Let ~ be the 
j=l J 

set of all designs in ~ for which 

+ 
w 

m-l 
[(v-I) L 

i=l 
1... 2 + (m-l) 

1 

is a minimum. Design D will be C-optimal for (A,B) over set ~ if D is 

in ~ and D has 

m-l 
w I (v-I) L 

i=l 

a minimum over all designs in ~. 

Definition 5.9 

>...2 _ (m-l) 
1 

v-I 
L 

j=l 

For any two designs, D and D*, the C-better design will be the 

one that is C-optimal for the set ~ = {D, D*}. 

Under certain conditions, we will be able to pseudo-globally connect an 

existing design and at the same time make the design C-better for (A,B). 

For Sand C-optimality, we have restricted the set of competing 

designs to only include those designs for which the coefficient matrices 

have the same trace. We will consider whether this is a reasonable 

restriction when comparing designs. 

Recall that, for say factor B, 



Now N -1 
diag(kl ' 

v 

I 
j=l 

-1 
k2 ' 

r, 
J 

. . 
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-1 -1 
tr[N diag(kl ' k2 ' . . ., 

. , k -1) has a ji term of the 
m 

n, , 
~ form k. · 

1 

Thus the jj element of [N diag -1 -1 k -1) N' ] will be of the (kl ' k2 ' . . , m 

n, 2 

+ ~m. Throughout this work, we will be 
m 

interested in situations where there are some restrictions on the number 

of observations taken. For this reason, we will consider only binary 

designs. That is, every level combination will occur once or not at all 

in the design. (Certainly repeating a level combination would not help 

to I-connect or pg-connect a design.) Since all of the nji will be 0 or 

1, n.,2=n .. for all j,i. This means that 
J1 J1 

v 
tr CB = I r, 

j=l J 

v 
I r. 

j=l J 

V 

:l1li I r. -
j=l J 

v n, . 
since I ~ = 1 for all k, 

j=l 1 

v 
I 

j=l 

m 
I 

i=l 

m 
I 

i=l 

i. 

tr 

n'l nj2 
[ .....l:!: + _ + 

kl k2 

v n .. 
I ~ k. j=l 1 

1 ] , 

Thus 

V 

CB = I r - m. 
j=l j 

n. 
+ Jm 

k 
m 

This means that we can satisfy the restriction that tr CB = 
v-I 
L Y 

j=l j 
is a 
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A 

= 
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m-l l A. is a constant by choosing designs from a set 
. 1 1 1= 

~, which is made up of designs with the same number of experimental 
v m 

points ( l r. = I k. = constant) and the same number of levels of B 
j=l J i=l 1 

(v = constant) and the same number of levels of factor A (m = constant). 

Certainly we would have these conditions satisfied in most of the instances 

when we would be searching for an optimal design. 



IMPROVING LOCALLY CONNECTED DESIGNS 

6.1 Introduction 

In this chapter, we will consider how we can improve certain 

I-connected designs by 1) pg-connecting the designs and by 2) making 

the designs S or C-better. We will accomplish this by an inter-

change of factor levels between assemblies in the existing design. 

Using the notation of Eccleston and Hedayat (1974), let ~ denote 

the family of all designs that are I-connected for some factor M. Let 

nl denote the family of designs that are pg-connected for factor M. 

This family will have the parameter set [v, m, (r.), (k )], where the 
J u 

j th level of a v-level factor, B say, is replicated r. times and the 
J 

u th level of an m-level factor, A say, is replicated k times. 
u 

6.2 Pseudo-globally Connecting a Design 
for One Factor 

COhsider a completely randomized design, D (two factors, A and B, 

and no interaction), with the following properties: 

1) D is I-connected for factor B. 

2) D is I-connected for factor A. 

3) D is binary, i.e., nju = 0 or 1 for any level j of factor B and level 

u of factor A. 

To consider how we might pg-connect such a design for factor B, we will 
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look at the theorem by Eccleston and Lleduyat (1972): 

Theorem 6.1 

A design D (two factors A and B, with no interaction) will be 

pg-connected for factor B if and only if 

(1) D is I-connected for B, 

(2) every level of A occurs with at least two replicated levels of B, and 

(.) (i') 
(3) if a 1 denotes any level of A with which b. occurs and a 

u 1 u 

any level of A with which b. does not occur, then there exists some 
1 

(i) 
a such that 

u 
K 

(a) 
(i) (i) 

a occurs with a level of B that occurs with a for K1K' 
UK UK' 

(i ') 
and with two different a or 

u 

(b) (i) 
a occurs with two levels of B, each of which occur with 

u 
K 

(i f) 
some a . 

u 

Under our restrictions, (1) and (2) of the theorem by Eccleston 

and Hedayat are satisfied. Thus there must be some level of B, b., such 
1 

that (3) is not satisfied for b .. We will perform an interchange of 
1 

levels of B between levels of A so as to satisfy (3b) for b .. 
1 

We will first consider the design as being made up of T. and D-T., 
1 1 

where T is made up of assemblies that contain levels of A that occur with 

b. and D-T. is made up of assemblies that contain levels of A that do not 
1 1 

occur with b.. Since the design is I-connected for B, some level of B, 
1 

say b~, occurs in Ti and attbp in D-Ti by atbp and a t ,b2 • 

assemblies atb in T. and at,b in D-T. by atb and a ,b . 
Z 1 P 1 P t z 

The levels 

The levels 

a , a ., b , and b are chosen such that, prior to the interchange, b 
t t z P z 



-71-

is replicated in T
i

, b
p 

is replicated in D-Ti , and b
t 

occurs with at and 

Recall that k for u=l, 2, . 
u 

. ., m denotes the number of rep li-

cates for level u of factor A. We will denote min (k ) over all u by 
u 

k . • mln 

The following theorem will deal with the interchange to improve the 

design with respect to factor B. The algorithm used in this theorem will 

be similar to one used by Eccleston and Hedayat (1974), in connection with 

a lemma about proper, randomized block designs. 

Theorem 6.2 

Corresponding to any design D in ~2=~-~1 that is I-connected for 

factor B, there is a corresponding design D* in ~l that is pg-connected 

for factor B if less that (k . -2) of the rj's are equal to one. mln In 

addition, D* will be S-better for factor B than D, if any of the follow-

ing is satisfied: 

(2) kt' < k and (c + c n)-(c + c n) < -2R + I t pp px, zz Zx, R(k
t

) 

(3) 

where R 1 k ) and 0 
t u 

I if b occurs with a 
z u 

= {O otherwise. 

m 0 
l k u or 

u=l u 
u:ft 

m 0 

L k
U 

u=l u 
u:ft 

c c czz ' and c zn are elements of the coefficient matrix for 
pp' p£' x, 

factor B, CB, for design D, corresponding to the factor levels involved 

The levels of A involved in the 
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interchange are at and at" 

Proof of Theorem 6.2 

Suppose level b. of factor B fails to satisfy condition (3) of 
1. 

Theorem 6.1. Recall that the design can be divided into T., the set of 
1. 

assemblies that contain levels of A with which b. occurs, and D-T .• If 
1. 1. 

b. does not satisfy (3), then there does not exist a level of B that 
1. 

occurs twice in Ti and twice in D-Ti • However, since the design is 

I-connected for factor B, there does exist some level of B, b~, such 

that b£ occurs both in Ti and D-T
i

. We will denote the level of A with 

which b~ occurs in Ti by at and the level of A with which b~ occurs in 

Since less than (k . -2) of the r. 's are equal to one, 
m1.n J 

we know that there exists a level of B, denoted b , such that b occurs z z 

If b occurs in D-T., then band b n z 1. Z k 

would each occur with a level of A with which b. occurs, and with a 
1. 

level of A with which b. does not occur. This would contradict our 
1. 

hypothesis that D is not pg-connected for factor B, since condition (3) 

of Theorem 6.1 would be satisfied. Thus b must occur at least twice 
Z 

in T .. Similarly, there must exist a level b , such that b occurs with 
1. p P 

It would also contradict our hypothesis if b is 
p 

in T .. Thus b occurs two or more times in (D-T.). Levels band b of 
1. p 1. Z P 

B are exchanged between levels at and at' of A. That is, assemblies 

atb z and at,bp are replaced by assemblies a b 
t p and a ,b • t a Now two levels 

of B, b £ and b each occur in T. and in D-T .. Thus (3b) of Theorem 6.1 
z 1. 1. 

is satisfied and we know the design is pg-connected for factor B. 

We will now prove that the new design, D*, will be S-better than D 
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for factor B1 if any of the three conditions of Theorem 6.2 are satisfied. 

The following elements of the coefficient matrix for factor B, CD' 

are changed when we perform the interchange: 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

C ----> C + ~ where b is a level of B that occurs with at; ze ze k e 
t 

b ~b , b ~bn. Since c . has been given in (a), e zeN z~ 

there are (k -3) of these terms. 
t 

c ----> c f+ kl where bf is a level of B that occurs with at'; 
pf p t' 

c =0-->- ~ 
pe k

t 

c =0 
zf 

1 

bf~b2' bf~bp. There are (kt ,-2) of these terms. 

There are (k
t
-2) of these terms, including cpi 

There are (k
t

,-2) of these terms 

1 1 c --> C +(- - -) 1 1 
cp2 + R if we denote (k

tf 
- k

t
) by R. p2 p2 kt , kt 

c ----> C + R 
pp pp 

----> c - R zz 

All other elements of the coefficient matrix, Cn' remain the same. 

Recall that the j,j' element of CD
2 , denoted by <Cn

2)jj" is given by 

v 

l CJ'kCkj' = 
k=l 

tr C 2 = 
D 

by the symmetry of CD" 

v v 
I I (C

J
' k ) 2 

k=l j=l 

Thus 

Then before the interchange, the trace of the square of the coefficient 

matrix would be 
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., 
(C

zi
)2 + L (c )2 + L (c f)2 + (C ~)2 (C ) 2 (c )2 tr C "- := + + n ze f P P PP e 

+ (cz~) 2 + remainder. 

After the interchange the trace of C would be 

tr CD* 
2 (c .+ ~ )2 + L (c + ~ )2 + L ( 1 2 + I := 

C f+k) Zl. 
t e ze t f P t' e 

+ I (- I )2 + (cp~+R)2 + (c +R)2 + (c -R) 2 
f PP zz 

+ (cz~-R)2 + remainder 

where the remainders for tr C
D

2 and tr Cn*2 are the same. 

The effect of the interchange on the tr C 2 is reflected by n 

d tr Cn
2 - tr Cn*2 

The quantity d is given by 

zz 

( _ ~)2 
k t 

2c . 2c 
Z1 1 \ kze d := - -k- - 1(2 - L 

1 2c f 1 
1l,T -I-P--I~ -LkT 

t t e t e k t f k t , f t' e t 

- L ~ - 2c R - R2 - 2c R _R2 + 2c R - R2 + 2czn R - R2 
f kt' P~ PP zz N 

In order to prove that the new design is S-better, we need to show that 

d > O. Recall that there are (kt -3) terms of the form c ,(k ,-2) ze t 

terms of the form Cpf ' (k -2) terms of the form C ,and (k ,-2) terms 
t pe t 

of the form Czf • Thus 

2c zi 1 
2c 

1 2c f 1 1 
d := 

-~ -~- I k
ze 

(k t -3)~ L -.E.!. _ (k -2)p- - (k -2)17 + 
k t f 

k t' t t' t k t e t 

1 2c R - R2 - 2c R2 2c R - R2 + 2c R- R2 - (k t ,-2)p- - R - + 
t' p~ PP zz z~ 



-2c . 
( 

Zl 

k
t 

2 -2 \' 
-Ft)+(~L 

t e 

-2R(c +c -c -c ) - 4R2. pR, pp zz zR, 

m n n 
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Recall that -c 
sg 

l s~ ug for s#g and -c 
u=l u ss 

Since b only occurs in T., 
Z 1 

-r 
s 

c -pf 

m n 
+ L ~u 

u=l u 

I 
m 0 
\' u 
L1( 

I if b occurs with a 
+ where <5 

u 
= { 

Z u 
-c iz 

Thus 

-2c. 

u=l u 
u#t 

o otherwise 

m 0 2 2 
( 

lZ 
) \' u 

> 0 since > 1. 
-~ L k 

r 
u=l 
u#t 

Level bz occurs with at. 

and 

-2l c 2 (k -3) ze 
( e t > 

k k2 ) 
t t 

z 
u 

This means that -c ze 

o. 

> 1 for all values of e, 

Level bp occurs with at'. 
I This means that -cpf > ---k for all values 

- t' 

of f, and 

-2I c
pf 2(k ,-2) 

( f t 
) > 0 kL 

t' 

Using the information above, we see that 

2 m 0 
d > -- L u - 2R(c +c -c -c ) - 4R2 

k t u=l ku pR, pp zz z~ 

uft 

To insure that the new design is S-better than the old, we need to show 
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that 

(6.1) 

(a) If kt,=kt , then R=O, making the left side of (6.1) zero, while we 

know the right side to be positive. Thus (6.1) is satisfied and the 

(b) 

new design is S-better. 

1 1 If kt,<kt' then --- - -- = R > 0, k
t

, k
t 

(c +c 11) - (c +c 11) < -2R + 1 pp PN ZZ ZN R(k
t

) 

and (6.1) 

m 0 

I k
U

' u=l u 
u#t 

is equivalent to 

an inequality, which 

when satisfied, guarantees that d > ° and that the new design is 

S-better. 

(c) If kt,>kt , then R<O, and (6.1) is equivalent to 

(c +c 0) - (c +c n) > -2R + 1 
pp PN ZZ ZN R(k

t
) 

m 0 
I k

U
' an inequality, which 

u=l u 
u#t 

when satisfied, guarantees that d > ° and that the new design is 

S-better. 

Thus if we satisfy anyone of the three conditions of Theorem 6.2, we 

know that the design obtained by use of our interchange is S-better than 

the original, as well as being pg-connected, which the original design 

Example 6.1 

Consider the following situation: A chemist wants to study the 

effect on yield of various levels of concentration of a given compound 

at certain temperatures. There are seven different concentrations and 
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five different temperatures. In the past, concentration levels 1, 2, 3, 

and 4 have been used with temperature levels 1, 2, and 3, while concen-

tration levels 6 and 7 have been used with temperature levels 4 and S. 

Concentration level S has been used with all temperatures. These facts 

(along with other possible restrictions on the experiment) might suggest 

the following design to utilize the 16 observations available, with 

factor A denoting temperature and factor B concentration: 

alb l 

a
l

b2 

a
l

b
4 

albS 

This design is I-connected for factor B, concentration, but is not 

pg-connected for B. Levels b
l

, b
6

, and b
7 

do not fulfill requirement 

(3) of Theorem 6.1. We will first consider how to pg-connect the design 

for level b
6

• 

Level b
S 

occurs with a level of A that b
6 

occurs with, namely a
4

" 

Level bS also occurs with a level of A that b6 does not occur with, a l " 

Level b
7 

occurs with a
4 

and with another level of A that b
6 

occurs with, 

as. Level b
4 

occurs with a
l 

and with another level of A that b
6 

does not 

occur with, a 2 " Using the notation of Theorem 6.2, let 

bi =b6 

b~=bS 

bz=b 7 

b
p

=b
4 

a =a 
t 4 
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To pg-connect the design for b
6

, we will interchange levels b
7 

and b4 

between levels a4 and a
l

. That is, we replace a4b7 and a
l
b4 by a4b4 

and a
l
b7. We can easily verify by looking at the new design that it is 

pg-connected for b
6 

and b
l 

and b
7 

as well. 

alb l 
a

2
b

l 

a
l

b
2 

a
2

b
3 

a
l

b
7 a 2h4 

albS 

If there were another level of B for which the design is not pg-connected 

then we would use the algorithm again, this time concentrating on the 

level of B that does not satisfy (3) of Theorem 6.1. Since all levels 

of B do satisfy the requirements of Theorem 6.1, we know that the new 

design is pg-connected for factor B. 

Now we need to consider whether the sufficient conditions are 

met for improving the design ( with respect to S-optimality) after using 

our interchange algorithm. We know that k
t

, > k
t 

since a
l 

is replicated 

four times and a
4 

is only replicated 3 times. Thus we need to show that 

m IS 

(c +c t) - (c +c t) > -2R + 1 I k
U 

pp P zz Z R(kt ) u=l u 

For this example, we need to show that 

where R = (~ 1 ) 
kl - k4 

= -
1 
12 

u:rt 

(6.2) 



Now, 

5 
= r 4 - L 

u=l 

5 

L 
u=l 
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2 - ( i + t ) and -c77 ;= 

1 1 1 
- 4 and -c75 = 3 + "3 

1 1 +2 - ( "3 + 3 ). 

since b
z
=b

7 
only occurs with one level of A (a level that is replicated 

3 times) if we ignore a t =a
4

" 

The left side of (6.2) is then 

111 111 1 1 
2-4-3-4-2+3+3+3+3=2. 

The right side of (6.2) is 

-2(- L) + _1 __ _ 
12 ( __ ) (3) 

12 

Since (6.2) is satisfied, we know that the new design is S-better than 

the old design. To verify this, we will compare tr C2 for the old design 

and tr C2 for the new design. 

Before the interchange, 

25 -7 -8 -7 -3 0 0 

-7 17 -4 -3 -3 0 0 

-8 -4 16 -4 0 0 0 

CD 
1 

-7 -3 -4 17 -3 0 0 and tr C 2 1 (3440) 23.8 
D - 144 

-3 -3 0 -3 25 -8 -8 

I 
0 0 0 0 -8 16 -8 

l 0 0 0 0 -8 -8 16 
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After the interchange, we get the following results: 

1 
= 12 

25 -7 -8 -4 -3 o -3 

-7 17 -4 0 -3 o -3 

-8 -4 16 -4 0 o 0 

-4 o -4 16 -4 -4 o 

-3 -3 o -4 25 -8 -4 

o 0 o -4 -8 16 -4 

-3 -3 o 0 -4 -4 17 

and tr CD*2 
1 = 144(3246) = 22.5416 

Since tr C2 for the new design is less than tr C2 for the old design, we 

know that the new design is S-better for factor B than was the old design. 

Theorem 6.2 suggests the following procedure to be used with 

I-connected designs: 

(a) Using Theorem 6.1, determine whether the design is pg-connected for 

factor B. If the design is not pg-connected, then 

(b) try to choose bR.' b z' b p' at' and at' in such a way that condition 

(1) of Theorem 6.2 is satisfied. If this is not possible, then 

(c) try to choose bR.' b z' b p' 
a 
t' and a t' in such a way that condition 

(2) or (3) of Theorem 6.2 is satisfied. 

If (b) or (c) above can be accomplished, then we can obtain a pg-connected 

design by using our interchange algorithm (thus guaranteeing that no 

replicate of a treatment is wasted) and at the same time obtain an S-better 

design. 

It is interesting to note, that often there are a number of combina-

tions of three levels of factor B and two levels of factor A that will 

satisfy the general definitions of bR.' bz' bp ' at' and at'. Usually at 
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least one of these sets of combinations can be seen to satisfy one of the 

sufficient conditions of Theorem 6.2. If on some occasion, it should 

be impossible to satisfy anyone of the three conditions, then the ex-

perimenter might look into the possibility of augmenting the design with 

(kt-kt ,) additional assemblies so as to make kt=k
t
,. Any convenient 

(either physically or economically) level of factor B could be used 

with at or , . Then Theorem 6.2 could be applied. Although we may 

not have the flexibility of adding some of the levels of B, it is pos-

sible that we can find some level that we can add. 

One final word about the algorithm: Suppose design D is pg-

connected for some level of B, b , and we perform the interchange to 
w 

pg-connect the design for b .. The new design, D*, will still be 
1 

pg-connected for b. This has to be true, since b was replicated in 
w z 

T. and b was replicated in D-T .. 
1 P 1 

6.3 Optimizing with Respect to Both Factors 

Suppose we are not just interested in factor B, but in factor A 

as well. If design D is I-connected for factor B, then we know that 

it is also I-connected for factor A. We want to consider what happens 

to factor A when we perform the algorithm of Theorem 6.2 to pg-connect 

the design for factor B. We know that we do not destroy the l-connected-

ness of the design with respect to A. We need to consider, however, 

whether the new design is as good or better (with respect to S-optimality) 

than the original design with respect to factor A. 

Consider a completely randomized design D (two factors, A and B, 

and no interaction) with the following properties: 



-82 .... 

1) D is l~connected for factor B. 

2) All levels of factor B are equally replicated, i.e. rl~r2= ... =rv=r 

3) D is I-connected for factor A. All levels of A do not necessarily 

have the same number of replicates. 

4) D is binary, i.e. n. = 0 or 1 for any level j of factor B and level 
JU 

u of factor A. 

Except for 2) above, these are the same restrictions as we had for 

Theorem 6.2. We will denote the coefficient matrix for factor A prior 

to the interchange to pg-connect the design for factor B, by CA, and 

the coefficient matrix for A after the interchange to pg-connect for 

B, by CAlI' The following theorem tells us that when we use the 
B 

interchange to pg-connect the design for B and make the design S-better 

for B, we also make the design S-better for factor A. 

Theorem 6.3 

If the algorithm of Theorem 6.2 is used to pg-connect design D 

for factor B, then tr CAlI 2 is less than tr CA
2 , giving an S-better 

B 

design for factor A. 

Proof: 

Consider the coefficient matrix for factor A, CA' The following elements 

of CA are changed, as indicated, by the interchange that we used to make 

design D pg-connected for factor B. (Recall from Theorem 6.2, how levels 

bz, bp ' and b~ of factor B are defined and how levels at and at' of fac­

tor A are defined.) 

(a) c -----> c + ! 
ts ts r where b occurs with a and a ~a. There are z sst 

(r-l) of these terms. 



(b) 

(c) C ---> C 
tv tv 

I 
r 

(d) C -----> C, +! 
t tv t v r 

d' 
2c 

I-r-t-s -
s 

s 

1 
2c , 

\' + \' t s 
L rz- L r 
s s 

v 
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There are (r-l) of these terms. 

where bp occurs with av and av~at'. 

are (r-l) of these terms. 

There are (r-l) of these terms. 

2c 2c , 

I ~ + 2 r tv - I ~ - I ~ v 
s v v v 

v 

There 

I# 
v 

Since bz only occurs in Ti' at and as occur with both b z and bi " This 

2 means that -c 2 ts r If -ct ' =0, then c ,-ct ~ 2 for all s. If 
s t s s r 

1 
-ct's;O, then bR-' and only bR-' occurs with both at' and as' and -ct's= r 

If b n does occur wi th as' then -c > 1 and once again c - c .:: ~ 
N ts - r' tIs ts r 

h 11 
_> ~ > I for all s. T us for a cases, ct's - c ts r or ct's - cts r or 

-r2 \' 1 L [ct's - c ts - r] > 0. 
s 

If c tv is different from zero, we know that b~, and only bR-' occurs with 

both at and av ' or D would have been pg-connected for factor B before 

the interchange. We also have bR- occurring with at'. Since bR- and bp 

both occur with a and at" -ct'v > ~, while -c +! since only b n v - r tv r N 

occurs with at and avo Thus 



- (ct'v + 1:.) + c > 0 r tv 

for all sand v. This means that 

-2 L 
2c 

+ L ---E. > o. r 
v v 

We have shown that d' is greater than zero if c tv is different from zero. 

1 If c is zero, then -ct ' ~ means that tv v r 

-2 I ct'v +.l.r) :: o. 
r r'::" 

v 

Thus d' is greater than zero if ctv is zero. This proves that the new 

design is S-better than the old design with respect to factor A or that 

Example 6.2 

Design D 

albl 
a2b4 a

4
b

7 

albZ a
3
b

l aSbS 

a
l
b

3 
a

3
b2 aSb6 

a
l
b

4 
a

3
b

3 
aSb

7 

a2b
l 

a
3

bS a6bS 

a2b2 a4b4 
a

6
b6 

a 2b 3 a4b6 a
6

b
7 

Design D is not pg-connected with respect to factor A. If we use our 

algorithm of Theorem 6.2, we see that by replacing assemblies aZb
3 

and 

aSbS by a2bS and aSb3 , we obtain the following design which is pg-

connected for A: 
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Design D* 

alb l 
a2b4 a4b7 

al b2 a
3
b

l 
aSb

3 

a
l
b

3 
a

3
b2 aSb6 

a
l
b4 a

3
b

3 a Sb 7 

a2b
l 

a
3

bS a
6
bS 

a2b2 a
4
b

4 a6b6 

a2bS a4b6 a6b7 · 

Design D* is still not pg-connected for factor B. Levels b
6 

and b
7 

fail 

to satisfy condition (3) of Theorem 6.1. We can pg-connect the design 

for B by replacing a4b
7 

and a2b
l 

by a4b
l 

and a2b
7

. This final design, 

D**, will be pg-connected for factor B: 

Design D** 

alb l 
a2b

4 
a

4
b

l 

a
l
b2 a

3
b

l 
aSb

3 

a
l

b
3 

a
3
b2 a

S
b

6 

a
l

b4 
a

3
b

3 
aSb

7 

a2b
7 

a
3
bS a6bS 

a2b2 a4b4 a6b6 

a2bS a4b6 
a

6
b

7 

The final design, D*~ is still pg-connected for factor A, as will usually 

be the case. We want to verify that D** is S-better for A than D* (and 

of course S-better than D) for factor A. When we compute the coefficient 

matrices for factor A, we see that 
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tr C 2 = 44.8 for design D 
A 

tr C 2 = 43.3 for design D*. 
A 

tr C 2 = 
A 

4l.S for design D**. 

Thus the design obtained when pg-connecting the design for factor B 

is S-better for factor A than the design prior to pg-connecting for B. 

Theorems 6.2 and 6.3 taken together, suggest the following pro-

cedure for a given design D, which satisfies the conditions of Theorem 

6.3: 

(1) Use the algorithm of Theorem 6.2 to pg-connect the design for 

factor A, where all levels of A do not necessarily occur the 

same number of times. The new design, D*, will be S-better than 

D with respect to A. 

(2) Use the algorithm of Theorem 6.2 to pg-connect the design for factor 

B, where all levels of B must occur the same number of times. This 

final design, D**, will be S-better than D* with respect to B. By 

Theorem 6.3, we know that D** will be S-better than D* with respect 

to A, and S-better than D with respect to A. 

At this point, let us refer back to our definition of C-optimality 

(section 5.4), and consider the following family of deSigns: Let Q 

denote the family of all designs that are connected for both factors, 

A and B. Let Ql denote those designs which are pg-connected for factor B. 

Using Definition 5.9 and the results of Theorems 6.2 and 6.3, we obtain 

the following: 

Theorem 6.4 

Corresponding to any design D in Q2 = Q - Ql' there is a design in Ql 
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which is C~better for (A,B) if the following conditions are satisfied: 

(1) The design D is binary. 

(2) a. The levels of factor B are equally replicated. That is, 

r =r = 1 2 

b. r ~ 3 

=r =r. 
v 

(3) Less than (r-2) of the k 's are equal to one. 
u 

(4) One of the following is satisfied for factor B: 

a. k
t

, k or 
t 

1 b. k t , k and (c + c ~)-(c + c t) < < -2R + R(k ) t pp P zz z t 

c. 
1 

k , > k and (c + c n)-(c + c ) > -2R + R(k ) t t pp p~ zz z~ t 

where R = ( 1 1 ) and 0 = { 
1 if b occurs with a 

z u 
u o otherwise. 

m 0 

L u 
k 

u=l u 
u:ft 

m 0 

I k
U 

u=l u 
u:ft 

or 

c c c
zz

' and c zn are elements of the coefficient matrix for factor pp' p£' ~ 

B, C
B

, after the interchange to pg-connect the design for A, but prior 

to the interchange to pg-connect the design for B. The factor levels 

involved in the interchange to pg-connect the design for Bare bp ' b~, 

b , a , and at'. z t 



CHAPTER 7 

IMPROVING LOCALLY CONNECTED DESIGNS WHEN 

AN ADDITIONAL BLOCK EFFECT IS PRESENT 

7.1 Introduction 

In Chapters 5 and 6, we used an interchange algorithm to improve 

two-factor, no interaction designs. In this chapter, as before, we 

will be interested in obtaining a C-better design for two factors, A 

and B, but under a three-factor, no interaction model. The third 

factor may be thought of as a block effect. We would like to obtain 

some of the same results here as for the two-factor situation of Chap-

ter 6. 

7.2 Three-factor, Main Effect Designs 

Previously we had written our model as 

E(y .) = ~ + a + S. 
UJ u J 

where ~ is an overall mean, a is the effect of the u th level of factor 
u 

A, and B
j 

is the effect of the j th level of factor B. The new model 

will have an additional term for block effect, w g' giving 

E(y 'g) = ~ + au + Bj 
+ w 

uJ g 

where w is the effect of the g th level of the factor which we will 
g 

refer to as blocks. As before, we are assuming that no interactions 

exist. 

-88-
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Suppose we consider [(factor B) x (block)] level combinations as 

being levels of some new pseudo-factor, which we will denote Fl. Then 

we can think of our experiment as having only two factors, A and F'. 

Since this is now the same situation as in Chapter 6, we can compute 

the coefficient matrix, CA, for factor A, and consider finding the S­

optimal design for factor A from the appropriate designs available. Then 

we can consider [(factor A) x (block)] level cOITlbinations to be levels 

of a new pseudo-factor, F", and obtain the C matrix for B, C
B

. 

We will consider only those designs that fulfill the requirements 

of Theorem 6.3 for factor A (with respect to [(factor B) x (block)] 

combinations) and for factor B (with respect to [(factor A) x (block)] 

combinations). First we will treat the design as a two-factor, A and 

F', design. Each level of F' must be replicated r times as were all 

levels of factor B in Theorem 6.3. We can use the interchange algorithm 

to pg-connect the design for factor A, and make the design S-better for 

factor A. We can do this under the conditions of Theorem 6.2 for factors 

A and F'. We can also use the interchange algorithm to pg-connect the 

design for factor B, under the conditions of Theorem 6.2 for factors 

B and F'~ 

We see that we can pg-connect the design for factor A, thus making 

the design S-better for A, or pg-connect the design for factor B, making 

the design S-better for B. But, what are the consequences of attempting 

to do both? When we perform the second interchange to pg-connect for B, 

do we lose the benefits of the first exchange to pg-connect for factor A? 

We would like to be able to prove a theorem corresponding to Theorem 6.3 
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for the present situation. 

7.3 The Effect of Pseudo-globally Connecting 
for Both Factors 

As in Chapter 6, we will denote the coefficient matrix for factor 

A prior to the interchange to pg-connect the design for factor B, by 

C
A

, and the coefficient matrix for A after the interchange by CA!I
B

. 

Theorem 7.1 

Consider any design, D, under a three-factor (A, B, and block 

effect), no interaction model, that has the following properties: 

1) D is I-connected for factor B. 

2) All levels of factor F' are equally replicated, where levels of F' 

are [B x block] level combinations. 

3) D is I-connected for factor A. 

4) D is binary. 

If the algorithm of Theorem 6.2 is used to pg-connect design D for 

factor B, then tr C
A

[I
B

2 < tr CA
2 , giving an S-better design for factor A. 

For the proof of Theorem 7.1 we will proceed along the same lines 

as that of Theorem 6.3. We shall consider the elements of C
A 

that are 

altered by the interchange for B, and compare the sums of the squares of 

these elements before and after the interchange. 

Proof: 

Consider the coefficient matrix for factor A, CA. Suppose the interchange 

necessary to pg-connect design D for factor B, is to replace assemblies 

a.b ck and a.,b ck ' by a.b ck and a.,b ck ' 
JZ J P JP J Z 

That is, we interchange 

levels Z and p of factor B. Level combinations ajck and aj,ck " play the 
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role of the at and at' of Theorem 6.2 respectively. The levels of A 

that are involved in the interchange will be a. and a.,. 
J J 

Let ax be any level of factor A such that bzck occurs with ax' but 

a ;a. After the interchange, a. occurs with b c
k 

one less time. (Note 
x J. J z 

that ax could not have occurred with bpck since our interchange algorithm 

requires that b and b never occur with the same [A x blocks] com-z p 

bination.) Thus for the coefficient matrix for factor A, 

(1) + 1 There (r-l) of these terms. c, --> c, are Let a 
JX JX r y 

be any level of A such that bpc
k 

occurs with a , but a ;a.,. Levels a. 
y Y J J 

and a will occur with one more common level of F' after the interchange~ 
y 

giving 

(2) c -->c -
jy jy r 

1 There are (r-l) of these terms. Let a 
q 

be any level of A such that b ck ' occurs with a , but a ;a.,. Let a be 
p q . q J 0 

any level of A such that bzck , occurs with a , but a #a .. 
o 0 J 

(3) c. , --> C. , +1. 
J q J q r 

There are (r-l) of these terms. 

(4) 1 
c. , --> c., -

J 0 J 0 r 
There are (r-l) of these terms. All 

other elements of the C matrix for factor A will remain the same. 

If b. is the level of factor B that fails to satisfy condition (3) 
1 

of Theorem 6.1, then we can let T. and (D-T.) denote the two parts of D, 
1 1 

as we did in Theorem 6.2. Recall that only b~ occurs in both Ti and 

(D-T.), while b occurs two or more times in T., but never in (D-T,). 
1 z 1 1 

The level b occurs two or more times in (D-T.), but never in T .• Now 
P 1 1 

Also, a and a., both occur 
q J 

Thus 



-92-

~ 
2 

-c. r' JX 
just by the contribution of assemblies involving block k, and 

-c. f ,;::: 
2 

J q r' just by the contribution of assemblies involving block k'. 

If we let axl k denote all replicates of ax that occur with ck ' and consider 

all possible values of x, we get 

a) ( c +~) ~ o. . r JX 

If we let aql k ' denote all replicates of aq that occur with ck " and con­

sider all (r-l) values of q, we get 

b) 

There are several combinations of values for the portion of c. that is 
JY 

contributed by assemblies involving block k, and for the portion of c., 
J q 

that is contributed by assemblies involving block k'. Since D is not 

pg-connected prior to the interchange, we know that the only possible 

common level of B for ajck and ayck would be b
i

, since ajck is in Ti and 

ayck is in (D-Ti ). If b
i 

does occur in ayck , then there could not be 

any common level of B for aock , and aj,ck " since aock , is in Ti and 

a. ,ck ' is in (D-T.). If there was a common level of B for these two 
J 1 

combinations, then either (3a) or (3b) of Theorem 6.1 would be satisfied. 

Denote by ayl k ' those replications of ay that occur with Cke Denote by 

aol k " those replications of ao that occur with ck '. Then 

c) -( I c. )-( I c,) = 1:. 
yTk JY oTk' j 0 r 

Using the same type reasoning, the only possible common level of B for 
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though, there can be no common level of B for ajc
k 

and ayc
k

. Thus, 

d) -( Ic, )-( I c,,) 
yTk JY oTk' J a 

1 
r 

The only other possibility is that a
jk 

and a
yk 

have no level of B in 

common, and aok ' and aj'k' have no level of B in common. This gives us 

e) -( t c. H f c,' ) 0 if ajck and ayck have no level 
y k JY 0 k' J 0 

in common and 

no level of B 

Combining c), d), and e), we get 

f) -( I c, )-( I c,,) ~ 1: 
yTk JY oTk' J 0 r 

If we use b) and f) together, we get 

g) -c, + c, + c., ~--
f f f 

2r-3 

q k' j q y k JY 0 k' J 0 r 

aock , and aj,ck , 

in common. 

of B 

have 

We will use g), along with a) to show that the new design will be S-better 

for A than the design prior to the interchange for B. 

All the changes in the C matrix for A will be caused by the re-

arrangement of assemblies involving ck or ck '. Thus we can write the 

trace of C
A

2 before the interchange for B, as 

+ remainder and 

the trace of C
A

2 after the interchange for B as 
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2 
tr CA !I 

B 
1. (c. + ~)2 + 1. (c. - ~)2 + 1. (c. t + i)2 + 

x1k JX y1k JY q1k' J q 

+ J. (c, Io - !)2 + remainder 
o 1k' J r 

where the remainders are the same. 

The difference between tr CA
2 and tr CAlI 2 may be written as 

B 

-2c. 
1 

2c. 
1 

-2c. , 
d" 

xtk 
( JX 

YYk 
( ---.J.X. 

+ q Yk' 
( J q = ~) + r 2 ) r r r 

+ Ofk' 
2c

j
• 1 ( 0 - ::7) r r 

Recall that there are (r-l) terms in each sum. Thus 

1 - ~) + 

d" = 3. [- 1. (c. + 3.)] + 3. 
r x1k JX r r 

[1. -c. t + 1. c . + J. c . t ] 

q1k t J q ylk JY . olk' J 0 

From a) and g), we see that 

d" ;::. 2r-3 ( 3. ) > 0 
r r 

Thus tr CAlI 2 < tr CA
2 and the new design is S-better for factor A. 

B 

Example 7.1 

Consider the following agricultural experiment. A grower wants to 

compare the effects of six different varieties of corn as well as seven 

different fertilizers. Because of the way his land is situated, he must 

also contend with an elevation effect. That is, all of one section of 

land to be used in the experiment is at approximately the same elevation, 

while the other section to be used is at a much higher elevation. He 

believes that elevation may be significant with respect to yield. 
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In the past, usually the first three types of fertilizer have 

been used with certain, particular (corn x elevation) combinations, 

while the last three varieties of corn have been used with different 

(corn x elevation) combinations. The grower is unable to plant all 

(6)(7)(2) = 84 combinations because of the burden of a large harvest. 

Based on past experience and harvesting restriction, the grower has 

suggested the following design: 
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where variety of corn is factor A, type of fertilizer is factor B, and 

elevation (block effect) is factor C. The above design is pg-connected 

for factor A. It is not pg-connected for factor B, however, since 

level b
l

, among others, does not satisfy (3) of the theorem by Eccleston 

and Hedayat, Theorem 6.1. We can pg-connect the design for factor B by 

replacing assemblies al b3cI and a4b5cI by albScl and a4b 3cl " If we 

change the order of the assemblies slightly, we can see that the final 

design is still pg-connected for factor A. The final design is 
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need to 

the one prior to 

7.1. we see that 

D* 

a l bZcl 

aZbZcl 
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Z
c
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a l bZcZ 

aZbZcZ 

a
3

bZc
Z 

albScl 

aSbScl 

a
6

b
S

c
l 

a
4
b

7
cZ 

aSb7cZ 

a6b7cZ 

a
4
b

3
c

l 

a
3
b

3
c

l 

aZb
3

c
l 

aSbScZ 

a
4

b
S

c
Z 

a 6bSc Z 

confirm that this final design is 

the interchange for B. Using the 

aj=al a =a 
x 2 

or a3 " 

a
j 

,=a4 a =a 
y S 

or a
6 

bzc
k

=b
3

c
l a or a6 q 

bpck=bScl 
a =a o Z or a3 " 

b pck,=bsc i 

b zck ,=b3cl 

S-better 

notation 

Thus the elements that are altered in CA are the following: 

for A than 

of Theorem 

C 2 2 2 2 2 222 2 . d We can write tr A as c lZ +c
13 

+c15 +c16 +c45 +c46 +c4Z +c43 + a rema1n er 

that contains all the terms of tr C
A

2 that are not altered by the inter­

change to connect the design for factor B. If we evaluate the appropriate 
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elements of CA, we see that 

and 

( 6 2 5 2 2 2 1 2 ( 6 2 5 2 2 2 1 2 - -) +(- -) +(- -) +(- -) + - -) +(- -) +(- -) +(- -) 
3 333 3 3 3 3 

+ remainder, 

where the two remainders are identical. 

tr CA
2 - tr CAlI 2 = 19.1 - 14.6 = 4.4 

B 

Thus the design obtained when we pg-connect for factor B is S-better 

for factor A than the design prior to pg-connecting for B. 

7.4 C-better Designs under the 
Three-factor Model 

Let n denote the family of all three-factor (A, B, and block effect), 

no interaction designs that are I-connected for both A and B. Let n
l 

denote those designs in n that are pg-connected for factor B. The proof 

of the following theorem can be obtained directly from the proofs of 

Theorems 6.Z and 7.1: 

Theorem 7.2 

Corresponding to any design D in nZ = n - n
l

, there is a design in 

Q
l 

which is C-better for (A,B) if the following conditions are satisfied: 

(1) The design D is binary. 

(2) The [B x block] level combinations are all replicated r times, where 

r ~ 3. 

(3) At least (r-2) of the levels of factor A are replicated. 
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If the i,j level combination of [A x block] is replicated k .. 
1J 

times, then at least (k . -2) of the levels of factor Bare m1n 

replicated. 

(5) One of the following is satisfied for factor B: 

b. 
o 

\' u 
L k or 

u=l u 
u#t 

c. k , > k 
t t 

1 0 
and (c + c i) > -2R + R(k) I k

U 

pp P t u=l u 

where R = (1 - 1-) and 0 = { 
k

t
, k

t 
u 

U:ft 

1 if b occurs with the u th level 
Z combination of [A x block] 

o otherwise 

c c c and czn are elements of the coefficient matrix for 
pp' pi' ZZ' N 

factor B after the interchange to pg-connect the design for factor A, 

but prior to the interchange for B. The factor levels involved in the 

interchange are b , b n , and b , and the [A x block] level combinations 
p N Z 

are those denoted by t and t'. 



CHAPTER 8 

EFFECTS OF THE INTERCHANGE ALGORITHM WHEN THE 

ASSUMED MODEL IS INADEQUATE 

8.1 Introduction 

In Chapters 6 and 7, we discussed a procedure to improve an 

experimental design under the criterion of S-optimality. This was 

accomplished by performing a permutation of the factor levels to 

form certain new factor level combinations. This procedure was sug-

gested only for situations where the assumption of no interaction was 

believed to be appropriate. Even though the experimenter may make 

the assumption of no interaction, he often will want to protect some-

how against the possibility that the assumption is unjustified. That 

is, as in Chapter 5, the assumed model may be E(y .. ) = 11 + ex. + 8 j , 1J 1 

while the true model may be E(y .. ) = 11 + ex. + s. + (exS) ... The experi-
1J 1 J 1J 

menter may try to choose a design for which the quality (based on some 

criterion) of parameter estimation is relatively good, even if the 

assumed model is incorrect. If we perform our algorithm of Chapter 6, 

we know that we can often improve the design with respect to more 

utilization of observations in the estimation procedure and with respect 

to S or C-optimality. The question we need to consider now, though, is 

whether this same interchange might hurt the design with respect to 

protection against the wrong model. First we shall summarize some 
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considerations that have been used when choosing a design to minimize 

the effect of the assumption of the wrong model. 

8.2 Protecting Against an Inadequate Model 

We will denote the full (true) linear model by 

and 

the reduced (assumed) linear model by 

Let Y
R 

be the estimate for the observation vector under the reduced 

model. Usually the quantity, mean squared error of i R, averaged over the 

region of experimentation, R, is considered when studying the effects of 

an inadequate model. This value, average m.s.e. <Y
R

) , is defined by the 

relationship 

where 0 2 is the error variance, the observed response at the i th experi-

mental point, , is n(x.) + E., and Y(x.)R is the estimate for a re-
-1 1 -1 

sponse at the i th experimental point under the assumed model. The term 

r.: is defined by = fR d~. The number of experimental points is given 

by n. 

The quantity, J, may be naturally broken down into average vari-

ance of iR and average squared bias of iR (e.g., Myers, (1971». That 

is 
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J V + B 

where V, the average variance of i
R

, is given by 

and B, the average squared bias of ZR' is given by 

Prior to 1959, most of the experimental designs suggested in this 

situation, were for the purpose of minimizing var (i
R

) without regard 

to bias. Box and Draper (1959) considered both variance error and bias 

error by considering designs which minimize m.s.e. (Y
R

) , averaged over 

the region of experimentation. Box and Draper concluded that unless 

the average variance term is at least four times the average bias term, 

it is appropriate to minimize with respect to the bias term alone. 

Karson, Manson, and Hader (1969) proposed a different approach 

than that of Box and Draper. They suggest that ~l be estimated so as 

to minimize the bias term, then find the experimental design which mini-

mizes the variance term. In most of the applications of the Karson, 

Manson, and Hader method, the approximating function (the one that cor-

responds to the reduced model) has variables described over a continu-

OllS space. Bayne, Manson, and Monroe (1974) applied this method to 

classical experimental design situations where there are many factors 

having a finite number of levels. The results are used primarily in 2r 

factorial experiments. 
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'" The squared bias of LR may be written as a function of ~2' where 

~2 is the vector of parameters in the full model, but not in the reduced 

model. This function is AR~2~2Ai' where AR is called the alias matrix 

and reflects the amount of aliasing present as a result of using the 

wrong model. Often the experimenter will try to minimize, over all com-

peting designs, some objective function of m.s.e. <Y
R
). A logical choice 

for an objective function would be one that is a function of the alias 

matrix, AR. 

Hedayat, Raktoe, and Federer (1974) have suggested the use of a norm 

which takes into account all entries of AR and their magnitudes. In par­

ticular, the norm I JARI 1=1 ~ ~ aij
2 )=/(tr A~AR) has this feature and some 

1 J 

other desirable properties that most commonly used norms do not have. 

Because of this, we will use this norm in considering the effect of our 

interchange algorithm when the model assumed is inadequate. The follow-

ing definition and theorem will be useful in determining what effect our 

interchange algorithm has on the value of the norm described above. 

Definition 8.1 (Stivastava, Raktoe, and Pesotan, (1971» 

Let the k. levels of factor F. be identified as {O, 1, 2, •.• , k.-l}. 
1 1 1 

Xl x2 Xi x t 
Denote an element of the parameter vector e by Al A2 • • · Ai · · · At ' 

where x. is an element of {O, 1, 2, .•. , k.-l} and t is the number of 
1 1 

factors in the design. Then the parameter vector ~l is said to be admissible 
Xl x 2 Xi x t 

if and only if whenever Al A2 Ai • . · At belongs to , and x.:fO, 
1 

x 
A t also belongs to 

t 
for all Z:fO. 

For our main effect case in Chapter 6, this would mean that if any level 
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of a particular factor is in the design, then all levels of the factor 

must be in the design. The parameter vector for our model would be 

~ (as)ll 

al (as)12 

o = -1 

aZ 

Certainly our ~l is admissible. 

while ~2 

(as)ln 
S 

(as)2l 

(as)22 

Let ~ be the set of permutations of the form ~ = (~l' ~2' . 0 0, 

~., ... , ~ ), where ~. is a permutation acting on the levels of the 
1 t 1 

i th factor. Let r be an arbitrary fraction of some complete design 

and let ~ (r) be the permuted fraction obtained by the action of S on 

r. Our interchange algorithm of Chapters 6 and 7 will be of the form 

of ~ .. 
1 

Theorem 8.1 (Hedayat, Raktoe, and Federer, (1974» 

The amount of aliasing I IArl I is invariant under ~ if Ql is 

admissible. That is 

Theorem 8.1 tells us that the amount of aliasing (based on the norm as 
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discussed by Hedayat, Raktoe, and Federer} is invariant to our inter-

change algorithm for the two-factor situation of Chapter 6. 

In Chapter 7, we assumed that there were three factors in the 

model, but no interactions were present. Thus our parameter vector for 

the reduced model was 

a 
n a 

81 

82 

e = -1 

8 
nb 

Yl 

YZ 

Since ~l is admissible for the situation of Chapter 7, we can apply 

Theorem 8.1 just as we did for the Chapter 6 situation. Thus we have 

obtained the following result: 
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Theorem 8.2 

Under the models of Chapters 6 and 7, the amount of aliasing 

I I~I I is invariant under the algorithm used to pg-connect the design. 



CHAPTER 9 

DESIGNS THAT ARE PSEUDO-GLOBALLY CONNECTED 

FOR LEVEL COMBINATIONS 

9.1 Introduction 

In this chapter we shall combine two of the concepts already 

discussed: the type II connectedness first discussed by Sennetti 

(1972), and the pg-connectedness of Eccleston and Hedayat (1974). 

Many times first order interactions are of as much importance 

to the experimenter as are main effects. We want to be able to estimate 

type II contrasts as well as we can. In addition, it seems quite rea­

sonable that we would desire that no replicate of any particular level 

combination be w~sted in the estimation of a given contrast involving the 

combination. That is, we would like to pg-connect our design for level 

combinations. 

9.2 Type II Pseudo-globally Connected Designs 

We shall use the following definition in our discussion of designs 

that are pg-connected for level combinations: 

Definition 9.1 

A type II pg-connected design is any design such that 

(1) All type II contrasts are estimable and 

(2) Every replicate of any two factor level combination (for two factors 

that interact) can be used at least once in the estimation of any 
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type II contrast containing the combination in question. 

The concept of pg-connectedness is based on the chain definition 

of connectedness as it was originally given by Bose (1947). Recall 

that a design is pg-connected for factor F, if each replicate of any 

level of F is connected by a chain to at least one replicate of every 

other level of F. If we have at least one factor that interacts with 

two or more other factors, then this chain concept is not applicable in 

discussing type II connectedness. We would have to define connected-

ness in terms of the estimability of contrasts, as has been done by 

Sennetti (1972) and others. Of our models A, B, and C of Chapter 3, 

only model A is such that we can use the chain approach to connected-

ness. Thus we will consider only model A, when we investigate how type 

II connectedness and pg-connectedness may be related. 

Consider some design, D, under model A, 

Here Yk denotes the effect of level k of factor C and (as)ij denotes the 

effect of the combination of the j th level of factor B and the i th 

level of factor A. We have pointed out earlier in this work that a design 

is type II connected for (A x B) if a chain exists between all pairs of 

level combinations of A and B. That is, if the design is connected (1-

connected) for (A x B) level combinations, then the design is type II 

connected for (A x B). 

Under model A, denote the r th replicate of level combination 

a.h, bv (a.b.) , and let [(as) .. -(as)'j,J-[(aS)i,.-(aS).,.,] for iIi' 
1 J . 1. J r 1J 1. J 1. J 



-108-

and j#jf be any type II contrast in (A x B). Denote the number of 

replicates of level combination a,b, by n. " Then for this three-
1 J 1J 

factor model, with only one two-factor interaction, we can state the 

following theorem. 

Theorem 9.1 

Any model A design that is pg-connected for (A x B) level com-

binations is type II connected and has the following property: Any 

replicate (a,b,) of a level combination a.b. is used n times in the 
1 Jr' 1 J 

estimation of the contrast [(as), .-(as). ,,]-[(as)., .-(as)" 'f]' where 
1J 1J 1 J 1 J 

n ~ max [ (n, . ,+n. f ,-1), (n" f +n, f . ,-1), ( n, , . +n. , . ,-1) ] . 
1J 1 J 1J 1 J 1 J 1 J 

Proof: 

Since the design is pg-connected for (A x B), we know that it is 1-

connected for (A x B). This insures that the design is type II con-

nected for (A x B). 

Since the design is pg-connected for (A x B), we know that 

[(as) .,-(as) .. ,] can be estimated by an expression involving (a.b.) 
1J 1J 1 J r 

and (a.b.,) , since each replicate of a.b. is connected by a chain to 
1 J m 1 J 

at least one replicate of a,b. I_ We denote by (a.b. ,) , the replicate 
1 J 1 J m 

of a.b., to which a.b, is connected. Denote the expression that can be 
1 J 1 J 

used to estimate the above two term contrast, by [(a.b,) - ... -(a.b.,) ], 
1 J r 1 J m 

where ... replaces all other elements of the chain between (a.b,) and 
1 J r 

(a,b.,). Similarly, [(as).,.-CaS). ,.,] can be estimated by expressions 
lJ m lJ 1J 

of the form [(a. ,b')l-' .. -(a. ,b. ')t ], or [Ca, ,b')2-· · .-(a, ,b, ')t ], 
1 J 1 J 1 1 J 1. J 2 

or . . ., or [ (a. ,b. ) - . . . - (ai' b
J
. ,) t ], where t l , t 2 , • • ., t 

1 J n.,. n.,. 
lJ n.,. 1.J 

1 J 
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are all contained in the set {I, 2, 3, ... , n., .,}. Thus anyone 
1 J 

of the following n.,. factor level combination expressions can be used 
1 J 

to estimate the contrast in question: 

Set 1 

[(a.b.) - ... -(a.b. ,) ]-[ (a. ,b')l-... -(a. ,b. ,)tl ] 
lJr 1J m 1 J 1 J 

[(a.b.) -. • .-(a,b. ,) ]-[(a. ,b')2-' •. -(a
1
• ,b

j 
')t

2
] 

1Jr 1J m 1 J 

[(a.b,) - ... -(a.b, ,) ]-[(a.,b.) - •.• -(a. ,b. ')t ] 
1 J r 1 J m 1 J n." 1. J 

1. J n .. 
1J 

We will now verify that these expressions are unique. 

In this discussion, the words "the chain" signifies the shortest 

chain. That is, [(a.,b')n-... -(a. ,b.,) ] represents the chain between 
1 J N 1 J n~ 

(a.,b')n and (a. ,b
j

,) that has the least possible number of (A x B) 
1. J N 1. n~ 

combinations involved for the given design. If two expressions in Set 1 

were not different, it would mean that two of the chains involving 

(a.,b,) and (a.,b, ,) level combinations were identical. That is, 
1. J 1. J 

[(a. ,b')d-... -(a. ,b. ,) ]=[(a. ,b.) - ••. -(a. ,b. ,) ] 
1. J 1. J nd 1 J e 1 J ne 

for some d and e. This means that [(ai,b,) - .. . -(a. ,b.,) ] must be of 
J e 1. J ne 

the form 

[ (a. ,b
j

) -. . . ± (a. ,b.) d . . • ± (a. t b . ,) •.. - (a. ,b . ,) ] . 
1 e 1. J 1 J nd 1. J ne 
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But this means that a shorter chain exists between (a
1
"b

j
)d and (a"b, ,) 

1 J nd 

than the one originally indicated. This contradicts our hypothesis of 

always taking the shortest possible chain in each expression. Thus Set 1 

has n.,. unique expressions. The same argument will apply when we discuss 
1 J 

Sets 2, 3, and 4. 

We can also estimate [(as) .. -(as) .. ,)-[(as). 'j-(aS). ,. ,] by anyone 
1J 1J 1 1 J 

of the following (n., ,-1) expressions: 
1J 

Set 2 

[ (a . b .) -. . • ~. (a , b . f) 1 ] - [ a. ,b . ) k- . • • - ( a. ,b. , ) ] 
1 J r 1 J 1 J 1 J PI 

[ (a . b .) - . . . - (a . b . ,) 2 ] - [ (a. ,b . ) k- • . . - (a. ,b . ,) ] 
1 J r 1 J 1 J 1 J P2 

[ (a . b .) -. . . - ( a . b . ,) 1) - [ (a. ,b , ) k- . . • - ( a. ,b. , ) ] 
1 J r 1 J m- 1 J 1 J Pm-l 

[ (a . b .) -. . • - (a . b , ,) +1 ] - [ (a. ,b . ) k- • . . - (a . ,b . , ) ] 
1 J r 1 J m 1 J 1 J Pm+l 

[ (a . b .) -. . . - ( a i b . ,) ] - [ (a. t b . ) k- . • . - (a. , b. ,) 
1 J r J n .. , 1 J 1 J P 

1J n .. , 
1J 

for some k, and PI' P2' •.. , P all in the set {I, 2, ..• , n.,.,}. 
n
ij 

, 1 J 

Using Sets 1 and 2 together, we see that (a.b.) can be used (n.,.+n .. ,-1) 
1 J r 1 J 1J 
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times in the estimation of {(as)ij-(aS)ij,J-ICaS)i f j-CaS)i'j,l, since 

Sets 1 and 2 are disjoint. 

The following set is also disjoint from Set 2: 

Set 3 

{Ca,b,) -. 
1 J r 

.-(a.b. ,) ]-[(a. ,b.) -
1 J m 1 J q1 

.-(a. ,b, ')1] 
1 J 

[(a.b,) - ... -(a.b. ,) ]-[Ca. ,b,) - •.• -(a. ,b. ')2] 
1 J r 1 J m 1 J q2 1 J 

[(a.b,) - ... -(a.b. ,) J-[(a. ,b.) 
1Jr 1J m 1 Jq 

n i f j , 

.-(a. ,b. ,) ] 
1 J n.,., 

1 J 

where ql' Q2' ... , q are all in the set {I, 2, .•. , n",}. 
n ... , 1 J 

1 J 

Using Sets 2 and 3 together, we see that (a,b,) can be used (n .. ,+n.,.,-l) 
1 J r 1J 1 J 

times in the estimation of the contrast. 

The expressions in Set 4 may also be used to estimate the contrast. 

Set 4 

[ (a, b .) -. • . - (a. b. ,) ] - [ (a. , b . ) k- . • • - (a. ,b. ,) 1] 
1 J r 1 J Sl 1 J 1 J 

[ (a . b .) -. . • - (a . b . ,) ] - [ (a. ,b.) k-' . . - ( a. ,b . , ) 2 ] 
1 J r 1 J S2 1 J 1 J 

[ (a . b'> -. . . - (a . b . ,) ] - [ (ai' b , ) k- . . . - (a. ,b . ,) ] 
1 J r 1 J S J 1 J n i 'j , n. , . f 

1 J 

Let Set 1* denote the set of (n. ,.-1) expressions obtained from Set 1 after 
1 J 
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I (a . b .) -. . . - (a . b. t) ] - [a . t b . ) k- . · · - (a. ,b . t) t ] 
1Jr 1J m 1 J 1 J k 

is omitted. Then Sets 1* and 4 will be disjoint. Using Sets 1* and 4, 

we see that (a.b,) can be used (n. ,.+n. ,.,-1) times in the estimation 
1J r 1J 1J 

of the contrast. 

In general, we have no way of knowing how many common expressions 

there are in any two of the three sets {(Set I)U(Set Z)}, {(Set 2)U(Set 3)}, 

and {(Set l*)U(Set 4)}. We do know, though, that there is no duplication 

of expressions within anyone of these three sets. Thus we can conclude 

that there are at least max(n .. ,+n., .-1, n .. ,+n.,. ,-1, n., .+.,. ,-1) dif-
1J 1 J 1J 1 J 1 J 1 J 

ferent expressions that contain (a,b,) which can be used to estimate 
1 J r 

the contrast [(as) .. -(as) .. ,]-[(as)., .-(as).,. ,]. 
1J 1J 1 J 1 J 

Example 9.1 

Consider an experiment of three factors A, B, and C, where the 

only suspected interaction is (A x B). Suppose n =Z, nb=3, and n =7. 
a c 

The following design is pg-connected for (A x B) level combinations: 

alblcl a l bl C4 a2bZc3 

a
l

b
l

c2 
a

l
b2c

l 
a

l
b 2c4 

a
l

b
l

c3 
a

l
bZc2 

a
l
b

3
c

l 

a
1

b3c2 a 2b
1

c6 a ZbZc7 

a
1

b
3

c
3 

aZb
l

c
7 

aZb3c5 

a
l

b
3

c5 
a

l
bZc

5 
aZb3c6 

a2b
l

c4 
a ZbZc6 

aZb
3

c
7 

Suppose we feel that certain observations are taken under conditions that 
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produce less experimental error, on the average, than some other observa­

tions. How good an estimate we can get for a particular contrast would 

depend not only on how many estimators we can find for the contrast, but 

also on how often certain design points are used in the estimation of 

the contrast. For instance, we might be interested in how many times 

a
l
b2c

l 
can be used in the estimation of the contrast 

n23+n22-l) = n13+n23-l = n13+n22-l = 6. One set of six level combination 

expressions suggested by the proof of Theorem 9.1 would be 

[al b3cl -· .. -alb2clJ-[a2b3cS-· .• -a2b2c3J 

[al b3cl -· .. -alb2cl]-[a2b3c6-· .• -a2b2c6] 

[al b3cl -· .. -alb2cl]-[a2b3c7-· .. -a2b2c7] 

[al b3c2-· .• -al b2cl ]-[a2b 3cS-· • .-a2b2c3 ] 

[al b3c3-· • .-al b2cl ] - [a2 b3c7-· .. -a2b2 c3 ] 

[al b3 Cs -. • • -al b2cl ] - [a2 b3 Cs -. • • -a2b
2 

c
3 

] 

To show that these can be used to estimate the contrast, we will write 

the entire expressions. 

[alb3cl-alb2cl]-[a2b3cS-alb3cS+alb3c3-a2b2c3] 

[alb3cl-alb2cl]-[a2b3c6-a2b2c6J 

[alb3cl-alb2cl]-[a2b3c7-a2b2c7] 

[alb3c2-alblc2+alblcl-alb2cl]-[a2b3cS-alb3cS+alb3c3-a2b2c3] 

[alb3c3-alblc3+alblcl-alb2cl]-[a2b3c7-a2b2c7+a2b2c3-a2b2c3 ] 

[alb3cS-alb2cS+alb2cl-alb2cl]-[a2b3cS-alb3cS+alb3c3-a2b2c3J 
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Theorem 9.1 tells us that any design, under model A, that is pg-

connected for level combinations, will have a property much stronger 

than type II pg-connectedness. Rather than being as::;ured that we can 

use each level combination replicate at least once in the estimation of 

a corresponding contrast, we know that we can use each replicate at 

least max (n. <,+n. ,.-It n .. ,+n., .,-1, n.,.+ni ,.,-l) times. This suggests 
1J 1 J 1J 1 J 1 J J 

choosing a design that is pg-connected for level combinations over one 

that is I-connected for level combinations, if the designs are equally 

good according to all other criteria. In addition, if we have a design 

that is I-connected for level combinations, we would, if possible, use 

the algorithm of Theorem 6.2 to pg-connect the design for (A x B) com-

binations. The new design would allow an increased number of estimates 

for type II contrasts in (A x B). 



CHAPTER 10 

OPTIMAL MINIMAL AUGMENTED MULTIDIMENSIONAL DESIGNS 

10.1 Introduction 

In Chapter 4, we discussed the need for a method to choose the 

additional design points when generating an MAMD. That is, if any 

MAMD D* is such that D* = D + T*, where D is the original design, then 

how shall we choose T*? What kind of criterion should we use? 

In Chapter 5, we discussed the justification for uSing S-optimality 

in comparing designs. This criterion allows us to choose the design 

from all eligible designs that is closest to A, D, and E optimal. This 

criterion is equally applicable here. If we can, we will choose the T* 

such that D* is the S-optimal MAMD over all possible D*. In Chapter 6 

we were able to obtain an S-better design by using our interchange al­

gorithm. This approach is generally not applicable here for the follow-

ing two reasons: 

(1) Usually MANn's do not have sufficient numbers of replications of 

levels to satisfy the necessary requirements for the use of our 

algorithm and' 

(2) Nost of the time an MAMD is chosen because we do not want to waste 

observations already taken. This means that part of our MAMD is 

unalterable. This lack of flexibility in the MAMD usually means 

that we cannot apply our algorithm of Chapter 6 to pg-connect an 
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MAMD. For these two reasons, our approach will not be to form some 

arbitrary MAMD, D*, and then try to improve it, but to describe a 

procedure to choose the assemblies in T*. 

MAMD's possess two desirable characteristics: All contrasts are 

estimable and only a minimum number of additional observations is used. 

If an MAMD is desired for these reasons, then it is likely that quite 

often these were desirable properties in the original design. That is, 

usually the design to be augmented is an MMD for some model. The in­

adequacy of the original design stems from the original assumption of 

what we now believe to be an inadequate model. For instance, suppose 

the experimenter desires to estimate main effect contrasts in a 3 3 

factorial experiment under the assumption of no interaction. The 

following design is an MMD that may be used for this purpose: 

alblcl 

a
2

b
2

c
2 

a
3
b

3
c

3 

a
l

b2c
l 

a 2b
3

C2 

a
l
b

l
c 2 

a ZbZc 3 

However, if later, the experimenter decides that there may be an (A x B) 

interaction present, then this design must be augmented to allow for the 

estimation of (A x B) type II contrasts. We need to choose a set of 

additional assemblies, T*, such that D* = D+ T* will somehow be S­

optimal for (A x B). 
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Suppose we want to augment a three-factor, main effect MMD for one 

or more two-factor interactions. We want to accomplish this augmenting 

in a manner that will insure that the resultant design is as close as 

possible to being S-optimal for the interaction factor considered most 

important. 

If we desire an MAMD that is S-optimal for factor combination 

(A x B), then (A x B) will be the last "factor" for which we augment 

the design. We will first connect the design for (A x C) or (B x C) or 

both, then consider the best way to add the assemblies that connect the 

design for (A x B). To connect the design for, say (A x C), we add 

assemblies to insure that all possible (A x C) level combinations occur 

with a given level of B in the design. We choose the level of B that 

will allow us to accomplish this with the least number of assemblies. 

Then, if we desire, we add the least possible number of assemblies that 

will insure that all levels of (B x C) occur with a given level of A. 

This is not the only way that we might connect the design for these two 

factors. However, by using this minimum number of assemblies in the 

first two stages of the augmentation procedure, we insure ourselves 

maximum flexibility in the third, most important stage: connecting the 

design for the most important factor, (A x B). After having connected 

the design for all factors except the one for which we desire the S­

optimal design, we must consider how the final set of assemblies can be 

chosen. 

Recall from Chapter 4, that we can connect the design for the last 

factor (A x B), simply by adding assemblies that will insure that every 
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level combination of (A x B) occurs in the design. Any level of the 

remaining factor C may be used in the assemblies. We have no flexi­

bility, at this point, in choosing these combinations to be added, but 

we have complete flexibility in deciding what levels of the remaining 

factor, C, are used in the assemblies added. 

10.2 Sequentially S-optimal Designs 

The procedure we suggest for this final stage of the augmentation 

procedure will be a sequential one; we shall add one assembly at the 

time to the design, forming the design that is S-optimal for (A x B) 

at each step. 

Let D be a minimal multidimensional design of size nD, for some 

model MD, and Q be the class of all designs, D*, of size nD*, with the 

following properties: 

(1) D* is obtained by augmenting D, 

(2) D* is a minimal augmented multidimensional design under some 

model MD*, and 

(3) D* is obtained by adding assemblies, one at a time to D, obtaining 

a design of size nD+i, for i=l, 2, •. 0, nD*-nD, at step i of the 

augmentation procedure. 

(4) The minimum number of observations is used to connect D* for all 

effects other than (A x B) prior to connecting the design for (A x B). 

Then 

Definition 10.1 

The sequentially S-optimal design is the one from n, such that, 

given the design at step i, the design at step i+l is S-optimal for all 
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i in the final stage of the augmentation procedure. 

Suppose we want to obtain the sequentially S-optimal design, D*, 

for (A x B) level combinations by adding nD*-n
D 

assemblies to some 

design, D. If the first assembly to be added contains an (A x B) com-

bination which we denote by (ab) , then how shall we determine the 
p 

level of C, c , such that the assembly (ab) c will give us the S-
p p p 

optimal design at the first step in the augmentation procedure? We 

will discuss an optimal way for determining what c should be. 
p 

Let CAB be the coefficient matrix for (A x B) level combinations 

under the model ~*' but for the original design, D. We want to COn-

sider CAB changes as an assembly is added to D at any step in the 

augmentation procedure. Let k denote the number of times that c occurs 
p p 

in the experiment prior to adding assembly (ab) c. The notation used 
p p 

here will generally be the same as in Chapter 6. 

The following elements of CAB are changed when we add assembly 

(ab) c to design D: 
p p 

0--> 1 c 1 - k +1 pp 
P 

0--> 
1 c 

pi - k +1 
P 

0--> 1 
c. - k +1 JP 

P 

c .. 
1J 

----> C -
ij 

for p 

k of p 

for p 

k of 
p 

=F i and (ab) .c in design D. There are 
1 P 

these terms. 

=I j and (ab) . c 
J P 

in design D. There are 

these terms. 

1 
c .. + k (k +1) for i, j defined as above. 

1J P P 
There are k 2 of these terms. 

p 

All other terms of CAB remain the same. 
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We know that the S-optima1 design will be the one for which tr C 2 
AB 

is minimum. That is, if any element of the coefficient matrix is de-

noted by c ,then we want to minimize tr cAB
2 = L' I (c )2. After add-uv uv 

u v 

ing (ab) c to the design, 
p p 

2 = ( 1 )2 ( 1 2 1 2 tr CAB* 1- k +1 + k - k +1) + k (- k +1) + 
p p p p p 

where U corresponds to terms of CAB that are unchanged when the assembly 

is added. The previous expression can be rewritten as 

k 
(---L)2 + 2k (_1_)2 + I I c .. 2 
k +1 P k +1 1J 

P p i j 

2 
L I c .. + L L 1 + U + k (1 +1) 1J k 2(k +1)2 

P P i j i j P P 

k 2+2k 
k 2 

2 P 
= (~ +1)~ + k (k +1) L L c .. + k 2(k +1)2 

P p p i j 1J 
P P 

+ U' 

where Ut = U + L L 
i j 

c .. 2 
1J 

tr C
AB

2 before augmentation with (ab) c . 
p p 

Thus to minimize tr C
AB

*2 after adding (ab) c to the design, we minimize 
p p 

k +2k 2 
k 2 

d P ~ + L I p 
k (k +1) c .• + k 2(k +1)2 (k +1) 

i j 1J 
P P P P P 

1 
2 , 

L + k (k +1) L c
ij 

p P i j 
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Therefore, for the S-optimal design at this step, we choose c such that 
p 

d 1 

is minimum over all possible values of p. Certainly i, j, and k are 

functions of the p chosen. Based on the above discussion, we see that 

we can obtain the sequentially S-optimal design by the following pro-

cedure: 

At each step of the final augmentation procedure, determine the set of 

(A x B) level combinations, 8
1

, 82 , .• ., S , • • 
r 

8 ,where all ., n 
c 

elements of S occur in the design with c. Then 
r r 

(1) Compute dr = 1 + k (k
2
+l) l l cij ' where the cij correspond to the 

r r i j 

(A x B) combinations in 8 . 
r 

(2) Choose c such that d is minimum over all possible d. This will 
r r 

give the 8-optimal design at that step in the augmentation pro-

cedure. 

Example 10.1 

For a 4 x 3 x 2 factorial situation, consider the following main 

effect MMD: 

albic i 

a2b2cZ 

a 3b3cI 

a4b
l

c2 

a1bZcI 

a 2b
3

c2 

a
l
b

1
c2 



-122-

After the experiment has been run using this design, information becomes 

available that makes it appear likely that (A x B) and (B x C) inter­

actions should be assumed present in the design, the major interest 

being in estimation of (A x B) type II contrasts. We wish to obtain 

the MAMD that is sequentially S-optimal for (A x B). First we will con­

nect the design for (B x C). If we use level 1 of A, we can do this 

with only three additional assemblies. These assemblies are 

a
l 

b 2c2 

a
l

b
3

c
l 

a
l

b
3

c 2 

Now for the most important stage: connecting the design for (A x B). 

We still need to add the last five (A x B) level combinations to the 

design. These are 

a 2b
l 

a
3

b
l 

a3b2 

a
4

b
2 

a
4
b

3 

Suppose we decide to add a 2b
l 

first, and want to know which level of C 

to use. The sets Sl' S2 are as follows: 

Sl (a
l

b
1

, a
l

b2 , a
l

b3 , a 3b 3) 

S2 = (a
l
b

1
, a l b2 , a l b

3
, a2b3 , a4b l , a 2b2) 

If we call the four elements of Sl combinations 1 through 4, and the 

elements of S2 combinations 1 through 3 and 5 through 7, then the 
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corresponding d values for the first combination to be added are 

d (1) 
1 

1.1500 

d (1) 2 {( 1 1 1 1 1 1 
2 1 + 6(7) 3 2- 4 - 6)+3(1- 6)+6(- 4 - 6)+24(- 6)} = 1.0357 

since d(~) < d(~) , we choose level 2 of factor C to use with the first 

(A x B) combination to be added. This gives the new assembly 

If we decide to add a 3b
l 

next, we will look at the new coefficient matrix 

for (A x B) (the one after a 2b1c2 has been added) and find the values of 

d
1 

and d2 for the combination a3b
l

. 

211 111 1 1 + --{3(2- - - -)+1(1- -)+6(- - - -)+6(- -)} 4(5) 4 7 4 4 7 4 1.1714 

d(2) = 1 + ___ 2_{3(2_ ! - !)+4(1- !)+6(- ! - !)+36(- !)} = 1.0268 
2 7(8) 4 7 7 4 7 7 

Sl"nce d(2) < d(2) h 1 1 2 f ftC . d dd th 2 1 ' we c OOse eve 0 ac or aga1n, an we a e 

For adding a
3
b

2
, we find that 

and 

The 

d(3) 1.1875 
1 

d (3) = 1.0208 2 

we use assembly 

fourth assembly 

a 3b2c2 • 

to be added will be a4b2c2 , since 



d(4) = 1.2000 
1 

d(4) = 1.0167 
2 
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For the final combination, a4b3 , we use level 2 of factor C again, since 

d(5) = 1.2000 
1 

Our final design, which will be sequentially S-optimal for (A x B), will 

be 

alblc l 

a 2b2c 2 

a
3
b3c

1 

a4b
l

c 2 

a
l

b2c
l 

a2b
3

c2 

a
l

bl c 2 

a
l
b

2
c

2 a 2bl c2 

a
1

b
3

c
l 

a
3
b

l
c2 

a l b3c2 a3b2c2 

a
4

b
2

c2 

a4b
3

c2 

It is interesting to note that we used the same level of factor C 

in all five of the assemblies that we added in the final stage of the 

augmentation procedure. We shall now show that this is always the case. 

Suppose that for the j th step in the final augmentation procedure, 

(10.1) 

i.e. c is chosen for the assembly to be added to the design. Let k r r 

be the number of replicates of level r of factor C prior to adding the 

assembly at step j. Consider d(j) and d(j+l) where d(j+l) is the quantity 
m m ' m 
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corresponding to level m of factor C that we will consider when deciding 

whether or not use level m at step (j+l) of the augmentation proce­

dure. The only terms of d(j) that may change when we add an assembly 
m 

with level r of factor C at step j, will be terms in L L 
i j 

Co •• Any term 
lJ 

that does change will become larger, since the term included I before 

I 
the augmentation at step j, but includes - k +1 after the augmentation 

at step j. Thus 

Now consider d(j) and d(j+l). 
r r 

r 

(10.2) 

All terms of d(j) in I L c .. will be 
r i j lJ 

increased by k (kl+l) when an assembly with level r of factor C is added 
r r 

at step j. 
I This is because each of these terms included - ~ before the 

I 
assembly is added, but - k +1 after the assembly is added. 

r 

r 

There are k 
r 

of these terms. 1 
In addition, there is a term of the form (l- k +1) and 

r 

2kr terms of the form (- k !l) added to L L c. o-
r i j lJ 

These last 2k +1 values 
r 

correspond to values in the coefficient matrix that were zero prior to 

adding the assembly with c . 
r 

may be given by 

[k 
r 

Thus the total change in L I 
i j 

c .. at step j 
lJ 
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which is seen to be equal to zero. 
( .) 

That is, the sum I l c' j for d J 
• • 1 r 

1 J 

does not change when an assembly containing level r of factor C is added 

at step j. Thus the only change in d(j) is in the coefficient of 
r 

l L c .. , which changes from k (kl+l) to (k +l)~k +2). We now see that 
i j 1J r r r· r 

(10.3) 

Hence from (10.1), (10.2), and (10.3), we see that 

d(j+l) < d{j!l) 
r 

If level r of factor C is used in the assembly added at step j of the 

augmentation procedure, then level r will also be used at step (j+l). 

We always use the same level of factor C, no matter how many assemblies 

we have to add in the final stage of the augmentation procedure. We 

have now proved the following theorem: 

Theorem 10.1 

Let Sl' S2' . • 0' St' . 0 0, S be the set of (A x B) level 
n 

c 

combinations, where all elements of St ~ccur in design D with level c t 

of factor C. For all possible values of t, let 

where the c .. are terms of the coefficient matrix for (A x B) for model 
1J 
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D that correspond to the elements of St' If c is such that d is a 
r r 

minimum over all value of d , then level c of factor C is used with all 
t r 

(A x B) combinations to be added, and the design obtained will be the 

sequentially S-optimal design. 

It is interesting to note that the procedure followed in the final 

stage of the augmentation is independent of the order in which we add 

the combinations in the final stage. This is true, because the d-values 

are not functions of the (A x B) combinations being added or the combi-

nations already added in this final stage of the procedure. 

The procedures and theorem that we have given are also applicable 

for situations where we have more than three factors. We can still find 

the sequentially S-optimal design for (A x B), by treating the level com-

binations of all other factors as the levels of the factor we call C 

in the discussion of the procedure. For this case, Theorem 10.1 tells 

us that we would use the same level combination of all factors except 

A and B, in the final stage of the augmentation procedure. 

The question may be raised as to whether this procedure is Hsigni-

ficantly" better than just choosing the S-optimal MAMD from all possible 

MAMD's. The procedure has two advantages: There is something of a 

computational advantage in that we do not have to consider elements of 

C2 , but only of C. The major advantage though, is in the number of C 

matrices we have to consider. For example, for the situation of 

Example 10.1, if we attempted to get the S-optimal design, we would have 

to compute 32 different C matrices, one for each possible permutation 

l)f the levels of factor C used in the last five assemblies. To obtain 

the sequentially S-optimal design,'we only had to compute one coefficient 
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matrix. 

The last thing to be considered in this chapter is the relation-

ship between the sequentially S-optimal design and the S-optimal design. 

Are they the same design? If not, how much better is the S-optimal 

design? 

It can be seen that 

d (j+l) 
r 

where level r of factor C is used at step j in the augmentation procedure. 

Thus if d(;), the increase in tr cAB
2 at step j, is small, then we would 

expect the increase at step (j+l) to be relatively small. This leads 

us to believe that if we are successful at step j (with respect to 

S-optimality), we will be successful at all succeeding steps. This 

means that the final design will be very good with respect to S-optimality. 

Treated from a "different point of view, it can be said that, d{j+l) is a 
r 

function of tr c
AB

2 after adding the assembly at step j. Thus if we 

make tr c
AB

2 as small as possible by forming the S-optimal design at 

step j, we would expect the design to be S-better at step (j+l) and at 

all succeeding steps. These considerations lead us to believe that the 

sequentially S-optimal design will either be the S-optimal design, or be 

nearly as S-good. 



CHAPTER 11 

SUMMARY 

Throughout this work we have considered procedures for obtaining 

appropriate designs when we have some restriction on the number of ob­

servations that may be taken or on the number of replicates of any 

factor level that may be used. 

Sennetti (1972) showed the existence of minimal multidimensional 

designs (MMD's) and minimal augmented multidimensional designs(MAMD's) 

which allow estimation of type I and type II contrasts. For an MMD, 

only one more design point is required than there are degrees of free­

dom for the parameter vector. For MAMD's, the number of assemblies 

added is equal to the difference between the number of degrees of 

freedom for the parameter vector and the rank of the design matrix. 

In this work, we have suggested a practical procedure to obtain 

an MMD for estimating type I contrasts and have proved the procedure 

valid. This procedure uses the "chain" concept of a connected design 

as defined by Bose (1947). In addition, a procedure is discussed that 

mav be used to obtain an MMD for estimating type II contrasts. After 

proof of the validity of the procedure, advantages of this procedure 

over some other possible procedures to obtain an MMD are given. We 

then show that only a slight modification of the procedure described 

for obtaining MMD's is necessary to obtain an MAMD. 
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If there is a restriction on the number of replicates of factor 

levels for an experiment, then we take a different approach. We want 

to be able to estimate all main effect linear contrasts as well as 

possible. If m .. denotes the number of replicates of level j of factor 
lJ 

F., then we wish to increase the number of estimators for type I con-
1 

trasts without altering any of the m .•• 
lJ 

The interchange algorithm used 

by Eccleston and Hedayat (1974) to accomplish this for a proper, 1-

connected randomized block design is extended to two-factor, no inter-

action designs. The designs obtained are pg-connected, thus guarantee-

ing more estimates for main effect contrasts. In addition, the new 

design will be better than the old with respect to the S-optimality 

criterion. It is shown that the procedure can also be used in a two 

or more factor experiment to pg-connect an I-connected design for two 

factors. The new design will be better than the old with respect to 

the C-optimality criterion. The algorithm described is proved to have 

no effect on the amount of aliasing (based on a norm suggested by 

Hedayat, Raktoe, and Federer, (1974» due to a possibly incorrect 

assumption of no interaction. 

We d:iscuss how many estimates we are assured of for a type II 

contrast if the design is pg-connected for level combinations of the 

factors in the contrast. The use of the interchange algorithm to 

pg-connect a design for level combinations is suggested because of 

the increased number of estimators for type II contrasts that may be 

obtained. 

The last topic discussed is the use of a criterion for choosing 
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a particular MAMD for estimating type II contrasts. We find that the 

sequentially S-optima1 MAMD is easy to obtain and is similar to the 

S-optima1 design. 



CHAPTER 12 

PROPOSED EXTENSIONS 

A number of questions arise with respect to this work that suggest 

further investigation may be appropriate. Throughout Chapters 2, 3, and 

4, we maintained property I when choosing an MMD or MAMD whenever pos­

sible. This quest for equal level frequencies has intuitive appeal and, 

in some cases, produces a variance balanced design. We need to prove, 

though, that the maintenance of property I has advantages in the more 

general case. 

In Chapter 6, we noted that the conditions necessary for a pg­

connected design to be S-better than the original I-connected design 

are generally easy to satisfy. It has not been shown when, if ever, it 

is impossible to satisfy anyone of the three conditions of Theorem 6.2. 

In section 6.3, it is proved that the final design, D**, of the 

three design sequence, is S-better for factor A and for factor B. The 

question may arise as to when, if ever, D** is not pg-connected for 

factor A, the factor involved in the first interchange. 

The procedures of Chapter 7 allow us to improve a factorial design 

with respect to two factors, A and B. Level combinations of all factors 

except A and B may be considered to be levels of some pseudo-factor, F. 

It should be questioned whether the procedures of Chapter 7 may be ex­

tended to situations where we want to improve a design with respect to 
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three or more factor~. It is possible that the difficulty of using such 

a procedure would outweigh the advantages. Certainly though, such an 

extension would be worth considering. 

We, as Eccleston and Hedayat (1974), have used an interchange al­

gorithm to improve a design with respect to the S-optimality criterion. 

What has not been shown, is the value of the amount of improvement ob­

tained. In most of the examples given, the decrease in tr C2 is approx­

imately five to ten percent. It is not clear how valuable a decrease of 

this magnitude is. Perhaps an approach to this question would be to 

consider the change in the design with respect to one of the criteria 

used to justify the use of the S-optimality criterion. At least in 

terms of the A criterion, the value of the relative amount of decrease 

might be easier to determine. 

As a final item to consider, more work needs to be done in com­

paring the S-optimal and the sequentially S-optimal designs. What are 

the similarities and differences, if any, between the design obtained 

using the sequentially S-optimal criterion to obtain an MAMD, instead 

of the S-optimality criterion in the last stage of the augmentation 

procedure. 
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CONNECTEDNESS AND OPTIMALITY IN 
MULTIDIMENSIONAL DESIGNS 

by 

Wilkie W. Chaffin 

(ABSTRACT) 

Sennetti (1972) showed the existence of minimal multidimensional 

designs (MMD's) and minimal augmented multidimensional designs (MAMD's) 

which allow estimation of type I and type II contrasts. For an MMD, 

only one more design point is required than there are degrees of free-

dom for the parameter vector. For MAMD's, the number of assemblies 

added is equal to the difference between the number of degrees of 

freedom for the parameter vector and the rank of the design matrix. 

Using the chain concept of connectedness as defined by Bose 

(1947), this work suggests a practical procedure to obtain an MMD for 

estimating type I contrasts~ and proves the procedure valid. In addi-

tion, a procedure is discussed that may be used to obtain an MMD for 

estimating type II contrasts. After proof of the validity of the pro-

cedure, advantages of this procedure over some other possible procedures 

to obtain an MMD are given. It is shown that only a slight modification 

of the procedure is necessary to be able to obtain an MAMD for estimating 

type II contrasts. 

If there is a restriction on the number of replicates of factor 

levels for an experiment, then a different approach is suggested. If 



m .. denotes the number of replicates of level j of factor F., then it 
1J 1 

is desired to increase the number of estimators for type I contrasts 

without altering any of the mijO The interchange algorithm used by 

Eccleston and Hedayat (1974) to accomplish this for a proper, locally 

connected (I-connected) randomized block design is extended to two-

factor, no interaction designs. The design obtained is pseudo-

globally connected (pg-connected), thus guaranteeing more estimates 

for main effect contrasts. In addition, the new design will be better 

than the old with respect to the S-optimality criterion. It is shown 

that the procedure can also be used in a two or more factor experiment 

to pg-connect an I-connected design for two factors. The new design 

obtained will be better than the old with respect to a new criterion, 

C-optimality. The algorithm described is proved to have no effect on 

the amount of aliasing (based on a norm suggested by Hedayat, Raktoe, 

and Federar, (1974» due to a possibly incorrect assumption of no inter-

action. 

The use of the interchange algorithm to pg-connect a design for 

level combinations is suggested because of the increased number of 

estimators for type II contrasts that may be obtained. A theorem is 

proved which gives the minimum number of estimates that will be avail-

able for estimating a type II contrast if a design is pg-connected for 

level combinations. 

The last topic discussed is the use of a criterion for choosing a 

particular MAMD for estimating type II contrasts. The sequentially S-

optimal design is defined. It is shown that the sequentially S-optimal 

design is easy to obtain and is similar to the S-optimal design. 


