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Characterizing Zero Divisors of Group Rings

Amanda Renee Welch

(ABSTRACT)

The Atiyah Conjecture originates from a paper written 40 years ago by Sir Michael Atiyah,
a famous mathematician and Fields medalist. Since publication of the paper, mathemati-
cians have been working to solve many questions related to the conjecture, but it is still open.

The conjecture is about certain topological invariants attached to a group G. There are
examples showing that the conjecture does not hold in general. These examples involve
something like the lamplighter group (the wreath product Z/2Z o Z). We are interested in
looking at examples where this is not the case. We are interested in the specific case where
G is a finitely generated group in which the Prüfer group can be embedded as the center.
The Prüfer group is a p-group for some prime p and its finite subgroups have unbounded
order, in particular the finite subgroups of G will have unbounded order.

To understand whether any form of the Atiyah conjecture is true for G, it will first help to
determine whether the group ring kG of the group G has a classical ring of quotients for
some field k. To determine this we will need to know the zero divisors for the group ring
kG. Our investigations will be divided into two cases, namely when the characteristic of the
field k is the same as the prime p for the Prüfer group and when it is di↵erent.
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Chapter 1

Group Rings

1.1 Definitions

Definition 1.1. Let G be a group and R a ring. Set RG to be the set of all linear combina-
tions of the form ↵ =

P
g2G agg where ag 2 R, g 2 G and there are only finitely many ag 6= 0.

Given two elements of RG, ↵ =
P

agg, � =
P

bgg, we define the sum ↵ + � =
P
(ag + bg)g

and the product to be ↵� =
P

g,h2G aggbhh. With these two operations, we can see that RG
is a ring. RG is a ring with unity by 1 =

P
ugg where ug = 1 when g is the unit of G and

ug = 0 otherwise.

The set RG with the operations defined above is called the group ring of G over R. In the
case where R is commutative, RG is also called the group algebra of G over R. [7, Definition
3.2.6]

We will work over the group ring kG where k is some field and G is a special group containing
a countable abelian p-group H as its center.

Definition 1.2. A group G is said to be totally ordered if there is a translation invariant
order  such that for any two x, y 2 G either x  y or y  x. If x  y and y  x, then
x = y.

Definition 1.3. A group G is said to be left ordered, given that G is totally ordered and
for all g 2 G, if x < y, then gx < gy.

Proposition 1.4. A group G is left ordered if and only if it is right ordered.
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Amanda Welch Chapter 1. Group Rings 2

Proof. Let G be a left ordered group. Then there is an order < on G such that G is left
ordered under <. Define the order <0 by x <0 y means y�1 < x�1. Let x <0 y. We wish to
show for any g 2 G, xg <0 yg. G is left ordered and y�1 < x�1 so g�1y�1 < g�1x�1. By
definition of <0, this means that xg <0 yg. Similarly, we could show if G is right ordered,
then G is left ordered.

Theorem 1.5. Let k be a field and G a right ordered group. Then kG is a domain. [4,
Theorem 4.1]

We will assume that G/H is left ordered (and so right ordered by Proposition 1.4), so k[G/H]
is a domain.

Definition 1.6. The set {g 2 G | ag 6= 0} is called the support of ↵ and is denoted Supp↵.

Using this definition, we have kH = {↵ 2 kG | Supp↵ ⇢ H}. Note that for any ↵ 2 kH,
Supp↵ is a finite collection of elements of H, so we can use these finite elements to generate
a group A = hSupp↵i such that ↵ 2 kA. We will do this many times in our proofs. It will
also help in our proofs to have a standard way of representing an element ↵ 2 kG. The
following definition and lemma will help us with this.

Definition 1.7. LetG be a group andH a normal subgroup ofG. LetX be the set consisting
of exactly one representative for each coset of H in G. Then X is called a transversal for H
is G.

Lemma 1.8. Let Y be a transversal for H in G. Then every element ↵ 2 kG can be written
uniquely as a finite sum of the form ↵ =

P
y2Y y↵y with ↵y 2 kH. Thus kG is a free right

kH module with Y as a free basis. [5, Lemma 1.1.3]

We will write ↵ =
P

↵ixi where ↵i 2 kH and xi 2 X where X is a transversal for H in G.

1.2 Augmentation Ideal

Lemma 1.9. Let E be an algebra over K and let ⌧ : G ! U(E) be a group homomorphism
of G into the group of units of E. Then ⌧ extends to a K-algebra homomorphism ⌧ : kG ! E
be defining ⌧(

P
axx) =

P
ax⌧(x). [5, Lemma 1.1.7]

Let H be a normal subgroup of G. There is a natural homomorphism¯: kG ! k[G/H] which
maps ↵ =

P
↵gg 2 kG to ↵̄ =

P
↵gḡ 2 k[G/H] where ḡ = gH is the image of g in G/H .
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Definition 1.10. Consider the case when H = G. Then G/H = h1i and ḡ = 1 for all g 2 G.
Hence

P
↵gḡ = (

P
↵g)1 and the kernel of this map is !(kG) = {

P
agg |

P
ag = 0}. This is

called the augmentation ideal of kG, and it has codimension 1 in kG. [5, p. 10]

The set {g � 1 : g 2 G, g 6= 1} is a basis of !(kG) over k. In general, the kernel of the bar
mapping is !(kH)kG and by the first isomorphism theorem we have kG

!(kH)kG
⇠= k(G/H).

The augmentation ideal will turn out to be very important in our classification of zero
divisors. We will discuss some of its properties that will be useful in later proofs.

1.3 Nilpotent Elements

Definition 1.11. Let R be a ring and let Z+ represent the positive integers. An element
x 2 R is said to be nilpotent if there is an n 2 Z+ such that xn = 0. An ideal I is said to be
nilpotent if there exists an n 2 Z+ such that In = 0.

Definition 1.12. An ideal I of a ring R is called a nil ideal if every element of I is a nilpotent
element.

In a commutative ring, R, the nilpotent elements form an ideal called the nilradical. The
nilradical is the intersection of all the prime ideals of R.

Lemma 1.13. If M is a prime ideal of kH where H is a locally finite abelian group, then
M is a maximal ideal.

This means that in the group ring kH, maximal ideals and prime ideals are equivalent, so
the intersection of all the prime ideals will be the intersection of all the maximal ideals.

Definition 1.14. Let G be a group and p be a prime. G is called a p-group if every element
of G has order a power of p. That is, for each g 2 G, there exists n 2 Z+ such that gp

n
= 1.

Lemma 1.15. Let G be a nontrivial group. Then !(kG) is nilpotent if and only if char(k) =
p for some prime p and G is a finite p-group. [5, Lemma 3.1.6]

For a countable abelian p-group H, we cannot apply Lemma 1.14 because H is not neces-
sarily finite. However, every finite collection of elements generate a finite group A (because
a countable abelian p-group is locally finite). So in the case where char(k) = p, for any
↵ 2 kH, there is a finite group A such that ↵ 2 kA where !(kA) is nilpotent by the lemma
above. Therefore, every element of !(kH) is nilpotent.

However, in the case when char(k) doesn’t divide p, kH has no nonzero nilpotent elements.
We see this through the following theorem.
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Theorem 1.16. Let kG be the group algebra of a finite group over a field k of characteristic
p � 0. Then kG has a nonzero nilpotent ideal if and only if p > 0 and p | |G| [7, Theorem
6.2.2]

Assume � 2 kH is nilpotent. There is some j 2 Z+ such that �j = 0. Set I = (�). Let x 2 I.
Then x = �� for some � 2 kH. �j = 0, so xj = (��)j = 0 and x is nilpotent. Since every
element of I is of the form �� for some �, Ij = 0 so I is a nilpotent ideal. This contradicts
Theorem 1.15, so there can be no nilpotent elements of kH. Hence, the intersection of all
the maximal ideals of kH where k is a field of characteristic 6= p will be 0.

1.4 Crossed Products

Definition 1.17. Let R be a ring with 1 and let G be a group. Then a crossed product
R ⇤ G of G over R is an associative ring which contains R and has an R-basis the set Ḡ,
a copy of G. Thus each element of R ⇤ G is uniquely a finite sum

P
x2G x̄rx with rx 2 R.

Addition is as expected and multiplication is determined by two rules below. Specifically
for x, y 2 G we have (twisting) x̄ȳ = xy⌧(x, y) where ⌧ : G ⇥ G ! U = U(R), the group
of units of R. Furthermore, for every x 2 G and r 2 R we have (action) rx̄ = x̄r�(x) where
� : G ! Aut(R). [6]

Using this definition and setting �(x) = 1, ⌧(x, y) = 1, we have that kG = k ⇤G. This allows
us to consider group rings as crossed products.

Lemma 1.18. Let R ⇤G be given and let N �G. Then R ⇤G = (R ⇤N) ⇤ (G/N) where the
latter is some crossed product of the group G/N over the ring R ⇤N . [6, Lemma 1.3]

Set G equal to the special group containing a countable abelian p-group H as its center.
Then H �G and kH = k ⇤H, so applying Lemma 1.17 we see that k ⇤G = (kH) ⇤ (G/H).

Let M �kH. Then MkG = MG is an ideal of k ⇤G = kH ⇤G/H. Consider ↵1t1+ ...+↵ntn
where ti are coset representatives of H in G and ↵i 2 kH. In kH ⇤G/H this is

P
↵it̄i where

t̄i = Hti. Then an element of MkG is of the form
P

miti where mi 2 M . In kH ⇤ G/H,
MkG will be the ideal M(kH) ⇤G/H = M ⇤G/H since M is an ideal of kH.

Lemma 1.19. Let R ⇤G be given.
i. If J �R ⇤G, then J \R is a G-stable ideal of R and (J \R) ⇤G ✓ J .
ii. If I is a G-stable ideal of R, then I ⇤ G � R ⇤ G with (I ⇤ G) \ R = I. Moreover
(R ⇤ G)/(I ⇤ G) ⇠= (R/I) ⇤ G where the latter is a suitable crossed product of G over R/I.
[6, Lemma 1.4]
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By Lemma 1.18, kH⇤G/H
M⇤G/H

⇠= kH/M ⇤G/H. Combining these results we have kG
MkG

⇠= k⇤G
M⇤G/H

⇠=
kH⇤G/H
M⇤G/H

⇠= kH/M ⇤G/H. Therefore, kG
MkG

⇠= kH/M ⇤G/H.

Theorem 1.20. Let k be a domain, let G be a right ordered group, and let k ⇤G be a crossed
product. Then k ⇤G is a domain. [4, Theorem 4.3]

Let M be a maximal ideal. Above we showed that kG
MkG

⇠= kH/M ⇤G/H. M being maximal
means that kH/M is an integral domain. We assume G/H is left ordered (and so right
ordered by Proposition 1.4), so by Theorem 1.19 kG

MkG
is a domain.

Other Ring Theory

Theorem 1.21. Maschke’s theorem: Let G be a finite group and let F be a field whose
characteristic does not divide |G|. If V is any FG-module and U is any submodule of V ,
then V has a submodule W such that V = U�W (i.e., every submodule is a direct summand).
[1]

Let k be a field of characteristic p0 such that p0 does not divide p. Let A be a finite p-group.
Then we can apply Maschke’s theorem to kA. If I is a submodule of kA then there is a
submodule J such that kA = I � J .

Proposition 1.22. Let R be a commutative ring. The map ⇤ : RG ! RG defined by
(
P

g2G agg)⇤ =
P

g2G agg
�1 satisfies the properties

i. (↵ + �)⇤ = ↵⇤ + �⇤,
ii. (↵�)⇤ = �⇤↵⇤, and
iii. ↵⇤⇤ = ↵

[7, Proposition 3.2.11]

Thus group rings over commutative rings are rings with involution. We will use this property
later to help us understand the set of zero divisors.



Chapter 2

Motivation

The Atiyah Conjecture can be given an algebraic description using the group ring CG. In
the special case lcm(G) = 1 (i.e. G is torsion free) it implies the Kaplansky zero-divisor
conjecture, namely that if G is torsion free, then CG is a domain. However the question we
are interested in is the case where the finite subgroups of G have unbounded order. It was
thought for a long time that the Conjecture would remain true in this case; however, this
turned out not to be true.

Since an element of the group ring has finite support, it will be contained in a finitely
generated subgroup (the subgroup generated by the elements of its support) and then the
Conjecture reduces to the case where G is finitely generated. We will focus on such groups.
Examples showing that the Conjecture no longer holds when G has unbounded order involve
something like the lamplighter group (the wreath product Z/2ZoZ). A group which is not the
lamplighter group but has finite subgroups of unbounded order is the Prüfer group Z[1/p]/Z.

The Prüfer p-group may be denoted by Z(p1) and one can express it as

Z(p1) =
¶
e2⇡im/pn

| m 2 Z+ n 2 Z+
©
.

The Prüfer group is countably infinite abelian and locally cyclic (meaning every finite set of
elements of the Prüfer group generates a cyclic group).

The Prüfer group is not finitely generated but can be embedded in a nice finitely generated
group. In fact, Phillip Hall showed the Prüfer group can be embedded as the center of a
finitely generated 3-step solvable group, which we will call G.

First we will define some notation. [G00, G] = 1 means that this group is 3-step solvable
group. ⇣(G) = center of G and d(G) is the minimum number of elements which will su�ce

6
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to generate G.

Theorem 2.1. Let C be a given countable abelian group 6= 1. Then there are uncountably
many isomorphism types of groups G such that d(G) = 2, ⇣(G) ⇠= C and [G00, G] = 1. [3,
Theorem 6]

We will not show a direct proof of this theorem. Instead we will show a sketch of how Hall
uses Theorem 2.2 below to prove Theorem 2.1.

Theorem 2.2. There exists a group G whose center Z is the free Abelian group with @0

generators such that d(G) = 2, ⇣(G/Z) = Z/Z and [G00, G] = 1. [3, Theorem 7]

We will create a mapping from Z to C by mapping half of the generators onto the countable
set of generators for C. With the remaining half we will map an arbitrary subset, which we
call K, to 1 and the remaining generators to some element c 2 C. K will be the kernel of this
homomorphism and by the first isomorphism theorem we have that Z/K is isomorphic to
C. We could have selected any of the generators to be in K, so there will exist 2@0 di↵erent
subgroups K of Z such that Z/K is isomorphic to C. Each of these K will be distinct, so
we have an uncountable infinity of groups K.

Z is the center of G, so K is a normal subgroup of G and G/K makes sense. By assumption,
⇣(G/Z) = Z/Z, so ⇣(G/K) = Z/K ⇠= C and [G00, G] = 1 implies that [(G/K)00, G/K] = 1.
Lastly, d(G/K) is less than or equal to d(G) which equals 2. G/K is not abelian so not
cyclic and must have d(G/K) greater than 1. Hence d(G/K) is exactly 2.

We see that the group G/K fits all the conditions needed for Theorem 2.1, so now all we
need is that there are an uncountable infinity of di↵erent groups. Let � be one of the G/K.
There can only be a countable number of homomorphisms from G to � because G is finitely
generated and � is countable. So there are only countably many K such that G/K is iso-
morphic to �. Above we showed that the number of possible K is uncountable, so there are
an uncountable infinity of non isomorphic G/K.

This shows that we can embed the Prüfer group as the center of a finitely generated group G.
In fact, we can embed any countable abelian p-group H as the center of a finitely generated
group G. Further, we can choose G so that G/⇣(G) is isomorphic to the wreath product
Z o Z, which is bi-ordered. This allows us to assume G/H is left ordered.

Definition 2.3. A non-zero-divisor in R is an element x such that rx 6= 0 and xr 6= 0
for all nonzero r 2 R. A classical right quotient ring for R is a ring Q which contains R
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as a subring in such a way that every non-zero-divisor of R is invertible in Q and Q =
{ab�1

| a, b 2 R, b non-zero-divisor}. [2, p. 96]

Proposition 2.4. Let H be a countable abelian p-group and k some field of characteristic
p. kH is its own classical quotient ring.

Proof. Any finite collection of elements of H creates a finite subgroup A. A is a p-group and
has order pn for some n. Let ↵ 2 kH. Then ↵ 2 kA for some A by generating a group from
the finite number of elements in Supp↵.

Let ↵ =
P

aigi such that ai 2 k and gi 2 A. k has characteristic p, so ↵pn =
P
(aigi)p

n
=

P
aig

pn

i =
P

ai.

First suppose ↵ 2 !(kA). Then
P

ai = 0. So ↵pn = 0 and ↵ is a zero divisor.

Next suppose
P

ai = 1. Let � =
P

bigi where bi = ai for i � 1 and b0 = a0 � 1.
P

b1 = 0 so
as above �pn = 0. ↵ = 1 + � and has 1� � + �2

� �3... as its inverse. Hence ↵ is a unit.

Lastly suppose
P

ai = m for some m 6= 0. Let � =
P

bigi where bi =
1
m
ai for i � 1 and

b0 =
1
m
(a0)� 1. Then ↵ = m(1 + �) with 1

m
(1� � + �2

� �3...) as its inverse. Hence ↵ is a
unit. Note this shows that if ↵ /2 !(kA), then ↵ is a unit.

So every element of kH is either a unit or a zero divisor. And kH = {ab�1
| a, b 2 kH, b = 1}

so kH is its own classical quotient ring.

Corollary 2.5. If H is a countable abelian p-group then, ↵ 2 kH is a zero divisor if and
only if ↵ 2 !(kH).

We want to know if kG will have a classical ring of quotients when G is the special group
containing the Prüfer group as its center.

From the Atiyah Conjecture, we have a ring U(G) containing CG, which is constructed
from unbounded operators acting on l2(G) (the Hilbert space with basis G). Every el-
ement of U(G) is either a zero divisor or unit. We would like to know if there is a
smaller ring containing CG in which every element is a zero divisor or unit, in particu-
lar we would like this ring to be a classical quotient ring, (i.e., every element is of the form
{ab�1

| a, b 2 CG, b non-zero-divisor}).

Proposition 2.6. We say that R satisfies the right Ore condition if given a, x 2 R with x a
non-zero-divisor, there exist b, y 2 R with y a non-zero-divisor such that ay = xb. R has a
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classical right quotient ring if and only if it satisfies the right Ore condition. [2, p. 101 ex.
8]

This changes our question to: If S is the set of nonzero divisors of kG, does kG satisfy the
Ore condition with respect to S? The first step is characterizing the zero divisors for kG.
While characterizing the zero divisors for kG we realized that characterization remains the
same for H any countable abelian p-group. We will generalize to this case.

For this paper we will set H to be a countable abelian p-group and G to be the group in
which we embed H as the center. We will be assuming G/H is left ordered because this
implies the Zero Divisor Conjecture for k[G/H], that is, if ↵� = 0 where ↵, � 2 k[G/H] then
either ↵ = 0 or � = 0.



Chapter 3

Characterizing the Zero Divisors

3.1 Case One: Same Characteristic

Unless otherwise noted, for this section we will use H to represent a countable abelian p-
group, G to represent the special group containing H as its center, and k to represent a field
of characteristic p. We will assume that G/H is left ordered.

Lemma 3.1. Let A be a finite p-group of order pn. Let e =
P

a2A a. Define k1 = ke. Let
� 2 kA. If a� = � for every a 2 A, then � 2 k1.

Proof. Write � =
P

x2A �xx where �x 2 k. We wish to show that �x is the same for all x.

�a = � for every a 2 A, so
P

x2A �x(xa � x) = 0. Consider the coe�cient for y. When
xa = y, x = ya�1 so �x = �ya�1 and we have

P
�ya�1(y� ya�1) = 0. Rewriting this in terms

of y, we have
P
(�ya�1

� �y)y = 0. The coe�cient for one in this sum must be zero. Letting
y = 1 we get �a�1 = �1 for every a in A, and we see that � = �1

P
x2A x. So � 2 k1.

Lemma 3.2. Let A be a finite p-group of order pn. k1 is the unique minimal ideal of kA.

Proof. ke is an ideal of kA and dimk ke = 1 making ke minimal. We will prove uniqueness
by way of contradiction.

Suppose k1 is not the unique minimal ideal. Then there exists I � kA such that I is also
minimal. Then k1 \ I = 0 (because I, k1 are minimal). Let J = !(kA), the augmentation
ideal of kA. We may assume that IJ = 0. (If IJ 6= 0 then we can replace I with IJ . J is
nilpotent, so eventually we will have that IJ = 0). IJ = 0 so for every a in A, I(a� 1) = 0.
Choose � 2 I. Then �a = � for every a 2 A, and � 2 k1. This shows that I ⇢ k1, but this
contradicts the fact that k1 is a minimal ideal. Therefore, k1 must be unique.

10
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Theorem 3.3. Let ↵̄ be the image of ↵ 2 k[G/H]. Then ↵ 2 kG is a zero divisor if and
only if ↵̄ = 0.

Proof. First we will show if ↵̄ = 0, then ↵ is a zero divisor of kG

If ↵̄ = 0, then ↵ 2 !(kH)kG, the kernel of the bar mapping. Let X be a transversal for H
in G. Then ↵ =

P
↵ixi where ↵i 2 kH and xi 2 X. The support of each ↵i is a finite set, so

they generate some subgroup A such that ↵ 2 !(kA)kG ⇢ !(kH)kG. We write ↵ =
P

↵ixi

such that ↵i 2 !(kA) and xi 2 X.

kA has a unique minimal ideal k1 such that k1!(kA) = 0 (because k1!(kA) ⇢ k1 and k1 is
minimal). Let 0 6= � 2 k1. Then �↵i = 0 for every ↵i and �↵ = 0. Since � 6= 0 we have
proven that ↵ is a zero divisor of kG.

Example 3.4. Before we continue, we will look at the specific case when H is a 2-group
and k ⇠= F2 is the field with two elements. We will show in this case that all zero divisors of
kG are contained in !(kH)kG.

Let ↵ 2 kG be a zero divisor. By way of contradiction, suppose that ↵ /2 !(kH)kG. Then
there exists � 2 kG such that � 6= 0 and ↵� = 0 or ↵� = 0. Without loss of generality, we
will assume ↵� = 0.

↵� = 0 means that ↵� 2 !(kH)kG. Since ↵ /2 !(kH)kG, we have that � 2 !(kH)kG. This
is because k[G/H] is a domain and !(kH)kG is the kernel of the bar mapping from kG to
k[G/H].

Let X = {xi} be a transversal for H in G. We can write ↵ =
P

↵ixi where ↵i 2 kH and
� =

P
�ixi where �i 2 !(kH) (because � 2 !(kH)kG).

↵i, �i are in kA for some finitely generated subgroup A of H. ↵ /2 !(kA)kG so there is at
least one i such that ↵i /2 !(kA).

We may assume that ↵i, �i 6= 0. We multiply � repeatedly by elements of the form a � 1
for 1 6= a 2 A until (a � 1)�i = 0 for all i and for all a 2 A and not all �i are zero. Since
a�i = �i for all a 2 A, we see that �i 2 k1 by Lemma 3.1.

Again we may assume that all �i are nonzero and then furthermore, we may assume all
↵i 2 kA� !(kA) (because if ↵i 2 !(kA), then ↵ik1 = 0 and hence ↵i�j = 0 for all j).
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e =
P

x2A x is uniquely nonzero in k1 since k is a field of only two elements. ↵� =
P

↵ixi�jxj =
P
(↵i�j)xixj and ↵i�j 6= 0 for every i, j because ↵i is not in !(kA) for some

i and so ↵i is not a zero divisor. ↵i�j 2 k1 because k1 is an ideal of kA. Because ↵i�j 6= 0
for every i, j, we can ignore those instances where the product does equal zero and consider
only those where ↵i�j 6= 0 and therefore must equal e. We now have ↵i�i = e for all i, j and
therefore ↵� = e

P
i xi

P
j xj.

We have 0 = ↵̄�̄ = e
P

x̄i
P

x̄j. By the zero divisor conjecture for k[G/H], we have that
P

i,j xi
P

xj /2 !(kH)kG. This means that if we write
P

i,j xi
P

xj in the form
P

l �lxlwhere
�l 2 kH, then at least one �l /2 !(kH). It follows that e�l 6= 0 (because �l /2 !(kH) implies
�l not a zero divisor) and hence e

P
i,j xi

P
xj 6= 0.

Proof. Now we will show if ↵ 2 kG is a zero divisor, then ↵̄ = 0.

Suppose by way of contradiction that ↵ is a zero divisor and ↵̄ 6= 0. There exists � 6= 0 such
that � 2 kG and ↵� = 0 or �↵ = 0. Without loss of generality, assume ↵� = 0. Consider
the natural epimorphism that maps kG onto k[G/H]. Let ↵̄ and �̄ represent the image of
↵ and � under this mapping respectively. ↵� = 0 so ↵̄ �̄ = 0. We are assuming the zero
divisor conjecture for k[G/H], so �̄ = 0 and � 2 !(kH)kG, the kernel.

Let X be a transversal for H in G. We can write ↵ =
P

↵ixi and � =
P

�ixi where xi 2 X
and ↵i, �i 2 kH � 0. Let A be the subgroup of H generated by the support of the ↵i, �i. A
is a finite abelian p-group and has a unique minimal ideal k1 = k

P
a2A a.

We may assume that ↵i, �i 6= 0. We multiply � repeatedly by elements of the form a � 1
for 1 6= a 2 A until (a � 1)�i = 0 for all a 2 A and for all i and not all �i are zero. Since
a�i = �i for all a 2 A and for all i, we see that �i 2 k1 by Lemma 3.1. So �i = eki.There is
some i such that ↵i /2 !(kA) because if ↵i 2 !(kA) for all i, then ↵ 2 !(kA)kG.

Again we may assume that all �i are nonzero and then furthermore, we may assume all
↵i 2 kA� !(kA) (because if ↵i 2 !(kA), then ↵ik1 = 0 and hence ↵i�j = 0 for all j).

↵i�j 6= 0 for every i, j because ↵i is not in !(kA). ↵i�j 2 k1 because k1 is an ideal of kA.
Because ↵i�j 6= 0 for every i, j, we can ignore those instances where the product does equal
zero and consider only those where ↵i�j 6= 0 and therefore must equal eki,j for some ki,j 2 k.
We now have ↵� = e

P
i,j xi

P
ki,jxj.

We have 0 = ↵̄�̄ = e
P

x̄i
P

ki,jx̄j. By the zero divisor conjecture for k[G/H], we have
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that
P

i,j xi
P

xj /2 !(kH)kG. This means that if we write
P

i,j xi
P

ki,jxj in the form
P

l �lxlwhere �l 2 kH, then at least one �l /2 !(kH). It follows that e�l 6= 0 and hence
e
P

i,j xi
P

ki,jxj 6= 0.

Corollary 3.5. Let H be the Prüfer p-group and G the special group containing H as its
center. Then ↵ 2 kG is a zero divisor if and only if ↵̄ = 0.

3.2 Case Two: Mixed Characteristic

Previously we have been considering kG where H is a countable abelian p-group with prime
p and k is a field of characteristic p. We were able to show that ↵ is a zero divisor in kG if
and only if ↵ 2 !(kH)kG. However, in the case of mixed characteristic this is not true.

Unless otherwise noted, for this section we will use H to represent a countable abelian p-
group, G to represent the special group containing H in its center, and k to represent a field
of characteristic p0 such that p0 does not divide p. We will assume that G/H is left ordered.

Example 3.6. Consider the case where H is a 2-group and k = F3, a finite field with char-
acteristic 3. Let a 2 H be of order 2, and let e = 2(1 + a) 2 kH. e2 = 4(1 + 2a + a2) =
4(2+ 2a) = 8+ 8a = 2+ 2a = 2(1+ a) = e. So we see that e2 = e and thus e is idempotent.
e is an example of a zero divisor of kG that is not in !(kH)kG. e(1 � e) = e � e2 = 0 and
e /2 !(kH)kG.

In the case of mixed characteristics, it is true that !(kH)kG ✓ the set of zero divisors of
kG, but it is not true that all zero divisors of kG are contained in !(kH)kG (as we saw in
the above example).

Proposition 3.7. Let H be a locally finite group (meaning every finitely generated subgroup
is finite) and let k be a field of characteristic p0 where p0 does not divide p. If ↵ 2 !(kH)kG,
then ↵ is a zero divisor of kG.

Proof. ↵ 2 !(kA)kG where A is some finitely generated subgroup of H. A is a group of
order q = pn for some n. Since characteristic of k does not divide p, we can divide by q and
consider the element � =

P
a2A

1
q
a. a� = � for any a 2 A because multiplication by a only

permutes the elements. So (1 � a)� = 0 8a 2 A. And since ↵ is a k linear sum of (1 � a)
where a 2 A, we see that ↵� = 0 and ↵ is a zero divisor.

Lemma 3.8. Let k be a field of characteristic p0 such that p0 does not divide p. Let Mi be
the maximal ideals of kH. Then the intersection of MikG is 0.
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Proof. kH has no nilpotent elements (see Theorem 1.15), so \Mi = 0. We will use this to
show that \MikG = 0. Let t1, t2, ... be coset representatives for H in G. G is the disjoint
union of Hti. If � 2 kG we can write � = �1t1 + �2t2 + ... where �i 2 kH for every i. If
� 2 MikG for every i, then for any j, �j 2 Mi for every i, so �j 2 \Mi and �j = 0. Therefore
� = 0.

Theorem 3.9. Let k be a field of characteristic p0. Then ↵ 2 kG is a zero divisor if and
only if ↵ 2 MkG where M is some maximal ideal of kH.

Proof. First we will show if ↵ is a zero divisor of kG then there is some maximal ideal M of
kH such that ↵ 2 MkG.

We showed in the introduction that kG/MkG ⇠= kH/M ⇤ [G/H] where M is an ideal of kH.
We will use this in our proof. Suppose ↵ is a zero divisor in kG such that ↵ /2 MkG for every
maximal ideal of kH. Then there is an element � 6= 0 such that ↵� = 0 or �↵ = 0. Without
loss of generality, assume ↵� = 0. Consider the homomorphism ✓i : kG ! kH/Mi ⇤ [G/H].
↵� = 0 so ✓i(↵�) = 0 for all i. ↵ /2 MikG for all i and kH/M ⇤ [G/H] is a domain, so
� 2 MikG for all i. This means that � is in the intersection of the MikG, so � = 0 and we
have reached a contradiction.

Now we will show that if ↵ 2 MkG where M is some maximal ideal of kH, then ↵ is a zero
divisor of kG.

Let X be a transversal for H in G. G = [Hxi where xi 2 X and Hxi \Hxj = ; if i 6= j.
Consider ↵ 2 MkG where M is a maximal ideal in kH. Then ↵ = m1x1↵1 + ... +mnxn↵n

for some n where ↵i 2 kH and mi 2 M .

Set M 0 = M \ kA. M 0 is an ideal of kA, not equal to kA (because if it were equal then we
would have that M � kA which contradicts M being maximal). M 0 is nonempty because
mi↵i 2 M \ kA. By Maschke’s Thm, kA = M 0

� J where J � kA is nonempty. Take
0 6= j 2 J . jmi↵i 2 M 0

\ J, so jmi↵i = 0 and ↵ is a zero divisor.

Corollary 3.10. Let k be a field of characteristic p0, let H be the Prüfer p-group, and let
G be the group containing H as its center. Then ↵ 2 kG is a zero divisor if and only if
↵ 2 MkG where M is some maximal ideal of kA.

Now that we have classified the zero divisors for kG, the next step is to determine whether
kG has a classical quotient ring. We predict that if k[G/H] has a classical quotient ring then
kG will as well.



Chapter 4

Additional Results

4.1 Showing �0

2 kA

When considering polynomials in R[x], where R is a ring, one can show that if f is a zero
divisor, then there is some r 2 R such that rf = 0 or fr = 0. We wish to adapt this result
to our group ring. First we looked at the case where G/H is bi-ordered. Then we extended
to the case where G/H is left-ordered.

4.1.1 G/H Bi-ordered

Proposition 4.1. Let H be a subgroup of G such that H is central in G and G/H is bi-
ordered. If ↵ 2 kG is a zero divisor, then there is some finitely generated subgroup A  H
and some �0

2 kA such that ↵�0 = 0.

Proof. Let ↵ be a zero divisor of kG. Let X be a transversal for H in G. G/H is bi-ordered,
so the cosets of H in G have an order and we can use the same order on their coset repre-
sentatives. Meaning, if xiH < xjH we can say that xi < xj. Relabel the elements so that
x1 < x2 < .... We can write ↵ =

P
↵ixi where ↵i 2 kH and xi < xj for i < j. Since ↵ is a

zero divisor there exist � such that ↵� = 0 or �↵ = 0. Without loss of generality assume
↵� = 0. Select � to be the element with fewest nonzero terms when written as � =

P
�jyj

where yj 2 X and �j 2 kH.

↵� = 0 so
P

↵i�jxiyj = 0. These sums are finite so we can choose xn to be the largest xi

and ym to be the largest yj. xnym > xiyj for i 6= n, j 6= m. This is the largest product of the
xiyj, so its coe�cient must be zero (we can write 0 =

P
0zi where zi are the distinct coset

representatives). ↵n�m = 0, which gives that ↵n� = 0 because ↵↵n� = 0 and ↵n� has fewer
nonzero terms than �. ↵n� = 0 and since the yj are distinct coset representatives, their

15



Amanda Welch Chapter 4. Additional Results 16

coe�cients must be zero and we have ↵n�j = 0 for j = 1, 2, ...,m.

Now consider the next largest product. xn�1ym > xiyj for i < n, j < m and i < n�1, j  m.
Similarly, xnym�1 > xiyj for i < n, j < m and i  n, j < m�1. So we can consider two cases:
either xn�1ym = xnym�1 or one is larger than the other. In both cases we must have that
↵n�1�mxn�1ym + ↵n�m�1xnym�1 = 0. We have already shown that ↵n�m�1 = 0. Therefore
↵n�1�m must be 0, and as before this gives that ↵n�1� = 0.

We will show by induction on r that ↵n�r� = 0 for 0  r  n.

We have shown above that ↵n�j = 0 for j = 1, 2, ...,m. Assume ↵n�r� = 0 for 0  r < k. We
will show that ↵n�k� = 0. Let E = {xiyj | i = 1, 2, ..., n� k, j = 1, 2, ...,m} and consider
max{E}.

xn�kym > xiyj for i < n � k, j  m and for i  n � k, j < m, so xn�kym is the maximal
element of E. xn�kym < xiyk for i > n � k, j = m, so the only products that might equal
xn�kym are of the form xiyj with i > n � k, j < m. We assumed ↵i� = 0 for i > n � k, so
the coe�cients for these products must be zero. Therefore, the coe�cient for ↵n�k�m must
be zero as well. Then, ↵n�k� = 0 because ↵↵n�k� = 0 and ↵n�k� has fewer nonzero terms
than �.

↵n�k� = 0 for 0 < k  n, so ↵n�k�j = 0 for 0 < k  n, j = 1, 2, ...m and we see that
↵�j = 0 for j = 1, 2, ...,m. �j is nonzero by assumption, and an element of kH, so we can
use Supp �j to generate a subgroup A of H. Set �0 = �j and we have that ↵�0 = 0 where
�0

2 kA.

4.1.2 G/H Left Ordered

Proposition 4.2. Let H be a subgroup of G such that H is central in G and G/H is left-
ordered. Let ↵ 2 kG be a zero divisor. Then there is some finitely generated subgroup A  H
and some �0

2 kA such that �0↵ = 0 or ↵�0 = 0.

Proof. We have shown the result holds for when G/H is bi-ordered. We will prove for
left-ordered in the same fashion, but our choice of maximal element will be di↵erent. When
choosing max{xiyj | i = 1, ..., n, j = 1, ...,m} we can still say that xiyj < xiym for all i, j 6= m,
but we can no longer say that xnym will be maximal.

Let ↵ be a zero divisor of kG. Let X be a transversal for H in G. G/H is left ordered



Amanda Welch Chapter 4. Additional Results 17

means that the cosets of H in G have an order, and we can use the same order on their
coset representatives. Write ↵ =

P
↵ixi where xi 2 X such that x1 < x2 < ... < xn and

0 6= ↵i 2 kH.

Since ↵ is a zero divisor there exist � such that �↵ = 0 or ↵� = 0. Without loss of generality
assume �↵ = 0. G/H is left ordered, so G/H is right ordered as well, and the proof for
↵� = 0 will follow the same way but with using the right order for G/H. Select � to be the
element with fewest nonzero terms when written as � =

P
�jyj where yj 2 X and �j 2 kH.

We will prove by induction on the number of terms �jxj in the sum for �. First assume
there is only one. Then � = �jyj. yxi < yxj if i < j, so in particular yxi 6= yxj if i 6= j.
�↵ =

P
�jy↵ixi = 0 so �j↵i = 0 for i = 1, 2, ...,m because yxi are all distinct coset repre-

sentatives. We see that �j↵ = 0 where �j 2 kH. Support of �j is finite, so it generates some
subgroup A of H and we have �j↵ = 0 where �j 2 kA.

Next assume that for all k < m, this holds for the case where � has k nonzero terms in its sum.
We will show that it holds for the case where the number of nonzero terms of � is m. We can
write � =

P
�jyj where 0 6= �j 2 kH and yi < yj for i < j and max{yj | j = 1, 2, ...,m} = ym.

�↵ = 0 so
P

�j↵iyjxi = 0. These sums are finite and totally ordered, so we can find maximal
elements in {yjxi | i = 1, 2, ..., n, j = 1, 2, ...,m}. We will show that in fact there is only one
maximal element. As shown above, yjxi < yjxn for all j and for all i 6= n, so we are only
considering the set {yjxn | j = 1, 2, ...,m}. Assume yixn = yjxn. Multiplying on the right by
x�1
n we have that yi = yj. So every element of {yjxn | j = 1, 2, ...,m} is distinct and we can

find one maximal element. Without loss of generality, say ysxn. So ysxn > yjxi such that
j 6= s. Then, as in the proof for bi-ordered we see that �s↵n = 0 implies that �↵n = 0 be-
cause ↵�↵n = 0 and �↵n has fewer nonzero terms than �. Therefore �j↵n = 0 for j = 1, ..., n.

We will show by induction on k that �↵n�k = 0 for 0  k  n.

We have shown above that when k = 0, �↵n = 0 and �j↵n = 0 for j = 1, ...,m. As-
sume �↵n�r = 0 for 0  r < k. We will show that �↵n�k = 0. We need to find all the
elements of {yjxi | i = 1, 2, ..., n, j = 1, 2, ...,m} that might equal ykxn�k. We have seen if
yjxn�k = yjxn�k, then yi = yj. Similarly, if yjxi = yjxn�k, then xi = xn�k. Because G/H
is left-ordered, yjxi < yjxn�k for i = 1, ..., n � k � 1. For yjxi where i > n � k we have
seen that �j↵i = 0 for j = 1, 2, ...,m so in the sum these terms will be zero and can be ignored.

Using left orderability, we set up the following set of inequalities:
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y1x1 < y1x2 < y1x3 < . . . < y1xn�k�1 < y1xn�k

y2x1 < y2x2 < y2x3 < . . . < y2xn�k�1 < y2xn�k
...

ym�1x1 < ym�1x2 < ym�1x3 < . . . < ym�1xn�k�1 < ym�1xn�k

ymx1 < ymx2 < ymx3 < . . . < ymxn�k�1 < ymxn�k

yixn�k 6= yjxn�k if i 6= j, so we can place the products of the form yixn�k in strictly increasing
order. There are a finite number of these, so there must be some maximal element. Without
loss of generality, let ytxn�k be the maximal element. The coe�cient for this product must
be zero, so �t↵n�k = 0 and we have �↵n�k = 0.

If �↵n�k = 0 for 0  k  n, then �j↵i = 0 for i = 1, 2, ..., n j = 1, 2, ...,m. So we have
�j↵ = 0 for j = 1, 2, ...,m where �j 2 kH. The support of �j is finite, so we can generate a
group A  H such that �j 2 kA. Set �0 = �j and we are done.

Note that �j↵i = 0 for all j, i. This gives the following proposition:

Proposition 4.3. If ↵ =
P

↵ixi is a zero divisor, then there exists � 2 kA, where A is a
finitely generated subgroup of H, such that �↵i = 0 or ↵i� = 0 for all i.

4.2 The Left Annihilator of a Zero Divisor

Lastly we wish to classify the left annihilator for an element ↵ 2 CG.

Definition 4.4. The left annihilator of an element ↵ in CG is the set of all � 2 CG such
that �↵ = 0. We denote the left annihilator of ↵ by l(↵).

Proposition 4.5. Let A be a finite p-group. Let I be an ideal of CA. Using Maschke’s
theorem, there exists a unique projection e 2 CA such that I = eCA.

Proof. Let I be an ideal of CA. Then by Maschke’s theorem there is an ideal K of CA such
that CA = I�K. Then 1 = e+f for some e 2 I, f 2 K. So e = e1 = e2+ef , but ef 2 I,K
so ef 2 I \ K and ef = 0. So e = e2 and this shows that e is idempotent. We also want
that e preserves involution (i.e., e⇤ = e).

On CG we have involution,
P

↵gg !

P
↵̄g�1 with the properties: (↵+�)⇤ = ↵⇤+�⇤, (↵�)⇤ =

�⇤↵⇤, (↵⇤)⇤ = ↵, and if ↵↵⇤ = 0, then ↵ = 0.
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We have an inner product on CA defined by hg, hi = �g,h for g, h 2 A, where � is the
Kronecker delta. More generally, h

P
agg,

P
bhhi =

P
ag b̄h where bar denotes complex con-

jugation.

Now hge, fi = 0 for all g 2 G. Therefore, hg, e⇤�e⇤ei = hg, e⇤(1�e)i = hg, e⇤fi = hge, fi = 0
for all g 2 G and hence e⇤ = e⇤e. Using (xy)⇤ = y⇤x⇤, we see that e = (e⇤)⇤ = (e⇤e)⇤ = e⇤

and hence e is a projection. Let i 2 I. Then i = 1i = (e + f)i = ei + fi = ei because
fi 2 I \K. Therefore I = eCA.

Proposition 4.6. Assume that G is left ordered and let ↵ 2 CG. Then the left annihilator
of ↵ 2 CG is equal to CGe for a unique projection e in CH.

Proof. We assume that G/H is left orderable. Set ↵ =
P

↵igi 2 CG where ↵i 2 CH and
gi transversal for H in G. We may assume the ↵i are in CA where A is a finite subgroup of H.

Let I be the ideal of CA generated by ↵i. Using Maschke’s Theorem, there exists a unique
projection e 2 CA such that I = eCA. (1� e)eCA = 0 and ↵i 2 eCA, so (1� e)↵i = 0 for
all i and (1� e)↵ = 0. Then �(1� e) 2 l(↵) = {� 2 kG|�↵ = 0} for all � 2 CG. Therefore,
CG(1� e) ⇢ l(↵).

Conversely, suppose �↵ = 0 and � /2 CG(1� e). � = �(1� e) + �e so �e 6= 0. (1� e)↵ = 0
so ↵ = e↵. Set ↵0 = ↵+(1�e). �e↵0 = �e↵+�e(1�e) = 0 and ↵0 is a zero divisor. So there
is � 6= 0 such that �↵i = 0 for all i and �(1� e) = 0. But this is not possible because the ↵i

and 1�e generate the whole ideal CA (because CA = (1�e)CA+eCA = (1�e)CA+ I and
I is generated by ↵i). So if �↵ = 0 then � 2 CG(1 � e) and l(↵) ⇢ CG(1 � e). Therefore,
l(↵) = CG(1� e).
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