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Investigation of Dynamic Ultrasound Reception in Bat Biosonar

Using a Biomimetic Pinna Model

Mittu Pannala

ABSTRACT

Bats are a paragon of evolutionary success. They rely on parsimonious sensory inputs provided by

echolocation, yet are able to master lives in complex environments. The outer ears (pinnae) of bats

are intricately shaped receiver baffles that encode sensoryinformation through a diffraction pro-

cess. In some bat species with particularly sophisticated biosonar systems, such as horseshoe bats

(Rhinolophidae), the pinnae are characterized by static as well as dynamic geometrical features.

Furthermore, bats from these species can deform their pinnae while the returning ultrasonic waves

impinge on them. Hence, these dynamic pinna geometries could be a substrate for novel, dynamic

sensory encoding paradigms.

In this dissertation, two aspects of this dynamic sensing process were investigated: (i) Do local

shape features impact the acoustic effects during dynamic deformation of the bat pinna? and (ii)

do these shape deformations provide a substrate for the dynamic encoding of sensory information?

For this, a family of simplified biomimetic prototypes has been designed based on obliquely trun-

cated cones manufactured from sheets of isobutyl rubber. These prototypes were augmented with

biomimetic local shape features as well as with a parsimonious deformation mechanism based on

a single linear actuator. An automated setup for the acoustic characterization of the time-variant

prototype shapes has been devised and used to characterize the acoustic responses of the prototypes

as a function of direction.

It was found that the effects of local shape features did interact with each other and with the defor-

mation of the overall shape. The impact of the local featureswas larger for bent than for upright

shape configurations. Although the tested devices were muchsimpler than actual bat pinnae, they

were able to reproduce numerical beampattern predictions that have been obtained for deforming

horseshoe bat pinnae in a qualitative fashion.



The dynamically deformable biomimetic pinna shapes were estimated to increase the sensory en-

coding capacity of the device by 80 % information when compared to static baffles. To arrive at

this estimate, spectral clustering was used to break up the direction- and deformation-depended

device transfer function into a discrete signal alphabet. For this alphabet, we could estimate the

joint signal entropy across a bending cycle as a measure for sensory coding capacity.

The results presented in this thesis suggest that bat biosonar posses unique dynamic sensing abil-

ities which have no equivalent in man-made technologies. Sensing paradigms derived from bat

biosonar could hence inspire new deformable wave-diffracting structures for the advancement in

sensor technology.
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Chapter 1

Introduction

1.1 Biosonar-inspired technology

Bioinspired science and technology is an interdisciplinaryfield of study at the intersection of bi-

ology and engineering. It seeks to understand the principles of biological function from an engi-

neering perspective and use these insights in the design of technical devices. Engineers have been

looking at biological systems as a source of inspiration fora long time already and the approach

has produced significant advances in fields such as surface coating (e.g., self-cleaning Lotusan

paint [1]), reversible adhesion (e.g., Velcro [2]), parsimonious sensing (e.g., motion sensor of the

optical mouse [3]).

The performance of biological systems is often due to an integration of functional features across

multiple levels and aspects of biological organization. Biological materials, for example, are often

“metamaterials” with properties that result from structural features that range from the nano- and

micro- all the way up to the macroscopic scale. Similarly, the function of many biological struc-

tures can only be understood from their behavioral, ecological, and evolutionary contexts. Hence,

one of the central challenges for the future development of bioinspired science and technology is

to find ways in which the principles of biological system integration can be understood and applied

1
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to the design of engineered systems.

Bat biosonar has obvious parallels to technical sensing systems such as sonar and radar. However,

in the past these technical systems have been used mainly in contexts that provide a poor match for

the conditions under which bat biosonar systems operate. The radar system of a fighter airplane,

for example, is operated at much higher speeds and needs to sense its environment on a much

larger scale than the biosonar system of bats. Similarly, submarine sonar needs to operate on a

much larger scale than bat biosonar. This situation has begun to change in recent years, as small

autonomous vehicles have gained importance for operation in air as well as under water. Such

systems, e.g., micro-air vehicles (MAVs), are often intended for use in small-scale, structure-rich

environments that are not unlike those inhabited by bats. Atpresent, a large performance gap

continues to exist between the capabilities of bats in such environments and those that technical

systems can achieve. Bats are able to traverse even dense vegetation at high speeds (over 10m/s [4])

and travel long distances each night while continuously solving obstacle avoidance and other navi-

gation tasks reliably. Technical systems cannot match the speed, versatility, and reliability of bats,

and typically require much larger amounts of input data (e.g., from laser scanners).

From the current state of research into the biosonar systemsof bats, it is not clear what the main

factors that enable the superior performance of bats are. However, a look at bat biosonar sys-

tems allows for the formulation of hypotheses, one of which,i.e., dynamic time-variant sensing

mechanisms, has been investigated in this work.

1.2 Bat biosonar as a model

Bat biosonar encompasses a diverse set of acoustic sensing systems. With approximately 1,200

different species, bats are the second most species-rich group of mammals [5]. About 1,000 bat

species utilize some form of biosonar sensing, with an active sonar system, i.e., they analyze echoes

that have been triggered by ultrasonic pulses that the animals emit. In addition to active sonar,

a significant number of bat species also makes use of passive sonar, i.e., they gain information
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through the analysis of acoustic signals that originate from other sources. Using both active and

passive biosonar, bats have been able to occupy diverse habitats that range from deserts to rain

forests and from coastal marshes to alpine meadows. This ecological versatility has allowed bats

to settle almost the entire land surface of the earth; only the polar ice caps and some small isolated

oceanic islands are not inhabitated by bats. Within their diverse habitats, bats use their biosonar

system to acquire food from a likewise diverse range of sources that include pollen, nectar, fruit,

terrestrial and aerial arthropods, fish, small terrestrialvertebrates, birds, other bats, and blood from

large vertebrates [6, 7, 8].

The biosonar system of bats is known to be adapted to the different habitats bats live in and the

food that they exploit in various ways. For example, bats resort to passive sonar to detect prey

that betrays its own presence through sound emission in environments where the presence of many

clutter targets would make echo signatures that are unique to the prey unlikely [9]. An example

of diversity within the active biosonar systems is the design of the biosonar pulses: Based on

their time-frequency structure, bat biosonar pulses can beclassified as either frequency modulated

(fm) or constant frequency-frequency modulated (cf-fm) [10]. The narrowband (cf) portion of

the pulses in the cf-fm bats represents an adaptation to the hunt for flying insects in dense forest

environments. It allows these bat species to detect small changes in echo frequency that are caused

by the Doppler shifts that are induced through the wingbeat motion of the prey [11]. Since such

frequency broadenings are unique to scatterers representing flying prey in the bats’ environments,

they allow the animals to detect their prey even in dense clusters of clutter targets (e.g., vegetation).

With the diversity in the habitats, diets, and signal designs comes a large morphological diversity

in the external structures associated with the bat biosonarsystem [12, 13]. Bats often diffract

the emitted ultrasonic pulses with specialized baffles (“noseleaves”) that surround the nostrils in

species with nasal emission [14]. In some species with oral emission, conspicuous shape features

on or near the lips may play a similar role. Irrespective of emission mode, all bats with biosonar

have diverse and often highly unusual shapes of the outer ears (pinnae) that may play a role in the

encoding of salient sensory information at the interface between the external world and the internal

signal processing that takes place from the transduction stage onwards [13, 12].
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Capability and versatility combined with an apparent parsimony (two one-dimensional input sig-

nals), make biosonar an attractive model for sensory systems in engineering. However, the key

questions such as which mechanisms are responsible for the capability and versatility of the bat

biosonar system remain unresolved. Part of the versatilityof bat biosonar may be attributable to

evolutionary adaptions from the species level upwards. Individual bat species are much more re-

stricted in the food sources that they exploit and in the habitats that they inhabit than bats as a

whole. Hence, the biosonar systems of different bat speciesmay have been optimized to perform

under certain conditions, but not under others. However, such species-level specializations cannot

explain the ability of a large number of bat species to operate in complex, unstructured environ-

ments that still pose an unresolved challenge to man-made sensing systems. Hence, it is likely that

the biosonar systems of these species have evolved the ability to encode information relevant to the

various navigation and foraging tasks they perform in ways that are not yet known to engineering.

1.3 Sensor dynamics in horseshoe bats

Components in the bat biosonar system have adapted to variousenvironments that lead to dif-

ferences between species evolved over long periods of time.Additionally, recent experimental

evidence [15, 16] has shown that critical components in the bat biosonar system have dynamic

properties which may not have an equivalent in engineered sensing systems. These critical stages

are the baffle shapes that surround the sites of ultrasonic emission (i.e., mouth or nostrils) and

reception (i.e, the ear). Because they are located at the interface between the animal and its en-

vironment, these structures are in a position to act as gateways that determine what information

is encoded in the signals that enter the middle ear. In bat groups with particularly sophisticated

biosonar systems [10], such as the horseshoe and Old-World round-leaf nosed bats (families Rhi-

nolophidae [17] and Hipposideridae), the existence of dynamic changes in the baffle shapes (on a

subsecond time scale) have been observed.

In horseshoe bats, it has been demonstrated that a major portion of the noseleaf, the anterior leaf
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Figure 1.1: Examples of biosonar pulse sequences with synchronized measurements of the velocity
of the anterior rim of the noseleaf in the proximal-distal direction: (a) example sequence with non-
random motions of the anterior leaf. (b) example sequence without non-random motions. For each
example, the top graph shows the envelope of the sound pressure amplitude, the center graph the
velocity, and the bottom graph the displacement amplitude of the anterior rim of the noseleaf in the
proximal-distal direction. Positive velocities and displacements correspond to motions in the distal
direction (i.e., away from the head). Reproduced from [16]. See page 2 of copyright permissions
document.

that forms a semicircular cone-shaped baffle around the lower portion of the nostrils, can undergo

dynamic shape changes [16]. It was found that the walls of theanterior leaves can carry out an

inward twitching motion that was tightly correlated with the emission of the pulses. That is, the

maximum surface velocities and the maximum displacement values were always reached within

the duration of the emitted pulse (s. Figure 1.1). The amplitude of the measured deformations

– as large as 0.75 mm on each side of the baffle – can be considered as significant compared to

the wavelengths employed by the bats (about 4 mm for the narrowband portion of the pulses). It

was further observed that the bats had active control over the twitching motion of the anterior

leaf and were able to turn it on or off [16]. This observation has been interpreted as evidence

against the hypothesis that the noseleaf motions are byproduct of the pulse emission process [16].

Instead, the accurate temporal alignment of the twitching motion with the pulses combined with
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the evidence for active control can be taken as evidence for afunctional role of these deformations.

However, what specific function these effects may have remains unknown. A hypothesis proposed

by Kuc [18] according to which noseleaf vibrations at the ultrasonic carrier frequency could act as

a transduction mechanism was not supported by the experimental vibration data from the anterior

leaves of horseshoe bats [16].

Similar to the noseleaves, the pinnae (outer ears) of horseshoe bats have also been found to undergo

dynamic shape changes [15]. The pinnae are located at an important interface between the external

environment and the sensory system and hence are in a position to control the primary encoding

of sensory information. They diffract the incoming echoes in a direction and frequency dependent

manner and thus define a joint direction-frequency selectivity filter that determines what informa-

tion is encoded for downstream processing and how. Through executing this encoding process, the

pinnae perform an important signal processing operation inthe physical domain that may not be

readily accomplished in the neural domain. This potential importance of the pinnae may explain

the large morphological diversity in the pinnae of bats, part of which could represent adaptations

of the sensory encoding process to different biosonar tasksand constraints faced by different eco-

logical niches that the bats occupy.

At the level of individual behavioral adaptations, dynamicchanges to the pinna shape may likewise

have a functional importance. This notion is supported by early anatomical findings in horseshoe

bats [19] that show that these animals have an unusually large number of ear muscles (approxi-

mately 20) with elaborate muscular actuation mechanisms. The pinna muscles can be categorized

into two groups. In one group, the insertion points extend from the skull to the pinna. Both end

points on the second group of muscles are located on the pinnacartilage (s. Figure 1.2). Hence,

these muscles can not only effect rigid rotations (i.e., forward and backward motion) but also non-

rigid deformations (i.e., changes in the geometry of the pinna).
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Figure 1.2: Some of the muscles in the outer ear of the greaterhorseshoe bat (Rhinolophus fer-

rumequinum). From [19], reproduced with permission. See page 3-8 of copyright permissions

document.
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Figure 1.3: Frames from a high-speed video-recording of theear deformation of the horseshoe bat.

Results from behavioral experiments [20] also point to the importance of pinna motions in horse-

shoe bats: In these experiments, the bats’ target localization performance was tested by the ability

of the animals to navigate arrays of horizontal and verticalwires placed into their flight path. The

role of pinna motions was then tested by cutting the motor nerves and muscles in the pinna. Immo-

bilizing the pinnae in this way was found to degrade the localization in vertical direction signifi-

cantly but not in the horizontal direction [20]. This findingcould in principle be explained through

the rigid rotation of the pinnae alone, which would allow theanimals to use the narrow-band por-

tions of their biosonar pulse for direction finding through observing the amplitude of the echo

returns during a scan [21]. This would provide the horsehoe bats with an alternative mechanism

to fm-bats which can use spectral signatures imprinted ontotheir broadband signals for direction

finding. However, though these findings provide an overall measure of performance, they do not

contain information regarding the relative importance of different aspects of the pinna motions that

may have been affected by the surgery.

The current work focuses on the non-rigid component of the pinna dynamics in horseshoe bats.

High-speed recordings (s. Figure 1.3) of horseshoe bat pinna clearly show non-rigid deformations

of the pinna geometry that can be completed within cycle times below 200 ms [15]. These defor-

mations arise due to the intricate muscular actuations [19]in the bat pinna which can occur both in

flight and when the bat is stationary.

Three-dimensional digital models [22, 23] of this time-varying behavior have been obtained from

stereo high-speed video recordings and have been used to characterize both the geometry and the
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acoustic effects of these deformations in detail: These recordings show that during a non-rigid

deformation, the tip of the pinna moves down and to the side while the anterior portion of the

pinna wall moves more than the posterior. The maximum total deformation has been estimated at

around 20 % (i.e.,∼ 4 mm) of the total height of the pinna (∼2 cm). The acoustic effects of this

deformation has been predicted numerically and were found to be substantial and of a qualitative

nature [24, 15]. However, these numerical predictions werelimited to frequency-domain char-

acterizations in which the signal characteristics did not change within the length of the analysis

window.

1.4 Objective and Approach

The work presented in this thesis has been aimed at gaining greater depth in understanding the

non-rigid deformations of the horseshoe bat pinna as a dynamic physical and sensory process. To

this end, two fundamental questions were asked:

1. What is the relationship between the geometry of the pinna and its acoustic properties? -

Of particular interest in this context are the conspicuous local features of the horseshoe bat

pinnae and the potential role that they could play in the context of the dynamic changes in

the overall pinna shape.

2. Is there an effect of baffle deformations like the ones seenin pinna shape on the function

of the device as a gateway for sensory information? In particular, can it be determined

experimentally whether pinna-like baffle deformations result in an enhanced capacity for the

encoding of sensory information?

Pinna deformations have several properties that turn an in-depth analysisin-vivo into a challenge:

the static shapes and their deformation patterns are fairlycomplicated and the deformations happen

very quickly and appear to be part of rather flexible behavioral patterns that could be difficult to
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repeat in an identical fashion, making it hard to accomplishthrough behavioral experiments with

bats.

At present, experimental paradigms exists in which a miniature measuring microphone is mounted

in the animals’ ear canal. Sounds emitted from a speaker positioned in different directions from the

bat are then recorded by this microphone to characterize theouter ear’s influence on the transfer

function between the speaker and microphone. This experimental approach has been used suc-

cessfully to measure stationary head-related transfer functions in bats. However, it is not likely

to permit the measurement of non-stationary responses fromdeforming baffle shapes. To achieve

this, the bats would have to repeat the same pinna movements hundreds if not thousands of times

with change in sound direction, while keeping the overall position of the head and pinna constant.

For a fine angular and temporal sampling of the acoustic effects, on the order of 104 deforma-

tion cycles could be required. This would be impossible to achieve with an animal subject, no

matter whether the animal is awake or anesthetized. In either case, data collection could not be

accomplished in a single session, and reproducibility between sessions would become a problem.

In an awake animal, movements of the head or overall rotations of the ear would be additional

confounding factors.

It has yet to be established whether ear deformation could bereliably and repeatably be triggered in

an anesthetized animal. Even if this was the case, keeping the same animal alive through a sequence

of many long anesthesias would be a challenge. Furthermore,it would be difficult to synchronize

the emission of the test signals to specific phases of the ear deformation cycle. A large variability

in the initiation of the ear deformation is to be expected in awake animals and for anesthetized

animals it would have to be seen how accurately and reproducibly the ear deformations could be

triggered, if at all.

Because of all these drawbacks, the work presented in this thesis has focused on using a biomimetic

modeling approach to this problem. For this purpose, a simplified deforming prototype was created

to allow for an easier analysis of static and dynamic shape features as well as for a complete

acoustic characterization of the deforming prototype’s time-variant linear behavior as a function of
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direction. This approach not only removes the difficulties associated with in-vivo experiments, it

also offers a number of critical advantages:

1. A synthetic system gives more freedom to change every aspect of the baffle (e.g., global and

local shape features, as well as their dynamics).

2. An automated setup allows collection of large amounts of data under repeatable conditions

for all these different modifications.

3. A simplified prototype offers a greater chance to understand the physical processes that are

responsible for the observed effects.

4. An artificial model provides an additional opportunity totest static and dynamic configura-

tions that are not realized in bats, but could be insightful and lead to interesting technical

solutions.
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1.5 Chapter outline

The remaining chapters of the document have been organized as follows:

Chapter 2describes the simplified biomimetic ear prototype, local shape features selected from

observing the greater horseshoe bat and fabrication methods that lead to a parsimonious and simple

model.

Chapter 3describes the experimental setup for the prototype, data characterization and finally

signal processing of the data.

Chapter 4presents the results obtained from the experimental simulations and discusses the inter-

play of static and dynamic features of the prototype.

Chapter 5presents a novel method of analyzing the data through an information theoretic approach

for determining the sensor coding capacity of the deformingear prototype.

Chapter 6summarizes the work performed so far and presents suggestions for future work.



Chapter 2

Biomimetic Prototype

(This chapter was published in part in Bioinspiration and Biomimetics, doi: 10.1088/1748-3182/8/2/026008.

Reproduced with permission [25]. See page 9 of the copyright permissions document.)

The deformation patterns observed in the horseshoe bat pinna, as described in the previous chapter,

are highly complicated. The pinna deformations between upright and bent positions occur at very

high speeds, i.e., on time scales of milliseconds. To mimic such deformations and understand

their possible functional implications, a biomimetic prototype was created which incorporated a

controlled deformation in a simplified manner. Besides simplification, the advantages of using

a biomimetic prototype is the greater control over local shape features as well as the dynamic

behavior.

2.1 Simplified prototype: basic shape

The biomimetic prototype designed here was intended to represent a simplified shape of the pinna

while preserving the important functional features. To achieve this goal, the general shape of

the bat pinna has been approximated as an obliquely truncated cone augmented with local shape

features. This obliquely truncated cone shape had already been suggested as a simplified model

13
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for the general mammalian pinna [26, 27].

For bats in particular, this intuition has since been supported by virtue of a quantitative analysis

conducted with a data set consisting of 100 different bat pinna shapes representing at least 50 bat

species [12]. This analysis was based on accurate and detailed digital three-dimensional models of

bat pinna shapes that had been obtained from biological samples using micro-computer tomogra-

phy. These shape models were transformed into vector representations by expressing the location

of discrete pinna surface elements in a cylindrical coordinate system. Each pinna shape was rep-

resented by a feature vector that contained the radius values for the pinna surface elements as a

function of direction and height. In this vector space, the average pinna shape could be determined

through a vector sum and was found to resemble an obliquely truncated horn.

The first eigenear, i.e., the eigenvector associated with the largest eigenvalue, obtained from the

principal component analysis (PCA) in the vector space was also found to approximate the shape

of an obliquely truncated horn. To describe the variabilityin the natural pinna shapes, a weighted

version of the eigenears is added (or subtracted from) to theaverage pinna. Since the geometry

of the average pinna and the first eigenear were both found to resemble obliquely truncated cones,

most of the variability in bat pinna shapes can be understoodas cones of varying opening angles.

However, the averaging operation that gave rise to the obliquely truncated cone approximation

erases information on local shape features. Such features were also not readily accessible in the

PCA, since components of higher spatial frequencies were required from the eigenears. In princi-

pal component analysis, the components are also sorted based on their spatial frequency content,

i.e., the components associated with the largest eigenvalues also tend to represent low spatial fre-

quencies. Hence, pinna shape features from higher spatial frequency bands were distributed across

eigenears (eigenvectors) associated with lower eigenvalues that were difficult to estimate and inter-

pret reliably. Hence, in the present work, the obliquely truncated cone was chosen as a model for

a simplified overall pinna shape to which local shape features were introduced that were inspired

specifically by the pinnae of horseshoe bats.
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2.2 Local shape features

The echolocation frequencies for the bats can range from audible range to high frequencies over

100 kHz, as seen in some horseshoe bats [28, 29]. Due to such high frequencies, the wavelengths

of the ultrasonic pulse echos received at the bat pinna can beas small as 3.4 mm or even shorter.

At such small wavelengths even comparatively small, local shape features could be functionally

important. In accordance with this prediction, previous work has produced evidence for the impor-

tance of various local pinna features in other bat species. One such feature is the tragus, which is

a protrusion of the anterior pinna rim [30, 31], presumably through the generation of sidelobes in

the beampattern [31, 32, 33]. The tragus in many bat species is much more prominent than it is in

other mammals such as humans. Deflecting the tragus in the bigbrown bats (Eptesicus fuscus) has

been shown to have a strong effect on the accuracy of angle perception in vertical direction [30].

Similar results were obtained from numerical beampattern estimates that were used to study the

effect of a small ridge on the interior wall of the pinna of thelong-eared bat (Plecotus auritus)

[34]. An acoustic function has also been hypothesized for the washboard ripple that can be found

on the inner wall of the pinnae in a significant number of bat species, including horseshoe bats. In

the big brown bat, a hypothesis has been formulated [35] thatposits that the washboard ripple and

the tragus form an acoustic lens to focus high frequency energy (up to about 150 kHz) into the ear

canal. However, these predictions are not in a good agreement with the upper limit of the biosonar

pulses recorded for the big brown bat.

The importance of local features has been evident from the emission beampatterns as well. The

presence or absence of the resonant cavities [36, 37] and thesella [38, 37] in the noseleaf structures

have shown varying effects in the beampatterns. However, noseleaves and pinna local features may

serve for different functional importance. Noseleaves lead to emission beampatterns due to the

emitted pulses and pinna diffract the incoming echos for reception beampatterns. The attenuation

of incoming echos is much higher than compared to the emittedpulses.

Thus, considering the circumstantial evidence from noseleaf local features and the various local

feature effects from the pinna shapes, in this work an obliquely truncated cone geometry aug-
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mented with biomimetic local features was developed. This device could thus be a way to provide

additional experimental insight into the possible acoustic effects of local shape features and the

underlying physical mechanisms.

2.3 Prototype fabrication

In order to simplify manufacturing, actuation, and acoustic characterization, the biomimetic pro-

totype was created at a size larger than that of the pinna of the greater horseshoe bat (Rhinolophus

ferrumequinum) which served as a model species for the present work. Whereasthe pinnae of this

species are about 2 cm in length, the biomimetic prototypes were scaled up two and half times to

a total length of 5 cm. The material thickness was not scaled since it is not expected to impact

acoustic diffraction and hence beamforming. The biosonar pulses of these animals typically cover

in the frequency range of 60 kHz to 80 kHz with the cf-component being located at the upper end

of this range. By scaling the analyzed frequency range down to24 kHz to 32 kHz for the prototype,

the ratio between wavelength and baffle size was preserved.

(a) (d)(b) (c)

rubber sheet

5
cm

Figure 2.1: Fabrication of the basic prototype shape: (a) isobutyl rubber sheet, (b) leaf-shaped

cutout, (c) cutout folded at one end, (d) trimmed to the final truncated cone shape.
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Figure 2.2: Eight plain cone prototypes manufactured for testing the reproducibility of the beam-
patterns and repeatability of the fabrication method.

The ear prototypes were manufactured from a millimeter-thick, planar isobutyl rubber sheet in

order to create a flexible prototype capable of non-rigid deformation. The rubber sheet was cut

into a leaf shape with a length of 10 cm. To create a shape of an obliquely truncated cone, one end

of the sheet was folded towards a curved edge at a distance of 3cm. The folded sheet was given a

final trim to obtain the shape of a truncated cone (s. Figure 2.1). Eight such plain cone prototypes

were manufactured before augmenting them with local features (s. Figure 2.2).

There were some clearly visible local features in the pinna of the horseshoe bat. Three such

features were chosen based on their potential acoustical importance and mechanical functionality.

These features were: (i) a vertical ridge, (ii) an incision on the pinna rim, and (iii) the antitragus
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antitragus antitragus

vertical ridge

(a)

incision

(b)

incision

vertical ridge

Figure 2.3: Comparison of a horseshoe bat pinna with the simplified prototype: (a) local shape
features extracted from the greater horseshoe bat, (b) plain cone augmented with the local features.

(s. Figure 2.3). The vertical ridge was modeled by attachingadditional material to the anterior

wall of the pinna, the incision was made by cutting the rubbersheet at its rim, and the antitragus

was represented by a rubber flap at the proximal end of the cone. All three features broke the

original left-right symmetry of the plain cone. The size of the shape features to the over all ear was

approximately the same as the horsehoe bat pinna.

Since the local shape features were each located in a different region of the prototype, they could

be placed and removed independently of each other. To study possible interactions between their

acoustic effects, prototypes that represented a complete set of all combinations of these features

were created (s. Figure 2.4). This set contained a total of eight prototypes: the plain cone with-

out any local features, three prototypes augmented with a single feature each, three prototypes

augmented with two features, and one prototype augmented with all three features (s. Table 2.1).
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prototype # ridge incision antitragus
1
2 +
3 +
4 +
5 + +
6 + +
7 + +
8 + + +

Table 2.1: Overview of the analyzed set of biomimetic baffle prototypes.

(e) (f) (h)

(a) (b) (c) (d)

(g)

Figure 2.4: Set of prototypes augmented with biomimetic shape feature combinations: (a) no

features, (b) ridge, (c) incision, (d) antitragus, (e) ridge and incision, (f) incision and antitragus, (g)

ridge and antitragus, (h) ridge, incision, and antitragus.



Chapter 3

Experimental Characterization

(This chapter was published in part in Bioinspiration and Biomimetics, doi: 10.1088/1748-3182/8/2/026008.

Reproduced with permission [25]. See page 9 of the copyright permissions document.)

3.1 Actuation mechanism for the dynamic deformation of the

prototype

The biomimetic prototype was fixed onto a hemispherical styrofoam ball. The arrangement was

chosen to mimic the head of the bat and shield sound reflections from system components that

were mounted immediately behind the prototype (s. Figure 3.1). A digital servo motor (Hitec HS-

5485HB) was installed behind the styrofoam ball (s. Figure 3.1b) to produce the deformations of

the prototype using a single-point actuation mechanism. For this purpose, the servomotor and the

prototype were coupled through a lever [39]. The lever pushed the prototype from behind in the

same region where also the vertical ridge was mounted on the opposite side of the prototype wall,

if present. This particular location was chosen to mimic thedeformation of bending and lateral

rotation that has been described from the high-speed video recordings of the horseshoe bat pinnae

(s. Figure 1.3).

20
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(a) (b)

Figure 3.1: Single point actuation mechanism of the biomimetic prototype: (a) front view, (b) side
view.

upright bent

Figure 3.2: Seven shape changes from upright to bent configuration in the ear prototype.

Deformation from upright to bent positions was carried out in a small number of discrete steps,

typically seven, each of which were characterized acoustically (s. Figure 3.2). The upright to

bent positions in the ear prototype resulted in about 20% deformation compared to the total height

of the prototype of 5 cm. Since bending deforms the ear, the relative position and orientation of

the features were also changed. The servomotor was controlled through an input from the data

acquisition system, described in the next section.
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3.2 Experimental setup

In order to characterize the acoustic properties of the prototype, the prototype and its actuation

mechanism were mounted on a pan-tilt unit: FLIR Motion Control Systems (D48 E-series unit, s.

Figure 3.3). The pan-tilt unit was then placed in the far-field region at a distance of one meter from

the ultrasonic loudspeaker (Ultrasound Advice S56 with Ultrasound Advice S55 amplifier) that

served as a source for the acoustic input signals (s. Figure 3.4). Sound incidence from different

directions was achieved by rotating the prototype while theultrasonic loudspeaker stayed in place.

Using this paradigm, acoustic characterizations of the prototype were obtained for directions that

were spaced three degrees apart over a range of 180◦ (-90◦ to +90◦) in azimuth and 120◦ (-30◦ to

+90◦) in elevation.
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Figure 3.3: Actuation setup mounted on the Pantilt unit.

As an acoustic input for the acoustic characterization, linear frequency modulated chirp signals

with a duration of 2 ms covering the frequency range of 10 kHz to 100 kHz were emitted from the

ultrasonic loudspeaker.

The response of the prototype was recorded through a microphone: Br̈uel and Kjær 4138 1/8”

pressure-field microphone that was coupled with the prototype through a polyvinyl chloride (PVC)

tube of matching diameter (4 mm) and 6.5 cm in length in the style of an “ear canal” with an

opening located on the proximal wall of the prototype. The microphone was mounted behind the

styrofoam hemisphere, so that the connecting tube was straight.
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1m

Figure 3.4: Experimental Setup: The ear prototype is placedat a far field region with respect to the
loudspeaker.

The microphone signals were conditioned with a preamplifier: Brüel and Kjær Type 2690 before

they were digitized. Digital data was acquired using a PXI data acquisition system: National In-

struments PXI-1033 chassis with PXI -7852 R Virtex-5 LX50 R series Multifunction RIO module

operating at a sampling rate of 1 MHz and 16-bit resolution. The data acquisition system was

also used to create the ultrasonic pulses emitted from the loudspeaker with a conversion rate of

1 MHz with 16 bits of resolution as well as to control the actuation of the prototype and the pan-tilt

unit [40].

The overall setup (s. Figure 3.5) was positioned at a minimumdistance of at least one meter

(typically more) from any surrounding surfaces such as walls, floor or ceilings so that reflections

from these objects could be excluded by a suitable recordingtime window.
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Daq CardComputer Amplifier Ultrasound
Loudspeaker

Ear Prototype

Microphone

Pan−tilt Unit

Servo Motor

Conditioner
Signal

Ultrasound
Signal

Figure 3.5: Block diagram of the automated characterizationsetup.

3.3 Time-variant signal processing

The time domain signals at 2501 positions in the direction space were recorded in response to

the input pulses. These signals were transformed into a frequency domain using a fast Fourier

transform with a length of 4096 points and a rectangular windowing function to obtain a spectrum

for each point in the direction space. The values of the spectral coefficient across the direction

space were then used to describe the beampattern of the device for a given deformation stage and

at a certain frequency (s. Figure 3.6).

Initially, the eight plain cone shapes were subjected to theexperimental simulations at static posi-

tions. After that, the prototypes augmented with local shape features were simulated experimen-

tally.
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Figure 3.6: Time-variant signal processing: (a) spatial direction of the recorded signals, (b)
recorded signal at one particular position in the directionspace, (c) amplitude spectrum after fast-
Fourier transforming the signal and (d) beampatterns for frequencies obtained by combining the
spectra.



Chapter 4

Local Shape Features

(This chapter was published in part in Bioinspiration and Biomimetics, doi: 10.1088/1748-3182/8/2/026008.

Reproduced with permission [25]. See page 9 of the copyright permissions document.)

4.1 Reproducibility

Since the prototypes developed were not machine manufactured, it was important to assess the

reproducibility of their acoustic properties. As explained in the second chapter, one of the manu-

factured shapes, the plain cone which is an abstraction of the average bat pinna without any local

features, was replicated eight times (s. Figure 2.2) as a mass production.

The acoustic sensitivity for each of the static-plain conesprototypes was experimentally charac-

terized. The reception beampatterns measured for the eightplain cone shapes were found to be

in good qualitative agreement. For each of the realizations, the beampattern was dominated by a

single mainlobe that decreased in width as the analyzed frequency was increased (s. Figure 4.1).

The beampatterns of the different replicates were, however, not identical in every detail.
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1 2 3 4 5 6 7 8
plain cone replicates

amplitude (linear scale)
10

32

30

28

26

24

f[kHz]

Figure 4.1: Reproducibility of the results: Beampatterns obtained from the different realizations of

the plain cone shape. Rows from bottom to top are patterns at frequencies of 24 kHz (corresponds

to 60 kHz in bats) to 32 kHz (corresponds to 80 kHz in bats) at aninterval of 2 kHz. The columns

represent the plain cone prototypes.

4.2 Plain cone behavior

Shape deformations did not cause any major effects on the plain cone beampatterns. At the upright

stage, beampatterns showed a prominent single mainlobe with few poorly distinguished sidelobes.
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The mainlobes narrowed significantly with increasing frequency, as seen in the static plain cone

results.

When the plain cone shape was subject to deformation, beam gain values were changed but over

all nature of the beampatterns remained the same (s. Figure 4.2). The changes were comparable to

the variations between the beampatterns seen across the different realizations of the plane cone in

the upright position (s. Figure 4.1). The general, qualitative nature of the beampattern, i.e., a single

prominent mainlobe with few poorly distinguished sidelobes and a monotonic inverse relationship

between frequency and beamwidth, remained largely unaffected by the deformation (s. Figure 4.2).

amplitude (linear scale)

upright bent

0 1

28

26

24

f[kHz]

32

30

Figure 4.2: Beampatterns at various bending stages for plaincone shape. Rows represent the

frequencies from 24 kHz for prototype (corresponds to 60 kHzin bats) to 32 kHz for prototype

(corresponds to 80 kHz in bats) at an interval of 2 kHz. Columnsrepresent bending stages from

upright to bent.
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4.3 Interplay between shape features

Various trends were observed after analyzing the beampattern behavior after augmenting the plain

cones with local features. When each of the three local shape features was added to the plain cone

shape in isolation, the changes that occurred in the corresponding beampatterns were generally

small. The magnitude of these effects hardly exceeded the range of the observed individual vari-

ations between the different realizations of the plain coneor the bending stages of the plain cone.

This was the case for the ridge (s. Figure 4.3, second row fromthe top). In the case of the antitra-

gus being added to the cone in isolation, the beampattern effects were much more systematic and

pronounced, resulting in a shoulder that extended downwards in elevation from the mainlobe (s.

Figure 4.3, third row from the top). The incision made to the plain cone resulted in reduction to

the size of the mainlobe in the beampatterns (s. Figure 4.4, third row from the top).

However, when the ridge and antitragus features were added to the plain cone as a combination,

the resulting changes to the beampattern were much more pronounced than the changes associated

with the addition of each individual features: In this case,a prominent sidelobe occurred in the

beampattern which was most pronounced in the bent deformation stages, where its shape also

depended strongly on frequency: for low frequencies, the sidelobe’s sensitivity was spread out over

a wider range of directions, whereas it was more concentrated for high frequencies (s. Figure 4.3,

bottom row).

Similarly, the beampatterns of the cone shape that had been augmented with a combination of

a ridge and an incision showed a strong dependence on bendingstage with a sidelobe that grew

more pronounced as the prototype’s tip was bent down (s. Figure 4.4, bottom row). For this feature

combination (ridge and incision), the beampattern changesin the upright position were small and

gradual, as was the case for the individual changes. In the bent position, however, changes are large

and quantitative in the sense that a large sidelobe appears that was not present in the beampatterns

of either the ridge or the incision as individual features (s. Figure 4.4, bottom row).
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plain
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ridge
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Figure 4.3: Beampatterns at various bending stages for cone shapes augmented with individual
shape features or feature combinations: Two frequencies, low (26 kHz for prototype corresponds
to 65 kHz in bats) and high (30 kHz for prototype corresponds to 75 kHz in bats), are shown for
each feature combination and bending stage.

4.4 Quantitative analysis of the beampatterns

Using the beampattern data, a further quantitative analysis was performed by representing each

sidelobe in the beampattern by its maximum amplitude value.All the sidelobe maximum ampli-

tude values of a beampattern were summed into a single measure representing the prominence of

the sidelobes, the “amplitude-weighted sidelobe numbers”(s. Figure 4.5). Higher value of the

amplitude-weighted sidelobe number signifies higher strength of the sidelobes in the beampattern.

Amplitude-weighted sidelobe numbers were calculated for all the beampatterns of all feature com-

binations, bending stages, and frequencies (s. Figure 4.6). This data also showed indications of

interactions between the combinations of the local shape features and bending stage. The number

of sidelobes and their strength was with a few exceptions greater for shapes with multiple features

than for those with a single feature; this difference was increased with increased bending of the
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Figure 4.4: Beampatterns at upright and bent stages for cone shapes augmented with individual
shape features or feature combinations: Three frequencies, 24 kHz, 28 kHzand 32 kHz for proto-
type corresponds to 60 kHz, 70 kHz and 80 kHz in bats, are shownfor each feature combination
and bending stage.

shape, in particular at the higher frequencies studied (s. Figure 4.6).

Further, multiple population t-tests with Bonferroni correction were performed by pooling this data

into groups depending on the number of features in the ear prototype. Data from the ear prototype

with no features was categorized into one group. Another group contained data from ears with one

feature. Data from the ear prototypes with multiple features was placed into a different group.

When pooled across frequency, the data sets of amplitude-weighted sidelobe numbers showed very

little evidence of differences between the plain cone and any of the three single static features with

probabilities of dismissing the hypothesis that the beampatterns belong to the same population in
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Figure 4.5: Computation of the amplitude-weighted sidelobenumber from the beam gain values.
The maximum amplitudes (triangles) of the sidelobes (1, 2, 3) are summed. Beam gain values are
coded in gray scale from white (low values) to gray (high values). White region below -30◦ was
not covered by the measurement

error great than 5% (s. Figure 4.7). When the amplitude-weighted sidelobe numbers for either the

plain-cone or the single-feature data sets were tested against the data set associated with multiple

features, the error values depended strongly on bending stage: The larger the bending stage, the

smaller the error values. I.e., the beampatterns of the multi-feature shapes increasingly differed

from those of the plain and single feature shapes in their amplitude-weighted sidelobes as the

shape was bent (s. Figure 4.7). For the largest two bending stages, error probabilities less than

0.1% were obtained.

Similarly analysis was performed to evaluate the elevationbeamwidth in the major lobes of the

beampatterns. The beamwidth was calculated for all the feature combinations at every frequency

along the bending stages. There was a tendency for ears with multiple features to have beams

that are wider in elevation than those with single features.This tendency was clearer at higher
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Figure 4.6: Amplitude-weighted number of sidelobes along frequencies and deformation stages.
In each set of eight bar figures, from left to right-ear with nofeatures, ear with one feature (ridge,
incision, antitragus), ear with combination of features.

frequencies, but not as pronounced as the differences in thesidelobes (s. figure 4.8).

When pooling data across frequencies and the different versions of multiple and single features,

results for the elevation beamwidth were qualitatively similar to those obtained for the amplitude-

weighted sidelobes, but with substantially higher error probabilities for the comparisons involving

multiple features (s. Figure 4.9). The probability decreased for pairings that involved multiple

features as well as with bending stage; i.e. the beampatterns associated with single features never

differed from those of the plain cone significantly in the elevation beamwidth , beampatterns of

multiple features when compared to the plain cone differed at the 0.01 and 0.001 significance

levels for the second largest and the largest bending stage respectively; the statistical significances
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Figure 4.7: Multiple population t-tests (with Bonferroni correction) on the shape groups based on
amplitude-weighted number of sidelobes. ’Cone’ populationconsists of only plain cone data, ’sin-
gle feature’ population consists of data from prototypes with one feature, ’multi feature’ population
consists of data from prototypes with more than one feature.

followed a similar pattern for the comparisons of beampatterns caused by single vs. multiple but

reached even lower error probabilities.
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ear with combination of feature.

4.5 Biomimicry

The results from the dynamic change in the beampatterns as the ear prototype bends showed

great qualitative similarities to the numerical beampattern estimates of the horseshoe bat defor-

mation [39]. The beampatterns obtained through experimentation changed from one single major

lobe to the formation of multiple side lobes (s. Figure 4.10). This behavior is qualitatively similar

as seen in the numerical analysis of the horseshoe bat [15, 24].
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4.6 Discussion

The biomimetic dynamic baffle prototype studied here has produced insights into the possible roles

of local static features as well as dynamic changes to the overall baffle shape. As may have been

expected from the relatively small size of the local shape features, adding the individual features

to the plain obliquely truncated cone in isolation resultedin rather small and gradual changes to

the beampatterns. The same was true for the dynamic deformations of the overall shape of the
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video recording of the pinna deformation in the greater horseshoe bat, (b) numerical beampattern
estimates of the pinna deformation, (c) biomimetic ear prototype at different shape deformations
and (d) experimental beampattern estimates for the ear prototype.

truncated cone. In the latter case, the maximum deflections amounted to about 20% of the total

prototype height, but due to the elasticity of the used material, the deformations resulted in shape

changes that were smoothly distributed over the shape, which could be taken as a justification for

predicting the relatively minor, gradual effects on the beampattern.

In the context of these minor effects, the finding that large,qualitative changes to the beampatterns

could be caused by combinations of local shape features and deformations is remarkable. Since

these effects are absent when either of the involved featureis present in isolation, they must be

the result of an interaction between the effects of these features. For the features studied here,

bending of the overall biomimetic baffle shape generally hadan amplifying effect on the effects
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of the feature interactions on the beampatterns. This couldbe due to the fact that bending of the

baffle changed the relative position as well as the orientation of the local features which could be

critical to interaction effects that depend on these relationships.

The observed effects, i.e., the occurrence of frequency-dependent sidelobes when combinations of

local features were present and the tip of the baffle was bent down, qualitatively matched numerical

beampattern predictions derived for the shapes of deforming horseshoe bat pinnae [15]. This could

be taken as an indication that the biomimetic overall baffle shape, its local shape features, and their

interactions could have captured some of the functional principles of the horseshoe bat pinnae –

despite their simplification. The interactions that could be readily demonstrated by comparing

beampatterns across the manufactured family of prototypes, could hence serve as a hypothesis for

acoustic functional effects that could be at work in the horseshoe bat pinnae.

The use of acoustic effects that rely on the interactions of local features to transform the beampat-

tern qualitatively is an attractive proposition. The apparent sensitivity of the effects to the relative

position or orientation of the local features, would provide a way to radically alter the beampat-

tern through relatively small changes in the overall baffle geometry. At present, technical systems

appear not to make use of such strategies, but they could be worth considering to make future

beamforming devices more physically adaptive in a parsimonious manner.



Chapter 5

Dynamic Sensor Encoding

5.1 Introduction

Like most hearing systems in biology, bat biosonar providesinformation about the presence, loca-

tion, and nature of sound sources in the environment [41, 42,43]. All this information has to be

encoded into the properties of the ultrasonic signals that reach the animals’ tympanic membranes.

The sites of ultrasound emission and reception are criticalinterfaces for this encoding process,

because they are the locations of direction-depended acoustic diffraction. This puts them into a

unique position to add informative signal components, whereas all internal stages of the hearing

system are limited to removing them.

Until now, it has remained unclear if the dynamic baffle structures on the reception side, which

diffract the incoming waves, result in any improvements to the horseshoe bat’s pinna capacity

to encode sensory information. To investigate this question, the dynamic beampattern changes

obtained from the biomimetic baffles described in the previous chapters, have been used for an

information-theoretical analysis to check whether any such effect can be demonstrated with phys-

ical data.

40
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5.2 Information-theoretic analysis of biological systems

Information theoretic measures can be used to quantify the information encoding capacity of a

channel regardless of the nature of the encoded information[44, 45]. Such measures have been

applied to a wide range of research areas such as neuroscience, auditory signal processing, and

image processing, to name a few. In neuroscience in particular, application of such methods has

made significant contributions to the understanding of neural activity [45, 46]. Information the-

oretic methods have been used to study the encoding and decoding of stimuli-response data in

both visual and auditory sensing [47]. Such studies have, for example, quantified the information

contained in the neural spike trains transmitted within thevisual sensing system of flies [48, 45].

Furthermore, information theoretic methods have been usedto investigate various localization cues

in single neurons for their coding capacity [49] as well as the information capacity and information

transmission in cortical networks with neural avalanches [50].

Other applications of information theory that share certain characteristics with the problem of the

work presented here are:

1. Understanding gene-expression data by finding the sharedinformation (bits) between co-

expressed gene clusters [51]

2. Quantifying 3d medical-image modalities [52]

3. Quantitative analysis of animal communications such as the song structures in humpback

whales [53]

4. Clustering comparisons: to estimate which of the clustering shares the most information

with all the remaining clusterings [54]

5. Providing feature selection in pattern recognition, image retrieval, bio-informatics, text clas-

sification, etc.

Information theoretic measures were performed to estimatethe target localization accuracy in bat



42

biosonar [34, 55]. Although source localization in azimuthplane was estimated using head-related

impulse responses [56], so far, the coding capacity in head-related impulse responses/head-related

transfer functions (HRTFs) has not been investigated. The work presented in this chapter aims at

understanding the sensor coding capacity in the dynamic deformation of the bat’s baffle structure.

5.3 Coding capacity of the biomimetic pinnae

Entropy is a measure that can be used to quantify the capacityof a channel for carrying informa-

tion [57]. It cannot be used to determine the amount of information that is actually evaluated or the

nature of the information that is conveyed. I.e., entropy provides an upper bound for the amount of

information that could be passed through a channel. In the case of the present work, this channel

is the biomimetic reproduction of the bat pinna. Here, the entropy refers to information-theoretic

measure which is different from the thermodynamic measure of entropy.

For a random variablex that can take onN discrete values, entropyH(x) is defined as [58, 44]

H(x) = −
N∑

x=1

Px log2(Px), (5.1)

wherePx is the probability of the occurrence of a certain value ofx in the sample population. The

entropy can hence be viewed as the amount of uncertainty in the random variable.

To determine the dynamic encoding capacity across two shapeconfigurations of the biomimetic

pinna, joint entropy can be estimated. The joint entropy quantifies the uncertainty contained in the

joint system of the two variables. It can be taken as a quantification of the coding capacity of the

system with two variables.

For two discrete random variablesx andy with N different values, joint entropy is given by [44]

H(x, y) = −
N∑

x=1

N∑

y=1

Pxy log2(Pxy), (5.2)
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wherePxy is the joint probability distribution of the two variables.

If some form of dependence exists between the two random variables, their joint entropy will be

less than the sum of their individual entropies. The difference between the sum of the individual

entropies and the joint entropy hence represent the amount of shared information and is known as

the mutual information (MI). It measures the reduction in uncertainty inx wheny is known. In

other words, the MI evaluates the relationship between the two random variables by providing a

measure of the dependencies between them. In this sense, mutual information can be seen as a gen-

eralization of correlation. Whereas correlation quantifiesa linear relationship between variables,

the MI is capable of capturing non-linear relationships. The MI I(x, y) is defined as [44]

I(x, y) =
N∑

x=1

N∑

y=1

Pxy log2
Pxy

PxPy

, (5.3)

wherePx andPy are the marginal probabilities of the random variablesx andy andPxy is the joint

probability distribution. MI can also be obtained as the sumof entropies ofx andy minus the joint

entropy.

I(x, y) = H(x) +H(y)−H(x, y) (5.4)

For all the equations defined above, the logarithm has the base two and hence entropy and mutual

information are measured in units of bits.

Signal data that was experimentally acquired using the biomimetic prototype was used for ana-

lyzing the coding capacity. As explained in chapter three, signals were recorded at each of 2,501

directions spanning -90◦ to +90◦ in azimuth direction and -30◦ to +90◦ in the elevation direction

with a spacing of 3◦. In order to use this time series data for quantification of coding capacity,

spectral clustering techniques [59] were applied to group the data into certain alphabet classes.

Using Fourier transforms, transfer functions were obtained from the time-series data of the mea-

sured responses. These functions vary significantly in the direction space due to the incoming

sound diffracting from the surface of the baffle structure (s. Figure 5.1). For finding alphabet

classes, amplitude gain values at 129 frequencies in the range from 24 kHz to 32 kHz in the trans-
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fer function were found. All the 129 beampatterns for each bending stage were used to group into

discrete alphabet classes using spectral clustering algorithms (see below).

5.4 Spectral clustering

Before applying clustering methods, the variability in the 129 dimensions was investigated by

performing principal component analysis (PCA). Only 33 dimensions show variability and the

remaining eigen values were zero (s. Figure 5.2).

A Gaussian similarity function was applied to these 33 principal components to obtain a fully con-

nected graph, represented in the form of a similarity matrix, where the edges connecting the data

points (vertices) are the elements of the matrix. This matrix was formulated for all the positions in

the seven bending stages resulting in 17,507 element(2, 501×7) square matrix. A PCA of the sim-

ilarity matrix was followed byk-means clustering, on the transformed similarity matrix toassign

each transfer function to a cluster, i.e., a “character” in the discrete alphabet. In this way, a cluster

number was obtained for every position (data point) in the direction space. The firstk eigenvectors

calculated from the spectral clustering techniques constitutedk classes. These discrete transfer

function identifiers were used for the information-theoretic analysis.

For the clustered transfer function data analyzed here, themarginal and joint probability densities

in Eqs. 5.1, 5.2 and 5.3 were carried out across bending stages of the biomimetic prototype. The

samples of the two discrete random variablesx andy were each represented by vectors of cluster
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identities across all 2,501 positions sampled in the direction space.

5.5 Sampling bias corrections

For finite sample sizes, the estimates of marginal and joint probabilities contain errors and as a

consequence, the estimated entropy and mutual informationvalues are biased. Since the sample

size for each bending stage was comparatively small (2,501 points), bias corrections were required.

Various estimates for biases have been derived depending onwhether the variables are continuous

or discrete in nature [60, 61, 62, 63, 64] and new techniques for bias correction for these measures

continue to be developed [65].
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The bias corrections applied for marginal and joint entropies in the current work were [53]

Bias{H(x)} = 0.72×
D − 1

N
(5.5)

and

Bias{H(x, y)} = 0.72×
B −K

N
, (5.6)

whereD is number of nonzero marginal probabilities,B is the number of nonzero joint probabili-

ties forK alphabet sizes (number of clusters) andN is the total number of samples.

Since entropy measures the variability in the data, when thesample size is finite, variability mea-

sured in the data is lower than the true value with infinite samples. This leads to negatively biased

or underestimated entropy. Therefore Bias{H(x)} is added to the estimated entropy to improve

the estimate by reducing its bias.

The bias correction applied for mutual information estimate is [64].

Bias{I(x, y)} =
B

2N loge(2)
, (5.7)

whereB is the number of nonzero joint probability values andN is the number of samples.

Due to finite sampling, mutual information is positively biased or overly estimated and the bias

correction: Bias{I(x, y)} is subtracted from the estimated value to reduce the bias.

The mutual information estimates thus obtained appeared todepend systematically on alphabet

size. With increase in alphabet size, the mutual information always increased. However, for very

high alphabet sizes, mutual information must decrease to zero. Thus optimum alphabet size needs

to be determined. This can be considered similar in concept to estimating the right number of bin

sizes for Gaussian distribution. Very high and very low number of bins will incorrectly estimate

the Gaussian distribution (s. Appendix A).
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5.6 Permutation test

To estimate the optimum alphabet size, permutation tests were performed. This test was chosen

since mutual information is a measure of the similarity between two variables. For this test, the data

from each pairwise comparison of beampattern clusters wereshuffled and re-assigned randomly to

the two bending stages. This reshuffling of the data preserved the frequency of the different class

identities, but disrupted any dependencies between the twovariables. Hence, MI values obtained

for this reshuffled data sets will be estimates of the bias. Toobtain these bias estimates, fifteen

such permutations were carried out and the MI was evaluated.The mean value of the permuted MI

was taken as an estimate of the bias and subtracted from the MIestimates obtained for the original

data set to obtain corrected estimates. As a validation for this approach, the same method was

performed on two continuous Gaussian variables with known dependencies (s. Appendix B).

5.7 Results

When the similarity matrices were decomposed using PCA, the first eigenvalue was found to be

zero and the subsequent eigenvalues obtained were of approximately equal size. This can be seen

as an indication that the clustering was splitting a continuum of transfer functions rather than

following discontinuities already existing in the data. Nevertheless, the resulting clusters showed

non-random spatial patterns over direction (s. Figure 5.3). Since no direction information had

been included in the clustering, these non-random spatial patterns can be taken as evidence that

the elements of the alphabet represented deterministic directional trends existing in the transfer

function data rather than some form of random noise.

The beampattern entropy estimates for the different studied alphabet sizes (2 to 10 elements) were

used as measures for the coding capacity of the beampatternsin a manner similar to previous

research on whale songs [53] and neural coding [50, 47]. For each of the studied alphabet sizes, the

entropy estimates obtained were close to the maximum possible entropy for the respective alphabet
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Figure 5.3: Clustering of beampatterns of different bendingstages into discrete alphabets based
on spectral clustering applied to transfer function vectors. Columns indicate alphabet sizes of two
(top) to ten (bottom). Color codes for the different elementsof the alphabet.
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2
|A|, whereA

is the alphabet size [53]).

size (s. Figure 5.4). As a consequence, estimated entropiestraced the increase in maximum entropy

with alphabet size. For any tested alphabet size, entropy was found to be largely unaffected by

the bending stage of the biomimetic device, i.e., no matter what bending stage the baffle was

in, the entropy in the transfer function alphabet was alwaysclose to the theoretical maximum (s.

Figure 5.4). This suggests that there is a significant encoding capacity in the beampatterns that

appears not to be affected by the bending stage of the device.
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Figure 5.5: Mutual information reaches maximum and then decays to zero with increase in alpha-
bet size. Up to 100 clusters are shown here. The colors represent different bending stages - red,
blue, green, magenta, black and cyan in order indicate upright to bent stages.

With increase in alphabet size, the mutual information estimates increased to a maximum and then

reduces to zero at alphabet sizes of 500 and higher. The mutual information curves were smoothed

using Savitzky-Golay filters [66] with cubic polynomial curves. The maximum for the mutual

information occurred at alphabet sizes between 60 and 72 clusters for different bending stages. (s.

Figure 5.5).

The maximum mutual information normalized with the joint entropy was found to decrease mono-

tonically with the distance of the compared stages within the deformation sequence (s. Figure 5.6).
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For one step size of sampling the bending in which the baffle tip moved by about 20 % of the

total device height of 5 cm, mutual information decreased toabout 20%. The normalized mutual

information between the beampatterns at the end points of bending sequence was around 10%.

Here the mutual information has been normalized with the joint entropy estimates that were ob-

tained for the same alphabet size as the mutual information.However, the permutation method that

was used to estimate the bias in the MI estimates is not applicable to the joint entropy estimates

and hence it is not certain that the best alphabet size for thejoint entropy estimates equals that for

the mutual information.

The increase in coding capacity was also quantified by estimating joint beampattern entropies

across an increasing number of bending stages (s. Figure 5.7): For the alphabet size where maxi-

mum mutual information was found, the joint entropy increased with alphabet size and saturated

for alphabet sizes of much higher value. Furthermore, the joint entropy also increased with the

addition of bending stages. Whereas the entropy of the beampatterns associated with the upright

pinna was only around one to three bits (depending on alphabet size, Figure 5.4), the joint beam-

pattern entropy for all seven bending stages increased to values between 5 and 10 bits, i.e., by

factors between three and five.

5.8 Discussion

The results presented here for a biomimetic baffle modeled after the pinna of horseshoe bats have

demonstrated that dynamic shape changes similar to the onesobserved in the animals increase in-

formation encoding capacity. Together with the muscular specializations in horseshoe bats [19] as

well as in the related Old World leaf-nosed bats (Hipposideridae) [67, 68] and the prominence of

these deformations in the biosonar behavior of the animals,these findings constitute a significant

further piece of evidence in favor of the hypothesis that thedynamics of the noseleaves and pinna

shapes in bats is an active sensing behavior. According to this hypothesis, horseshoe bats – and

perhaps other species with similar behaviors – would use dynamic shape changes of their nose-
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leaves and pinnae to enhance the capacity of their auditory periphery, i.e., a critical interface with

the external world, to encode biosonar information. At present, it remains unknown whether this

coding capacity is actually used in nature and if this is the case what information is encoded with it.

However, if this could be determined, the dynamics of biosonar systems could become a paragon

for novel, dynamic sensing paradigms that would not only be new to the study of biological sensing

systems but also to engineering. These strategies could provide ways in which critical bottlenecks

in the ability of sensory systems to encode information withsufficient quantity and quality could

be eliminated. Such insights could lead to a deeper understanding of sensing in nature as well as

to novel sensing technologies.



Chapter 6

Summary

6.1 Research accomplishments

In the course of the research work presented in this dissertation, the following major research

accomplishments were made:

1. Developed a simple and parsimonious biomimetic baffle structure mimicking the pinna of

greater horseshoe bat.

2. The actuation mechanism used in this work was able to deform the biomimetic prototype by

mimicking the bat ear deformation.

3. Three local shape features were identified, which play a vital role in the formation of acoustic

beampatterns.

4. The biomimetic prototype was able to mimic the beampattern changes as seen in the numer-

ical simulation of the horseshoe bat.

5. Beampattern data obtained from this experimental setup was used to understand the sensory

coding capacity of the dynamic deformation. It was found that the bat can increase its coding

capacity by deforming the ear.

55
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6. A novel technique was explored: Information theoreticalanalysis for dynamic sensory cod-

ing capacity using head related transfer functions.

6.2 Major findings

The following major findings have resulted from the work presented in this dissertation:

1. The static and dynamic effects of three local shape features namely, ridge, incision and

antitragus of the greater horseshoe bat pinna were investigated. It was found that each of the

individual features studied here effected only small, gradual changes in the beampatterns by

itself. In contrast to this, several combinations of multiple features did result in large and

qualitative changes to the beampatterns. This can be taken as evidence for an interaction

between the acoustic diffraction effects of these features.

This notion is reinforced by the findings of quantitative differences between multiple-feature

beampatterns and single-feature even greater than those between the plain cone-beampattern

and the multiple-feature beampatterns - this result indicates that the effects of feature-combinations

on the beampatterns take a different direction than those associated with the individual fea-

tures [25].

The bend configuration led to greater changes in the beampatterns and presumably more

interactions between the static features. Hence, there were interactions not only between the

individual static shape features, but also between the static features and the dynamics of the

prototype shape.

2. The effects on the beampatterns were similar to those observed in the beampattern predic-

tions of real horseshoe bat ears, where combinations of multiple features and bending tended

to produce strong sidelobes [39].

3. The biomimetic prototype can encode additional sensory information with dynamic shape

changes. This can be taken as a evidence supporting our hypothesis of the bat’s coding
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capacity through its deformable baffle structures. Although, the joint entropy presented in

this work is uncorrected for alphabet sizes, assuming an increase of the mutual information

by 100 % to 40 % due to change in joint entropy, our hypothesis of the coding capacity of

the bat’s pinna could still be supported due to 60 % change of information.

6.3 Suggestions for future work

1. The biomimetic prototype developed here is a simple and parsimonious model. Automated

and more sophisticated shape changing antennas can be developed.

2. Dynamic Characterization

The dynamic behavior of the biomimetic prototype(plain cone) was characterized using four

different variables: Two variables for direction (azimuthand elevation) and two variables

representing the time-variant response [40]. The impulse response of the system across di-

rection as a function of deformation time and time delay was visualized in the time-direction

domain. Qualitative changes were observed in patterns overtime delay. Although, there

were very slight changes at the initial, with increasing time delay clearer patterns were ob-

served with deformation (s. Figure 6.1).

In the delay-time domain visualization (s. Figure 6.2), twodirectional impulse response as

a function of deformation time and time delay were mapped fora point in direction space.

The initial phase of the impulse response (typically∼25 µs) caused very slight changes over

most of the direction space and during deformation. But the remaining part of the impulse

response, showed significant differences with bending.

Such characterizations can be performed to observe the effects of the local shape features.

3. Finally, better bias correction methods could be derivedand applied to the estimation of the

information theoretic measures for coding capacity.
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Figure 6.1: Characterization in the time-direction domain:impulse response amplitude as a func-
tion of time in the deformation cycle (rows) and time delay (columns). Colored version of the
figure reproduced from [40]. See page 10 of copyright permissions document.
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Chapter 7

Appendix A

Binning effect on a Gaussian distribution:

Consider a Gaussian distribution with zero mean and standarddeviation of 1. The distribution was

binned with sizes ranging from 2 to 10000 (s. Figure 7.1).

Numbers of bins that are too small (e.g., Size=2 in Figure 7.1) do not represent the Gaussian dis-

tribution, because important features are lost. If the number of bins is too high (e.g., Size=10,000

in Figure 7.1), again an incorrect picture of distribution is the result, because the true distribution

is reduced to a set of spikes at bins that happen to contain a single sample. Hence, an optimum

bin size needs to be found that represents the features of thedistribution without degenerating into

single spikes.
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Figure 7.1: Gaussian distribution binned with bin numbers of 2, 10, 200, and 10,000. The contin-
uous distribution is represented by the red line.



Chapter 8

Appendix B

Mutual Information for two Gaussian variables:

Consider two continuous variables with Gaussian distribution of mean 0 and standard deviation 1.

By calculating the marginal and joint probability density functions, exact values of mutual infor-

mation can be found.

Discrete values of variables with normal random distribution can be found for alphabet sizes rang-

ing from 1 to 100.

By applying the permutation tests, the Mutual Information between the two Gaussian variables

increases to a maximum and then decays to zero.

Such tests were performed for correlation values varying from 0 to 0.95 between the two Gaussian

variables (s. Figure 8.1).
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Figure 8.1: True mutual information evaluated from the permutation tests.


