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 (ABSTRACT) 

 

The 1999 AISC Specification for Structural Steel Buildings establishes two 

design equations for the web crippling limit state at the supports.  However, investigators 

have suggested that the basis of these equations, which is based on an assumed collapse 

mechanism, is conservative especially for long bearing lengths.  Most of the experimental 

studies conducted to validate those formulas have considered short span lengths and 

relatively small bearing-to-depth ratios.  Therefore, a further investigation of the web 

crippling capacity of W-shape steel beams for larger span lengths and larger bearing-to-

length ratios was undertaken. 

 

The primary objective of this study is to analytically investigate the web crippling 

strength of W-shape steel beams for large bearing-to-depth ratios on large span beams, 

and to compare the results with the 1999 AISC LRFD web crippling design equation 

(K1-5b).  The web crippling strength of W-shape steel beams was investigated by means 

of the finite element technique.  The commercial finite element package ANSYS 6.0 was 

used to model the steel beams.  Material nonlinearities, large deformation effects and 

initial geometric imperfections were taken into account in the finite element models.  

 



The validation results shown that the finite element models closely predicted the 

ultimate load and web crippling failure mode shape of the tested beams.  Conclusions 

based on the predictions of the finite element analyses and the current 1999 AISC end 

web crippling design equation (K1-5b) are presented in the study.   
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NONLINEAR FINITE ELEMENT ANALYSES OF THE END 

WEB CRIPPLING STRENGTH OF W-SHAPE STEEL BEAMS 

 
CHAPTER 1 
 
INTRODUCTION AND LITERATURE REVIEW 
 
1.1 Introduction 
 

Webs of W-shape steel beams are subjected to in-plane compressive loading in 

many engineering designs.  The failure modes induced by concentrated in-plane 

compressive loads are yielding and crippling of the web material in a local area under the 

load.  Transverse stiffeners can be used to reinforce the web so that web crippling does 

not occur; however, the use of transverse stiffeners is minimized or avoided for practical 

and economic reasons. 

 

The loading configuration considered to study interior web crippling behavior is 

shown in Figure 1.1, while the loading configuration frequently considered to study the 

web behavior over the support is shown in Figure 1.2.  Figure 1.3 shows an alternative 

loading configuration to study the web crippling at the supports.  As shown in the three 

figures, the beam is simply supported and the load is applied at the top of the flange and 

centered on the web of the beam section to study web crippling.  To study interior web 

crippling, transverse stiffeners are designed to reinforce the web over the supports such 

that the web fails in a local area under the application of the load.  When failure of the 

web is wanted at a support, transverse stiffeners are designed to reinforce the web under 

the loaded patch.  The test beam section is often laterally braced to prevent torsional 

buckling.   
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Figure 1.1 Typical testing configuration for web crippling at an interior patch load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Typical testing configuration for web crippling over the support. 
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Figure 1.3 A second testing configuration for web crippling over the support. 

 

 Since web crippling can occur either under the application of the concentrated 

load or over the supports, both situations have been investigated since the early 1930’s.  

Both experimental and analytical studies have been conducted to predict the ultimate 

strength of the webs due to crippling failure, and several formulae have been proposed to 

predict the web crippling strength of steel beams.  Majority of these studies are 

summarized by Rockey (1976), Roberts and Rockey (1979), and Elgaaly (1983). 

 
 

The 1999 AISC LRFD Specification for Structural Steel Buildings (AISC, 1999) 

establishes two design equations for the web crippling limit state at the supports.  

However, the basis of the web crippling limit state at the support, which is indirectly 

derived from an assumed interior collapse mechanism, is believed to be conservative for 

large bearing lengths, N.  Also, most of the experimental studies conducted to calibrate 

the 1999 AISC LRFD web crippling equation (K1-5b) used short span lengths and 

relatively small bearing-to-depth ratios. 

Loading Blocks
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The objectives of this study are to develop a finite element model that can predict 

the web crippling failure load of test specimens, to investigate the web crippling strength 

of W-shape steel beams for large bearing-to-length ratios on realistic span beams, and to 

compare the results with the predictions of the 1999 AISC LRFD web crippling design 

equation (K1-5b).  The commercial finite element package, ANSYS 6.0, is used to for 

this purpose. 

 

1.2 Literature Review 

 

1.2.1 Experimental Studies 

 

One of the first experimental studies to consider webs under compressive loads 

was conducted in the early 30's, when Ketchum and Draffin (1932) tested 66 light W-

shape steel beams for failure of the web over the supports.  Ketchum and Draffin 

observed that the ultimate collapse load for those beam sections tested with a single 

concentrated load located at midspan (Figure 1.1) was slightly higher than those same 

beam sections tested with two concentrated loads located at quarter points (Figure 1.2).  

The difference was about 10% of the ultimate load capacity.  They attributed this effect to 

the fact that, in the second testing configuration, the load was applied at a distance equal 

to one-half of the beam depth.  This loading configuration may have caused the beam to 

fail due to direct compression loads.  In general, they concluded that the failure of the 

beams was due to buckling of the web over the support.  They also concluded that the 

stress, which caused web crippling, could be closely approximated by the so-called 

Carnegie formula: 

 

                                               






 +

=

4
dNt

R

w

n
bσ     (1.1) 
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where: 

 

bσ : Allowable bearing stress, ksi  

Rn : End reaction, kips 

N : Bearing length, in. 

d : Depth of the section, in. 

tw : Web thickness, in. 

 

Bergfelt (1976) conducted several tests on plate girders to study the parameters 

that affect the strength of the web material under edge compressive loads.  He observed 

an increase in the ultimate load capacity of the web with an increase in the flange-to-web 

thickness ratio, tf /tw.  Bergfelt considered the influence of the web yield stress, Fy, and the 

modulus of elasticity, E, and proposed the following equation to predict the web crippling 

strength of steel girders. 

 

                                           ( )
6.0

5.0268.0 







=

w

f
ywwn t

t
EFtR                                   (1.2) 

where: 

 

E : Modulus of Elasticity, ksi 

Fyw : Yield Stress of the web, ksi 

tf  : Flange thickness, in. 

 

Bergfelt was one of the first authors to propose a design formula for predicting the web 

crippling failure load.  Subsequently, several other formulae have been proposed to 

predict the web crippling strength of welded plate girders.  Those formulae are 

summarized in the papers published by Rockey (1976), Roberts and Rockey (1979) and 

Elgaaly (1983).  Roberts and Rockey (1979) summarized and analyzed the design 

formulae proposed by other investigators to predict the ultimate load due to web crippling 

failure.  Most important, Roberts and Rockey developed an assumed collapse mechanism, 

based on experimental observations, to predict the ultimate load for web crippling.  The 
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typical failure mechanism observed from experimental tests is shown in Figure 1.4, while 

the collapse mechanism considered by Roberts and Rockey is shown in Figure 1.5.  

Based on this collapse mechanism and yield line theory, they derived an expression to 

predict the collapse load of the web.  Two years later, Roberts (1981) conducted a series 

of experimental studies to validate the mechanism solution.  Based on experimental 

observations, he reduced the original mechanism solution to a simple form.  He 

concluded that the simple formula provided satisfactory predictions of the ultimate load 

for all the available data.  However, he recommended that the formula should be limited 

for bearing-to-depth ratios, N/d, less than 0.2.  He mentioned that when N/d becomes 

larger, the flange will not remain flat between the inner plastic hinges, and therefore this 

assumption becomes no longer valid.  The semi-empirical formula developed by Robert 

is:  

 

                                
w

f
yw

f

w
wn t

t
F

t
t

d
NtR
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This new formula was introduced in the 1986 AISC LRFD Specification (AISC, 

1986), and only applies to interior patch loads.  The AISC LRFD strength for end 

reactions is approximately one-half of that given by Equation 1.3: 
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Figure 1.4 Typical failure mechanism observed from experimental tests. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5 Roberts’ assumed collapse mechanism for web crippling at an interior patch 

load.  
 

 

Elgaaly and Salkar (1991) conducted a series of tests to study the ultimate load 

capacity of web crippling over the supports to validate the 1986 AISC LRFD (AISC, 

1986) web crippling equation (K1-5).  They tested twenty-seven hot-rolled steel beams of 
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short span, where thirteen out of the twenty-seven were loaded at a distance from the face 

of the support less than the depth of the section.  Based on the results, they observed a 

tendency for the test load-to-calculated load ratios, Pts/Puc, to increase with increasing 

N/d ratio.  They concluded that the 1986 AISC LRFD design equation for web crippling 

over the support is conservative.  Based on those results, the 1993 AISC LRFD 

Specification (AISC, 1993) introduced a new set of equations for end web crippling limit 

state.  The equation K1-5a is identical to equation K1-5 of the 1986 AISC LRFD 

Specification, and applies when the bearing-to-depth ratio, N/d is less than 0.2.   The new 

equation, K1-5b, is written as follows: 

 

                                  
w

f
yw

f

w
wn t

t
F

t
t

d
NtR









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





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





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
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The new equation K1-5b, which applies when the N/d ratio is greater than 0.2, 

gives slightly higher strength values than the previous equation K1-5.  However, most of 

the tests conducted by Elgaaly and Salkar used to calibrate this new equation were 

conducted on short span length beams with the shear span less than 3/4th of the depth of 

the beams.  This loading configuration could alter the behavior of the web since it may 

have induced direct compression, and thus influence the ultimate collapse load of the 

steel beams.  In fact, Ketchum and Draffin (1932) observed a decrease of 10% in the 

ultimate load for those beams tested with shear span less than the depth of the section 

versus the same beam sections tested with shear span-to-depth ratio greater than 1.0.  

 

Since few experimental data were available to better assess the web crippling 

strength over the support, the American Institute of Steel Construction (AISC) called for 

additional research on this subject.  Bryant (1993) conducted an experimental study, 

sponsored by the AISC, to examine the origin of the equation for web crippling at the 

supports, which was obtained indirectly from Roberts’ derivation for interior web 

crippling.  He identified inconsistencies in the end web crippling derivations as a result of 

using the same assumptions as for the interior web crippling derivation.  One of those 
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inconsistencies is apparent from Figure 1.6.  Based on this and other inconsistencies, he 

developed a new and more realistic collapse mechanism, and derived a new equation 

specifically for web crippling failure at the supports.  The new proposed end web 

crippling equation is: 
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kNc +=  

k: Vertical fillet distance of the section, in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Inconsistencies in the end web crippling derivation as a result of halving the 
interior web crippling equation. 

 

 

In addition, five full-scale tests were conducted to verify the accuracy of the 

proposed equation.  Three of those tests were performed using steel-concrete composite 

beams.  The proposed new equation for end web crippling accurately predicted the 

N
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collapse load for these tests.  However, an evaluation of the equation with historical 

experimental data demonstrated that the 1993 AISC LRFD web crippling equation (K1-

5b) better predicts the ultimate collapse load of the web crippling over the supports than 

the proposed new equation.  Bryant pointed out that the methods of testing in previous 

experimental studies have a significant effect on the web crippling strength of the steel 

beams. Most of the beams tested in previous experimental studies were not laterally 

braced and were loaded by a point load located very near to the end bearing connection.  

 

1.2.2 Finite Element Studies 

 

The finite element method is a numerical technique developed in the early 1940's 

by aircraft structural engineers to better approach the analysis of complex airframes. 

Since then, many mathematicians, physicists, and engineers have made significant 

contributions to the finite element method which, along with high-speed digital 

computers, has become widely accepted as a valuable numerical technique for solving 

complex engineering problems.  Most important, this technique is an effective way to 

assess the response of the structural elements compared to full-scale experiments since it 

is relatively inexpensive and time efficient.  

 

The behavior of webs under interior compressive loads has been recently studied 

by the mean of the finite element technique.  Granath (1997), by using the commercial 

finite element package ABAQUS 5.4, studied the influence of the moment capacity and 

stiffness of the flanges on the ultimate web crippling load.  He created and analyzed three 

finite element models for interior patch loading similar to the specimens tested by 

Roberts (1981).  The elements used to model the plate girders were shell elements.  

Granath modeled the ends of the girders as infinitely stiff, so the web crippling 

phenomena occurs under the loaded patch and not over the supports.  The steel was 

modeled as an isotropic material using the von Mises yield criterion and the isotropic 

work hardening assumption. The cosine shape was used to model the geometrical 

imperfection of the web.  Amplitude of 1 mm (0.04 in.) was imposed over the whole web 

plate for the parametric analyses.  Since the level of the geometrical imperfection was 
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unknown, Granath conducted an imperfection sensitivity study.  He considered different 

imperfection amplitudes ranging from 0.1 mm (0.004 in.) to 5.0 mm (0.20 in.).  In his 

sensitivity analysis, he found little variation in the ultimate load capacity of the models.  

He also observed that the web deformed with the same shape as the chosen geometric 

imperfection.  Based on his results, he concluded that the moment capacity of the flange 

does not have an influence in the web crippling capacity, while the flange stiffness does.  

Granath did not consider the web crippling phenomena over the supports in the study. 

 

Tryland et al. (1999) studied the response of numerical simulations of steel beams 

under concentrated loading.  The finite element code LS-DYNA was employed to 

perform this study.  Three load cases were included in the study: concentrated forces 

applied to an unstiffened girder end, concentrated forces applied to the top flange, and 

opposite concentrated forces applied on both flanges.  The concentrated loads were 

applied either at the midspan or at the end of the support.  Shell elements were used to 

model the steel girders.  The steel material was modeled as elastic-plastic with isotropic 

linear elasticity, von Mises yield criterion, and isotropic strain hardening.  A bilinear 

stress-strain curve having a modulus of elasticity of 204 GPa (29,500 ksi), and a tangent 

modulus of 0.5 GPa (72.5 ksi) was used in the finite element analyses.  Geometrical 

imperfections were introduced in the finite element models with an assumed imperfection 

pattern.  The web distortion was modeled as a sine wave over its height, while a number 

of half sine waves were imposed along the plate girder.  In the validation process of the 

finite element model, they observed that an element size of 20 mm (0.8 in.) was 

appropriate.  Tryland et al. obtained good correlation for both the load-deflection curve 

and ultimate collapse load between the experiments and the finite element predictions. 

They reported that the error in the predicted ultimate strength was within 11%.  They 

concluded that the geometrical imperfections imposed in the models govern the 

deformation mode, and therefore influence the response of the structural elements. 

 

Two years later, Tryland et al. (2001) published another paper on the finite 

element modeling of beams under concentrated loads.  At this time, the finite element 

simulations were performed using solid elements.  An eight-node brick element from the 
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LS-DYNA code was used.  The same structural steel properties and load cases as defined 

in the previous study were employed in this study.  In the validation process, they found 

it necessary to use very small elements especially in the area beneath the compressive 

load.  An element size of 3.5 mm (0.14 in.) was found appropriate for the steel girders. 

This element size is about 83% smaller than the element size obtained from the validation 

process in the previous study.  Tryland et al. concluded that the correlation between the 

experimental and numerical results was quite good.  They pointed out that this numerical 

simulation, which used solid elements, was very complicated and the computational time 

increased greatly compared to the previous study.  

 

The most recent finite element study on webs under patch loading was performed 

by Graciano and Edlund (2002).  The purpose of their study was to investigate the 

ultimate load behavior of longitudinally stiffened girder webs under patch loading by 

employing the finite element technique.  The commercial finite element program 

ABAQUS was used to perform the nonlinear finite element analyses.  Shell elements 

were used to model the web, flanges, and the longitudinal stiffeners.  The steel was 

modeled as an elastic-plastic material with a stress-strain curve as defined in the Swedish 

code for steel construction.  The modulus of elasticity was set to 210 GPa (30,500 ksi) 

and Poisson’s ratio to 0.3.  Graciano and Edlund (2002) reported that the two tested 

girders had different imperfection patterns.   As shown in Figure 1.7 the imperfection 

patterns were similar to an S-shape for the first girder, and a C-shape for the second 

girder.  In the finite element model, the girders were modeled with two opposite half 

wave shapes similar to an S-shape, and a half wave shape similar to a C-shape.  The S-

shape was modeled using cosine functions both in the transverse and longitudinal 

direction: 
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For the C-shape imperfection pattern, the cosine function was written as follows: 
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where: 

 

w: Out-of-plane deformation, in. 

a: Length of the web panel, in. 

hw: Web height, in. 

x: Coordinate of the imperfection value in x-direction, in. 

y: Coordinate of the imperfection value in y-direction, in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Cross-sectional web imperfections. 

 

 

The measured experimental imperfections for the two tested girders were: w1 = 5.4 mm. 

(0.21 in.), and w2 = 5 mm (0.20 in.) for the first girder; and w0 = 9 mm (0.35 in.) for the 

S-shape C-shape
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second girder.  Graciano and Edlund performed an imperfection sensitivity analysis for 

the model with the C-shape. They used amplitudes of 5.4 mm. (0.21 in.), and 9 mm (0.35 

in.).  The results of the sensitivity analysis showed that the difference in the ultimate 

failure load was not great.  The difference in the ultimate load using these two different 

imperfection amplitudes was about 2%. A great difference in the ultimate failure load 

was found when a different imperfection shapes were used.  They observed that for the 

same imperfection amplitude, a C-shape imperfection pattern carried approximately 7% 

more load than a S-shape. In their validation analyses, they obtained collapse load similar 

to the experiment for the girder with an S-shape imperfection pattern, while for the girder 

with a C-shape imperfection pattern the difference in the collapse load obtained from the 

finite element analysis and experimental test was approximately 9%.  In both analyses, 

the correlation of the load-deflection curve between the experimental and finite element 

results was not good.  The load-deflection behavior was similar but the experimental path 

was not closely followed. 

 

Throughout these studies, it has been demonstrated that the finite element 

technique can be used to adequately predict the ultimate collapse load and the response 

mode shape of the web crippling over a beam support. However, it is important to 

observe that the characteristics of the models, i.e. geometrical imperfections, are not 

standard in the finite element method.  In fact, this is a process of engineering judgment. 

Any finite element model has to be validated against the test data before relying on the 

finite element results. 

 

1.3 Scope of the Research  
 

This study further investigates the web crippling strength of W-shape steel beams 

at the supports for bearing-to-depth ratio greater than 0.2 on realistic span beams.  The 

commercial finite element package, ANSYS version 6.0, was used to model and analyze 

the web crippling behavior of the beam sections.  The numerical simulations consisted of 

two main stages: the validation stage and parametric stage. In the validation stage, 

models similar to beam sections experimentally tested by other authors were created.  A 
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nonlinear finite element analysis was performed to determine the web crippling behavior 

of the models and to validate them against experimental results. In the parametric stage, 

the validated characteristics of the models were used to analytically determine the web 

crippling strength of the beam sections for different bearing-to-depth ratios on realistic 

span lengths.  Finally, the results obtained from finite element analyses were compared to 

the predictions of the 1999 ASIC LRFD (AISC, 1999) design equation for end web 

crippling equation (K1-5b) to determine its accuracy. 

 
1.4. Thesis Outline  

 

This thesis presents a study conducted on the end web crippling strength of W-

shape steel beams for bearing-to-depth ratio greater than 0.2 by employing the finite 

element technique.  The results from previous studies conducted by other authors are 

compiled and presented in Chapter 2.  These experimental results were used to validate 

the finite element models.  This chapter also contains the description of the test 

configuration used in each study.  In Chapter 3, descriptions of the finite element models 

developed in this study are presented.  The finite element results are presented in Chapter 

4.  This chapter also presents a discussion of the behavior of the finite element model and 

a comparison between the 1999 AISC LRFD design equation for end web crippling (K1-

5b) and the finite element predictions.  A summary and the major conclusions of this 

study are presented in Chapter 5.  Three appendices are included in this study.  Appendix 

A, presents the procedure employed to create, analyze, and view the results of the 

nonlinear finite element model by using the ANSYS’ Graphical User Interface.  

Additional finite element results are presented in Appendix B.  Finally, Appendix C 

presents additional screened end web crippling data not included in Chapter 2. 
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CHAPTER 2 
 
EXPERIMENTAL STUDIES AND RESULTS 
 
2.1. General 
 

This section describes the testing procedure and experimental results from the two 

most recent studies conducted to investigate the end web crippling behavior of hot-rolled 

steel beams.  The two sets of experimental data are from Elgaaly and Salkar (1991), and 

Bryant (1993).  Not all experimental results from Elgaaly and Salkar are valid to assess 

the end web crippling behavior of steel beams.  Therefore, this study presents only the 

screened end web-crippling data.  Those valid test results include eighteen tests of a total 

of twenty-seven tests from Elgaaly and Salkar, and all five tests from Bryant. 

 
2.2. Elgaaly and Salkar 
 

Elgaaly and Salkar (1991) published the results of a series of tests conducted at 

the University of Maine to study the behavior of webs under compressive loading.  

Among the data reported, there were two sets of tests conducted to study the web 

crippling behavior over a support.  Hot-rolled beam sections ranging from W12 to W21 

were used in their experimental studies.  The first set of valid data comprised tests 

conducted on W12x14, W14x22, W16x31, W18x35, and W21x50 sections where the 

span length-to-depth ratio ranged from 1.58 to 1.77.  Therefore, the shear span lengths 

were less than 3/4th of the depth of the beam section for all specimens in this series.  The 

second set of valid data comprised of experimental tests conducted on W12x16 sections 

where the span length ranged from 3.0 ft to 4.0 ft.  In this testing arrangement, the shear 

span length was greater than the depth of the beam.  All test beams were simply 

supported, and loaded by a single concentrated load located at midspan.   Tables 2.1 and 

2.2 include a description of the test specimens for the first and second series, 

respectively.  Table 2.3 the ultimate collapse load based on the test results and the 1999 

AISC LRFD Specification web crippling equations are listed.  
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Table 2.1. 

Summary of the geometric and material properties for the first set of tests conducted by Elgaaly and Salkar.    

Test 
Designation * 

Beam 
Section 

Span 
(in.) 

N 
(in.) 

tw 
(in.) 

tf 
(in.) 

d 
(in.) 

bf 
(in.) 

Fy 
(ksi) 

1 W12x14 21.0 2.38 0.201 0.215 11.88 4.03 53.2 
4 W14x22 24.0 2.76 0.237 0.329 13.81 5.12 54.4 
7 W16x31 26.9 3.19 0.263 0.431 15.94 5.64 57.6 
8 W16x31 26.9 4.92 0.300 0.432 15.88 5.52 51.3 
10 W18x35 30.0 3.55 0.294 0.429 17.75 6.05 62.6 
12 W21x50 33.1 4.19 0.362 0.525 20.94 6.62 62.8 

*  Numbering system as per Elgaaly and Salkar (1991) 
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Table 2.2. 

Summary of the geometric and material properties for the second set of tests conducted by Elgaaly and Salkar.    

Test 
Designation * 

Beam 
Section 

Span 
(in.) 

N 
(in.) 

tw 
(in.) 

tf 
(in.) 

d 
(in.) 

bf 
(in.) 

Fy 
(ksi) 

14 W12x16 36.0 2.40 0.220 0.265 11.99 3.99 46.5 
15 W12X6 36.0 2.40 0.220 0.265 11.99 3.99 44.1 
16 W12X6 36.0 3.00 0.220 0.265 11.99 3.99 44.3 
17 W12X6 36.0 3.60 0.220 0.265 11.99 3.99 43.5 
18 W12X6 36.0 3.60 0.220 0.265 11.99 3.99 45.9 
19 W12X6 36.0 4.20 0.220 0.265 11.99 3.99 45.4 
20 W12X6 36.0 4.80 0.220 0.265 11.99 3.99 44.2 
21 W12X6 36.0 4.80 0.220 0.265 11.99 3.99 44.7 
22 W12X6 42.0 5.40 0.220 0.265 11.99 3.99 52.3 
24 W12X6 42.0 6.00 0.220 0.265 11.99 3.99 66.5 
25 W12X6 48.0 6.59 0.220 0.265 11.99 3.99 49.6 
27 W12X6 42.0 7.19 0.220 0.265 11.99 3.99 49.9 

*  Numbering system as per Elgaaly and Salkar (1991) 
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Table 2.3.  

Summary of the screened web crippling strength results from experimental studies 
conducted by Elgaaly and Salkar. 

Test 
Designation * 

Beam 
Section N/d 

Experimental 
Failure Load, RU 

(kips) 

1999 AISC LRFD 
Specification, RAISC 

(kips) 
RU / RAISC

1 W12X14 0.200 28.25 31.96 0.8942 

14 W12X16 0.200 36.52 35.81 1.020 

15 W12X16 0.200 35.02 34.84 1.005 

16 W12X16 0.250 43.52 38.59 1.128 

17 W12X16 0.300 46.10 41.84 1.102 

18 W12X16 0.300 44.98 42.98 1.046 

19 W12X16 0.350 52.30 46.43 1.126 

20 W12X16 0.400 50.60 49.43 1.024 

21 W12X16 0.400 55.05 49.72 1.107 

22 W12X16 0.450 68.00 57.74 1.178 

24 W12X16 0.500 72.80 69.56 1.046 

25 W12X16 0.550 68.25 63.93 1.068 

27 W12X16 0.600 57.80 67.98 0.8503 

4 W14X22 0.200 46.00 45.37 1.014 

7 W16X31 0.200 67.50 58.77 1.148 

8 W16X31 0.310 91.15 84.26 1.082 

10 W18X35 0.200 73.25 75.30 0.9728 

12 W21X50 0.200 127.50 114.26 1.116 

*  Numbering system as per Elgaaly and Salkar (1991) 

 

 

Three sets of test data from this study were used to create and validate the finite 

element models; Test Nos. 3, 15, and 17.  The validation results of these models are 

presented in Chapter 4.   
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2.3. Bryant 

 

Bryant (1993) conducted various experimental tests at Virginia Polytechnic 

Institute and State University to evaluate the predictions of the 1993 AISC LRFD 

Specification web crippling equation (K1-5b) and his own web crippling formula.  Five 

steel-concrete composite beams with W12, W14, and W16 sections were tested for web 

crippling failure at the support.  Tables 2.4 and 2.5 present a summary of the geometric 

and material properties for the steel, and the concrete slab and shear studs, respectively.   

Two concentrated loads were symmetrically applied to the specimens with respect to the 

centerline of the beam section.  Table 2.6 shows the location of the concentrated loads for 

each test.  The ultimate collapse loads based on the test results and the 1999 AISC LRFD 

Specification web crippling equation predictions are given in Table 2.7. 

 

The experimental data of the Test SC-2 from this study was used to create and 

validate the finite element model.  The validation results of this model are also presented 

in Chapter 4. 

 

 

 

 

 

 

 

 

 

 



 21

 

 

 

 

Table 2.4. 

Summary of the geometric and material properties for the steel beam of the tests conducted by Bryant 

Test 
Designation * 

Beam 
Section 

Span 
(in.) 

N 
(in.) 

tw 
(in.) 

tf 
(in.) 

d 
(in.) 

bf 
(in.) 

Fy 
(ksi) 

SC-1 W16x26 408.0 3.50 0.260 0.336 15.81 5.44 60.6 
SC-2 W14x22 228.0 3.50 0.228 0.338 13.75 4.69 60.9 
SC-3 W14x22 192.0 3.50 0.228 0.338 13.75 4.69 60.9 
SC-4 W12x16 66.00 2.50 0.201 0.287 11.97 4.00 56.9 
SC-5 W12x16 54.00 2.50 0.201 0.287 11.97 4.00 56.9 

*  Steel-concrete composite beams. 
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Table 2.5. 

Summary of the geometric and material properties for the concrete slab and shear studs of the tests conducted by Bryant    

Test 
Designation * 

Beam 
Section 

bs ** 

(in.) 
ts

 + 

(in.) 
f'’c 

(psi) Ns 
ds

 ++ 

(in.) 
hs

 +++ 

(in.) 
Ieff 

(in4) 

SC-1 W16x26 80.0 5.00 5300 30 0.75 3.50 1070 
SC-2 W14x22 80.0 5.00 6300 20 0.75 3.50 668 
SC-3 W14x22 80.0 5.00 6300 20 0.75 3.50 668 

*  Steel-concrete composite beams. 
**  Width of the concrete 
+  Thickness of the concrete slab 
++ Diameter of the shear studs 
+++  Height of the shear studs 
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Table 2.6. 

Position and maximum end reaction for each load location for the tests conducted by 
Bryant (1993).    

Test 
Designation * 

Loading 
Sequence 

Distance from the Support 
Centerline and the Point Load 

(in.) 

Maximum 
End Reaction 

(kips) 
1 86.00 39.90 

2 62.00 55.50 

3 50.00 68.00 
SC-1 

4 44.00 68.00 

1 48.00 44.00 
SC-2 

2 36.00 53.00 

SC-3 1 36.00 48.00 

SC-4 1 15.50 33.88 

SC-5 1 22.00 33.43 

*  Steel-concrete composite beams. 

 

Table 2.7. 

Summary of the screened web crippling strength results from experimental studies 
conducted by Bryant. 

Test 
Designation * 

Beam 
Section N/d 

Experimental 
Failure Load, RU 

(kips) 

1999 AISC LRFD 
Specification, RAISC 

(kips) 
RU / RAISC 

SC-1 W16x26 0.221 68.00 59.66 1.140 

SC-2 W14X2 0.255 53.00 48.84 1.085 

SC-3 W14X2 0.255 48.00 48.81 0.9834 

SC-4 W12X6 0.209 33.88 33.98 0.9970 

SC-5 W12X6 0.209 33.43 33.98 0.9838 

*  Steel-concrete composite beams. 
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CHAPTER 3 
 
FINITE ELEMENT MODEL DETAILS 
 
3.1. General  
 

 This chapter describes the details of the finite element models created and 

analyzed in this study.  In general, the finite element models consist of simple supported 

steel beams, where the bottom flange of the beam section is constrained at the ends by a 

bearing block. The bearing block is modeled at one end of the beam by restricting all six 

degrees of freedom associated with translational and rotational movements of the 

applicable nodes.  The opposite end is modeled as a roller support by restricting only 

vertical and traverse translations of the far end nodes.  Lateral transverse movement of 

the top flange is restricted by applying constraints in the horizontal direction on the 

nodes.  The following sections give a detailed description of the finite element models 

developed using the commercial software ANSYS version 6.0. 

  

3.2. Mesh Elements 
 
 

The process of subdividing a continuum into small elements is not standard in the 

finite element method.  In fact, this process is an exercise of engineering judgment. The 

factors considered in this process are number, shape, size and type of elements, as well 

as, the element aspect ratio, which is defined as the ratio of the largest dimension of the 

element to its smallest dimension.  

 

A shell-type element was used to model the steel beam because of its capability 

for out-of-plane deformations.  Shell elements were also used to model the concrete slab 

for the steel-concrete composite models. ANSYS SHELL143 and SHELL181 elements 

were only considered in this study.  Both shell elements are well suited to analyze thin to 

moderately thick structures for nonlinear behavior. Table 3.1 gives a brief description, 

taken from the ANSYS user’s manual, of the capabilities of both elements. 



 25

 

Table 3.1.  

Description of the Capabilities of Elements SHELL143 and SHELL181. 
 

Element Type Capabilities * 

SHELL143 

Suited to model nonlinear, flat or warped, thin to moderately 
thick shell structures. The element has four nodes with six 
degrees of freedom at each node: translations in the nodal x, y, 
and z directions and rotations about the nodal x, y, and z-axes. 

The deformation shapes are linear in both in-plane directions. 
For the out-of-plane motion, it uses a mixed interpolation of 
tensorial components. 

The element has plasticity, stress stiffening, large deflection, and 
small strain capabilities.  

SHELL181 

Suitable for analyzing thin to moderately thick shell structures. 
The element has four nodes with six degrees of freedom at each 
node: translations in the x, y, and z directions, and rotations 
about the x, y, and z-axes.  

Suited for linear, large rotation, and/or large strain nonlinear 
applications.  

* Taken from the ANSYS user’s manual 

 

Beam elements were used to model the shear studs of the composite beam 

models.  The element BEAM4 was selected for this purpose.  This element is a uniaxial 

element with tension, compression, torsion, and bending capabilities.  The element has 

six degrees of freedom at each node: translations in the nodal x, y, and z directions and 

rotations about the nodal x, y, and z-axes. Stress stiffening and large deflection 

capabilities are included. 

 

Mapped meshing was used to subdivide the continuum in small elements.  This 

option was preferred over free meshing because it restricts the element shape and the 

pattern of the mesh providing a better control of the mesh density, which is important 

when performing a convergence analysis.  Since the mapped meshing option was chosen, 

either only rectangular or only triangular elements could be used.  Rectangular elements 



 26

were selected to define the small elements because of their advantages over the triangular 

elements in obtaining better engineering results. 

 

As a rule of thumb among the analysts of the finite element method, an element 

aspect ratio less than 2 is considered necessary.  In fact, better results are obtained if the 

aspect ratio is closer to unity.  The element aspect ratio used to model the beams with 

non-composite action was between 1 and 1.5 depending on the size of the model. 

Actually, in the validation models, an element aspect ratio equal to 1 was used because 

the modeled experimental tests were performed on short span beams.  The models created 

to perform the parametric analysis used an element aspect ratio of 1.5 in order to 

minimize the running time and reduce computer memory.   For those models with 

composite action, an element aspect ratio equal to 2 was used.  

 

The number and size of the elements used to perform the analysis were 

determined by performing a convergence analysis.  The element sizes considered in this 

study were 0.75, 1.0, 1.25, and 2.0 in.  In the next chapter, the results of the convergence 

analysis are presented.  

 

3.3. Material Properties 
 
 

The behavior of any engineering material is nonlinear.  However, in many 

engineering applications, it is practical and convenient to assume linear behavior.  On the 

other hand, there are some applications that required nonlinear analysis to better assess 

the response and capacity of the structural components.  Both cases were considered in 

this study when defining the properties of the structural components of the models.  The 

shear studs and the concrete slab of the steel-concrete composite models were modeled as 

a linear elastic material since their behavior does not influence the ultimate load of the 

webs.  The beam sections were modeled as a nonlinear material since the web material 

will encounter post-yielding and large deformations behavior, as well as buckling 

deformations. 
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Structural nonlinearities of the steel beams modeled in this study were both 

geometric and material. Geometric nonlinearity is characterized by large displacements 

or large rotations.  The change in geometric configuration causes the structure to respond 

nonlinearly since the stiffness changes.  The ANSYS software activates the large 

deflection effects when the NLGEOM,ON option is used. Nonlinear stress-strain 

relationships are also a common cause of nonlinear structural behavior. This phenomenon 

is defined as a material nonlinearity.  The Bilinear Isotropic Hardening (BISO) option 

was used to define the plasticity behavior of the steel material.  As shown in the Figure 

3.1, the elastic-plastic stress-strain curve is characterized by a linear relationship up to a 

level known as the proportional limit, σy.  Then, the material yield and the slope of the 

stress-strain relationship become flatter than the initial slope. Because there is usually 

little difference between the yield point and the proportional limit, the ANSYS software 

assumes that these two points are coincident in plasticity analysis.  The use of Bilinear 

Isotropic Hardening (BISO) option assumes that the total stress range is equal to twice 

the yield stress.  It also uses the von Mises yield criteria coupled with an isotropic work 

hardening assumption.  This option is often preferred for large strain analyses.  Stress 

Stiffness was also used in the nonlinear analysis to account for buckling or bifurcation 

behavior of the web panel.  This option was activated using the SSTIFF, ON option. 

 

A modulus of elasticity (E) of 29,000 ksi, a Poisson's ratio (µ) of 0.3, a tangent 

modulus (Et) of 2,900 ksi, and a specific weight density of 0.000284 kips/in3 were used 

as the material properties of steel for the validation and analysis models.  The yield stress 

used in the validation process was equal to the yield stress reported by each author.  The 

yield stress for the analysis models was set to 50 ksi except for the steel-concrete 

composite models where the actual yield stress was used.  Those yield stress values are 

found in Chapter 2.   
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Figure 3.1 Stress-strain relationship defined in the finite element analyses.  

 

The concrete slab and the shear studs were modeled as linear elastic material. 

Since the structural behavior of these components does not have an effect on the web 

crippling strength of the steel beams, only their elastic properties were used.  The shear 

studs were defined with a modulus of elasticity of 29,000 ksi, and a Poisson’s ratio of 0.3.  

The modulus of elasticity and the weight density of the concrete slab were taken as 6,300 

ksi and 0.000121 kips/in3, respectively.  This weight density value was different than the 

actual value because the effective width of the concrete slab of the specimen tested by 

Bryant was used in the models.  Therefore, it was necessary to compute an equivalent 

weight density value to obtain the actual effect of the concrete slab. 

 

3.4. Boundary Conditions 

 

Constraints in the model can be defined on the keypoints, which are the points that 

define the geometry of the section, or on the nodes of the meshed section.  Three types of 

supports were modeled in the finite element model by restraining several specific nodes. 
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The bearing block was defined by restraining all degrees of freedom (translations in the 

x, y, and z directions, and rotations about the x, y, and z-axes) on those nodes located at 

the bottom flange of the beam section.  Experimentally, the steel beam is connected to the 

bearing block using bolts. The bottom flange-to-bearing block connection is 

overdesigned so that no failure due to the connection occurs during the test.  Although 

some rotation or some settlement may occur, depending on how many bolts are attached, 

it is appropriate to neglect those effects in the model.  No experimental data was found in 

validate these assumptions in the finite element model. Figure 3.2 shows the flange-to-

bearing connection in the finite element model.  The opposite end of the beam was 

modeled as a roller support.  The far end nodes were restrained against translation in the 

vertical in-plane and horizontal out-of-plane directions, while all rotations and the 

longitudinal translation were left unrestrained.  Lateral buckling was prevented in the 

model by restraining out-of-plane movement of all nodes at the top flange of the section. 

Those models that considered composite action were prevented from lateral movements 

by restraining the longitudinal edge nodes of the concrete slab.  The lateral restraints for 

the non-composite model can be seen in the Figure 3.2, while Figure 3.3 shows the 

composite model with its boundary conditions.   

 

3.5. Loading  

 

The loading condition employed to study the web crippling phenomenon over the 

support is compressive in-plane loads applied at the top flange and centered on the web 

of the test beam.  The perfectly in-plane loads are applied at the top flange of the beam 

through a loading pad. The area of the loading pad is small enough to assume that a 

concentrated load is being applied. In the ANSYS program, the load can be applied to the 

finite element model using solid-model loads or finite-element loads.  The solid-loads are 

applied on the keypoints, while the finite-element loads are applied to the nodes of the 

meshed section.  If the solid-model loads are used to load the finite element model, then 

the program automatically transfers them to the nodes and elements at the beginning of 

solution.  In this study, the loads were applied to the finite element model by using finite-

element loads to avoid certain problems which can occur when using solid-model loads.   
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Figure 3.2 Flange-to-bearing connection in the finite element analyses. 

 

Figure 3.3 Restraints in the composite models as defined in the finite element analyses. 



 31

 In some finite element applications, it is convenient to apply the load to a series of 

nearby nodes such that singularity is avoided.  However, smaller sized elements are 

required if a concentrated load is to be so modeled.  The loads, in this study, were applied 

to a single node instead.  Stiffeners were used, similar to the experimental tests, to 

reinforce the web.  In this manner, singularity was not encountered in the analysis.  

 

A series of substeps were used to define the loading rate in the finite element 

model.  When using multiple substeps, it is important to achieve a balance between 

accuracy and economy.  More substeps usually result in better accuracy, but at a cost of 

increased run time and computer memory.  Unless otherwise specified, the load was 

applied to the finite element model with increments of 5 kips, and until the steel material 

approached the yield point, at which point the load increments were reduced to 2 kips.  

This loading protocol was found to be sufficient to model the actual test load-response 

curve and for convergence. 

 

3.6. Geometric Imperfections 

 

 The web crippling phenomena cannot be modeled in the finite element method 

unless small out-of-plane deformations, necessary to initiate the buckling response, are 

imposed in the web of the beam section.  Most of the previous finite element studies used 

either a half sine or a half cosine shape to define the geometric imperfections that initiate 

the buckling response.  Since the half cosine shape has some similarity to the web 

crippling failure mode, it is preferred over the half sine shape.  As shown in Figure 3.4, 

the web of the beam section was given a half cosine shape in the transverse direction of 

the web with a maximum amplitude at mid-depth and a half cosine shape in the 

longitudinal direction with a maximum plateau at a distance Lo from the end of the beam 

section.  Figure 3.5 shows the finite element model with its imperfection pattern.   
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Figure 3.4 Assumed web imperfection. 
 

 
 

Figure 3.5 View of the geometrical imperfection pattern in the finite element model. 
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The following simple equation was developed to define the geometric 

imperfection pattern in the transverse direction of the web.  

 

                                                 ( )yo HAI λcos=                                                   (3.1) 

where, 

 

 A : Amplitude, in. 

Io: Out-of-plane perturbation in the plateau region, in. 

λ: Variable depending on the depth of the web. 

Hy: Coordinate of the imperfection value in the transverse direction of the web 

measured from the mid-depth of the beam section, in.  

 

The equation that define the geometric imperfection pattern in the longitudinal direction 

of the web is:  

 

                                                 ( )xo HII λcos=                                                   (3.2) 

where, 

I : Out-of-plane perturbation, in. 

Io: Out-of-plane perturbation in the plateau region, in. 

λ: Variable depending on the depth of the web. 

Hx: Coordinate of the imperfection value in the longitudinal direction of the web 

measured from a distance Lo from the end of the beam section, in. 

 

The corresponding λ-and Lo-values for each beam section evaluated in this study are 

found in the Table 3.2. The length of the plateau, Lo, was taken as 0.2 times the section 

depth.   

 

 

 

 



 34

Table 3.2. 

Corresponding λ-and Lo-values for each W section. 

Model Designation Series Beam Section λ Lo 
(in.) 

FEA-14x W12x16 0.268 2.40 

FEA-15x W12x16 0.268 2.40 

FEA-4x W14x22 0.233 2.76 

FEA-SC-2x W14x22* 0.234 2.63 

FEA-7x W16x31 0203 3.00 

* Steel-concrete composite design 

 

3.7. Solution Options  

  

The basic way to do nonlinear analysis in ANSYS is to use Newton-Raphson 

iteration and many default settings.  However, to assure that the analysis will closely 

follow the structure's load-response curve, several solution options have to be specified. 

Such options include the arc-length method as shown in Figure 3.6.  This method causes 

the Newton-Raphson equilibrium iterations to converge along an arc, often preventing 

divergence.  The arc-length maximum multiplier, MAXARC, was set to 1.0, while the arc-

length minimum multiplier, MINARC, was set to 0.0001.  It was found that these values 

were sufficient after several trials. 

 

Another solution option available in the ANSYS program is the bisection option. 

ANSYS activates the bisection option if the convergence criteria have not been satisfied 

within the number of limiting equilibrium iteration equations, which was set to 25 

equations in the finite element analyses.  This feature cuts a time step size in half 

whenever equilibrium iterations fail to converge and automatically restarts from the last 

converged substep.  If the halved time step again fails to converge, bisection will again 

cut the time step size and restart, continuing the process until convergence is achieved or 

until the minimum time step size is reached. 
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Figure 3.6 Newton-Raphson interaction coupled with arc-length method. 

 

The Sparse Direct Solver (direct elimination solver) was used in this study.  This 

solver was found to execute very well while doing nonlinear finite element analyses, 

especially with large model of shell elements.   Although the geometry of the section and 

the loading conditions are symmetrical about midspan, no symmetry was considered in 

the model since the web crippling response is not symmetrical. 
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CHAPTER 4 
 
FINITE ELEMENT RESULTS, COMPARISONS AND DISCUSSION 
 
4.1 General 
 

The numerical simulations consisted of two main stages, the validation and 

analysis stage.  The first stage of this study consisted of validating the characteristics of 

the finite element models against experimental data.  The experimental data from Elgaaly 

and Salkar (1991), and Bryant (1993) presented in Chapter 2 were used for this purpose. 

Finite element models of W12x16, W14x22, and W16x31 sections as tested by Elgaaly 

and Salkar were created and validated.  An additional finite element model of the 

W14x22 section using steel-concrete composite action as tested by Bryant was also 

created and validated.  The second stage of this study was a parametric analysis using the 

FEA models that satisfactorily predicted the respective experimental failure load.  The 

bearing-to-depth ratio was gradually increased to investigate the web crippling strength 

of the steel beams.  

 

Each finite element model was designated as FEA-Nx, where: FEA stands for 

finite element analysis; N is the number designation used by each author; and x represents 

the analysis sequence of a particular model.  The commercial finite element package 

ANSYS 6.0 was used to create and analyze the beam models.  A detailed description of 

the procedure employed to create and analyze the nonlinear finite element model by 

using the ANSYS’ Graphical User Interface is presented in the Appendix A.  The results 

of the validation analyses and the parametric analyses for each finite element model are 

presented below. 
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4.2 Sensitivity Analysis 

 

4.2.1 Type of Shell Element 

 

Elements SHELL143 and SHELL181, from the ANSYS Library of Elements, were 

used in this study.  These shell elements were selected because they are well suited to 

analyze thin to moderately thick plate structures that encounter nonlinear behavior. 

Figure 4.1 shows the behavior of the model FEA-15a using each type of element.  As 

shown in the Figure, SHELL181 converged to the experimental failure load, while 

element SHELL143 failed to converge. Furthermore, the web crippling behavior was not 

developed when SHELL143 was used.  Instead, the model failed by flange bending.  

Although, web imperfection was imposed to both models, only SHELL181 developed the 

web crippling failure mode.  Because SHELL181 predicted the experimental failure load 

and web crippling mode, this shell-type element was used in the remaining of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Behavior of the model FEA-15a with different shell-type elements. 
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4.2.2 Imperfection Size Sensitivity 

 

The sensitivity of the web crippling strength by using different imperfection 

amplitudes was studied to determine the amplitude to be used in the analyses.  As 

mentioned earlier, the web of the beam section was given a half cosine shape in the 

transverse and longitudinal directions of the web with maximum amplitude over the 

bearing support.  Web imperfection amplitudes of 0.0 in. (perfectly straight web), 0.10 

in., 0.20 in., 0.25 in., and 0.30 in. were evaluated with an initially assumed element size 

of 1.0 in.  The resulting load-deflection curve was used to compare the response of the 

model with different imperfection sizes.  

 

Figures 4.2 and 4.3 show the behavior of the web crippling strength for different 

imperfection amplitudes of models FEA-14a and FEA-4a, respectively.  As expected, the 

web did not cripple when no imperfection amplitude was imposed to the web.  This 

phenomenon occurs in numerical simulations because the loading on the structure is 

perfectly in-plane.  As result, the out-of-plane deflections needed to begin the buckling 

response will not develop.  It can be seen in Figure 4.2 that the tested failure load of 

36.52 kips was well predicted by imperfection amplitudes of 0.20 in. and 0.25 in.  FEA-

14a carried maximum loads of 36.74 kips and 36.07 kips when imperfection amplitudes 

of 0.20 in. and 0.25 in. were imposed to the web, respectively.  For the model FEA-4a, 

imperfection amplitudes of 0.25 in. and 0.30 in. accurately predicted the experimental 

failure load.  As shown in Table 4.1, the FEM load-to-test load ratio, RFEA/RU, for this 

model was 1.005 and 0.9887 for imperfection amplitudes of 0.25 in. and 0.30 in., 

respectively.  Concluding, it can be seen that an imperfection amplitude of 0.25 in. better 

predicts the experimental failure load in both finite element models.  Therefore, this 

imperfection amplitude was used throughout the parametric analysis. 
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Figure 4.2 Web imperfection sensitivity for the model FEA-14a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Web imperfection sensitivity for the model FEA-4a. 
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Table 4.1.  

Summary of the imperfection sensitivity results for the models FEA-14a and FEA-4a.  

Test 
Designation 

Beam 
Section 

Imperfection 
Amplitude 

(in.) 

FEM Failure 
Load, RFEM 

(kips) 

Experimental 
Failure Load, 

RU 
(kips) 

RFEM / RU 

0.10 39.01 36.52 1.07 

0.20 36.74 36.52 1.01 

0.25 36.07 36.52 0.988 
FEA-14a W12x16 

0.30 35.42 36.52 0.970 

0.10 49.45 46.00 1.08 

0.20 49.99 46.00 1.02 

0.25 46.24 46.00 1.01 
FEA-4a W14x22 

0.30 45.48 46.00 0.989 

 

 

4.2.3 Element Size Sensitivity 

 

 An element size sensitivity analysis was also performed to establish the mesh 

density to be used throughout the analyses.  Element sizes of 0.75 in., 1.0 in. (initially 

assumed), 1.25 in., and 2.0 in. were considered.  Since web crippling is investigated in 

this study, the variation of the out-of-plate deformation of the web under the support was 

the parameter used to study the sensitivity of web crippling strength by using different 

element sizes.  Figures 4.4 and 4.5 present the sensitivity of the models FEA-14a and 

FEA-4a for different element sizes.  It can be seen that there is little variation in the out-

of-plane deformation of the web when using element sizes of 0.75 in., 1.0 in., and 1.25 in.   

The paths of the load-deformation curves were quite similar, and the experimental failure 

load was well predicted by all three element sizes.  
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Figure 4.4 Element size sensitivity for the model FEA-14a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Element size sensitivity for the model FEA-4a. 
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For a better comparison of the element sensitivity results for the models FEA-14a 

and FEA-4a, Table 4.2 presents the FEM load-to-test load ratio for each element size.  It 

can be easily seen that element sizes of 1.0 in. and 1.25 in. accurately predict the ultimate 

collapse load for the model FEA-14a, while for the model FEA-4a element sizes of 0.75 

in. and 1.0 in. give good correlation between the FEM and experimental failure loads.  

The differential values between the finite element and experimental failure loads were 

less than 1.25% in both cases.  Thus it has been demonstrated that an element size of 1.0 

in., which was initially assumed, provides good correlation between the FEM and 

experimental failure load. Therefore, this element size was used to subdivide the 

components in all of the following parametric analyses. 

 

Table 4.2.  

Summary of the element sensitivity results for the models FEA-14a and FEA-4a.  

Test 
Designation 

Beam 
Section 

Element 
Size 
(in.) 

FEM Failure 
Load, RFEM 

(kips) 

Experimental 
Failure Load, 

RU 
(kips) 

RFEM / RU 

0.75 35.21 36.52 0.964 

1.00 36.07 36.52 0.988 

1.25 36.60 36.52 1.00 
FEA-14a W12x16 

36.52 41.19 36.52 1.28 

0.75 45.76 46.00 0.995 

1.00 46.24 46.00 1.01 

1.25 47.79 46.00 1.04 
FEA-4a W14x22 

2.00 50.99 46.00 1.11 
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 4.3 Finite Element Results and Comparisons 

  

4.3.1 Validation Analysis 

 

Four non-composite beam models and one composite beam model were validated 

against experimental data.  The non-composite models consisted of simply supported 

beams loaded with a single concentrated load located at midspan.  Therefore, each 

support reaction takes one-half of the applied load.  The span length for these specimens 

ranged from 2.0 ft to 3.0 ft.  The fifth validation model consisted of a simply supported 

steel-concrete composite beam with span length of 19.0 ft.   This specimen was loaded 

with two single concentrated loads located 36 in. from the centerline of the supports.  

Since the loading was symmetrical about midspan of the beam section, the same load had 

to be resisted at each support.  For a detailed description of the experimental specimens 

refer to Chapter 2.  Table 4.3 presents the designation system used for the validation 

models and its relation with the experimental data. 

 

Table 4.3.  

Designation of each validation model and its relation with experimental data.     

Model Designation Test Designation * Beam Section Bearing Length, N 
(in.) 

FEA-14a 14 W12x16 2.40 

FEA-15a 15 W12x16 2.40 

FEA-4a 4 W14x22 2.76 

FEA-7a 7 W16x31 3.19 

FEA-SC-2a SC-2 W14x22 ** 3.50 

* Numbering system as reported by Elgaaly and Salkar (1991) and Bryant (1993) 

** Steel-concrete composite beam 
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4.3.1.1 Non-Composite Models 

 

Figures 4.6 to 4.10 present the load-deflection curves from basic beam theory, 

stiffness analysis with and without shear deformations considered, and finite element 

analysis as well as the experimental failure load for the non-composite sections.   The 

stiffness method analyses were made using the commercial software RISA 3D (RISA 3D 

User’s Manual, 2001).  It can be easily seen that the deflection behavior of the stiffness 

analysis models was affected by shear deformations, where the span length for those 

specimens was less than 3 ft.  Good agreement was found between the load-deflection 

curves obtained from the FEM analysis and the curve obtained from RISA 3D with shear 

deformations considered.  In addition, the FEM validation model closely predicted the 

experimental failure load.  The FEM failure load for the model FEA-14a was 36.07 kips, 

while the experimental failure load was 36.52 kips.  An additional finite element model 

using a W12x16 section was also validated.  This validation model is designated as FEA-

15a. As seen in the Figure 4.7 the finite element model accurately predicts the 

experimental collapse load.  The difference between the FEM and experimental failure 

loads was just 0.15%. 

 

The validation results for the finite element model FEA-4a is shown in Figure 4.8. 

Good correlation was also found between the finite element and experimental failure 

loads. The FEM failure load was 46.24 kips against 46.00 kips from experimental data, 

representing 0.52% difference. 
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Figure 4.6 Load-deflection response of the model FEA-14a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Load-deflection response of the model FEA-15a. 
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Figure 4.8 Load-deflection response of the model FEA-4a. 

 

 Figure 4.9 presents the validation results for the model FEA-7a.  The initial load-

deflection response of this model was fairly similar to that obtained from RISA 3D. 

However, it can be seen that the finite element model predicted a failure load below the 

experimental failure load.  The FEM failure load was 61.53 kips against 67.50 kips from 

experimental data.  It appears that this model failed to accurately predict the experimental 

failure load.  It is important to mention that most of the specimens tested by Elgaaly and 

Salkar were performed on short span length, where the shear span was less than the depth 

of the section.  For this particular specimen the shear span-to-depth ratio was 0.644, 

which may have influenced the behavior of the model.  To investigate if in fact the model 

was affected by direct loading, an additional model similar to FEA-7a was created using 

a larger shear span length.  A span length of 12.0 ft with a shear span-to-depth of 1.49 

was used.  As shown in Figure 4.10, the finite element model carried 9.18% more load 

than the previous model. It can also be seen that the model FEA-7b closely predicted the 

experimental failure load. The FEM failure load was 67.18 kips, while the experimental 

failure load was 67.50 kips.  
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Figure 4.9 Load-deflection response of the model FEA-7a. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Load-deflection response of the model FEA-7b. 
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Since the behavior of the model FEA-7a was influenced by the fact that the shear 

span length was less than the depth of the beam, the model FEA-4a, which closely 

predicted the experimental failure load of the specimen, could have experienced similar 

behavior.  The shear span-to-depth ratio for this specimen was 0.6691.  To verify this, an 

additional model FEA-4b with cross-section and material properties similar to FEA-4a, 

but with higher shear span-to-depth ratio, was analyzed.  The span length for the model 

FEA-4b was 12.00 ft, while shear span-to-depth ratio was 1.393.  As shown in Figure 

4.11, the finite element model carried more load than the previous model. The FEM 

failure load was 48.47 kips, which represent 4.823% more than the FEA-4a failure load, 

and 5.400% more than the experimental failure load.  This result demonstrates, once 

again, that the shear span length has an influence in the web crippling strength of the 

models.  Because the ultimate load obtained from the model FEA-4b was 2.46 kips more 

than the experimental failure load, the model was not used in the second stage of this 

study. 

 

 

Figure 4.11 Load-deflection response of the model FEA-4b. 
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4.3.1.2 Steel-Concrete Composite Model 

 

Figure 4.12 presents the validation results obtained for the steel-concrete 

composite model.  The load-deflection curves from beam theory, stiffness analysis, and 

experimental data are shown in this figure.  It can be seen that the load-deflection 

relationship has two different slopes.  The initial slope of the load-deflection curve 

represents the initial experimental deflection and support reaction of the beam section due 

to the self-weight of the concrete slab.  Although, this behavior might be possible to 

model in ANSYS by applying an initial condition to the element nodes it is impractical 

since the model has hundreds of nodes.  Furthermore, the behavior of the section will not 

be affected by the initial midspan deflection due to self-weight of the concrete slab since 

the specimens were configured to fail by web crippling and not by flange bending at 

midspan.  To make a fair comparison of the finite element results against the theoretical 

and experimental data, the initial deflection and support reaction were used as starting 

point for the FEM results.  In other words, the initial deflection was added to the midspan 

deflections obtained by the finite element analysis, while the initial support reaction was 

added to the applied load at each step of the finite element analysis.  Comparing both the 

experimental and FEM load-deflection curves, it can be seen that the finite element 

model satisfactorily predicted the load-deflection response and failure load of the tested 

composite beam.  The ultimate failure load of the finite element model was 52.60 kips, 

while the experimental failure load was 53.00 kips.  This represents a difference of just 

0.754%. 
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Figure 4.12 Load-deflection response of the model FEA-SC-2a. 

 

4.3.2 Parametric Analysis 
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span length was increased to 12.0 ft. The loading configuration also changed for these 

sections.  Since the span length was increased to 12.0 ft, the single concentrated load 

applied at midspan would cause bending failure rather than web crippling failure over the 

supports. Instead, two single concentrated loads located symmetrically with respect to 

midspan were applied to these models.  The location of the two single concentrated loads 

was such that the shear span-to-depth ratio was greater than 1.0, and that bending failure 

at midspan was not developed.  The same concentrated load has to be resisted at each 
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from 5 kips to 10 kips, while the loading rate when the model was approaching the yield 

point remained at 2 kips.  Table 4.4 shows the characteristics and identification system 

designated to the models. 

 

Table 4.4.  

Summary of the characteristics of each analysis model. 

Model 
Designation 

Beam 
Section 

Bearing 
Length 

(in.) 

Bearing-to-
Depth Ratio 

Span-to-
Depth Ratio 

Shear Span-
to-Depth 

Ratio 
FEA-14b W12x16 * 3.00 0.250 12.01 1.42 

FEA-14c W12x16 * 4.00 0.334 12.01 1.08 

FEA-7c W16x31 * 5.00 0.314 9.03 1.38 

FEA-7d W16x31 * 6.00 0.376 9.03 1.13 

FEA-7e W16x31 * 7.00 0.439 9.03 1.26 

FEA-7f W16x31 * 8.00 0.502 9.03 1.00 

FEA-7g W16x31 * 9.00 0.565 9.03 1.13 

FEA-7h W16x31 * 10.00 0.627 9.03 1.00 

FEA-7i W16x31 * 11.00 0.690 9.03 1.00 

FEA-SC-2b W14x22 ** 4.43 0.322 16.58 2.49 

FEA-SC-2c W14x22 ** 5.36 0.390 16.58 2.49 

FEA-SC-2d W14x22 ** 7.22 0.525 16.58 2.49 

FEA-SC-2e W14x22 ** 9.07 0.660 16.58 2.49 

FEA-SC-2f W14x22 ** 10.93 0.795 16.58 2.49 

* Cross-section properties as reported by Elgaaly and Salkar (1991) were used only. 

** Section and material properties as reported by Bryant (1993) were used. 
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4.3.2.1 Non-Composite Models 

 

 A total of nine non-composite, finite element models were analyzed.  The 

bearing-to-depth ratio, N/d, for these models ranged from 0.250 to 0.690.   Figures 4.13 

to 4.21 present the comparison between the FEM and theoretical load-deflection curves. 

The beam theory equation used to compute the midspan deflection is: 

 

                                                    ( )22
max 43

24
al

EI
Ra

−=∆                                             (4.1) 

where: 

  

 ∆max : Maximum midspan deflection, in. 

 R: End reaction, kips 

 l: Span length from supports centerline, in. 

 a: Location of the concentrated load from support centerline, in. 

 E: Modulus of elasticity, 29000 ksi. 

 I: Moment of inertia of the beam section, in4. 

 

In general, good agreement was found between the FEM and theoretical load-

deflection responses at initial loading for most of the models.  An unexpected load-

deflection response was obtained from those models with relatively large bearing-to-

depth ratio as seen in Figures 4.19 to 4.21.  The load-deflection response for those models 

has some similarity to an arc, and it is more noticeable for very large bearing-to-depth 

ratio.  From Figures 4.13 to 4.18, it can be seen that when the length of the bearing is 

relatively small the deflection behavior of the model is similar to a simply supported 

beam. However, different behavior is observed when the length of the bearing becomes 

larger. This is because the bearing support restricts the end rotation of the beam section 

resulting in lower midspan deflections than predicted.  It is worth noting that, even when 

the bearing block was defined by restraining all degrees of freedom (translations in the x, 

y, and z directions, and rotations about the x, y, and z-axes) on those nodes located at the 

bottom flange of the beam section, this boundary condition is still considered as a pin 
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connection since the end of the beam is free to rotate.  However, the rotation of the beam 

is certainly more restricted for a large bearing length. 

 

The comparison between FEM failure load and the predictions of the current 1999 

AISC LRFD web crippling equation (K1-5b) is also shown in the Figures 4.13 to 4.21.  It 

can be easily seen that the FEM web crippling strength is consistently higher than the 

predictions of the web crippling equation (K1-5b).  Table 4.5 presents a summary of the 

finite element results and the comparison with the predicted failure load for the current 

1999 AISC LRFD web crippling equation (K1-5b).  From the table, a tendency for the 

FEM load-to-AISC load ratio to decrease with increasing N/d ratio within the same 

series, except the model FEA-7d in the FEA-7x series, is seen.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figue 4.13 Load-deflection response of the model FEA-14b, W12x16 with N = 3.0 in. 
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Figure 4.14 Load-deflection response of the model FEA-14c, W12x16 with N = 4.0 in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Load-deflection response of the model FEA-7c, W16x31 with N = 5.0 in. 
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Figure 4.16 Load-deflection response of the model FEA-7d, W16x31 with N = 6.0 in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Load-deflection response of the model FEA-7e, W16x31 with N = 7.0 in. 
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Figure 4.18 Load-deflection response of the model FEA-7f, W16x31 with N = 8.0 in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Load-deflection response of the model FEA-7g, W16x31 with N = 9.0 in. 
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Figure 4.20 Load-deflection response of the model FEA-7h, W16x31 with N = 10.0 in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Load-deflection response of the model FEA-7i, W16x31 with N = 11.0 in. 
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Table 4.5.  

Summary and comparison between the FEM web crippling strength results of the non-
composite models and the predictions of the 1999 AISC LFRD web crippling equation 
(K1-5b).   

Test 
Designation 

Beam 
Section 

Bearing 
Length 

(in.) 
N/d 

FEM Failure 
Load, RFEM 

(kips) 

1999 AISC 
LRFD Failure 
Load, RAISC 

(kips) 

RFEM / RAISC 

FEA-14b W12X16 3.00 0.250 43.45 41.09 1.06 

FEA-14c W12X16 4.00 0.334 49.02 47.54 1.03 

FEA-7c W16x31 5.00 0.314 71.54 64.09 1.12 

FEA-7d W16x31 6.00 0.376 77.72 69.19 1.12 

FEA-7e W16x31 7.00 0.439 83.10 74.29 1.12 

FEA-7f W16x31 8.00 0.502 87.04 79.40 1.10 

FEA-7g W16x31 9.00 0.565 91.13 84.50 1.08 

FEA-7h W16x31 10.00 0.627 94.61 89.60 1.06 

FEA-7i W16x31 11.00 0.690 99.53 94.70 1.05 

 

 

Web crippling behavior is not evident from the load-deflection curves.  However, 

web crippling behavior can be seen by plotting the web crippling shape at different load 

steps.  Figure 4.22 shows a typical web crippling shape for those models with relatively 

small bearing-to-depth ratios.  Appendix B includes the web crippling response for each 

finite element model analyzed in this study.  As seen in the figure, the web progressively 

moved as the load increased until failure occured.  Note that the web crippling mode is 

similar to the initial imperfection shape.  A different behavior was experienced by the 

models with relatively large bearing-to-depth ratios.  Figure 4.23 illustrates the web 

crippling shape at the end of the web of model FEA-7i.  The bearing-to-depth ratio for 

this model was 0.690.  As seen in the figure, the web begins to deform opposite to the 

direction of its initial imperfection. The web reached a minimum out-of-plane 

deformation of 0.174 in. at a load equal to 66.58% of the failure load, and then the web 

began to progressively cripple until it failed in the same direction as the initial 
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deformation. The out-of-plane deformation at failure load was 0.506 in. Again, it can be 

noted that the web crippling shape at every load step was similar to its initial web 

deformation.  The behavior of decreasing the out-of-plane deformation of the web at 

initial loading can be explained by examining the web crippling shape at a different 

location.  Figure 4.24 shows the web crippling shape at 5.0 in. from the end of the web of 

the model FEA-7i.  It can be seen that the web appears to cripple initially at 1/4 of the 

height of the web and opposite to the direction of the initial imperfection; however, the 

web finally crippled in the same direction of the initial deformation. This behavior also 

demonstrates that the initial imperfection governs the web crippling failure mode. 

 

Figure 4.22 Typical web crippling shape at different load steps for models with relatively 
small bearing-to-depth ratio. 
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Figure 4.23 Web crippling shape at the end of the beam section at different load steps of 
the model FEA-7i. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24 Web crippling shape at 5.0 in. from the end of the beam section at different 
load steps of the model FEA-7i. 
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4.3.2.2 Steel-Concrete Composite Models 

 

 Five finite element models using composite action were analyzed.  The bearing-

to-depth ratio for these models ranged from 0.322 to 0.795.  Figure 4.25 to 4.29 show the 

comparison between the FEM and theoretical load-deflection curves.  The initial slope of 

the load-deflection curve is similar to the experimental data and was included in the load-

deflection curve.  The initial deflection and end reaction caused by the self-weight of the 

concrete slab were taken as 0.190 in. and 2.75 kips, respectively.  These initial values 

were used as starting points for the FEM results.  Equation (4.1) was used to predict the 

midspan deflection of the composite models.  The effective moment of inertia was taken 

from the experimental data as 668.0 in4.  

 

From the figures, it can be noted that the load-deflection response of those 

models, with relatively small bearing-to-depth ratios, was quite similar to the beam 

theory curve at initial loading.  Contrary to the behavior observed with the non-composite 

models, the load-deflection curve was much more similar to the beam theory curve for 

those models with relatively large bearing-to-depth ratio.  The load-deflection curve of 

the model FEA-SC-2f better shows the arc-like behavior as consequence of having a 

large bearing length.  

 

The maximum web crippling strength predicted by the FEM results and the 

predictions of the current 1999 AISC LRFD Specification are also shown in Figures 4.25 

to 4.29.  As seen in these figures, the FEM failure loads were higher than the prediction 

from the 1999 AISC LRFD web crippling Equation (K1-5b), except for models FEA-SC-

2d and FEA-SC-2e.  The FEM failure load of the FEA-SC-2d was close to the AISC 

predictions, while the FEM failure load of the FEA-SC-2e was slightly lower than that 

predicted by the AISC web crippling Equation (K1-5b).  Table 4.6 presents a summary of 

the finite element results as well as a comparison with the predicted failure load for the 

current 1999 AISC LRFD web crippling Equation (K1-5b). As previously shown, there is 

a tendency for the FEM load-to-AISC load ratio to decrease with increasing N/d ratio 

except for the model FEA-SC-2f.  Again, the initial web deformation seems to influence 
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the ultimate strength.  This can be noted from the behavior of the model FEA-SC-2f, 

which had a very different web crippling behavior than any other model in this series. 

Figure 4.30 shows the web crippling shape of the model FEA-SC-2f.  As seen in this 

figure, the maximum web deformation was not obtained at the mid-height of the web.  

Instead, it was seen at approximated 1/3 of the depth of the beam section.  Furthermore, 

the beam section crippled opposite to the imperfection imposed to the web.  As result, the 

section carried 6.220 kips more than the prediction of the 1999 AISC LRFD web 

crippling equation (K1-5b), which was the largest difference within this series, deviating 

from the tendency mentioned before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 Load-deflection response of the model FEA-SC-2b, W14x22 with N = 4.43 in. 
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Figure 4.26 Load-deflection response of the model FEA-SC-2c, W14x22 with N = 5.36 in. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Load-deflection response of the model FEA-SC-2d, W14x22 with N = 7.22 in. 
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Figure 4.28 Load-deflection response of the model FEA-SC-2e, W14x22 with N = 9.02 in. 

 

Figure 4.29 Load-deflection response of the model FEA-SC-2f, W14x22 with N = 10.93 in. 
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Table 4.6.  

Summary and comparison between the FEM web crippling strength results of the 
composite models and the predictions of the 1999 AISC LFRD web crippling equation 
(K1-5b).   

Test 
Designation 

Beam 
Section 

Bearing 
Length 

(in.) 
N/d 

FEM Failure 
Load, RFEM 

(kips) 

1999 AISC 
LRFD Failure 
Load, RAISC 

(kips) 

RFEM / RAISC 

FEA-SC-2b W14x22 4.43 0.3221 57.03 53.93 1.057 

FEA-SC-2c W14x22 5.36 0.3897 60.67 58.97 1.029 

FEA-SC-2d W14x22 7.22 0.5248 68.57 69.06 0.9929 

FEA-SC-2e W14x22 9.07 0.6599 75.63 79.12 0.9559 

FEA-SC-2f W14x22 10.93 0.7951 95.42 89.20 1.070 

 

 

 

Figure 4.30 Web crippling shape at 10.0 in. from the end of the beam different load steps 
of the model FEA-SC-2f. 
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4.4. Discussion 

  

 First, it is noted that the finite element models analyzed in the validation stage 

closely predicted the failure loads of the tested beams.  The load-deflection curve was 

also well predicted by the models in the finite element analyses.  The differences found 

between the FEM and beam theory load-deflection curves for the non-composite models 

with large bearing-to-depth ratio are due to the restriction imposed by the support.  Some 

difference was also found between the FEM and beam theory load-deflection curves for 

the composite models.  Contrary to the first observation, the difference was found in the 

models with small bearing-to-depth ratio.  This difference is due to the fact that the model 

was validated against the experimental load-deflection curve and not against the 

theoretical load deflection curve. The validation results in this series show good 

agreement between the FEM and experimental load-deflection curves.  The length of the 

bearing also affected the load-deflection curve for the composite models.  The arc-like 

behavior of the load-deflection curve of the model FEA-SC-2f  illustrates this point. 

 

 In the validation stage, it was noted that model FEA-7a failed 5.97 kips below the 

experimental failure load.   Since the shear span-to-depth ratio for this model was 0.644, 

direct compression failure could be the cause for this early failure.  An additional model 

with a shear span-to-depth ratio greater than 1.0 was created and analyzed.  The result 

showed that, in fact, the shear span length influenced the web crippling strength for this 

model.  The same behavior was seen for the model FEA-4a. Table 4.7 presents a 

summary of the web crippling results with different shear span-to-depth ratios.  Both 

results suggest that the web crippling strength is affected by the shear span-to-depth ratio.  

One might argue that this behavior is only encountered in the finite element models, 

however, this observation was made early in the 1930’s.  Ketchum and Draffin (1932) 

observed this behavior when they tested similar beam sections with two different load 

configurations.  They observed that the ultimate collapse load for those beam sections 

tested with shear span-to-depth ratios greater than 1.0 was slightly higher than those 

beam sections tested with shear span-to-depth ratios less than 1.0. The difference was 

about 10% of the ultimate load capacity.  The difference between the web crippling 
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failure load obtained from the models FEA-4a and FEA-4b was 4.82%, while the 

difference obtained from the model FEA-7a and FEA-7b  was 9.18%.  

 

The web crippling failure mode shape was predicted quite well in the finite 

element analyses.   Figure 4.31 shows the FEM and the experimental failure mode shape 

for the validation model FEA-SC-2a.  From this figure, it can be seen that the location of 

the maximum out-of-plane deformation is different in the FEM and test results.  The 

maximum experimental out-of-plane deformation is observed to be approximately 1/3 of 

the depth of the beam, while the maximum FEM out-of-plane deformation was at the 

mid-height of the beam.  This minor discrepancy is due to the fact that the initial 

imperfection governs the web crippling response of the beam section.  The initial 

imperfection imposed to the web had its maximum amplitude at mid-height, therefore it 

is not surprising that the maximum out-of-plane deformation is obtained at the same 

location.   

 

Table 4.7 

Summary of the finite element analyses with different shear span-to-depth ratio.  

Model Designation Shear Span-to-Depth Ratio FEM Failure Load, RFEA 
(kips) 

FEA-4a 0.669 46.24 

FEA-4b 1.39 48.47 

FEA-7a 0.644 61.53 

FEA-7b 1.49 67.18 
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Figure 4.31 Comparison between the experimental and FEM web crippling failure mode 
shapes.  

 

Figure 4.32 shows the results of the web crippling failure load-to-AISC ratio 

versus the bearing-to-depth ratio.  It can be seen that, in general, the finite element results 

obtained in the parametric analysis were slightly higher than the 1999 AISC LRFD web 

crippling equation (K1-5b).  Only two finite element results were lower than the 

predictions of the web crippling equation.  These results are for the models FEA-SC-2d 

and FEA-SC-2e.  Also, it can be seen that there is a tendency for the FEM failure load-to-

AISC load ratio to decrease with increasing N/d ratio except for models FEA-7c and 

FEA-SC-2f within their respectively series.  This tendency could be due to the fact that 

web imperfections govern the web crippling mode of the beam and thus influence the 

web crippling strength.  

 

 

 

 



 69

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.32 FEM failure load-to-AISC load ratio versus bearing-to-depth ratio.  

 

Figures 4.33 to 4.35 show the accuracy of the 1999 AISC LRFD web crippling 

design equation for large bearing-to-depth ratios.  It can be seen that the web crippling 

strength of W-sections is predicted by the 1999 AISC LRFD web crippling equations.  

However, it is conservative for thicker webs and for very large bearing-to-depth ratio as 

observed in the results obtained from the FEA-7x series and FEA-SC-2f, respectively.   

 

Web crippling was the failure mode in every finite element model.  The majority 

of the analyses was done within the FEA-7x and FEA-SC-2x series because the flexural 

capacity of these series was such that the bearing length could be increased greatly 

keeping the shear span-to-depth ratio greater than 1.0 and preventing bending failure at 

midspan.  Only two analyses were done within the FEA-14x series because the bearing 

length could not be increased further without either having the shear span-to-depth ratio 

less than 1.0 or having a failure mode other than web crippling, such as flexural bending. 
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Figure 4.33 Prediction accuracy of the 1999 AISC LRFD web crippling equations on a 

W12x16 section. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 Prediction accuracy of the 1999 AISC LRFD web crippling equations on a 
W16x31 section. 
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Figure 4.35 Prediction accuracy of the 1999 AISC LRFD web crippling equations on a 
W14x22 section. 
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CHAPTER 5 
 
SUMMARY AND CONCLUSIONS 
 
5.1 Summary 
 

The primary objective of this study was to analytically investigate the web 

crippling strength of I-shape steel beams for large bearing-to-depth ratios on realistic 

span beams, and compare those results with the 1999 AISC LRFD web crippling 

equation (K1-5b).  The commercial finite element package ANSYS 6.0 was used to 

model the steel beams and the connections.  

 

The numerical simulations consisted of two main stages; the validation stage and 

the analysis stage.  The first stage of this study consisted of validating the characteristics 

of the finite element models against experimental data.  The experimental data from 

Elgaaly and Salkar (1991), and Bryant (1993), presented in Chapter 2, were used for this 

purpose.  The second stage of the study consisted of performing a parametric analysis on 

those models that satisfactorily predicted the experimental failure load.  The bearing-to-

depth ratio was gradually increased to investigate the web crippling strength of the steel 

beams.  

 

A total of twenty-one finite element models including geometric and material 

nonlinearities were created and analyzed.  Seven of these models were used in the 

validation stage of this study, while the remaining fourteen were used to investigate the 

web crippling strength of the steel beams for different bearing-to-depth ratios.  

 

The bearing-to-depth ratios in this study ranged from 0.250 to 0.690.  Hot-rolled 

W12x16 sections were analyzed with bearing-to-depth ratios of 0.250 and 0.334.  

W16x31 sections were analyzed with bearing-to-depth ratios ranging from 0.314 to 

0.690, and W14x22 sections using steel-concrete composite design were analyzed with 

bearing-to-depth ratios ranging from 0.322 to 0.795.   
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5.2 Conclusions 

 

The finite element models developed in this study are capable of predicting the 

experimental failure load of steel beams due to web crippling failure.  Good agreement 

was found between the FEM and theoretical load-deflection curves as well as the 

experimental failure load.  The greatest difference of 5.37% was found in the validation 

model FEA-4a.  However, this model was not used in the parametric stage.  The FEM 

failure load of those validation models that were used in the second stage of this study 

differed from the experimental failure load by less than 1.25%. 

 

Based on the results obtained in the parametric analyses, it was found that the 

1999 AISC LRFD web crippling design equation (K1-5b) is conservative for stocky 

webs. The predictions of the equation were lower than the finite element results for a 

W16x31 section. The equation was also conservative when a very large bearing-to-depth 

ratio was used as demonstrated by the model FEA-SC-2f.  A tendency for the FEM 

failure load-to-AISC load ratio to decrease with increasing bearing-to-depth, N/d, ratio 

was found.  However, there is still a reason to believe that the web crippling strength of 

the steel beams increases with increasing N/d ratio.  The geometric imperfection defined 

in the models seemed to govern the web crippling failure mode.  This could have an 

influence on the web crippling strength of the models and thus show this tendency.  It is 

important to point out that most of the web crippling shapes at failure were similar to 

their initial shape imperfection with the maximum out-of-plane deformation located at 

mid-height.  The only model that showed a different behavior was the model FEA-SC-2f.  

As a result, this model carried 6.97% more load than predicted by the 1999 AISC LRFD 

web crippling equation deviating from the tendency the FEM failure load-to-AISC load 

ratio to decrease with increasing N/d ratio in the FEA-SC-2x series.  

 

The finite element models FEA-7a and FEA-4a demonstrate that direct 

compression failure is the main mode of failure when the shear span of those models is 

less than the depth of the beam section.  This observation was also reported by Ketchum 

and Draffin who tested several lightweight steel beams for failure at the support with two 
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different loading configurations.  They reported that the 6 in. and 10 in. specimens loaded 

with a shear span–to-depth ratio greater than 1.0 carried about 10% greater strength than 

those specimens loaded with a shear span–to-depth ratio less than 1.0. These results 

question most of the results from the experimental study conducted by Elgaaly and Salkar 

(1991), where thirteen out of the twenty-seven specimens were loaded at a distance from 

the face of the support less than 3/4th of the depth of the sections. The failure of those 

specimens might be due to direct compression, not web crippling.  
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APPENDIX A 
 
CREATING AND ANALYZING THE FE MODEL 
 

This section presents the procedure employed to create, analyze, and view the 

results of the nonlinear finite element model by using the ANSYS’ Graphical User 

Interface. The purpose of this section is also to provide with an example problem that can 

be followed by others in order to get familiar with the ANSYS program, Version 6.0.  

 
Problem Description 
 

A W14x22 steel beam is loaded by means of a 100 kips force located 22 in. from 

the far end of the supports. The load is applied initially in increments of 5 kips, whenever 

the material is reaching the yield point the load is then applied in increments of 2 kips.  

The objective is to determine the ultimate capacity of the web due to crippling failure. 

The following dimensions are used for this problem: 

 

Flange Width* = 5.12 in. 

Flange Thickness* = 0.329 in.      

Web Depth = 13.481 in. (from centerlines of the flanges)  

Web Thickness* = 0.237 in. 

Stiffener Thickness = 1.0 in. 

Location of stiffeners = 22.0 in. from the end of the supports. 

Span Length = 144 in.  

Length of Bearing Block = 4.0 in. 

Modulus of Elasticity = 29,000 ksi. 

Yield Stress = 50.0 ksi. 

Tangent Modulus = 2,900 ksi.  

Specific Weight Density = 0.000284 kips/in3  

 
 
* Dimensions properties reported by Elgaaly and Salkar (1991).  
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Applied Load = 100 kips 
Load Location = 22.0 in. from the end of the supports. 

Initial Condition Function = 0.25*COS(0.233*H), where H is measure from mid-

depth of the beam.   

 
1. Specify an Analysis Title  
 

1.1. Choose menu path Utility Menu>File>Change Title. The following window 
will appear. 

 

 
 

1.2.  Type the text "Nonlinear Finite Element Analysis of a W14x22" and click on 
OK. 

 
2. Define the Element Types 
 

2.1. Choose menu path Main Menu>Preprocessor>Element 
Type>Add/Edit/Delete. 

2.2. Click on Add. The Library of Element Types dialog box appears. 
2.3. In the scroll box on the left, click once on "Shell". 
2.4. In the scroll box on the right, click once on "Plastic 4node 181".  
 

 
 

 
2.5. Click on OK to define it as element type 1. The Library of Element Types 

dialog box closes. 



 79

2.6. Click on Close on the Element Types dialog box. 
3. Define Element Real Constants 
 

3.1. Choose menu path Main Menu>Preprocessor>Real 
Constants>Add/Edit/Delete.  

3.2. Click on Add. The Element Type for Real Constants dialog box appears.  
3.3. Click on Ok. The Real Constants Set Number 1, for Shell 181 dialog box 

appears.  
 

 
 
 

3.4. Enter 0.237 for the Shell thickness at node I, TK(I). Click on Apply. 
3.5. Enter 2 for the Real Constant Set No, and 0.329 for the Shell thickness at node I, 

TK(I). Click on Apply. 
3.6. Enter 3 for the Real Constant Set No, and 1.0 for the Shell thickness at node I, 

TK(I). Click on Apply. 
3.7. Close the Real Constant dialog box. 
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4. Define Material Properties for Steel 
 

4.1. Choose menu path Main Menu>Preprocessor>Material Props>Material 
Models. The Define Material Model Behavior dialog box appears. 

4.2. In the scroll box on the right, double click on Structural>Linear> 
 Elastic>Isotropic.  

 

 
 

4.3. The Linear Isotropic Properties for Model Number 1 dialog box appear.  Type 
29000 for EX, and 0.3 for PRXY. Click OK 
 

 
 



 81

4.4. Click on Structural>Nonlinear>Inelastic>Rate Independent>Isotropic 
Hardening Plasticity>Mises Plasticity>Bilinear. The Bilinear Isotropic 
Hardening for Model Number 1 dialog box appear.  Type 50.0 for Yield Stss, and 
2900 for Tang Mod. Click OK. 

4.5. Click on Structural>Density. The Density for Material Number 1 dialog box 
appears.  

4.6. Type 0.000284 for Dens. Click OK. 
4.7.. Click Material>Exit. 
4.9. Click on SAVE_DB on the ANSYS Toolbar. 

 

 
 
 
5. Creating the Model Geometry 
 
5.1. Create Keypoints Along a Path 
 

5.1.1. Choose menu path Main Menu>Preprocessor>-Modeling-
Create>Keypoints>In Active CS. The Create Keypoints in Active Coordinate 
System dialog box appears. 

5.1.2. Enter 1 for the keypoint number. Type a 0 in each of the X,Y,Z location fields. 
Click on Apply. 
 

 
 

5.1.3. Enter 2 for the keypoint number. Type 2.56,0,0 for the X,Y,Z location 
respectively. Click on Apply. 

5.1.4. Enter 3 for the keypoint number. Type 5.12,0,0 for the X,Y,Z location 
respectively. Click on Apply. 

5.1.5. Enter 4 for the keypoint number. Type 0,13.481,0 for the X,Y,Z location 
respectively. Click on Apply. 

5.1.6. Enter 5 for the keypoint number. Type 2.5,13.481,0 for the X,Y,Z location 
respectively. Click on Apply. 
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5.1.7. Enter 6 for the keypoint number. Type 5,13.481,0 for the X,Y,Z location 
respectively. Click on OK. 
 

5.2. Create Lines Along a Path 

5.2.1. Choose menu path Main Menu>Preprocessor>-Modeling-Create>-Lines-
Lines>Straight Line. The Create Straight Line picking menu appears. 

5.2.2. Click once on keypoint 1 and 2 to create a line between keypoint 1 and 2. 
5.2.3. Click once on keypoint 2 and 3 to create a line between keypoint 2 and 3. 
5.2.4. Click once on keypoint 4 and 5 to create a line between keypoint 4 and 5. 
5.2.5. Click once on keypoint 5 and 6 to create a line between keypoint 5 and 6. 
5.2.6. Click once on keypoint 5 and 2 to create a line between keypoint 5 and 2. 
5.2.7. Click on Ok in the Create Straight Line picking menu.  
5.2.8. Choose menu path Utility Menu>PlotCtrls>Numbering. The Plot Numbering 

Controls dialog box appears.  
5.2.9. Click the Line numbers radio button to On. Click on OK. 
5.2.10. Choose menu path Utility Menu>Plot>Lines. The numbered lines appear in 

the ANSYS Graphical window. 
 
5.3. Copy Lines Along a Path 

5.3.1. Choose menu path Main Menu>Preprocessor>-Modeling-Copy>Lines. The 
Copy Lines picking menu appears. 

5.3.2. Click on Pick All in the Copy Lines picking menu. The Copy Lines dialog box 
appears.   

 

 
 
5.3.3. Enter -22 for DZ, Z-offset in active CS location field. Click on Apply. 
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5.3.4. Type 1,2,3,4,5 in the ANSYS Input. Press Enter in the keyboard, and click 
OK on the Copy Lines picking menu. 

 

 
 

5.3.5. The Copy Lines dialog box appears. Enter -72 for DZ, Z-offset in active CS 
location field. Click on Apply. 

5.3.6. Type 1,2,3,4,5 in the ANSYS Input. Press Enter in the keyboard, and click 
OK in the Copy Lines picking menu. 

5.3.7. The Copy Lines dialog box appears. Enter -122 for DZ, Z-offset in active CS 
location field. Click on Apply. 

5.3.8. Type 1,2,3,4,5 in the ANSYS Input. Press Enter in the keyboard, and click 
OK in the Copy Lines picking menu. 

5.3.9. The Copy Lines dialog box appears. Enter -144 for DZ, Z-offset in active CS 
location field. Click on Ok. 

 
5.4. Create Additional Lines Along a Path 

5.4.1. Choose menu path Utility Menu>PlotCtrls>Pan/Zoom/Rotate. The Pan-
Zoom-Rotate dialog box appear.  

5.4.2. Click on "Iso" to generate an isometric view. Click on Close. 
5.4.3. Choose menu path Utility Menu>PlotCtrls>Numbering. The Plot Numbering 

Controls dialog box appears.  
5.4.4. Click the Line numbers radio button to Off, and click the Keypoint numbers 

radio button to On.  Click on OK. 
5.4.5. Choose menu path Main Menu>Preprocessor>-Modeling-Create>-Lines-

Lines>Straight Line. The Create Straight Line picking menu appears. 
 

Note: If you have trouble reading the keypoint numbers in the ANSYS Graphic window, 
use the controls on the Pan-Zoom-Rotate dialog box (Utility 
Menu>PlotCtrls>Pan/Zoom/Rotate) to zoom in or zoom out.  
 

5.4.6. Click once on keypoint 1 and 7 to create a line between keypoint 1 and 7 
5.4.7. Click once on keypoint 2 and 8. 
5.4.8. Click once on keypoint 3 and 9.  
5.4.9. Click once on keypoint 4 and 10. 
5.4.10. Click once on keypoint 5 and 11. 
5.4.11. Click once on keypoint 6 and 12. 
5.4.12. Click once on keypoint 7 and 13. 
5.4.13. Click once on keypoint 8 and 14. 
5.4.14. Click once on keypoint 9 and 15. 
5.4.15. Click once on keypoint 10 and 16. 
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5.4.16. Click once on keypoint 11 and 17. 
5.4.17. Click once on keypoint 12 and 18. 
5.4.18. Click once on keypoint 13 and 19. 
5.4.19. Click once on keypoint 14 and 20. 
5.4.20. Click once on keypoint 15 and 21. 
5.4.21. Click once on keypoint 16 and 22. 
5.4.22. Click once on keypoint 17 and 23. 
5.4.23. Click once on keypoint 18 and 24. 
5.4.24. Click once on keypoint 19 and 25. 
5.4.25. Click once on keypoint 20 and 26. 
5.4.26. Click once on keypoint 21 and 27. 
5.4.27. Click once on keypoint 22 and 28. 
5.4.28. Click once on keypoint 23 and 29. 
5.4.29. Click once on keypoint 24 and 30. 
5.4.30. Click once on keypoint 7 and 10. 
5.4.31. Click once on keypoint 9 and 12. 
5.4.32. Click once on keypoint 19 and 22. 
5.4.33. Click once on keypoint 21 and 24. 
5.4.34. Click once on keypoint 25 and 28. 
5.4.35. Click once on keypoint 27 and 30. 
5.4.36. Click on OK on the Create Straight Line picking menu. 

 
5.5. Create Areas Along a Path 

5.5.1. Choose menu path Utility Menu>PlotCtrls>Numbering. The Plot Numbering 
Controls dialog box appears.  

5.5.2. Click the Keypoint numbers radio button to Off, and click the Line numbers 
radio button to On.  Click on OK. 

5.5.3. Choose menu path Main Menu>Preprocessor>-Modeling-Create>-Areas-
Arbitrary>By Lines. The Create Areas by Lines picking menu appears. 

5.5.4. Type 1,6,26,27 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu to create an area. 

5.5.5. Type 2,7,27,28 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.6. Type 3,8,29,30 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.7. Type 4,9,30,31 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.8. Type 6,11,32,33 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.9. Type 7,12,33,34 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.10. Type 8,13,35,36 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.11. Type 9,14,36,37 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 
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5.5.12. Type 11,16,38,39 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.13. Type 12,17,39,40 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.14. Type 13,18,41,42 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.15. Type 16,21,44,45 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.16. Type 17,22,45,46 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.17. Type 18,23,47,48 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.18. Type 19,24,48,49 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.19. Type 5,10,27,30 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.20. Type 10,15,33,36 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.21. Type 15,20,39,42 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.22. Type 20,25,45,48 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.23. Type 6,8,10,50 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.24. Type 7,9,10,51 in the ANSYS Input. Press Enter in the keyboard, and click 
Apply on the Create Areas by Lines picking menu. 

5.5.25. Type 16,18,20,52 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.26. Type 17,19,20,53 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.27. Type 21,23,25,54 in the ANSYS Input. Press Enter in the keyboard, and 
click Apply on the Create Areas by Lines picking menu. 

5.5.28. Type 22,24,25,55 in the ANSYS Input. Press Enter in the keyboard, and 
click Ok on the Create Areas by Lines picking menu. 

5.5.29. Click on SAVE_DB on the ANSYS Toolbar. 
 

5.6. Define Attributes  

5.6.1. Choose menu path Utility Menu>PlotCtrls>Numbering. The Plot Numbering 
Controls dialog box appears.  

5.6.2. Click the Line numbers radio button to Off, and click the Area numbers radio 
button to On.  Click on OK. 

5.6.3. Choose menu path Main Menu>Preprocessor>-Attributes-Define>Picked 
Areas. The Area Attributes picking menu appears. 

5.6.4. Type 17,18,19,20 in the ANSYS Input. Press Enter in the keyboard, and click 
Ok on the Areas Attributes picking menu. The Area Attributes dialog box 
appears. Click on Apply. 
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5.6.5. Type 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 in the ANSYS Input. Press Enter 
in the keyboard, and click Ok on the Areas Attributes picking menu. The Area 
Attributes dialog box appears. Set the Real constant set number to 2, and Click on 
Apply. 
 

 
 

5.6.6. Type 21,22,23,24,25,26 in the ANSYS Input. Press Enter in the keyboard, and 
click Ok on the Areas Attributes picking menu. The Area Attributes dialog box 
appears. Set the Real constant set number to 3, and Click on Ok. 

 
5.7. Set Mesh Density 

5.7.1. Choose menu path Main Menu>Preprocessor>-Meshing-Size Cntrls>-
ManualSize-Areas->Picked Areas. The Element Size at Picked Areas picking 
menu appears. 

5.7.2. Type 1,2,3,4,17,21,22 in the ANSYS Input. Press Enter in the keyboard, and 
click Ok on the Element Size at Picked Areas picking menu. The Element Size at 
Picked Areas dialog box appears. Enter 1 for SIZE, Element edge length in the 
Element Size at Picked Areas location field. Click on Apply. 

 

 
 
5.7.3. Type 5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26 in the ANSYS 

Input. Press Enter in the keyboard, and click Ok on the Element Size at Picked 
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Areas picking menu. The Element Size at Picked Areas dialog box appears. Enter 
1.5 for SIZE, Element edge length in the Element Size at Picked Areas location 
field. Click on Ok. 

5.7.4. Choose menu path Main Menu>Preprocessor>-Meshing-Mesher Opts. The 
Mesher Option dialog box appears. Click on the Mapped radio button to select it. 
Click on OK. The Set Element Shape dialog box appears. Verify that Quad is 
currently selected on the 2D Shape Key, and click on OK.  

5.7.5. Choose menu path Main Menu>Preprocessor>-Meshing-Mesh>-Areas-
Mapped>3or 4 sided. The Mesh Area picking menu appears. Click on Pick All.  
The following model shall appear in the ANSYS Graphics Window. 
 
 

 
 

5.7.6. Click on SAVE_DB on the ANSYS Toolbar. 
 

6. Apply the Constraints and Initial Conditions 
 
6.1. Constraints 
 

6.1.1. Choose menu path Utility Menu>Select>Entities. The Select Entities dialog 
box appears. In the top drop down menu, select Nodes. In the second drop down 
menu, select By Location. 

6.1.2. Click on the Y Coordinates radio button to select it, enter 0 for Min, Max, and 
click on Ok. 
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6.1.3. Choose menu path Main Menu>Preprocessor>Loads>-Loads-Apply>-
Structural-Displacements>On nodes. The Apply U, ROT on Nodes picking 
menu appears. Click on the Box button ration to select it.  

6.1.4. Select the first five nodes on the bottom left end of the section. Click on Ok on 
the Apply U, ROT on Nodes picking menu. 

6.1.5. The Apply U,ROT on Nodes dialog box appears. Select All DOF, and type 0 
for the Displacement value. Click on Apply. 
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6.1.6. Click on the Box button ration to select it on the Apply U, ROT on Nodes 
picking menu. Select the last nodes on the bottom right end of the section. Click 
on Ok on the Apply U, ROT on Nodes picking menu. The Apply U,ROT on 
Nodes dialog box appears. Click on All DOF to deselect it, click on UX, U, and 
type 0 for the Displacement value. Click on Ok. 

6.1.7. Choose menu path Utility Menu>Select>Everything.  
6.1.8. Choose menu path Utility Menu>Select>Entities. The Select Entities dialog 

box appears. Verify that the Y Coordinates radio button is selected, enter 13.481 
for Min, Max, and click on Ok. 

6.1.9. Choose menu path Main Menu>Preprocessor>Loads>-Loads-Apply>-
Structural-Displacements>On nodes. The Apply U, ROT on Nodes picking 
menu appears. Click on Pick All. The Apply U,ROT on Nodes dialog box 
appears. Click on UY to deselect it, type 0 for the Displacement value. Click on 
Ok. 

6.1.10. Choose menu path Utility Menu>Select>Everything.  
 

6.2. Initial Conditions 
  

6.2.1. Choose menu path Main Menu>Preprocessor>Loads>-Loads-Apply>-
Initial Condit'n>Define. The Define Initial Conditions picking menu appears.  

6.2.2. Type 1504,1517,1530,1543 in the ANSYS Input. Press Enter in the keyboard, 
and click Ok on the Define Initial Conditions picking menu. The Define Initial 
Conditions dialog box appears. In the top drop down menu, select UX and type 
0.25 for the Initial value of DOF. Click on Apply.  

 
 

 
 
6.2.3. Type 1503,1504,1516,1518,1529,1531,1542,1544,1556 in the ANSYS Input. 

Press Enter in the keyboard, and click Ok on the Define Initial Conditions 
picking menu. The Define Initial Conditions dialog box appears. Type 0.24 for 
the Initial value of DOF. Click on Apply.  

6.2.4. Type 1502,1506,1515,1519,1528,1532,1541,1545,1555,1557,1569 in the 
ANSYS Input. Press Enter in the keyboard, and click Ok on the Define Initial 
Conditions picking menu. The Define Initial Conditions dialog box appears. In 
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the top drop down menu, select UX and type 0.22 for the Initial value of DOF. 
Click on Apply.  

6.2.5. Type 1501,1507,1514,1520,1527,1533,1540,1546,1558,1554,1568,1570, 
1582 in the ANSYS Input. Press Enter in the keyboard, and click Ok on the 
Define Initial Conditions picking menu. The Define Initial Conditions dialog box 
appears. In the top drop down menu, select UX and type 0.19 for the Initial value 
of DOF. Click on Apply.  

6.2.6. Type 1500,1508,1513,1521,1526,1534,1539,1547,1553,1559,1567,1571, 
1581,1583,1595 in the ANSYS Input. Press Enter in the keyboard, and click Ok 
on the Define Initial Conditions picking menu. The Define Initial Conditions 
dialog box appears. Type 0.15 for the Initial value of DOF. Click on Apply.  

6.2.7. Type 1499,1509,1512,1522,1525,1535,1538,1548,1552,1560,1566,1572, 
1580,1584,1594,1596,1608  in the ANSYS Input. Press Enter in the keyboard, 
and click Ok on the Define Initial Conditions picking menu. The Define Initial 
Conditions dialog box appears. In the top drop down menu, select UX and type 
0.10 for the Initial value of DOF. Click on Apply.  

6.2.8. Type 1498,1510,1511,1523,1524,1536,1537,1551,1561,1565,1573,1579, 
1585,1593,1597,1607,1609,1621 in the ANSYS Input. Press Enter in the 
keyboard, and click Ok on the Define Initial Conditions picking menu. The 
Define Initial Conditions dialog box appears. In the top drop down menu, select 
UX and type 0.04 for the Initial value of DOF. Click on Ok.  

6.2.9. Click on SAVE_DB on the ANSYS Toolbar. 
 

7. Apply the Loads 
 
7.1 Concentrated Loads 
 

7.1.1. Choose menu path Main Menu>Preprocessor>Loads>-Loads-Apply>-
Structural-Force/Moment>On nodes. The Apply F/M on Nodes dialog box 
appears. Type 166,1037 in the ANSYS Input. Press Enter in the keyboard, and 
click Ok on the Apply F/M on Nodes picking menu. The Apply F/M on Nodes 
dialog box appears. In the top drop down menu, select FY, and type -100 for the 
Force/moment value. Click on Ok. 
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7.2. Gravity Loads 
 

7.2.1. Choose menu path Main Menu>Preprocessor>Loads>-Loads-Apply>-
Structural-Gravity. The Apply (Gravitational) Acceleration dialog box appears. 
Type 1 for the ACELY, Global Cartesian Y-comp. Click on Ok. 

 
Note: Since the specific weight density was defined previously for the steel material, the 

gravitational acceleration has to be defined as 1. Also note that a positive 
acceleration in the y direction stimulates gravity in the negative Y direction. 
 

8. Set Solution Controls  
 

8.1. Choose menu path Main Menu>Solution>Unabridged>Analysis Options. The 
Static or Steady-State Analysis dialog appears. Click on Large deform effect 
button ration to turn it on. In the Newton-Raphson option drop down menu, select 
Full N-R. In the Equation solver drop down menu, select Sparse solver. Finally, 
in the stress stiffness or prestress drop down menu, select Stress stiff ON. Click 
on Ok.  
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8.2. Choose menu path Main Menu>Solution>Unabridged Menu-Load Step Opts-
Time/Frequenc> 
Time and Substeps. The Time and Substep Options dialog appears. 

8.3. Type 1 for the Time at the end of load step, 20 for Number of substeps, 50 for 
Maximun no. of substeps, and 10 for Minimum no. of substeps. Click on OK. 

8.4. Choose menu path Main Menu>Solution>Unabridged>-Load Step Opts-
Output Ctrls>DB/Results File. The Control for Database and Results File 
Writing dialog appears. In the top drop down menu, select Basic Quantities, and 
click on Every substep button ration to turn it on. Click on OK. 

8.5. Choose menu path Main Menu>Solution>Unabridged Menu-Load Step Opt-
Nonlinear>Arc-Length Opts. The Arc-Length Options dialog appears. Click on 
the Arc-length method on/off button ration to turn it on. Type 1 for the 
Maximum multiplier and 0.0001for the Minimum multiplier. 

8.6. Choose menu path Main Menu>Solution>Sol'n Control. The Solution Controls 
dialog appears. Go to Advanced NL, in the Program behavior upon 
nonconvergence drop down menu, select Terminate but Do Not Exit. Click on 
Ok.  

 

 
 
8.7. Click on SAVE_DB on the ANSYS Toolbar. 
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9. Solve the Analysis  
 

9.1. Choose menu path Main Menu>Solution>-Solve-Current LS. Review the 
information in the /STATUS Command window, and click File>Close. 

 

 
 
 

9.2. Click on OK on the Solve Current Load Step dialog box. 
 

 
 
 

Note: The loads specify in this analysis is higher than the expected ultimate load of 
the beam. Therefore, the program will not terminate when the solution is done. 
The user has to stop the nonlinear analysis when the solution has converged, 
the ultimate load has been reached, and the load being applied is decreasing. 
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9.3. Click on Close on the Information dialog box when the solution is done. 
 

 
 
 

10. Review the Results 
 

10.1. Choose menu path Main Menu>General Postproc>-ReadResults-First Set. 
10.2. Choose menu path Main Menu>General Postproc>-List Resulst>Nodal 

Solution. The List Nodal Solution dialog box appears. In the scroll box on the 
left, select DOF Solution. In the scroll box on the right select All DOFs DOF. 
Click on Ok. 

 
 

 
 
10.3. Review the degrees of freedom at each node. 
10.4. Choose menu path Main Menu>General Postproc>Resul Summary. The 

Result File: W14x22_4x144.rst dialog box appears. In the scroll box select any 
data set. Click on Read.  
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10.5. Choose menu path Main Menu>General Postproc>Plot Results>Deformed 

Shape. The Plot Deformed Shape dialog box appears. Click on Def + undef edge 
button radio. Click on OK. The deformed shape of the beam will appear in the 
ANSYS Graphic window.  

10.6. Choose menu path Main Menu>General Postproc>Plot Results>-Contour 
Plot>Nodal Solu. The Contour Nodal Solution Data dialog box appears. In the 
scroll box on the top left, select Stress. In the scroll box on the right select Z-
direction SZ. Click on Ok. The stress contour in z-direction will appear in the 
ANSYS Graphic window.   

10.7. Choose menu path Utility Menu>PoltCtrls>Capture Image. A second 
ANSYS Graphic window appears. To save the image as a Bitmap file, choose 
File Save As. 

10.8. Choose menu path ANSYS Toolbar>Quit. The Exit from ANSYS dialog box 
appears. Click on Save Everything button radio to select it.   

 
 
 

 
 
 
 
Disclaimer: 
 
I have made every effort to understand the applications and limitations of the finite element method, and the computer 
package, ANSYS 6.0. It was shown that the finite element models created in this study closely predicted the ultimate 
load and web crippling failure mode of the tested beams. However, I do not guarantee that the procedure presented in 
this section is the most accurate or proper procedure. The purpose of this section was to present the procedure used to 
create and analyze the finite element models, and to provide with an example problem that can be followed by others in 
order to get familiar with ANSYS 6.0.  
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APPENDIX B 
 
FINITE ELEMENT RESULTS 
 

This appendix presents the plots generated from the finite element results. The set 

of plots correspond to the web crippling responses of each model at different load steps. 

These responses were taken at the location of maximum out-of-plane deformation.  
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Figure B.1 Web crippling shape at different load steps of the model FEA-14a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.2 Web crippling shape at different load steps of the model FEA-14b. 
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Figure B.3 Web crippling shape at different load steps of the model FEA-14c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.4 Web crippling shape at different load steps of the model FEA-15a.  
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Figure B.5 Web crippling shape at different load steps of the model FEA-4a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.6 Web crippling shape at different load steps of the model FEA-4b. 
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Figure B.7 Web crippling shape at different load steps of the model FEA-7a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.8 Web crippling shape at different load steps of the model FEA-7b. 
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Figure B.9 Web crippling shape at different load steps of the model FEA-7c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.10 Web crippling shape at different load steps of the model FEA-7d. 
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Figure B.11 Web crippling shape at different load steps of the model FEA-7e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.12 Web crippling shape at different load steps of the model FEA-7f. 
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Figure B.13 Web crippling shape at different load steps of the model FEA-7g. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.14 Web crippling shape at different load steps of the model FEA-7h. 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Out-of-Plane Deformation, inches

0.2114*Ru (FEA) 0.4109*Ru (FEA) 0.5986*Ru (FEA)
0.7761*Ru (FEA) 0.9287*Ru (FEA) 1.000*Ru (FEA)
Initial Imperfection

B
ot

to
m

 F
la

ng
e 

   
-  

   
 T

op
 F

la
ng

e

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Out-of-Plane Deformation, inches
0.2194*Ru (FEA) 0.4317*Ru (FEA) 0.6320*Ru (FEA)
0.8520*Ru (FEA) 0.9319*Ru (FEA) 1.000*Ru (FEA)
Initial Imperfection

B
ot

to
m

 F
la

ng
e 

   
-  

   
To

p 
Fl

an
ge



 104

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.15 Web crippling shape at different load steps of the model FEA-7i. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.16 Web crippling shape at different load steps of the modelFEA-SC-2a. 
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Figure B.17 Web crippling shape at different load steps of the model FEA-SC-2b. 
 

 
 
Figure B.18 Web crippling shape at different load steps of the model FEA-SC-2c. 
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Figure B.19 Web crippling shape at different load steps of the model FEA-SC-2d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.20 Web crippling shape at different load steps of the model FEA-SC-2e. 
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Figure B.21 Web crippling shape at different load steps of the model FEA-SC-2f. 
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APPENDIX C 
 

ADDITIONAL SCREENED END WEB CRIPPLING DATA  
 

This appendix presents additional screened end web crippling data not included in 

Chapter 2. This experimental data corresponds to tests conducted by Ketchum and 

Draffin (1932).  
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Table C.1. 

Summary of the geometric and material properties for the series F tests conducted by Ketchum and Draffin.   

Test 

Designation 

Beam 

Section 

Span 

(in.) 

N 

(in.) 

tw 

(in.) 

tf 

(in.) 

d 

(in.) 

bf 

(in.) 

Fy 

(ksi) 

F1 M10x9 16.00 1.920 0.1700 0.2060 10.00 2.6900 36.40 
F2 M10x9 16.00 1.920 0.1670 0.2060 10.00 2.6900 36.40 
F3 M6x4.4 10.00 1.920 0.1270 0.1710 6.00 1.8440 43.40 
F4 M6x4.4 10.00 1.920 0.1320 0.1710 6.00 1.8440 43.40 
F6 M6x4.4 10.80 1.200 0.1160 0.1710 6.00 1.8440 43.40 
F7 M10x9 15.00 2.960 0.1520 0.2060 10.00 2.6900 36.40 
F8 M10x9 15.00 2.960 0.1540 0.2060 10.00 2.6900 36.40 
F21 M12x11.8 21.00 2.960 0.1670 0.2250 12.00 3.0650 43.70 
F22 M12x11.8 21.00 2.960 0.1680 0.2250 12.00 3.0650 43.70 
F23 M12x11.8 22.10 1.920 0.1690 0.2250 12.00 3.0650 43.70 
F24 M12x11.8 22.10 1.920 0.1700 0.2250 12.00 3.0650 43.70 
F25 M12x11.8 22.80 1.200 0.1700 0.2250 12.00 3.0650 43.70 
F26 M12x11.8 22.80 1.200 0.1680 0.2250 12.00 3.0650 43.70 
F27 M12x11.8 20.80 1.200 0.1710 0.2250 12.00 3.0650 43.70 
F28 M12x11.8 18.50 2.960 0.1690 0.2250 12.00 3.0650 43.70 
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Table C.2. 

Summary of the geometric and material properties for the midspan-loaded series K tests conducted by Ketchum and Draffin.   

Test 
Designation 

Beam 
Section 

Span 
(in.) 

N 
(in.) 

tw 
(in.) 

tf 
(in.) 

d 
(in.) 

bf 
(in.) 

Fy 
(ksi) 

K35 M10x9 21.75 1.750 0.1590 0.2060 10.00 2.690 36.40 

K36 M10x9 21.75 1.750 0.1610 0.2060 10.00 2.690 36.40 
K41 M10x9 23.50 3.500 0.1640 0.2060 10.00 2.690 36.40 
K42 M10x9 23.50 3.500 0.1640 0.2060 10.00 2.690 36.40 
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Table C.3. 

Summary of the geometric and material properties for the midspan-loaded series K tests conducted by Ketchum and Draffin, 
and which the beam was projected beyond the outer edge of the bearing block.   

Test 
Designation 

Beam 
Section 

Span 
(in.) 

N ** 
(in.) 

tw 
(in.) 

tf 
(in.) 

d 
(in.) 

bf 
(in.) 

Fy 
(ksi) 

K37 M10x9 * 21.00 1.750 0.163 0.206 10.00 2.690 36.40 
K38 M10x9 * 21.00 1.750 0.161 0.206 10.00 2.690 36.40 
K39 M10x9 * 21.00 3.000 0.163 0.206 10.00 2.690 36.40 
K40 M10x9 * 21.00 3.000 0.161 0.206 10.00 2.690 36.40 
K43 M10x9  *    21.75 3.500 0.160 0.206 10.00 2.690 36.40 
K44 M10x9  * 21.75 3.500 0.157 0.206 10.00 2.690 36.40 

* Bearing plate was not aligned with the end of the beam. 
** N is the distance from the end of the beam to the end of the bearing plate. 
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Table C.4.  

Summary of the screened web crippling strength results from experimental studies 
conducted by Ketchum and Draffin. 

Test 
Designation 

Beam 
Section N/d 

Experimental 
Failure Load, RU 

(kips) 

1999 AISC LRFD 
Specification, RAISC 

(kips) 
RU / RAISC

F1 M10x9 0.1920 18.00 18.72 0.9615 

F2 M10x9 0.1920 18.55 18.08 1.026 

F3 M6x4.4 0.3200 14.00 13.56 1.032 

F4 M6x4.4 0.3200 12.91 14.69 0.8809 

F6 M6x4.4 0.2000 9.850 9.790 1.006 

F7 M10x9 0.2960 19.42 17.28 1.124 

F8 M10x9 0.2960 17.42 17.74 0.9820 

F21 M12x11.8 0.2470 13.42 21.47 0.6250 

F22 M12x11.8 0.2470 16.22 21.73 0.7464 

F23 M12x11.8 0.1600 19.12 19.48 0.9815 

F24 M12x11.8 0.1600 19.02 19.69 0.9658 

F25 M12x11.8 0.1000 11.18 17.92 0.6239 

F26 M12x11.8 0.1000 15.01 17.55 0.8553 

F27 M12x11.8 0.1000 13.81 18.11 0.7626 

F28 M12x11.8 0.2470 20.10 21.99 0.9140 

K35 M10x9 0.1750 18.84 16.04 1.174 

K36 M10x9 0.1750 18.29 16.42 1.114 

K37 M10x9 * 0.1750 18.10 16.81 1.077 

K38 M10x9 * 0.1750 16.94 16.42 1.032 

K39 M10x9 * 0.3000 19.30 20.05 0.9626 

K40 M10x9 * 0.3000 18.44 19.54 0.9437 

K41 M10x9 0.3500 21.35 21.63 0.9870 

K42 M10x9 0.3500 19.48 21.63 0.9006 

K43 M10x9  * 0.3500 20.18 20.52 0.9834 

K44 M10x9  * 0.3500 23.17 19.71 1.176 

* Bearing plate was not aligned with the end of the beam. 
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