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(ABSTRACT) 

A plane frame element based on linear, elastic theory is developed 

and implemented into the :!ESS finite element program. Post-processed 

results include nodal displacements, end reactions, maximum tensile and 

average shear stress, and a deformed geometry plot. The element is tested 

for accuracy relative to simple beam theory and by comparison with results 

generated using another finite element program. 

to within 6 significant figures was achieved. 

In both cases agreement 

Because the intended use is educational, a survey of its benefit as 

a design aid in undergraduate instruction is included. These benefits 

are based on test cases from senior design class projects. Results gen-

erated using analysis techniques presently available are contrasted with 

those using the plane frame element. Students' work that was examined 

contained mistakes resulting from large amounts of hand calculations. 

Conversely, results generated using the finite element method proved to 

be easily obtained and to have a higher degree of accuracy. A recommen-

dation for further improvements in program capability is provided at the 

end of the study. 
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1.0 INTRODUCTION 

The ability to correctly model a physical system using the finite 

element method is often limited by the types of elements available for 

use. The modeling of any continuum is limited in accuracy by the basic 

assumptions made regarding element formulation, i.e., the elemental de-

grees of freedom and the manner in which the element reacts under load. 

These are all related to the element stiffness matrix formulation. 

The most basic finite element commonly used is the truss element, a 

one-dimensional bar able to ~ithstand axial forces and deflections only. 

Other element types slightly more complex yet still easily formulated 

include the beam, plane frame, the 2-D isoparametric, and the 2-D 

axisymmetric element. These are often found in basic finite element 

programs; hence, they are often used for instructional purposes. 

An existing finite element program, MESS (Mechanical Engineer's Stress 

program), is used for undergraduate instruction in the Computer-Aided 

Engineering Design la~ of the Mechanical Engineering Department of 

Virgina Polytechnic Institute and State University. The program is based 

on the program described by Bathe [1] . 1 The element library has been ex-

panded to include a 2-D isoparametric and a 2-D axisymmetric element, as 

well as the original truss element. An interactive, menu-driven data 

preprocessor has also been developed and is presently in use. 

Numbers in square brackets refer to similarly numbered references in 
the List of References. 
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Postprocessing capabilities currently employed include model plots, 

element stresses, and graphical plotting of deformed geometry. 

This thesis involves the addition of a plane frame beam element to 

the element library of MESS. Modification of the preprocessor will be 

necesary such that recognition of an additional element is made and 

input is prompted accordingly. An additional subroutine containing 

formulation of the plane frame element will be added to the main pro-

gram. Existing routines that call the element subroutine, plot deformed 

geometry, or display results will be changed as necessary. 

The element to be developed and implemented in this project will 

follow the following guidelines: As closely as possible, the element 

subroutine will parallel the formulation used in the other element 

routines. This is especially pertinent for the truss element, as the 3-

D space truss and 2-D plane frame elements have stiffness matrices of 

the same dimensions. Thus, ease of interaction with the assembly and 

solution routines presently in use will be facilitated, so nodal dis-

placements can be computed using existing coding. Inter-element de-

flections will be calculated using the element shape functions and used 

for plotting the deformed structural geometry. End reactions (tensile, 

shear, and moment) will be calculated at each node for all elements, as 

well as the element stresses (maximum normal and average shear). An 

output file will be generated which contains all element input data as 

well as numerical postprocessed results. 

Finally, the plane frame element will be evaluated for design use and 

accuracy. This analysis will be done in three areas, each of which 
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encompasses a different area of application. First, accuracy relative 

to results predicted by simple beam theory ~ill be analyzed. Secondly, 

an indeterminant frame structure modeled and analyzed by Meyers (2] will 

be modeled and the results ccmpared. Finally, structurally optimized 

frames designed by undergraduate students in ME 4070 Mechanical Design 

II will be modeled and evaluated. The results will be compared with those 

predicted by classical analysis. 

3 



2.0 LITERATURE SURVEY 

Because direct physical argument can successfully formulate simple 

structural components, provided the material is assumed to be linear and 

elastic, the modern use of fi11ite elements originally began in the field 

of matrix structural analysis [3). The need for analysis of complex 

structures consisting of one-dimensional elements combined with the com-

parative ease of formulation lead to rapid increases in finite element 

use as digital computing techniques evolved in the early 1950's. This 

resulted in an early formulation and use of the plane frame element. 

The plane frame element is a one-dimensional bar element capable of 

withstanding in-plane forces and torques, as shown in Figure 1. The 

displacement method is presented by Meyers [2] as a valid method by which 

to mathematically describe the reaction of the element to load inputs. 

By using fundamental strength of material concepts from simple beam the-

ory, the element stiffness matrices are derived for the truss and beam 

elements. The plane frame element is described as simply a superposition 

of these two elements, this is a valid assumption as long as the inter-

action between axial and bending modes of member deflection remain small 

(2]. Similar derivation and results are listed by Kanchi (4]. 

Since the 1950's other more mathematically based methods of arriving 

at element stiffness matrices have been developed. As a rule they are 

more mathematically intensive, but when appropriate assumptions are made, 

they yield identical stiffness matricies for the truss and beam elements 

as those derived using simple beam theory. Hence, the limitations 
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E, A, I ::: CPNSTANT 
E= MODULUS OF ELASTICITY 
A -:: CROSS -S£CT!ON4l AREA 
I :=. MOMENT 01= INERTIA 

Q;, v;·, M; = A PPL/ED LOADS 

U.c, Wi, ~ = NODA.L DISPLACEMENTS 

PJGURE l: PLANE FRAME ELEMENT WITH 
A PPL/ED LOADS ANJJ R£.5ULTING 

NODAL D1SPLAC£.NTENTS (AFTER [2}) 
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associated with the most basic formulations of one-dimensional elements 

are more visible. 

The classic finite element method of deriving element equations con-

sists of numerically representing the variational formulation of the 

governing differential equation. This is done in detail for the beam 

element by Reddy [5]. Simplifications are made related to linear theory, 

such as assuming the modulus of elasticity, moment of inertia, and 

cross-sectional area are constant across the element. When the simplest 

polynomial that fulfills continuity and end condition requirements is 

chosen as a displacement sl1ape function, the resulting element stiffness 

matrix is identical to that obtained using the displacement method. 

Stiffness matrices for the simple beam, plane frame, space frame, plane 

truss, space truss, and more complex plate elements are given by Rao [6]. 

Although certainly a useful tool, the plane frame formulation found 

using linear elastic assumptions has definite limitations, both in accu-

racy and application. These are primarily related to material and ge-

ometric nonlinearities and the possibility of nonlinear boundary 

conditions. The sources briefly quoted below provide a more comprehensive 

understanding of the assumptions involved and the resulting limitations 

of linear theory as applied to the plane frame element. 

Interaction between bending and axial deflection modes is a nonlinear 

problem that can contribute to inaccuracies that are associated with the 

plane frame element. Because the deflected slope of the element is as-

sumed small when compared with unity in linear theory, the governing 

differential equation becomes uncoupled and is reducible to results ob-

tained earlier [ 5] . However, when not too small, the coupled set of 
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equations must be solved and the stiffness matrix developed according-

ly. Butler [ 7] describes implementation of Green's strain tensor as a 

way of achieving a nonlinear relationship between strain and displace-

ment. 

Geometric nonlinearities can also be introduced by large deflections 

within the structure that significantly alter the way in which loads are 

carried. Cook [8] gives a general look at techniques available for 

treating inaccuracies in finite element models resulting from large 

deflections. A study of geometric nonlinear behavior for the plane 

frame is done by Phan [9]. 

When a material's yield point is reached, plasticity becomes a factor 

in deflection analysis. Hence, under circumstances of very high stress 

and low safety factors, a nonlinear stress-strain relationship may 

result. Two major techniques of solving such material nonlinearity are 

covered by Cook [8]. The first method involves an incremental procedure 

which relates increments of stress to increments of strain; the second 

method is a direct iteration method and relates total stress to total 

strain. Both attempt approximation of the changing stress-strain curve. 

Other limitations of the linear theory plane frame element are listed 

below: 

1. Two-dimensional problems only. 

2. The in-plane beam thickness must be small compared 

to length so shear deformation is negligible. 
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3. Deflections are small relative to the problem's 

dimensions. 

Only the development of the element stiffness matrix and limitations 

due to linear formulation ha\·e been previously discussed. Also of in-

terest is the way in ~hicl1 the element is implemented, the global struc-

ture matrix assembled, the forces app 1 ied, and the deflections 

calculated. Because this thesis dealt with an existing finite element 

program, it was desired to use the numerical solution methods employed 

in the existing program. Hence, only the procedures used in it were of 

interest. They are developed and explained in detail by Bathe and \\ilson 

[ 1] . 

The first step involved in the solution phase of the finite element 

method is calculating nodal displacements, while reaction forces and el-

ement stresses are found in the second phase of analysis. Methods of 

postprocessing results are given in [5] specifically for the beam element 

and in [2] for the plane frame element. Both of these references find 

end reactions by reforming each eleme11t stiffness matrix and multiplying 

by the corresponding nodal displacements previously computed. General 

guidelines for developing a postprocessor are presented by Ford [ 10). 

Methods for implementing interactive graphic capability and the benefits 

of such postprocessing are also discussed. 
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3.0 THEORY 

3.1 GENERAL DESCRIPTION OF THE FINITE ELE~ENT METHOD 

In the finite element method, the actual body of matter is represented 

as an assemblage of subdivisions called finite elements, interconnected 

at specified joints called nodal points (6]. When applied to structural 

problems, differential equations that govern deflections inside the 

continuum are approximated by simple algebraic interpolation functions. 

These functions are defined in terms of the values of nodal displacements. 

Generally speaking, the resulting set of equations are then arranged such 

that the relationship between force input and displacement can be deter-

mined. 

The solution of a problem by the finite element method follows an 

orderly, step-by-step process. With reference to structural problems, 

the following procedure is used: 

1. Discretization of the structure 

The structure is appropriately divided into 

elements. The number, type, and arrangement must 

be selected. 

2. Selection of proper interpolation functions 

The functions chosen must approximate the unknown 

solution, be computationally simple, and meet end 
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condition and continuity requirements. 

3. Derivation of element stiffness matrices 

From the assumed displacement model, the stiffness 

matrix [Ke] and load vector {Pe} are derived using 

equilibrium conditions or variational principles. 

4. Assemblage of element equations to obtain the overall 

equilibrium equations 

Since the structure is composed of many finite elements, 

individual element stiffness and load vectors are 

assembled and the overall equilibrium equations 

formulated as 

(KJ{D} = {P}; 

where [K] = assembled stiffness matrix 

{D} = vector for nodal displacements 

{P} = nodal force vector. 

5. Solution for the unkno~n nodal displacements 

The overall equilibrium equations are modified to 

account for the boundary conditions of the problem. 

Nodal displacements are then solved using 

numerical techniques. 

6. Computation of element strains and stresses 

From the kno~n nodal displacements, element strains 
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and stresses can be solved using the applicable 

equations of solid mechanics. 

3. 2 STIFFNESS MATRIX DERI\'ATIO\ FOR PLA\E FRAME ELEMENT 

This project dealt ~ith the development and implementation of a plane 

frame element; thus, steps ~2. ij3, and #6 as outlined above were neces-

sary for implementation in the existing code. As described earlier, this 

element is to be based on linear theory and represented as the superpo-

sition of the plane beam and plane truss elements. The formulation also 

neglects shear deformation. In cases 1.-here this is significant, as in 

short beams with large shear forces, accuracy is limited. The same no-

cation as used in Figure 1 is used in the following development. 

3.2.1 BEAM ELEMENT DERIVATION 

The finite element method is built upon establishing a relationship 

between force and displacement. As outlined in Section 3.1, this consists 

first of deriving individual element stiffness relations in the form 

( 3. 1) 

e where [K ] = element stiffness matrix 

{De} -- d 1 d" 1 no a isp acement vector 

{Pe} = nodal force vector 
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The element equation is then added to the entire structural matrix to form 

the overall equilibrium equation. The present task is to find [Ke] for 

the beam element. 

The fourth order differential equation 

d\1 EI = 0. 4 dx 
(3.2) 

is the governing equation for the bending of beams, where E is the 

modulus of elasticity, I is the area moment of inertia, w(x) is the 

transverse displacement (+ up), and E and I are constant across x. The 

transverse deflection must satisfy Eq. 3.2 as \>'ell as the 4 associated 

boundary conditions. For a beam, these conditions relate to displacements 

at each end: ~and d~/dx. Hence, Eq. 3.1 will take the following form: 

K 11 "12 Kl3 Kl4 wl rv 1 
"21 "22 K23 K24 e 1 = f K31 1\32 K33 K34 \\ 2 

M~ (3.3) 
1\41 K42 1\43 K44 82 

where K .. = stiffness matrix coefficients 
1J 

8. = 
l. 

dw/dx = slope at ends (+ counter-clockwise) 

v. = shear force 
l. 

at ends (+ up) 

M. = moment 
l. 

at ends (+ counter-clockwise) 

To determine the values of the stiffness matrix coefficients, the unit 

displacement method ~ill be used. In this approach a unit value of each 

member-end displacement is applied in separate steps as shown in Figure 

2. For each of the 4 cases, Eq. 3.2 is solved for w(x) given the 4 sets 

12 



(a.) 

(_b) 

<.c) 

FIGURE 2: UNIT D!SPLACtMENTS 
FOR BEAM ELEMENT 
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of boundary conditions. Resulting end reactions are calculated using the 

following relationships between w(x) and V and M [SJ: 

3 
\' ( x) 

d \\ EI = -
dx 

3 (3.4) 

') 

~1 ( x) 
d-w EI = -
dx 

2 (3.5) 

Because a counter-clockwise moment is defined as positive, the negative 

sign in Eq. 3.5 is 11ecessary to assure positive curvature results from a 

positive moment. 

The solution of Eq. J.2 for Case A as shown in Figure 2 proceeds as 

fo 1 lows: 

4 4 
d w/d x = 0 

with boundary conditions (a) w(O)=l (b) w f ( 0 )=0 

(c) w(L)=O (d) w I (L)=O 

where L = beam length. 

(A) Integrate three times: 

1.· ( x) 

(B) Apply boundary conditions: 

From (a) and (b)' c = 3 0' c = 0 4 

From (c) and (d). w (1) = 1 3+ 1 2+1 cl c2 = 0 

w' ( L) = 3c 1 
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Hence, 

(C) Find end reactions 

3 
V = V(O) = ~EI' = 

1 dx 3 x=O 

M = M(O) = - d2w EI' = 
1 <lx2 x=O 

i: EI 
L.) 

') 

c.., = -3/L~ 

[-6(...,L) (0)+2(--.;.) ]EI 
L3 L-

= - 6-EI 
L2 

Once given V1 and M1 , V2 and M2 can be obtained 

from statics: 

LF=O leads to v = -v = -(12/L3 )EI 2 1 
EM=O @ x=O leads to ~1 = -M + LV ·2 1 2 

? 
=(6/L-)EI 

Hence, the first row of the stiffness matrix, I\ i 1 is known: 

Kll = 1LEI/L3 K21 = 6EI/L2 

K31 = -12EI/L3 K41 = 6EI/L2 

(3.6) 

This procedure is followed for each of the three remaining conditions. 

An additional row of the stiffness matrix is fo.und for each set of 

boundary conditions. The resulting matrix is listed belo~: 

~6/Lz) (3/1) (-6/L2) 
(3/L) J e 12 EI 3/1) 2 (-3/1) 

(-i/L) 
[K ] = -6/12) (6/12) 1 (-3/1) (3.7) 

3/1) 1 (-3/1) 
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Equation 3.6 represents the beam displacement as a function of x given 

that w1 = 1 an~ all end displacements = 0. For each of the other 3 sets 

of boundary conditio11s shoKn in Figure 2, a unique displacement function 

results. These functions are commonly knoKn as element shape functions 

and are useful in approximating inter-element displacements given nodal 

displacements. Each of the four interpolation functions corresponding 

to cases (A)-(D) respectively are listed below: 

(3.8) 

For a combination of non-zero end displacements, inter-element displace-

ments are expressed as the superposition of each shape function multiplied 

by the corresponding displacement [5]. Thus, 

(3.9) 

3.2.2 TRUSS-ELE~ENT STIFF~ESS MATRIX 

The second-order differential equation 
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2 
EA du= 0 (3.10) 

2 d x 

is the governing equation for the axial deflection of a bar, where 

u(x) is the longitudinal displacement, A is the cross-sectional area, and 

E is the modulus of elasticity. If the unit displacement method is ap-

plied, two sets of boundary conditions result: u = 1@ end 1 and u = 0 

@ end 2, or u = 0@ end 1 and u = 1@ end 2. When Eq. 3.10 is solved using 

these two sets of boundary conditions, end reactions and stiffness matrix 

coefficients can be found using the same procedure as in the previous 

section. When put in the form of Eq. 3.1, the following equation results: 

(3.11) 

where u 1 = u(O) u 2 = u(L) 

Q1 = force @ x=O Q1 = force @ x=L 

3.2.3 SUPERPOSITION OF TRUSS AND BEAM ELEMENTS 

Because the truss and beam elements are geometrically similar, the 

two can be combined into one element with three degrees-of-freedom per 

node: longitudinal deflection u, transverse deflection w, and rotational 

deflection 8. When the properties A, E, and I are constant within the 

element and deflections are assumed small, the following equation results 

from the superposition of Eq. 3.7 and Eq. 3.11: 

17 



A/21 0 ') 0 -A/21 0 0 ul Ql 
6/ L - 3/L 0 -6iL2 3/L wl v 

ill ') 0 1 8 = Ml -
L A/2I 0 ') 0 u2 Q') 

ls ym. ) 6/L- -3/ L w2 v- (3.12) 
2 8 M2 

3. 3 GLOBAL PLA\E fR,\'I[ STIFF\CSS MATRIX 

In most problems of prdctical interest, it is necessary to find the 

stiffness matrix of an element relative to some common, global coordinate 

system. This is accomplished by using a rotation transformation. For a 

frame element oriented at an angle ¢ from the positive x axis, the com-

ponents of displacement are changed from the element coordinates x' and 

y' to global coordinates x and y. As sho~n in Figure 3, the rotation of 

coordinate axes changes the reaction force and displacement directions. 

The modification of the stiffness matrix is related to both of these. 

Thus, it is necessary to derive the relationship between global forces 

and element forces as ~ell the relationship between global displacements 

and element displacements. 

From Figure 3 it can be sho~n that 

(3.13) 

where {P} = F F ~1 F F M2 ]T = force vector in global xl yl . 1 x2 y2 coordinants 
{Pe} = [ Ql v ~I 02 r :1,,] T = force vector in element 1 1 ') ... coordinates 
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B. 

C. D. 

FiGURE 3: MEMBER END FORCES AND 
DISPLACEMENTS 

A. FORCES' LOCAL COOR.DINATES 
B. FORCES' GLD8AL COORDINATES 
C. D1sp1.JK.EM.ENTS, Loe,~'- COORDtNArc.s 
D. DISPLACEMENTS, GLOBAL COOf(OINATES 

t 
I Dt2 

Dxz 
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cos¢ -sin¢ 0 0 0 0 
sin¢ cos¢ 0 0 0 0 

[ \ l = 0 0 1 0 0 0 
0 0 0 cos¢ -sin¢ 0 
0 0 0 sin¢ cos¢ 0 (3. 14) 
0 0 0 0 0 1 

Also from Figure 3 the relationship bet\\een elemental and global 

displacements is: 

(3.15) 

where {D} = [Dxl D e1 D D e2]T = displacement vector in yl x2 y2 global coordinates 
{De} = [ ll l w 1 e1 u2 \.i') e')] T = displacement vector in 

element coordinates 

This particular equation form is desired for later substitution such that 

a matrix equation is derived that relates global displacements, the ele-

ment stiffness matrix, and global forces. 

By substituting this into Eq. 

3.13, the following relationship is obtained: 

The substitution of Eq. 3.15 into the above equation yields 

(3.16) 
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After the matrix 111.1ltiplication of Eq. 3.16 is done, the following 

equation results:. 

cl c2 C3 -cl -c2 C3 D F 
0xl Fxl 

2EI 
cs C4 -c2 -cs C4 eYl Myl 2 -c3 -c4 l 

(3. 17) L (sym.) DI Fl cl c2 -c3 0x2 Fx2 cs -c 
24 eY2 My2 

2 2 

where 

A 
2 

+ 6 . 2<1> cos ij> sin 
cl 2 I L2 

A sin ij> cos ij> 6 sin 4> cos 4> 
C2 2 I L 

3 sin ij> 
c3 = L 

3 cos ij> 
c4 L 

A 2 
+ 6 

2 
cs = sin ij> cos 4> 

2 I L2 

The stiffness matrix in this equation is in a form easily applied to 

a variety of plane frame element sizes, positions, and materials. Thus, 

a structure consisting of many elements can be correctly modeled by 

assembling individual element stiffness matrices. This assemblage is 

accomplished by superimposing the element stiffness matrices such that a 

large structural matrix is obtained. The resulting matrix has dimension 

equal to the total number of degrees of freedom in the structure. The 

matrix equation is given in step #4 of Section 3.1. 
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3. 4 CALCULATION OF E~D LOADS FROM DISPLACP!E\TS 

After all elements are assembled and the overall equilibrium equations 

are determined, the overall load vector is applied. Nodal displacements 

are solved for using numerical techniques as outlined in step #5 of Sec-

tion 3. 1. The final step consists of finding element end reactions, 

stresses, and strains by using the k11m\!1 nodal displacements. 

The displacements calculated dre given in global coordinates; hence, 

by directly substituting the corresponding values into Eq. 3.17, the el-

ement end reactions are determined. However, the resultant forces are 

also in global coordinates. In order to find element stresses, it is 

necessary to transform tl1ese reactions back to element coordinates. From 

Figure 3, the relationship between forces in the element coordinate system 

and global coordinate system can also be expressed as 

Once end reactions are calculated using this equation, stress computation 

is performed using classic strength-of-materials equations relating to 

linear theory. These equations and the method of application are covered 

in Chapter 4. 
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4. 0 IMPLEMENTATION 

As mentioned earlier, this project im·olved work on an existing 

software package at \'irginia Polytechnic Institute known as MESS (Me-

chanical Engineer' S Stress program). Program logic and computational 

techniques are presented by Bathe and Wilson [1]. 

The core program developed in [ 1] contained only a space truss ele-

ment; however, the code h3S hritten such that additional elements could 

easily be added, provided similar algorithms were used to solve for the 

element stiffness matrices. Accordingly, the program has been in a con-

tinual state of upgrading since its introduction at Virginia Polytechnic 

Institute. Two additional elements. the 2-D, 4-noded isoparametric and 

axisymmetric elements, were added, as well interactive graphic capability 

consisting of plotting the element mesh and the deformed mesh. In 1982 

Jara-Almonte [11] added a variety of post-processing abilities relative 

to the axisymmetric and isoparametric elements. His work in implementing 

these capabilites and the alterations made to existing code is described 

in his thesis. 

The basic requirements of this project consisted of the development 

of a plane frame element subroutine that would operate in a manner very 

similar to the existing truss element routine. As both elements have the 

same geometry, the same connectivity array is used, and the stiffness 

matrices are of the same dimension. Thus, the formation of the element 

stiffness matrices and their individual contributions to the global 
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stiffness matrix was identical to the original method used in [ 11]. 

However, material properties, stress computation, and deformed mesh 

plotting would necessarily be different. 

The plane frame element routine performs four primary functions: 

1. It reads in all element material properties: i.e., 

Young's modulus, cross-sectional area, moment of 

inertia, and distance from the centroidal axis 

to the outer fiber. 

2. It loops over all elements to form the connectivity 

array, calls a subroutine to update column heights, 

and calls a subroutine to plot the mesh geometry. 

3. It loops over all elements to calculate the corres-

ponding stiffness matrix using Eq. 3.17, and calls 

the subroutine to add the result to the global 

stiffness matrix. 

4. It loops over all elements reforming each stiffness 

matrix , multiplying it by the corresponding nodal 

displacement vector. Deformed geometry of the 

element is found using the element shape functions 

given by Eq. 3.8, and a plotting routine is called 

to plot the structural deformed mesh. Stresses are 
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calculated using the element properties and end 

reactions in element coordinates. Input data, node 

displacements, nodal reactions, and stresses are 

written to an output file. 

In order to accomplish the above functions, some modifications to 

existing code 1,·ere necessary. For the undeformed mesh geometry, the same 

routine was used as for the truss element. However, an entirely new 

routine was necessary for the deformed plot. Conditionals relating to 

element type were used to channel the problem to the correct subroutines. 

Other modifications included the expansion of dimension statements to 

handle the increased nt1mber of material properties and the arrays neces-

sary to plot inter-element deflections. 

Stress computation was based on classic strength of materials 

equations applied to elastic beams of constant properties, with element 

end reactions being the only force inputs. Element orientation and end 

reactions are shown in Figure 3. The maximum normal stress o is found 
x 

at both nodes of each element, and is represented as the combination of 

normal bending stress at the outer fiber and the stress due to axial 

force. The equation used to calculate this is given below: 

where F = axial force x 

M = end moment 

F x 
0 = x A + M c 

I 
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A = cross-sectional area 

c = distance to outer fiber from centroidal axis 

I = area moment of inertia 

Shear stress is also of interest in beam analysis. However, it varies 

with respect to the cross-sectional area and is not easily formulated for 

a variety of shapes. RJther than calculate average shear stress or some 

general value that could be mis interpreted by undergraduate students, 

shear force is given as output. 

In order to plot the deformed element shapes using the shape func-

tions, transverse and longitudinal deflection 1.:as first calculated in 

element coordinates at interpolation points, then transformed to global 

coordinates. A total of 20 interpolation points were used per element: 

one at each endpoint and 18 evenly spaced points between. The displace-

ment values 1.ere scaled relative to the maximum displacement over all 

elements such that the largest displacement 1.-ill be seen as approximately 

1/2" by the program user. The values 1,·ere then passed to a routine which 

plots the structure beginning with element one and continuing to the 

highest element number. 

Several modifications 1,·ere necessary in the preprocessor. These 

primarily related to input data interpretation and data file formatting. 

The processor is formatted for very easy, almost bug-free use; hence, 

nodal, element, force, and material properties input is formatted rela-

tive to the element type being used for the analysis. Input prompts and 

data interpretation loops relative to the plane frame element were added. 

Conditional statements relating to element type were used to control ~hich 
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prompts were written to the screen and which interpretive loops were 

executed. The Appendix contains sample output files from MESS using the 

plane frame ~lement subroutine BEAM relating to the case studies covered 

in Chapter S. 
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5.0 ACCCRACY STUDY. 

5.1 SIMPLE BEA~ THEORY TESTS 

Because element formulation was based on linear, elastic theory, 

displacements predicted by simple beam theory should agree with program 

output. As a check. se\"CLi 1 beams having various end conditions and 

loadings were modeled. Formulas for calculating displacements and end 

reactions derived using classical strength of materials equations are 

given by Shigley (12]. The four cases listed below were modeled: 

A. Fixed - free, end force 

B. simply supported, center force 

c. Simply supported, center moment 

D. Fixed - fixed, center force 

For each condition, displacements and end reactions predicted by 

classical analysis agreed to 6 digits precision with that predicted by 

the program. This was as expected, because with simple finite element 

models consisting of only a few elements, roundoff errors involved in 

solving the matrix equation are negligible. Parameters used in modeling 

cases A and B are given in Figure 4, as is the deformed geometry and 

displacements generated by MESS. Corresponding displacements predicted 
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by classical theory are also given. Figure 5 contains the above infor-

mation for cases C and D. 

5.2 INDETERMINANT FRAME A~ALYSIS 

Meyers [2] has analyzed the frame structure shown in Figure 6 using 

a plane frame finite element \.:ith identical formulation as the one im-

plemented in this project. Hence. as a further check, this frame was 

mode led and analyzed using '.!ESS. Problem parameters and the node and 

element numbering schemes used in the finite element model are also shown 

in Figure 6. 

When displacement values predicted by ~IESS are compared with those 

listed in [2], there is agreement to ~ithin 7 digits of precision, with 

both listing the maximum displacement as 1.954414 in the x direction at 

node 2. An element plot and a deformed geometry plot, both generated by 

MESS, are shown in Figure 7. The complete MESS output file is contained 

in the Appendix. 

The original problem presented in [2] contained a distributed load 

of 12 kN/m in the x direction on element 1. A force of 100 kN in the x 

direction was also applied at node 2. In the reference, the distributed 

load was simply modeled as equal forces of 60 kN at nodes 1 and 2. The 

accuracy of this approach is questionable for two reasons: first, node 

1 is fixed in the x direction, causing that portion of the load to have 

no effect on the structure; second, a distributed load results in a 

varying shear force over the length of the element, whereas a point load 
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at one end results in a constant shear force. Thus, the physical system 

has been completely altered. The correct modeling approach approximates 

the distribu~ed load by using several elements and applying a portion of 

the load at each additional node. This was accomplished by breaking up 

element 1 into 10 elements each 1 meter long. When the equivalent 

loading was applied to the refined model, the deflection at node 2 

increased to 1.954901 in the x direction. This represents only a slight 

increase; thus for this particular loading, minimal error was introduced 

by the simplifying assumption. 

The deformed plot of Figure 7 is very useful in visually depicting 

the modes of deflection in the structure resulting from the given load-

ing as modeled in [2]. For example, the deformed shape of element 1 

shows significant curvature, while element 3 remains relatively linear 

in shape. Thus, bending forces are more predominant in element 1. 

Viewed in this manner, the availability of deformed structure plots 

certainly contribute to the program's value as a design aid. 

5.3 COMPARISON OF PROGRAM PREDICTIONS WITH STUDENT WORK 

MESS is frequently used in undergraduate instruction as an aid in 

analysis for design projects. Before the addition of the plane frame 

element, students had no effective method of easily analyzing even 

relatively simple indeterminant structures. To survey the benefit and 

applicability of the new element, three designs submitted for a senior 

structural optimization project were analyzed using MESS. The project 
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included the design of a steel structure capable of supporting an off-

center weight. The design objectives Jnd constraints are given in Figure 

8. Analysis results using ~!ESS were compared 1.-ith those generated by the 

students using other analysis techniques. The first design to be analyzed 

is shmm in Figure 9; the second design is shmm in Figure 10; and the 

third is shown in Figure 11. ~ode and element 11umbering schemes used in 

MESS are also shm'°11. For ease of comparison, student results will be 

referenced to the same element numberings used for the finite element 

analysis. 

Students submitting the first design chose to analyze the structure 

using another software package, BEAM II [13]. This program is actually 

designed to analyze complex loadings of beams and has various capabili-

ties; however, it is limited to one-dimensional analyses. Input quan-

tities required include material and cross-sectional properties, applied 

forces, and end conditions. Hence, in order to analyze a frame structure, 

it is necessary to divide it into several one-dimensional segments. If 

the beam has a non-rigid connection at one or both ends, it is necessary 

to calculate the equivalent moment and/or linear stiffnesses at that end. 

In order to use BEAM II as an analysis tool, the first design was 

divided into three linear segments. With reference to the finite element 

notation, the segments are as follows: elements 1, 2, and 3 comprised 

the first; element 6 the second; and elements 4 and 7 the third. The 

students assumed element 5 to be a zero force member but included it as 

a safeguard against buckling. Equivalent moment and linear stiffnesses 

were calculated where the beams connected to non-rigid supports. 
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After analysis using BEAM II, this rather cumbersome approach pre-

dicted a maximum stress of 14.3 kpsi in element 3. Correspondingly, 

MESS predicted a stress of 14. 292 kpsi. However, a higher stress of 

15.74 kpsi was found in element 6, whereas the student analysis listed 

the stress there as 13. 5 kpsi. When their work was inspected, an error 

was found in the calculations of the equivalent end moment spring con-

stant of element 6. From inspection of the deformed geometry plot given 

in Figure 12, it is evident that bending forces are present in element 

5. Hence, the assumption that it is a zero-force member is invalid. 

These two mistakes in the analysis combine to yield inaccurate stress 

results. The corresponding MESS output file is given in the Appendix. 

The second design was analyzed by the student group using classical 

techniques. With reference to the finite element notation, the students 

predicted a maximum stress of 33.9 kpsi at element 3. Conversely, MESS 

found the maximum stress in element 3 as 8. 32 kpsi, with a maximum 

stress of 14. 6 kpsi occurring in element 2. 

dent's calculations revealed a gross error: 

Examination of the stu-

a resultant moment was 

assumed to act in the wrong direction; thus all stress results were in-

valid. The deformed structure plot in Figure 13 shows that there is 

significant bending in elements 1 and 3. However, because element 2 is 

roughly an order of magnitude shorter, inter-element displacements in it 

are not seen as clearly as in the two larger elements. Obviously, ele-

ment 2 must entirely bear the moment induced from transferring the force 

from node 3 to node 2; elements 1 and 3 work together to support this 

load. Hence, it is 
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logical to suspect that the highest stress occurs in element 2, as MESS 

predicted. The output file generated by MESS is listed in the Appendix. 

The final design is the simplest of the three and should yield a ~lose 

agreement between computer and hand stress calculations. Because the 

design criteria contained a safety factor of 2.0, this group modeled their 

structure using t1\ice the design load of 1200 lbs, then designed the 

structure based on a safety factor of 1. Thus, the finite element model 

uses an applied force of 2400 lbs in order to directly relate the stress 

results. The students' hand anaylyis yielded a maximum stress of 39.16 

kpsi in element 2, 1_:hile i'IESS calculated a stress of 39.24 kpsi. End 

reactions found by hand agreed closely 1dth those calculated by MESS also. 

However, the design simplicity results in a key inferiority, as the the 

deformed geometry shown in Figure 14 illustrates. Relative to element 

2, deflections in elements 1 and 3 are small. The resulting stresses are 

13.6 kpsi and -18.5 kpsi in elements 1 and 3 respectively, less than half 

that of element 2. Thus, the material has been used inefficiently because 

the main vertical support is overdesigned. The MESS output file is listed 

in the Appendix. 

All three designs illustrate a shortcoming of analysis techniques 

available presently for undergraduates and highlight a positive aspect 

of the finite element approach. In the first design, the use of a soft-

ware package not specifically tailored for static frame analysis resulted 

in error because additional hand calculation work and a simplifying as-

sumption were necessary. Neither error would have been introduced if a 

software package designed to analyze frame structures had been used. The 
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second design illustr3ted the complexity of solving an indeterminant 

structure using hand c3lculations only. Such a lengthy and involved 

method easily results in c3lculation mistakes. The third case shows an 

inferior design approach to supporting the off-center weight obviously 

chosen only because the structure can be easily analyzed. Thus, design 

creativeness and the ability to try various approaches are limited because 

of an inability to effectively analyze structural response. When used 

in this context, the frame element now available in the MESS program 

shifts the burden of analysis to the computer, thus freeing the student 

to experiment ~ith varied structural approaches. 

45 



6.0 CONCLUSIONS AND RECOMMENDATIONS 

The plane frame beam element added to MESS was determined to be 

accurate within the limits of simple beam theory. The element was 

tested relative to classical theory predictions for transverse deflec-

tions of beams with various loadings and constraints. Additionally, an 

indetermi nant frame structure was modeled and analyzed. Displacement 

results were compared with those predicted by another finite element 

program containing a plane frame element. 

within 6 digits of precision was achieved. 

In both tests, agreement to 

The educational benefit related to the addition of the plane frame 

element was found to be significant. The test cases of designs sub-

mitted by ME 4070 Design II students contained calculation mistakes or 

either represented structures designed on the basis of analysis simplic-

ity, rather than analysis. Capability of deformed structure plotting 

adds insight to structural behavior; this heightened awareness can 

result in more efficient designs and encourages inventiveness. 

There are several ways in which the capabilities of the plane frame 

element could be enhanced. A list of possible additions is given below, 

with the degree of complexity increasing. 

I. Write out inter-element displacements if the user wishes. 
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2. Add capability to model uniform and variable loads across beam length. 

Presently, if the user \\ishes to model a uniform load, he must break 

it into end react ions manually because the program only recognizes 

nodal forces and moments. 

3. Add capability to model internal pins in the structure. Pin joints 

can presently be modeled, but only if the joint is grounded. 

4. Employ the ability to manually scale the deformed structural geom-

etry. The present system of scaling can distort the user's conception 

of how much deflection is actually present in the structure. 

5. Add graphic capability to show applied loads and constraints. 

6. Add capability to model variable cross-sectional area and moment of 

inertia values relative to element length. 
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APPENDIX 

MESS output files for Indeterminant Frame Analysis ,Student Desig>1 fil, 
Student Design #2, and Student Design #3 
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D I S P L A C E M E N T S 

NODE 
l 
2 
3 
4 

X-DISPLACEMENT 
0.000000 
1.954414 
1.945222 
0.000000 

Y-DISPLACEMENT 
0.000000 
0.015550 

-0.015550 
0.000000 

E N D R E A C T I 0 N S F 0 R E L E 11 E N T 

I N E L E 11 E N T C 0 0 R D I N A T E S 

END A 

ELEM TENSILE SHEAR MOMENT TENSILE 

1 -.644E+02 0.839E+02 0.441E+03 0.644E+02 
2 0.644E+02 0.761E+02 0.415E+03 -.644E+02 
3 0.761E+02 -.644E+02 -.297E+03 -.761E+02 

Z-DISPLACEMENT 
0.000000 

-0.053150 
-0.082654 

0.000000 

0 R 0 u p 1 

END B 

SHEAR MOMENT 

-.839E+02 0.397E+03 
-. 761E+02 0.346E+03 
0.644E+OZ -.346E+03 

11 A X I 11 U M N 0 R M A L S T R E S S A N D S H E A R F 0 R C E F 0 R 

E L E M E N T G R 0 U P 1 

END A END B 

ELEM NORMAL SHEAR NORMAL SHEAR 
STRESS FORCE STRESS FORCE 

1 -113585.83 83.89 102583.69 -83.89 
2 106907.73 76 .11 -89798.29 -16 .11 
3 57676.29 -64.38 -66837.23 64.38 

MESS OUTPUT FILE FOR INDETERMINANT FRAME ANALYSIS FROM (2) 
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D I S P L A C E M E N T S 

NODE X-DISPLACEMENT Y-DISPLACEMENT Z-DISPLACEMENT 
1 0.000000 0.000000 0. 000000 • 
2 -0.000367 -0.001173 -0.001664 
3 0.001962 -0.002608 -0.002250 
4 0.000000 0.000000 0.000000 

E N D R E A C T I 0 N S F 0 R E L E M E N T G R 0 U P 1 

I N E L E M E N T c 0 0 R D I N A T E S 

END A END B 

ELEM TENSILE SHEAR MOMENT TENSILE SHEAR MOMENT 

l 0.896E+03 -.:SOOE+02 -.169E+03 -.896E+03 O.:SOOE+02 -.342E+03 
2 0.105E+04 0.588E+03 0.782E+O:S -.105E+04 -.588E+03 -.114E-12 
3 -.634E+03 -.518E+02 -.440E+03 0.6:S4E+03 0.518E+02 -.202E+03 

M A X I M U M N 0 R M A L S T R E S S A N D S H E A R F 0 R C E F 0 R 

E L E M E N T G R 0 U P 1 

END A 

ELEM NORMAL SHEAR 
STRESS FORCE 

1 4736.41 -30.03 
2 14605.50 587.97 
3 -8322.41 -51. 77 

MESS OUTPUT FOR STUDENT DESIGN 12 

NORMAL 
STRESS 

END B 

-7427.38 
-2473.01 

4625.36 

SHEAR 
FORCE 

30.03 
-587.97 

51.77 
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D I S P L A C E M E N T S 

NODE X-DISPLACEMENT Y-DISPLACEMENT Z-DISPLACEMENT 
1 0.000000 0.000000 0.000000 
2 -0.008050 -0.000288 -0.003019 
3 -0.008050 -0.073307 -0.010660 
4 0.000000 0.000000 0.000000 

E N D R E A C T I 0 N s F 0 R E L E M E N T G R 0 U P l 

I N E L E M E N T c 0 0 R D I N A T E S 

END A END B 

ELEM TENSILE SHEAR MOMENT TENSILE SHEAR MOMENT 

1 0.800E+03 -.120E+04 - . 720E+04 -.800E+03 0.120E+04 -.120E+05 
2 O.OOOE+OO 0.240E+04 0.216E+05 O.OOOE+OO -.240E+04 -.909E-12 
3 -.160E+04 -.120E+04 -.960E+04 0.160E+04 0 .120E+04 -.682E-12 

M A X I M U M N 0 R M A L S T R E S S A N D S H E A R F 0 R C E F 0 R 

E L E M E N T G R 0 U P l 

END A END B 

ELEM NORMAL SHEAR NORMAL SHEAR 
STRESS FORCE STRESS FORCE 

1 13616.01 '71200.00 -22332.99 1200.00 
2 39226.42 2400.00 o.oo -2400.00 
3 -18515.04 -1200.00 1081. 08 1200.00 

MESS OUTPUT FILE FOR STUDENT DESIGN 13 
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