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DIGITAL SIGNAL PROCESSING ANALYSIS 

OF SWITCHED CAPACITOR FILTERS 

by 

Jose Velazguez Ramos 

(ABSTRACT) 

A deterministic and stochastic signal analysis is 

presented on switched capacitor filters. This relatively new 

discrete-time circuit design technology provides a wide 

field of applications in the areas of filters, circuitry, 

and communications. It also raises numerous problems and 

challenges in both discrete-time design implementation and 

noise analysis. Basic principles of switched capacitor 

integration/summation networks and their interfacing is 

first presented. A review of fundamental discrete-time 

system design techniques which are, and can be, adopted in 

the design of switched capacitor filters is then provided 

along with a discussion of frequency design criteria to deal 

with frequency warping and aliasing effects. An analysis of 

computer and test results of a 7th-order bilinear and a 8th-

order LDI leapfrog switched capacitor lowpass filter is then 

presented. Finally, with the intent of presenting an 



alternative approach to current analytical procedures in 

switched capacitor noise spectrum analysis, various spectrum 

estimation techniques are presented along with test results 

of noise spectrum estimation of a typical switched capacitor 

integration circuit. 
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Chapter I 

INTRODUCTION 

Switched capacitor (SC} technology is a relatively new 

field in electrical engineering, with promising applications 

in the areas of digital filters, digital controllers, and 

integrated circuit implementations. In conventional RC cir-

cuits, frequency and time response characteristics are 

closely related to RC time constants. In most situations, 

these RC time constants fix capacitor and resistor values. 

Thus, at low frequencies, there is the risk of circuit im-

plementations using large capacitors and resistors. In con-

trast, frequency and time response characteristics of 

switched capacitor circuits are closely dependent on capaci-

tor ratios. Therefore, there is more freedom in selecting 

low capacitor values to implement smaller circuits. An ad-

ditional advantage of switched capacitor systems lie in the 

tighter tolerances which are incurred in IC fabrication whi-

le working with capacitor ratios instead of RC time cons-

tants. Another advantage of switched capacitor systems is 

the capability of implementing both analog and digital sig-

nal processing in the same ciruit (where switched capacitors 

act as data-storage time-delay registers}. Hence, there is 

1 



2 

no need for A/D converters in implementing SC systems which, 

among other things, can be an advantage in the design of 

telephone switching systems. However, SC circuits, being 

discrete-time systems, usually have problems in frequency 

warping and aliasing which do not occur in conventional RC 

circuits. These problems, when acute, may require designing 

for higher filter and system orders and clock frequencies. 

There are currently two main areas of research in 

switched capacitor technology. The first of these, which has 

attracted most of the research and widespread interest, is 

the area of analog-to-digital (S/Z) transformation using SC 

integrated circuits and SC filter designs. The two S/Z-

Transforrnations of most use in SC filter and circuit designs 

are the bilinear and the LDI. Contributions to the develop-

ment of bilinear SC integration circuits and filters have 

principally been made by Ternes [38], Ternes and Young [38], 

Lee and Chang [21], Knob [19], and Laker [20]. Principal 

contributions to the development and analysis of the LDI SC 

integration circuit have been made by Laker [20], Brodersen, 

Gray, and Hodges [7], Allstot, Brodersen, and Gray [2], Choi 

and Brodersen [8], Lee and Chang [21],[22], and Jacobs, 

Allstot, Brodersen, and Gray [16]. Significant research in 

leapfrog SC filter designs have been made by Laker [20], Ja-
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cobs,et al. [16], Choi, et al. [8], Allstot et al. [ 2], and 

Brodersen et al. [7]. In the area of non-leapfrog SC filter 

designs, such as biquads, important contributions have been 

made by Szentermai and Ternes [37], Lee, Ternes, Chang, and 

Ghaderi [23], Gregorian [14], and Martin and Sedra [26]. To 

this date no significant inroads have been made in designing 

and realizing impulse invariant switched capacitor filters 

and systems. 

The second most important, and most recent, area of re-

search in switched capacitor technology is noise power 

spectrum analysis. This area has proven to be the most dif-

ficult field in SC research. It has demanded more complicat-

ed analyses than the first research area. When pursuing 

noise power spectrum investigations, SC systems, can be ana-

lyzed in both the analog and the discrete-time domain. For 

both cases severe complications arise in analyzing signal 

sampling SC circuit topologies with noise source models. 

Various techniques and approaches have been proposed for 

noise power spectrum analysis of SC circuits. In the area of 

analog domain noise power spectrum analysis of SC systems 

principal contributions have been made by Gobet and Knob 

[13], and Maloberti, Montecchi, and Suelto [25]. Research 

contributions in discrete-time noise power spectrum analysis 



4 

of SC systems have been made by Orchard and Ternes [29), We-

inrichter [41], and Furrer and Guggenbuhl [10], [11]. An 

alternative noise spectrum analysis of SC systems, and one 

which lends itself appropriately to computer implementation, 

is the adjoint network analysis concept, discussed by both 

Vandewalle and Rabey [40] and Rohrer, Nagel, Meyer, and Web-

er [35]. An alternative approach for noise analysis of SC 

circuits by means of power spectrum estimation will be pro-

posed and presented in chapter 5 of this thesis. 

One main objective of this thesis is to provide basic and 

useful deterministic and stochastic digital signal process-

ing concepts which are applied, and can be applied, in 

switched capacitor systems design and analysis. Another 

principal objective is to·summarize research work I contri-

buted in the development and test of bilinear and LDI fil-

ters. Chapter 2 reviews fundamental principles of pole/zero 

S/Z-domain mapping, S/Z-transformations, and frequency warp-

ing. In this chapter two bilinear and one LDI SC integra-

tion/summation parasitic capacitance-free circuits will be 

presented and analyzed. In chapter three a summary of funda-

mental discrete-time system design strategies which are ap-

plied, and can be applied, to SC system designs is present-

ed. Included in this chapter is an analysis of aliasing and 
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frequency warping effects incurred in SC filters, and a dis-

cussion on how these effects influence design objectives and 

criteria. A presentation is also provided on the leapfrog 

filter design as a way of realizing S/Z-transformations and 

obtaining the desired digital SC filter. Chapter 4 summar-

izes system analyses, computer simulations, and test results 

of the 7th-order bilinear and 8th-order LDI lowpass SC fil-

ters. Chapter 5 presents an alternative approach, namely 

noise power spectrum estimation, to current analytical power 

spectrum analysis of SC systems. Various power spectrum es-

timation techniques are presented and a comparison in terms 

of computational efficiency is made between these techniques 

and common analytical spectral analysis methods. Finally, 

Chapter 6 summarizes conclusions and recomendations on SC 

bilinear and LDI filter designs, drawn from the results in 

chapter 4, and recommendations on SC circuit noise spectral 

estimation analysis. 



Chapter II 

PRINCIPLES OF SWITCHED CAPACITOR NETWORKS 

Different analog (s-domain) to discrete-time (Z-domain) 

transformations have been developed for use in digital fil-

ter and controls system design. In the design of switched-

capacitor (SC) filters the two transformations of most use 

are the trapezoidal (bilinear) and the midpoint rectangular 

(LDI) transformations. Three types of SC integrator will be 

developed which realize either the bilinear or the LDI 

transformations on typical analog integrators. Pole-zero 

mapping and frequency prewarping characteristics of the LDI 

and the bilinear S/Z-domain transformations will first be 

discussed. 

~-l Theoretical S/Z-Transformation 

The discrete-time complex variable Z is related to the 

analog complex variables by the theoretical S/Z-transforma-

tion: 

Z ST 
= e 2.1.1· 

Where tis the sampling period of the digital system. Equa-

tion 2.1.1 is the S/Z-transformation used in impulse invari-

6 
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ant discrete-time filter designs (see section 3.2). S-do-

main poles and zeroes are mapped into the Z-plane in the 

manner depicted in figure 2.1. Note in figure 2.l(a) that 

s-plane strips of frequency width 27T/t are mapped onto the 

entire Z-plane. The left half of each strip, which contains 

stable poles and zeroes, maps inside the unit circle of the 

Z-plane. Marginally stable (high Q) poles and zeroes on the 

imrnaginary axis of each strip are mapped onto the unit cir-

cle, while unstable s-domain singularities are mapped out-

side the unit circle. Figure 2.l(b) illustrates how the 

stable, marginally stable, and unstable poles and zeroes of 

a particular analog transfer function are mapped to corres-

ponding poles and zeroes in the Z-plane by expressing equa-

tion 2.1.1 in the following manner: 

Let: s. = cr. + jw. 
i i i 

z. = y. + jn. 
i i i 

Then: z. 
i 

s·, (cr·t + J·w~.) = e i = e i ~ 

z. = 
i 

where: 

Thus: y. = (R.)cos(w.,) 
i i i 

n. = (R.)sin(w.,) 
i i i 



8 

+jev 
I S-PLO"llf 

'3~- ---'r' 

~---
,+-....,...;-+---;..-H-+--!-o-++------ ~c:r 

1Y,t-- -

-U---
~ 

('L) 

.t..:iw 
. I 1· I . I. '//'J:iL I/ / /i .. /1,1 

/{/11·: (1/;/: 
f/ .·· !.t.:'. 

I I •• I • : 
' I ' ,' I / ', II/ I i ,' . - ._ - - - - - - - - - -I .. / / / :' / . ,: ;·;;·/; // I ;' , /( .' 1-:1' / ' -· 

/ 1 .· /,1~· ! ·/./// ,' / 
'! . + 

t .J.n. 

Figure 2.1. Pole/Zero mapping by the theoretical S/Z-transformation . 

--~ - -. , I :1' .ft I _jJ.._iJ_ 
,-f .. .. ' '" ~ I " (· : i it j i 

'ti' 

• i 

[ l, 

... I ffJ 

Figure 2.2. Z-domain dominant poles impulse response representations. 
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Note: The only use of the theoretical S/Z-transformation is 

in impulse invariant system designs (section 3.2) where 

poles and zeroes are not necessarily guaranteed to be mapped 

according to equation 2.1.1. 

Figure 2.2 illustrates the impulse response of discrete-

time systems with dominant root locations shown. A similar 

performance of mapping stable, marginally stable, and unsta-

ble s-domain singularities inside, onto, and outside of the 

Z-domain unit circle respectively must be met by any approx-

imate S/Z-domain transformation. 

Analog and discrete-time D.C. gains must satisfy the fol-

lowing equivalence relationship: 

HA (s) I s=O = HD(_Z) \ Z=l 
2 .1. 2 

Equation 2.1.2 is usually satisfied not only by a proper S/Z 

transformation but by an extra adjustment of gain in the di-

gital filter. A generalization of 2.1.2 for highpass, band-

pass, and bandstop filter designs is that analog and digital 

passband gains should be made equivalent; if necessary, by a 

proper adjustment of gairi in the digital filter. 
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~ ~ S/Z-Transformation ~ Numerical  Integration 

The  development  of  bilinear  and  LDI  transformations  may 

be  illustrated  by  considering  an  analog  integration  charac-

terized  by  the  following  transfer  function: 

Y(  s)  1 
H(s)=  -- - 2.2.1 

X(  s)  Ks 

Where  K=  integration  constant 

This  is  equivalent  to  the  differential  equation: 

. 
Y(t) = (1/K)X(t) 2.2.2 

Y(t) = (1/K)J:x(a)da 

In  the  analog  integration·  above  the  width  d6  of  each  succes-

sive  integrating  area  X(6)d6  can  of course be  made  infini-

tesimally  small,  thereby  assuring  high  accuracy  in  the  com-

putation  of the  overall  area  of  the  integral. In 

discrete-time  domain  simulations  of  analog  systems  a  numeri-

cal  analysis  approach  may  be  adopted  for  approximating  suc-

cessive  integrating  areas  with  time-widths  limited  by  the 

size  of  the  sampling  period t of  the  digital  system.  This  is 

illustrated  in  figure  2.3. 

into  the  following  form: 

Equation  2.2.2  can  be  rewritten 
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Y(Kt) IKt-t = (1/K) O X(S)dS + (1/K) IKt X(S)dS 
Kt-t 

2.2.3 

By  adopting  a  numerical  analysis  approach  the  above  equation 

can  be  rewritten  as: 

Y(Kt)= Y(Kt-t) + 2.2.4 

(1/K) f pproximate  area  of  X(t) l 
~ver the  interval:  (Kt-t) ~~~ KJ 

Both  the  midpoint  rectangular  and  the  trapezoidal  rules  to 

be  discussed  differ  in  the  manner  and  the  accuracy  with 

which  they  approximate  the  incremental  area  of  equation 

2.2.4.  In  each  method,  the  accuracy  of  integration  diminish-

es  with  larger  sampling  periods. 

~ ~ ~ Midpoint  Rectangular  Rule  (LOI  Transformation) 

The  incremental  area  term  is  approximated  by  a  rectangle 

as  illustrated  in  figure  2.4,  such  that: 

Y(Kt)= Y(Kt-t) + (t/K)[X(Kt-t/2)) 

taking  the  Z-transformation  yields: 

Y(Z) = Y(Z)Z-l + (t/K)X(Z)z-l/2 

Y(Z)(l  - z-1) = X(Z)(t/K)z- 112 

HD(Z) = ™ = [tJ~z~l~=~ 

2.2.5 

2.2.6 
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compariso~ with  equation  2.2.1  yields  the  LDI  S/Z-domain 

transformation: 

2.2.7 

~ ~ ~ Trapezoid  Rule  (Bilinear  Transformation) 

The  incremental  area  term  is  approximated  by  a  trapezoid 

as  shown  in  figure  2.5  such  that: 

Y(K,)~ Y(K,-,) + (,/2k)[X(K,-,) + X(K,)] 2.2.8 

Taking  the  Z-transform  yields: 

Y(Z) = Y(Z)Z-l + [,/(2K)][X(Z)Z-l + X(Z)] 

Y(Z)(l-z- 1) = X(Z)[./(2K)][z- 1 + 1] 

H  (Z) = Y(Z) = [ •l, ~ + z-~1 
· D x{ZY ~KJ l _ 2-~ 

2.2.9 

.Comparing  to  equation  2.2.1  yields  the  bilinear  S/Z-trans-

formation: 

~ ~ Pole/Zero  S/Z-Domain  LDI  and  Bilinear  Mapping 

2.3.1 Bilinear  Transformation 

Equation  2.2.10  can  be  written  in  the  form: 

2.2.10 
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(2/t)+s 
z= 2.3.1 

(2/t)-s 

Lettings= a+jw and z= Rej¢ we obtain [3]: 

R _ ~2/-c+o) 2 + w2J \ - 2 2 
(2/-c-o) + w 

2.3.2 

2.3.3 

Note from equations 2.3.2 and 2.3.3: 

R > 1 for a > 0 'P = 0 for w = 0 

R = 1 II 0 = 0 'P => .,,. II w => oO 

R < 1 II 0 < 0 'P => _.,,. II w => -oo 

The above results are depicted in figure 2.6. Note that 

the entire left-half s-plane containing stable singularities 

is mapped inside the Z-domain unit circle, the entire jw 

axi·s is mapped onto the unit circle, and the right-half s-

plane is mapped outside the unit circle. 

2.3.2 LDI Transformation 

Equation 2.2.7 can be reduced to the following form: 

Z - (s-c)Zl/Z - 1 = 0 2.J.4 
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Equation 2.3.4 expresses Z as a complex dependent variable 

with s as the complex independent variable. A simple 

closed-form expression similar to equation 2.3.1 does not 

exi·st for equation 2. 2. 7 since for each point in the s-

plane, other than the origin, there corresponds two distinct 

points in the Z-plane. A simple computational procedure has 

nevertheless been developed which maps a desired s-domain 

singularity to the Z-domain, such that equation 2.2.7 is sa-

tisfied [9]. Consider a stables-domain singularity: 

s . = CJ • + jw. CJ • < 0 1. 1. 1. 1. 

Let p = 2112 

By equation 2.3.4: 
2 p - (s-r)P - 1 = 0 2.3.5 

Equation 2.3.5 contains a· stable singularity ,Pj, inside the 

Z-domain unit circle, hence the correct value of Z; corres-

ponding to Sj is: 

Z. = P. 2 
1. 1. 

Where Zj would be inside the Z-plane unit circle. 

A similar illustrative S/Z-domain mapping to that of fig-

ures 2.1 and 2.6 has yet to be developed. Nonetheless, apart 

from a proper pole-zero mapping, any S/Z-transformation 

should map the s-plane jw-axis onto the Z-plane unit circle 

(see section 2.4). Equation 2.2.7 accomplishes this by map-
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ping  sections  of  length 4~/t'along the  s-plane  jw  axis  onto 

the  Z-plane  unit  circle. 

~ ~ Frequency  Warping 

Frequency  warping  results  from  the  nonlinear  relationship 

existing  between  the  analog  frequency  wand  the  discrete-

time  frequency Q which  occurs  with  the  LDI  and  the  bilinear 

S/Z-transformations. 

frequencies Qi's, 

The  distances  between  discrete-time 

are  not  proportionally  maintained  with 

their  corresponding  analog  frequencies, wi's, (see  section 

3.  3). For  the  impulse  invariant  system  design  (section 

3.2),  which  employs  the  theoretical  transformation,  there  is 

no  frequency  warping  effect  as  previously  defined  but  a  li-

near  scaling  of discrete~time frequencies  to  corresponding 

analog  frequencies  which  maintains  a  propotional  distance 

between Wj's as  existed  between Q;'s. This  scaling  for  the 

impulse  invariant  design  is  defined  below. 

W. = f:2./T 
J.  J. 

·2.4.1 

A  proper  S/Z-transformation  should  map  the  s-domain  jw-

axis onto  the  Z-domain  unit  circle  so  that  the  following  re-

lationship  is  satisfied [JJ]: 

HD(ejw.)j = HA(jw) I 
z=l o=O 

2.4.2 
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With this concept in mind, frequency prewarping relations 

can be developed for the LDI and the Bilinear S/Z-transfor-

mation which relate discrete-time frequencies (Q.) with cor-
f 

responding analog frequencies (w; ). 

£·~-l LDI Prewarping Relation 

From equation 2.2.7 we have: 

• = ! { z zi7~] 

in. -r: Substituting Z=e yields: 

s = 

From which: 

s= a+ jw = j(2/t)sin(Qt/2) 

2.4.3 

2.4.4 

Hence, the equivalent analog prewarped frequency, w, of a 

digital frequency, Q, is: 

w= (2/t)SIN(Qt/2) 

£·~·£ Bilinear Prewarping Relation 

From equation 2.2.10 we have: 

s = I .. [z -i] 
t z + 1 

2.4.5 
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Jn~ 
Substituting Z=e yields: 

s = 2 - . 
L 

- lj 
+ 1J 

2.4.6 

s = o +jw = j(2/t)TAN{Qt/2) 2.4.7 

Hence, the equivalent analog prewarped frequency w of a dis-

crete-time frequency Q is: 

w = (2/t)TAN(Qt/2) 

2.5 Bilinear and LDI Switched Capacitor 

Integration/Summation Circuits 

2.5.1 introduction 

2.4.8 

Switched-capacitor (SC) circuits can be developed to im-

plement the LDI and the bilinear S/Z-transformation. Usual-

ly, these circuits will require clock-phased sampling 

schemes when they are interfaced in switched-capacitor fil-

ter (SCF) networks. Before developing switched-capacitor 

LDI and bilinear integrators/summers, a brief analysis of 

the switched-capacitor concept will be considered. Figure 

2.7(a) depicts a switched-capacitor circuit element composed 

of a sampling capacitor Cu and an upper plate parasitic ca-

pacitance Cp. In most implementations, Cp is the most 
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Figure 2.7. Switched-capacitor element: equivalance and implementation. 
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important of the parasitic capacitors to consider in circuit 

analysis since it will drain charge to ground that is in-

tended for transfer to succeeding elements. If Cp is as-

sumed to be negligible, a simple charge analysis of figure 

2.7(a) yields: 

In position (1): q 1= CV1 

In position (2): q 2= CV2 

The amount of charge transfer by switching from position (1) 

to (2) is: 

q= C(V1-V2) 

For a switching rate or sampling frequency (Fs) the average 

current flow is: 

I= C(V2-V1)Fs 

Comparing this current flow to that through a resistor bet-

ween voltages V1 and V2 , the following equivalent 'resis-

tance' relationship can be obtained: 

R= 1/CFs 

This resistor equivalance is depicted in figure 2.7(b) while 

the typical MOS implementation of the SC circuit element is 

shown in figure 2.7(c). 

If Cp is not assumed to be negligible .there is a drain of 

charge to ground during the process in which the circuit 

samples and transfers charge (or signal data) from V1 to V2 . 
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The  total  amount  of  charge  that  is  actually  transferred  dur-

ing  one  sampling  period  Ts  is: 

q = (C + Cp)(V1-V2) 

Accuracy  in  the  processing  of  signals  is  more  critically 

demanding  in  digital  systems  than  in  the  equivalent  analog 

systems  they  are  to  emulate  or  approximate.  Thus,  it  is  im-

portant  that  any  SC  integrator/summation  circuit  configure 

switched-capacitors  in  ways  that  best  diminish  drainage  of 

current  by  parasitic  upper-plate  capacitances.  The  bilinear 

and  LDI  integration/summation  circuits  (depicted  in  figure 

2.8)  accomplish  this  by  having  their  parasitic  upper  plate 

capacitances  switching  between  ground  and  the  virtual  ground 

of  the  negative  inputs  to  the  op-amps. The  SC  circuit  ele-

ment  of  figure  2.7(a) can furthermore  be  looked  upon  as  a 

momentary  storage  device  (or  register  in  digital  electron-

ics)  configured  to  delay  the  transfer  of  signal  charge  (or 

data)  by  approximately  one-half  the  clock  period,  Tc/2,  as 

depicted  in  figure  2.7(d).  It  is  important  to  bear  this  con-

cept  in  mind  when  clock-phased  sampling  schemes  for  SCF  cir-

cuits  are  discussed  in  section  2.6. 

~ ~ ~ Bilinear  Single-Sampled  (BSS)  design. 

The  basic  BSS  SC  integrator  stage  with  an  inverting  sum-

mer is  shown  in  figure  2.8(I),  from  which  it  is  seen  that 
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respective output relations. 
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the sampling period (t) is equal to the clock period (Tc). 

This bilinear integrate~ is a refined version of the Lee and 

Chang integrator (271.· Assuming virtual ground at the nega-

tive input to the op-amp, a charge analysis yields: 

For (K-l)Tc StS (K)Tc: 

0 = (Ck){Vout[(K-l)Tc] - Vout[(K)Tc]} 

(Cx){V 3 [(K-l)Tc] - V3 [(K)Tc]} 

(Cu/2){V 1 [(K-l)Tc - V1 [(K)Tc]} 

(-Cu/2){V 2 [(K-l)Tc] - V2 [(K)Tc]} 

(Cu)V 2 [(K-l)Tc] - (Cu)V 1 [(K-l)Tc] 

Taking the Z-transform yields: 

Vout(Z)Ck(l-z-l) -= V2 (Z)Cu(l/2)(1+Z-l) 

- V1(Z)Cu(l/2)(1+z~ 1) 

- V 3 (Z) Cx(l-z- 1) 

Rearranging leads to the following expression: 

Vout(Z) = zgk -~ ~ ~=~·(V2(Z)-V1(Z)) - ~ •V3(Z) 

where: (i) z= exp(jwt) 

(ii) t= Tc 

2.5.1 

Comparing the integration part of equation (2.5.1) to that 

of equation (2.2.9) we can derive the following relation for 

the capacitor ratio Cu/Ck: 
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Cu '[ Tc 
=-=- 2.5.2 

Ck K K 

The  aliasing  frequency  (Fa)  is  given  as: 

Fa=  Fe 2.5.3 

The  corresponding  prewarping  relationship  is  obtained  with 

the  use  of  2.5.2  and  2.2.1: 

Cu -~- Tc 

~ 
1 

"2clc 2K • = 
Ks 

1  - Z z 

2 

~ s = 
Tc 

• z=ejw-r 

w=  (2Fc)tan[Q/(2Fc)] 2.5.4 

where:  (i)  w  - analog  prewarped  frequency  (r/s) 

(ii) Q - discrete-time  frequency  (r/s) 

(iii)  Fe  -.  clock  frequency  (Hz) 

~ ~ ~ Bilinear  Double  Sampled  (BDS)  Design 

The bas~c BDS  integrator/summation  stage,  first  developed 

by  Ternes C?t al, [J9], is  depicted  in  figure  2.8(II).  This 

integrator  has  one  limitation:  its  SC  inputs  must  be  either 

all  positive  or  all  negative  signals.  A  charge  analysis  of 
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the integrator yields the bilinear transfer function whether 

the input is positive or negative. Arbitrarily selecting the 

positive input configuration, a charge analysis yields: 

For (K-l)Tc StS (K-1/2)Tc: 

(For (K-1/2)Tc sts (K)Tc a charge-analysis yields the same 

results) 

0 = Ck{Vout[(K-l)Tc] Vout[ (K-1/2)Tc]} 

+ Cx{V 3 [(K-l)Tc] - V3 [(K-1/2)Tc]} 

+ Cu{V 2 [(K-l)Tc] + V2 [(K-1/2)Tc]} 

Taking the z-transform: 

Vout (Z) Ck(z-l!Z_z- 1) = v 2 (Z) Cu(z- 112+z- 1)_ 

- ex v 3(Z)(z-l!Z_z- 1) 

Cu ~-ll 2+z-lJ Cx Vout(Z) = CK• -l/Z -l V2(Z) - CK V3(Z) 
Z -Z 

where: (i) Z= exp(jwt) 

(ii) t = Tc 

Since Tc=2Ts (see figure 2.8(II)): 

Z= exp(jw2Ts)= [exp(jwTs) i2 
2 Z{t=Tc}= Z {t=Ts} 

2.5.5 

2.5.6 

2.5.7 
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Substituting 2.5.7 into 2.5.6 yields: 

Vout(Z) = 

Vout(Z) = 

C rl + z-1 Cx ~ • -l _2 ,V2(Z) - CK,V3(Z) z - z 

Cu ~ + z-1 V (Z) Ck • -1 • 2 
1 - Z 

- ~•V3(Z) 

where: (i) Z= exp(jwt) 

(ii) t= Ts= Tc/2 

2.5.8 

2.5.9 

Equating the integration part of 2.5.9 to that of 2.2.9 

yields the following capacitor ratio Cu/Ck relationship: 

Cu t Tc 
-=- -- 2. 5 .10 . 
Ck' 2k 4K 

The aliasing frequency (Fa) is given as: 

Fa= 2Fc 2.5.11 

The corresponding prewarping relationship is obtained with 

the use of 2.5.10 and 2.2.1: 

Cu ~ - z-~ Tc ·~ 1 
CK • 1 + z-1 = 4K = Ks 1 - Z 

s = 4 • 1!1 
Tc ~ 
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w=  (4Fc)tan[Q/4Fc] 2.5.12 

where:  (i)  w  - analog  prewarped  frequency  (r/s) 

(ii) Q - discrete-time  frequency  (r/s) 

(iii)  Fe  - clock  frequency  (Hz) 

Note:  the  aliasing  frequency  is  twice  that  of  the  BSS  (sec-

tion  2.5.2)  and  the  LDI  (section  2.5.4)  integrators. 

The  BDS  integrator  can  also  be  configured  as  a  differen-

tial  integrator.  An  example  of  this  is  depicted  in  the  ter-

mination  stages  of  a  BDS  7th-order  elliptic  lowpass  filter 

shown  in  figure  4.9. 

~ ~ ~ LDI  SC  Integration/Summation  Circuit  Design 

The  basic  LDI  SC  integration/summation  circuit  design  is 

shown  in  figure  2.8(III).·  A  charge  analysis  yields: 

For  (K-l}Tc ~ ~ (K}Tc: 

0  =  Ck{Vout[(K-l}Tc]  - Vout[(K)Tc]} 

+ Cx{V3[(K-l)Tc]  - V3[(K)Tc]} 

+ CuV2[(K-l)Tc]  - CuV1[(K-1/2}Tc] 

Taking  the  Z-transform  yields: 

Ck(l  - z-1)Vout(Z) = Cu(V2(Z)z-1 -Vi(Z)z- 112) 

- Cx(l  -z-l)V3(Z) 

2.5.13 

2.5.14 
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Equation 2.5.14 reduces to: 

2.5.15 

(ii) t = Tc 

Note that V2 exhibits a half cycle delay over Vl and that 
-I 

the function (1/(1-Z )) is not equivalent to that called 

transformation of equation 2.2.6, namely for by the LDI 

( z-112/ ( 1- Z - I ) ) • If, however, a half cycle lead is added to 

V 2 then the SC integrator stage becomes an LDI stage. Thus, 
-1/2 -

setting V2 =V2 *Z yields: 

Cu [z-112] Vout(Z) = clc" -l ~(V2(Z) --V 1 (Z)) -
1-Z 

where: (i) Z= exp(jwt) 

(ii) t = Tc 

·Comparing the integration coefficient of equation 2.5.16 

to that of 2.2.6 we can derive the following relation for 

the capacitor ratio Cu/Ck: 

Cu t 
-=-
Ck K 

Tc 

K 
2.5.17 
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The aliasing frequency (Fa) is given as: 

The 

the 

Fa= Fe 2.5.18 

corresponding prewarping relationship is obtained with 

use of equations 2.5.17 and 2.2.1: 

cu • ~z-1 12 ~ CK 1 - z-1 = 

s = 

Tc ~ r· z 

J0 WT z=e 

w= (2Fc)sin[Q/(2~c)] 

1 = Ks 

2.5.19 

where: (i) w - analog prewarped frequency (r/s) 

(ii) Q - discrete-time frequency (r/s) 

(iii) Fe - clock frequency (Hz) 

2.6 Clock Phasing in SC Ladder Networks 

Unlike the BDS integrator stage, where stored charge or 

signal data in the input switched capacitors is transferred 

for processing to the op-amp on both phases (~ 1 and ~2 ) of 

the clock (see figure 2.8(II)), for the LDI and the BSS 

integrator stages delayed signal data is transferred on only 

one phase of the clock. It then becomes imperative for any 

BSS or LOI SC filter to adopt sampling schemes for transfer-
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ring and processing sampled signal data from the input to 

the output of the circuit. Such schemes, which primarily 

apply to ladder networks of SC integration/summation stages, 

involves proper clock-phased signal-sampling of the stages. 

The clock-phased signal-sampling schemes to be discussed 

have not been mathematically proven to be correct. They are 

primarily based on observations made on switched capacitor 

circuit simulations. 

Both the LOI and the BSS integrator stages can be treated 

as a signal processing unit, P, with inputs either delayed 

or not by a half-clock-cycle time ~ lead of Z as depicted in 

figure 2.9. For the present clock phase, ; 1 , SC charge is 
~ 

delivered to P after a half clock period time delay. of Z, 

while on a ; 2 clock phase· setup, no time delay is added to 

the SC charge delivery. The overall input signal to either 

the LOI or the BOS integrator stages can be any combination 

of positive and negative input signals. There is only one 

restriction: sampled charge of all input signals to an inte-

gration/summation stage, whether or not delayed by a half 

clock period, must be transferred to the processor P simul-

taneously. There cannot be situations where in the same 

integration stage and on the same clock phase some switched 

capacitors are sampling unconnected to the op-amp 
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while others are transferring charge to the op-amp. This si-

tuation is depicted for an example integration stage in fig-

ure 2.10. Here Cul is transferring charge to the op-amp whi-

le Cu2 is unconnected to the op-amp sampling Vl on the same 

clock phase. The op-amp (or processor P) does not receive a 

charge for processing on the same clock phase which is pro-

portional to the difference between the two input signals 

(Vl-V2) but one which is proportional to either one of the 

input signals, depending on the clock phase. There are two 

distinct clock-phased sampling schemes which apply to both 

BDS and LDI SC filter or discrete-time system designs. Both 

schemes will be analyzed by means of a example 3rd order 

leapfrog LDI low-pass elliptic SC filter depicted by the 

signal flow diagram of figure 2.11. 

Clock-phased sampling Scheme I has alternate integ~ator 

stages receiving and processing input data on the same clock 

phase ,with (or without) leading half clock period delays. 

Scheme I as applied to figure 2.11 is depicted in figure 

2.12(a) with the corresponding SC circuit diagram in figure 

2.12(b). For the current clock phase ~1 , P2 receives and 

processes input data (figure 2.12(a)-i) while Pl and P3 wait 

for the next clock phase ~2 to receive and process data 

(figure 2.12(a)-ii). Clock-phased sampling scheme II has 
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all integrator stages receiving and processing input data on 

the same clock phase, with (or without) leading half clock 

period delays, while on the next clock phase they wait while 

the switched capacitors sample input sign~ls or discharge to 

ground. Scheme II as applied to figure 2.11 is depicted in 

figure 2.13(a) with the corresponding SC circuit diagram in 

figure 2.13(b). For a current clock phase ; 1 , processors 

Pl, P2, and P3 receive and process data (figure 2.13(a)-i) 

while on the next clock phase ,; 2 , they all wait while the 

·switched capacitors sample the input signal (figure 

2.13(a)-ii). 
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Chapter III 

DISCRETE-TIME SYSTEM DESIGN STRATEGIES AS 
APPLIED TO SWITCHED CAPACITOR FILTERS 

3.1 introduction 

The purpose of this chapter is to provide and review fun-

damental concepts in discrete-time system analysis and de-

sign which are, or can potentially be, applied to switched 

capacitor system designs . There will first be a review of . 
fundamental discrete-time filter design strategies. Theim-

pulse invariant (II) filter design technique, with its use 

of the ideal S/Z-transformation (equation 2.1.1), will then 

be discussed. This design technique represents the ideal ap-

proach in designing discrete-time filters, since it lacks 

frequency warping effects and it provides a preservation of 

both gain and phase in its S/Z-transformation, for a suffi-

ciently bandlimited analog filter. There has yet to be de-

veloped a switched capacitor realization technique for imp-

lenting II filter designs. Nevertheless, the II filter 

design will here be presented as a means for evaluating the 

design performance of the less accurate bilinear and LOI 

filter design techniques. A discussion of frequency warping, 

classical prewarping, and aliasing effects in bilinear and 

LOI filter designs will then be presented, followed by de-

38 
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sign formulations by Antoniou [ 3] and Constantinides [ 6 ]. 

Finally, a switched capacitor realization approach for im-

plementing bilinear and LDI filter designs using the leap-

frog technique [72] will be presented by way of an example. 

Figure 3.1 illustrates the different design strategies 

which can be implemented in the design of discrete-time fil-

ters. There are 4 main strategies to follow, starting with 

the discrete-time specifications: 

1. Adopt a normalized lowpass filter which best meets 

the discrete-time attenuation characteristics. Clas-

sically prewarp the discrete-time attenuation charac-

teristic at one denormalizing frequency. Obtain the 

denormalized analog filter. S/Z-transform to obtain 

the denormalized discrete-time filter. 

2. Similar strategy to that of 1) except that the nor-

malized low-pass filter is S/Z-transformed to a nor-

malized lowpass digital filter. Using Constantinides 

[ 6] z-domain denormalizing transformations, the de-

normalized digital filter is then obtained. 

3. Prewarp the characteristic frequencies of the pass-

band-stopband transition: the passband edge frequency 

· (Qpe) and the stopband edge frequency (Qse,) (see fig-

ures 3.9(a)-(b)). Derive or adopt the normalized 
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lowpass filter that best meets the prewarped pass-

band-stopband transition (along with the passband 

loss). Obtain the denormalized analog filter and S/ 

Z-transform to obtain the denormalized.discrete-time 

filter. 

4. Similar strategy to that of 3) except that the nor-

malized lowpass filter is S/Z-transformed to a dis-

crete-time normalized lqwpass filter. Constantinides 

z-domain transformations are then employed to obtain 

the denormalized discrete-time filter. 

As will be discussed in section 3.; the frequency warping 

distortions which occur in any S/Z-domain filter transforma-

tion can adversely affect the final attenuation response to 

the extent that a higher order filter design may be required 

to compensate. Strategies 3 and 4 ( with the act~al deriva-

tion of the normalized analog lowpass filter} are in gener-

al the best design schemes to implement. This is because 

they involve the computation of the required filter order 

and filter approximation which best meets the prewarped 

passband edge and stopband edge frequencies for a fixed 

passband loss. Overall, the second best strategy is number 

3 with the required filter approximation adopted from filter 

tables instead of being more accurately derived. As will be 
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discu·ssed in chapter 4, an LDI 8th-order elliptic lowpass 

switched-capacitor (SC) filter was designed, built, and 

tested using this strategy. The third preferable design 

strategy is 1, which was adopted in the design, construc-

tion, and test of a 7th-order bilinear double-sampled ellip-

tic lowpass SC filter as discussed in chapter 4. Adopting 

design strategy number 2 with which a discrete-time filter 

is directly computed without previously prewarping the char-

acteristic frequencies risks too much frequency warping dis-

tortion in the final attenuation-frequency response. This 

is particularly true at low sampling-to-signal frequency 

ratios. 

There are no restrictions involved in adopting bilinear 

or LDI S/Z- transformations with design strategies 1,3, and 

4. The impulse-invariant S/Z-transformation on the other 

hand can create acute aliasing distortion problems in high-

pass,and bandstop filter designs which are best alleviated 

by adopting design strategies which use the Constatinides 

z-domain denormalizing transformations. 
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3.2 Impulse Invariant (II) Design: Freguency Transformation, 

Aliasing Effects, and Design Technigue. 

The following discussion concerns the transformation of 

any s-domain transfer function, HA(s), to its discrete-time 

equivalent, 1i)(Z), 

tion[ 2 8 1. 
Z = eST 

using the theoretical S/Z-transforma-

3.2.1 

Defining the unit-sample response of the digital filter as 

equally spaced samples of the impulse response of the analog 

filter as: 

3.2.2 

the z-transformation is related to the Laplace 

transformation of the hA (n) as [ 28]: 

HD(Z) I · = (1/T) 
Z=esT 

CD 
l HA(s + j((2n/T)K)) 

K=-CD 
3.2.3 

The frequency response of the digital filter can be ex-

pressed as: 

CD 
(1/T) l HA(jw + j((2n/T)K)) 

K=-CD 
3.2.4 

From the discussion of the theoretical S/Z-transformation in 

chapter 2 it can be concluded: 

if 

Then 

HA(jw) = 0 n/T < lwl 3.2.5 

-n/T < w < n/T 3.2.6 
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No practical analog filter is strictly bandlimited. There-

fore, the interference of.successive terms in 3.2.4 creates 

aliasing between successive reproductions of HA(jw) by 
.)Wr H0 (e ). This is depicted in figure 3.2. 

For impulse invariant filter designs the analog frequen-

cies (w) and the discrete-time frequencies (Q) are related 

in the following manner: 

w= Q/t 3.2.7 

The above equation is analogous to the frequency prewarp-

ing relations of the LDI and the bilinear S/Z-tranformations 

with the fundamental difference that the analog and digital 

frequencies in 3.2.7 are in linear proportion to each other. 

With equation 3.2.7 there are no frequency warping effects 

which occur with LDI and· bilinear transformations where the 

proportional differences between frequencies in the analog 

domain are not preserved in the discrete-time domain. For 

this reason, impulse invariant filter designs require the 

same order as their equivalent analog counterparts to meet 

given specifications. Furthermore, for a sufficiently band-

limited filter, or one with small aliasing distortions, 

there are no critical magnitude and phase distortions that 

can exist in LDI and bilinear f1lters (see section 3.~). 

The phase and attenuation loss characteristic of the analog 
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filter is significantly preserved in the digital filter as 

long as the analog filter is sufficiently bandlimited in the 

range: 

-n:Fs < w < 1rFs (Fs - sampling frequency) 

To introduce the concept of impulse invariant (II)· fi 1 ter 

design, consider an analog filter expressed in the form of a 

partial fraction expansion. 

3.2.9 

The corresponding impulse response is: 

3.2.10 

For the equivalent digital filter the unit-sample response 

is: · 

N 
hn(n) = hA(nt) = I A.(e-Sitn)u(nt) 

i=l l. 

Taking the z-transform of 3.2.11 yields: 

HD(Z) = 
N Ai 
l -S·t I i=l 1-e 1. z-

3.2.11 

3.2.12 

Note that though the theoretical S/Z-transformation was 

used to obtain equations 3.2.3 and 3.2.12, the impulse in-
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variant design procedure does not necessarily correspond to 

a mapping from the s-domain to ·the z-domain by that trans-

formation or any other transformation. Note that though the 

Z-domain poles in equation 3.2.12 could have been obtained 

from the analog poles with the use of equation 3.2.1 the Z-

domain zeroes are a function of both the A; 'sand the poles 

of the analog filter. 

Assuming is sufficiently bandlimited over 

-7T/tSwS7r/t, by equation 3.2.6 the corresponding digital and 

analog frequency response amplitudes are related in the fol-

lowing manner: 

3.2.13 

To compensate for the above loss in output gain of the digi-

tal filter as illustrated in Figure 3.2,the gain in the di-

gital filter can be adjusted by a factor oft. The result-

ing equivalent impulse invariant filter of the analog filter 

of equation 3.2.9 is then expressed as follows: 

3.2.14 

The following algorithm as developed by Gold and Rabin-

er[ JJ] and Antoniou[ J] can be summarized and extended in 

the following manner. Consider: 



= KN(s) 
D(s) 
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M 
i (s+S.) . 1 1. 1.= = K N 
if (s+P.) 

j=l J 

3.2.15 

Remark: For a given system to be digitized and to avoid "in-

tolerable" aliasing effects one should assume M:s;N [ J ]. 

For any complex pole (Pj) or zero (S 1 ) in 3.2.15 there 

exists a corresponding complex conjugate pole (Pc) or zero 

( Sd) such that: 

p = p.* C .; 
Sd = S;* 

Let: or HA (jw) = 

where: · 1 ~ 1 
HA (s) = ~ = 11 7TI',° 

1 JJ\S/ j=l s+r j 

M 
H (s) = b = ii l 

A2 N\S/ i=l s+Si 

By partial fraction expansion: 

N C. l _i__ 
. l S+P. J= J 

M D. 
( ) = l 1. 

HA2 s i=l s+Si 

KHA (jw) 
1 

3.2.16(a) 

3.2.16(b) 

3.2.17(a) 

3.2.17(b) 
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Assuming both HA1 (jw) and HA2 (jw) are sufficiently band-

limited over the interval -17'/t~w~1f/t, then by 3.2.6: 

(l/-c)HA 1 (jw) 

(1/ -r) HA2 (jw) 

Therefore: 

~ . J _ ~A1 (jw) z ~A (Jw] - K z~A2 JW 
3.2.18 

Taking then the Z-transform of 3.2.17(a) and 3.2.17(b) 

yields: 

N C·Z N 1 (Z)' 
HD1 (Z) l J = = --rP· D1 (Z) j=l Z-e J 

3.2.19(a) 

M D. Z · N2(Z) 
HD2 (Z) l 1 = = --rS· D2(Z) i=l Z-e 1 

3.2.19(b) 

HD(Z)=ZE1A(s~ 
KN1(Z)D2(Z) 

Hence: = 
N2(Z)D1(Z) 

3.2.20 

For derivation purposes let: 

3.2.21 

where: (t,Q,B,G)= { (l,N,Ci ,P(), (2,M,Di ,S[)} 
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In taking the Z-transform of 3.2.21 two operations may 

arise: 

1) Gj is a simple root, hence: 

7~]- -G·"t" -1 1-e 1. Z 
3.2.22 

... 
2)G; is a complex root where another root G;=G;, Hence: 

B. B. ~ *J 7 s+Gi + s+~t = 

'"7jB. B. j 
LE~i + S~lj 

* B. B. 
l. l. 

-G·T 2 -1 + -G*T 2 -1 1-e 1 1-e 1. 

3.2.23 

* * where: .<B;,B;) and (G;,G;) are complex 

Letting: 

conjugate pairs: 

B; = g; +jh; 
G; = r; +jw; 

Equation 3.2.23 then reduces to: 

~ * B. B. 
l. + l. -'l S+Gi S+G:J - 3.2.24 
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In summary, both equations 3.2.22 and 3.2.24 apply in 

taking the Z-transform of (3.2.17(a)) and (3.2.17(b)) before 

finally computing (3.2.20). 

important point to consider. 

There is however one further 

H0 (Z) may turn out to be un-

stable since some of the roots of N2 (Z) may be located out-

side the unit circle. This problem can easily be overcome 

by replacing the unstable roots in N2 (Z) by their recipro-

cals. For a proof on how this is so see Antoniou[ J ]. Be-

low are some important characteristic of the impulse invari-

ant design method: 

a) Advantage: Phase as well as attenuation loss charac-

teristics of the analog filter are preserved. 

b) Disadvantage: Though it yields good results for low-

pass and bandpass filters (at large sampling-to-signal 

frequency ratios) it may result in unwanted aliasing 

distortions for highpass and bandstop filters. This 

last effect is particularly true at low sampling-to-

signal frequency ratio operations. To counter this 

problem in highpass and bandstop designs, the analog 

normalized lowpass filter may first be transformed to 

a digital normalized lowpass filter by this method. 

The filter is then denormalized with' the use of the 

Constantinides transformations (see section 3.5) 
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3.3 Prewarped Denormalized Frequency Effects and Aliasing 

Analysis of LDI and Bilinear filters. 

Frequency warping distortion effects which are to be ac-

counted for in any discrete-time filter design depend not 

only on the S/Z-transformation used, but also on the adopted 

operating sampling-to-reference frequency ratio. The refer-

ence frequency is the cutoff frequency for lowpass and high-

pass filters and the upper cutoff frequency for bandpass and 

bandstop filters. As discussed in section 3.2 there is no 

frequency warping distortion with the impulse invariant (II) 

filter, and for a sufficiently bandlimited analog filter the 

frequency response of the corresponding II digital filter is 

an aliased version of the analog filter's frequency response 

as depicted in figure 3.2. The phase and the attenuation 

loss characteristic of the analog filter will be preserved 

with the corresponding II digital filter as long as the ana-

log filter is sufficiently bandlimited in the range: 

-nFs < w < nFs 

For impulse invariant designs, equation (3.3.1) defines a 

design constraint on the operating sampling-to-reference 

frequency ratio of the eventual digital filter. 

In constrast, the LDI and the bilinear transformations 

create frequency warping distortions which must be accounted 
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for and which can affect the required order of the digital 

filter along with its attenuation response. The LOI and the 

bilinear prewarping relations as derived in chapter 2 can be 

normalized in·the following manner: 

Bilinear: G1 (K}= Fw/Fs = (l/77'}tan(K17) 

LOI: G2 (K}= Fw/Fs = (l/17'}sin(K17') 

where: K= Fn/Fs 

F.n.= discrete-time frequency (Hz} 

Fw= prewarped analog frequency (Hz} 

Functions G1 (K} and G2 (K} are plotted in figure 3.3 along 

with a reference line of a 1/1 slope. Suppose one were to 

design a digital filter with a passband-stopband transition 

frequency width, d, and with'the frequency response charac-

te.ristic defined by the unbroken line in figure 3.4. With 

the bilinear S/Z-transformation, the characteristic frequen-

cies Fse and Fpe are prewarped to higher frequencies while, 

with the LOI transformation, they are prewarped to lower 

frequencies. The prewarped passband-stopband transition, to 

which the analog prewarped filter must correspond, is small-

er than the transition of the digital filter in the LOI de-

sign and larger in the bilinear design. This is depicted by 

d 1 and d 2 in figures 3.3 and 3.4. As a rule, for a fixed 

passband loss, higher order specifications are required for 
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shorter passband-stopband transitions. Hence, for a fixed 

passband loss, LDI designs r~quire higher order filter spe-

cifications to meet shorter passband-stopband transitions 

than corresponding bilinear designs. In actual filter im-

plementations where the filter order must obviously be an 

integer number, an LDI filter design may be of higher order 

than its corresponding bilinear design. Figure 3.5 depicts 

more graphically the changes in the characteristic prewarp-

ing curves at different sampling frequencies, Fs, for a fix-

ed operating frequency window. Note that the region of fre-

quencies at wich a digital filter can be prewarped decreases 

for lower sampling-to-characteristic frequency ratios. It is 

tempting to conclude from the results of figures 3.3 and 3.5 

that the bilinear design is the best design approach since, 

unlike the LDI design, the ·required filter order decreases 

to meet larger prewarped passband-stopband transitions for 

smaller sampling-to-characteristic frequency ratios. Howev-

er, in actual implementations, the lower the required filter 

order the more difficult it is to meet a desired passband 

loss criteria. 

With classical prewarping the digital filter is obtained 

by first deriving the corresponding prewarped analog filter 

which is denormalized to the desired (prewarped) frequency. 
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The prewarped analog filter is then S/Z-transformed into the 

desired digital filter. The chosen denormalizing frequency 

critically determines the shape of the final digital fil-

ter's frequency response. Figure 3.6 illustrates the effect 

on the frequency response of an elliptic 3rd-order lowpass 

SC filter denormalized at three different frequencies. For 

this particular example denormalizing at 3kHz provided the 

best emulation of the corresponding analog filter's frequen-

cy·response with a near-perfect location of the notch. At 

two sucessive lower denormalizing frequencies, the frequency 

response progressively degrades. This is manifested by a 

shift to higher frequencies of the notch and cutoff frequen-

cies along with a slight increase of the stopband loss. 

This is not a consistent· response for all filter designs. 

In chapter 4 a similar analysis is performed for a BDS 

7th-order filter whose passband-stopband transition deterio-

rates at larger denormalizing frequencies. It is because of 

this inconsistency of classical prewarping that it is always 

preferable to adopt the alternative approach of prewarping 

the passband-stopband transition edge frequencies and then 

determining the order and the filter approximation which 

best meets the prewarped transition. After S/Z-transforming, 

the desired passband-stopband transition is ensured. The 
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Antoniou filter design formulations discussed in the next 

section.are based on this design criteria. 

An important topic to consider is the 

incurred in digital filters or any other 

aliasing effects 

type of digital 

systems operating with different time-varying input signals. 

Aliasing effects, as applied to SC filters, are best demos-

trated with the aid of an example. Figure 3.7 illustrates 

the effect on the frequency response of a 3rd order ellip-

tic SC lowpass filter as the aliasing point shifts to lower 

frequencies for smaller clock-to-cutoff frequency ratios 

(Fs/Fco) of 25, 10, and 5. The greatest attenuation degra-

dation occurs at the stopband which shifts to smaller values 

of attenuation loss for lower Fs/Fco ratios. At the same 

time, the notch shifts in· position and eventually disappears 

while the passband losses its equiripple characteristic. 

A conclusion that can be drawn from the above prewarped 

denormalizing frequency and aliasing effects analysis is 

that it is always better to design for high clock-to-operat-

ing frequency ratios. In realizing an active filter design 

there are nonetheless upperbound limitations on the Fc/Fco 

ratio. Dynamic characteristics such as slew rate and set-

tling time of circuit components (i.e. opamps, switches, 

etc.) can limit the operating frequency of the clock. This 
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Fs/Fcr, = 10 
Fs/Fco = 25 

~c ... -~c-----..----------------.-- zo.c~ ,a.cc 60.ao so.a: 100.::J izo.oo 
FREQ IN HZ SC~LE LIN •d:J 

Figure 3.7. frequency response of an LOI 3rd-order el I iptic lowpass 
switched~~apacitor filter operating at three seperate 
Fs/Fco ratios. 
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Figure 3.8. Zero and Pole locations of a representative transfer 
function (H(S)) and corresponding loss function (L(S)). 
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is particularly true when the operating frequency window of 

the filter is in the megahertz range for example. 

3.4 Extended Antoniou Design Formulations~ Prewarping 

Passband-Stopband Edge Frequencies. 

Antoniou [ 3] reviewed formulations for digital filter 

design based on prewarping passband-stopband edge frequen-

cies using the bilinear transformation. Here the formula-

tions are extended to include the LDI and the impulse-invar-

iant filter designs as well. 

3.4.1 Basic Concepts 

The following concepts are of fundamental importance: 

a.Transfer Function (H): 

Vo-output j Vi-input 

s-domain: H(s)=Vo(s)/Vi(s)=N(s)/D(s); s= o+jw 

z-domain: H(z)=Vo(z)/Vi(z)=N(Z)/D(Z)j z=es' 

Ts-sampling period 

b.Loss function(L): 

s-domain: L(-s 2 ) = D(s)D(-s) 
N(s)N(-s) 

In the frequency domain: 

s-domain: L(w2 ) 
1 = H(jw)H(-jw) 

Z-domain: L(Z) = D(Z)D(Z-l) 
N(Z)N(Z-l) 
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= D(ejw.)D(e-jw.) 
N(eJW•)N(e-JW•) 

Remark: zero-poles-domain plots of Hand L for a typical 

system are depicted in figures 3.8(a) and 3.8(b). 

c.Loss attenuation (A): 

s-domain: A(w)=201og Vi(~w) Vo(Jw) 

Vi(ejw.) = 201og -
Vo(ejw.) 

= 201oglL(ejw.)I 

d.Phase shift (8) and group delay (t): 

s-domain: 8(w)=arg{HA(jw)} 

t=-d8(w)/dw 

z-domain: sew>= ar9{"A(Jw)J 

't=-d8(w)/dw 

= 201og 
HD(eJW•) 

1 

Figure 3.9 illustrates the typical attenuation (-A) ver-

sus frequency(~) characteristics of lowpass (LP), highpass 

(HP), bandpass (BP), and bandstop (BS) filters and with them 

lets define the following characteristic frequencies and 

loss magnitudes: 

s-domain: ~=w ; Z-domain: ~=Q 

passband edge: ~pe = ~iQpe 

stopband edge: ~SC? = ~eJQsc.> 
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(For Butterworth and Tschebyscheff filter approxima-

tions the cutoff frequency is the passband edge fre-

quency. For Jacobi-Elliptic filter approximations the 

cutoff frequency (cf,) is defined as: ¢ = "V ¢pe,¢se 

passband loss:Ap 

stopband loss:As 

Any transfer function (analog or digital) will character-

ize a stable, causal, and realizeable network if the follow-

ing constraints are satisfied: 

1. It must be a rational function of S (or Z) with real 

coefficients. 

2. Poles must lie in the left-half S-plane (or inside 

the Z-plane unit circle). 

3. The degree of the numerator polynomial must be equal 

to or less than that of the denominator polynomial. 

3.4.2 Digital Filter Design Formulations 

Figure 3.9(a)-(d) depicts together with the passband and 

stopband attenuation loss parameters Ap and As the charac-

teristic frequencies used in any type of filter design. 

There are certain upper bound restrictions on the normalized 

lowpass stopband edge frequency (ws~n) with respect to the 

normalized lowpass passband edge frequency (wpen) and these 

are listed on tables 3.1 and 3.2 for all four types of 



TABLE 3.1. Lowpass and llighpass Filter Parameters (3]. 

(wPEln relations are presented in Tables 3.3, 3.4, and 3.5). 

Filter wsEln 
). and K for Both LP and HP Filters 

0 
Type LDI Bilinear 

w I < ~PEln WPE I •T w I •T 
LP A = n s >. ... PE n s 

SE n - K 2sin(nPE •T/2) 2tan('2PE •T/2) 0 

HP wsEln s wPEln°Ko K 
sin(nPE ·T/2) 

K 
tan(nPE ·T/2) 

= 
sin(nsE·T/2) 

= tan (n.SE •T8 /2) 0 0 

Impulse 
Invariant 

TswPEln ). = 
OPE 

K 
QPE 

=-
0 nSE 

<n 
.p. 



Parameters 

K a 

~ 

K 
C 

Kl 

K2 
-

., 
TABLE 3.2. Bandpass and Bandstop Filter Parameters [3]. 

(wPEln relations are presented in Tables 3.3, 3.4, and 3.5). 

Filter 
wsEln Type w B 0 

2~ { WPEln'Ki if Kc~~ 2K 
BP w --- wsEln ~ 

B = . a 
0 T TswPEln s ·WPE1n1K2 _if Kc < ~ 

BS 
2~ { WPEln·K2 if Kc~ KB 

B = 
2KawPEln 

w =-- w I ~ 0 T SE n I • K ,, if K < K T s wPE n l C B s 

Impulse 
Invariant LDI Bilinear 

(nPE2- 11PEl)/ 2 . [llPE2•T9l [OPEl•T 8l sin 2 - sin 2 
[ llPE2 •T8 l [ °rEl •T8 l tan 2 - tan 2 

('1PE1°0PE2)/ 4 sin 
11PE1°Ts 

X sin 
11PE2°Ts (0PE1°Ts (0PE2 ·Ts 

2 2 tan 2 X tan 2 

(nSEl 011SE2)/ 4 
f 0sEl ·Ts (nsE2°Tsl tan I nSEl 0 Ts nSE2°Ts 

sin 2 X sin 2 2 X tan 2 I 
2Kaf2SE1 Ka sin(nSEl·Ts/2) Ka tan(nSEl·Ts/2) 

4~ - n§El Kb - sin2(nSEt ·Ts/2) ~ - tan2(n •T /2) SEl s 
2Kaf2SE2 Ka sin(nSE 2•T8 /2) Ka tan(nSEZ•T 8 /2) 

n~E2 - 4Kb sin2(n •T /2) - ~ SE2 s tan 2(nSE2·Ts/2) - Kb 

O'I 
U1 
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filters. Also listed in these table are the denormalizing 

coefficients X (for LP and HP) and B (for BP and BS) whose 

use will be explained shortly. These tables by Antoniou 

[ J J have been extended to include not only the original 

bilinear transformation design case but the LDI and the im-

pulse invariant transformation designs as well. 

For the Butterworth, Tschebyscheff, and Jacobi-Elliptic 

filters, design formulations of required filter order (n), 

selectivity factor (k), and normalized lowpass passband edge 

frequencies (wpen) are presented in tables 3.3 through 3.5. 

With the use of n,k, and wpen Butterworth, Tschebyscheff, 

and Jacobi-Elliptic normalized lowpass filter approximations 

can be derived with the use of algori'thms presented in Ap-

pendix A. Table 3.6 lists the transformations necessary for 

obtaining any denormalized lowpass transfer function· with 

the use of parameters X and Bas defined in tables 3.1 and 

3.2. The denormalizing operation is defined below: 

Hx(s)= Hn(s) 

· s=Fx( s} 

where: x= LP,HP,BP,BS 

Table 3.7 summarizes the transformations necessary for 

obtaining any denormalized discrete-time transfer function 

from the denormalized analog transfer function (Hx(S)) by 

means of: 



TABLE 3.3. lluturwonb Filter DHip [3 ) 

Loi D 
1l t ztoa Cl/1:> 

L1' 

11P 

!IP 

115 l 111:z if 1:c a. 'a 
I: • 

111:i if 1:c < 'a 

where 
. o.u. 

D • 10 - l o.u 
10 P - l 
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TABLE 3.4. Tacllebyacbdf Filter Deaip. [3 I. 

coab-l (iD) 
II ?. -1 

coab (1/1:) 

~111. l 

t.1' 

11P 

!IP 

o.u 
10 8 - l 

D • O.U 
10 P - l 

· 115 l 111:z if 1:c ?. 'a 
J: • 

111:i u 1:c < s:, 

TAIILE 3,S, Jacoby-Elliptic Filters ( 3 ] , 

I: "'pz I 11 > Lo5 l6D lOO,lA• - l 
a. - Log 1/q ; D • O.U 

Ll' J:o ti"" 10 p - l 0 

BP 1/1:0 1,rr:-a r .. ~ 
'i u s:c t 'a ti;' I 1[1-,r] 11P ... 

q ·- ---
l:z u s:c < 'a ·~ a 2 l+,ii" 

BS 
111:z u 1:c t 'a lltii° 

q • q + 2q 5 + 1Sq 9 + 1SOq 13 
111:i u 1:c < 'a 1/•ii:' 

o a a o 
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TAI~ I.I•: 3.6. Dl•normalb:lng Rclatlonu [3]. 

X fx(S) 

LP " s 

Ill' >.rs 
? 

1 ( lll - ) 
BP s + ~ 

B s 

BS 
BS ., 

+w 2 s .. 
0 

TABLE 3.7. S/Z-Transformations. 

w Pw<z) 

1 1 - z-1 
LDI --=--T -1/2 s z 

Bilinear 2 1 - z-1 -
Ts 1 + z-1 



69 

Hox(Z) = Hx(s)I 
s=Pw(Z) 

where: w= LOI, Bilinear 

x= LP,HP,BP,BS 

(Section 3.2 discusses the impulse 

invariant S/Z-domain transformation.) 

3.5 Constantinides Transformations 

A.G. Constantinides [ 6] proposed a set of Z-domain rela-

tionships for transforming any normalized lowpass discrete-

time filter with a passband-edge frequency Qpen into a de-

normalized lowpass, highpass, bandpass, or bandstop digital 

filter. The classical digital filter design procedure as 

depicted in design path (a) in figure 3.10 starts with the 

normalized analog lowpass· filter (~~S)) which is denormal-

ized to a LP, HP, BP, or BS analog filter and which in turn 

is transformed into its equivalent digital filter. By Con-

stantinides approach (design path (b)) the normalized analog 

lowpass filter is first transformed by whatever S/Z-trans-

formation is selected into a normalized digital lowpass fil-

ter (HOn(Z)): HOh(Z) is then transformed into the desired 

denormalized digital filter. 

Table 3.8 presents Constantinides [ J] transformations 

that can be used to obtain the denormalized LP, HP, BS, and 



Deno rma I I zed 
analog filter 

Ho.( s) 
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Filter Specifications 

(a.) 

Norma I ized 
analog filter 

H"Js) 

Deno rma I i zed 
discrete-time 
fi I ter 

H0 ( Z) 

(b) 

Norma Ii zed 
discrete-time 
filter 

H.,,.,(Z) 

(o..)- Classica I design 
path 

(b)-Constantinides 
design path 

Figure 3.10. Classical and Constantin ides discretA-time filter design 
strategies. 
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TABLE 3.8. Coastantinides Transformations (6), 

Trana formation 
Filter !-c:-;(Z-1)- Tranafonation 

Type X -----::=-1.--:il 
-1 a• sin f<O,zln;'\tz>Ts} 

-1 Z - a LowpaH z • -1 i (0,1ln+n,!)Ts} 1 - aZ 
8 n I 2 

~-1 + a~ 
~<np1ln-t1p1>T•} 

2 Highpaaa 
- 1 + az- 1 a·- j<0,1ln +f\.1>Ta } 

coa 1 2 

[ -2 ~It -1 K-1] {(~2+n,11>Ts} cos 2 
Bandpaaa 

Z - i+f Z + K+l 
a• • coa111 T - !:!. z-2 - 2ecK z-1 + 1 {(QP!2-0,!l)Ts} o s 

lt+l K+l coa 2 

f(QP!2-nP!l)Tsl 
It• cot 2 1 tan [ nnl; ·T. ] 

-2 2a -1 1-K a - cos f(nPE2~P!l)T·} • z -1+1tz +I-ii 
cos1110 Ts Bandpaaa 1-K z-2 _ 2a z-1 + 1 {(nP!2+n,El)Ts} l+K l+K . cos 2 

' 
{(QP!2-nP!l)Ts} ( °rzln·T.) It • tan 2 tan 2 

where: OP!• desired cutoff frequency 

nP!l • lower cutoff frequency 

np12 • upper cutoff frequency 

nP!ln • normalized digital lowpaas cutoff frequency 
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BP Z-domain transfer function from the normalized Z-domain 

lowpass transfer function by means of: 

Hnx<z-1) = HDn(z-1) 
z-l = FJZ-l) 

where: x= LP,HP,BP,BS 

The advantage of the Constantinides transformation proce-

dure are: 

1. It can be applied regardless of the design procedure 

used in obtaining the digital normalized lowpass fil-

ter. 

2. In transforming denormalized s-domain highpass and 

bandpass filters to their Z-domain equivalent by the 

impulse invariant design technique (section 3.2) ali-

asing distortions are acute. By Oppenheim and Schaf-

er [ 28] this effect is best compensated with the use 

of Constantinides transformations. 

3. It offers a fine-tuning feature for adjusting the de-

normalized passband edge frequencies of lowpass and 

highpass filters by varying a, while for bandpass anq 

bandstop filters the lower and upper passband edge 

frequencies can be fine-tuned by varying a and K 

[ 6 ] . 
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3.6 Bilinear and LDI S/Z-Transformation Realization 

Using the Leapfrog Design Technique 

In the construction of bilinear and LDI filters various 

techniques have been developed for realizing the S/Z-trans-

formation. The leapfrog design technique, first developed by 

Girling and Good [ 72 ), is the most popular approach for re-

alizing bilinear and LOI S/Z-transformations. This techni-

que generates a signal flow diagram, composed of signal gain 

and integration branches, of a passive LC filter. These sig-

nal integration branches can then be replaced by correspond-

ing SC integration circuits such as those depicted in Figure 

2.8 j thus realizing the desired S/Z-transformed digital fil-

ter. What this technique requires is a passive LC prototype 

of the prewarped analog filter. The Leapfrog design techni-

que will be presented here for a lowpass design case. This 

filter design method cannot be implemented in switched capa-

citor impulse invariant filter designs unless impulse invar-

iant integration circuits are first developed. 

A. normalized 3rd-order lowpass passive LC filter corres-

ponding to the frequency response of figure 3.11 is depicted 

in figure 3.12. Suppose a denormalized LOI SC lowpass fil-

ter with similar attenuation frequency response characteris-

tics is desired but denormalized at a cutoff frequency (Fco) 
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l j __ _ 

o.o-,,uJs 
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27.e"t dB 
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Figure 3.11.  3rd-order  elliptic  normalized lowpass filter 
attenuation-frequency  response. 

L2l'I .. o.'leee H 
R..1 = 1.n. 

0 ~~  I J 
• 
+ 

v." -
C2.ll= o.11q&p 

R:a.= VouT 
C:1,,= o.•U.6 l.F Cu,=0~26ZF 1.A 

Figure  3.12.  Normalized  3rd-order  el  I iptic lowpass LC  filter. 

La ~L 
R1 :to J:1 , 

v.+ 1~: I R1 = R,: '1..!'l.. 
+ -r Vo- ·+ + 

1 C!. = MC!. ~6 ~u: c, 
v,,. c,T ~ Vout C'2..: '2.4'. 2. ! MF 

3-I Ri C3=1'1"!.:3'6 .MF 

• La= 160.0 MH 
• 

Figure  3.13.  Oenormal  ized  3rd-order  el  I iptic lowpass LC  filter. 
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of lKhz and operating with a clock frequency (Fe) of lOKhz. 

For LDI circuit real~zations, the effective sampling fre-

quency (Fs) equals the clock frequency j hence the effective 

sampling-to-cutoff frequency ratio is: 

Fs/Fc = 10 

A denormalized prewarped analog lowpass filter must first 
\ 

be derived having prewarped characteristic frequencies cor-

responding to the discrete-time characteristic frequencies 

of the final digital lowpass filter. To achieve this the 

classical approach of prewarping the filter attenuation 

characteristic at one frequency is arbitrarily selected. 

From the frequency analysis presented in section 3.3., the 

filter is chosen to be prewarped and denormalized at the cu-

toff frequency. The prewarped denormalizing frequency value 

is computed as follows: 

Given Fs = lOkHz; Fco = 1.0kHz wnco = lr/s 

Ts= 10- 4 

wDn = wPw/wnco = (2/Ts)sin[(2~FcoTs)/2]/wnco 3.6.1 
w = 6180.4 3.6.2 

With the use of well known element denormalization rela-

tions, the following denormalized element values of the de-

normalized prewarped LC prototype of figure 3.13 are ob-

tained: 

Cl=l49.862 l,IF 



C2=24. 205 µF 

C3=149.862 µF 

L2=159.991 µH 
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A node voltage analysis of figure 3.13 yields the following 

equations: 

ID I2 - (V1-V3)SC2 

CI0-I2) 
V1= + 

S(C 1+C2 ) 

I2 + (V1-V3)SC2 - V3SC3 

(I2-!4) 
V. - + 3- S(C 2+C3 ) 

I2= (V1-V3)/SL2 

Io= (V,n -V 1) /R 1 

!4= V3/R2 

V1SC1 

C2 

C1+C2 

- !4 

C2 

C2+C3 

= 

V3 

= 

V1 

0 

0 

3.6.3 

3.6.4 

3.6.5 

3.6.6 

3.6.7 

Equation 3.6.3 and 3.6.4 can be modeled as branches of 

capacitors and voltage-controlled voltage sources in series 

as depicted in figure 3.14. The Leapfrog signal flow dia-

gram representing equations 3.6.3 through 3.6.7 above is 

depicted in figure 3.15. Here parameters X1 and X2 are de-

fined as: 

C2 C2 
X1= = X2= = 0.13906 

C1+C2 C2+C3 
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Figure 3.14. Circuit equivalence diagram corresponding to 
equations 3.6.3 - 3.6.7. 

, -:r.. , + 1. I. I 
I 

-.1 

1 
S L;a. 

I' 3 -~ 

,figure 3.15. Leapfrog signal flow diagram of fi91Jre 3.14. 
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For SC filter construction purposes the bottom current-

.specified nodes of figures 3.15 must be converted to vol-

tage-specif~ed nodes. This i·s readily achieved by multiply-

ing and dividing incident branches to these nodes by an 

arbitrary resistor, Rs, as shown in figure 3.16 while main-

taining gain equivalence throughout. Rs (along with R1 and 

R2 ) is then set to ln. Before replacing the integrating 

branches of figure 3.16 by the LDI SC integrating/summation 

stage of figure 2.8(III) there is the problem of positive 

summation branches which the LDI SC circuit cannot implement 

without the need of inverters. Unlike the inverting summer 

in figure 2.8(III) the integrating branches incident on 

nodes V1 and Va receive positive summing signals through 

gain paths X1 and X2 • This problem may be solved by negating 

a node in contact with the summing paths X1 and X2 , thereby 

making these paths negative summing signals. In this exam-

ple, node Va was negated and the resulting leapfrog flow di-

agram is shown in figure 3.17. The resulting voltage equa-

tions for nodes V1 , V2 , and V2 are: 

Vo-V2 C2 * V1= Va 3.6.8 
S(C1+C2) C1+C2 

* V2-V4 C2 
Va= V1 3.6.9 

S(C2+Ca) C2+Ca 
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+1 
(>i) 

\/. ' 3 

-i. 

+1.. Vout' 

(:Z:4') 
v .. 

Figure 3.16. Leapfrog signal flow diagram of figure 3.15 with 
bottom current nodes converted into voltage nodes. 
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tj 1 
S(c,+-ca.) 

+1 -1 

V/ 
-1 

v2.. 

1 

V' ] 

+1 

-j 

v' <1 

Figure 3.17. Leapfrog signal flow diagram of figure 3.16 with 
node V3 negated. 
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Note that since the path to Vout from V3 is negative, 

Vout is now 180 degrees out of phase with respect to Vin. 

For filtering purposes this is not relevant, but if need be 

Vin can always be negated to compensate for this phase 

shift. To do this Vin can simply be sampled as a negative 

signal. Taking the LDI S/Z-transformation of 3.6.8 through 

3.6.10 and comparing to the LDI integration/summation format 

of equation 2.5.16 the following capacitor relations for 

each of the integration stages of the final digital filter 

are obtained: 

Cui Ts 
CKi = = 0.5745 C1+ C2 = X1 = 0.139 

Cu2 Ts 
~ 

= L2 = 0.625 

Cu3 Ts 
"Clcs = C2+C3 = 0.5745 = X2 = 0.139 

An inherent advantage of switched capacitor circuits is 

now evident in that the capacitor values can be made small 

while maintaining the desired capacitor _ratios. Arbitrarily 

selecting all the sampling capacitors (Cu's) to be 1.0nf re-

sults in the follwing capacitor values: 

Cu 1 = 1. Onf 

Cu2 = 1.0nf 

Ck 1 = 1.7407nf 

Ck2 = 1.60nf 

Cx 1 = 0.24205nf 

Cx2 = 0.24205nf 
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CU3 = 1.0nf Ck 3 = 1.7407nf 

A clock-phased signal sampling scheme must now be chosen 

for the filter of figure 3.17 and, in addition, all sampling 

capacitors of each integrating stage must discharge and 

transmit signals to the opamps at the same time. Both signal 

sampling Schemes I and II (see chapter 2) were adopted for 

the filter of figure 3.17 and identical attenuation frequen-

cy responses for both case were obtained when simulated on 

DIANA [36] as depicted figure 3.18. Arbitrarily applying 

Scheme I to figure 3.17 results in the circuit of figure 

2.12(b)for which a DIANA simulation is depicted in figure 

3.19. Notice the aliasing effect which occurs at lOkHz. 

One final note: due to the equally terminated resistances 

(R 1 and R2 ) in figure 3.13, the de gain of both the analog 

and the digital filter is 0.5 (-6.0db). To compensate for 

this loss in gain the magnitude of the sampled signal from 

Vin can be doubled by doubling the value of Cu 2 in the cir-

cuit of figure 2.12(b) from 1 to 2 nf. 
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zo.oo .olO.co so.co ea.co 1bo.oo ,zo.co 1..0.00 1so.oo 
FREQ· IN HZ SCALE LIN •10 

Figure 3.18. Attenuation-frequency response of the ·switched capacitor 
fllter corresponding to the leapfrog signal flow diagram. 
of figure 3.17 when implementing clock-phased signa1-sampl ing schemes- I or 11. 
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Figure 3.19. Attenuation-frequency response of the 3rd-order switched 
capacitor elliptic lowpass filter or figure 2.12(b), 



Chapter IV 

BILINEAR 7TH-ORDER AND LOI 8TH-ORDER SWITCHED 
CAPACITOR LOWPASS FILTER COMPUTER AND TEST 

RESULTS 

!-! Introduction: Objectives and Design Strategies 

The experimental performance of the bilinear and the LOI 

switched capacitor (SC) filter design in meeting an arbi-

trary elliptic lowpass attenuation-frequency response were 

compared by means of computer simulations and test results. 

Both a BSS and a BOS filter design were evaluated and com-

pared by means of computer simulation with the intent of se-

lecting a bilinear filter for experimental testing alongside 

the LOI filter. 

For the BSS and the· BOS designs the following design 

steps were taken: 

1. Select a normalized lowpass passive LC filter with an 

attenuation frequency response that best matches the 

desired ~ttenuation frequency response of the final 

digital filter. (Nominally it is the prewarped fre-

quency response of the digital filter which should be 

matched. Nonetheless, no readily available algorithm. 

was available at the time for obtaining the prewarped 

frequency response during the bilinear filter design 

stage.) 

83 



ed: 

84 

2. Obtain the denormalized lowpass passive LC filter by 

means of inductor and capacitor denormalization using 

prewarped denormalizing frequencies. 

3. Derive the leapfrog signal flow diagram (LSFD) of the 

denormalized analog filter. 

4. Obtain the equivalent switched capacitor filter by 

replacing the integration/summation branches in the 

LSFD with equivalent SC integration/summation stages. 

For the LDI design the following design steps were adopt-

1. Prewarp the desired passband-stopband transition edge 

frequencies Qp~ and Qse (see figure 3.9). 

2. Obtain the required elliptic filter approximation and 

filter order which meets the desired passband loss 

and prewarped passband-stopband transition edge fre-

quencies. (Even in the remote case where the re-

quired filter order is an integer, the resulting 

stopband loss of the filter approximation is unlikely 

to match the desired stopband loss.) 

3. Select a normalized lowpass passive LC filter with an 

attenuation frequency response that best matches the 

attenuation frequency response of the computed pre-

warped filter approximation. 
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4. Adopt design steps 2 through 4 as applied to the BSS 

and BDS filter designs above. 

For the LDI and bilinear filter designs the following 

clock-phased signal-sampling schemes were evaluated with the 

intention of selecting one for implementation: 

1. Scheme I: Alternate SC integration/summation stages 

in the ladder filter structure connect and receive 

signal charge for processing from their input 

switched capacitors at a common clock phase. 

2. Scheme II: All SC integration/summation stages in 

the ladder filter structure connect and receive sig-

nal charge for processing from their input switched 

capacitors at a common clock phase. 

As will be explained in section 4.3, no clock-phased signal-

sampling scheme was necessary for the BDS filter design. 

4.2 Elliptic Lowpass Digital Filter Specifications, Required 

Order, and Prewarped Analog Filter Approximations 

The following specifications were selected to be met by 

BSS, BOS, and LOI SC filter designs. 

a) Filter type: Jacobi-elliptic 

b) Passband attenuation loss (Ap) = 0.03 dB 

c) Stopband attenuation loss (As)= 82.11 dB 
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d) Passband-edge frequency (Fpe),(cutoff) = 1.0 kHz 

e) Stopband-edge frequency (Fse) = 1.8361 kHz 

f) Clock frequency (Fe)= 10 kHz 

Hence: Clock period (Tc)= sec 

The effective sampling period (Ts), and the sampling-to-cu-

toff frequency ratio (Fs/Fco) of the BSS, BDS, and LDI de-

signs are listed below. 

( BSS) : Ts = 10-4 sec . Fs/Fco = 10 I 

-4 
(BDS): Ts = (O.S)xlO sec • Fs/Fco = 20 I 

(LDI): Ts = 10- 4 sec Fs/Fco = 10 

With specified values of Ts, Qpe, and Qse, values of de-

normalizing constants (X) and required filter order (n) were 

obtained by means of tables 3.1 and 3.5. With n defaulted to 

an integer, and with the specified stopband lo.ss (Ap), the 

normalized transfer function (Hn(s)) (in biquadratic sec-

tions) corresponding to the required prewarped filter ap-

proximation was derived using the elliptic filter algorithm 

presented in Appendix A. With the use of the computer pro-

gram ANT (see Appendix A) values of X, n, and parameter va-

lues of Hn(s) (as defined below) were computed and the re-

sults are listed in table 4.1. 

Hn(s) 4.2.1 
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Table 4.1. Required and Adopted Order, Denormalizing Constant, 
and Parameter Values of the Analog Normalized Lowpass Transfer 
Function Of the BOS, BSS, and LOI SCF Elliptic Lowpass Filter. 
Component 
Order 

Requl red 
Adopted 

Denorma I i z Ing 
Constant p .. ) 

Hn(S) Parameters 
Ko 

()o 

A01 
A02 
A03 
A04 

801 
802 
803 
804 

811 
812 
813 
814 

r 

Single-Sample Double-Sample 

6.6266 6.8947 
7 7 

0.0010875 0.0011533 

0.0003418 

0.3623649 

9.4952748 
3.1051775 
2.0926430 

0.2333963 
0.4349581 
0.5732057 

0.6180851 
0.3795791 
o. 1235172 

0.0005647 

0.3801434 

8. 7180491 
2.8797424 
1.9554543 

0.2549870 
0.4682642 
0.6107634 

0.6420791 
0.3863048 
0.1238044 

Hn(S)= Ko 1T---s_+ __ A_o_1 __ _ 
Do(S) S + Bli*S + BOi 

i:r 
r= S 3 Bi I i nea r 

l 4 LOI 

Do( S )= ( ~ + a'o 

( BOS and BSS) 

Bilinear (BOS and BSS) 
LOI 

LOI 

7.1601 
8 

0.0001218 

0.00001643 

38.677578 
5.027823 
2.412923 
1.822132 

0.143306 
0.309524 
0.507527 
0.626183 

0.663891 
0.509158 
0.296805 
0.094930 



where: r= ~ BDS 

LDI 
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and D0 (s)= 
BDS 

LDI 

As expected from the analysis presented in section 3.3, 

the required filter order of the LDI design is larger than 

the other two equivalent bilinear designs. Note that despite 

the fact that the sampling frequency of the BDS design is 

twice that of the BSS design, the latter design requires a 

lower order filter. Recall that in most digital systems a 

high clock operation ensures a better approximation of equi-

valent analog systems. Considering the shape of the charac-

teristic bilinear frequency prewarping curve in figure 3.3 

as a function of Fs/F it is to be expected that by having a 

Fs/F ratio twice that of the BDS design, for all frequencies 

F, the BSS design will require larger passband-stopband 

transition widths than the BDS design. Hence, the required 

theoretical order of the BSS design to meet large transition 

widths is smaller than the BDS design. 

The prewarped denormalized lowpass analog filter, 

HA (s),from which· the digital switched capacitor filter is 

obtained is derived as follows: 

HA (s) = Hn(s) 4.2.2 

s = Xs 
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To obtain the switched capacitor equivalent of HA (s), by 

means of the leapfrog design technique and analog-to-SC 

integration/summation stage substitution, HA (s) must first 

be synthesized to a passive LC circuit. No readily availa-

ble synthesis computer program was present at the time for 

the BSS and BOS design stage; hence, the design strategy 

presented in section 4.1 was adopted instead. When a circuit 

synthesis design package did become available during the LOI 

filter design stage, it entailed increasing the width of the 

prewarped passband-stopband transition, due to the even ord-

er of the filter approximation, so as to realize a resis-

tance terminated LC ladder passive filter [4 ]. 

4.3 BSS and BOS 7th-Order Lowpass Filter 

Computer Comparisons 

As discussed in section 4.2 no circuit systhesis program 

was available for obtaining the passive analog denormalized 

prototype from the denormalized prewarped analog transfer 

function as defined by equation 4.2.2. If the denormalized 

passive prototype is obtained, an SC filter design can be 

developed having a frequency response that best matches the 

specifications of section 4.2. Instead, a passive normalized 

lowpass filter was adopted which best met these specifica-
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tions. This filter was then denormalized to a classically 

prewarped analog lowpass filter which was then S/Z- trans-

formed to an equivalent SC filter. The S/Z-transformation 

was performed by first deriving the leapfrog signal flow di-

agram of the prewarped filter and then making analog-to-SC 

integration/summation stage substitutions. The selected 

'best-match' normalized analog 7th-order elliptic lowpass 

filter upon which the adopted denormalized discrete-time 

lowpass specifications of section 4.2 were based is depicted 

in figure 4.1. Normalized component values are tabulated in 

table 4.2. The denormalized prewarped analog filter is dep-

icted in figure 4.2 and its component values are also tabu-

lated in table 4.2. The normalized frequency response is 

depicted in figure 4.3. 

The leapfrog signal flow diagram of figure 4.2, contain-

ing denormalized integrating constants (Kj) and signal sum-

mation path gains (Xi), is depicted in figure 4.4. As dis-

cussed in chapter 3, positive summation paths, such as those 

in figure 4.4, cannot be directly implemented by any SC 

integrating stage and must be negated either by negating 

circuit nodes of by adding inverting buffers. For the BSS 

filter design nodes V3 and V7 where negated resulting in the 

signal flow graph of figure 4.5. For the BOS filter design 
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R, = 1..n. 

l Ci.n 

C,n ~Xl )v0 ,+ 
V,n 

0 

Figure 4.1. Norma I ized 7th-order·el I iptic -lowpass LC filter. 

L2 L 'l L6 
R 1=f.ll. 

(7.. (1 C6 
Rl.= 
I .ft. v,'M c, C3 Cs C7 Vo,rt 

Figure 4.2. Pre-warped-denormalized 7th-order elliptic 
lowpass LC filter. 

Vovt v,,., 

------

~2-11c(6 

Figure 4.3. Attenuation-frequency response of 7th-order elliptic 
lowpass analog filter:. 
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mu 4.2. ~rinaUzad md Oenor.:ialuad CQlq,ouauca of Puaiva LC 
Necwo-ru fo-r c!ia Bili:ur md ch• LDI Ouip Cues. 

Bi.linaar 7ch O~er 

o.89703 r 

o.04663 11 

1.,1101 11 

O.lll.24 !I 
1.60110 11 

O.l.5766 II 
o. 19159 11 
l.37533 Iii 

1.34.563 11 
1.12140 11 

1.0 

1.0 

1.41..59(10)-4 r 
1. 36023 c10> ~ 11 

2.6470.5(10)-411 

3. 3342a c10, -s 11 

2 • .5376.5(10) -411 
~.48856(10)-.511 

1.259<10>-4 11 

2.17087(10)-41:1 

2.124c10> -4 11 

1. 93737 (10) -411 

l.O 

l.O 

LDI Sch 0-rder 

1.0010875 r 
o.01,s9,1 11 

1.647433 11 

0.23211 .II 
1 • .521333 11 
O.l.5786.5 II 
1. 401433.5 11 

l.442074 ! 

1.4638111 !I 
1.,0,4 11 

1.08Jo 11 

l.O 

l.O 

l. 629.5 (10) -4 'I 

1.2a1s1 c10> -s 11 

2. 66.56 (lO) -4 II 
J. i.56614 cio> -~, 
2.4,uac10> -4 11 

2 • .5.543 (lO) _, II 
2.26758(10)-4 ii 
2.3333(10)-4 Iii 

2.3111,c10>-4 11 

2.,99<10> -4 11 

1. 1s234c10> -4 11 

l.O 

l.O 

* A. I. Zffr••, '"a.ndboo" of Filcar Syuchui.s," Wiley, Jew York, 1967. 

- P. E. Al.le md L. l'. lilualsmaD, "!llc~duc:cioa co ch• Theory md 
O..ip of Ac~iva Filcen," ~Crav-flill., Jev York, 1980. 
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Figure 4.4. Leapfrog signal flow diagram of 7th-order elliptic 

lowpass analog filter. 
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Figure 4.5. Leapfrog signal flow diagram of 7th-order elliptic 
lowpass analog filter with nodes v3 and v7 negated. 
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Figure 4.6. Leapfrog signal flow diagram of 7th-order elliptic 
lowpass analog filter with nodes v2 v3 v6 and 
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nodes V2 , V3 , V6 , and V7 were negated resulting in the dia-

gram in figure 4.6 where all internal stages have their in-

puts either all negative or all positive. The BDS filter was 
. 

designed in this fashion so as to make it compatible for 

construction and testing purposes with the LDI structure of 

section 4.4. 

Due to its signal double-sampling operation, the BDS de-

sign does not require any particular clock-phased signal-

sampling scheme. This, however, is not the case for the BSS 

design. Both phasing schemes I and II were tested on the BSS 

design for a clock-to-cutoff frequency ratio of 10 and the 

resulting frequency response of both are plotted in figure 

4.7. Scheme II which offered the best performance was adopt-

ed and the resulting BSS elliptic lowpass SC filter is dep-

icted in figure 4.8. For the BDS elliptic lowpass filter de-

sign the SC filter is depicted in figure 4.9. 

The BSS and the BDS lowpass filter designs were tested to 

compare their performance at clock-to-cutoff ratios (Fc/Fco) 

of 50, 25, 12.5, and 8. Simulation was performed by means 

of DIANA [ 36 ], and the frequency response results are plot-

ted in figures 4.10 and 4.11. The most obvious difference 

between the two designs is evident from their stopband per-

formance. For lower Fc/Fco ratios, the BDS design exhibits 



95 

g 
II) 

!! 
Q

) . 
e-. 
Q

) 
Q

) 
.c: II) 
() 

C
: 

g 
II) 

0 a. 
0 

C
:,,11) 

! 
C

: 
Q

) 
-c... 
a.>, 

~ 
E U

 
411 C

: 
0 

II) 
Q

) 
N

 
I 

:J 
.... 

-
r:r 

0 
C

II Q
) 

C
: 

I,. 

g• 
c:,,C

.. 
-• 

~ 
II) 

C
: 

0 
"C

 -
z 

Q
) ... 

II) 
411 

-
411 :J 

8-' 
-= C: 

·w
 

a. Q
) 

lilff 
I+> 
~
 ... 

u 
() 

C
II 

U
) 

0 
-~ 

~N
 

u 
Q

) 
... 

g:c 
c..-

z 
Q

) c.. 
..,_ 

B
o 

c..-
·W

 
oa::: 
"'u.. 

C
l) "C

 
C

l) 
C

: 
c:o 411 

8 2 
r-. ~ Q

) 
I,. 

8 
:J c:,, 

· oo·oa 
oo·c~-

00·09-
oo·oe-

co·co,- 0 
I.I. 

I 
S

3W
3H

:JS
 "1c:lw

tj"JJ1dl.nQ
 



Cu 

'1-
T" 

Cx, 

Figure 4.8. BSS 7th-order elliptic lowpass SCF leapfrog circuit 
(scheme I implementation). 
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Figure 4.10. BSS 7th-order elliptic lowpass SCF leapfrog circuit 
attenuation-frequency response at Fc/Fco ratios: 50, 
25, 12.5, and 8. 
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relatively small changes in stopband loss as illustrated in 

figure 4.11. By constrast, the BSS design deteriorates sig-

nificantly in this respect as seen in figure 4.10, where the 

notches disappear at lower Fc/Fco ratios. Figure 4.12 illus-

trates the difference between the two designs for a Fc/Fco 

ratio of 12.5. 

Although the above results suffice to demonstrate the su-

perior performance of the BOS design, consideration may also 

be given to comparing the number of circuit components as 

listed in table 4.3. Thus, although requiring more capaci-

tors and switches, the BOS design uses fewer inverters. With 

this comparative analysis of the BSS and BOS design in mind, 

it was thus decided to develop the BOS filter with a pre-

warped denormalizing frequency at lkHz and operating with a 

Fc/Fco ratio of 10. 

To provide data for a suitable choice of prewarped denor-

malizing frequency, the BOS design using a Fc/Fco ratio of 8 

was simulated at three frequencies: SOOHz, lOOOHz, and 

1836.lHz (first notch location). The results of the simula-

tions are shown in figure 4.13 and may be summarized as fol-

lows: 
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Table 4. 3. Number of Components of 7th-Order Bilinear and 8th-Order 
LDI Elliptic SCR Lowpass Filters. 

Component Single-Sample Double-Sample 
Type Bilinear· Bilinear LDI 

Fig. 4.8 Fig. 4.9 Fig. 4.19 .... 
0 

Op-Amp 7 7 7 .... 
Switched-

Capacitor 15 30 17 

Switch 15 30 17 

Inverter 14 0 0 
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i) FP3 (1836.lHz): This causes the notches to shift to 

higher frequencies. 

ii) FP2 (SOOHz): This causes the notches to shift to 

slightly lower frequencies. 

iii) FPl (lOOOHz): The notches are located very close to 

their desired positions. 

1·1 LDI 8th-Order Elliptic Lowpass Filter Design 

A similar problem to that of the bilinear design case was 

encountered for the LDI filter in deriving the passive ana-

log denormalized circuit prototype form the denormalized 

prewarped analog transfer function (defined by equation 

4.2.2). Though a passive circuit synthesis program did be-

came available, it entailed expanding the frequency width of 

the prewarped passband-stopband transition in order to real-

ize a resistance terminated LC ladder network (due to the 

even order of the filter [ 4 ]). Instead, a passive normal-

ized lowpass LC filter was selected with an attenuation-fre-

quency response that best matched the attenuation-frequency 

response of the prewarped filter approximation as defined by 

4.2.1. This filter was then denormalized to a classically 

prewarped analog filter that was then S/Z-transformed to its 

corresponding LDI SC filter. 
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The selected normalized lowpass filter is depicted in 

figure 4.14 which-has the following attenuation characteris-

tic: 

a) Passband loss (Ap): 0.177.dB 

b) Stopband loss (As): -101.0 dB 

c) Passband-edge frequency (Fpe), (cutoff): 1 kHz 

d) Stopband-edge frequency (Fse): 1780 kHz 

Normalized component values of figure 4.14 are listed in ta-

ble 4.2. The denormalized filter is depicted in figure 4.15 

and its component values are tabulated in table 4.2. 

This filter along with the LDI normalized biquadratic 

sections of section 4.2 was denormalized for a cutoff fre-

quency of lkHz and their frequency response outputs plotted 

in figure 4.16. Note that the 6dB difference between two 

responses is due to the equal resistance terminations of the 

denormalized highpass prototype of figure 4.15. Note also 

that the last zero of the best fit design is located at in-

finity. 

The final leapfrog signal flow graph of the LDI design 

with nodes V2 , V3 , V6 , and V7 negated is depicted in figure 

4.17. Both clock-phased signal-sampling schemes I and II 

were simulated giving identical frequency response results 

as shown in figure 4.18. Phasing scheme I was arbitrarily 
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selected resulting in the SC filter of figure 4.19. A minor 

phasing mistake was incurred in the construction of the LDI 

filter and this involved a 180 degrees phase shift between 

the sampling of opamp 1 and the sampling of the input Vin 

and opamp 2 by the first stage as illustrated in figure 

4.19. As it turns out, for an operating Fc/Fco ratio of 10, 

this sampling mistake in the implemented LOI design (LDI I) 

did not affect the overall computer predicted performance of 

the filter when compared to the response of the proper LOI 

design (LOI II) as depicted in figure 4.20. 

4.5 Computer and Experimental Results of the BDS 

and the LOI Elliptic Lowpass Filters 

For both the BDS and the LOI designs, the passive normal-

ized lowpass filters of figures 4.1 and 4.14 were denormal-

ized to analog lowpass filters (figures 4.2 and 4.15) which 

are the prewarped analog equivalent of the BDS and the LDI 

digital filters of figures 4.9 and 4.19. Both the BOS and 

the LDI filters were designed to operate for a lOkHz clock 

trequency. The prewarped denormalizing frequencies (won> 

ar~ listed below. 

BDS: Ts= Tc/2 = (O.S)xlo- 4 Fco = 1000 Hz 

WDn = [2/((0.5)(10)- 4)]{tan(TIFco(0.5)(10)- 4)} 

WDn = 6391.256 4.5.1 



109 

~
 I 

. -C
 

0 

e .s 
al 

al 
L. ... 

. enc 
al 

C
l) 

-e 
'ti 

C
l) 

.-JO
 

-e ~·-
u L.-

-u 
C

l) 
e 

i... 
C

l) 
u.c 
C

l)U
 ell 

ell 
e11 en 
al 

C
 

O
.·-
~-0 

0. 
-e al 
u ell 

·-
I 

.s-o. al 
·-

C
 

-en 
C

l) ell 

L. 'ti 
C

l) Q
) 

'C
 

II) 
L. 

al 
o.c 
I 

Q
. 

.C
 

I 
... 

.:ii: 
cou 0 

cu 
...J-

0\ 
... 



8 
ii 

-~ 2lij 

-~ _o 
0 z9 C[ • 

-'l 
0 ..Jg 
~-
'ft~ 
...:a ~A .... _ 
a' 
~ 
~ ----r-----.--------.-------...----.-----, 10.00 zo.oo 40.oo eo.oo eo.oo 100.00 JZO.oo 140.00 160.00 

FREQ IN HZ SCALE LIN •10 

Figure 4.20. LOI 8th-order elliptic lowpass SCF attenuation-frequency 
response: LOI I- implemented design; LOI II- proper design. 

~ 
~ 
0 



LOI: Ts= 

111 

Tc= 10- 4 Fco = 1000 

= [2/(l0- 4)J{sin(wFcol0- 4)} 

= 6232.92 

Hz 

4.5.2 

The denormalized capacitor and inductor components of 

figures 4.2 and 4.15 were computed by the following element 

denormalization relations: 

L= Ln/wOn . 
I C= Cn/wOn 4.5.3 

The values of normalized and denormalized capacitor and in-

ductor values for the BOS and LOI design cases are tabulated 

in table 4.2. 

The adopted leapfrog signal flow diagram of figures 4.2 

and 4.14 are depicted in figures 4.6 and 4.17 respectively. 

the output (Vo,(s)) for a typical integration/summation 
I 

stage of figures 4.6 and 4.17 have the following relation-

ship format: 

vin.(s) + l ~ Vink(s) 
J k 

4.5.4 

Where for some stages there are no summing input signals 

Denormalized integrating constants ( Q.) 
I 

and sum-

ming signal gain constants (Xk) in figures 4.6 and 4.17 are 

functions of denormalized capacitor and inductor values of 

figures 4.2 and 4.14. Qi and X; relationships and values for 
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the bilinear design case are tabulated in table 4.4. Like-

wise, table 4.5 lists relationships and values of Q. and x. 
I I 

for the LOI design case. 

A typical SC integration and summation stage (figure 2.8) 

can be defined to have the following output (Voj(Z)) rela-

tionship format: 

G = 

Cu. 
Voi(Z) = G c'lc:' ~ 

l. J 

Xin. (Z) 
Pwtz) 

1/Ts (LDI) ; = 2/Ts (Bilinear ; 

+ l 
k 

Pw(Z) 

Cxk 
CK. Vink(Z) 

l. 
- (see Table 

4.5.5 

3.7) 
When SC integration-summation stages are eventually replaced 

for the analog integration stages of figures 4.6 and 4.17 

the Cxk capacitors become the notch-forming capacitors of 

the resulting BOS and LOI elliptic filters of figures 4.9 

and 4.19. Taking the bilinear and the LOI S/Z-transformation 

of equation 4.5.4 and then equating the results to the rela-

tionship format of equation 4.5.5 produces the following 

Cui, Cki, and Cxk capacitor equations for the BOS and the 

LDI filter integration/summation stages: 

QiCui 2QiCui 
(BOS): Cki= = 4.5.6 

Ts Tc 

Cxk= Xk(Cki) 4.5.7 

QiCui QiCui 
(LOI) : Cki= = 4.5.8 

Ts Tc 
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TABLE 4.4. BDS 7th-Order Leapfrog Lowpass Analog Integrating 
Constants (Qi) and Swmnation Gain Constants (Xi): 
Relationships and Values. 

Stage (i) Qi Relationship Qi Value 

1 cl+ c2 0.94366 

2 L2 1. 37533 

3 C2 + C3 + C4 1.93488 

4 L4 1.34563 

5 C4 + C5 + C6 1. 9766 

6 L6 1.22740 

7 C6 + C7 0.95525 

(xi) Xi Relationship Xi Value 

i•l c2/(C 1+c2) 0.0494 

2 Czl (C2+c3+C4) · 0.0241 

3 C/(C2+c3+C4) 0.1092 

4 C/ (C4+c5+c6) 0.1069 

5 C6/(C4+c5+c6) 0.0798 

6 C6/(C6+c7) 0.1650 

where: CKi = 
ZQiCui 

i = 1, 7 
T ... ' 

C 

cxl .. xl~ cx4 • x4CK5 

cx2 = x2CK2 cx5. X5CK5 

Cx3,. x3CK3 Cx6'"' x6CK7 
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TABLE 4. 5. LOI 8th-Order Leapfrog Lowpass Analog Integrating 
Constants (Qi) and Summation Gain Constants (Xi): 
Relationships and Values. 

Stage (i) Qi Relationship Qi Value 

1 cl+ c2 1.0866822. 

2 L2 1.442074 

3 C2 + C3 + C4 1.9591977 

4 L4 1.442074 

5 c4 +cs+ c6 1.911368 

6 L6 1.6064 

7 ·c6 + c7 1.5593005 

8 La 1.08300 

(xi) Xi Relationship Xi Value 

i•l C/ (C1+c2) 0.0732456 

2 cz1<c2+c3+c4) 0.0406262 

3 c4/(c 2+c3+c4) 0.1185026 

4 C4' (C4+c5+c6) 0.121468 

5 Ci (C4+C5+C6) 0.0825927 

6 C6/(C6+C7) 0.1012409 

where: CKi • 
Qicui 

i = 1, ... , 8 T 
C 

cxl • xlCKl cx4 .... x4CK4 

cx2 "" x2CK2 cx5 ... xSCKS 

Cx3 • x3CK3 cx6 = x6CK6 
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Cxk= Xk(Cki) 

where: Ts-sampling period 

Tc-clock period 

4.5.9 

By selecting Cui as lOOOpf (which is large enough to 

avoid the adverse effects of stray capacitance yet small 

enough to allow a reasonably high clock rate), by using the 

tabulated values of Qi and Xi, and by designing for a clock 
-4 perod of 10 sec, the design values of Cki and Cxi for the 

BDS and the LDI filters were obtained. Design and implement-

ed values of Cui, Cki, and Cxi for the bilinear and the LDI 

filters of figures 4.9 and 4.19 are listed in tables 4.6 and 

4.7 respectively. The LDI filter was dynamically ranged at 

the lkHz cutoff frequency (see Appendix C); thus, the imple-

mented values in table 4.7 are dynamically ranged capacitor 

values. Due to the equally terminated resistances (R 1 and 

R2 ) of the prewarped denormalized analog circuits, there is 

an unwanted 6dB passband loss which would appear in the SC 

filters. To compensate for this, the effective input signal 

for both the BDS and LOI filters was magnified by a factor 

of 2 by simply doubling the value of the Vin-sampling capa-

citors Cu (BDS) and Cu3 (LOI). The implemented capacitor va-

lues were measured on an ESL Model 253 Impedance Bridge (ac-

curacy: 0.25%). 
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TABLE 4.6. BDS 7th-Order SCF Capacitor Values. 

Capacitor Design Value Actual Value 
(nF) (nF) 

CKl 2.8420 2.829 

CK2 4.1250 4.124 

~ 5.8760 5.920 

Sc4 4.0441 4.060 

6.4896 6.530 • Scs 
Sc6 4.0529 4.067 

Sc1 2.8890 2.885 

cxl 0.1398 0.137 

cx2 0.1427 0.142 

cx3 0.6463 0.654 

cx4 0.6979 0.706 

cx5 0.5209 0.519 

cx6 0.4762 0.479 

C 1.0000 {o. 950 + 1.047} u mean• 0.981 
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TABLE 4. 7 • LDI-8th Order SCF Capacitor Values. 

Capacitor Design Value Actual Value 
(nF) (nF) 

CK! 1.7583 1.858 

CK2 2.3333 2.34 

CK3 3.170 3.45 

S<4 2.3333 2.36 

S<s 3.0927 3.22 

S<6 2.5992 2.66 

S<1 2.523 2.65 

Sea 1. 7523 1. 792 

cxl 0.1275423 0.137 

cx2 0.1300452 0.135 

cx3 0.3427922 0.372 

cx4 0.4116963 0.477 

cxS 0.20804 0.287 

cx6 0.31362 0.511 

cul 1.0 1.002 

cu2 1.162 1.174 

cu3 0.8704 0.884 

cu4 0.8522 0.859 

cu5 0.8606 0.859 

cu6 1.1734 1.174 

cu7 1.1686 1.166 

cu8 0.7808 o. 778 
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TABLE 4. 7 . LDI 8th-Order SCF Capacitor Values (Continued). 

Capacitor Design Value Actual Value 
(nF) (nF) 

cu9 0.8557 0.857 

culO 1.2807 1.301 

cu11 1.0698 1.063 

cul2 0.7613 0.768 

cu13 o. 934728 0.938 

cul4 1.313545 1.328 

Cu15 0.591302 0.572 

cul6 1.0 1.001 

cul7 1.7523 1. 792 
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The following circuit components were used in the con-

struction of the BDS and the LDI filters: 

Op-amp: Harris HA4605 

Switch: Harris HI2201 

For the operation of the switched capacitor driving switches 

above two clocks were used, • 1 and • 2 , operating at a 60-40% 

duty cycle. The duty cycle waveform of the clocks is illus-

trated in figure 4.21 along with a representative SC inte-

gration stage depicting the • 1 and • 2 phasing of the input 

switched capacitor. 

The DIANA computer simulation of the BDS and the LDI fil-

ters for idealized component values and operating with a 

single clock having a 60-40 % duty-cycle is presented in 

figures 4.22 and 4.23 respectively. Practical results ob-

tained·with an HP Model 3580A spectrum analyzer are present-

ed in figures 4.24-4.27 for the BDS filter and figures 

4.28-4.33 for the LDI filter. All laboratory tests were per-

formed with a 60-40% duty cycle clock operation. A 1 volt 

amplitude input signal was used for all BDS filter tests and 

for some of the LDI filter tests. The input signal to the 

LDI filter was at one point magnified by a factor of 7.0795 

so as to obtain a better resolution of the stopband charac-

teristic which had an attenuation loss almost equal to that 
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_;P,_J __ ,_:~_1::4-_6_0%-~-' ......... o:_E_-_;,--z_~j __ _ 
I I 

C -x v~ ··------ii ------------i 1----, 

Figure 4.21. 60-40% dual-clock duty cycle implementation on a 
typical switched capacitor integration/summation stage. 
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Figure 4.22. BOS 7th-order SCF elliptic lowpass filter attenuation-
frequency response (idealized components). 
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Figure 4.23. LDI 8th-order SCF el I iptic lowpass filter attenuation-
frequency response ( idealized components). 
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Figure 4.24. BOS filter test results (passband & stopband) 
vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 0.5 Kh~/div F.c/Fco: 10 

Figure 4.25. BOS filter test results (passband) 
vertical: 1 dB/div duty cycle: 40-60% 
horizontal: 0.2 Khz/div Fc/Fco: 10 
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figure 4.26. BOS filter test results (stopband). 
vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 0.5 Khz/div Fc/Fco: 10 

Figure 4.27. BOS filter test results (passband & stopband) 
vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 2 Khz/div Fc/Fco: 10 
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-16 dB 

Figure 4.28. LOI filter test results (stopband). 
vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 1 Khz/div Fc/Fco: 10 

....... .___ 16 de, 

Figure 4.29. LOI filter test results (stopband & noise level) 
vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 1 Khz/div Fc/Fco: 10 
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- o dB 

Figure 4.30. LDI filter test results (passband) 
vertical: 1 dB/div duty cycle: 40-60% 
horizontal: 0.1 Khz/div Fc/Fco: 10 

OdB 

Figure 4.31. LOI filter test results (passband) 
vertical: 1 dB/div duty cycle: 40-60% 
horizontal: 0.2 Khz/div fc/Fco: 10 
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Figure 4.32. LOI filter test results (P.assband & stopband). 
vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 1 Khz/div Fc/Fco: 10 

Figure 4.33. LOI filter test results (stopband). 
vertical: 10 dG/div duty cycle: 40-60% 
horizontal: 1 Khz/div Fc/Fco: 10 
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of the noise level (-84 dB), (see figure 4.29). Without 

this input signal amplification the stopband characteristic 

of the LOI filter degrades-as depicted in figures 4.32 and 

4.33. The test results show the notches clearly in figures 

4.24 and 4.26 for the BOS filter and the first stopband 

notch for the LOI filter in figures 4.28 and 4.29. There is 

slight evidence of passband ripple for the BOS filter (fig-

ure 4.25) while there is a clear ripple waveform in the 

passband of the LOI filter in figure 4.30 and 4.31. Compa-

rative values of passband and stopband characteristics from 

DIANA computer simulations and from test results are pre-

sented in table 4.8 for the BOS filter and table 4.9 for the 

LOI filter. 

Theoretically, an increased clock frequency should yield 

an appropiately scaled frequency response curve for both the 

LOI and the bilinear filters. This is evident from figures 

4.34(a) and 4.35(a) for the BOS filter in which the effect 

of increasing the clock frequency to 20kHz and 30kHz yields 

excellent replication of the output. An excellent replica-

tion of the output is also evident for the LOI filter oper-

ating at 20, 30, 40, and 50 kHz as depicted in figures 

4.34(b), 4.35(b), 4.36(b), and 4.37(b). However, for the 

BOS filter, operating at 40 kHz clock, the notches are lost 
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Table 4.8. Comparative design, computer, and experimental results 
for the BDS 7th-order el I iptic lowpass filter. 

Parameter 

Peak amp Ii tude 
Cut-off frequency 
Passband I oss 
1st notch 
2nd notch 
3rd notch 
1st "flyback" 
2nd "flyback" 
3rd "flyback" 

Design 
Specification 

OdB 
1000HZ 
0.03dB 

1876HZ 
2273Hz 
3949Hz 
-82.11dB 
-82. 11dB 
-82.11dB 

DIANA 
Simulation 

0.053dB 
1054HZ 
0.03dB 

1908HZ 
2359HZ 
4317HZ 
-84.49dB 
-84.85dB 
-87.83dB 

Experiments I 
Result · 

o. 1db 
1000HZ 
0.1dB 

1875HZ 
2250HZ 
4400HZ 
-83dB 
-81dB 

Table 4.9. Comparative design, computer, and experimental results 
for the LDI 8th-order elliptic lowpass filter. 

Parameter Design DIANA Experimental 
Specification Simulation Result 

Peak amp Ii tude OdB 0. 1967dB 0.45dB 
Cut-off frequency 1000Hz 1005Hz 1010Hz 
Passband loss 0.177dB 0.405dB 0.07dB 
1st notch 1876Hz 1808Hz 1800Hz 
2nd notch 2273Hz 2109Hz 
3rd notch "3949Hz 3665HZ 
4th notch 6326Hz 
1st "f"lyback" -101.0dB -100.06dB -99dB 
2nd "r I yback" -101.0dB -99.652dB 
3rd "flyback" -101.0dB -109.97dB 
4th "flyback" -108.89dB 
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(a) BOS filter: vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 0.5 Khz/div 

(b) LOI filter: vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 1 Khz/div 

Figure 4.34. BOS and LOI filter test results. 
clock (Fe): 10 Khz & 20 Khz. 

-16 dB 
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(a) BOS filter: vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 1 Khz/div. 

(b) LOI filter: vertical: 10 db/div duty cycle: 40-60% 
horizontal: 1 Khz/div 

Figure 4 . 35. BOS and LOI filter test results. 
clock (Fe): 20 Khz and 30 Khz. 

-!6'd8 
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(a) BOS filter: vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 1 Khz/div 

- -16 dB 

(b) LOI filter: vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 2 Khz/div 

Figure 4.36. BOS and LOI riiter test results 
clock (Fe): 30 Khz and 40 Khz 
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(a) BOS filter: vertical: 10 dB/div duty cycle: 50-50% 
horizontal: 2 Khz/div 

(b) LOI filter: vertical: 10 dB/div duty cycle: 40-60% 
horizontal: 2 Khz/div 

Figure 4.37. BOS and LOI filter test results 
clock (Fe): 40 Khz and 50 Khz 
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and the stopband loss is reduced from 80 dB to 70 dB as seen 

in figure 4.36(a). Slight improvement in the stopband char-

acteristic is produced by altering the duty-cycle to 50-50%. 

From figure 4.37(a), it is seen that the first notch reap-

pears and the stopband loss increases to 74 dB. A slightly 

improved result is seen at Fc=50 kHz but the frequency res-

ponse is no longer a good reproduction of the original res-

ponse. For the LDI filter there is a faithful reproduction 

and even improvement of the output where the first stopband 

notch becomes more pronounced at higher clock operations. It 

should be noted that unlike the LDI filter, no dynamic rang-

ing or amplification of the input signal was done for the 

BDS filter during these tests. 



Chapter V 

SWITCHED CAPACITOR CIRCUIT NOISE ANALYSIS USING 
POWER SPECTRUM ESTIMATION TECHNIQUES 

5.1 Introduction 

The purpose of this chapter is to introduce and review 

certain power spectrum estimation techniques which can be 

used in power spectrum analysis of switched capacitor (SC) 

circuits. The primary intention is to provide an alterna-

tive aproach for analyzing the power spectrum of SC circuits 

without the need of complicated and tedious analytical 

spectrum analysis. Two distinct power spectrum estimation 
. 

techniques will be discussed: the windowed periodogram and 

the AR-system modeling. The windowed periodogram technique 

is usually employed to determine the asymptotic behavior of 

the system's power spectrum frequency response and subse-

quently the AR-system modeling technique is used to repro-

duce the power spectrum. The basic references to this chap-

ter are Beex [S], Oppenheim and Schafer [281, 

Marple (78]. 

134 

and Kay and 
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5.2 Switched Capacitor Noise Models and Foundation 

of Noise Power Spectrum Estimation 

5.2.1 Introduction 

Figure 5.1 depicts the equivalent noise model for a 

switched capacitor element with one mos switch. The noise 

source (Ns) is defined as a white noise with a spectral den-

sity given by: 

5.4.1 

where: K - absolute temperature in Kelvin (K) 

8 - Boltzmann's constant 

R - switch resistance 

The overall noise model for a typical parasitic sensitive 

switched capacitor SC integrator -is presented in figure 5.2 

where the LDI differential input integrator is adopted. 

This circuit as analyzed by Gobet and Knob [7J] in the s-do-

main will be computer modeled and various estimates of its 

output noise spectrum will be analyzed and compared in sec-

tion 5.4 with the analytical results of Gobet and Knob. The 

noise source of the op-amp (Noa) is defined by Furrer and 

Guggenbuhl [70) as a white noise with a spectral density of: 

SOA(f)= 2K8Req 5.2.2 

where: Reg - equivalent noise resistance 
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f ¢ R~ 
~ C S(f) C s (-f) 

l 
s = 

Ns Ns 
2K9R~ l 

Figure 5.1. Noise model of a switched capacitor with one MOS switch. 

C 
0, 

1'112 

1 R, 

SN]= 
e<C S(f) 

NI SoA 
J 2KeR 1 

~--T. _, , s---i 
c:, D 

Figure 5.2. Noise model or a parasitic sensitive LOI switched capacitor 
integration circuit. 
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The value of 5.2.2 varies with the type of op-amp used. Go-

bet and Knob in their analytical.noise spectrum analysis of 
-14 2 

figure 5.2 used a value of 2.512(10) V /Hz. The basic noise 

model structure of figure 5.2 can readily be applied tooth-

er types of SC integrators. Other noise models such as those 

which account for the 1/f noise of op-amps can readily be 

included in the overall noise model of a SC circuit such as 

that of figure 5.2 or any other larger ladder SC network. 

Figure 5.3 depicts a typical system with internal noise 

sources (Ni) and transfer functions between the noise sourc-

es and the output (Hi(w)). The power spectral density of the 

noise sources are labeled as Si(w) while the power spectral 

density and the autocorrelation of the output of the system 

are labeled Sout(w) and Rxx(t) respectively. Figure 5.3 is 

applicable to the internal structure of any SC system. 

Wether analyzed in the s-domain or the Z-domain two distinct 

approaches can be adopted in computing the analytical output 

power spectrum of any SC system. These two approaches become 

particularly suitable when the noise sources of the system 

are uncorrelated. One approach involves computing by super-

position time-domain output functions of the system due to 

each of the internal noise sources and then summing all 

these functions. The resulting time-domain system output 



• 
• 
• 

Hz (_w) 

• 
• 
• 

H1 Cw) 

Rxx(?:') 

Sxx(,.,) 

n = 0,1, •••• N-1 

ltN(\,IJ 

Ni: Internal _noise source. 
S,j' (w): Internal noise source spectral densl·ty. 
11,rw): Transfer function between Internal noise 

source and the system output. 
Rxx('t"): Autocorrelation or the system output. 
Sxx(w): Spectral density or the system output. 

figure 5.3. Generalized system noise model. 

..... w 
(X) 
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function is given below: 

N 
X(t)= l Xi(t) 

i=l 
5.2.3 

where Xj(t) is the output function due to the ith internal 

noise source. The autocorrelation of X(t) (Rxx(t)) is then 

obtained and the output noise power spectrum is computed by 

taking the fourier transform of the autocorrelation. 
~ 

Sout(w)= j' {Rxx(t)} 5.2.4 

The other approach involves computing first the transfer 

function between each uncorrelated noise source and the out-

put of the system. The output noise power spectrum for a 

system with N noise sources is then computed by the follow-

ing formulation: 

N 2 
Sout(w)= l IH.(w)IS.(w) 

i=l 1. 1. 
5.2.5 

For both approaches the analytical computation involved 

becomes more difficult to carry out when some or all the 

noise sources are correlated. In which case, superposition 

cannot be adopted in the first approach when computing the 

output time-domain function due to two or more correlated 

sources. For the second approach cross-spectral density 

functions between two or more correlated noise sources must 

be computed, and the output spectral density components due 
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to these noise cross-spectral densities must be added to the 

formulation for Sout(w) given in 5.2.5. Even in the case 

where all internal noise sources are uncorrelated the compu-

tation of time-domain output functions and transfer func-

tions can become a tedious and cumbersome task, particularly 

for high order SC filters. For example, if the noise model 

of figure 5.2 is implemented for the 3rd-order elliptic low-

pass SC filter of figure 2.12 the number of noise source-to-

output transfer functions required is 17. Such difficulties 

involved in analytical power spectrum computations makes the 

alternative approach of power spectrum estimation more at-

tractive and suitable. 

There are many power spectrum estimation techniques de-

veloped over the last 200 years and all involve analyzing a 

finite record length of output time-domain samples (X(n) in 

figure 5.3). The fundamental advantage of power spectrum es-

timation over analytical spectrum computation, particularly 

for complicated systems such as a high order SC filter, is 

that an analytical analysis of the internal structure of the 

system is not required. What is required for the case of 

switched capacitor noise analysis is a reliable computer si-

mulation scheme which will simulate an SC system (adopting a 

noise model such as that of figure 5.2) and generate a 
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string of output time-domain values. Before discussing two 

power spectrum estimation techniques of interest the concept 

of ergodicity and autocorrelation estimation should be dis-

cussed. 

5.2.2 Principle of Ergodicity and Autocorrelation Estimation 

In determining stochastic properties of a time-domain 

random process, x(t), such as its mean (n), its outocorrela-

tion for a lag oft, (Rxx(t)), and its power spectrum 

Sxx(w), one ideally requires information of x(t) for -ooSt~~ 

However, for computational purposes in power spectrum es-

timation it is not desireable nor possible to have an infi-

nite record length of sampled time-domain values of x(n) for 

-oos~~. Because spectrum estimation works with a finite re-

cord length of data x(n) for n=O,l, ... ,N-1 it is imperative 

to assume that x(n) is an ergodic process. For switch-capa-

citor spectrum estimation purposes it is important to insure 

that the noise model selected for a SC system and the compu-

te+ modeling scheme adopted both produce.an ergodic time-do-

main process in x(n). There are many definitions of the con-

cept of ergodicity. 

definitions: 

Papoulis [JO] offered one of the best 

"Ergodicity deals with the problem of determining 
the statistics of a process x(t) from a single ob-
servation: x(t) is ergodic in the most general 
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• 
form if (with a probability of 
statistics can be determined from a 
tion x(t,~) of the process." 

1) all its 
single func-

The ergodicity of the mean (n) of x(t), available for 

-Ts/2StSTs/2, is defined below: 

n= E{x(t)} 

fTs/2 n= (1/Ts) 
-Ts/2 

A 

x(1:)d1: 

E{n}= n (as Ts =>c::o ) 

5.2.6 

5.2.7 

The ergodicity of the autocorrelation (Rxx(t)) of the pro-

cess x(t), available for -Ts/2StSTs/2, is defined below: 

Rxx(t)= E{x(t+t)x(t)} 5.2.8 

,. JTs/2 * Rxx(~)= (1/Ts) x(t+t)x{t)dt 
-Ts/2 

5.2.9 

A 

E{Rxx(t}}= Rxx(t) ( as Ts => c::o} 5.2.10 

Equation 5.2.9 is in the form of what is usually referred 

to as an autocorrelation estimate. There are two types of 

autocorrelation estimates: unbiased and biased. The expect-

ed value of an unbiased autocorrelation estimate with the 

amount of information of x(t) approaching infinity is the 

actual autocorraelation of the process. The expected value 

of a biased autocorrelation estimate under the same condi-

tions is a converging approximation to the actual autocorre-

lation value. For a finite length sample of continuous data 
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of x{t) for -Ts/2StSTs/2 the unbiased and biased autocorre-

lation estimators are given as: 

I. The unbiased autocorrelation estimator [J7]: 

x{t) for -Ts/2 sts Ts/2 

or (unbiased) 
A f 

Rxx(r) --- (Ts =>00 ) -> Rxx(r) 

II. The biased autocorrelation estimator an: 
x{t) for -Ts/2 sts Ts/2 

A 

E{Rxx(r)}= (1-lrl/Ts)Rxx(r) 

or 
A 

Rxx(r) --- (Ts =>00 ) -> (1-lrl/Ts)Rxx(r) 

5.2.12 

(biased) 

For a finite record length of x{n) for n=O,l, ... ,N-1 the un-

biased and biased autocorrelation estimators are given as: 

I. The unbi~sed autocorrelation estimator [28): 

x{n) for n=O,l, ... ,N-1 

A I 

Rxx(m)= 
N-lml-1 

1/(N-lml) L x(n+m)x*(n) 
n=O 

A f 

Lim {Rxx(m)}= Rxx(m) (unbiased) 
N+oo 

5.2.13 
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II. The biased autocorrelation estimator 1281: 

x(n) for n=O,l, ... ,N-1 

,. N-lml-1 
Rxx(m) = (1/N) I x(n+m)x*(n) 

n=O 
A 

Lim {Rxx(m)}= [(N-lml)/N]Rxx(m) (biased) 
N+co 

5.2.14 

The accuracy, variance, and resolution of the spectrum 

estimation techniques to be discussed in sections 5.3 and 

5.4 in approximating the actual power spectrum of a stochas-

tic process depend to a large extend on the accuracy and the 

type of autocorrelation estimation technique adopted. Need-

less to say, the accuracy of any autocorrelation estimator 

improves for longer record lengths of time-domain data 

x(t). According to Kay and Marple [7811 both Jenkins-Watts D71 

and Parzen [ J 2 ] recomend the use of the biased autocorre-
1 

lation estimator since for many finite data sets it provides 

less mean-square error that the unbiased.estimator. 

There are two main spectrum estimation techniques: the 

windowed periodogram and the autoregressive spectrum model-

ing. Both of these techniques base their analysis on auto-

correlation values for a finite set of sampled data. Either 

the biased or the unbiased autocorrelation estimators of 

equations 5.2.14 and 5.2.13 respectively can be used to ob-

tain these autocorrelation values. Nonetheless, as explained 
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earlier,  for  most  sets  of  sampled  data  the  biased  autocorre-

lation  estimator  provides  least  mean-square  error. Both 

spectrum  estimation  techniques  assume  that  the  stochastic 

process  under  analysis  is  ergodic,  and  both  techniques 

represent  two  distinct  approaches  in  analyzing  autocorrela-

tion  values. 

~ ~ ~ Fundamental  Principles  of  Windowed  Periodogram 

Spectrum  Estimation 

The  windowed  periodogram techniqueJ presented  in  more  de-

tail  in  section 5.~ essentially  entails  windowing  a  finite 

record  length  of  sampled  data  and  performing  a  fourier 

transform  of  the  autocorrelation  of  this  windowed  data.  The 

power  spectrum  of  a  stochastic  process  is  defined  as: 

S(f)  = Im Rxx(T)e-jZ~fTdT 
-m 

5.2.15 

For  an  ergodic  process  where  data,  x(t),  is  available  conti-

nuously  over -Ts/2StSTs/2 the  autocorrelation  of  the  pro-

cess,  Rxx(t),  can  be  defined  in  the  following  form [JO], [78]: 

JTs/2 Rxx(T)= Lim (1/Ts) X(t+T)X*(t)dt 
Ts+m -Ts/2 

5.2.16 
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The power spectrum of this ergodic process is defined as 

[7 8] : 
2 

S(f)= Lim E{(l/Ts) 
Ts+00 

JTs/2 . 
x(t) e -J 2irftdt } 

-Ts/2 
5.2.17 

For the case where a finite record length of sampled data of 

an ergodic process, x(n), is available for n=O,l, ... ,N-1 the 

discrete fourier transform of the autocorrelation estimate 

of such a process is defined as [78],[28]: 

N-1 A ·2 mfT 
(f) \ Rxx(m)e-J ,r 8 PN = Ts l 

m=-(N-1) 
5.2.18 

Where Ts is the sampling period between samples of x(n). 

Note that by definition [78]: 
A "* Rxx(-m)= Rxx(m) 5.2.19 

Equation 5.2.18 can futher be modified into the following 

form [78], [281: 

PN(f) 
N-1 . 2 

= [1/(NTs)] Ts l x(n)e-J 2irfnTs 
n=O 

5.2.20 

for -1/2Ts SfS l/2Ts 

According to Kay and Marple [ 781 the factor Ts used in 

equation 5.2.20 ensures a conservation of integrated area 

between 5.2.17 and 5.2.20 as Ts approaches 0. Note that 

PN(f) is always an approximation or estimation of the actual 

power spectrum of the process, S(f), since an expectation 
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operation or ensemble averaging is not carried out in 5.2.20 

as in 5.2.17. This rough approximation of PN(f) to S(f), 

plus the fact that an infinite number of x(n) points are not 

analyzed, raises the question of resolution and variance of 

PN(f) with respect to S(f). Resolution deals with the prob-

lem as to how well the estimation 'focuses' on sharp fre-

quency responses in the ideal spectrum curve of S(f) 1 such 

as sharp peaks. Needless to say, the larger the number of 

time-domain points of x(n) available the better the resolu-

tion. Variance on the other hand deals with the problem as 

to how much does the oscillatory behavior of a spectrum es-

timation curve deviates from the ideal power spectrum curve 

of S ( f) . For the windowed periodogram spectrum estimation 

technique there are two methods available for improving the 

variance of the estimation: 

a) Partition of x(n) into smaller equal strings of data, 

performing a periodogram fourier operation (5.2.20) on 

each data set, and averaging the results. 

b) Selection of a "weighting" window function w(n) to be 

multiplied to x(n) for n=O,l, ... ,N-1 so that the re-

sulting spectrum estimation after a fourier analysis 

is a better reproduction of the ideal power spectrum. 
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Method (a) is an implied expectation operation on PN(f) 

as done in equation 5.2.17 for a finite string of continuous 

data. This method is a form of ensemble averaging of a set 

of spectrum estimation functions of the stochastic process, 

x(n). Method (a) is adopted in the Welch windowed periodo-

gram spectrum estimation technique discussed in section 5.3. 

There are two points to consider in ensemble averaging win-

dowed periodogram spectrum estimation: 

1. The more partitions of x(n) taken the smaller the 

variance in the final estimation of the ideal spect-

rum. 

2. The more partitions of x(n) the smaller the string of 

data available for windowed periodogram analysis 

which, even after ensamble averagin~can reduce the 

resolution of the final spectrum estimation. 

Points (1) and (2) are essentially conflicting design crite-

rias and there is no 'rule-of-thumb' solution which may help 

resolve this conflict. It is left to the engineer to decide 

the number of partitions for a particular string of data. 

However, in switched capacitor system analysis there are no 

restrictions involved, other than limits on computer pro-

cessing time; for generating a large string of time-domain 

data from a computer noise modeling of the system. In such a 
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case there is more freedom in selecting larger number of 

partitions to improve the variance and not substantially af-

fect the resolution of the final spectrum estimation. 

Method (b) deals with the problem of improving the vari-

ance of the spectrum estimation and at the same time avoid-

ing the potentially detrimental effects of "leakage" (to be 

explained shortly), produced by truncating x(n) to zero out-

side the data 

tion. Unless 

string of interest during 

x(n) is bandlimited 

a windowing opera-

in the region of 

n=O,l, ... ,N-1, which in most cases is not, setting the value 

of x(n) to zero outside the windowed region of interest may 

have detrimental effects on the spectrum estimation repro-

duction of the ideal power spectrum. The detrimental effect 

of most concern is the problem of leakage. 

Consider an arbitrary stochastic process x(n) available 

for -~smsoo as depicted in figure 5.4(a) which is then win-

dowed for spectrum estimation purposes about the region of 

n=O,l, ... ,N-1 as shown in figure S.4(b). When a spectrum es-

timation analysis is performed, it is the waveform depicted 

in figure S.4(b) and not the more accurate one in figure 

5.4(a) which will be analyzed. The effect of this inaccurate 

analysis is depicted by way of example in figure S.S(c) in 

the reproduction by a PN(w), with a finite N value, of a 
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X(n) X(n) 
f' • 
I • • 

I I ~I 
I i I • co • ' I • i i~ T ' ' • I I r I I ' i I I , • • • I I • • • • 0 I ••• (!1-1) ••• -c 0 I • • • (N-1) 'C 
(~) (b) 

Figure 5.4. Infinite (a) and finite (·b) string of system output samples. 

-B 

P(w) ~S(w) 
/ N.._c....., --

0 ~ 7r 21T" 
(a) Ideal spectrum estimation representation (PN(w)). 

I 

I 
I 

(b) Convolution of ideal spectrum estima~ion (PH(w)) 
and window function (W(e"'w )). 

..._ 

(c) Windowed spectrum estimation representation (P (w)). 

-t 

t 

Figure 5.5. Spectrum estimation representations (PN(w)) of an ideal spectrum 
(S(w)) for infinite and finite (windowed) string of output samples. 
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rectangular repetitive power spectrum curve, as shown in 

figure 5.5(a), for a PN(w) with N set to infinity. Leakage, 

as depicted in figure 5.5(c), is the "seepage" of portions 

of spectral energy corresponding to one frequency lobe into 

another. In this case there is a leakage of spectral energy 

from the lobe of -e~w~S to its two adjacent lobes. Leakage 

can have detrimental effects on the accuracy of the spectrum 

estimation specially when two spectral lobes of' high energy 

concentration are very close to each other. 

A windowed periodogram as depicted in figure 5.5(c) is 

defined as [ 78]: 

P (f)= [l/(2TI)] JTI P (e)W(ej(w-e)Ts)de 
N<~oo -TI N+oo 

5.2.21 

Where W(eJWTs) is the fourier transform of the window func-

tion w(n). Since the inverse fourier transform of 

W(eJc..,Ts )is the window function itself: 

w(n)= [l/(2TI)] JTI W(ej2TifTs)ej2Tifn 
-TI 

5.2.22 

PN(f) can be redifined [78) into the following form: 

P (f)= Ts 
N-1 ·2 fn l Rxx(n)w(n)e-J TI Ts 5.2.23 

n=-(N-1) 
Note that w(n) is required to be an even function. It is 

with the use of the relationship of 5.2.23 that Welch gener-
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alized equation 5.2.20 to the form of his formulation pre-

~ented in section 5.3. 

The windows of interests are given below [2~ with the 

parameter N changed to M to comply with Welsh's windowed 

periodogram formulation of section 5.3: 

I. Rectangular: 

w(n) = 1 , 

II. Triangular: 

2n/(M-l) 

0 SnS (M-1) 5.2.24 

0 SnS [ (M-1 )/2] 

w(n) = 5.2.25 

2- 2n/(M-l), [(m-1)/2] SnS (M-1) 

III. Hanning: 

w ( n) = ( 1/2) { 1 

IV. Hamming: 

w(n) = 0.54 

- cos[(2~n)/(M-1)]} , 

- 0.46cos[(2rrn)/(M-l)] , 

V. Blackman: 

w(n) = 0.42 

- 0.5cos[(2~n)/(M-1)] 

+ 0.08cos[(4~n)/(M-l)] 

0 SnS (M-1) 

0 SnS (M-1) 

5.2.26 

5.2.27 

5.2.28 

Note that equations 5.2.18 and 5.2.20 use the standard rec-

tangular window. The general form of these windows are giv-
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en in figure 5.6 [281 and their fourier transform W(ejw~) 

are in the form depicted in figure 5.5(b). 

There is a useful borderline ratio which helps one make a 

decision as to when a spectrum estimation using a window 

other than the rectangular window provides less estimation 

variance. When this ratio, as provided below [281, is less 

than 1 the non-rectangular window should be used. 

R= VAR[Sw(f)] 
I 

VAR[Sw(f)] 

where: - Sw(f) defined by equation 5.3.1 uses 

a non-rectangular window. 
I 

- Sw(f) defined by equation 5.3.1 uses 

the rectangular window. 

5.2.29 

Table 5.1 [281 tabulates values of R for the windows of in-

terest along with the approximate width of the main lobe of 

W(eJRTs) (see figure 5.5(c)), the importance of which will be 

explained shortly. 

There are certain important points to be kept in mind 

when windowed periodogram spectrum estimation is used to an-

alyze the noise spectrum of switched capacitor systems: 

1. Spectral leakage can decrease the resolution of sharp 

peaks, valleys, 

power spectrum. 

and zeroes contained in the ideal 
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TABLE 5.1. Approximate Width of Main Lobe and Approximate 
Variance Ratio (R) of Windows of Interest (28]. 

Approx. Approximate 
Window Width of Main Lobe Variance Ratio{!}_ 

Rectangular 4n /M 1. 

Triangular · 8n/M M/(3N) 

Manning 6n/M (0.37SM)/N 

Manning 6n/M (0.3974M)/N 

..... 
l/1 

. l/1 
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2.  To  avoid  leakage: 

a)  Increase  the  number  of  points. 

b)  Select  a  window  where  the  main  lobe  of  its  fourier 

transform  (see  figure  5.5(c))  is  as  short  as  pos-

sible.  The  approximate  main  lobe  widths  the  win-

dows  of  interests  are  listed  in  table  5.1. 

3.  Selecting  a  window  with  a  short  main  lobe  usually  en-

tails  high  energy  side  lobes  which  can  increase  leak-

age. 

Note  that  points  2(b)  and 3 are  in  conflict  with  each  other. 

For this  reason  there  is  no  preferred  window  function.  The 

criteria  for  selecting  a  particular  window  is  left  to  the 

engineer. 

~ ~ ~ Fundamental  Principles  of  Autocorrelation  (AR) 

Spectrum  Estimation  Modeling 

Many  discrete-time  deterministic  and  stochastic  processes 

can  be  approximated  by  a  linear  rational  autoregressive  mov-

ing  average  (ARMA) transfer  function  model  defined  by  the 

following  linear  difference  equation [28],[78]: 

x(n) = r b(l)n(n-1)  -
t=O 

p 

l a(k)x(n-k) 
k=l 

5.2.30 
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where  n  is  the  input  driving  sequence  and  xis  the  output 

sequence  of  the  system.  The  Z-transform  of equatio~ 5.2.30 

results  in  the  Z-domain  ARMA transfer  function  of  the  sys-

tem: 

H(Z) = X(Z) ITTzY = 

q 

2 b(m)Z-m 
m=O 

l a(m) z-m 
m=O 

where:  (i)  z= exp(j2~fTs) 

5.2.31 

for  -l/2Ts ~ ~ l/2Ts 

(ii)  Ts  - sampling  period  of  the  process 

The  output  noise  power  spectrum  can  then  be  written  in  the 

following  form: 

SARMA (Z) = H(Z)H(Z-l)S (Z) = 
n 

X(Z)X(Z-l)Sn(Z) 

N(Z)N(Z-l) 
5.2.32 

It  is  important  to  keep  in  mind  that  system  modeling  spect-

rum  estimation  H(Z)  and Sn(Z) are  not  functions  of Hi(w) and 

as  depicted  in  figure  5.3.  What  system-modeling 

spectrum  estimation  will  do  is  to  assume  that  the  system 

from  which  a  set  of  time-domain  values,  x(n},  is  available 

has  a  transfer  function  of  an  arbitrary  number  of  poles 

and/or  zeroes  and  a  single  noise  input  spectral  density 

function Sn(Z). Sn(Z) is  assumed  to  be  a  white  noise  with 

2 
zero  mean  and  a  variance  of a. According  to  Kay  and  Marple 

[*] Sn(Z) should  be  defined  as: 



158 

5.2.33 

where the Ts factor in the expression has been included so 

that "S (Z), when integrated over -1/2Ts~f~l/2Ts, yields ARMA 
the true power of an analog signal". The AR spectrum model-

ing estimation techniques to be discussed will attempt to 

obtain proper values for a(m) 

the model. 

2 and a for a selected o~der of 

Equation 5.2.32 can be expressed in the following form: 

cr2Tsll + r b(k)e-j2nfkTsl2 
k=l 

11 + t a(k)e-j2nfkTsl2 
k=l 

5.2.34 

From this point on some technique(s) must be implemented for 
2 determining the values of a(k), a, and b(k) based on infor-

mation available in the finite record length of system out-

put time-domain samples, x(n). To date, no perfected or 

fully reliable technique or algorithm has been developed for 

computing the ARMA coefficients (a2.a(k),b(k)). For this 

reason autoregressive (AR)-modeled spectrum estimation will 

be adopted. 

According to the Wold decomposition theorem [43], dis-

cussed by Kay and Marple 081, a stationary ARMA system of 

finite variance can be approximated by an AR model of higher 

order. This theorem is important since an AR-modeled spect-
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rum estimation approach can be adopted to approximate the 

spectrum of a system which can possibly be an ARMA system. 

If an AR-modeled system identification spectrum estimation 

technique is adopted the following all-pole spectrum formu-

lation is obtained from the general ARMA-modeled formulation 

of equation 5.2.34 [78): 

5.2.35 

What is now required is a technique for determining the AR 
2 parameters (a(k),o) using the available knowledge in the 

finite record of output samples, x(n). Toward this end the 

Yule-Walker equations [78) were developed. 

The Yule-Walker equations are formulated in the following 

manner [ 7 8] : 

*-Rxx(k) = E[x(n+k)x(n)] 5.2.36 

p 
= E[x*(n)(- I a(l)x(n-l+k) + n(n+k))] 

R.=l 

Preferably adopting the biased autocorrelation estimator 

(5.2.14), equation 5.2.36 reduces into what is known as the 

Yule-Walker equations. These equations which relate the au-

tocorrelation estimate of the available time-domain samples 

x(n) of the system with the AR parameters of 5.2.35 are giv-

en below [ 78): 
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p A 

- l a(l)Rxx(k-1) for k > 0 
R.=l 

A 

Rxx(k)= 5.2.37 
p 

A 

l a(l)Rxx(-1) + a2 fork = 0 
R.=l 

5.2.37 define a Toeplitz matrix of the following form [78]: 

Rxx(O) "' " Rxx(l) Rxx(-p) 1 a 

" I\ A 
Rxx(l) Rxx(O) Rxx(-(p-7) • a1 0 5.2.38 

• • . • • 
• • . . 
• I\ • A 

. • • I\ 
Rxx(p) Rxx(p-1) Rxx(O) ap 0 

I\ "* Note that Rxx(-m) = Rxx (m). 

A solution of 5.4.38 can efficiently be provided by the 

Levison-Durbin (LD) algorithm [78]. Before defining the LD 

algorithm equation 5.2.35 must be redefined into the follow-

ing form [ 78]: 

a 2 (p)Ts 

11 + ! a(p,k)e-j2TifTsl2 
k=l 

where: -1/2Ts SfS 1/2Ts 

5.2.39 

The LD algorithm defines a recursion where parameter sets of 

a(i,i) and o2 (i) are computed until reaching the selected AR 

model order, p, in the following manner: 

{a11, a 1} 

2 { a 1 , a 2, •.• , app , Op 
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where: ai, 0 = 0 for i=l,2, ... ,p 

a., . = 0 for j >i 
1 J 

The Levison-Durbin algorithm is presented below [78]: 

(a) Initialization: 
A A 

a(l,l) = -Rxx(l)/Rxx(O) 
2 2 A 

a ( 1 ) = ( 1- I a ( l , 1 ) I ) Rxx ( O ) 

(b) Recursion: for i=2,3, ... ,p and k=l,2, ... ,i 
A 

a(i,i)= -[Rxx(i) 

i-1 A 

+ l a(i-l,l)Rxx(i-1)]/a2(i-l) 
t=l 

a(i,k)= a(i-1,k) + a(i,i)a*ci-1,i-k) 

a 2 ( i ) = ( 1- la ( i , i )I 2 ) a 2 ( i-1 ) 

5.2.40(a) 

5.2.40(b) 

5.2.40(c) 

5.2.40(d) 

5.2.40(e) 

The parameters {a 11 ,a 22 , ••• ,appl often are refered to as 

reflection coefficients and are designated {K1 ,K2 , ••• ,Kp} 

respectively. They have the property that for the selected 

system model and system model order (as defined by 5.2.39) 

to be a valid representation of the power spectrum of the 

stochastic process x(n), 

condition that [78]: 

it is a necessary and sufficient 

IK. I s 1 
I 

for i=l,2, ... ,p 

There is yet to be developed a fully reliable criteria 

for determining the optimum, or near optimum, AR-model ord-
' 

er, p. Nevertheless, some criterias have been proposed and 
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tested with promising results and these are the Akaike-FPE, 

the Akaike-AIC, and the Parzen-CAT which are discussed in 

more detail by Kay and Marple [18) (see appendix B). 

In most situations the AR-modeled spectrum estimation 

(AR) approach more powerful than conventional windowed per-

iodogram (WP) approaches. The performance comparison bet-

ween the two are listed below: 

1. The AR approach usually offers better resolution of 

sharp frequency response characteristics, such as 

peaks, in the actual power spectrum. 

2. The AR approach provides a smoother continuous spect-

rum estimation curve. 

3. For both the AR and the WP approach the resolution 

and the variance of the spectrum estimation improves 

and decreases respectively for longer records of 

available x(n) data. 

4. The WP approach may offer a better resolution of 

short, sharp valleys and zeroes in the actual power 

spectrum response. (Recall that the AR approach mo-

dels an all-pole filter}. 

5.2.5 Discrete-Time and Analog Spectrum Relationships 

The equivalent discrete-time output power spectrum 

(SD(jQ)) of an analog system whose output is sampled with a 
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period Ts is an aliased version of the analog power spectrum 

(SA(jw)). The relationship between discrete-time and analog 

power spectrums is similar to the relationship between dis-

crete-time and analog transfer functions (equation 4.2.3). 

The discrete-time and analog power spectrum relationship is 

given below [ S ] : 

00 

l SA(j2wf + (2wr)/Ts) 
r=-oo 

where: f - analog frequency (Hz) 

Q - discrete-time frequency (r/s) 

Q = 211'fTs 

5.2.41 

If spectrum estimation analysis is restricted for 

-l/2TsSfSl/Ts, the following relationship is obtained: 

5.2.42 

Spectrum estimation analysis by windowed periodogram or 

AR-modeling is based on the assumption that the system out-

put samples, x(n), correspond to a discrete-time system. The 

end result of such an assumption is the estimation of s0 (jQ) 

in 5.2.42. If the system under consideration is analog, 

SA(j2~f) can be computed with the use of 5.2.42, as long as 

-l/2TsSfSl/2Ts. This is the reason why in order to compute 

SA(j2fff) the argument to the right of the equal sign in both 

5.2.20 and 5.2.39 is multiplied by a factor of Ts. If the 
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system  under  consideration  is  discrete-time  ,such  as  a 

switched  capacitor  filter, s0(jn) can  be  computed  by  simply 

dividing  5.2.20  and  5.2.39  by  Ts. 

~ ~ The  Welch  Windowed  Periodogram 

The  following  is  a  windowed  periodogram  algorithm  devel-

oped  by  Welch [421, presented  by  Oppenheim  and  Shaeffer [281, 

and  here  modified  following  discussions  on  windowed  periodo-

grams  by  Kay  and  Marple U81 and  the  material  presented  in 

section  5.2.5: 

A  data  segment  x(n),  for OSnS(N-1), is  partitioned  into K 

equal  segments  of  M  samples  each  so  that N=KM, hence: 

x.(n)=  x(n+iM-M), 
I 

0 SnS (M-1),  1 SiS K 

Compute: 

I. For  the  spectrum  estimation  of  an  analog  system: 

k I H-1 . 12 
Sw(f)= [1/(NQTs)Ji!l Tsn!oxi(n)w(n)e-Jwn 5.3.1 

M-1 
where:  (i) Q= [1/M] l w2(n) 

n=O 
(ii)  w(n)=  window  function 

for  O SnS (M-1) 

(see  section  5.2.J) 

(iii)  Ts  - sampling  period  between 

x(n)  points. 

(iv)  -l/2Ts SfS l/2Ts 
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II. For the spectrum estimation of a discrete-time system, 

the same algorithm presented above applies except that 

5.3.1 divided by a factor of Ts. 

S ( f) <= S ( f) /Ts 5. 4. 2 w w 
A more detailed discussion on windowed periodograms is pro-

vided in section 5.2.2. 

5.4 The Yule-Walker and Burg AR-Modeling Spectrum Estimation 

Techniques 

Two techniques are here provided for solving the AR par-

ameters of in equation 5.2.39. 

rent approaches in using 

Both techniques take diffe-

the Levison-Durbin equations 

(5.2.40) for solving the matrix of 5.2.38. 

~-~-1 The Yule-Walker Algorithm 

The Yule-Walker algorithm for computing the ouput power 

spectrum estimation (SA(f)) of an analog system is presented 

in the flow diagram of figure 5.7. To compute the output 

power spectrum estimation of a discrete-time system equation 

5.39 (SO(f)) in the above algorithm is divided by a factor 

of Ts. 

SD (f) <= SA (f)/Ts 5.4.1 
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\
Compute Rxx(m) for M=0,1, ..• ,P., 
(equation 5.2.13 or 5.2.14) 

Initialize Levinson-Durbin 
recursion. 
(equations: 5.2.40(a), 5.2.40(b)) 

' 

Levinson-Durbin recursion 
for: i=2~3,•••,I? 

k= 1 , 2, .•• , I 
(equations: 5.2.40(c) -

5.2.40(e)) 

i.< p 

I Increase model order. l 
(i=i+1) 

Calculate SAR(f): 
Analysis of analog system: equation 5.2.39 
Analysis of discrete-time system: equation 5.4.1 

Figure 5.7. Yule-Walker AR-modeled power spectrum estimation algorithm. 
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~ ~ ~ The  Burg  Algorithm 

The  derivation  of  the  Burg  algorithm  is  beyond  the  scope 

of  this  chapter·and  will  not  be  presented.  The  derivation  of 

the  algorithm  is  well  presented  by  Kay  and  Marple  [ 78). 

Listed  below  is  a  set  of  equations  used  by  the  algorithm: 

e(i,k)=  e(i-1,k) + Kjb(i-1,k-l) 

* b(i,k)=  b(i-l,k-1) + Kje(i-1,k) 

e(O,k)=  b(O,k)=  x(k)  for  k=O,l,  ...  ,N-1 

N-1 
-2 l b*(i-l,k-l)e(i-1,k) 
k=i 

a(i,i)= Ki= =N---1~-----------------------
l lb(i-l,k-1)  l2+le(i-l,k) 12 

k=i 

5.4.2 

5.4.3 

5.4.4 

5.4.5 

The  Burg  algorithm  for  computing  the  power  spectrum  estima-

tion  of  an  analog  system  is  presented  in  figure  5.8.  To 

compute  the  power  spectrum  estimation  of  a  discrete-time 

system  replace  5.2.39  with  5.4.1. 

5.5  Power  Spectrum  Estimation  and  Analytical  Spectrum 

Analysis  of  an  Example  SC  Noise-Modeled  Circuit. 

The  noise-modeled  LDI  parasitic-sensitive  circuit  of  fig-

ure  5.2,  as  analyzed  by  Gobet  and  Knob,  results  in  the  fol-

lowing  analytical  formulations  for  the  output  noise  power 

spectrum  [ 7J]  : 
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In it i a I i za ti on: 
a) Compute Rxx(O). 

(equation: 5.2.13 or 5.2.14) 
b) Compute e(O,k) and b(O,k). 

(equation: 5.4.4) 
c) Compute a(1,1). 

(equation:~5.4.5) 
d) Compute: O" (1). 

(equation: 5.2.40(b)l 

i>! 
r 

.---------~ Compute a ( i, i ) . 
(equation: 5.4.5, 

1 P 

Levinson-Durbin recursion for: 
k=1,2, ... ,i 
{equations: 5.2.40{dl-5.2.40(e)) 

increase mooe I o roe r. 
(i=i+1) 

Recursion for 
i = 2 '3 • • • , p') 

' 
,i, 

Update prediction error 
parameters e(i,k) and b(i,k). 
(equations: 5.4.2 and 5,4.3) 

1 L=P 
Compute SA~(f): 
Analysis of an analog system: equation 5.2.39 
Analysis of a discrete-time system: equation 5.4.1 

figure 5.8. Burg AR-modeled power spectrum estimation algorithm. 
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S (f)= [(Ke)/(FsaC)]{a/[2nF/Fs]} 2 
n1 

-1 where: Beg= (2R 2 aC) 

= S . • FFb [c1+aTFs(a+2) n1. s 

+ [2.;1FsJ " .,~1] 
Fs 

• Fb 

5.5.1 

5.5.2 

5.4.3 

5.5.4 

Table 5.2 tabulates values used by Gobet and Knob for the 

parameters in the above equations. A computer simulation of 

5.5.4 was carried out by Li [24] giving the analytical power 

spectrum frequency response result depicted in figure 5.9. 

The noise-modeled circuit of 5.2 was computer simulated by 

McCall [27] with the use of TCAPS (341, 

for SC simulation developed by Riad [34]. 

a computer program 

A record of 250 

time-domain output points, at 10 µsec apart,was generated. 

Analyzing this record of data, the computer program SPECTRA 

(see Appendix C) performed windowed periodogram and AR-sys-

tem modeling output power spectrum estimation analyses of 
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Table 5.2. Gobet and Knob Parameter Values for 
Equations 5.5.1 Through 5.5.4 [12]. 

Parameter Value 

K 1. 38xl0- 23 J !°K 

e 300°K 

Fs 10 kHz 

a 1 

C 10 pF 

Fb 700 kHz 

Beg 14.451 MHz 

T 25 sec 

5NOA 2.512(10)- 14v2 /Hz 
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the circuit in figure 5.2. The results of these analyses are 

depicted in figures 5.10 through 5.12. 

Implementing one periodogram and individually adopting 

the window functions discussed in section 5.2.3, the Welch 

periodogram technique produced seperate spectrum estimation 

results, depicted in figure 5.10, for the output noise power 

spectrum of figure 5.2. Note that when compared to the ana-

lytical spectrum in figure 5.9, the use of the rectangular 

window provided the windowed periodogram spectrum estimation 

with the least variance and the most resolution. With the 

number of periodograms increased to 10, the windowed perio-

dogram spectrum estimation results depicted in figure 5.11 

were obtained. Note that for all the windowed periodogram 

spectral estimations, the resolution and the variance de-

creases by increasing the number of periodograms. These re-

sults are expected since by increasing the number of perio-

dograms to decrease the variance there is less number of 

time-domain points available for each periodogram, 

decreasing the resolution. Note that with the use 

thereby 

of 10 

periodograms the Blackman window provided the best spectrum 

estimation performance, in terms of variance and resolution, 

while, in this case, the rectangular window provided the 

worst performance. This result is not surprising in light 
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(a) Rectangular window 

(c) Hanning window. 
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(b) Triangular winaow. 
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(d) Hamming window. 
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(e) Blackman window. 

Figure 5.10. Welcn windowed periodogram noise power spectrum estimation 
of circuit in Figure 5.2 (1 periodogram) 
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(a) Rectangular window. (b) Triangular window • 

... m.aa . ca iw ~ aua ,<II .ca ..a 00 IQ.GD 
FAEII.ENCT IHZI FR£Q.OoC" 

(c) Hanning window. (d) Hamming window. 

\i,m ....... c,.::o m.» .m 
FR£GL£N:1' I HZ I 

(e) Blackman window. 

Figure 5.11. Welch windowed periodogram noise power spectrum estimation 
of circuit in Figure 5.2 (10 periodograms). 
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........ CUIO IO.aa m.ca 
FREQJEICY I Hll 

I .a. 

(a) Yule-Walker: model order= 7 ( b ) Bu rg : mode I o rd e r = 7 

~ 

h 
:1 ,:,'ii-.,.--.,-.... --ci..-.oa--.:..-.00--..,-.... --,.,...&i-.ai•"'"lo-,'"',ao..,.,-"',-... , .. ,.....,.,,,.......,,in.ca 

FRElJ.EICY I WZ I 

(c) Yule-Walker: model order= 10 (d) Burg: model order= 10 

:0,00 oG,cm m.oo ao.co .m 1•.m im.ca 
FREII.DCY 11<?1 

(e) Yule-Walker: model order= 15 (f) Burg: model order= 15 

Figure 5.12. Yule-Walker and Burg AR-modeled noise power spectrum 
estimation of circuit in Figure 5.2 for model orders 
1, 10, and 15. 
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of the discussion made in section 5.2.3 on the varied per-

formances of windows in tackling the conflicting tasks of 

improving the spectrum estimation and avoiding spectral 

leakage. 

The Yµle-Walker and Burg AR-system modeling spectrum es-

timations of of the output noise power spectrum of the cir-

cuit in figure 5.2 are depicted in figure 5.12. Note that 

for both techniques a consistent increase in specified model 

order does not necessarily guarantee an improved spectral 

estimation, in terms of variance and resolution, when com-

pared to the analytical spectrum in figure 5.9. For both 

cases the variance and resolution of the spectrum estimation 

both improve by increasing the model order from 7 to 10, but 

degrades when the order is increased to 10. Nevertheless, 

when compared to the windowed periodogram spectrum estima-

tions of figures 5.10 and 5.11 the AR-modeling spectrum es-

timations of figure 5.12 demonstrate substantial improve-

ments in terms of variance and resolution. Note that the 

Yule-Walker spectrum estimation for an order of ·•7 (figure 

5.12(c)) is a near perfect reproduction of the analytical 

spectrum in figure 5.9. 



Chapter VI 

CONCLUSIONS 

Certain conclusions can be drawn from the computer si-

mulations and test results of the bilinear double-sampled 

(BDS) and the LDI filters presented in chapter 4, and from 

the spectral estimation discussion and analysis presented in 

chapter 5. Listed below are some conclusions and recomenda-

tions concerning bilinear and LDI switched-capacitor (SC) 

filter and system designs: 

1. For a fixed clock frequency, a BDS switched capacitor 

system operates at an 

teristic frequency ratio 

equivalent LDI system. 

ture is: 

effective sampling-to-charac-

which is twice that of the 

The significance of this fea-

a) For a particular frequency window of operation, 

there is greater allowance for avoiding acute ali-

asing effects in BDS designs than in equivalent 

LDI designs, where the aliasing frequency is half 

that of the BDS system. 

b) With consideration paid to limitations imposed by 

dynamic characteristics such as slew rates and 

settling times of circuit components, BDS systems 

177 
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can be implemented at higher frequency windows 

than LDI systems. 

c) While limited by the demand of meeting fixed pass-

band specifications, BDS filters require lower 

order specifications than equivalent LDI filters. 

Due to their signal double-sampling nature, BDS 

switched capacitor filters require twice the number 

of switches and switched capacitors then their equi-

valent LDI SC systems. The consequences of this fea-

ture are: 

a) No need for clock-phased signal-sampling schemes 

for BDS filter designs as in LDI filter designs. 

b) Greater requirements for switches and capacitors 

in BDS systems can increase their manufacturing 

costs and impose tighter small scale manufacturing 

restrictions when compared to equivalent LDI sys-

tems. 

c) With twice the number of switches, BDS filters 

contain twice the number of noise sources than in 

corresponding LDI filters of equal orders. 

The following remarks and recommendations can be made conc-

ernin the use of spectrum estimation for switched capacitor 

noise analysis: 
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1. Even though spectrum estimation obviates the need for 

the cumbersome and tedious computations prevalent in 

analytical spectrum analysis, it does require accu-

rate SC system noise modeling and precise time-domain 

computer simulations of noise-modeled SC systems. 

2. Since there is no ideal spectrum estimation techni-

que,· one of the following two spectral analysis stra-

tegies should be pursued: 

a) First adopt a windowed periodogram spectrum esti-

mation technique, preferably using the rectangular 

window and one-periodogram realization, to obtain 

the asymptotic behavior of the actual power spect-

rum. Subsequently, pursue either a Yule-Walker or 

a Burg AR-system modeling spectrum estimation ana-

lysis with a random selection of model orders in 

pursuit of an order which converges the estimation 

to the desired spectral response. 

b) Adopt the Yule~Walker or the Burg AR-system model-

ing spectrum estimation technique in conjunction 

with an obtimum model order criterion, such as the 

Akaike-FPE, the Akaike-AIC, and the Parzen-CAT 

criteria. 



Appendix A 

BUTTERWORTH, TSCHEBYSCHEFF, AND JACOBI-ELLIPTIC 
S-DOMAIN APPROXIMATIONS AND COMPUTER PROGRAM ANT 

All the material in this appendix, with the exception of 

the computer program ANT, are well known Butterworth, Tsche-

byscheff, and Jacobi-Elliptic s-domain approximations thou-

roughly compiled by Antoniou [ ,3 ] . The FORTRAN language com-

puter program ANT implements 

approximation algorithm presented here. 

the Jacobi-Elliptic 

Parameters not de-

fined in this appendix are defined in chapter 3. 

A.l Butterworth S-Domain Approximation (Normalized 

for~ cutoff frequency (wco) of 1 rad/sec) 

A typical s-domain Butterworth loss characteristic nor-

malized for a 3dB cutoff frequency of 1 rad/sis depicted in 

figure A.1 for which the following formulation applies: 

L(w2 ) = 1 + w2n 

A(w) = 10log(l+w 2n) n = order of filter 

where: 

2n 
i (S-Sk) 

k=l 

{
ej (2k-1) 1r /2n 

s -k - ej (k-1) 1r /n 

The normalized transfer function: 

180 

for n even 

for n odd 
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w. raJ:s 

Figure A.1. Typical Butterworth lowpass attenuation•freguency 
response characteristic (orders n=3,6,9) [3J. 

A(w) 

0 
w 

Figure A.2. Attenuation-frequency response characteristic of a 
4th-order Tschebyscheff lowpass filter [3]. 
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The normalized transfer function: 

1 
n 
ii (S-P.) 

. 1 l. 1.= 

where: Pi (for i=l,2, ... ,n) are left-half 

s-plane poles of L{-s 2 ) 

A.2 Tschebyscheff S-Domain Approximation (Normalized 

for~ cutoff frequency of 1 rad/sec) 

A typical 4th-orders-domain Tschebyscheff loss charac-

teristic normalized for a passband edge frequency of 1 rad/s 

is depicted in figure A.2 for which the following general-

ized formulations apply: 
' 1 L(-s 2 ) = 1 + e2 [cosh(n[cosh- (s/j)])] 2 

where n = order of filter 

For Sk = crk + jwk :, 
crk = ±sinh{(l/n)sinh- 1 (1/e)}sin[(2k-l)n/2n] 

= cosh{(l/n)sinh- 1(1/e)}cos[(2k-l)n/2n] 

where: e 2 = 10°· 1 Ap - 1 

The normalized transfer function: 

Ko 
n 
ii (S-P.) 

. 1 l. 1.= 

where: (i) Pi for i= 1,2, ... ,n are the left-half 
2 s-plane zeros of L(-5) 
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n 
10-0.05 Ap i (-P.) 

. 1 l. 1.-
n 
i (-P.) 

. 1 l. 1.= 

for n even 

for n odd 

A.J Jacobi-Elliptic S-Domain Approximation (Normalized 

for~ cutoff frequency of l rad/sec) 

The loss characteristic of as-domain normalized lowpass 

elliptic approximation is depicted in figure A.3 where: 

wpen = 1K 

wsen = 1/ ./K 

wcon = v'wpen wsen 
The parameter K (further discussed in section 3.4) is a 

function of the characteristic frequencies of the filter 

specification. Once K is determined wp~n and Ws~n of the 

corresponding normalized lowpass attenuation characteristic 

are related in the following manner: 

The following algorithm has been developed by Antoniou 

[ J] following the work by Grossman [ 75] for obtaining the 

normalized lowpass s-domain Jacobi-Elliptic transfer func-

tion (HN(s)) in biquadratic sections. Starting with the re-

quired filter order (n), passband loss (Ap), and parameters 

(q) and (K) (see section 3.4), HN(s) is computed in the fol-

lowing biquadratic sections format: 
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K0 r s 2 + Ao. 
= ii 1. Do (s) 2 i=l s + B1.s + Bo. 

1. 1. 

r = J<n-1) /2 
l!112 

Do(s) 

n odd 

n even 

n odd 

n even 

(a 0 to be derived) 

Algorithm for ~i' !!_o;, B1i,K 0 , D0 (~) derivation: 

A= 1 in 100.05 Ap + 1 
'2n 100.05 Ap _ 1 

CD 2 
1 + 2 1 (-l)mqm cosh(2mA) 

m=l 

W = l(l+Kafi)(l + afi/K) 

For i = 1,2, ... ,r compute: 
CD 

2q1/ 4 l (-l)mqm(m+l)sin[(2m+l)wµ/n] 
m=O n. =~~~-------------------------1. CD m m2 

1 + 2 1 (-1) q cos[2mwµ/n] 
m=l 

where: ,,.<A= Jl l_i - 1/2 

n odd 

n even 

v. = t(l-Kn~)(l-n~/K) 
1. 1. 1. 

Ao.= 1/n~ 
1. 1. 
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2 
Boi = [(a 0Vi) 2 + (niw) 2 ]/[l + afinf] 
B 1 • = [2aoV.]/[l + a~n~] 

i i i 

Ko= 

r 
a 0 U (Bo./Ao.) . l i i i= 

for n odd 

r 
10-0.0S Ap T (B0 ./A 0 .) for n even . l i. i i= 

ANT, a fortran language computer program, which computes 

the parameters of equation A.l by evaluating the above al-

gorithm, is presented in the next page. Design specifica-

tion parameters, whose values the user specifies, are de-

fined in the main program and are specified in the 

subroutine PARAM. An example computer run is presented aft-

er the program listing for the 8th-order LDI elliptic low-

pass switched-capacitor filter discussed in chapter 4. 



C*** 
C*** 

* * * ANT 
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* * * 

C*** PROGRAMER: JOSE' VELAZQUEZ RAMOS 
C*** 
C*** ELLIPTIC BILINEAR/LOI FILTER DESIGN BASED 
C*** PREWARPING PASSBAND-STOPBAND EDGE FREQUENCIES 

IMPLICIT REAL*S(A-H,0-Z) 
DIMENSION AO(lO),BO(lO),Bl(lO) 
WRITE(6,93) 

93 FORMAT(///,' BIL. 3RD ORDER SC LP FCO=', 
X'lOOOHZ,FSE=2212.28HZ ',///) 

PASS=O.O 
PI=3.1415927 

C*** PARAMETER DEFINITIONS: 
C*** AS=STOPBAND LOSS 
C*** AP=STOPBAND LOSS 
C*** FC=CLOCK FREQUENCY(HZ) 
C*** WZP=Z-DOMAIN PASSBAND EDGE FREQUENCY (R/S) 
C*** WZS=Z-DAMAIN STOPBAND EDGE FREQUENCY (R/S) 
C*** NBL=l(BILINEAR)/O(LDI) 
C*** NDS=l(DOUBLE SAMPLED)/O(SINGLE SAMPLED) 
C*** NN,RN=ORDER OF FREQUENCY 
C*** INFNIT=(NO. TERMS IN SUMATIONS) ODD=l(ODD)/O(EVEN) 
C*** MODE=l: LOWPASS SPECIFICATION 
C*** 2: HIGHPASS SPECIFICATION 

CALL PARAM(AS,AP,FC,WZP,WZS,NBL,NDS,NN,RN, 
lINFNIT,MODE,ODD) 

C*** FIND SAMPLING PERIOD TS 
IF(NDS.EQ.1) TS=(l.0/FC)/2.0 
IF(NDS.EQ.0) TS=(l.0/FC) 
FS=l.0/TS 

C*** WITH WZP=WZP, LET WZS=WZS IFF WZS<PI*FS 
VALl=PI*FS 
IF(WZS.GT.VALl) WZS=VALl 

C*** WP=PREWARPED S-DOMAIN STOPBAND EDGE FREQUENCY 
IF(NBL.EQ.O) GO TO 5 
RKO=(DTAN((WZP*TS)/2.0))/(DTAN((WZS*TS)/2.0)) 
IF(MODE.EQ.l) RKO=RKO 
IF(MODE.EQ.2) RKO=l.0/RKO 
WP=DSQRT(RKO) 
IF(MODE.EQ.2) GO TO 61 
RLANDA=(TS*WP)/(2.0*DTAN((WZP*TS)/2.0)) 
IF(PASS.EQ.0.0) GO TO 10 

61 RLANDA=(2.0*WP*DTAN((WZP*TS)/2.0))/TS 
IF(PASS.EQ.0.0) GO TO 10 

5 RKO=(DSIN((WZP*TS)/2.0))/(DSIN((WZS*TS)/2.0)) 
IF(MODE.EQ.l) RKO=RKO 
IF(MODE.EQ.2) RKO=l.0/RKO 
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WP=DSQRT(RKO) 
IF(MODE.EQ.2) GO TO 81 
RLANDA=(TS*WP)/(2.0*DSIN((WZP*TS)/2.0)) 
IF(PASS.EQ.0.0) GO TO 10 

81 RLANDA=(2.0*WP*DSIN((WZP*TS)/2.0))/TS 
10 CONTINUE 

C*** WRITE NBL,NDS,WZS,WZP,AP,AS,TS,RKO,WP,RLANDA 
WRITE(6,15) NBL,NDS,WZS,WZP,AP,AS,TS,RKO,WP,RLANDA 

15 FORMAT(///,' NBL=' ,I2,/,' NDS=' ,I2, 
A/, ' WZS=' , El5. 5, 
1/, ' WZP=' , E15. 5, /, ' J\P=' , E15. 5, /, ' AS=' , 
BE15.5,/, 
2' TS=' , E15. 5, /, ' RKO=' , E15. 5, /, ' WP=' , 
CE 15 . 5, /, ' RLANDA, ' , 
3'=' ,El5.5,//) 

C*** FIND REQUIRED ORDER(RNR) 
RKP=DSQRT(l.0-RK0**2) . 
QO=(O. 5) * ( 1. 0-DSQRT(RKP) )/( 1.0+DSQRT(RKP)) 
Q=Q0+2.0*(Q0**5)+15.0*(Q0**9)+150.0*(Q0**13) 
EXPP=O.l*AS 
EXPS=O.l*AP 
D=((lO.O)**EXPP-1.0)/((10.0)**EXPS-l.O) 
RNR=DLOG10(16.0*D)/DLOG10(1.0/Q) 

C*** WRITE REQUIRED ORDER (RNR) 
WRITE(6,20) RNR 

20 FORMAT(///,' REQUIRED ORDER OF FILTER=' ,El5.5,//) 
C*** FIND NORMALIZED ELLIPTIC LOWPASS LAPLACE 
C*** TRANSFER FUNCTION COEFFICIENTS 

EXPX=0.05*AP 
DELTA=(l.0/(2.0*RN))*DLOG((lO.O**EXPX+l.O)/ 

G(lO.O**EXPX-1.0)) 
C*** FIND SUMMATION VALUES OF SUMMA 

Il=-1 
Ril=-1. 0 
SUMAl=O.O 
SUMA2=0.0 
DO 25 I2=1,INFNIT 
Il=Il+l 
RI1=RI1+1. 0 
RII1=RI1+1.0 
IF(Il.GT.O) GO TO 30 
FACTRA=l.O 
.FACTRB=-1. O*Q 
IF(PASS.EQ.0.0) GO TO 35 

30 EXPl=Il*(Il+l) 
IIl=Il+l 
EXP2=II1**2 
FACTRA=((-1.0)**Il)*(Q**EXPl) 
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FACTRB=((-1.0)**II1)*(Q**EXP2) 
35 SUMAl=FACTRA*DSINH((2.0*Ril+l.O)*DELTA)+SUMAl 

SUMA2=FACTRB*DC0SH(2.0*RII1*DELTA)+SUMA2 
25 CONTINUE 

SUMMA=DAB5((2.0*(Q**0.25)*SUMA1)/(l.0+2.0*SUMA2)) 
W=DSQRT((l.O+RKO*(SUMMA**2))*(1.0+(SUMMA**2)/RKO)) 
IF(ODD.EQ.1.0) NRR=(NN-1)/2 
IF(ODD.EQ.0.0) NRR=NN/2 
RI3=0.0 
DO 55 I4=1,NRR 
RI3=RI3+1. 0 
IF(ODD.EQ.1.0) U=RI3 
IF(ODD.EQ.0.0) U=RI3-0.5 
I5=-1 
RI5=-1. 0 
SUMB1=0.0 
SUMB2=0.0 
DO 50 I6=1,INFNIT 
I5=I5+1 
RI5=RI5+1. 0 
RII5=RI5+1.0 
IF(I5.GT.O) GO TO 40 
FACTRA=l.O 
FACTRB=-1.0*Q 
IF(PASS.EQ.0.0) GO TO 45 

40 IXP1=I5*(I5+1) 
II5=I5+1 
IXP2=II5**2 
FACTRA=((-1.0)**I5)*(Q**IXP1) 
FACTRB=((-l.O)**II5)*(Q**IXP2) 

45 SUMB1=FACTRA*DSIN(((2.0*RI5+l.0)*PI*U)/RN)+SUMB1 
SUMB2=FACTRB*DCOS((2.0*RII5*PI*U)/RN)+SUMB2 

50 CONTINUE 
SUMMB=(2.0*(Q**0.25)*SUMB1)/(1.0+2.0*SUMB2) 
V=DSQRT((l.O-RKO*(SUMMB**2))*(1.0-(SUMMB**2)/RKO)) 
AO(I4)=1.0/(SUMMB**2) 
B0(I4)=((SUMMA*V)**2+(SUMMB*W)**2)/ 

G((l.O+(SUMMA**2)*(SUMMB**2))**2) 
B1(I4)=(2.0*SUMMA*V)/(1.0+(SUMMA**2)*(SUMMB**2)) 

55 CONTINUE 
RHO=l.O 
DO 60 I8=1,NRR 
RHO=RHO*(BO(I8)/AO(I8)) 

60 CONTINUE 
EXXX=-0.05*AP 
IF(ODD.EQ.1.0) RHO=SUMMA*RHO 
IF(ODD.EQ.0.0) RHO=((lO.O)**EXXX)*RHO 

C*** WRITE VALUES 



C 
C 

IF(ODD.EQ.O) GO TO 70 
WRITE{6,65) RHO,SUMMA 
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65 FORMAT(///,' RHO=' ,E20.8,/,' DO(S)=S+' ,E20.8) 
IF(PASS.EQ.0.0) GO TO 75 

70 WRITE(6,80) RHO 
80 FORMAT(///,' RHO=' ,E20.8,/,' DO(S)=l.O') 
75 CONTINUE 

WRITE(6,85) 
85 FORMAT(///,' VALUES NUMENATOR (AO) 1 , 

4'AND DENOMINATOR (BO) AND (Bl', 
l') COEFFICIENTS:',//) 
DO 90 I9=1,NRR 
WRITE(6,100) I9,AO(I9),I9,BO(I9),I9,Bl(I9) 

100 FORMAT(' AO(', I2, ')=' ,E20.8,' BO(', 
XI2, ')=' ,E20.8,' Bl(' ,I2,')=' ,E20.8,/) 

90 CONTINUE 
STOP 
END 

SUBROUTINE PARAM(AS,AP,FC,WZP,WZS,NBL,NDS, 
5NN,RN,INFNIT,MODE,ODD) 

IMPLICIT REAL*8(A-H,O-Z) 
AS=82.11 
AP=0.03 
FC=lOOOO.O 
WZP=6283.2 
WZS=l1533.0 
NBL=O 
NDS=O 
NN=8 
RN=NN 
INFNIT=5 
MODE=l 
ODD=O.O 
RETURN 
END 
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EXAMPLE OUTPUT 

Certain parameters presented in the output listing below 

are defined as follows: 

RLANDA = ~ 

DO(S) = D0 (s) 

RHO= Ko 

AO(i) = Ao 

BO(i) = Bo 

Bl(i) = B 

LDI 7th-ORDER SC LP FCO=lOOOHZ,FSE=2212.28HZ 

SPECIFIED PARAMETERS 

NBL= 0 

NOS= 0 

WZS= 0.115330+05 

WZP= 0.628320+04 

AP= 0.30000D-01 

AS= 0.821100+02 

TS= O.lOOOOD-03 

RKO= 0.56678D+OO 

WP= 0.75285D+OO 
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COMPUTED NORMALIZED PARAMETER VALUES*REQUIRED 

FILTER ORDER*DENORMALIZING COEFFICIENT 

RHO= 0.16474580D-04 

DO( S )=l. 0 

REQUIRED ORDER OF FILTER= 0.71614D+Ol 

RLANDA= 0.12181D-03 

VALUES NUMENATOR (AO) AND 

DENOMINATOR (BO) AND (Bl) COEFFICIENTS: 

AO( 1)= 0.38662439D+02 BO( 1)= 0.14336501D+OO 

Bl( 1)= 0.66402350D+OO 

AO( 2)= 0.50260339D+Ol BO( 2)= 0.30963578D+OO 

Bl( 2)= 0.50922384D+OO 

AO( 3)= 0.24121785D+Ol BO( 3)= 0.50767878D+OO 

Bl( 3)= 0.29681586D+OO 

AO( 4)= 0.18216260D+Ol BO( 4)= 0.62634605D+OO 

Bl( 4)= 0.94927475D-01 



Appendix B 

SPECTRA: A WINDOWED PERIODOGRAM AND AR-MODELING 
SPECTRUM ESTIMATION COMPUTER PROGRAM 

SPECTRA, a FORTRAN language program, implements either a 

windowed periodogram or a AR-modeling spectrum estimation 

analysis of both analog and discrete-time systems for which 

records of time-domain output values are available. The pro-

gram is capable of implementing either the Welch windowed 

periodogram or the AR-modeling power spectrum estimation 

techniques discussed in chapter 5. Either the Yule-Walker or 

the Burg algorithm can be used when pursuing an AR-modeling 

spectrum estimation analysis. For windowed periodogram 

spectrum estimation the following window functions are avai-

lable: 

a) Rectangular d) Hamming 

b) Triangular e) Blackman 

c) Hanning 

For AR-modeling spectrum estimation the following model ord-

er criterias are available: 

a) Akaike-FPE b) Akaike-AIC c) Parzen-CAT 

Formulations for the Akaike-FPE, the Akaike-AIC, and the 

Parzen-CAT AR-model order criterias are presented below 

[ 781 : 
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E(i) = E(i-1) [1- la(i,i)l 2 ] 

where: (i) i=l,2, ... ,p 

(ii) a(i,i) = reflection coefficients 

(see chapter 5) 

(iii) p = optimum model order 

N 
(iv) E(o) = 1 lx(k)l 2 

k=l 

I. Akaike-FPE: AFPE( i) = E( i) ~+ i+ll 
~-i-1] 

II. Akaike-AIC: AAIC(i) = 

III. Parzen-CAT:PCAT(i) = 

Ln{E( i)} + 2 ( i+l )/N 

1 i 1 - r 
N j=l E(j} 

I\ 

1 - --"' 
E(i) 

where: (i) E(j) = (N/(N-j ))E(j) 

(ii) N = number of time-domain 

B.1 

B.2 

B.3 

points per periodogram 

During a recurrent increase of the AR-model order, i, the 

obtimum, or near-obtimum model order, p, is obtained when 

the value of the criteria parameter (AFPE, AAIC, or PCAT) is 

minimum. 

SPECTRA is structured to read in first a data file con-

taining a column of 19 'decision-making' values, which are 

defined in the first few lines of the program. With the use 
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of these values the operator can structure the program to 

operate in a desired mode of spectrum estimation analysis. 

The program then reads in a data file containing time-domain 

output samples from the system for which a spectrum estima-

tion is desired. This data file should contain, from left to 

right, a column of time values versus a column of time-do-

main output values. Upon completion of a spectrum estimation 

analysis, the program will output relevant mode-of-operation 

information along with computed spectrum estimation versus 

frequency values. The program as presented here has yet to 

be expanded to implement, when desired, an FFT algorithm in 

windowed periodogram analyses. SPECTRA is listed in the 

next page and an example output for a Yule-Walker 5th-order 

AR-modeling spectrum estimation analysis of the circuit in 

figure 5.2 is pres€nted after the program listing. The out-

put values (S(w)) were scaled in the following manner: 

S(w) <= 10.0*log 10 [S(w)] 



C*** 
C*** 

* * * 
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SPECTRA * * * 
C*** PROGRAMER: JOSE' VELAZQUEZ RAMOS 
C*** 
C*** WELCH AVERAGED WINDOWED PERIODOGRAM AND AR-MODELED 
C*** SPECTRUM ESTIMATION PROGRAM. AR-MODELED SPECTRUM 
C*** ESTIMATION USING EITHER THE YULE-WALKER OR BURG 
C*** ALGORITHMS. MODEL ORDER FOR AR-MODEL SPECTRUM 
C*** ESTIMATION EITHER ARBITRARILY SELECTED OR SELECTED 
C*** BY ADOPTING EITHER THE AKAIKE-FPE, AKAIKE-AIC, OR 
C*** PARZEN-CAT MODEL ORDER CRITERIAS. 

DIMENSION D(19),X(1000,2),SP(SOO),FP(SOO),SAR(SOO), 
XFAR(SOO),PRNT(S00,3),A(40,40),RK(40),VAR(40) 

C*** CONSTANTS DEFINITION 
C*** DECIDE WHAT SPECTRUM ESTIMATION TECHNIQUE TO FOLLOW, 
C DETERMINE THE FREQUENCY WINDOW OF OPERATION, AND 
C SELECT OTHER PARAMETERS OF INTERESTS. 
C D(l)= 1: PERIODOGRAM/ 2: AUTOREGRATION (AR) 
C 0(2)= PERIODOGRAM WINDOWS: 
C 1: RECTANGULAR (BARLETT PROCEDURE) 
C 2: BARLETT/ 3: HANNING/ 4: HAMMING 
C 5: BLACKMAN 
C 0(3)= AR FORMULATION TECHNIQUE: 1: YULE-WALKER 2: BURG 
C 0(4)= PERIODOGRAM FREQUENCY WINDOW: 1: FFT 
C 0: NO FFT 
C D(S)= (AVILABLE DECISION-MAKING PARAMETER) 
C 0(6)= NO. OF TIME-DOMAIN SAMPLES 
C 0(7)= NO. OF PERIODOGRAMS 
C 0(8)= STARTING FREQUENCY (HZ) 
C 0(9)= FINAL FREQUENCY (HZ) 
C D(lO)= FREQUENCY INCREMENT (HZ) 
C D(ll)= AR FORMULATION ORDER: 
C 1: SPECIFIED/ 2: AKAIKE-FPE 
C 3: AKAIKE-AIC/ 4: PARZEN-CAT 
C D(12)= SPECIFIED AR FORMULATION ORDER 
C 0(13)= SAMPLING PERIOD (TS) 
C D(l4)= 1: BIASED AUTOCORRELATION ESTIMATOR 
C 2: UNBIASED AUTOCORRELATION ESTIMATOR 
C D(lS)= 1: PRINT REFLECTION COEFFICIENTS 
C 0: OTHERWISE 
C D(16)= 1: SPECTRA VALUES IN LINEAR SCALE 
C 2: SPECTRA'VALUES IN DB SCALE 
C (10.0*LOG(SPECTRA(W))) 
C 3: SPECTRA VALUES IN DB SCALE 
C (20.0*LOG(SPECTRA(W))) 
C 0(17)= 1: FREQUENCY IN RADIANS/SECOND (R/S) 
C 2: FREQUENCY IN HERTZ (HZ) 
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C D(18)= 1: FREQUENCY SCALE=> LINEAR 
C 2: FREQUENCY SCALE=> 10.0*LOG(W) DB 
C 3: FREQUENCY SCALE=> 20.0*LOG(W) DB 
C D(19)= 1: SPECTRAL ESTIMATION OF ANALOG SYSTEM 
C = 2: SPECTRAL ESTIMATION OF DISCRETE-TIME SYSTEM 

PASS=O.O 
PI=3.1415927 
PK=O.O 
PASA=O.O 
SAME=O.O 

C*** READ SPECTRUM ESTIMATION CRITERIA PARAMETERS 
DO 3 I=l,19 

3 READ(ll,*) D(I) 
NX=D(6) 

C*** READ SYSTEM TIME-DOMAIN OUTPUT SAMPLES 
DO 5 I=l,NX 
READ(l2,*) (X(I,J),J=l,2) 

5 CONTINUE 
IF(D(l).NE.1.0) GO TO 10 
CALL PERIO(X,NX,D,PI,PASS,SP,FP,NFP) 
GO TO 15 

10 IF ( D ( 1 ) . NE.• 2 • 0 ) GO TO 3 0 
CALL AR(X,NX,D,PI,PASS,SAR,FAR,NFAR,RK,VAR,NORDER) 

C*** PRINT RESULTS 
15 IF(D(l).NE.1.0) GO TO 35 

DO 40 I=l,NFP 
PRNT(I,l)=FP(I) 

40 PRNT(I,2)=SP(I) 
CALL PPRNT(RK,VAR,D,PRNT,NFP,NPLOTS,SAME,PASA,PA,NORDER) 
GO TO 30 

35 IF(D(l).NE.2.0) GO TO 30 
DO 55 I=l,NFAR 
PRNT(I,l)=FAR(I) 

55 PRNT(I,2)=SAR(I) 
CALL PPRNT(RK,VAR,D,PRNT,NFAR,NPLOTS,SAME,PASA,PA,NORDER) 

30 STOP 
END 

C******************************************************* 
C 
C SUBROUTINE PERIO: PERIODOGRAM SPECTRUM COMPUTATION 
C 
C******************************************************* 

SUBROUTINE PERIO(X,NX,D,PI,PASS,SP,FP,NFP) 
DIMENSION D(19),X(1000,2),SP(500),FP(500),WC(l000), 

1XW(40,400) 
COMPLEX*8 SPJ(400),WEX 
RM=D(6)/D(7) 
M=RM 
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W=O.O 
DO 10 I=l,M 
IF(D(2).EQ.l.O) WC(I)=l.O 
IF(D(2).EQ.2.0) CALL BARLT(I,M,WC) 
IF(D(2).EQ.3.0) CALL HAN(I,M,WC) 
IF(D(2).EQ.4.0) CALL HAM(I,M,WC) 
IF(D(2).EQ.5.0) CALL BLC(I,M,WC) 
W=W+WC(I)**2 

10 CONTINUE 
W=W/RM 
RKONS=l./(D(6)*W*D(13)) 
NP=D(7) 
RM=D(6)/D(7) 
M=RM 
DO 15 I=l,NP 
DO 20 J=l,M 
IX=J+(I-l)*M 
XW(I,J)=X(IX,2)*WC(J) 

20 CONTINUE 
15 CONTINUE 

C FFT OR FT? 
NFP=(D(9)-D(8))/D(l0) 
DO 25 I=l,NFP 
FP(I)=D(8)+(I-l)*D(10) 
W=-1.0*2.0*PI*FP(I)*D(13) 
RRP=W/(2.0*PI) 
JW=RRP 
PPR=JW 
W=2.0*PI*(RRP-PPR) 
FP(I)=2.0*PI*FP(I) 
SP(I)=O.O 
DO 30 J=l,NP 
SPJ(J)=CMPLX(0.0,0.0) 
DO 35 K=l,M 
WE=W*(K-1) 
WEX=CMPLX(O.O,WE) 
SPJ(J)=SPJ(J)+XW(J,K)*CEXP(WEX) 

35 CONTINUE 
SPJ(J)=D(13)*SPJ(J) 
SP(I)=SP(I)+(REAL(SPJ(J)))**2+(AIMAG(SPJ(J)))**2 

30 CONTINUE 
SP(I)=RKONS*SP(I) 
IF(D(l9).EQ.2.0) SP(I)=SP(I)/0(13) 

25 CONTINUE 
RETURN 
END 
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C 
C******************************************************** 
C 
C AUTOREGRESSIVE FORMULATION: YULE-WALKER AND BURG 
C 
C******************************************************** 
C 

SUBROUTINE AR(X,NX,D,PI,PASS,SAR,FAR,NFAR,RK,VAR,NORDER) 
DIMENSION X(l000,2),SAR(500),FAR(500),RXX(40), 

1A(40,40),VAR(40),B(40,1000),E(40,l000),RK(40),D(l9) 
COMPLEX*S DENO,WEXP 
YES=O.O 
NORDER=D(12)+1.0 
NEEE=l 
RMOM=D(14) 
D(l4)=1.0 
CALL CRXX(NEEE,X,NX,D,RXX) 
EC=RXX(l) 
D(l4)=RMOM 
IF(D(ll).NE.1.0) GO TO 11 
IF(D(3).EQ.l.O) NRXX=D(l2)+1.0 
IF(D(3).EQ.2.0) NRXX=l 
IF(PASS.EQ.0.0) GO TO 12 

11 IF(D(3).EQ.l.O) NRXX=2 
IF(D(3).EQ.2.0) NRXX=l 

12 CALL CRXX(NRXX,X,NX,D,RXX) 
IF(D(3).EQ.2.0) GO TO 10 
I=2 
A(2,2)=-l.O*RXX(2)/.RXX(l) 
RK(2)=A(2,2) 
VAR(2)=(1.0-A(2,2)**2)*RXX(l) 
GO TO 30 

10 I=2 
A(l,1)=1.0 
RK(l)=l.O 

25 RNUME=O.O 
RDENO=O.O 
IEB=I-1 
DO 20 K=I,NX 
KB=K-1 
KE=K 
CALL EB(X,NX,IEB,KB,KE,RK,B,E) 
RNUME=RNUME+B(IEB,KB)*E(IEB,KE) 
RDENO=RDENO+(B(IEB,KB))**2+(E(IEB,KE))**2 

20 CONTINUE 
RK(I)=(-2.0*RNUME)/RDENO 
A( I, I )=RK( I) 
IF(I.NE.2) GO TO 35 



200 

A(2,2)=RK(2) 
VAR(2)=(1.0-A(2,2)**2)*RXX(l) 
GO TO 30 

15 A(I,I)=-1.0*RXX(I) 
NULIM=I-1 
DO 40 L=2,NULIM 
KR=!-(L-1) 
A(I,I)=A(I,I)-1.0*A(NULIM,L)*RXX(KR) 

40 CONTINUE 
A(I,I)=A(I,I)/VAR(NULIM) 
RK(I)=A(I,I) 

35 NULIM=I-1 
VAR(I)=(l.O-A(I,I)**2)*VAR(NULIM) 
II=I-1 
DO 45 K=2,II 
Il=I-1 
I2=I-K+l 

C IF(I2.GT.Il) A(Il,I2)=0.0 
C IF(I2.LE.1) A(Il,I2)=1.0 
C IF(K.GT.Il) A(Il,K)=O.O 
C IF(K.LE.1) A(Il,K)=l.O 

A(I,K)=A(Il,K)+A(I,I)*A(Il,I2) 
45 CONTINUE 
30 EC=EC*(l.0-((RK(I))**2)) 

· IF(D(ll).EQ.2.0) CALL AFPE(EC,D,I,YES) 
IF(D(ll).EQ.3.0) CALL AAIC(EC,D,I,YES) 
IF(D(ll).EQ.4.0) CALL PCAT(EC,D,I,YES) 
IF(YES.EQ.1.0) NORDER=! 
IF(YES.EQ.1.0) GO TO 50 
IF(D(ll).NE.1.0) GO TO 33 
IF(I.GE.NORDER) GO TO 50 

33 I=I+l 
IF(D(3).EQ.2.0) GO TO 25 
IPR=I+l 
CALL CRXX(IPR,X,NX,D,RXX) 
IF(D(3).EQ.l.O) GO TO 15 

50 NFAR=(D(9)-D(8))/D(l0) 
DO 55 IAR=l,NFAR 
FAR(IAR)=D(8)+(IAR-l)*D(l0) 
W=2.*PI*FAR(IAR)*D(l3) 
RRW=W/(2.0*PI) 
JW=RRW 
RPW=JW 
W=-2.0*PI*(RRW-RPW) 
FAR(IAR)=2.*PI*FAR(IAR) 
DENO=CMPLX(0.0,0.0) 
A(NORDER, 1) =1. 0 
DO 60 I=l,NORDER 
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WW=W*(I-1) 
WEXP=CMPLX(O.O,WW) 
DENO=DENO+A(NORDER,I)*CEXP(WEXP) 

60 CONTINUE 
DENOM=(AIMAG(DEN0))**2+(REAL(DEN0))**2 
SAR(IAR)=(VAR(NORDER)*D(l3))/DENOM 
IF(D(l9).EQ.2.0) SAR(IAR)=SAR(IAR)/D(l3) 

55 CONTINUE 
NORDER=NORDER-1 
RETURN 
END 

C 
C********************************************* 
C 
C PERIODOGRAM WINDOWS SUBROUTINES 
C 
C********************************************* 
C 
C*** SUBROUTINE BARLT 

SUBROUTINE BARLT(I,M,WC) 
DIMENSION WC(lOOO) 

C 

N=I-1 
RN=N 
RM=M 
LLIM=(M-1)/2 
ULIM=M-1 
LLLIM=O.O 
IF(N.GE.LLLIM.AND.N.LE.LLIM) WC(I)=(2.0*RN)/(RM-l.O) 
IF(N. GT. LL IM.AND. N. LE. ULIM) WC.( I )=2. 0- ( 2. O*RN)/ 

l(RM-1.0) 
RETURN 
END 

C*** SUBROUTINE HAN (HANNING WINDOW) 
SUBROUTINE HAN(I,M,WC) 
DIMENSION WC(lOOO) 

C 

N=I-1 
RN=N 
RM=M 
PI=3.1415927 
WW=(2.*PI*RN)/(RM-l.O) 
WC(I)=0.5*(1.0-COS(WW)) 
RETURN 
END 

C*** SUBROUTINE HAM (HAMMING WINDOW) 
SUBROUTINE HAM(I,M,WC) 
DIMENSION WC(lOOO) 
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N=I-1 
RN=N 
RM=M 
PI=J.1415927 
WW=(2.*PI*RN)/(RM-1.0) 
WC(I)=0.54-0.46*COS(WW) 
RETURN 
END 

C*** SUBROUTINE BLC (BLACKMAN WINDOW) 
SUBROUTINE BLC(I,M,WC) 
DIMENSION WC(lOOO) 
N=I-1 
RN=N 
RM=M 
PI=J.1415927 
WW=(2.*PI*RN)/(RM-1.0) 
WWW=2.0*WW 
WC(I)=0.42-0.S*COS(WW)+O.OS*COS(WWW) 
RETURN 
END 

C 
C************************************************* 
C 
C BIASED AND UNBIASED 
C AUTOCORRELATION ESTIMATORS SUBROUTINE 
C 
C************************************************* 
C 

SUBROUTINE CRXX(NRXX,X,NX,D,RXX) 
DIMENSION X(1000,2),RXX(40),D(l9) 
DO 10 I=l,NRXX 
RXX{I)=O.O 
NULIM=NX-(I-1) 
DO 20 J=l,NULIM 
JX=J+(I-1) 
RXX{I)=RXX{I)+X{JX,2)*X{J,2) 

20 CONTINUE 
RN=NX 
RM=I-1 
IF(D(14).EQ.l.O) RXX(I)=(l.0/RN)*RXX(I) 
IF(D(l4).EQ.2.0) RXX(I)=(l.0/(RN-RM))*RXX(I) 

10 CONTINUE 
RETURN 
END 
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C 
C*************************************** 
C 
C FORWARD (E) AND BACKWARD (E) 
C LINEAR PREDICTOR SUBROUTINES 
C 
C*************************************** 
C 

SUBROUTINE EB(X,NX,IEB,KB,KE,RK,B,E) 
DIMENSION X(1000,2),B(40,1000),E(40,1000),RK(40) 
IF(IEB.NE.l) GO TO 10 

C B(l,KB)=X(KB,2) 
C E(l,KE)=X(KE,2) 

DO 20 I=l,NX 
B ( 1, I ) =X ( I , 2 ) 
E(l,I)=X(I,2) 

20 CONTINUE 
GO TO 15 

10 IEBM=IEB-1 
KBM=KB-1 
KEM=KE-1 
B(IEB,KB)=B(IEBM,KBM)+RK(IEB)*E(IEBM,KB) 
E(IEB,KE)=E(IEBM,KE)+RK(IEB)*B(IEBM,KEM) 

15 CONTINUE 
RETURN 
END 

C 
C******************************************************* 
C 
C AKAIKE-FPE AR-MODEL ORDER CRITERIA SUBROUTINE 
C 
C******************************************************* 
C 

SUBROUTINE AFPE(EC,D,I,YES) 
DIMENSION D(19) 
P=I-1 
RCNUM=D(6)+P+l.O 
RCDEN=D(6)-P-l.O 
IF(RCDEN.EQ.0.0) YES=l.O 
IF(RCDEN.EQ.0.0) GO TO 10 
VALU=EC*(RCNUM/RCDEN) 

C WRITE(6,23) VALU 
C 23 FORMAT(' HI MOM ',E20.5) 

IF(I.EQ.2) VAFPE=VALU 
IF(I.EQ.2) GO TO 10 
IF(VALU.LE.VAFPE) VAFPE=VALU 
IF(VALU.LE.VAFPE) GO TO 10 
YES=l.O 
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RETURN 
END 

204 

C 
C******************************************************* 
C 
C AKAIKE-AIC AR-MODEL ORDER CRITERIA SUBROUTINE 
C 
C******************************************************* 
C 

SUBROUTINE AAIC(EC,D,I,YES) 
DIMENSION D(l9) 
P=I-1 
VALU=ALOG(EC)+2.0*((P+l.O)/D(6)) 
IF(I.EQ.2) VAAIC=VALU 
IF(I.EQ.2) GO TO 10 
IF(VALU.LE.VAAIC) VAAIC=VALU 
IF(VALU.LE.VAAIC) GO TO 10 
YES=l.O 

10 CONTINUE 
RETURN 
END 

C 
C******************************************************* 
C 
C PARZEN-CAT AR-MODEL ORDER CRITERIA SUBROUTINE 
C 
C******************************************************* 
C 

SUBROUTINE PCAT(EC,D,I,YES) 
DIMENSION D(19) 
II=I-1 
VALU=O.O 
DO 10 K=l,II 
RK=K 
EP=(D(6)/(D(6)-RK))*EC 
VALU=VALU+l.0/EP 

10 CONTINUE 
VALU=(l.O/D(6))*VALU-(l.O/EP) 
IF(I.EQ.2) VPCAT=VALU 
IF(I.EQ.2) GO TO 20 
IF(VALU.LE.VPCAT) VPCAT=VALU 
IF(VALU.LE.VPCAT) GO TO 20 
YES~l.O 

20 CONTINUE 
RETURN 
END 
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C 
C******************************************************* 
C 
C SUBROUTINE PPRNT: OUTPUT COMPUTATION RESULTS 
C 
C****************************************************** 
C 

SUBROUTINE PPRNT(RK,VAR,D,PRNT,NPT,NPLOTS,SAME,PASA, 
lPA,NORDER) 

DIMENSION PRNT(500,3),RK(40),VAR(40),D(l9) 
PI=3.1415927 

.MORDER=NORDER+l 
IF(D(l5).NE.l.O.OR.D(l).NE.2.0) GO TO 31 
WRITE(6,15) 

15 FORMAT(///,' AR-MO', 
l'DEL SPECTRUM REFLECTION COEFFICIENTS',/) 
DO 20 I=2,MORDER 
II=I-1 
WRITE(6,25) II,RK(I) 

25 FORMAT(' K(' ,I2, ')=' ,El5.5) 
20 CONTINUE 
31 IF(D(l).NE.2.0) GO TO 41 

WRITE(6,30) 
30 FORMAT(///,' AR-MODEL SPE', 

l'CTRUM VARIANCE (VAR) AND I,/, I SAMPL'' 
2'ING PE~IOD (TS) COEFFICIENTS',/) 

WRITE(6,40) II,VAR(MORDER),D(l3) 
40 FORMAT(' VAR(',I2,')=',El5.5, 

1/, ' TS=' , El5. 5, /) 
41 Nl=D(l) 

N2=D(2) 
N3=D(7) 
N4=D(3) 
N5=D(ll) 
IF(D(l).EQ.1.0) NORDER=D(l2) 
N6=NORDER 
N7=D(l4) 
RN8=D(6) 
RN9=D(l3) 
NlO=D(l6) 
Nll=D(l7) 
Nl2=D(l8) 
Nl3=D(l9) 
WRITE(6,145) 

145 FORMAT(///,' POWER SPECTRUM ESTIMATION VALUES', 
5 ' vs . FREQUENCY ' , 
X//,' NOTE: A) IF I= 1: PERIODOGRAM (COLUMN A) 
P,/,' 2: AR-MODEL (COLUMN A) 



G,/,' 
L, /I' 
N,/,' 
M,/,' 
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B) IF II= 1: RECTANGULAR WINDOW 
2: TRIANGULAR WINDOW 
3: HANNING WINDOW 
4: HAMMING WINDOW 
5: BLACKMAN WINDOW 

C) III= NUMBER OF PERIODOGRAMS 
Q,/,' 
0,/, I 

R,/, I 

S,/, I 

J,/, I 

K,/, I 

B,/ I' 
C, I,' 
T,/, I 

W,/, I 

U,/,' 
Y,/, I 

D) IV= 1: YULE-WALKER AR-SPECTRA MODEL' 
2: BURG AR-SPECTRA MODEL ' 

E) V= 1: SPECIFIED ORDER 
2: AKAIKE-FPE ORDER CRITERIA 
3: AKAIKE-AIC ORDER CRITERIA 
4: PARZEN-CAT ORDER CRITERIA 

F) VI= SELECTED AR-SPECTRA MODEL ORDER' 
G) VII= 1: BIASED AUTOCOR. EST!. ' 

WRITE(6,155) 
155 FORMAT(' 

A,/, I 

C,/,' 
D, I, ' 
E,/ I' 
4,/ I I 

5,/,' 

2: UNBIASED AUTOCOR. EST!. 
H) VIII= NO. OF TIME-DOMAIN PTS. 

J) IX= SAMPLING PERIOD (SECONDS) 
K) X= 1: SPECTRA IN LINEAR SCALE 

2: SPECTRA IN DB (10.0*LOG) 
3: SPECTRA IN DB (20.0*LOG) 

L) XI= 1: FREQUENCY IN RAD/SEC 
2: FREQUENCY IN HERTZS (HZ) 

M) XII= 1: FREQUENCY IN LINEAR SCALE 

I ) 

6, /, I 

7, /, I 

8,/ I I 

2: FREQUENCY IN DB (10.0*LOG) ' 
3: FREQUENCY IN DB (20.0*LOG) ' 

N) XIII= 1: ANALOG SYSTEM 
9 I I I I 

WRITE(6,45) 
3Nl2,Nl3 

2: DISCRETE-TIME SYSTEM') 
Nl,N2,N3,N4,NS,N6,N7,RN8,RN9,Nl0,Nll, 

45 FORMAT(' I=', !2,/,' II=' ,!2,/,' I I I ,-

6'I=' ,IS,/,' IV=', 
DI2,/,' V=' ,!2,/,' VI=',IS,/,' VI I, 

7'I=',I2,/,' VIII=',E2 
zo. 5, /, ' IX=' , E20. 5, /, ' X=' , 
8!2,/,' XI=',I2,/,' XII=', 
3!2,/,' XIII=' ,I2) 

WRITE(6,166) 
166 FORMAT(/,' 

N3=2 
DO 50 I=l,NPT 

FREQUENCY SPECTRUM 

IF ( D ( 1 7 ) . EQ . 2 . 0 ) PRNT ( I ; 1 ) =PRNT. ( I , 1 ) / ( 2 . 0 *PI ) 
IF(D(l8).EQ.l.O) GO TO 122 
IF(D(l8).EQ.2.0) TLOG=lO.O 
IF(D(l8).EQ.3.0) TLOG=20.0 
IF(PRNT(I,l).EQ.0.0) GO TO 122 
PRNT(I,l)=TLOG*ALOGlO(PRNT(I,l)) 

122 IF(D(l6).EQ.l.O) GO TO 211 

I,/) 
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IF(D(l6).EQ.2.0) RLOG=lO.O 
IF(D(l6).EQ.3.0) RLOG=20.0 
PRNT(I,2)=RLOG*ALOG10(PRNT(I,2)) 

211 WRITE(6,55) (PRNT(I,J),J=l,N3) 
55 FORMAT(3(3X,El5.5)) 
50 CONTINUE 

RETURN 
END 
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* * * EXAMPLE OUTPUT * * * 

AR-MODEL SPECTRUM REFLECTION COEFFICIENTS 

K( l)= 
K( 2)= 
K( 3)= 
K( 4)= 
K( 5)= 

-0.97081E+OO 
-0.40540E+OO 
-0.21468E+OO 
-0.40573E-Ol 
-0.14135E+OO 

AR-MODEL SPECTRUM VARIANCE (VAR) AND 
SAMPLING PERIOD (TS) COEFFICIENTS 

VAR( 5)= 0.99659E-13 
TS= O.lOOOOE-04 

POWER SPECTRUM ESTIMATION VALUES VS. FREQUENCY 

NOTE: A) IF I= 1: PERIODOGRAM (COLUMN A) 
2: AR-MODEL (COLUMN A) 

B) IF II= 1: RECTANGULAR WINDOW 
2: TRIANGULAR WINDOW 
3: HANNING WINDOW 
4: HAMMING WINDOW 
5: BLACKMAN WINDOW 

C) III= NUMBER OF PERIODOGRAMS 
D) IV= 1: YULE-WALKER AR-SPECTRA MODEL 

2: BURG AR-SPECTRA MODEL 
E) V= 1: SPECIFIED ORDER 

2: AKAIKE-FPE ORDER CRITERIA 
3: AKAIKE-AIC ORDER CRITERIA 
4: PARZEN-CAT ORDER CRITERIA 

F) VI= SELECTED AR-SPECTRA MODEL ORDER 
G) VII= 1: BIASED AUTOCOR. EST!. 

2: UNBIASED AUTOCOR. EST!. 
H) VIII= NO. OF TIME-DOMAIN PTS. 
J) IX= SAMPLING PERIOD (SECONDS) 
K) X= 1: SPECTRA IN LINEAR SCALE 

2: SPECTRA IN DB (10.0*LOG) 
3: SPECTRA IN DB (20.0*LOG) 

L) XI= 1: FREQUENCY IN RAD/SEC 
2: FREQUENCY IN HERTZS (HZ) 

M) XII= 1: FREQUENCY IN LINEAR SCALE 
2: FREQUENCY IN DB (10.0*LOG) 
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3: FREQUENCY IN DB (20.0*LOG} 
N) XIII= 1: ANALOG SYSTEM 

I= 2 
II= 1 

III= 10 
IV= 1 
V= 1 

VI= 5 

2: DISCRETE-TIME SYSTEM 

VII= 1 
VIII= 

IX= 
0.25000E+03 
O.lOOOOE-04 

X= 2 
XI= 2 

XII= 1 
XIII= 2 

FREQUENCY 

0.0 
O.SOOOOE+03 
0.10000E+04 
0.15000E+04 
0.20000E+04 
0.2SOOOE+04 

* 

* 

* 

0.13000E+OS 
0.13500E+OS 
0.14000E+OS 
0.14500E+OS 

SPECTRUM 

-0.88012E+02 
-0.10328E+03 
-0.10918E+03 
-0.11265E+03 
-0.11510E+03 
-0.11698E+03 

* 

* 

* 

-0.12735E+03 
-0.12742E+03 
-0.12748E+03 
-0.12753E+03 



Appendix C 

DYNAMIC RANGING OF THE 8TH-ORDER LOI FILTER 

The following steps were taken in the dynamic ranging of 

the 8th-order LOI filter: 

1. Arbitrarily select a constant value of switched capa-

citor for all the switched capacitors of the LOI fil-

ter. For this case let: 

Cu= Cui= 1,000 pF 

2. Using relations for integrating capacitors, Cki, and· 

coupling-summation capacitors, Cxi, presented in ta-

ble 4.5, the capacitor values listed in table C.l 

were obtained. 

3. Using the capacitor values in table C.l, the LOI fil-

ter when computer-simulated yielded the filter stage 

maximum gain values listed in table C.2. 

4. Normalizing gain constants, Ki, were then computed 

with the purpose of normalizing each filter stage to 

yield maximum output gains equal to the peak gain of 

the output stage. The derivation of these gain cons-

tants for each of the stages is shown in table C.2. 

210 
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Table C.1. Integrating Capacitor, Cki, and coup Ii ng 
Capacitors, Cxi, va I ues. 

Cki Cxi 

1 1.7583 nF 0.1287877 nf 
2 2.3333 " 0.1287877 " 3 3. 1701 " 0.3427922" 
4 2.333 " 0.4116903 " 
5 3.0927 " 0.2080414 " 6 2.5992 " 0.3136197" 
7 2.523 " --------
8 1.7523 II --------

Table C.2. Peak Cains and Output/Input Cain Constants 
of Individual Integration/Summation Stages 

Stages Maximum Cain 

1 a= 2.3504174 
2 b= 2.7313037 
3 c= 2.3276892 
4 d= 2.7202574 
5 e= 2.1240024 
6 f= 2.2723226 
7 g= 1.729916 
8 h= 1.0229019 

Output/Input Cain Constants 

Kl= a/h= 2.2977936 
K2= b/h= 2.6701521 
K3= c/h= 2.2755742 
K4= d/h= 2.6593532 
K5= e/h= 2.0764478 
K6= f/h= 2.2214472 
K7= g/h= 1.6911847 
KS= 1 

" 
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5. The output signal of stage i was multiplied by Ki and 

its input signals divided by Ki, resulting in the 

signal multiplication constants presented in figure 

C.l(a). The value of each switched capacitor repre-

senting a particular signal path in figure C.l{a) is 

multiplied by the path's corresponding multiplicative 

constant 1 the values of which are presented in figure 

C. l(b) ._ With the use of 

switched capacitor values 

tionships in figure 4.5, 

capacitor values of the LOI 

4.7, were obtained. 

these new dynamic-ranged 

and the Cki and Cxi rela-

the dynamic-ranged design 

filter, listed in table 
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1 i i. i 1 i. i ...L , 
~.s ~ q.s -Q3S ~'S o,'> ~TS ~5 

vt v .. '15 
1/K, -Kz/~, K1 /K 3 •1<41 IK 3 K1/1<s ·1<,/Ks .,,_,/1<7 - 1/;(7 

Figure C.1. Leapfrog signal flow diagram of the 8th-order LOI SC lowpass filter with multiplication constant relations. 

Vin 1 -2.!o l,51 • I v~ v, 

! 1 1 i 1 _J_ 1 _1_ 1 
Q,S Q,S Q1S' <;:> .. s Q;S' Q&S 015 <;>ts 
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Figure C.2. leapfrog signa I flow diagram of the 8th-order LOI SC lowpass 
filter with values of multiplication constants. 
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