Incorporating Design Knowledge into Genetic Algorithm-based
White-Box Software Test Case Generators

Matthew C. Makai
Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science

In
Computer Science and Applications

Dr. Ing-Ray Chen, Co-Chair
Dr. Gregory W. Kulczycki, Co-Chair
Dr. William B. Frakes, Member

April 24, 2008
Falls Church, VA

Keywords: Software Testing, Genetic Algorithms, Evolutionary Computation

© Copyright 2008 Matthew C. Makai



Incorporating Design Knowledge into Genetic Algorithm-based White-Box Software
Test Case Generators

Matthew C. Makai

ABSTRACT

This thesis shows how to incorporate Unified Modeling Language sequence
diagrams into genetic algorithm-based automated test case generators to increase the code
coverage of their resulting test cases. Automated generation of test data through
evolutionary testing was proven feasible in prior research studies. In those previous
investigations, the metrics used for determining the test generation method effectiveness
were the percentages of testing statement and branch code coverage achieved. However,
the code coverage realized in those preceding studies often converged at suboptimal
percentages due to a lack of guidance in conditional statements. This study compares the
coverage percentages of 16 different Java programs when test cases are automatically
generated with and without incorporating associated UML sequence diagrams. It
introduces a tool known as the Evolutionary Test Case Generator, or ETCG, an automatic
test case generator based on genetic algorithms that provides the ability to incorporate
sequence diagrams to direct the heuristic search process and facilitate evolutionary
testing. When the generator uses sequence diagrams, the resulting test cases showed an
average improvement of 21% in branch coverage and 8% in statement coverage over test
cases produced without using sequence diagrams.



Table of Contents

Lo INErOAUCTION ...ttt bbb bbbt 1
0 R O ] o S0 V- £ ] ST 1
HISZZ AN o] o] [oF: 1A o] o I 1o 4o - U] o F S 2
1.3 Problem StAtEMENT........cooiieiieiee et 2
14 MOTIVALION ...ttt bttt bbbttt n e 2
1.5 HYPOTNESIS. ...ttt et 3
1.6 Design Knowledge and Sequence Diagrams Relationship.............cccccevvivennenn, 3
O A €0 - | USSR 4
1.8 CONIIDULIONS. ....ouiiieeiti e bbbt 4

2. Problem Background ..........coeoiiiiiiiiieiesee e 5
2.1 EXAMPIE o 5
2.2 Problem StatemeNnt ..o 5
2.3 Related Problems and SOIULIONS .........ooiieiiiiniiieee e 6

231 Conditional Statements and Testability Transformations.............ccccceeunee. 6
2.3.2 The Species-Per-Path ApPProach ..., 6

3. REIALEA WOIK ..ottt sttt nreas 8
3.1  Stochastic Search and Genetic AIgOrithms...........cccveieiievi i 8
3.2 EVOIULIONArY TESTING....cviiiiiiieieiie sttt 10

3.2.1 White-box Structural TeStING.........covveereeiesieese e 10
3.2.2 Specific Program Feature Execution against Specifications .................... 11
3.2.3 Grey-box Feature Validation TeStiNG .......cccccvevereeiveiieiiece e e 11
3.2.4 Non-functional Requirement Validation Testing..........ccccceveeerereeninnnnnn. 12

o] [T ] AN o] o] (0ol o SRR 13
4.1 Technical COMPONENTS. .....couiiiiiieiieie sttt ae e 13
4.2 Genetic Algorithm ENQINe ........ccoooviiiiiece e 14
4.3  Generator and SUPPOrt MOAUIES .........ccveiiiiiiieie e 16
4.4 HeuriStiC TranSIator .........coooiiiiiiieie e 16

44.1 Translation of the Source Code Under Test To Chromosomes................ 17
4.4.2 Translation of Chromosomes to Executable Test Cases..........ccoovvvervennen. 17
443 EasyMock and EasyMock Class EXtENSION.........c.covcveiirieiienieniesiieinn, 17
45  Design Knowledge COMPONENT ........c.civeiieiieiieie e ee e e sie e se e 17
4.6  Automated Test Case Generator EXECULION ...........cceveerienieiieii e, 17
4.6.1 Cobertura — Testing Code Coverage TOO .........cccevveveviieieeiesiese e, 18
4.6.2 Generator Execution without Design Knowledge ..........cccocooeieeiiiinnnn, 19
4.6.3 Generator Execution Using Design Knowledge.........cccooevvvieiiieiviinenen, 20
4.6.4 Test Case Generation ACHVITIES........cccovveiieiiiie e 21

5. EXPErIMENT DESION....ciiiiiitieie ettt ta e s e raeae e nreeeeenes 22
5.1 HYPOTNESIS. ...t et 22
5.2 EXPEriment PAramMeters ........ccveoeeieiieiece et 22

521 Independent Variable ... 22
522 Dependent Variable .........cccoooviveiiiieciecccc e 22
5.2.3 Additional EXperiment Parameters.........ccocevverineiienenie e 23
524 Hardware Configuration ...........ccocvoeiieeniiic e 23
5.3  Program Sample COIECLION .........ccoeiiiiiiieceeeee e 24
53.1 Method For Obtaining Sample Programs .........ccccocvieeviieieviieneesieseennan, 24



5.3.2 Program SAMPIES ......cueiieiieece e e 24

6. Experiment Results and ANAIYSIS .......cceiveiieiieiieiieie e 25
6.1 EXPErTMENT RESUILS ..o e e s 25
6.1.1 Statement Coverage AChIEVEd.........cccocveiiiii i 25
6.1.2 Branch Coverage AChIEVE ... 26
6.1.3 Testing Coverage ReSUItS AVEIAQgES ........ccvvevverierieerieerieseeseesieeeesreesee e 26
6.1.4 Branch Coverage Notched BOX PIOES .........ccovoeiiiiinieiiie e, 28
6.1.5 Statement Coverage Notched BOX PIOtS..........ccoocvevviveviieic e, 29

6.2 HYPOthesis TeSt RESUILS .........ooiiieiee s 30
6.3 RESUIS ANAIYSIS.......eeiiieiicieie et 30

A O] o 111 o] o RSP TRTR 31
7.1  Research Implications and Practicality ............cccoceviveriiiesieein e, 31
7.2 FULUIE WOTK ...ttt 31
7.3 CONCIUSION ..ottt bbbt 32
RETEIBINCES ...t ettt bbbttt b e b e nre s 33
APPENTIX A = ACTONYIM LIST....viiiieiieiecieiir et enne e 34
Appendix B — SampPle Programs.........ccoeeiieiiiieiieie et 35
B.1  Program #1: Getting Dynamic: Java and UML Interaction Diagrams.............. 35
B.1.1 UML DIQIAM ...ttt sttt sne e 35
B.1.2 Converted Sequence Diagram..........cccccceiivereeiienieene e see e se e 35
B.1.3 EXPEriment RESUILS ......ccuviiiiie i 35

B.2  Program #2: An Address Book — Add Person .........c.ccccevveveveeiesiiesieeseeniennens 35
B.2.1 UML DIQIAM ...ttt sttt sne e 36
B.2.2 Converted Sequence Diagram..........cccccceiivereiiiesieene e see e sie e 36
B.2.3 EXPEriment RESUILS ......ccvoiiiie i 36

B.3  Program #3: Hello World Printer with UML Sequence Diagram .................. 36
B.3.1 UML DIQIAM ...ttt sttt nne e 37
B.3.2 Converted Sequence Diagram..........cccoceiieereeiiesieene e seese e e 37
B.3.3 EXPEriment RESUILS ......ocuveiiiie e 37

B.4  Program #4: An ATM Simulation — Start Up........ccccevevviievceiieec e, 37
B4.1 UML DIQIAM ...ttt sttt sne e 38
B.4.2 Converted Sequence Diagram..........cccccceiivereeiieseene e seese e se e 38
B.4.3 EXPEriment RESUILS ......ccviiiiieieeecie e 38

B.5  Program #5: Java and UML Interaction Diagrams (Modified) .........c...cccouenee. 38
B.5.1 UML DIQIAM ...ttt sttt sne e 39
B.5.2 Converted Sequence Diagram..........cccccceivereiiesieene e seese e sie e 39
B.5.3 EXPEriment RESUILS ......ocueeiiiie e 39

B.6  Program #6: An ATM Simulation: Shutdown ..........ccccceveveiiniienie e, 39
B.6.1 UML DIQIAM. ...ttt ettt nne e 40
B.6.2 Converted Sequence Diagram..........cccccceiivereeiienieene e se e se e 40
B.6.3 EXPEriment RESUILS ......cceoiiiieieeece e 40

B.7  Program #7: An ATM Simulation: Session SEqQUENCE...........cccevvveruerreereereennnns 40
B.7.1 UML DIQIAM ...ttt sttt sne e 41
B.7.2 Converted Sequence Diagram..........cccccceiivereeiiesieene e seesie e see e see e 41
B.7.3 EXPEriment RESUILS ......ccuveiiiie i 41

B.8  Program #8: An Address Book: Sort Entries By Name..........cccccevvviverviiiennnn, 42



B.8.1 UML DIQIAM ...ttt sttt ne e 42

B.8.2 Converted Sequence Diagram..........cccccceiivereeieseene e se e sie e 42
B.8.3 EXPEriment RESUILS ......ccvoiiiieieee e 42
B.9  Program #9: An Address Book: Sort Entries By ZIP .........cccccceveviieiiieivciiennnn, 42
B.9.1 UML DIQIAM ...ttt sttt sttt sne e 43
B.9.2 Converted Sequence Diagram..........cccccccevivereeiiesieene e ese e se e 43
B.9.3 EXPEriment RESUILS ......ccoeiiiieieee e 43
B.10 Program #10: An ATM Simulation — Transaction Sequence.............cccocvevvenen. 43
B.10.1 UML DIAGIAM ...utiitiiiieiieiiiesiieie sttt sttt sse e b eesreesbeeneesneesbeeneenreas 44
B.10.2 Converted SeqUENCE DIagram .........ccccveieerieiiieieerieseeseesiesee e esee e sse e seees 44
B.10.3 EXPeriment RESUILS ........ccooiiiiiieese et 44
B.11 Program #11: An Address Book: Edit A PErson .........ccccceevevieeieeiesiiesiesniennnns 44
B.11.1 UML DIAGIAM ...utiitiiiieiieitiesie e siee sttt sttt esaeete e s sbeenee e e sbeeneenreas 45
B.11.2 Converted SeqUENCE DIagram ........ccccvueirerieiiieiieie e sieesie e e see e eeesnees 45
B.11.3 EXPeriment RESUILS ........ccuoiiiiiiieeee e s 46
B.12 Program #12: Proxy Design Pattern — Java World .............cccocevviveiieinciinnnen, 46
B.12.1 UML DIAGIAM ...utiitiiiieiieiiiesti ettt sttt sttt sreesae e ssessbe e sneesbeeneesrens 46
B.12.2 Converted SeqUENCE DIagram .........ccccueiierieiieeiieiesieseesiesee e ee e sseeeeseees 46
B.12.3 EXPeriment RESUILS ........ccuoiiiiiiieecie e 46
B.13 Program #13: Add Dynamic Java COUE..........cccereeieiiesieeie e sie e e eie e 47
B.13.1 UML DIAGIAM ....tiitiiiieiieiiiesti ettt sttt sre e b ee s e sbe e sneesneeneenreas 47
B.13.2 Converted SeqUENCE DIagram .........ccccueiverieiiiesieriesieseesieseesie e see e ee e 47
B.13.3 EXPeriment RESUILS ........ccuoiiiiiiiiiecie e 47
B.14 Program #14: Hangman Milestone 2 —Java GUI ..........cccccevvvievvececnennnn, 48
B.14.1 UML DIAGIAM ....tiitiiiieiiesiiesiieie sttt sttt sseesaeeeesressbesneesseesbeeneesreas 48
B.14.2 Converted SeqUENCE DIagram .........ccccueiierieiiieieesiesieseesiesee e see e saeeee s 48
B.14.3 EXPeriment RESUILS ........cccuoiiiiiiiiecie et 48
B.15 Program #15: Core J2EE Patterns — Intercepting Filter..........c.ccccoocvvvvvrivniiennnn. 49
B.15.1 UML DIAGIAM ...utiitiiiieiieiiiestieie sttt sttt e b aesressbe e sneesneeneenreas 49
B.15.2 Converted SequENCe DIagram .........ccccueiverieiiieieeriesieseesiesee e ee e sae e sneas 49
B.15.3 EXPeriment RESUILS ........cccuoiiiiiiiiieie e 49
B.16 Program #16: Hangman Milestone 2 — Java GUI ...........ccccccovvvvvviieiiciecienn, 49
B.16.1 UML DIAGIAM ....tiiiiiiieiieiiiesiieie sttt sse b eesressteeneesseesbeeneenrens 50
B.16.2 Converted SequENCe DIagram .........ccccueiverieiieeiieriesieseesiesee e esee e saeeeesnees 50
B.16.3 EXPeriment RESUILS ........ccooiiiiiiieieee e 50



Table of Figures

Figure 1: Genetic AlGOrithm PrOCESS........coiviiiiieiieie e 9
Figure 2: Main Technical Components 0f ETCG.........ccoviiiiiiiiiiiie e 13
Figure 3: General Operations the User Will Perform With ETCG.........c..ccccccevcvvvveienen, 14
Figure 4: Genetic AIGOrithm CIaSSES........ccviiiiiiiiieiieie e 15
Figure 5: ETCG Test Generation Success Scenario without Design Knowledge ............ 19
Figure 6: ETCG Test Generation Success Scenario with Design Knowledge.................. 20
Figure 7: Overview of ETCG Generation ACHVILIES ........cecveieieeiieie e se e 21
Figure 8: Statement Coverage Percentages Achieved by ETCG........ccccccovoviiiiniiiinnnn, 25
Figure 9: Branch Coverage Percentages Achieved by ETCG ........ccccccovivevveieiiecn e, 26
Figure 10: Average Results for Each Coverage TYPE ....cccovvvierieriiiie e 27
Figure 11: Branch Coverage Results, Group 1 Uses Design Knowledge, 2 Does Not .... 28
Figure 12: Statement Coverage Results, Group 1 Uses Design Knowledge, 2 Does Not 29
Figure 13: Program Sample #1 Sequence Diagram..........cccccveverieerveriesieeneeieseesessee s 35
Figure 14: Program Sample #2 Sequence DIagram........cccoceeuerieeneeieeneeniesie e siesee e 36
Figure 15: Program Sample #3 Sequence Diagram..........ccoccveverieereeriesieeseeieeseessssee s 37
Figure 16: Program Sample #4 Sequence DIagram.........cccoceeveieenesiinseeniesee e siesee s 38
Figure 17: Program Sample #5 Sequence Diagram........ccccoccveveiieereerieseeseeieeseesiesnee s 39
Figure 18: Program Sample #6 Sequence DIagram.........cccooeeveieenenieeneeniesiee e e see s 40
Figure 19: Program Sample #7 Sequence Diagram........c.ccocoveverieerveieeseeneeieeseesesnee e 41
Figure 20: Program Sample #8 Sequence Diagram.........cccooeeueieenieienseeniesieseesie e 42
Figure 21: Program Sample #9 Sequence Diagram.........cccoccveveiieerverieseeseeieeseesiesnee e 43
Figure 22: Program Sample #10 Sequence Diagram..........cccooeiieiiiinieenenieseenesee s 44
Figure 23: Program Sample #11 Sequence Diagram..........ccoovviieeiieiesieeseeieseess e 45
Figure 24: Program Sample #12 Sequence Diagram ..........cccooeiieiiiinieenesieeseesiesee s 46
Figure 25: Program Sample #13 Sequence Diagram..........ccccoviieeieeiiesieesesieseese e 47
Figure 26: Program Sample #14 Sequence Diagram .........ccccoovereniiinneenesiiesee e 48
Figure 27: Program Sample #15 Sequence Diagram..........cccovviieeiiiiesieesesiieseese e 49
Figure 28: Program Sample #16 Sequence Diagram..........cccooueieeiininneenesiesee e 50

Vi



Tables

Table 1: Genetic Algorithm Interfaces Provided By ETCG.........ccccooeviviiivieveene e, 16
Table 2: Constant EXperiment PArameters..........cooueveiierieieneenieeie e 23
Table 3: Results for Sample Program #1 ..........ccoceveiieniieie e 35
Table 4: Results for Sample Program #2 ... 36
Table 5: Results for Sample Program #3 ..........ccoooeeiieiiee e 37
Table 6: Results for Sample Program #4 ... 38
Table 7: Results for Sample Program #5 .........cccooveiiiieiieie e 39
Table 8: Results for Sample Program #6 ...........cccceeieiiiniiiieneee e 40
Table 9: Results for Sample Program #7 ..........ccoveieiieiieeie e 41
Table 10: Results for Sample Program #8 ..o 42
Table 11: Results for Sample Program #9 ..........ccoeveiieiiieie i 43
Table 12: Results for Sample Program #10.........cccooiiirniiiiienieeseeseee e 44
Table 13: Results for Sample Program #11 .........cccooviieiiieie e 46
Table 14: Results for Sample Program #12 .........cccooeiiiiiiiiiinieecseeeeee e 47
Table 15: Results for Sample Program #13 .........ccooviiiiieie e 48
Table 16: Results for Sample Program #14 ..o 48
Table 17: Results for Sample Program #15........cccooviiiiiieie e 49
Table 18: Results for Sample Program #16 ..........ccoceiriiiiiinnieeseneee e 50

vii



1. Introduction

Software testing detects errors unintentionally introduced to programs during
design and development [1]. Creating test cases manually, traditionally performed by
human testers, is time-consuming and adds additional overhead to the budget of all
nontrivial software development projects. Although testing is a resource intensive
process, it is also invaluable for validating the correctness of applications. In addition,
once a suite of test cases is generated for a project, those tests can be run continuously as
part of a software project change management process [3]. To date, the actual generation
of test cases through automated measures has been explored in research studies but
limited in software engineering practices [5].

The problem domain of this study is evolutionary testing, also commonly known
as heuristic search-based test data generation. Automated test data generation dates back
to the 1980s, when random testing was first explored as a mechanism for producing
inputs to assess the execution of software [5]. In the early 1990s, Korel applied genetic
algorithms, a well-known type of heuristic search-based method, to the test data
generation process to analyze if improvements over random testing could be made [6].
The results of the study indicated that heuristic search-based test data generation was
superior to random testing.

Dozens of studies have identified ways to improve the effectiveness of heuristic
search-based test data generation since Korel’s original paper. These improvements, as
well as other test data methods not based on heuristics, are covered under the related
work section. Korel’s work inspired further research in the application of genetic
algorithms to software testing [5]. Eventually, studies in software testing using genetic
algorithms were merged under the field of evolutionary testing. Evolutionary testing
explored not only genetic algorithms, but other heuristic search-based processes as well.
This study is an extension of work in genetic algorithms but it potentially could be
applied to other heuristic processes as well.

Heuristic search-based test data generation is heuristic because it is stochastic
instead of deterministic. Therefore, chance plays a role in the results received from
running genetic algorithms and related heuristic methods. Heuristic methods are required
in situations where the number of possible inputs is inexhaustibly large, for example the
Traveling Salesman Problem. Generating test data for software also involves an
intractable number of inputs unless heuristics are used. In manual software testing,
human testers pick the inputs based on intuition or a test plan, which essentially plays the
role of the heuristic. Automated test data generation is also described as search-based
because it involves the process of finding values that are most suitable as inputs.

1.1 Observations

According to previous studies in genetic algorithms, using data structures and
domain knowledge during the population evaluation process can restrict the search space,
provide guidance to the search mechanism, or both [7]. By limiting the number of
possible solutions to a problem or providing increased direction to the search process the
search process becomes more efficient. By applying the same results to genetic
algorithms used in evolutionary testing, it should be possible to produce test data more



effectively, when measured in terms of the rates of testing code coverage percentage in
equivalent elapsed CPU execution time.

1.2 Application Domain

The research in this study is targeted at the application domain of evolutionary
testing. In particular, genetic algorithms were used for the evolutionary algorithms
method. Genetic algorithms were used for the implementation because they are the most
common technique used in prior studies.

The test cases created by the generator with evolutionary testing are targeted at
testing non-real-time software systems. Mission-critical systems with stringent
requirements for 100% code coverage testing are excluded from the application domain
of this research. The test cases created by heuristic search-based methods aim for a
reasonable code coverage percentage of seventy to eighty percent as opposed to complete
coverage of the code. In addition, environmental variables, such as the state the machine
IS in, are not exercises by the generated test cases. The test cases are meant for executing
a target program with inputs that test a majority of the source code as measured by branch
or statement coverage and receiving output without regards to environmental variables.

In this study, test generation is applied to Java because the programming language
is widely used in both commercial and academic settings. However, it is possible to
generalize this research to all evolutionary testing studies, regardless of the chosen
programming language. This generalization assumption is justified because in previous
studies, it was shown that evolutionary testing results are applicable to languages other
than Java [13, 14].

1.3 Problem Statement

The advantages of evolutionary testing are nullified when there is no guidance to
the search. When no guidance is provided, the search process deteriorates into a random
search, which has previously been proven ineffective on anything more than trivial
programs [5, 11]. In particular, this problem becomes acute during the test data
generation process when conditional statements rely on variables that are only affected in
otherwise unrelated procedures. In that case, testing code coverage percentages suffer and
are therefore suboptimal. Therefore, the problem statement in this study is that
evolutionary testing methods currently converge to below optimal and achieved rates of
testing code coverage percentages due to a lack of search guidance in source code
conditional statements.

1.4 Motivation

Software testing encompasses a sizeable fraction of time required for software
development efforts. In 2005, cost estimates for handling errors during the testing phase
of the software development lifecycle instead of during earlier phases were pegged at
forty billion dollars [12]. In addition to cost savings, if routine unit, functional, and
integration test case creation is partially or completely automated, it grants several
advantages over current testing practices:



1. Fewer person hours spent creating routine test cases, thereby reducing testing
costs.
2. Increased software quality when human testers design creative test cases' for
more rigorous software testing.
3. Additional time for software engineers to write source code for implementations.
The problem of software testing is important because it adds to the costs of creating
software.

1.5 Hypothesis

Based on the observations and problem statement, the tool Evolutionary Test Case
Generator (ETCG) is expected to test the following variables and hypothesis. The
independent variable is the whether or not design knowledge, which is specified in the
form of sequence diagrams, is incorporated into the test case generator’s test case
generation process. The dependent variable is the code coverage percentage achieved
during execution, measured by either branch coverage or statement coverage.

The formal hypothesis is:

Incorporating a sequence diagram into the test generation process will increase
branch coverage and statement coverage over an equivalent test generator that does not
use sequence diagrams.

The hypothesis function is:

¢ = f(k), where c is the increase in branch or statement coverage, and k is a binary
variable, either true or false, that corresponds to whether or not sequence diagrams are
incorporated into the test case generation process.

The rationale for the hypothesis comes from previous work in genetic algorithms
that proves the iterative search process is most effective when provided with guidance
from domain knowledge [7]. In this study, the domain knowledge is provided by a
common design phase artifact, the sequence diagram.

1.6 Design Knowledge and Sequence Diagrams Relationship

Design knowledge is provided by artifacts from the design phase of the software
lifecycle. In this study, sequence diagrams represent design knowledge in because they
describe the interactions between objects and their corresponding methods in situations
that are important to the operation of the overall system. The designer and developers
agree during the design phase as to how the system should operate and this knowledge
can be used to properly test the system based on their assumptions. Therefore, the
sequence diagrams are a concrete conception of a given software system and represent
knowledge for how the system is designed.

! Creative test cases are defined as those that require human intervention to create, such as evaluating
aesthetic requirements.



1.7 Goals

There are two primary goals for what should be accomplished by this research.
The first goal is to determine whether or not using design knowledge enhances the
effectiveness of automated test case generators. The hypothesis describes the
measurement of the effectiveness by the resulting code coverage percentage. The second
goal is to implement a tool that demonstrates the code coverage percentage achieved
when using design knowledge versus without the aid of the design knowledge.

1.8 Contributions

This paper makes two primary contributions to the field of automated test case
generation. First, a novel approach towards automatically integrating sequence diagrams
into the genetic algorithm’s evaluation mechanism is introduced. Second, a technique
known as object mocking is used in generating test cases. There are no previous studies
that use mock objects, which are a well-known mechanism for creating effective unit
tests.

Therefore, this study presents two main contributions to the research area of evolutionary
testing:
1. Incorporating design knowledge increases the code coverage achievable by
automated test generation methods.
2. This is the first study to leverage mock objects to isolate specific methods under
test, which accurately mimics recommended software unit testing practices.



2. Problem Background

Existing heuristic test data generators have low potential for creating test data
when otherwise separate sections of code are dependent upon each other in limited but
important ways. For example, programs often contain conditional statements with dozens
of potential outcomes but no other guidance towards one that is most important for
successfully executing the program. In that case, the probability of previous test data
generators successfully executing the most critical branches of the conditional are no
better than what a random test data generator could achieve. Section 2.1 presents a
tangible example of this problem. Section 2.2 describes the problem statement in more
detail. Section 2.3 reviews previously addressed challenges in evolutionary testing that
appear similar to the problem statement, but upon further inspection are actually
different.

2.1 Example

A simple example highlights the solution to the problem stated above where two
otherwise unrelated areas of code affect the execution of a critical condition statement. In
Java, a bean is an object that stores data in variables and allows manipulation of those
variables only through getter and setter methods. If a class relies on a bean to store data,
it will often refer to that object during conditional statements to determine if criteria are
met with regards to the state of the variables in the bean. The object will obtain the value
of a specific variable through its corresponding getter method. However, if the variable is
set by another object during execution and not by the object with the conditional
statement, generated test cases may never execute that branch of code because it will
ignore the setter method. Even if a test case generator knows in advance to look for setter
methods, the problem remains with more complex examples of methods that do not
follow the getter and setter pattern.

This study determines whether or not design knowledge, provided in the form of
sequence diagrams, can increase the testing code coverage percentages by executing
branch statements where this problem occurs. Section 4 contains further information on
the details of the solution approach.

2.2 Problem Statement

As described in the introduction, the problem statement refers to situations where
testing code coverage is suboptimal due to conditional statements dependent upon
variables affected in unrelated subroutines. Section 2.1 reviewed an example of the
problem statement but it is worthwhile to review it in further detail.

Conditional statements often cause difficulties during the test data generation
process in evolutionary testing [5]. The problem was first discovered during random
testing experiments, even before evolutionary testing was attempted. One of the
challenges with conditional statements is that they are often only satisfied with a small
subset of the overall set of inputs to the conditional. With random testing, there is no
guidance in the search. Conditional statements with large input sets and outputs that are
obtained only for a small range of inputs often cause the search for satisfactory inputs
that exercise all unique outputs to fail. The purpose of using evolutionary testing over



random testing is the addition of guidance to the search. However, in certain cases, as
described in the problem statement, that guidance may not be enough to find a
satisfactory value for the conditional.

2.3 Related Problems and Solutions

Several problems previously addressed in evolutionary testing appear similar to
the problem of increasing testing code coverage but each contains important differences.
As described below, the solutions provided for each of these problems do not address the
problem statement for this study. Further analysis of studies is provided in section 3
under related work in evolutionary testing.

2.3.1 Conditional Statements and Testability Transformations

Testability transformations are a *“source-to-source transformation that aims to
improve... a given test generation method to generate test data for the original program
[8].” The goal of testability transformations to increase testing code coverage percentage
is the same as this study. However, the problem that testability transformations address is
different. The underlying problem that is addressed is that source code can contain
conditional statements with flag variables [9]. Testability transformations are an attempt
to remedy this problem by transforming the original source code into a version that can
be tested that contains greater guidance for the search process. This is different from this
research in that the flag variables deal with primitives that can be replaced by substitution
with the original assignment statement.

Testability transformations and design knowledge are complementary to each
other. Both approaches can be used in conjunction with each other. In fact, the generator
module that will be explained in section 4 contains a subcomponent for applying
testability transformations to the original source code before attempting to generate test
cases.

2.3.2 The Species-Per-Path Approach

The Species-Per-Path Approach to search-based test data generation was first
outlined in a paper of the same name in 2006 [10]. The motivation behind this paper is
that heuristic search methods cannot efficiently generate test data for certain nested
conditional code structures. If that problem is solved, the authors’ claims that heuristic
search-based testing methods will become practical methods for automatically generating
test data with full branch coverage. The authors’ goal again is to increase the test code
coverage percentage achievable by evolutionary testing. The new approach presented in
this study is to divide the program into slices that can be executed in parallel by the test
data generator. The generation process can then be split among separate subpopulations.
The Species-Per-Path (SPP) approach considers these subpopulations to be different
“species,” and creates one for each path in the source code that requires test cases. By
splitting each path into a separate search problem, a new fitness function can be derived
for each species. The specialized fitness functions provide enhanced guidance to each
species. In addition, it is trivial to parallelize the disparate subpopulations since, at least
in this study, they do not share data about the search spaces. The simple areas of the
source code are quickly covered by the populations and the more difficult regions can be



isolated for further test generation. The solution also utilizes testability transformations,
although the authors note that it is not required for the SPP approach to work properly.

The Species-Per-Path approach study is different from the work presented here
because SPP approach describes how to generate test cases for programs that are broken
up into smaller slices, but not how to more effectively handle conditional statements. In
this study, the program would still have an issue with areas of source code that impact
common variables and otherwise interact only in a conditional statement. However, once
again the Species-Per-Path approach could be used in conjunction with design knowledge
to more effectively handle conditional statements within each subpopulation.



3. Related Work

Previous research in the areas of genetic algorithms and evolutionary testing
provide the background for this study. Subsection 3.1 analyzes general research into
stochastic search and genetic algorithms, which are both optimization methods and also
often considered in studies on artificial intelligence. Section 3.2 presents related work in
the field of evolutionary testing is covered to show the development of the field from its
origins in the early 1990s to its present state.

3.1 Stochastic Search and Genetic Algorithms

Many stochastic search methods, such as genetic algorithms, are similar to local
beam search. Local beam search is an adaptation of beam search that keeps n search
states in memory (as opposed to a single state in beam search). During the search process,
if the n search states do not contain the target goal, local beam search generates all
successors to the n states and selects the most promising states for the next round of the
search based on a utility function. An important property of local beam search is that
search information is transferred between the states during each generation. If one state
creates better successors than the others, the other states will effectively give up their
poor searches to explore the more promising successors.

However, local beam search is hindered because it often concentrates on small
sections of the search space. This usually leads the search to find only sub-optimal
solutions to the problem at hand. Stochastic beam search attempts to avoid the pitfalls of
local beam search by instead randomly selecting successor search states, with some bias
towards successors with higher scores from the utility function. Therefore, in local beam
search, the selection mechanism is not swayed by random probability as it is in stochastic
beam search.

A variant of stochastic beam search is genetic algorithms. The primary difference
between the standard stochastic beam search and GAs is that in stochastic beam search
modifying a single parent search state creates the successor states. In contrast, genetic
algorithms generate successor states by combining two or more parent search states
together [10]. This process of creating new search state successors in genetic algorithms
is known as reproduction and is akin to sexual reproduction, whereas stochastic beam
search is an asexual method. Genetic algorithm definitions are steeped in terminology
based on natural selection [16].

To initiate the genetic algorithm process, a population of algorithms composed of
candidate solutions, also known as individuals, must be created. Each individual in the
population is composed of an encoding, which is a representation of how the algorithm
functions. The encoding can be a floating-point number or more commonly a bit string,
where each binary value corresponds to a trait of the individual. In a simple form of
genetic algorithm development, the bits in the bit string are independent. However, in
more complicated representations, the comparison with natural organisms” DNA is more
appropriate. In this scenario, bits can represent traits and are dependent on each other, so
that altering the value of a single bit can modify the effects of other bits. Regardless of
whether or not dependencies are simulated, both the bit string and the floating-point form
represent a single individual in a larger population of other individuals [5, 17].



Once the initial population is represented, a fitness function (also known as an
evaluation function) must be used to evaluate each individual’s ability to solve the
problem in question. This process is known as selection and it is modeled after the idea of
natural selection in Darwinian evolution [18]. Most GA evaluate each candidate solution
with the fitness function and assign a performance index to the individual based on how
well it performs [16]. After all candidate solutions are assessed by the fitness function,
the selection mechanism chooses which solutions will pass on their encoding to the next
generation of the population. The individuals that perform the best will have a higher
percentage chance of passing on their encoding based on the performance index assigned
during the evaluation period. In this way, candidate solutions that are not the best
according to the fitness function still have a possibility, albeit a smaller chance, to pass
on their encoding. This prevents the GA from converging and then becoming stuck on
local maxima, which are not the globally optimal solution for the problem.

Once the candidate solutions that will pass on their encoding are chosen, the
process known as crossover begins. Multiple forms of crossover exist, but in essence it
provides a way for two candidate solutions to share their encoding to produce a new,
complete candidate solution. This new individual contains (hopefully) the best attributes
of parent candidate solutions. To keep the population level consistent, some candidate
solutions may be combined several times to pass on their encoding to multiple
individuals. After the crossover process creates the successive population of candidate
solutions, mutations are introduced to facilitate further diversity. Mutations are often
simply the flipping of a random bit from O to 1 or vice versa. Most genetic algorithm
studies also keep the mutation rate low, at roughly 0.1%, to allow slight variations to
occur but prevent radical shifts in the population that disrupt finding optimal solutions
[19].

First population created
Initialize first Evaluate each
population candidate solution
All candidate solutions
evaluated

[ Fandomly select candidate solutions to }

Caontinue
evolution
process

reproduce, favaring those with high fithess

Selection of candidate
solutions complete

Breed the next population of candidate Introduce a small percentage of random
solutions through crossover mutations to some candidate solutions

Mew population created Evolution
process finished

Select most fit
candidate solution

Figure 1: Genetic Algorithm Process




After the crossover and mutation process occurs, the new population of
individuals is ready to be evaluated by the fitness function. The process concludes when a
predefined limit is surpassed, such as the amount of computation time elapsed or number
of population iterations. The activity diagram in figure 1 shows the steps involved in the
genetic algorithm process.

3.2 Evolutionary Testing

The research presented in the following sections is based on prior studies
performed in the area of heuristic test data generation. As classified by McMinn, there are
four cardinal areas where heuristic search-based methods have been applied to automate
software testing [5]:

1. White-box testing specific program structures

2. Execution of a specific program feature against a specification

3. Grey-box testing to disprove the validity of software features such as assertions
about the safety of a software product

4. Validating non-functional requirements, for example, discovering worst-case
execution time

Within these four research areas, the first subject involves white-box structural
testing and to date it has produced the most literature in evolutionary testing. White-box
structural testing is covered in the next subsection, 3.3.1. Analysis of execution of a
specific program feature against a specification, grey-box testing, and validating non-
functional requirements are presented in subsections 3.3.2, 3.3.3, and 3.3.4, respectively.

3.21 White-box Structural Testing

White-box structural testing is the subject area for this study. Numerous previous
studies have been performed in this area. This section will cover only the most influential
research accomplishments. Readers interested in further review of this topic should refer
to [5].

3.2.1.1 Automated Software Test Generation for Complex Programs

Initial studies in white-box structural testing were applied to trivial programs. In
2003, the authors of [11] wrote that the generation process should also be applied to more
complicated programs. The authors’ motivation in this study is that they believe
automated test case generation must be applied to programs in all types of languages, not
only to programs written in simplified sub-languages, for it to be considered successfully
applied to complex programs. The authors claim that standard approaches have two
cardinal problems: they constrain the language a program is written in, and the function
minimization methods are overly simplistic. The solution approach presented by the
authors is a tool known as GADGET, which is a test generation system that can use
gradient descent, simulated annealing, genetic algorithms (both standard and differential),
and random approaches to attempt standard testing metrics such as branch and statement
coverage. The system uses coverage tables to determine what conditions have been met
and what remain as unexplored. The system compares each of the methods and shows
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that random testing holds up poorly as the complexity of code increases. The simulated
annealing, genetic algorithms, and gradient descent approaches fare much better, leading
the authors to conclude that any practical application of automated software testing will
require the heuristic search techniques and cannot rely upon random testing.

The study generalizes some conclusions which appear in later evolutionary testing
studies. In addition, the authors note that the search space for the heuristic search
methods contains many plateaus, which is what embedding design knowledge can
overcome.

3.2.1.2 High Volume Software Testing using Genetic Algorithms

Another area of white-box structural testing is the mutation of existing test cases
to stress test systems using variations of the original tests [12]. High volume software
testing using genetic algorithms do not have to be based upon white-box testing, as black
box tests can also be modified to create new tests. In [12], genetic algorithms were
applied to decision trees that contained rules for what areas of source code in projects to
test. The authors proposed techniques for combining automated test case generation with
long sequence testing. In particular, an approach involving genetic algorithms was
compared again a random search test. A decision tree was used to generate rules to
determine where defects in the code might occur. The generations were kept consistent in
both tests. With 25 generations, random testing and genetic algorithm version performed
equivalently, which potentially indicated that the genetic algorithm did not have enough
time to evolve and distinguish itself from the random search. When the number of
generations was increased to 500, the genetic algorithm outperformed the random search
by 7% accuracy. However, the authors did not mention if the results were statistically
significant.

As a side note, [12] provided a stark contrast to the majority of other software
testing studies. Since the authors are from a business school, it focused on the cost
savings of handling software errors within a development lifecycle rather than the current
after-the-fact methods. The economics of new methods should not be overlooked as it can
account for a substantial motivation for undertaking new research.

3.2.2 Specific Program Feature Execution against Specifications

Another area where evolutionary testing has been applied is testing a specific
program feature against a formal specification. In most software development projects
formal specifications are not available. However, in mission-critical systems and projects
that can afford the overhead of formally specifying some or all requirements,
evolutionary testing can be used in a different way than white-box structural testing.

3.2.3 Grey-box Feature Validation Testing

Grey-box testing combines structural and functional information sources to create
new test cases [5]. Two primary examples of testing in this area are for assertions and
exceptions. Essentially these conditions provide metadata about a executing programs.

For assertion testing, test case generators attempt to find data that violate
assertions inserted by the original programmers. The assertions specify constraints with
how the program should execute. If test data is created that violates an assertion, it
indicates an error in the program.
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Grey-box testing with exceptions is similar to that of assertion testing. The major
difference compared to assertions is that exception testing is often used as an extension of
standard conditional statements. The raising of an exception does not always actually
indicate an error in the program. Instead, an exception may provide additional assurance
that a block of code executed in a way unforeseen by the designer but the resulting data
could still be valid.

A drawback of grey-box testing is that the languages must support a mechanism
for metadata, most commonly assertions or exceptions. However, this is not a major
criticism of the technique since most common languages in use today, such as Java,
Python, and C++ support one or more of these constructs. A more serious criticism is that
assertions and or exceptions must be embedded in the program during development,
which mitigates the advantage of reducing development time by automatically creating
test data.

Grey-box testing is different from the work presented in this paper because
standard structural white-box testing does not rely on metadata embedded within
programs to generate test data. Instead, it relies on the code itself and execution of test
cases to create test cases.

3.2.4 Non-functional Requirement Validation Testing

Several previous studies have researched the applicability of evolutionary testing
in validating non-functional requirements. The primary example of non-functional
validation testing is testing program execution time.
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4. Solution Approach

The research tool ETCG was designed to enable logical separation between the
heuristic process and the supporting functionality. By making the heuristic search-based
process generic, it is possible to switch in other methods for generating test data, such as
simulated annealing and random data generation.

4.1 Technical Components

ETCG can be broken down into five major components that support the test case
generation process. The cardinal component for research in this study is the design
knowledge module. It breaks down sequence diagrams into a form that can be used by the
other components to improve the results of the test case generation process. The second
most important part is the genetic algorithm engine, which creates new test cases as
individuals and executes them against source code. The second part is the generator and
its support modules. The support modules include the user interface, file utilities, error
handling, and classes for bundling the best test cases together in a test suite. Another
component of ETCG is the heuristic translator, which supports the logical separation
between the generator, the design knowledge, and the implemented heuristic engine. The
heuristic translator allows the generator to interchange various heuristic and random
processes to test whether, for instance, how genetic algorithms perform against simulated
annealing. Another component is the user interface. There are two main ways to interact
with ETCG, including a web browser-based version and a command-line interface. The
main technical components are shown below in figure 2.

Contains both command B
User Interface - - - - - - - - — — — — — — -line and web browser-based
versions of the user interface.

Runs the generation process, compiles B
Generator { — — — — — — — — — classes under test, calls other components,
and sends data to the user inteface to display.

Parses sequence diagrams and B
Design Knowledge — — — — — — — — 1 converts results into classes that
can be used by the heuristic translator.

Logically separates the generator from B
the genetic algorithm engine. Converts

method signatures and variables to chromosomes

and resulting individuals into test cases.

Heuristic Translator |— — —

Evaluates test cases, generates new test
data, applies design knowledge (if requested),
returns resulting test cases once completed.

Genetic Algorithm Engine r —

{H R Uy U U U

Figure 2: Main Technical Components of ETCG
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Several scenarios exist for working with ETCG. These situations are presented in
figure 3. First, a user may need to change the properties of ETCG to perform experiments
and determine the most efficient way to generate test cases. For this purpose,
configuration files in XML format are provided by the system for a user to work with and
change pertinent settings. The second and third operations, submitting sequence diagrams
and source code, are the most likely scenarios for general users. Source code can be
submitted without UML diagrams and ETCG will perform a best attempt at creating test
cases for the classes and individual methods. Sequence diagrams can also be submitted at
the same time as the source code to assist in the test case generation process. When the
user provides multiple files, they should be bundled in Java Archives (JARS) so there is
only a single file to submit. The generator takes care of removing the source code and
sequence diagrams from the archive before the generation process. After submitting
source code and optionally the sequence diagrams, the user will need to obtain the test
cases. The generator provides a single archive file with the best test cases and an HTML
and XML report with the statistics of how those test cases perform.

Modify System
Properties

Submit Sequence
Diagrams

System properties control configuration of the
generator and allow modification of various
genetic algorithm parameters for evolution.

Sequence diagrams are submitted
in a bundled jar file and are formatted
so the generator can properly parse
them for design knowledge.

Java source code in a java
file or bundled in a .jar file are the
submission formats.

Submit Program
Source Code

User
A suite of JUnit

test cases is the
generator output.

Obtain Test Cases

Figure 3: General Operations the User Will Perform With ETCG

4.2 Genetic Algorithm Engine

The most prominent component of the solution other than the design knowledge
module is the genetic algorithm heuristic engine, which is used to generate the test data.
Genetic algorithms are used to direct the test case generation process so data created
maximizes a given metric, such as branch coverage or statement coverage. In fact, any
metric can be used by ETCG as the fitness function as long as it can be calculated after
running the generated test cases against the original source code.

The engine is designed so as to maintain the genetic algorithm abstraction where
various selection, crossover, and mutation mechanisms can be altered without modifying
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anything outside this component. In the ETCG implementation, each part of the genetic
algorithm process is organized in separate classes, as shown in figure 4.

Chromosomelmpl Individuallmpl GeneticAlgorithmimpl
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Chromosome _ - - +recombine(in ind1 : Individual, in ind2 : Individual) : Individual
+intialize() +getPopulationSize() : int
+getType() : wstring(id) +setPopulationSize(in size : int) %7
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Individual GeneticAlgorithm o
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+initialize() < +setMutationChance()
+setChromosome(in chromosome : Chromosome) +getMutationChance()
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Figure 4: Genetic Algorithm Classes

The main component is the GeneticAlgorithm class, which drives the evolutionary
process, which in this study creates test cases. However, the class is flexible enough to be
used for any general genetic algorithm study. The purpose of the implementation was to
build a general genetic algorithm component instead of a one use only program.

Standard selection mechanisms provided by ETCG include n-individual
tournament selection, fitness-proportionate selection, and sigma scaling [3]. Each can be
used in conjunction with elitism, where the best individual is saved during the creation of
new populations, to boost efficiency under circumstances where the users find it
appropriate. Crossover methods depend upon the representation encoding the user
chooses. The standard encodings such as binary strings and real numbers are
implemented by default. The user can also choose to create a new representation by
creating a new class with the required fields specified in the Representation interface.
New individuals can be created using standard crossover methods such as single-point,
double-point, and allele averaging. Again, the genetic algorithm engine is abstract and
extendible enough so that users can create new crossover types by implementing the
Crossover interface and its standard methods. Another interface provides mutation to
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maintain diversity in each newly generated population. The Mutation interface supports
bit-flipping and random floating-point addition and subtraction by default. Table 1
presents a summary of each of these interfaces and the implementations provided by
ETCG. For further explanation of these search-based method types, refer to [5].

Interface Standard ETCG Implementation Types
Selection N-individual tournament, fitness-proportionate
selection, random selection

Representation | Binary string, real number string, dynamic variable
string based on a common superclass, multiple test
cases per allele representation

Crossover Single-point, double-point, allele averaging, random
new individual

Mutation Bit-flipping, random floating-point addition and
subtraction

Evaluation Branch coverage attained by testing, statement

coverage attained by testing, random evaluation
Table 1: Genetic Algorithm Interfaces Provided By ETCG

4.3 Generator and Support Modules

The generator and its support modules provide the front-end of ETCG. The
modules work together as follows:

1. User interface — two user interfaces are provided, a web-browser version for
uploading files to a web application server, and a command-line interface for
submitting local files

2. Testability transformations — an optional component for applying testability
transformations, described in section 2.2.1, to the source code before compilation

3. File utilities — numerous utilities for opening and creating Java Archive (JAR)
files, reading and writing files, compiling single and groups of classes, and
copying files to necessary directories are required for the generator to
automatically create test cases

4. Generation process — the generator’s execution is dependent upon the completion
of numerous steps, which is configured and ordered in the main generator module

The support modules are not a novel component to the test data generation
process, but they are nevertheless an important piece that takes care of the mundane tasks
necessary for successful operation.

4.4 Heuristic Translator

The heuristic translator provides logical separation between the generator and the
heuristic method used to generate the test cases. There are two subcomponents to the
heuristic translator: a source code to chromosome translation and a chromosome to
executable translation. In addition, this section also describes how the resulting test cases
use EasyMock as substitutes for real objects as unit testing often requires.
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441 Translation of the Source Code Under Test To Chromosomes

First, a source code to chromosome translation is required to convert files
submitted to the generator into a form that can be used by genetic algorithms. If another
heuristic method was used in place of genetic algorithms, then a conversion mechanism
to translate source code into a form that could be manipulated by that heuristic process
would be required instead.

4.4.2 Translation of Chromosomes to Executable Test Cases

The second part to the heuristic translator is the conversion from a chromosome
into a test case file. The conversion is required so that the individuals created by the
genetic algorithm can actually be run against the source code under test. Once the
chromosome is translated into an executable test case, it can be analyzed by the testing
code coverage tool to determine its performance. The results of how well the test case
perform are then gathered by the generator to analyze which test cases should have a
higher probability of recombining to create the next generation of test cases.

44.3 EasyMock and EasyMock Class Extension

Worth noting during the translation process is the use of EasyMock and the
EasyMock Class Extension to create substitutes for interfaces and objects that are
otherwise difficult to instantiate. EasyMock creates mock objects that execute in place of
real objects so that unit tests can focus on testing units of code, as opposed to the entire
system [15].

Mock objects are used as a test harness in object-oriented programming to isolate
sections of code and perform unit tests. Although previous studies have not used mock
objects, the results in this thesis are still applicable for comparison with those prior
studies because the mock objects perform the same functions as true objects. The mock
objects are simply used as stubs and the use of mock objects is a common object-oriented
unit testing technique.

4.5 Design Knowledge Component

The primary component of ETCG for experimentation is the design knowledge
module. There are two phases to the operation of the design knowledge component. First,
the parser breaks down sequence diagrams into their constituent pieces and creates
objects. The second phase uses the design knowledge objects to insert additional
statements into the test cases and passes the objects to the heuristic translator so the
objects can be used by an evaluation function, if necessary.

46 Automated Test Case Generator Execution

ETCG execution will follow the sequence described in figures 5 and 6. There are
two scenarios that are used to evaluate the effectiveness of using design knowledge
during test case generation. The first scenario, shown in figure 5, is a standard test case
creation process without design knowledge. The second scenario, shown in figure 6, uses
design knowledge to enhance the test case generation effectiveness as outlined in the
hypothesis.
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4.6.1 Cobertura — Testing Code Coverage Tool

The open source tool Cobertura is used by ETCG to obtain the percentages of
branch coverage and statement coverage achieved by individuals in generated
populations. Cobertura is “a free Java tool that calculates the percentage of code accessed
by tests [2].” Another tool known as jcoverage, provides the basis for Cobertura’s
capabilities to determine branch and statement coverage.

One reason for choosing Cobertura was the HTML and XML reports that it
automatically generates during execution. A feedback mechanism for the genetic
algorithms was required so the individuals created by ETCG, each of which represented
multiple test cases, could be evaluated. The XML reports are parsed by ETCG using the
Document Object Model (DOM) standard, which is a common way to extract data from
hierarchical XML files [20].

One disadvantage of using Cobertura is that evaluation of a typical population can
take tens of minutes because every individual must be written to disk before it is tested.
This downside can be overcome by using a portion of RAM as a hard drive so that
Cobertura’s access time is much faster. ETCG was successfully tested using the “RAM as
a hard drive” method and the results did indicate it ran roughly an order of magnitude
faster, but for consistency all executions in this thesis were performed using a standard
hard drive as the storage location for generated test cases.
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4.6.2 Generator Execution without Design Knowledge

Automated Test Data Generation - Success Scenario
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Figure 5: ETCG Test Generation Success Scenario without Design Knowledge

The operational scenario presented in figure 5 begins with the initialization of the
ETCG system by a system administrator. Upon start up, ETCG loads runtime properties
from two separate XML files. The first one is for the generator itself and it contains
locations for important files that are used during the test case generation process. It also
contains the “design knowledge” property, which can be set to true or false to perform the
test case creation with or without the UML sequence diagrams. The generator then goes
into a waiting mode until a .java or .jar file is submitted through the web browser-based
interface. Once a user uploads a file, the main test case generation process commences. If
a Java Archive (JAR) file is uploaded by the user, the source files are extracted from it
and stored in a temporary location (this optional step is not shown in the sequence
diagram). Once the source files are extracted or if a single Java source file is uploaded,
the generator compiles the files into classes that can be loaded by the Java Virtual
Machine (JVM). The classes loaded by the JVM are known as the classes under test
(CUT). After loading the CUT, they can be inspected and manipulated through Java
reflection, which is necessary to determine which methods to create JUnit test cases for.
After loading the classes, the heuristic translator component is used to convert the method
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signatures, parameters, and associated variables into chromosomes, which are the
structure used by the genetic algorithm engine. If another heuristic search method was
used, such as simulated annealing, the heuristic translator would have to change the
method signatures, parameters, and associated variables into a different usable form.

4.6.3 Generator Execution Using Design Knowledge

Automated Test Data Generation - Success Scenario

ser Generator Design Knowledge GeneratorUtil HeuristicTranslator GeneticAlgorithm

upload file i : ! : i
1
: parse all UML diagrams i

design knowledge structurens
N 1

> add knowledge to chromosomes
I

| generateTestCases |
1

> evaluate with design knowledge

best test cases |
!

test suite

Figure 6: ETCG Test Generation Success Scenario with Design Knowledge

Once the chromosomes are created, the heuristic translator then calls the genetic
algorithm engine component with the newly-created chromosomes and lets it perform
iterations of the evaluation, selection, crossover, and mutation phases. These iterations
produce test cases that are more suited to the CUT than the original, randomly-generated
values created for the translated chromosomes.

Figure 6 does not show the system administrator starting the system, but the
beginning of the process remains the same as in figure 5. The test case generation
scenario using design knowledge diverges from the situation where design knowledge is
not used during the heuristic translation phase. The Heuristic Translator component uses
the design knowledge to embed new method calls into the test cases. This allows for the
creation of test cases that invoke methods that are critical to satisfying condition
statements in the methods under test. Some of these conditions could otherwise not be
satisfied, which decreases the achievable testing code coverage. At this point, the process
continues in the same way as without design knowledge, as the genetic algorithm engine
receives the chromosomes and begins the iterative process of evaluating, selecting, and
creating new test cases.
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4.6.4 Test Case Generation Activities

Several phases of activities are required for successful test case generation. An
overview of the flow of activities is presented below in figure 7.

‘%thantiate GenerationProperties objecD Uses SAX parsing Iibrariesﬁ

\/ for reading and initialization.

Gead XML initialization properties Populate GenerationProperties objeHWait for user file uploads}

Parse classes and methods under test (Optional) Apply testability transformations

Read uploaded files

J/ To obtain the list of methods to
generate test cases for, all
List methods that need test case9— — — — submitted classes are analyzed for
methods, then those methods have
test cases generated independently.

Resulting test are
in JUnit format.

Output test cases to ﬁle9

Generate test case for method #D < > Generate test case for method #D \L
Gackage test cases and report9

Figure 7: Overview of ETCG Generation Activities

In figure 7, the diagram starts in the same manner as the sequence diagrams where
the generator properties are loaded into a GenerationProperties object. The properties are
read from an XML initialization file using a Simple API for XML (SAX) parser. After
the properties are loaded, the system waits for a user to upload a file. Once an acceptable
file is submitted in the Java Archive .jar or source code .java format, the process
continues by reading and parsing the source files. There is an optional step after reading
the source code where testability transformations can be applied. In this experiment,
testability transformations were not used, but this would be the point where the generator
could apply them. Next, the generator breaks down the classes under test into a list and
the methods into a secondary list. Methods are the smallest unit that the generator
produces test cases for, as unit testing refers to running method-level tests. At this point,
ETCG cycles through the list of methods and runs the genetic algorithm process on each
one to create unit tests for each method. The best resulting test cases, as measured by
either the branch or statement testing code coverage, are returned to the generator. The
generator then saves the test cases to files, creates reports on the testing coverage
achieved, and bundles the result together in a single Java Archive file.

Geceive test case results
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5. Experiment Design

The hypothesis was stated in the introduction. Further clarifications to the
hypothesis are presented in section 5.1. Section 5.2 presents the parameters of the
experiment, including the independent and dependent variables.

5.1 Hypothesis

The hypothesis was described in the introduction, but it is expanded upon here.
The hypothesis function, , ¢ = f(k), is an attempt to depict the relationship between the
amount of design knowledge, k, used as a parameter into the function, that affects c, the
testing code coverage percentage realized by the test case generation process.

5.2 Experiment Parameters

To prove or disprove the hypothesis, independent and dependent variables to the
hypothesis function were measured. Further details on the independent variable, the
number of objects used parsed from sequence diagrams to guide the search process, are
presented in subsection 5.2.1. Subsection 5.2.2 describes the dependent variable, which is
the percentage of testing code coverage achieved by the produced automated test cases.

5.2.1 Independent Variable

As stated above in the hypothesis, ¢ = f(k), where k is the number of objects used
in all sequence diagrams incorporated into the evaluation function. In this study, k is the
independent variable because the amount of design knowledge incorporated into the test
generation process can be varied by providing different amounts of sequence diagrams.
When more objects are used in the evolutionary testing process, the process has more
guidance for the search. If the hypothesis is true, then as the number of sequence
diagrams and objects provided to the test generator increase, the testing code coverage
percentage will grow as well.

5.2.2 Dependent Variable

The dependent variable is the percentage of testing code coverage, either
conditional or statement, achieved at the end of the test generation process. Therefore in
the hypothesis, ¢ = f(k), c is the final coverage realized. The value of the dependent
variable determines whether the hypothesis is proven true or false.

Testing for statement coverage and branch coverage produced results that are
shown in section 6. Block coverage, defined as a statement or group of statements which
execute in series without branching or delays, was not used as a coverage metric [21].
The open source tool Cobertura used by ETCG to evaluate individuals’ fitness does not
support analyzing block coverage. If another code coverage tool that supported block
coverage were substituted for Cobertura, it would be possible to obtain block coverage
results.
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5.2.3 Additional Experiment Parameters

There were several additional parameters in the experiment that were kept
constant during all tests. First, the termination condition was the number of generations
created and evaluated and it held steady at ten. Each generation contained ten individuals,
where each individual represented a suite of five test cases. The selection mechanism was
an n-individual tournament using eight randomly chosen individuals with the one with
the best fitness used as a parent. Mutation happened at a 2% rate with one of the five test
cases within an individual recreated if the mutation occurred. Finally, the recombination
type was single point crossover, where the first two test cases were used from one parent
and the last three test cases came from the second parent. Table 2 sums up the experiment
parameters.

Parameter Type Value During Experiment
Individuals per population 10
Test cases per individual 5
Termination condition Number of generations elapsed
Generations 10
Selection Mechanism Tournament selection with 8 individuals
Mutation 2%, with random regeneration of a single

test case within an individual

Recombination Single point crossover

Table 2: Constant Experiment Parameters

These parameter constants were chosen for the balance of a reasonable execution
time versus the need to run the genetic algorithm for several generations to allow the
search for the best test cases to show results. Exploratory analysis showed these
parameters to be the most effective with ETCG with a subset of four programs from the
larger 16 program sample set. The number of individuals per population and test cases
per individual provided a balance between long execution time for large populations and
lack of results from a small population size. The termination condition of using the
number of generations elapsed is a standard practice in genetic algorithms. The
tournament selection, mutation rate, and single point crossover are also standard genetic
algorithm parameters used by previous studies.

5.2.4 Hardware Configuration

The hardware configuration for this experiment should not affect the results as
execution time was not an important benchmark. However, the specifications for machine
that ran all of the generator experiments remained consistent throughout all executions.
The configuration was gathered by CPU-Z as follows [4]:
Intel Pentium D 840 3.2GHz
2 gigabytes of DDR2 Dual Channel memory running at 266Mhz
RADEON X300 SE with 128 megabytes
250 gigabyte hard drive

The operating system was Microsoft Windows XP Professional running Service Pack 2.
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5.3 Program Sample Collection

5.3.1 Method For Obtaining Sample Programs

The programs used for the experiment sample in this study were gathered from
public websites on the Internet. Searching was performed over several weeks using
Google, Yahoo, and Microsoft search engines to find websites with sequence diagrams
and related Java code or imperative programming paradigm-style pseudo-code.

The criteria for selecting program samples followed these rules:

1. Java source code or imperative-style pseudo-code (including actual code in Java-
style languages) must be provided

2. Sequence diagrams must directly reference provided source code or pseudo-code

3. Source code must be well-contained without libraries of other code that do not
provide source code

4. Source code must be manageable size, no more than several hundred lines of code

5. Source code must have conditional branches that would make random testing
unable to achieve 100% code coverage

Several programs did not match the criteria. Numerous sequence diagrams are
available on the Internet, but generally they are not provided with source code. Some of
the programs found required a number of external libraries to compile properly. They
were rejected since often the libraries to the source code were not available or over
several hundred lines of code.

5.3.2 Program Samples

The complete set of programs that were used by the generator to create test cases
for in this experiment is shown in Appendix B.
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6. Experiment Results and Analysis

Experiments were conducted with ETCG to obtain both branch and statement
testing code coverage. Section 6.1 details the results of the experiment. Section 6.2
reviews the outcome of the hypothesis and section 6.3 analyzes the results.

6.1 Experiment Results

Testing experiments were performed on the sixteen sample programs to determine
the statement coverage and branch coverage that could be achieved with and without
design knowledge. The statement coverage results are presented first, followed by the
results for branch coverage.

6.1.1 Statement Coverage Achieved

Statement coverage percentages were obtained from the best individual of the
final population in the experiment. Elitism was used in the genetic algorithm process,
which means the best individual in the last population was also the best individual in the
set of all populations during that specific run of the experiment. Without design
knowledge, ETCG produced an average code statement testing coverage of 50% across
all samples in the experiment. Using design knowledge produced an average code
statement testing coverage of 72%. Therefore there was an average increase of 22% in
statement coverage when design knowledge was used. Figure 8 shows the results of the
experiment results for statement testing code coverage. The results indicate that the code
coverage produced was more consistent at achieving the target values in the range of 70-
80% statement coverage. These results match the goals previously stated in section one
for achieving high coverage but not necessarily 100%.
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Figure 8: Statement Coverage Percentages Achieved by ETCG
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6.1.2 Branch Coverage Achieved

Branch testing code coverage also used elitism in the population to retain the best
individual during each generation of the program. Without design knowledge, ETCG
produced an average code statement testing coverage of 79% across all samples in the
experiment. Using design knowledge produced an average code statement testing
coverage of 87%. Therefore there was an increase of 8% in statement coverage when
design knowledge was used. Figure 9 shows the results of the branch testing code
coverage. As was the case with the statement coverage results, the branch coverage
outcomes for the sample programs were consistently higher when using design
knowledge and generally fell in the 70-80% coverage range.
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Figure 9: Branch Coverage Percentages Achieved by ETCG

6.1.3 Testing Coverage Results Averages

As shown in figure 10, the branch testing code coverage using sequence diagrams
produced an increase of 21% over the results of test generation without incorporating the
sequence diagrams as design knowledge. For statement testing code coverage, the
increase was less pronounced, at 8% over the results without design knowledge.
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Figure 10: Average Results for Each Coverage Type
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6.1.4 Branch Coverage Notched Box Plots

Branch Coverage Notched Box Plots
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Figure 11: Branch Coverage Results, Group 1 Uses Design Knowledge, 2 Does Not

The results in figure 11 indicate that group 1, which uses design knowledge, tends
to higher branch coverage results than group 2, which did not incorporate design
knowledge. Both group 1 and group 2 contain outliers that show one of the sample
programs was covered 100% by test cases generated with and without the incorporation
of design knowledge. It is possible that this program was less complex than the other
programs in the sample, but complexity measures were not analyzed for all sample
programs. The most likely explanation for those outliers is that the conditional statements
within the program were easily satisfied since they relied on Boolean variables as
opposed to more complex integer or floating-point values.

Another outlier in group 2 was much lower than the branch coverage achieved for
other sample programs. This sample program was the reverse of sample program that
spawned the other two outliers because it contained many complex conditional
statements that were not easy to satisfy. Therefore the branch coverage in that program
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suffered greatly because there was no guidance to the heuristic search methods’ hunt for
appropriate test data.

6.1.5 Statement Coverage Notched Box Plots
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Figure 12: Statement Coverage Results, Group 1 Uses Design Knowledge, 2 Does Not

The results for the notched box plots show the increased statement coverage
achieved in group 1 due to the incorporation of design knowledge into the test generation
process. There were two outliers in the statement coverage notched box plot results. This
program sample contained conditional statements that were difficult to satisfy even using
the design knowledge. The resulting outcome from not satisfying those conditionals was
that many of the statements inside those branches were not executed. Therefore the
statement coverage dropped quickly since a large number of statements were clustered in
the unsatisfied branches.
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6.2 Hypothesis Test Results

The hypothesis test was to determine if the branch coverage and statement
coverage would increase using design knowledge. Using design knowledge in the
generation process proved both of these conditions true. The statement coverage did not
increase by as much as the branch coverage for reasons discussed in the analysis section.

6.3 Results Analysis

Results from the experiment prove the hypothesis true for this set of sample
programs. An interesting note is that the increase in branch coverage was higher than the
increase in statement coverage in all programs where there was improvement that could
be made. The exception is the single program that was already at 100% branch and
statement coverage without the design knowledge added in. The reason for the higher
increase in branch coverage than statement coverage was due to the code structure of the
sample programs. Many branches of the code only contained a single statement to
execute. In other cases, the number of statements within branches that were executed
only with design knowledge was proportionally smaller than the code contained within
other branches. Therefore, if more statements were contained within these more difficult
to test branches, it is likely the statement coverage would have been higher.
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7. Conclusion

Broad implications of the experiment results are presented in section 7.1. Section
7.2 presents potential areas for future work in evolutionary testing that build upon this
study. A final review of the study concludes the paper in section 7.3.

7.1 Research Implications and Practicality

Automated test case generation cannot currently replace all forms of manual
testing. Humans are able to test aspects that are difficult to specify, such as how the
program is organized, whether or not it matches the informal requirements specifications,
and the user interface. After the test cases are generated, an oracle is required to make
sure the test results are correct. In addition, automated testing is no substitute for many of
the intricate test cases that humans can develop. However, this research shows that
heuristic testing can provide a more effective method for generating test cases by
incorporating design knowledge in the form of sequence diagrams from the design phase.
These generated test cases are important for testing program aspects that may not appear
closely related to each other in the source code but are still critical for proper operation of
the application. Therefore ETCG provides an effective program testing tool that can be
used in conjunction with other testing methods.

ETCG and similar automated test case creation tools are practical for testing
module interfaces after code is refactored. Since refactoring should not change the
external interface of a software module, the original version can provide an oracle to
determine if defects were added during the refactoring process. When an external
interface is provided an input, the output from the refactored module should exactly
match the output of the original module. If the output does not match, a defect was
introduced during refactoring.

Another practical use for ETCG is to check changes in a code base over time.
Source code control tools are widely used on development projects and monitor the
revisions produced by developers. When a set of tests is automatically generated for one
version and run against a previous or subsequent version, the tests that fail are due to
changes in the source code. Some of the test failures indicate negative side effects of the
code changes, which can be fixed before defects are propagated to a later testing stage.
Further research is needed for how to most effectively manage finding defects with such
a process, but automated test case generation tools could provide the large number of
tests that would be required.

7.2 Future Work

The independent variable in the hypothesis is defined as a Boolean variable based
on whether or not sequence diagrams are incorporated into the test case generation
process. In future studies, the independent variable should be expanded from a true or
false to the number of sequence diagrams. Since using a single sequence diagram
improves the code coverage of resulting test cases, it should be tested whether additional
sequence diagrams add further coverage. If so, there may also be a point at which
diminishing returns eliminate the necessity of using more than a given number of
sequence diagrams.
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Another area of future work is code cyclomatic complexity as an independent
variable. There may be a relationship between the complexity of the source code and the
resulting branch or statement code coverage achieved by generated test cases. Since
heuristic search-based methods were originally used to improve upon poor performance
of random testing in complex software programs, it may hold that cyclomatic complexity
of source code predicts how successful a generator would be in reaching a specific code
coverage percentage.

The application of program slicing to control flow graphs and testability
transformations are two of the newest developments in evolutionary testing. Both of these
could provide benefits to test data generation without compromising the usefulness of the
incorporation of design knowledge presented in this study. However, the use of both
program slicing and testability transformations with design knowledge has not yet been
tested. There may be additional hurdles to overcome before there are conclusive results
on how well these techniques complement each other.

7.3 Conclusion

Incorporating design knowledge into evolutionary testing is a worthwhile method
for improving testing code coverage in cases where there are difficult conditional
statements. Some programs, especially when trivial, may already be suited for
evolutionary testing without using the design knowledge of sequence diagrams. However,
most applications that require test cases are complex and therefore do benefit from the
inclusion of design knowledge into the evolutionary testing process.
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Appendix A — Acronym List

API — Application Programming Interface
DOM - Document Object Model

ETCG - Evolutionary Test Case Generator
JAR - Java Archive

JVM - Java Virtual Machine

SAX - Simple API XML

SPP — Species-Per-Path

UML - Unified Modeling Language

XML - Extensible Markup Language
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Appendix B — Sample Programs

B.1 Program #1: Getting Dynamic: Java and UML Interaction

Diagrams

http://www. informit.com/articles/article.aspx?p=29582&seqgNum=2&ril=1

Retrieved on November 27, 2007.

B.1.1 UML Diagram

i Sale Linehltem aProduct:Product
Sender : : :
calcTotal ! : :
== [for each] calcTotal S — |
==
getCuantnyr
= — — — — T I I
| | |
| | |
| | |
| | |
|| | | |
Figure 13: Program Sample #1 Sequence Diagram
B.1.2 Converted Sequence Diagram
programl.Sender main -> programl.Sale calcTotal()
programl.Sale calcTotal -> programl.Lineltem calcTotal() returns lineltem
programl.Lineltem calcTotal -> programl.Product calcTotal(lineltem)
B.1.3 Experiment Results
: : Cyclomatic
Branch Coverage % Achieved Statement Coverage % Achieved Y .
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage 25
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase '
79 67 8 91 89 2

Table 3: Results for Sample Program #1

B.2 Program #2: An Address Book — Add Person

http://www.math-cs.gordon.edu/courses/cs211/AddressBookExample/index.html

Retrieved on November 27, 2007.
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B.2.1 UML Diagram

:AddressBook

cAddressBook cAddressBook (Ml tiIngut
UT Controller Fane
]
1 doAdd() | shewMultiInput H
P Dralog() '
getAddressBock{) - ’l'_‘
I i
] | | addPerson(} :
1
i
i
i
i
i
a i
i i
1

acreatens

:Person

>

Figure 14: Program Sample #2 Sequence Diagram

B.2.2 Converted Sequence Diagram

program2.AddressBookGUl main -> program2.AddressBookController doAdd()
program2.AddressBookController doAdd -> program2.MultilnputPane showMultilnputDialog(Q)
returns bool
program2.AddressBookController doAdd -> program2.AddressBookGUl getAddressBook()
returns AddressBook

program2.AddressBookController doAdd -> program2.AddressBook addPerson(Person)

set{hangedSince

>
f‘g
LastSave()

program2.AddressBook setChangedSincelLastSave -> program2.AddressBook
setChangedSincelLastSave()

B.2.3 Experiment Results

B e E i R

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.63
68 59 9 85 81 4

Table 4: Results for Sample Program #2

B.3 Program #3: Hello World Printer with UML Sequence

Diagram

http://wiki .msoe.us/doku.php?id=sel020labs:umlsequence

Retrieved on December 19, 2007.
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B.3.1 UML Diagram

Y

printifelcomehd eszagelte:d)
showhdeszagelialoglnull, "The meszage iz..")

h §

=d Sequence diagram
3:3 hello:HelloWar dApp swing::JOptionFane
AN
User
[
[ [
: main(Stringl) i

.|

= printCrate)
]

today= Drated)

__.I______E___________

|
|
|
y

today :Cate

| T
___________f_OTEtEEET_F'IED_‘“_EF_m_mf?::E_E_EE_H_H_:m_m_:si)____:______:_:,. :SimplebateFormat

formatter

dateString= forn'!a{toda\,r):string i o |
| | T
showhdessageDialoginull, dateString) ! | |
L by T I X
! i i !
Figure 15: Program Sample #3 Sequence Diagram
B.3.2 Converted Sequence Diagram
hello.HelloWorldApp main -> hello.HelloWorldApp setCheck(int)
hello.HelloWorldApp main -> hello.Printer printWelcomeMessage(java.lang.String)
hello.HelloWorldApp main -> hello.Printer printDate()
B.3.3 Experiment Results
i . Cyclomatic
Branch Coverage % Achieved Statement Coverage % Achieved Y .
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage 25
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase '
75 50 25 87 81 6

B.4 Program #4: An ATM Simulation — Start Up

Table 5: Results for Sample Program #3

http://www.cs.gordon.edu/courses/cs211/ATMExample/index.html

Retrieved on February 15, 2008. Modified February 17, 2008.
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B.4.1 UML Diagram

Systen Startup Sequence Diagram

DparatarPansl

AT

[ switchCnl)

Figure 16: Program Sample #4 Sequence Diagram

getlhitialCash()
[ initialCash

Eer‘fnrmSts.rtup[]

zet InitialCash[initial Cazh)

CashDizperzer

Metwar: ToBank

opehlonrection]

B.4.2 Converted Sequence Diagram

program4.OperatorPanel main -> program4.ATM switchOn()

program4.ATM
program4.ATM
program4_ATM
program4_ATM

switchOn
switchOn
switchOn
switchOn

B.4.3 Experiment Results

-> program4 .ATM performStartup()
-> program4._OperatorPanel getlnitialCash() returns cash
-> program4._CashDispenser setlnitialCash(int)

-> program4_NetworkToBank openConnection()

’ﬂ

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.88
57 33 24 82 73 9

Table 6: Results for Sample Program #4

B.5 Program #5: Java and UML Interaction Diagrams (Modified)

http://www. informit.com/articles/article.aspx?p=29582&segNum=2&ril=1

Retrieved on November 27, 2007. Modified January 28, 2008 to increase code

complexity.
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B.5.1 UML Diagram

Lineltem

aProduct:Product

Ffor each] calcTotal

i Sale
Sender |
[ | |
calcTotal I
==L
=SS e T
|
|
|
|
|| |

Figure 17: Program Sample #5 Sequence Diagram

B.5.2 Converted Sequence Diagram

program5.Sender main -> program5.Sale setSale(int)
program5.Sale calcSale -> program5.Lineltem calcTotal (boolean)
program5.Lineltem calcTotal -> program5.Product calcTotal (programl.Lineltem)

B.5.3 Experiment Results

calcTotal

getCuantiby

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.89
65 35 30 85 76 9

Table 7: Results for Sample Program #5

B.6 Program #6: An ATM Simulation: Shutdown
http://www.cs.gordon.edu/courses/cs211/ATMExample/index.html

Retrieved on February 15, 2008. Modified February 17, 2008.
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B.6.1 UML Diagram

System Shutdown Sequence [Hagram

Operak orPan el

AT

petfornShutdown(]

D swikchOFF[]

closeConnection]]

MNetwork ToBank

e e e m = =]

1

Figure 18: Program Sample #6 Sequence Diagram

B.6.2 Converted Sequence Diagram

program6.0OperatorPanel main -> program6.ATM switchOff()
program6.ATM switchOff -> program6.ATM performShutdown()
program6.ATM switchOff -> program6.NetworkToBank closeConnection()

B.6.3 Experiment Results

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomapc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 2.05
65 44 21 84 76 8

Table 8: Results for Sample Program #6

B.7 Program #7: An ATM Simulation: Session Sequence
http://www.cs.gordon.edu/courses/cs211/ATMExample/index.html

Retrieved on February 15, 2008.
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B.7.1 UML

Diagram

Session Sequence Diagram

CuSkome rons ole

LardReader AT
cardlhserted] 1
2Sessioh
1
: anreatasthis]
1
: petformSes sion()
! L
! readiCard]]
1
ead T =
readPIN[) N
= it

gjectCardl]

[ whilz custornar wants b pefo mn traksacti ons |

Figure 19: Program Sample #7 Sequence Diagram

' Teanzaction
wikeahes[atm, this, cs.rd; pit]
=
petfornTransaction(]
1
PR e Hodgain
1
1
1
1
1 1
>I< 1
1
1

B.7.2 Converted Sequence Diagram

program7.CardReader main -> program7.ATM cardlnserted()
program7.ATM cardInserted -> program7.Session performSession()

program7.Session performSession
program7.Session performSession
program7.Session performSession
program7.Session performSession

->
->
->
->

B.7.3 Experiment Results

program?7.CardReader readCard() returns card
program?7.CustomerConsole readPIN() returns pin
program?7.Transaction performTransaction()
program?7.CardReader ejectCard()

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 2.1
85 76 9 66 45 19

Table 9: Results for Sample Program #7
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B.8 Program #8: An Address Book: Sort Entries By Name

http://www.math-cs.gordon.edu/courses/cs211/AddressBookExample/index.html

Retrieved on November 27, 2007.

B.8.1 UML Diagram

Figure 20: Program Sample #8 Sequence Diagram

B.8.2 Converted Sequence Diagram

program8.AddressBookGUl main -> program8.AddressBookController doSortByName()
program8.AddressBookControl ler doSortByName -> program8.AddressBookGUl getAddressBook()

returns book
program8.AddressBookController doSortByName -> program8.AddressBook sortByName()
program8.AddressBook sortByName -> program8.AddressBook setChangedSincelLastSave()

B.8.3 Experiment Results

Person.
AddressBook s AddressBook - AddrescRook Comparedy
fall I Fontroller Mame
1 ! ! 1
1 doSortByMName( ) : : !
> [ :
getiddressBook{} : '
- ! .
I in sortByNome () ! i
addressBook - sCreatens o
T--..—I setChanged5ince :
I'|:|'I Lastiave() !
1
T | :
1

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomapc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.63
64 50 14 84 74 10

Table 10: Results for Sample Program #8

B.9 Program #9: An Address Book: Sort Entries By ZIP

http://www.math-cs.gordon.edu/courses/cs211/AddressBookExample/index.html

Retrieved on November 27, 2007.
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B.9.1 UML Diagram

T

cAddressBook

e
doSortByZipl)

s AddressBook
Controller

1
| —
-

.

getAddressBook(}

o

in 50

Figure 21: Program Sample #9 Sequence Diagram

addressBook

(AddressBook

rtByZip(}

-
-

B.9.2 Converted Sequence Diagram

program9.AddressBookGUl main -> program9.AddressBookController doSortByZip()
program9.AddressBookController doSortByZip -> program9.AddressBookGUl getAddressBook()
returns book

program9.AddressBookControl ler doSortByZip -> program9.AddressBook sortByZip()

wCredtes

Person.
CompareBy
Iip

LDJ:I setChangedSince

Lastiawe()

>

program9.AddressBook sortByZip -> program9.AddressBook setChangedSincelLastSave()

B.9.3 Experiment Results

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.65
73 50 23 90 76 14

Table 11: Results for Sample Program #9

B.10 Program #10: An ATM Simulation — Transaction Sequence
http://www.cs.gordon.edu/courses/cs211/ATMExample/index.html

Retrieved on February 15, 2008. Modified February 17, 2008.

43




B.10.1 UML Diagram

Trahsaction

Transaction Sequence Diagram

‘Metwor: TaBank

:ReceiptPrinter

JustomerConsale

mESS%E e fetSpecificsmeCustomer{]

sehd[message, balahces]

prihtReceipt[receaipt]

logSendmessage]

logResponse(status]

]
1
1
1
1
1
1
]
3

irvalid PIM] status = performn iralid P INE:ension
status ok ] receipt = complete Transation]]

gethenuChoice[status message, wes ho menu)

H

customer wants bo do another H

B.10.2 Converted Sequence Diagram

programlO.Transaction main -> programlO.Transaction getSpecificsFromCustomer()

returns message
Transaction main -> programlO.NetworkToBank send(String, double) returns status
NetworkToBank send -> programl0.Log logSend(String)

programlO.
programlO.
programlO.
programlO.
programlO.
programlO.
programlO.

NetworkToBank send -> programlO.Log logResponse(String)
Transaction main
Transaction main
Transaction main
Transaction main

returns boolean

Figure 22: Program Sample #10 Sequence Diagram

-> programl0.Transaction performlnvalidPINExtension()
-> programl0.Transaction completeTransaction()

-> programl0.ReceiptPrinter printReceipt(String)
-> programlO.CustomerConsole getMenuChoice(String, boolean)

B.10.3 Experiment Results

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 2.0
71 51 20 88 80 8

Table 12: Results for Sample Program #10

B.11 Program #11: An Address Book: Edit A Person

http://www.math-cs.gordon.edu/courses/cs211/AddressBookExample/index.html

Retrieved on November 27, 2007.

44




B.11.1 UML Diagram

cAddressBook cAddressBook MLt Input - AddressBook :Person
[GUT Controller FPame
L ! ! 1 '
doEdit(l ! i ! i
Lan : ' '
H 1 1
getAddressBook{} ' : :
- getFullMame ' i i
L i DfParson} : 1 1
T -l getFirstMame(} o
i m ot
: getLastMame( ] - !
' I o |
1 i 1
getOtherParson : ' 1
Information) ' . : o :
L L¢ (=
' ge ress( ) =‘|L|
1 ] T
'
1
, getCity(} o !
: i =
1
'
tState .
i ge ate) "-='|L|
1 ] T
'
1
, getZipl) o !
: I bl
1
'
' getPhone() - :
' m ™~
1| i L i
v
showMultiInput ' : :
Dialogll : 1 1
- 1 1
I bt 1 1
' '
1 L mot cancelled] : :
'
updatePerson(} ! H H
1 - update] 1
g 11 [
1 - I_I
'
1 setChangedSince :
: LastSawe( ) I
! ] '
T T
— ! 1 1
T 1
H ' ' : :
If there 1= no selected nome, none of the abiyve is done; instead, am error
is reported

Figure 23: Program Sample #11 Sequence Diagram

B.11.2 Converted Sequence Diagram

programll.AddressBookGUI main -> programll.AddressBookController doEdit()

programll._AddressBookController doEdit -> programll.AddressBookGUI getAddressBook()
returns book

programll.AddressBookController doEdit -> programll.AddressBook getFulINameOfPerson()
returns ful IName

programll.AddressBook getFulINameOfPerson -> programll.Person getFirstName()
returns firstName

programll._AddressBook getFul INameOfPerson -> programll.Person getLastName()
returns lastName

programll.AddressBookController doEdit
-> programll._AddressBook getOtherPersoninformation() returns otherPersonlnfo

programll._AddressBook getOtherPersonlnformation -> programll._Person getAddress()
returns address

programll.AddressBook getOtherPersonlnformation -> programll.Person getCity()
returns city

programll._AddressBook getOtherPersonlnformation -> programll._Person getState()
returns state

programll.AddressBook getOtherPersonlnformation -> programll.Person getZip()
returns zip

programll._AddressBook getOtherPersonlnformation -> programll._Person getPhone()
returns phone

programll.AddressBookController doEdit -> programll._MultilnputPane showMultilnputDialog(Q)
returns pane

programll ._AddressBookController doEdit -> programll.AddressBook updatePerson()

programll.AddressBook updatePerson -> programll.Person update()

programll.AddressBook updatePerson -> programll.AddressBook setChangedSincelLastSave()

45



B.11.3 Experiment Results

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.58
56 41 15 81 65 16

Table 13: Results for Sample Program #11

B.12 Program #12: Proxy Design Pattern — Java World
http://www.javaworld.com/javaworld/jw-02-2002/jw-0222-designpatterns.html

Retrieved on November 27, 2007.

B.12.1 UML Diagram

JFrame ImagelconProxy lmagelcon Graphics Swinglltilities
paintlcon{Component, Graphics, ®, ¥) freafican == nulif : :
' i drawRect()
T preaticon == nuiy : :
CEaE drawString() !
These three methods - i == |_|
are called if the real icon frealicon == nuii} H H
_has nDF been  eeeeeeoll s------_____imvokelater(new Runnabled { ... J;
instantiated yet. SRS S 2 ; |_|

Treaifcan 1= nulij
[}

ot

This Runnable

L

If the real icon has been instantiated
{and therefore the image has been
loaded), the proxy forwards the
paintlcon method to the real icon.

i instantiates the real
paintlcon(Component, Graphics, x, ¥) icon, which loads

= |_| the image.

Figure 24: Program Sample #12 Sequence Diagram

B.12.2 Converted Sequence

programl2._.JFrame main

Diagram

-> programl2.ImagelconProxy paintlcon(Component, Graphics, int, int)
programl2.ImagelconProxy paintlcon -> programl2.Graphics drawRect()
programl2. ImagelconProxy paintlcon -> programl2.Graphics drawString()

programl2. ImagelconProxy paintlcon

-> programl2._SwingUtilities invokelLater(ReallconRunnable runnable)
programl2.ImagelconProxy paintlcon -> paintlcon(Component, Graphics, int, int)

B.12.3 Experiment Results

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With | Without | Final % | With | Without | Final % 1.33
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Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase
83 17 66 96 82 14

Table 14: Results for Sample Program #12

B.13 Program #13: Add Dynamic Java Code
http://www.javaworld.com/javaworld/jw-06-2006/jw-0612-dynamic.html?page=2

Retrieved on November 27, 2007.

B.13.1 UML Diagram

DynaCode

Postmanimpl

PostmanApp Proxy of
Postman

1 call newPr:%:xylnstance{)

DynaCode encapsulates:

2. return a prmfcy of Postman

________________________________________

3 i:nvo ke delwerMessagfe{)

----- - Proxy
i - Detection of source change
- Run-time compilation

- Run-time class reload

get up-to-date class

[

; 5. dete
skip if no change L __. 62 compil
detected _L

' 7 reload ¢

8: retum: the up-to-date Post

v

cf source change ™ -

i - -
-
. -
. -
-

Postrianimpljava :

alss for Postmanlmpﬁl

= 1

manimpl

9: forward deliverMessage()

1

Fighre 25: Program Samplle #13 Sequence Diagre{m

B.13.2 Converted Sequence Diagram

programl3._PostmanApp main -> programl3.DynaCode newProxylnstance() returns postManProxy
programl3.PostmanApp main -> programl3.PostManProxy deliverMessage(String)

returns postManimpl
programl3._PostManProxy deliverMessage ->
programl3.DynaCode getUpToDateClass() ->
programl3.DynaCode getUpToDateClass() ->
programl3.DynaCode getUpToDateClass() ->
programl3._PostManProxy deliverMessage ->

B.13.3 Experiment Results

programl3.DynaCode getUpToDateClass()
programl3.DynaCode detectSourceChange()
programl3.DynaCode compilePostmanimpl()
programl3.DynaCode reloadPostmanimpl ()
programl3._Postmanimpl forwardDeliverMessage()

Branch Coverage % Achieved

Statement Coverage % Achieved
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With Without Final % | With Without Final %

Design Design Coverage | Design Design Coverage

Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase
100 100 0 100 100 0

1.25

Table 15: Results for Sample Program #13

B.14 Program #14: Hangman Milestone 2 — Java GUI
http://www.owlnet.rice.edu/~comp202/06-fall/labs/lab02/

Retrieved on November 27, 2007. Second UML Diagram on the page, entitled “Correctly
guess a character and win.”

B.14.1 UML Diagram

‘ View ‘

GameControl
Adapter

Paint Adspter

Craae Adapter ‘

‘ odel ‘

FummingState

‘WD

rdList ‘

BodyPartList ‘ ‘LﬂseAdﬂp(er ‘

guess

guess

guess

| CuessCharhlg |

‘roake fprin announcement

won

true, char found

Is&llVisihle

true, won

word as string

7
wordas string |

change state to not runitg

wond s string

ToStringhlgn

returm value %

wond as string

‘
‘

| ; |
[ty
‘ ‘
‘ ‘
‘ ‘

|
[l

|
L |retumvalue %
;
I
|

Figure 26: Program Sample #14 Sequence Diagram

B.14.2 Converted Sequence Diagram

programl4.
programl4.
programl4.
programlé4.
programlé4.
programl4.
programl4.
programl4.
programlé4.

RunningState guess
RunningState guess
RunningState guess
GameAdapter won ->
RunningState guess
RunningState guess

B.14.3 Experiment Results

View main -> programl4._GameControlAdapter guess()
GameControlAdapter guess -> programl4_Model guess()
Model guess -> programl4.RunningState guess()

-> programl4 _WordList guessCharAlgo() returns bool

-> programl4 _WordList isAllVisible() returns visibleBool
-> programl4._GameAdapter won()
programl4._View winAnnouncement()
-> programl4_Model stateRunning(boolean)
-> programl4 _WordList toStringAlgo() returns word

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomayc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.38
70 40 30 91 87 4

Table 16: Results for Sample Program #14
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B.15 Program #15: Core J2EE Patterns — Intercepting Filter
http://java.sun.com/blueprints/corej2eepatterns/Patterns/InterceptingFilter.html

Retrieved on November 27, 2007.

B.15.1 UML Diagram

Client

1 Reques]

|

J

|

|
=

Figure 27: Program Sample #15 Sequence Diagram

| Basefiter

Forerand Reguest

. il 1.1 doPreFrodessimng

hjl: 7. doMainPracessing

il 1 3 doFostProcessing

B.15.2 Converted Sequence Diagram

programl5.
programl5.
programl5.
programl5.
programil5.
programl5.

B.15.3 Experiment Results

Client main -> programl5.Container request()
Container request -> programl5.BaseFilter doFilter()
BaseFilter doFilter -> programl5.BaseFilter doPreProcessing()
BaseFilter doFilter -> programl5.BaseFilter doMainProcessing()
BaseFilter doFilter -> programl5.BaseFilter doPostProcessing()
Container request -> programl5.Controller forwardRequest()

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomapc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 2.182
78 50 28 98 90 8

Table 17: Results for Sample Program #15

B.16 Program #16: Hangman Milestone 2 — Java GUI
http://www.owlnet.rice.edu/~comp202/06-fall/labs/lab02/

Retrieved on November 27, 2007. Fifth UML Diagram on the page, entitled “The game is
lost when the noose is drawn.”
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B.16.1 UML Diagram

‘ iswr ‘

GazeControl
Adapter

Paint Adapter

Gz Adapter

Model ‘

FmningState ‘ ‘ WordList ‘

BodyPartlist ‘

‘ Losesdapter

paint

paint

Fainthlgn

U

\ \
rotifiy sbout loss, display ardwsr
T T

change shate to not ranning

HoosePart calls Lose Adapter

recur until
- -| EmptyBodyPat
reached

Inse

Figure 28: Program Sample #16 Sequence Diagram

B.16.2 Converted Sequence Diagram

programl6.
programl6.
programl6.
programl6.
programl6.
programl6.
programl6.

B.16.3 Experiment Results

View main -> programl6.PaintAdapter paint()
PaintAdapter paint -> programl6.Model paint()

Model paint -> programl6.BodyPartList paintAlgo()
BodyPartList paintAlgo -> programl6.LoseAdapter lose()
LoseAdapter lose -> programl6.Model stateRunning(boolean)
LoseAdapter lose -> programl6.GameAdapter lose()
GameAdapter lose -> programl6.View displayAnswer()

Branch Coverage % Achieved Statement Coverage % Achieved Cyclomapc
Complexity
With Without Final % | With Without Final %
Design Design Coverage | Design Design Coverage
Knowledge | Knowledge | Increase | Knowledge | Knowledge | Increase 1.42
68 41 27 91 87 4

Table 18: Results for Sample Program #16
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