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ABSTRACT 

 

 

Sociotechnical systems (STSs) rely on the collaboration between humans and autonomous 

decision-making units to fulfill their objectives. Highly intertwined social and technical 

contextual factors influence the collaboration between these human and engineered 

elements, and consequently the performance characteristics of the STS. In the next two 

decades, the role allocated to STSs in our society will drastically increase. Thus, the 

effective design of STSs requires an improved understanding of the human-autonomy 

interdependency. 

 

This dissertation brings together management science along with systems thinking and uses 

a mixed-methods approach to investigate the interdependencies between people and the 

autonomous systems they collaborate within complex socio-technical enterprises. The 

dissertation is organized in three mutually exclusive essays, each investigating a distinct 

facet of STSs: safe management, collaboration, and efficiency measurement. 

 

The first essay investigates the amount of work allocated to safety-critical decision makers 

and quantifies Rasmussen’s workload boundary that represents the limit of attainable 

workload. The major contribution of this study is to quantify the qualitative theoretical 

construct of the workload boundary through a Pareto-Koopmans frontier. This frontier 

allows one to capture the aggregate impact of the social and technical factors that originate 

from operational conditions on workload. 

 

The second essay studies how teams of humans and their autonomous partners share work, 

given their subjective preferences and contextual operational conditions. This study 

presents a novel integration of machine learning algorithms in an efficiency measurement 



framework to understand the influence of contextual factors. The results demonstrate that 

autonomous units successfully handle relatively simple operational conditions, while 

complex operational conditions require both workers and their autonomous counterparts to 

collaborate towards common objectives. 

 

The third essay explores the complementary and contrasting roles of efficiency 

measurement approaches that deal with the influence of contextual factors and their 

sensitivity to sample size. The results are organized in a structured taxonomy of their 

fundamental assumptions, limitations, mathematical structure, sensitivity to sample size, 

and their practical usefulness. 

 

To summarize, this dissertation provides an interdisciplinary and pragmatic research 

approach that benefits from the strengths of both theoretical and data-driven empirical 

approaches. Broader impacts of this dissertation are disseminated among the literatures of 

systems engineering, operations research, management science, and mechanical design. 

  



Management of Complex Sociotechnical Systems 

 

Taylan Güneş Topcu 

 

GENERAL AUDIENCE ABSTRACT 

 

A system is an integrated set of elements that achieve a purpose or goal. An autonomous 

system (ADS) is an engineered element that often substitutes for a human decision-maker, 

such as in the case of an autonomous vehicle. Sociotechnical systems (STSs) are systems 

that involve the collaboration of a human decision-maker with an ADS to fulfill their 

objectives. Historically, STSs have been used primarily for handling safety critical tasks, 

such as management of nuclear power plants. By design, STSs rely heavily on a 

collaboration between humans and ADS decision-makers. Therefore, the overall 

characteristics of a STS, such as system safety, performance, or reliability; is fully 

dependent on human decisions. The problem with that is that people are independent 

entities, who can be influenced by operational conditions. Unlike their engineered 

counterparts, people can be cognitively challenged, tired, or distracted, and consequently 

make mistakes. 

 

The current dependency on human decisions, incentivize business owners and engineers 

alike to increase the level of automation in engineered systems. This allows them to reduce 

operational costs, increase performance, and minimize human errors. However, the recent 

commercial aircraft accidents (e.g., Boeing 737-MAX) have indicated that increasing the 

level of automation is not always the best strategy. Given that increasing technological 

capabilities will spread the adoption of STSs, vast majority of existing jobs will either be 

fully replaced by an ADS or will change from a manual set-up into a STS. Therefore, we 

need a better understanding of the relationships between social (human) and engineered 

elements. 

 

This dissertation, brings together management science with systems thinking to investigate 

the dependencies between people and the autonomous systems they collaborate within 



complex socio-technical enterprises. The dissertation is organized in three mutually 

exclusive essays, each investigating a distinct facet of STSs: safe management, 

collaboration, and efficiency measurement. 

 

The first essay investigates the amount of work handled by safety-critical decision makers 

in STSs. Primary contribution of this study is to use an analytic method to quantify the 

amount of work a person could safely handle within a STSs. This method also allows to 

capture the aggregate impact of the social and technical factors that originate from 

operational conditions on workload. 

 

The second essay studies how teams of humans and their autonomous partners share work, 

given their preferences and operational conditions. This study presents a novel integration 

of machine learning algorithms to understand operational influences that propel a human-

decision maker to handle the work manually or delegate it to ADSs. The results 

demonstrate that autonomous units successfully handle simple operational conditions. 

More complex conditions require both workers and their autonomous counterparts to 

collaborate towards common objectives. 

 

The third essay explores the complementary and contrasting roles of data-driven analytical 

management approaches that deal with the operational factors and investigates their 

sensitivity to sample size. The results are organized based on their fundamental 

assumptions, limitations, mathematical structure, sensitivity to sample size, and their 

practical usefulness. 

 

To summarize, this dissertation provides an interdisciplinary and pragmatic research 

approach that benefits from the strengths of both theoretical and data-driven empirical 

approaches. Broader impacts of this dissertation are disseminated among the literatures of 

systems engineering, operations research, management science, and mechanical design. 
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Chapter 1. Introduction 

1.1 Context and Motivation 

Sociotechnical systems (STSs) are complex systems that rely on the successful 

collaboration between human decision-makers and autonomous technologies to achieve 

their objectives (Mumford 2006). Historically, STSs have been large in terms of size, 

governed by hierarchical organizations, and often utilized to provide safety-critical services 

(O’Sullivan and Sheffrin 2007), e.g., the management of nuclear power plants or air traffic. 

In the recent years, advances in autonomous decision-making technologies, increasing 

popularity of personal decision assistance tools, and the benefits of minimizing human 

involvement in work processes have spread the adoption of, and increased reliance on, 

STSs (Heydari et al. 2019). Recent surveys of business leaders worldwide find that 60% 

of all jobs have at least 30% technically automatable activities, and autonomous decision 

systems will continue to be an important innovation for businesses in the foreseeable future 

(McKinsey 2019). Consequently, the research community has started to explore systems-

thinking approaches to holistically investigate decision making and human-autonomous 

technology interdependencies (Leveson 2011; Kleiner et al. 2015). 

Wide spread adoption of STSs brings together a significant socioeconomic change 

along with technical challenges. For the systems engineering community, it is no longer 

sufficient to model and design for the preferences of end-users when making system design 

decisions (Rich 1983; Hazelrigg 1998). Instead, the end-users, who are independent 

decision-makers by definition, need to be considered as elements of the STS (De Bruijn 

and Herder 2009). This is in part due to the growing human-automation collaboration that 

creates emergent properties of STSs. This collaborative performance is dependent on the 

beliefs of decision-makers that are influenced by contextual1 and/or environmental factors 

                                                 

1 Throughout this dissertation, I use the term contextual variables (or factors) similar to their use in the 

efficiency measurement literature (Johnson and Kuosmanen 2012). Contextual factors define operational 
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that vary during operations (de Visser and Parasuraman 2011). Thus, to enable the effective 

design and management of future STSs, it is necessary to better understand the 

sociotechnical interdependencies among people, organizations, their preferences towards 

collaborating with an autonomous system, and how these preferences vary with respect to 

contextual factors (Chen and Barnes 2014). 

I believe that, STS research could greatly benefit from adopting pragmatic strategies 

that benefit from the strengths of both theoretical and data-driven empirical approaches. 

More specifically, I consider modern infrastructure management systems as valuable STS 

cases to learn from because they have been early adopters of advanced automated decision-

making technologies (Pachl 2002). Given the highly intertwined complexity of a ST 

phenomenon, I quote: 

“…that all our science, measured against reality, is primitive and childlike -- and yet 

it is the most precious thing we have.”― Albert Einstein. 

Thus, this dissertation establishes the connection among the highly fragmented 

interdisciplinary literature on STSs and naturalistically2 investigates an operational 

complex STS. This is the infrastructure management system of INFRABEL, the Belgian 

National Railroad Company. INFRABEL’s network encompasses about 3,600 kilometers 

of railway lines, 4,000 track-switching points, and 10,000 rail signals that serve more than 

4,000 trains per day. Basing my research on an operational STS allowed me to avoid 

restrictive assumptions that would have been necessary for alternative simulation-based 

approaches, it provided verification from domain experts, and helped me to identify gaps 

in the theory of STSs for future research. 

                                                 

and/or environmental conditions and practices that influence the investigated process, yet are: (i) 

uncontrollable by the decision-maker who oversees the operation, (ii) not resources that are consumed by the 

process, and (iii) not outputs that are generated by the process. 

2 I use the term naturalistic similar to its use in the human factors community (Farrington-Darby et al. 2006), 

to emphasize that the research presented in this dissertation has been conducted in a non-intrusive way; that 

did not interfere with the daily operational behavior of the investigated decision-makers. 
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This dissertation brings together management science with systems thinking and 

presents a mixed-methodss approach that investigates the sociotechnical interdependencies 

between people and the autonomous systems they collaborate with. I have organized the 

dissertation in three mutually exclusive essays, each investigating a distinct facet of STS: 

safe management, collaboration, and efficiency measurement. 

Essay 1 investigates the safe management of STSs by studying the amount of work 

allocated to safety-critical decision makers who collaborate with autonomous systems 

towards their common objectives. The primary contribution of Essay 1 is the quantification 

of Rasmussen’s workload boundary (Rasmussen 1997; Cook and Rasmussen 2005) in the 

form of a Pareto-Koopmans frontier (Koopmans 1951; Farrell 1957). Essay 1 incorporates 

the influence of contextual factors that could originate from the complexity of the work, 

macro-ergonomic concerns such as fatigue, or the state of the network. It quantifies their 

aggregate impact on the workload. Results of Essay 1 indicate that, the aggregate impact 

of contextual factors can contribute up to 60% of the workload. This establishes the linkage 

between contextual factors and their aggregate impact. 

Essay 2, utilizes the approach provided in Essay 1 to investigate, how human decision-

makers and their autonomous partners handle work and how contextual influences shape 

their collaboration. To elaborate, each person has their own collaboration preferences with 

autonomous systems, given the plethora of ST contextual influences, and these vary 

drastically. Consequently, data that describe STS behavior contain a high fraction of 

influential observations that violate many idealized statistical assumptions (e.g., linearity, 

normality, etc.) (Hampel et al. 2011; Maronna et al. 2019). Essay 2 establishes the linkage 

between efficiency measurement techniques and machine learning prediction algorithms 

to explore the individual contribution of sociotechnical factors on the collaboration of 

people with autonomous systems. Results of Essay 2 indicate that, during low density and 

complexity operational situations, autonomous systems can successfully cover for their 

human supervisors with minor manual interventions. Increased difficulty in operational 

conditions require both human and autonomous agents to increase their workloads 

mutually, requiring collaborative performance. 
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Essay 3 focuses on the management of STSs and explores the complementary and 

contrasting roles of efficiency measurement approaches that are concerned with the 

influence of contextual factors. Essay 3 provides a comprehensive literature review that 

summarizes the existing methodologies in the literature, identifies and implements two of 

the leading approaches on an operational STS, and discusses the managerial value of these 

methods with practitioners. Essay 3 documents how certain popular approaches in the 

literature struggle with the complexity of STSs and provides a structured taxonomy of their 

fundamental assumptions, limitations, mathematical structure, sensitivity to sample size, 

and their practical usefulness. 

Below I discuss the research questions posed and addressed by each essay, along with 

their broader contributions to the literature. 

1.2  Specific Contributions of Each Essay 

1.2.1 Essay 1 – Safe Management 

Rasmussen argued that (Rasmussen 1997; Cook and Rasmussen 2005) that a safe 

operation envelope of STSs is delineated by three distinct boundaries of failure: 

performance, economic, and workload boundaries. Each is managed by an independent 

decision-maker within the hierarchical organization that governs the system. Essay 1 

focuses on the workload boundary, and quantifies it for the lowest level safety critical 

decision-makers at INFRABEL. Essay 1 assumes that Rasmussen’s workload boundary 

could be estimated by using a Pareto-Koopmans type frontier that can be empirically 

estimated through a Data Envelopment Analysis (DEA) approach (Farrell 1957; Charnes, 

Cooper, and Rhodes 1978; Emrouznejad and Yang 2018). DEA is an axiomatic 

management science technique that integrates microeconomics and operations research to 

evaluate the relative efficiency of comparable peers. This dissertation leverages the 

existing DEA literature. Therefore, I provide a brief review of its fundamentals in 

Appendix A. 

One of DEA’s fundamental assumptions is that, the investigated processes need to be 

homogenous in terms of the employed production technologies and the contextual 

operational factors. Therefore, it is necessary to identify and properly handle the contextual 
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operational disparities as experienced by the investigated decision-makers. Essay 1 

formulates its first research question for this purpose: 

RQ1: “Which sociotechnical factors influence the performance environment for human 

decision makers in safety-critical environments?” 

I address this question by conducting an interdisciplinary literature review of contextual 

factors that are effective in similar, safety-critical operational environments. Once I have 

identified these influences, Essay 1 poses a second research question: 

RQ2: “How to design, validate, and implement a human performance measurement 

framework that quantifies Rasmussen’s workload boundary?” 

I address this question by investigating the process on-site, framing the system 

boundary around the infrastructure control task of safety critical decision-makers, and 

reducing the literature driven ideal case model to a real-case model that is limited by the 

available data. Once the set of variables are identified, I address the research question by 

following a robust multivariate clustering approach (Triantis, Sarayia, and Seaver 2010; 

Oscar Herrera-Restrepo et al. 2016). This approach not only accounts for the contextual 

differences among peers but also quantifies the aggregate impact of contextual variables 

on the computed efficiency scores. Ergo, Essay 1 addresses the following gaps in the 

literature: 

The primary contribution of this paper, and probably this dissertation, is quantifying 

Rasmussen’s workload boundary (Rasmussen 1997; Cook and Rasmussen 2005). This 

quantification operationalizes a theoretical concept that remained a qualitative idea for over 

two decades. Additionally, it provides the macro ergonomics community with a holistic, 

systems thinking perspective that establishes the relationships among ST factors and their 

aggregate impact on the efficiency performance of STSs (Carayon et al. 2015; Kleiner et 

al. 2015). Finally, for the efficiency measurement community, Essay 1 documents the first 

large scale DEA implementation for an operational infrastructure management system 

along with the verification of results with domain experts. This extends the traditional 

application area of DEA and addresses previous suggestions in the literature (Paradi and 

Sherman 2014; O. Herrera-Restrepo and Triantis 2018). 
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1.2.2 Essay 2 – Collaboration 

Essay 2 extends the workload measurement idea presented in the first essay, to 

investigate how work is shared among collaborating humans and their autonomous 

partners. This is a particularly challenging research task even with the rich datasets that 

enable this study, due to the specific operational set-up at INFRABEL. 

To elaborate, INFRABEL decision-makers have an autonomous decision-making 

system at their disposal. As reported by their supervisors, they have been instructed to use 

it “to the extent that they feel comfortable with”. While the increasing role of automation 

helps to minimize human errors, in many instances, dynamic contextual characteristics of 

the infrastructure network, e.g., traffic complexity, render the use of automation ineffective 

and require manual interventions to sustain reliable operations. The variation in operational 

practices introduced by the combination of contextual influences and subjective decision-

maker preferences, cause the STS data to contain a high fraction of influential observations. 

Consequently, the data is hard to interpret, especially for the purposes of revealing context 

dependent relationships. For this purpose, Essay 2 poses its first research question:  

RQ1: “How does the workload distribution between collaborating human and 

autonomous decision-making systems vary given dynamic operational demands? 

Essay 2 addresses this question by opening up the blackbox proposed in the first essay. 

I differentiate between the tasks handled by the human decision-maker, and those delegated 

to their autonomous partner, through two mutually exclusive Data Envelopment Analysis 

(DEA) models. This allows one to quantify the work handled by each human and 

autonomous agent, yet does not capture how the contextual conditions influence decision 

maker preferences to arrive at the observed work distribution. Essay 2 poses its second 

research question to establish this relationship: 

RQ2: “What are the revealed Controller preferences regarding the workload delegated 

to automation, given observed contextual infrastructure network characteristics?” 

Essay 2 adopts a unique perspective, and treats the DEA scores computed for the first 

question, as dependent variables that are predicted through machine-learning algorithms, 

by using the contextual factors as independent variables. For this purpose, Essay 2 
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implements various prediction algorithms and examines their feature importance that leads 

to the relative contribution of each contextual variable. In other words, Essay 2 addresses 

the second research question, by establishing a novel interface between machine learning 

and DEA that allows one to interpret the influence of contextual variables. This allows one 

to obtain much higher accuracy than regression based approaches in the literature (Ray 

1988; Lovell et.al. 1994; Simar and Wilson 2007; Banker and Natarajan 2008). 

1.2.3 Essay 3 – Comparison of Efficiency Estimation Approaches 

Essay 3 focuses on the management of STSs and investigates the applicability of 

efficiency measurement techniques in the literature. The motivation for Essay 3 is 

explained with the following. Human decisions govern STSs that are susceptible to 

contextual influences. Recalling that DEA is an axiomatic method, whose fundamental 

assumption is preserving comparability or homogeneity among investigated peers, 

violation of this assumption can lead to indefensible results. Thus, the dependency of STSs 

on contextual factors necessitates an exploration of the existing efficiency measurement 

methods.  

There are numerous analytical methods that are concerned with efficiency 

measurement with contextual influences and there is an ongoing debate in the literature 

regarding their utility (Simar and Wilson 2011; Dai and Kuosmanen 2014; Daraio, Simar, 

and Wilson 2018). Moreover, practical usefulness of these approaches are subject to 

sample size and data availability issues (Dyson et al. 2001). Essay 3 provides a review of 

the literature and identifies two leading methods that are fundamentally different from each 

other. The multivariate clustering approach (Triantis, Seaver, and Sarayia 2010) and the 

two-stage methods (Cazals, Florens, and Simar 2002; Daraio and Simar 2005; Simar and 

Wilson 2007). 

Essay 3, implements these two contrasting approaches on a STS management problem, 

and explores the complementary and contrasting roles of each method, along with feedback 

from domain experts. More specifically, Essay 3 comprehensively investigates the studied 

methods in terms of their representations of the transformation process, assumptions, 

limitations, mathematical structure, and their practical usefulness. Additionally, Essay 3 
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explores the sensitivity of results to sample size by conducting the study on two different 

datasets (a universe and its subset). 

While simple in nature, results of Essay 3 documents how one can interpret the 

efficiency performance of a STS from two distinct perspectives, while demonstrating how 

the collective insight of these perspectives could help to obtain a more refined picture of 

reality. Essay 3 demonstrates that the leading method in the literature to evaluate efficiency 

and explain contextual influences may not provide a reasonable explanation of the 

efficiency performance of ST processes due to a violation of its basic assumptions. From 

this perspective, results of Essay 3 support many others in the research community (Olesen 

and Petersen 2009; Bădin, Daraio, and Simar 2010; Daraio, Simar, and Wilson 2018; 

Banker, Natarajan, and Zhang 2019). On the other hand, Essay 3 illustrates how one can 

utilize the particular strengths of contrasting approaches in a complementary fashion to 

overcome such limitations. 
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Chapter 2. Estimation of the Workload Boundary in Sociotechnical 

Infrastructure Management Systems: the Case of Belgian Railroads 

Taylan G. Topcu, Konstantinos Triantis, and Bart Roets 

 

Abstract 

Infrastructure systems are large-scale complex socio-technical systems that rely on 

humans for their safety critical decision-making activities. In the case of railroad networks, 

hierarchical organizations denoted as traffic control centers (TCCs) operate 24/7 in order 

to maintain successful network operations. Interacting social and technical factors 

influence TCC operational environments and thus the overall performance of the railroad 

system. This research presents a novel data envelopment analysis (DEA) application along 

with its implementation and validation by investigating the workload boundary of human 

performance through a case study built for the Belgian railway (INFRABEL) TCCs. We 

pursue two research foci. The first is to identify organizational, socio-economic, and 

technical factors that describe the performance environments in which TCC personnel 

operate. We use these factors to determine relatively homogeneous performance 

environments using multivariate statistical methods. The second focus is to design and 

implement on-site a socio-technical performance measurement framework, based on a new 

and unique dataset at the workstation level that is capable of considering socio-technical 

heterogeneity. Our approach consists of three steps. First, we apply a two-stage clustering 

approach to generate statistically relatively homogeneous groups. Second, we calculate 

meta - and in-cluster efficiency scores. Finally, we assess the validity of our results with 

INFRABEL. Results reveal three insights: (i) efficiency improvement strategies require 

further investigation based on temporal trends; (ii) disregarding performance environment 

heterogeneity leads to over estimation in target setting; and (iii) socio-technical system 

design could be informed by applying DEA, provided that, domain specific expertise is 

used in the model formulation. 

Keywords: Data envelopment analysis (DEA), socio-technical systems, performance 

measurement, meta-frontier, infrastructure systems engineering. 

 



13 

 

Please cite this article as: Topcu, Taylan G., Konstantinos Triantis, and Bart Roets. 2019. 

“Estimation of the Workload Boundary in Socio-Technical Infrastructure Management 

Systems: The Case of Belgian Railroads.” European Journal of Operational Research 278 

(1): 314–29. https://doi.org/10.1016/j.ejor.2019.04.009. 

2.1 Introduction 

2.1.1 Context and Objective 

The focus of this research is the measurement and improvement of efficiency 

performance of socio-technical systems (STS). We consider efficiency measurement and 

DEA in particular, as an unifying approach to quantify the states of a safety-critical 

complex socio-technical system (Rasmussen, 1997; Cook & Rasmussen, 2005). In 

Rasmussen’s system safety model, a widely accepted concept for assessing safety-critical 

performance, a ‘safety envelope’ bounds the operating states of a complex system. Three 

performance frontiers or boundaries define the ‘safety envelope’. The ‘economic 

boundary’ reflects the minimum economic performance of the system to remain viable. 

Whereas, the ‘safety boundary’ represents the risk levels beyond which the system will 

functionally fail. Finally, the ‘workload boundary’ accounts for the total amount of work, 

the system (e.g., a control room) can handle. The objective of this paper is to demonstrate 

the capability of DEA to compute the workload boundary in a safety critical system for 

human decision makers, while explicitly taking into account its socio-technical 

characteristics. The highly disaggregated nature of the data that we have at our disposal 

allows us to examine this workload boundary specifically for the control-room functions. 

Although the DEA-computed boundary is of a relative nature, it provides valuable 

managerial insights for temporal and spatial workload variations (e.g., hourly changes of a 

workstation). As such, our framework translates Rasmussen’s safety model, which is 

mainly of a descriptive nature (Cook and Rasmussen, 2005), into a quantitative model with 

significant real-world relevance and extensive opportunities for practitioner feedback 

towards model improvement. 

Based on the need to measure human performance in STSs and within their contextual 

performance environment, this paper pursues two research questions while presenting a 

real and unique application of DEA. The first is as follows: “What are the socio-technical 

https://doi.org/10.1016/j.ejor.2019.04.009
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factors that influence the performance environment for human decision makers in safety-

critical environments?” We investigate this question through an approach that identifies 

organizational diagnostics based on a comprehensive literature review of STSs. The second 

question we investigate is “How to design, validate, and implement a human performance 

measurement framework that quantifies Rasmussen’s workload boundary?” We address 

this question by providing a detailed walkthrough of a statistically rigorous measurement 

framework along with the associated validation efforts. 

2.1.2 DEA Application 

Within this context, and through a unique academia-industry collaboration, we present 

a novel DEA application paper based on the following criteria: 

(i) The application domain: Our research demonstrates how to apply and implement 

DEA to an infrastructure management system of noteworthy complexity. The 

implementation of efficiency performance to complex systems remains an open domain of 

inquiry (Paradi & Sherman, 2014; Triantis, 2015). 

(ii) Innovation and the thoroughness of the methodology: This paper provides a multi-

disciplinary methodology linking three research domains, i.e., economic production theory, 

socio-technical systems, and enterprise design (Herrera-Restrepo & Triantis, 2018). We 

analyze the production transformation processes to identify the socio-technical variables 

that define the performance environment and differentiate them from the input/output 

variables (Carayon et al., 2015; Kleiner, Hettinger, DeJoy, Huang, & Love, 2015). 

Furthermore, we investigate the environmental homogeneity assumption through robust 

statistical methods (Hubert, Rousseeuw, & Branden, 2005) and ensure the assumption is 

satisfied through clustering techniques (Hartigan & Wong, 1979; Wong & Lane, 1983). 

Finally, we quantify the workload boundary through DEA (Rasmussen, 1997; Cook & 

Rasmussen, 2005). 

(iii) The uniqueness and completeness of the used data: This study uses a unique socio-

technical dataset obtained from a custom built measurement tool that provides disaggregate 

measurements of a large-scale infrastructure management system. 
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(iv) The validation of the proposed methodology and obtained results: Our research is 

enabled by a unique collaboration of academics and practitioners. It includes guidelines for 

the design of a performance measurement framework for practical use, its validation by 

domain experts, and implementation of the developed framework in the field. 

(v) Contribution to modeling approaches: For the first time in the literature, we use 

DEA to incorporate social-technical variables to represent performance environments and 

to quantify the workload boundary of STSs (Rasmussen, 1997; Cook & Rasmussen, 2005). 

(vi) Policy insights for infrastructure management systems: Results of the study 

document that complexity is the primary driver of risks associated with infrastructure 

system performance and disregarding social considerations results in unreasonable 

treatment of human performance. 

2.1.3 Terms, Assumptions and Framing 

We begin by elaborating on concepts and terms that we use throughout this document. 

The term “sociotechnical system” (STS) is used to define systems that rely on a 

“collaboration of humans” to fulfill its mission (Mumford, 2006). In other words, we use 

the term STS to represent systems with a social subsystem that performs through 

collaborative efforts of its constituents and governed by organizational rules. 

Organizational rules in this context are used to define where the control boundaries are 

drawn and how communication/collaboration is coordinated. 

The reliance on human performance in the case of STSs is not an arbitrary design 

decision but it is inevitable due to how the system functions, which adds to its complexity3. 

For example, in infrastructure management systems, humans conduct arguably the most 

complex function of the system: the safety critical decision-making activities. These are 

situations that could potentially lead to loss of life, property, and/or degradation of system 

performance (Department of Defense, 2012). Safety critical conditions are hard to predict 

before their occurrence and typically, they are unique. Decision-making under these 

                                                 

3 We use the term complexity to represent system behaviors that result from being composed of many 

interrelated and interacting elements. 
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circumstances requires precise situation assessment and immediate reaction. The caveat is 

that both “assessment” and “reaction” are human decision-making activities that are 

susceptible to the environment in which the decisions take place. We define the term 

performance environment as the operation space where performance occurs. Two elements 

shape this space, i.e., internal and external. Internal elements originate primarily from the 

performer (DMU) and its interaction with the employed production technology. We 

consider external factors as contextual/environmental Z variables as we know them in the 

efficiency literature. The external factors significantly affect performance yet are not 

produced or consumed by the transformation process and are uncontrollable by the 

performer. 

More formally, we define the socio-technical production technology as: 

ST= {(x, h, y) | x and h give rise to y, given z}     (1) 

Here, x  ℜ+
𝑝

 represents a vector of inputs of dimension (1 x p), h  ℜ+
𝑞

 a vector of 

decisions of dimension (1 x q), z  ℜ+
𝑟  a vector of socio-technical environmental variables 

of dimension (1 x r), and y  ℜ+
𝑠  a vector of outputs/outcomes of dimension (1 x s). 

For safety-critical systems, leaning on Rasmussen’s safety envelope concept (1997, 

2005), we delineate this socio-technical operating space by three distinct boundaries or 

frontiers: the workload boundary (∂Φ), the economic boundary (∂Ψ), and the safety 

boundary (∂Σ). In this paper, we will estimate the workload boundary ∂Φ̂, while explicitly 

accounting for environmental heterogeneity, by executing a two-step clustering DEA 

approach. Observations on the boundary (∂Φ̂) are considered as being the limit of 

manageable workload, and receive a “workload score” of one. We next revisit one of the 

core assumptions of DEA and its relationship to the performance environment in this study. 

A foundational assumption of DEA (Charnes, Cooper, & Rhodes, 1978) is the 

assumption that the DMUs operate in relatively homogeneous environments. The 

homogeneity assumption states that evaluated DMUs have to be “comparable” in terms 

their input-output specifications, the production technologies they employ, and the 

environments in which they operate. However, in many DEA studies, DMUs operate in 

heterogeneous performance environments and do not adhere with this core assumption 
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(Kuosmanen, Keshvari, & Matin, 2015). In this paper, given the criticality of safety in the 

application domain, we do not take for granted the comparability assumption and we assure 

for it rigorously using robust multivariate methods. At this junction, we introduce our 

infrastructure collaborator. 

2.1.4 Our Research Collaborator 

INFRABEL is a government owned company whose main responsibilities are building, 

maintaining, and operating the Belgian railway network. INFRABEL employs close to 

12,000 employees and assures the real-time traffic control of some 4,200 trains that serve 

approximately 800k passengers per day. INFRABEL maintains such a high volume of 

service by managing a control network of comparable size that consists of over 10k traffic 

signals and 4k track switch mechanisms. Traffic Control Centers (TCCs) are the centralized 

locations that perform control and management activities of the network. INFRABEL 

manages the TCC4s by hierarchical organizations that operate 24/7 in eight-hour shifts. 

Controllers are the TCC personnel tasked with monitoring the state of the infrastructure 

and interfering through infrastructure control decisions. Controllers perform by managing 

workstations that provide them with live information regarding the state of the 

infrastructure and each workstation has a dedicated portion of the physical railroad that it 

controls. Decisions made by Controllers only physically affect their dedicated control area, 

yet on an aggregate scale, overall infrastructure performance emerges by the aggregation 

of the Controller decisions. 

INFRABEL previously developed multiple mechanisms to evaluate performance 

despite the production technology has changed drastically. A DEA model was developed 

for non-computerized TCCs (Roets & Christiaens, 2015) indicating variations in the 

overall TCC performance with respect to social and technical variables such as the day of 

performance and the complexity of the managed tracks. Furthermore, a Controller fatigue 

estimation study was conducted and it indicates a correlation between fatigue and the 

tendency to make mistakes (Folkard, Robertson, & Spencer, 2007; Roets & Christiaens, 

                                                 

4 In the rest of this paper, we use the term TCC to denote the entity composed by the organization that 

operates the facility along with the infrastructure management equipment on site. 
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2017). A third study developed a benchmarking model that evaluates the staff efficiency 

of computerized TCCs, and examined the potential relationship between efficiency levels 

and human error occurrence (Roets, Verschelde, & Christiaens, 2018). However, Roets, et 

al. (2018) used purely technical variables limited to entire TCC teams instead of individual 

Controller performance. Focusing on individual Controller performance offers a significant 

point of departure for this paper. All previous studies at INFRABEL indicate that 

performance is an emergent property of the system that needs a holistic investigation that 

incorporates both social and technical aspects. 

TCCs are currently undergoing a major overhaul that significantly changes their 

production technologies. There has been a recent managerial intervention that created new 

Controller roles dedicated to safety critical activities (Safety Controller (SC)) and 

management of traffic (Traffic Controller (TC)). In addition to that, an automated train 

route-setting device recently implemented provides an “autopilot” feature for non-safety 

critical decisions. INFRABEL has already implemented these changes in a pilot TCC for 

test purposes. INFRABEL management expressed the need for detailed performance 

metrics, capable of assessing Controller workload while accounting for socio-technical 

performance shaping conditions (e.g., by accounting for fatigue levels). In order to monitor 

the effect of all changes, INFRABEL has developed a custom-built Business Intelligence 

(BI) tool to provide measurements of Controller activities at the workstation level. This 

measurement framework provides a unique socio-technical dataset that is composed of 

highly disaggregate observations (hourly) of Controller activities under real and highly 

dynamic circumstances. This unique socio-technical dataset enables this research paper. 

2.2 Background 

Various bodies of literature contribute to the research of efficiency assessment of socio-

technical infrastructure management systems. In this section, we present previous related 

research in each of these domains along with a discussion on how their collective insights 

influenced this research. 
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2.2.1 Sociotechnical Systems (STSs) 

The study of STSs has been an area of interest for the communities of human factors 

and macro-ergonomics, since the focus of these disciplines is human behavior and 

performance in real contextual environments (Wilson, 2000). The socio-technical approach 

considers human performance along with its social and technical interactions with the rest 

of the system. These interactions affect the system’s characteristics to a considerable extent 

(Kroes, 2002; Kroes, Franssen, Poel, & Ottens, 2006). In order to better understand and 

holistically address the multi-disciplinary nature of STSs, a call to incorporate systems 

thinking into socio-technical system design has been made (Leveson, 2011) and some 

researchers from the systems engineering optimization community already approached this 

domain. However, it is observed that systems engineering driven research still considers 

the human element as a mechanism to inform technical design decisions (Baxter & 

Sommerville, 2011; Topcu & Mesmer, 2018). In other words, their approach disregards 

the interactions between social and technical considerations despite significant evidence 

indicating that these interactions lead to emergent system properties. For example, risk is 

known to have bilateral propagation characteristics, meaning that risks originating from 

social aspects affect technical aspects of the system and vice versa (Wallace, Keil, & Rai, 

2004). Performance, is argued to be strictly driven by the interaction of social and technical 

elements (Kleiner et al., 2015). These assertions emphasize the importance of identifying 

and capturing socio-technical attributes that create system properties through their dynamic 

interactions (Carayon et al., 2015). 

2.2.2 Safety Critical Sociotechnical Attributes and Their Influence on Employee 

Performance 

There are multiple articles investigating the role of social attributes (e.g., fatigue, 

management style, supervisor support, cultural traits, stress, etc.) on the overall efficacy of 

systems. We assume that social attributes shape individual employee performance 

environments and identify those that we consider closely related to system safety. Two 

sources: the employee and the organization influence these attributes. We start our 

discussion with the organization. 
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Workplace safety is influenced by leadership style (Barling, Loughlin, & Kelloway, 

2002) and supervisor support (Hofmann & Morgeson, 1999). Organizational cultural traits 

have direct implications on system accident rates (Gorman, Cooke, Salas, & Strauch, 2010) 

especially when two conflicting subcultures are required to collaborate to sustain system 

activities (Hodgson, Siemieniuch, & Hubbard, 2013). Organizational characteristics have 

a second order effect on employee performance environments by influencing individual 

psychological factors. Mental stress is documented to be tightly coupled to system safety 

(Beehr, 2014). Excessive mental workload increases system failure rates and accidents, 

especially when it is combined with family-work conflicts (Cullen & Hammer, 2007). In 

addition to that, the feeling of job insecurity leads employees to disregard safety issues 

(Probst & Brubaker, 2001). We consider that these attributes are relatively easier to control 

by the organization and move to individual factors. 

An employee sourced attribute related to the Controller performance environment is 

fatigue. Fatigue is one of the leading causes of human related accidents in the railroad 

industry (Sussman & Coplen, 2000). In the operational context of railroad Controllers, 

additional variables reinforce fatigue. The routine of working in shifts disturbs sleep 

patterns, which in turn result in increased fatigue due to reduced alertness and vigilance 

(Ferguson, Lamond, Kandelaars, Jay, & Dawson, 2008). Fatigue is observed to be driven 

mainly by the amount of sleep and the time spent at work (Dawson & McCulloch, 2005). 

Sleep deprivation was observed to hinder cognitive performance similar to the effect of 

alcohol intoxication (Van Dongen, Maislin, Mullington, & Dinges, 2003). A study of rail 

industry employees revealed that mental workload also drives fatigue. However, compared 

to the lack of sleep it is considered to be of secondary importance (Rosa, 1995; Dorrian, 

Baulk, & Dawson, 2011). 

Another piece of the literature we consider related to human performance is cognitive 

performance thus we include a brief discussion. Cognitive performance was measured as a 

function of the familiarity with the given task, the complexity of decision-making rules, 

and the provision of visual cues (Rubinstein, Meyer, & Evans, 2001). This study concluded 

that alternating between decision-making tasks with different task familiarity leads to 

increased costs. The concept of task familiarity brings out an interesting aspect that is 
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related to the TCC Controller roles, i.e., prospective memory, which is defined as the ability 

to remember intended actions in the future (Kerns, 2000). For the medicine and aviation 

sectors, a list of contingency actions to avoid prospective memory related errors was found 

based on empirical studies (Dismukes, 2012). This study concluded that the distribution of 

cognitive tasks among human and nonhuman elements is linked to prospective memory 

capacities. A follow up study argued that a systems driven approach was necessary to fully 

understand the underlying mechanisms that determine the relationship between memory, 

performance, and safety (Grundgeiger, Sanderson, & Dismukes, 2015). We concur and 

would like to add that a systems thinking approach would utilize identified sociotechnical 

relationships to design better systems. For example, a study conducted in a simulated air 

traffic control environment has shown that altering the visual decision making cue interface 

(to support prospective memory) reduces operator errors 11% to 34% (Loft, Smith, & 

Remington, 2013). 

2.2.3 Operational/Contextual Heterogeneity and DEA 

DEA is a normative technique that evaluates the relative productive efficiencies of 

DMUs. The emphasis on “relative” implies that both the employed production technologies 

and the individual environments where DMUs operate, also known as the operational 

environments, are comparable. The issue is that there is no universal definition of 

comparability in the literature. The term “contextual (Z) variables” is widely used in the 

literature to define variables that are related to performance from both operational and 

organizational perspectives yet are not directly included in the production technology 

(Banker & Natarajan, 2008). Related to this point, there is the underlying argument that 

the contextual variables are “separable” from the production technology. We use the term 

“performance environment” to define the combination of factors that significantly 

influence performance yet are not produced or consumed by the DMU. We consider that 

statistically significant differences in performance environments result in 

operational/contextual heterogeneity and thus we need to address rigorously. 

While there are multiple approaches in the literature that model contextual variables 

(Banker & Morey, 1986; Ray, 1988; Daraio & Simar, 2005; Simar & Wilson, 2007, 2011; 

Johnson & Kuosmanen, 2011), we choose an approach that relies on multivariate methods 
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(Triantis, Sarayia, & Seaver, 2010). We use robust principal component analysis 

(ROBPCA) that reduces the number of dimensions in the data to hypothetical hyperplanes 

as an outlier detection method. We use ROBPCA scores to formulate clusters representing 

relatively homogenous performance subsets. Efficiency analysis then is performed within 

these clusters (Herrera-Restrepo, Triantis, Seaver, Paradi, & Zhu, 2016). We then compare 

in-cluster efficiency scores with the meta-frontier efficiency scores to investigate the 

influence of incorporating performance environments on efficiency designations 

(O’Donnell, Rao, & Battese, 2008). 

2.2.4 DEA Applications in Safety Critical Environments and Infrastructure 

Management Systems 

Despite its academic popularity, applications of DEA to problems of real complexity 

have been mostly limited to financial and non-profit sectors with very few papers 

documenting actual implementation and validation5 (Paradi & Sherman, 2014). We 

consider two additional criteria to those listed in the first section for the validity of DEA 

application papers: (i) preserving the axioms of DEA and (ii) compatibility with host 

organization’s preferences. The first point is quite straightforward. DEA is a normative 

method and failure to comply with its axioms simply provides indefensible results. The 

second point is arguably the leading factor that limits industry adoption of DEA. To 

elaborate, organizations not only have unique characteristics in terms of their production 

technologies and input-output specifications, they also have subjective preferences of the 

decision-makers and contextual considerations. These considerations introduce additional 

factors into DEA formulations or could force the analyst to frame the model around 

measurement-data limitations. An extensive demonstration of how to formulate and 

implement actual large scale performance evaluation frameworks is provided elsewhere 

(Borja & Triantis, 2007; Medina-Borja, Pasupathy, & Triantis, 2007; Medina-Borja & 

Triantis, 2014). Throughout the methodology section of this paper, we will highlight and 

                                                 

5 We use the term “validation” analogous to its use in the systems engineering terminology (Buede & 

Miller, 2016). We consider a system validated once the user accepts that the system satisfies its user needs. 
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discuss how organizational realities of INFRABEL shaped the performance-measurement 

framework construction. 

Applications of DEA in safety critical environments are scarce. A recent study 

investigated decision making of natural gas transmission plant operators (Azadeh, Gaeini, 

Motevali Haghighi, & Nasirian, 2016). This study emphasized the importance of 

considering the principals of macro-ergonomics (Hendrick, 1995) when investigating any 

technological combination of human, organization, environment, and machine. Another 

study of Azadeh et al. (2016) investigates intensive care units in hospitals (Azadeh, Tohidi, 

Zarrin, Pashapour, & Moghaddam, 2016) however, the study disregards 

operational/contextual heterogeneity issues. Efficiency and effectiveness of railway 

performance was investigated through a network DEA application however no social 

variables were included in the model specification (Yu & Lin, 2008). We investigated two 

DEA applications of European air navigation service providers where both studies 

highlighted significant issues when representing the notions of safety and complexity 

(Arnaldo, Comendador, Barragan, & Pérez, 2014; Ćujić, Jovanović, Savić, & Jakšić, 

2015). We observed that the hours allocated to safety related activities were treated as a 

measure of safety outcomes, indicating that the researchers disregarded the complexity and 

the quality of delivered safety services along with the effect other contextual variables. 

Another air traffic control study conducted for Federal Aviation Administration 

(Kopardekar & Magyarits, 2002) multiplied traffic density and traffic complexity to create 

an aggregate variable denoted as dynamic density (Laudeman, Shelden, Branstrom, & 

Brasil, 1998). Finally, an interesting DEA study introduced the concept of operator fatigue 

that is documented to have a strong relationship with safety (Azadeh, Kolaee, & 

Sheikhalishahi, 2016). 

2.3 Methodology 

2.3.1 Organizational Diagnostics, Preferences, and Assumptions 

As briefly discussed in the introduction, TCCs control dedicated portions of the railroad 

and are responsible for managing safety and traffic activities in that area 24/7. INFRABEL 

organized seven workstations in the pilot TCC according to the recently implemented 

Controller roles. Traffic Controllers (TCs) who manage non-safety critical traffic related 
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interventions (such as signaling) use five workstations. The safety Controllers (SCs) who 

handle safety related interventions (such as planned railroad maintenance activities or in 

the case of incidents) use the remaining two workstations. Both Controller roles work on 

three nonintersecting eight hour shifts. Controllers form the hierarchical organization 

together with the managers dedicated to oversee each specific role activities. We denote 

these managers as Traffic Supervisor and Safety Supervisor. Supervisors do not interfere 

with routine Controller operations. However, they intervene when there is a challenging 

decision to make. A higher-ranking manager, i.e., the Traffic Officer manages the entire 

TCC. Figure 2-1 provides a view inside a random TCC and a simple organizational diagram 

of the pilot TCC. The BI tool provides data for both Controller activities for each of the 

seven workstations dedicated to the new roles on an hourly temporal measurement 

resolution. We discuss the content of the data in Section 2.3.2. 

 

Figure 2-1  Organizational Hierarchy at the Pilot TCC 

We argued for the importance of incorporating organizational preferences into the 

measurement framework formulation, as they are critical for system validation purposes. 

INFRABEL has two strategic preferences regarding their infrastructure system: (i) the 

system operates accident free at any cost and (ii) the system minimizes train delays to the 

lowest possible extent. These preferences have a one to one correspondence with the 

Controller roles and their decisions, i.e., altering the state of the infrastructure by switching 

tracks, stopping trains, and so on. There are many Controller decisions, however, these 

decisions have been aggregated to three groups based on a previous study that evaluated 
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TCC efficiency at the team level (Roets et al., 2018)6. The decision types are movement, 

adaptation, and safety. Movement decisions correspond to the number (count) of passages 

at each railroad signal controlled by the Controller and consider the number of train 

movements as well as local movements known as “shunting”. Adaptation decisions 

represent the changes in traffic flow and include activities such as, merging/splitting trains, 

re-routing activities, etc. Safety decisions represent procedural interventions to protect 

track maintenance sites and personnel from incoming trains or other safety measures 

related to incidents, such as level crossing procedures. Of these decision types, TCs only 

make movement and adaptation decisions. The TCs recently implemented an automated 

decision aide system to perform automatically movement decisions. SCs only make 

adaptation and safety decisions to control the state of the network. However, they 

constantly monitor the overall train traffic within their dedicated areas to make sure the 

system is safe. 

The core assumption that enables this study is that interventions to the state of the 

system, represented by Controller decisions, implicitly lead to desired INFRABEL 

outcomes. Therefore, instead of measuring actual INFRABEL outcomes, our approach 

measures Controller decision outputs and assumes that these outputs lead to the outcomes. 

In other words, we do not make the distinction between effectiveness and efficiency in this 

study. Even though Controllers are physically sitting next to each other, their performance 

environments could be significantly different due to a wide set of factors. These factors 

include the physical characteristics of the controlled railroad portion, the traffic created by 

the routes of trains passing through the dedicated area, the human condition of the 

Controller (e.g., fatigue, stress, experience), and the effect of organizational characteristics 

on the Controller. 

Given this context, the primary need of INFRABEL is a holistic performance 

measurement framework that (i) incorporates both social (human) and technical 

                                                 

6 Out of the more than 250 different types of archived Controller decisions, the railway experts selected some 

100 decisions as accurately reflecting  the decision making process (by avoiding double counting for 

example). Movement decisions are separated into manual and automatic signal openings, and of the 

remaining decisions approximately one third was categorized as adapt decisions, the rest as safety decisions. 
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considerations; (ii) is able to handle highly disaggregate observations; and (iii) is capable 

of assessing performance under heterogeneity for the new role descriptions. Aside from 

mentioned performance framework preferences, INFRABEL’s domain experts have 

additional needs related to the implementation and the adoption of the performance 

measurement tool. These needs are associated with visualizing, monitoring, and 

interactively analyzing the results. Therefore, we implement the sociotechnical 

performance framework discussed in this paper at INFRABEL through the BI tool that 

builds on previous work (Roets et al., 2018). This dimension of our research, i.e., the 

special attention towards communicating and analyzing the results, is in line with (the few) 

previous real-world implementations of DEA (Paradi & Schaffnit, 2004; Medina-Borja et 

al., 2007). This study is also shaped by previous DEA application papers that focus on the 

visualization and communication of results to practitioners (El-Mahgary & Lahdelma, 

1995; Golany & Roll, 1989; Jain, Triantis, & Liu, 2011; Paradi & Sherman, 2014). In the 

following subsection, we present the data sources of the sociotechnical variables that shape 

the Controller performance environment. 

2.3.2 Model Specification and the Data 

Based on the set of assumptions and nature of the transformation process described 

above, we frame the DMU boundary around one hour of performance of the 

Controller/Workstation bundle. We use the one hour temporal measurement frame to 

understand how the workload changes on an hourly resolution. Improved understanding of 

hourly workload variations could potentially allow INFRABEL to examine flexible 

Controller schedules instead of fixed eight hour shifts, which could help in fairly balancing 

the workload over the different controllers. 

In order to formulate a framework that considers the multifaceted and sociotechnical 

nature of performance for the proposed DMU definition, a reductionist approach is applied 

(Zhao, Triantis, Murray-Tuite, & Edara, 2011). The reductionist approach considers the 

problem in two stages. First, we specify the model from an ideal point of view where no 

data availability issues apply. The micro-economic production theory, the literature review, 

and on-site process/role observations drive the specification. This is fundamentally similar 

to systems thinking and allows us to identify all variables considered relevant to the 
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transformation process. The purpose is to ensure completeness and we denote the resulting 

model as the “ideal case model”. Some variables in the ideal case model might not be 

available by the current measurement system or cannot be measurable with the current state 

of knowledge and/or expertise. In the second stage of the reductionist approach, the driver 

is organizational diagnostics, and we reduce the ideal case to fit an attainable abstraction 

bounded by data availability. We denote the resulting model as the real case model, which 

is a subset of the ideal case model. The difference between the ideal and the real case model 

variables indicates valuable sources of information that we do not or cannot measure with 

current capabilities. Thus, it informs our collaborator about future measurement related 

investments. Conceptual diagrams of the ideal and real case models in this study 

considerably leveraged the researcher/railway expert interactions. 

In Figure 2-2, we present the ideal case model that was used to initiate face validation 

efforts during which several INFRABEL experts provided feedback. Horizontal arrows in 

Figure 2-2 indicate input/output (X and Y) variables, where vertical arrows indicate 

contextual/environmental (Z) variables that shape the performance environment. The ideal 

case model reveals that there are four different transformation sub-processes within the 

TCC describing what the TCs, the SCs, the Traffic Supervisor, and the Safety Supervisor 

do. In other words, adopting a DEA based lens, each individual role within the TCC form 

a separate frontier. The ideal case model reveals that the Controllers do not necessarily 

consume intermediate outputs of the internal Supervisor processes, yet these outputs 

influence their performance environment. We evaluated the ideal case model presented in 

Figure 2-2 based on INFRABEL feedback regarding their face validity, data availability 

restrictions, and organizational preferences. 
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Figure 2-2: The Ideal Case Model 

After discussions with the INFRABEL railway experts and based on data availability, 

we reduce the ideal case model to an attainable real case model7 that we present in Figure 

2-3. We consider the formulation and implementation of the performance measurement 

framework as an iterative process and use the color-coded variable categorization to 

establish a shared mental model of our performance measurement model. Employment of 

research driven visual communication tools continuously assured that railway experts and 

managers, who have little exposure to the field of performance measurement and mainly 

DEA, were able to follow/understand the conceptual and modelling basics of the research 

(Ozbek, de la Garza, & Triantis, 2009). This was crucial for model formulation in terms of 

receiving relevant and constructive feedback from the organization that acted as a self-

verification mechanism. It also established stronger bonds between “outsider” researchers 

and “insider” practitioners allowing for a more cohesive understanding of railroad 

management performance. 

In Figure 2-3, variables colored with blue have a significant impact on TCC 

performance. However, it is not possible to obtain a measurement of these variables with 

the current state of our measurement capabilities. Thus, we considered the blue variables 

                                                 

7 We provide definitions of the variables included in our analysis in Appendix B. 
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to be part of the next and future modeling iteration. The blue variables are as follows. 

Management style, the only different variable for supervisor roles, significantly influences 

the performance environment of both Controllers as indicated by the literature review. . 

“Decisions that require Supervisor support” represents the number of times a Controller is 

unable to make a decision and reaches out for Supervisor support. From an ideal 

perspective, this variable is the primary input of both Supervisor roles. In addition, it 

triggers group decision-making activities. Unfortunately, there is no measurement tool in 

place to monitor its frequency. Therefore, we exclude it from the model. Stress and the 

safety culture are additional contextual variables that we consider important. Along with 

the variable denoted as “unidentified factors” (which could be a set of variables that are 

created by different mechanisms), the measurement of these variables will require separate 

and focused macro-ergonomics studies. The final blue variable is the group decision 

making that occurs when a large-scale decision affects multiple control areas. We identify 

and note importance of this case since it directly contradicts the fundamental DEA 

assumption of independent DMUs. In TCCs, under specific circumstances, DMUs do 

interact and collaborate to make a coordinated group decision. We leave this issue for 

future work. 

 

Figure 2-3: The Real Case Model 
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At this junction, we consider it is appropriate to discuss the data used in this paper. As 

previously mentioned, a purpose-built BI application, developed at INFRABEL supports 

our research. BI tool connects work schedule and operational databases, links these data 

sources at several aggregation levels, prepares the necessary datasets for the performance 

analysis, and incorporates the intermediate and final results of the research. The dataset 

includes all green variables as shown in Figure 2-3. As operational IT systems are generally 

not designed for ex-post performance analysis (Triantis, 2011), one of the biggest 

challenges faced during the development of the supporting BI tool was to translate the 

available data into meaningful measures of the traffic control process. In addition, as the 

workforce and operational systems have different objectives and users (human resource 

management/scheduling vs. engineering/operations) this required the construction of 

several additional data tables, linking the original data sources at the desired level of 

disaggregation. With the current research we significantly extend the dataset created in 

previous research on computerized railway traffic control centers (Roets et al., 2018), by 

disaggregating from the team level to the individual Controller level. As such, we created 

a new and unique sociotechnical database, linking every single traffic control decision not 

only to the operational circumstances but also and most importantly to the Controller’s 

experience and fatigue levels. 

2.3.3 Modeling the Production Process and Rasmussen’s Workload Boundary 

By applying DEA, we can empirically construct the production possibility frontier or, 

more specifically the workload boundary that allows us to quantify the workload of DMU. 

As stated in the introduction, this innovative application of DEA translates Rasmussen’s 

safety envelope, which is of a descriptive nature, into a quantitative (normative) model 

with significant real-world relevance. 

Going back Section 2.3.2., the lack of measurement of blue variables reduces the real 

case model to mutually exclusive frontier formulations dedicated to both Controller roles. 

We provide DEA input/output diagram for both Controllers in Figure 2-4. The only input 

variable for both Controllers is the experience level of the Controller. TC output variables 

are the number of manual movement decisions, number of automated movement decisions 

and the number of adaptation decisions. Contextual/environmental Z variables that affect 
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TC performance environment are traffic density, traffic complexity, and Controller fatigue 

level. We use an output oriented BCC (Banker, Charnes and Cooper, 1984) model to 

evaluate efficiency for TC DMUs. Justification of selecting an output oriented variable 

returns to scale model is the following. Recall that the analyzed data represents the previous 

safe work statistics (shifts in which zero accidents occurred). We formulate our DEA 

models based on the assumption that: “given a Controller with x amount of skill level was 

able to manage y level of actions safely, than a more experienced Controller should be able 

to handle more workload”. We base our assumption on the reality of the transformation 

process and discussions with domain experts. Our observations of the TCC operation and 

Controller training data indicate that a more experienced Controller is actually capable of 

handling larger workloads, given the mitigating effects of the environmental/contextual 

variables. We understand that this assumption might not hold true for every single DMU 

and could potentially raise concerns of isotonicity. However, expert feedback indicates that 

it is ideally correct, thus we consider our fundamental assumption reasonable for the 

purposes of this exploratory study. 

There are two types of outputs for SCs, the number of safety decisions and the number 

of adaptation decisions. We considered these variables controllable since the SC actively 

intervenes with the system to produce these safety controls as required by the 

circumstances. The single uncontrollable output variable is the number of monitored trains 

highlighted with the red box in Figure 2-4. We consider this variable uncontrollable since 

the SCs continuously monitor the train traffic in their dedicated area. However, they have 

no control or approval of any sort over the number of passing trains or how they are handled 

(within the TCC, this is the TC’s responsibility). Therefore, we use an output oriented BCC 

model with a non-discretionary variable. We use an output-oriented model based on the 

assumption that an experienced controller should be able to handle larger workloads. 

 

Figure 2-4 Input-Output TC and SC Representations 
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2.3.4 The Analytical Efficiency Measurement Framework 

Both Controller frontiers have multiple contextual/environmental variables that 

significantly affect and shape their performance environment. Thus, we tailor our 

framework to handle this heterogeneity. Figure 2-5 provides a diagram summarizing the 

proposed analytical methodology. 

  
Figure 2-5: Analytical Performance Measurement Framework 

Figure 2-5 starts with the unique data obtained from the BI tool. Step 1a is 

straightforward, input and output variables are extracted for both Controller frontiers and 

we use an output oriented BCC model (Banker, Charnes, & Cooper, 1984) to calculate 

meta-frontier efficiency scores. The only difference between controller roles is the non-

discretionary output variable, the number of monitored trains, for SCs. In parallel, in Step 

1b, only contextual variables are extracted for both frontiers and a ROBPCA is performed 

(Hubert et al., 2005). Step 1b provides the identification of influential observations, ratio 

of outliers in the dataset, and principal component scores that define the distance of 

observations from principal hyperplanes, which we use to reduce the dimensionality in the 

data. In Step 2, we use the principal component scores to formulate clusters through a two-

stage clustering algorithm. First we perform a k-nn nearest neighbor (Wong & Lane, 1983) 

clustering by considering only two of the nearest observations. Then, we applied a k-means 
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clustering algorithm (Hartigan & Wong, 1979). Out of all possible number of clusters, we 

selected the one with minimum jackknife error (Miller, 1974) assuming that it statistically 

represents the most homogenous performance groups. Step 2 generates relatively 

homogenous performance subgroups in which performance environments satisfy the 

comparability assumption. In step 3, we calculate the output oriented BCC efficiency 

within these clusters by considering only their input and output variables. Finally, we 

compare the resulting in-cluster and meta-efficiency scores in Step 4. 

To summarize and to recall the link with Rasmussen’s workload boundary, we propose 

that Farrell’s empirical frontier can be used as a proxy of Rasmussen’s workload boundary 

for human decision makers simply based on the analogy that both represent an attainable 

limit to performance. Since our data considers only accident free observations, we assume 

that when a Controller handled a workload successfully in the past, the same Controller 

can also handle the same workload successfully in the future. We ensure the link of our 

DEA models with Rasmussen’s boundary through variable identification and selection. 

Thus, we identify the Y variables in parallel with the types of decisions performed by the 

each Controller. The single X variable represents the only resource used during the 

transformation process. We select the Z variables from the variables that that the Controller 

neither consumes nor generates. In other words, they are uncontrollable by the Controller 

yet they have a strong influence on the transformation process. Therefore, the efficiency 

scores computed with this model provide a measure of “how efficiently the STS allocates 

the workload for each controller”. As such, our model does not evaluate the individual 

performance of each Controller, but can be interpreted as evaluating the performance of 

the STS, in terms of spatiotemporally allocating the workload over the different 

workstations and Controllers.  

The modified output oriented BCC model with non-discretionary outputs used in Step 

1a and Step 3 is as follows: 

Max θ           (1) 

Subject to      ∑ 𝑥𝑖𝑗 ∗ 𝜆𝑗 ≤ xij0

𝑛
𝑗=1  ∀𝑖 = 1 𝑡𝑜 𝑚      (2) 

∑ 𝑦𝑟𝑗 ∗ 𝜆𝑗 ≥ θ ∗ 𝑦𝑟𝑗0

𝑛
𝑗=1  , 𝑤ℎ𝑒𝑟𝑒 𝑟 ∈ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑂𝑢𝑡𝑝𝑢𝑡𝑠, ∀𝑟 = 1 𝑡𝑜 𝑠  (3) 

∑ 𝑦𝑘𝑗 ∗ 𝜆𝑗 = 𝑦𝑘𝑗0

𝑛
𝑗=1 , 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑁𝑜𝑛 − 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑂𝑢𝑡𝑝𝑢𝑡𝑠   (4) 
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∑ 𝜆𝑗 = 1𝑛
𝑗=1            (5) 

𝜆𝑗 ≥ 0 , θ ≥ 0           (6) 

In the set of equations provided above; 𝑛 represents the number of DMUs, 𝑥𝑖𝑗 

represents the amount of resource 𝑖 consumed by the 𝑗𝑡ℎ DMU, 𝜆𝑗 is the weight assigned 

to a peer j, θ is the efficiency score, 𝑦𝑟𝑗is the 𝑟𝑡ℎ output of 𝑗𝑡ℎ DMU, and 𝑦𝑟𝑗0
 is the 𝑟𝑡ℎ 

output of the DMU under investigation. 

Step 1b (Hubert et al., 2005) and Step 2 (Hartigan & Wong, 1979; Wong & Lane, 1983) 

is described in detail elsewhere. However, we will briefly describe the idea behind the 

models to ensure completeness and to justify why we consider ROBPCA as a mechanism 

to ensure DEA’s comparability assumption. Step1b focuses on Z variables that define the 

performance environment, select the best linear combination (principal components) of the 

variables that contain the most information, and identifies influential observations. We 

consider that influential observations (outliers) contain the most information regarding the 

production transformation process and choose to include them in our analysis rather than 

discard them unless a very large measurement error is found. Identification of influential 

observations provide a measure of operational heterogeneity since they provide the ratio of 

outliers to the remaining data in the sample in a robust manner. To this end, we calculate 

the relative distance of observations from the center of the principal hyperplane. We denote 

the distances from the principal hyperplane as score and orthogonal distances. Score 

distance represents how far the observation is when measured parallel from the center of 

observations on the hyperplane. Orthogonal distance represents how far the observation is 

when measured vertically from the hyperplane. We record the score and orthogonal 

distance values for each observation, since they provide a robust and quantified measure 

of heterogeneity and pass it on to Step 2. 

The purpose of Step 2 is to form relatively homogenous performance clusters. To this 

end we first perform a density based k-nn clustering by using two nearest neighbors (Wong 

& Lane, 1983) and then group sub-clusters by using a k-means clustering approach 

(Hartigan & Wong, 1979). To decide on the appropriate number of clusters, we consider 

the Jackknife error associated with the clustering results and keep iterating until we obtain 

the lowest error rate. We assume that clusters provide us with relatively homogenous and 
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comparable subsets of DMUs. Finally, in Step 4 we compare the results of Step1a and 

Step1b in search for an answer to our research questions, specifically focusing on the 

relationship between the performance environment and human performance efficiency in 

STS. 

To summarize, as in many other safety-critical and complex systems, increasing 

pressure for efficiency could also push railway traffic control operations closer to the 

workload and safety boundaries' (Dekker, 2016). One should pay special attention to the 

looming dangers of ̀ decrementalism', where small and gradually implemented productivity 

gains slowly and almost unnoticeably carve out workload and safety margins. The 

development and implementation of a tool capable of evaluating and monitoring the 

workload boundary is a first but necessary step in safeguarding traffic control rooms (or 

any other safety-critical setting) against these progressive performance decrements. 

Importantly, as highlighted in our literature review, there is an absolute necessity to model 

sociotechnical systems and their highly heterogeneous performance environments in a 

multidimensional way. Therefore, in order to assess the Controller workload boundary, we 

develop a framework that is capable of (i) capturing the multidimensional performance 

environment and translating it into a discrete number of “contexts” (the clustering phase), 

and (ii) incorporating the multidimensional nature of the sociotechnical “production 

process” (the DEA phase). In order to avoid the explicit valuation of each of the dimensions 

of the sociotechnical system (e.g., put a monetary value on safety, fatigue, or complexity) 

both phases are based on a relative approach: we assess relative homogeneity in phase 1, 

and relative efficiency in phase 2. 

2.4 Results and Implementation 

2.4.1 Test of the Comparability Assumption through Influential Observation 

Identification – Step 1b  

Applying ROBPCA to TC contextual variables yields an orthogonal cutoff distance of 

1.6031 and score cutoff distance of 2.7162. Out of 2,919 TC observations, 17 observations 

are identified as bad leverage points, 128 observations are identified as good leverage 

points, and 215 observations are identified as orthogonal outliers. We classify the 

remaining 2,559 observations as regular observations. For SCs, we calculate the orthogonal 
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cutoff distance measure as 0.8125 and the cutoff score distance as 3.0575. Out of 1031 SC 

observations, 68 observations are identified as bad leverage points, 99 observations are 

identified as good leverage points, and 58 observations are identified as orthogonal outliers. 

We classify the remaining 806 observations as regular observations. We represent the 

distribution of these influential observations in Figure 2-6. 

 

Figure 2-6: Distribution of Influential Observations for TCs and SCs 

 

Results of the ROBPCA reveal that influential observations constitute 21.1% of TC 

data and 21.8% of SC data. High fractions of influential observations supports our 

questioning of the comparability assumption. It also suggests that both controller types, 

experience highly heterogeneous performance environments. The percentage of orthogonal 

outliers are 18.7% to 5.6 % for TCs and SCs respectively, suggesting high variability in 

the TC data. We observe the most drastic difference in good and bad influential 

observations. SCs have 9.6% good leverage points compared to 4.4% of TCs. Bad leverage 

points demonstrate a larger deficit, as SCs have almost ten times more bad leverage points 

compared to the TCs. This indicates that the SCs roughly experience ten times more 

extreme hours and supports the recent INFRABEL decision to create new Controller roles 

dedicating more skilled personnel to the SC role. In our attempt to formulate relatively 

homogenous sociotechnical performance subgroups, we store the distances for each 

controller type and proceed to the next step in our methodology. 
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2.4.2 2 Stage Clustering – Step 2 Results 

We present the jackknife errors for the different number of clusters in Table 2-1 for 

both TCs and SCs. Even though all investigated clusters demonstrate less that than a 10% 

Jackknife error, and therefore could be considered appropriate for further analysis (Seaver 

& Triantis, 1992), we consider that it is more reasonable to use the number of clusters with 

the minimum error. In the case of TCs, the error rate increased significantly after the three-

cluster solution, therefore, we concluded that the three-cluster solution is adequate to 

represent the data. For SCs, we observed that the two clusters to have the minimum error 

rate. 

Table 2-1 Jackknife Error for the Number of Clusters for both Controllers 

 Number of Clusters 2 3 4 5 

Jackknife Error  
TC 1.83% 1.60% 2.64% 3.32% 

SC 3.91% 5.95% 7.78% 9.36% 

 

We provide in Table 2-1, descriptive statistics clusters that reveal interesting insights. 

The first TC cluster performs under higher traffic density and traffic complexity compared 

to other TC clusters. Fatigue levels are under the risk level of one and are relatively close 

for the first and the second TC clusters. The third TC cluster experiences the lowest traffic 

complexity and density however, it has the highest fatigue level among other TCs. Given 

the information presented in Table 2-1, we label TC cluster 1 as high traffic-rested, TC 

cluster 2 as favorable, and TC cluster 3 as low traffic-fatigued. 

Table 2-2 displays the descriptive statistics for SC clusters, revealing how performance 

environments differ drastically. For SCs, cluster 2 operates with almost twice as much 

denser traffic. However, the traffic complexity is much higher in SC cluster 1. The first SC 

cluster has significantly higher fatigue levels with a median above the threshold level of 

one. Fatigue levels of SC cluster 2 hint that these controllers are well-rested during their 

shifts. We observe the most significant difference in the safety complexity. As such, SCs 

in cluster 1 have to make decisions that are almost six times more complex than the second 

SC cluster. We conclude that the first SC cluster operates in a more demanding operational 

environment than the second cluster. 
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Table 2-2 Descriptive Statistics of Controller Clusters 

  Score 

Distance 

Orthogonal 

Distance 

Traffic 

Density 

Traffic 

Complexity 

Fatigue 

Level 

Safety 

Complexity 

TC Cluster 1 

n = 1192  

Mean -1.1652 -0.0874 0.8026 3.4167 0.8249 NA 

Median -1.0942 -0.0399 0.8 2.7 0.7988 NA 

STD Dev 0.5819 0.7672 0.1861 2.4549 0.1193 NA 

TC Cluster 2 

n = 1267  

Mean 0.5546 0.3880 0.2974 1.5852 0.8073 NA 

Median 0.5339 0.4069 0.3067 1.2766 0.7934 NA 

STD Dev 0.5086 0.4625 0.1492 1.3869 0.0822 NA 

TC Cluster 3 

n = 460  

Mean 1.5232 -1.4656 0.2031 0.9223 1.1583 NA 

Median 1.6267 -1.4007 0.1625 0.5395 1.1572 NA 

STD Dev 0.6085 0.6989 0.1687 1.2056 0.1315 NA 

SC Cluster 1 

n = 231  

Mean 3.8237 1.2857 0.4009 1.1310 1.0508 0.2893 

Median 3.6571 0.7235  0.2075 0.7391 1.0775 0.2352 

STD Dev 1.0908 1.3059 0.4870 1.1640 0.2118 0.2580 

SC Cluster 2 

n = 800  

Mean 1.3245 0.2160 1.0954 0.3596 0.8151 0.0563 

Median 1.2408 0.1555 1.1304 0.1886 0.7925 0.0419 

STD Dev 0.5294 0.2130 0.4739 0.4057 0.1048 0.0619 

 

Labeling of the clusters translates the results of the statistical process into an 

operational language. This proved to be critical for a smooth researcher/railway expert 

interaction. It is clear that the TC second cluster is operating under the most favorable 

conditions, however how the sociotechnical performance environments of TC clusters 1 

and 3 compare in terms of operationally more demanding conditions remains an open 

question. We provide a visualization of the observation distribution as measured by their 

distances to the principal components in Figure 2-7. We retain the clusters as measured by 

their principal component scores and move on to Step 3. 
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Figure 2-7: Visualization of Clusters on Principal Component Axes 

2.4.3 In-Cluster and Meta Frontier Efficiency Analysis – Step 3 & 4  

2.4.3.1 TC Performance Analysis 

There are 2,919 TC observations in our dataset and we present their output oriented 

VRS efficiency analysis from both in-cluster and meta-frontier perspectives in Table 2-3. 

There are 1,192 observations in the first cluster and this group has the highest average 

efficiency and minimum variation in in-cluster efficiency distribution. As expected from 

our TC cluster label designation, this group has higher workload than the second cluster 

that we considered more favorable prior to the analysis. Following discussions with domain 

experts at INFRABEL, we consider this expected simply based on the fact that, denser and 

more complex traffic requires TCs to make more decisions. From this lens, we can interpret 

the TC efficiency scores as a measure of how busy a TC gets during an hour. The majority 

of the TC observations belong to the second cluster and its in-cluster efficiency distribution 

indicate that relatively lower density and complexity simply results in lower workload than 

the first cluster. Observations in the third cluster are fundamentally different from the first 

two as they display high fatigue levels even though the traffic density and complexity are 

significantly low. We observe the effect of low traffic demand on the efficiency score 

distribution as the third cluster is skewed to the right. This along with higher deviation 

points to the fact that majority of observations have lower workloads due to low traffic. 

This also means that we do not capture fatigue necessarily with our definition of workload 

while concurrently suggesting that INFRABEL does train scheduling by considering 

Controller fatigue. From a meta-frontier perspective, we observe that all meta efficient 

DMUs are from cluster 1, as expected. As a general rule of thumb, it is expected for in-
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cluster efficiency scores to be higher than meta frontier scores and the difference is denoted 

as the technology gap (O’Donnell et al., 2008). Interestingly, we observe in Table 2-3 that 

the mean efficiency score for cluster 3 is lower than the meta-frontier for the entire sample. 

We attribute this to two factors: (i) drastically low efficiency scores in this cluster as 

indicated by a strong right skewness and (ii) relatively small size of cluster 3 as its almost 

one third of the first two clusters. Consequently, the third cluster does not hold enough 

weight in the calculation of the mean Meta efficiency score.  

Table 2-3 TC In-Cluster Efficiency Summary 

Estimation of the 

Workload Boundary 

TC Cluster 1 

Dense and Highly 

Complex Traffic with 

Rested Controllers 

TC Cluster 2 

Medium Density and 

Complexity with 

Rested Controller 

TC Cluster 3 

Fatigued Controller 

facing Low Density 

and Complexity 

TC Meta 

Frontier 

 

All DMUs 

Mean Efficiency 0.6483 0.5493 0.3544 0.4082 

Median Efficiency 0.6587 0.5744 0.3093 0.3571 

Standard Deviation 0.1634 0.2369 0.2675 0.2459 

Mean Meta 

Frontier Efficiency 

of the Cluster 

0.4280 0.4174 0.3381 NA 

 

In order to validate our results, we collaborate with domain experts and focus on the 

extreme cases in each individual cluster along with a relative comparison of efficiency 

distribution with respect to other clusters. When we focus on the observations with the 

lowest efficiency scores in the second and the third clusters (clusters with high standard 

deviation), we observe that these DMUs exhibit specific traits. Observations in the 2nd 

cluster are usually during the day, but in-between rush hour traffic peaks (which are mostly 

captured by cluster 1). The traffic in this cluster generally runs smoother than the peak 

hours, which leads to less adaptation decisions. In some cases very low adaptation 

decisions are made, creating the efficiency scores that are at the lower end of this cluster. 

Observations in the 3rd cluster are usually on the night shift or in low volume traffic areas. 

This cluster has the lowest number of observations because during the night shift, several 

workstations are merged together thus less workstations are active. In some extreme cases, 

the number of incoming trains can still be very low despite the merger of workstations 

leading to drastically low efficiency scores. Thus, we should not interpret low efficiency 
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scores as an indicator of low controller performance. Instead, we should treat the 

efficiency scores as a quantification of the Controller workload. The calculation of the 

workload boundary and the associated workload efficiencies provides management with a 

tool capable of not only quantifying the manageable workload (the boundary), but also 

pinpoint temporal and spatial workload issues. A detailed temporal (e.g., hourly) and 

spatial (e.g., workstation) analysis can shed additional light on the revealed inefficiency 

patterns, and allow for a more optimized and fair distribution of the workload across the 

controller population. Moreover, the statistical identification of the sociotechnical clusters 

provides important additional insights into the temporal and spatial patterns of the 

performance environment. Possible improvement strategies for optimizing workload 

patterns can be the merger of workstations with less demanding hours, or the separation of 

workstations during longer periods of sustained effort and expected fatigue levels. 

2.4.3.2 SC Performance Analysis 

For SCs, we present the summary of efficiency scores in Table 2-4 by using an output 

oriented VRS model with an uncontrollable monitored traffic variable. The first cluster 

demonstrates much higher workload as expected by the performance environment 

designations. Roughly, 35% of the DMUs in the first cluster have an efficiency score above 

0.5. On the other hand, DMUs in the second cluster have a median efficiency score of 

0.2151 and only 20% of the DMUs have an efficiency score above 0.5. We can draw a 

couple of interesting insights from this. The first is our interpretation of efficiency scores 

in this study. We observe an increase in the productive efficiency scores when 

environmental conditions get  more demanding (e.g., fatigue levels are higher, complexity 

levels are higher). Considering that each SC intervention is safety-critical (and recalling 

our model specification), we make the following observation: when the system and the 

decisions associated with it becomes more complex, the workload of SCs increase to 

keep the system accident free, even under increasing controller fatigue. 

We consider it is necessary to compare meta and in-cluster efficiency scores in order 

to be able to draw more insights and to be able to see how the DMUs considered efficient 

within the homogenous subset compares against others. Interestingly, we observe that 

meta-efficient DMUs are coming from both SC clusters. We observe different conditions 



42 

 

to drive the workload for these observations from a meta-frontier perspective. High number 

of trains that need to be observed drive the meta-efficient observations from the second 

cluster. In some cases observed around rush hours, the amount of traffic is so high, DMUs 

are assigned high efficiency scores despite the fact that no safety actions were required. 

This demonstrates the importance of integrating efficiency analysis with the rest of 

organizational data, as it significantly makes it easier to access additional operational 

information. 

Table 2-4 SC Efficiency Summary – Estimation of the Workload Boundary 

Estimation of the 

Workload Boundary 

SC Cluster 1 

Low Density, High 

Complexity Traffic with 

Fatigued Controller and 

High Safety Complexity 

More Demanding 

Performance Environment 

SC Cluster 2 

High Density and Low 

Complexity Traffic with 

Rested Controllers and 

Low Safety Complexity 

Favorable Performance 

Environment 

SC Meta 

Frontier 

 

All DMUs 

Average Efficiency 0.4093 0.3094 0.2336 

Median Efficiency 0.3834 0.2151 0.1541 

Standard Deviation 0.2832 0.2706 0.2276 

 

To visualize and to demonstrate the effect of considering the sociotechnical 

performance environment, we present hourly efficiency changes on workstations from both 

the meta and in-cluster perspectives in Figure 2-8. As a general remark, we observe that 

in-cluster efficiency scores are always at least as high as the meta-frontier efficiency scores, 

by definition. The difference in the efficiency levels and the sometimes notably different 

efficiency patterns highlight the effect of satisfying the core comparability assumption of 

DEA, as in-cluster scores are much lower than the meta-efficiency scores. We interpret the 

potential consequences of using meta-efficiency scores instead of in-cluster scores from 

several standpoints. From a system safety perspective, recalling Rasmussen’s (1994) safe 

operation envelope, making staff alignment decisions based on meta-scores could simply 

push the system outside the safe operation envelope. Considering that railroad accidents 

are catastrophic, we should avoid this at all costs. From a managerial perspective, relying 

on meta-scores would lead to setting infeasible Controller performance targets. This would 

not only underestimate the staff performance but more importantly, it would negatively 
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affect all the safety related attributes we discussed in Section 2.2.2., eventually creating a 

less-safe infrastructure system. From a DEA perspective, it is a clear demonstration of 

how adhering to core assumptions of the method is crucial. Especially for highly 

disaggregate cases similar to ours could lead to indefensible and misleading results. 

 

Figure 2-8 Visualization of Meta vs. In-Cluster Efficiency Scores 

2.4.4 Validation, Implementation, and Usefulness of Considering Sociotechnical 

Factors 

We carried out the validation efforts by ensuring face validation from INFRABEL 

regarding the appropriateness of the developed framework in terms of addressing their 

needs discussed in Section 2.3.1. INFRABEL experts and management evaluated the 

contextual clustering and relative efficiencies and provided valuable insights on issues or 

opportunities related to optimal staff alignment. In addition, INFRABEL experts and 

management paid close attention to the workload boundary as safety is of strategic 

importance to railway companies and infrastructure managers. 

Both consistently low or consistently high8 efficiencies can lead to a range of issues 

related to staff well-being, employee morale, absenteeism, and in some cases human error. 

This is consistent to previous work by Paradi et al. (2014) where best practices for bank 

branch efficiency are not only positioned on but also close to the estimated production 

frontier. If bank branch staff is ‘pushed to the limit’ they can respond by eventually 

breaking down. 

Other examples of possible managerial actions initiated or supported by the efficiency 

results are as follows. The optimization of team composition (adding or retrieving team 

                                                 

8 Indicating overstaffing or situations where staffing levels could be close to their workload limits. 
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members during a work shift); changing shift transition times (e.g., earlier or later start for 

some of the team members); or negotiating with the asset management department to obtain 

a more convenient spread of infrastructure maintenance works (a main driver of the 

“safety” output). Evidently, additional information from field management or staff is 

necessary before taking appropriate action. However, the efficiency results allow senior 

management to focus on the most prominent efficiency issues, keep a finger on the pulse 

by monitoring their evolution, and evaluating the impact of their decisions. 

Leveraged by the BI tool, this research received a very positive feedback from both the 

experts and the management of INFRABEL. The interactive capabilities of the BI 

application allow for a more detailed analysis of the clustering and efficiency results. We 

accomplish this at different levels of data granularity, ranging from top-level aggregation 

to each individual Controller. A key concept underpinning each analysis is our ability to 

interact with INFRABEL. At any aggregation level and at any moment, users can instantly 

switch to the highly detailed operational data such as the details of the staff roster, the 

traffic controller actions, and safety controller actions. This allows business experts to 

explore the efficiency results in an intuitive yet quantitative way, challenge and 

complement the findings with their expert knowledge, detailed staff roster and operations 

data, and feedback from the field. In summary, business experts can extend their analysis 

beyond the traditional efficiency results, and dive deeper into the possible causes or main 

drivers of inefficiency. 

The objective of the permanent performance measurement is not only to track the 

efficiency of the aligned traffic control staff, but also - and certainly no less importantly – 

to identify areas or patterns of possible overload, especially when related to the safety 

component of the analysis. For example, systematically recurring high efficiencies could 

point at a structural overload of the staff involved. We could add more months as time 

progresses. The managerial objective of permanent performance measurement is not only 

to assess and track the efficiency of the aligned traffic control staff, but also - and certainly 

no less importantly - identify areas or patterns of potential over- or understaffing, especially 

when related to safety. For example, systematically recurring high safety weighted 

efficiencies could point at a structural understaffing of the Controllers involved. 
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2.5 Conclusions & Future Work 

We believe that the actual implementation of our framework is a tangible response to 

the Paradi and Sherman call for a more active 'selling' of the DEA concept to organizations 

(Paradi & Sherman, 2014). In contrast to its academic success, DEA has shown an only 

limited use in practice. Paradi and Sherman suggest augmenting DEA's use, until the 

'tipping point' is reached where practitioners and managers recognize for its power and 

versatility. The suggestions for further development of DEA methodologies and 

applications (i.e., offering easily accessible DEA software and an increased cooperation 

between researchers and practitioners) could be key strategic elements in reaching this 

breakthrough (Liu, Lu, Lu, & Lin, 2013). In addition, we believe that the use of a 

concomitant software application such as our BI tool can provide a substantial lever for 

management acceptance. 'Selling' DEA and its results in combination with (or integrated 

with) an advanced reporting and analysis tool, especially when tailored to the needs and 

concerns of the management, provides much more added value. Enriching the DEA results 

with an automated reporting system was also the approach in one of the few other 

successful DEA deployments, the large-scale implementation at the American Red Cross 

(Borja & Triantis, 2007; Medina-Borja et al., 2007; Medina-Borja & Triantis, 2014). In 

this paper, we have taken this approach beyond the reporting aspects alone and added the 

interactive analysis as a new key component. Information technology has much evolved 

since Golany and Roll (Golany & Roll, 1989) first suggested 'report generation' and 

'graphical data analysis' in their influential DEA application procedure, and the advent of 

BI software now provides a plethora of functions for exploring and probing efficiency 

results. The ease of use and interactive ability of these tools empowers management and 

experts to discover, analyze and monitor efficiency patterns at the click of a mouse, even 

within very large data sets. In addition, our custom-built application does not only provide 

value for money in its daily operation as a managerial tool, but also unlocks the full 

potential of the business experts during the iterative phases of model building and 

validation. Therefore, we suggest systematically offering the DEA concept as part of a 

larger and comprehensive solution to the analysis of performance consisting of back-end 

efficiency calculations and advanced front-end reporting and analysis capabilities. Our 

successful DEA deployment has proven the applicability of the advocated approach. 
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The future work associated with this research could involve many different directions 

given the depth of the study. The first subject is the incorporation of variables colored with 

blue in the ideal case study. We believe a macro-ergonomics based assessment of TCC 

would be a fruitful research venture to explore, as the literature indicates, social aspects as 

workplace culture, management styles, stress, and work-life trends have a direct 

relationship with human performance. Building on that, we conducted this study assuming 

that none of the Controllers (DMUs) interacts with each other while we clearly knew from 

the very beginning this assumption was false. This is part due to missing data to establish 

the interface between Controllers (DMUs) and the lack of measurement regarding the 

group decision making that takes place when TCC personnel is faced with a challenging 

decision. A potential future research opportunity lies in observing the TCC room in real 

time especially when group decision making occurs and relating that with the existing data 

measurement framework. Given that measurement regarding macro-ergonomic factors are 

available, we could model overall TCC performance using a Network DEA approach that 

considers Controllers and Supervisors as sub processes of the larger TCC performance. 

Even if the data were available, our preliminary survey of the NDEA literature did not yield 

any models where intermediate outputs of sub processes constitutes the contextual 

environment for other sub processes – which is the case in TCCs. 

We based our analysis that we performed on an ex-post approach where we evaluated 

results long after the events leading to performance have already occurred. Considering the 

dynamic nature of infrastructure systems, decisions based on ex-post analysis might be 

suboptimal or even not applicable in the future. Therefore, we believe that formulating a 

dynamic performance assessment framework could provide more insights. Finally, we did 

not provide a temporal and spatial aggregation of performance. Results of our study clearly 

indicate the need for aggregation, not only for the duration of shifts, but with the interfacing 

TCCs to obtain a more holistic understanding of performance. 

One of the cornerstones of our study is to dive deep into the details of the production 

process, by constructing datasets and models at workstation and Controller level. As this 

level of data disaggregation draws the research nearer to an assessment of individual 

performance and behavior, a general caveat is however in order. With a frictionless 
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implementation of the performance measurement system in mind, future research will need 

to continue its non-intrusive approach, and ensure the personal privacy of the individual 

traffic controllers. Particularly in highly unionized environments – such as the railways or 

air traffic control – this is critical in terms of user acceptance and satisfaction. Therefore, 

to mitigate potential implementation issues, an extension of the research efforts towards 

the literature on ‘Electronic Performance Monitoring’ systems - and their effects on 

organizational and individual performance – may be warranted (see, e.g., (Alge & Hansen, 

2014)). 

Our research has gone only so far in providing feedback to theory. Given that we view 

our research as multi-disciplinary, we borrow concepts from other domains without 

fundamentally changing other domains or reaching the limits of economic production 

theory. Our next opportunity is to collaborate with researchers in other domains (e.g., 

human factors, decision theory) where we could undertake a number of theoretical 

challenges and questions. For example, to what extent do Controller preferences affect the 

definition of the production possibility set? How do human factor considerations such as 

distributed situational awareness affect the definition and the consideration of the 

contextual variables? In the end, how do the answers to these questions challenge the 

production axioms that we assume in efficiency analysis? In other words, what are the 

limits of economic production theory and does this application lend itself to explore these 

limits? 
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Abstract 

Today’s infrastructure systems are complex sociotechnical systems (STSs) that 

progressively depend on the cooperation between humans and autonomous systems for 

their real-time management. Traditionally in STSs, operational decisions are made in real-

time by “Controllers” while the long-term production technology changing decisions are 

made by higher level decision makers. This could potentially introduce strategic 

misalignments between the real-time and long-term decisions and therefore increase failure 

risks. The increasing role of automation in STSs is a leading example of this case with a 

crucial impact on safety. Advances in automation technology, increasing financial 

pressures, and the desired reduction in human errors incentivize the managers of STSs to 

increase the role of automation. However, in many instances, dynamic contextual 

characteristics of the infrastructure network, e.g., traffic complexity, render the use of 

automation ineffective and require manual Controller interventions to sustain reliable 

operations. In this paper, we investigate the workload distribution between collaborating 

humans and autonomous decision-making units. Additionally, we study the influence of 

contextual variables on Controller preferences with respect to Controllers collaborating 

with autonomous systems. To address these goals, we propose a novel two-stage 

framework that combines Data Envelopment Analysis (DEA) with Machine Learning 

(ML) techniques. Our framework allows us to explore the potential of ML to explain the 

influence of contextual variables. We apply our methodology to a large-scale dataset from 

INFRABEL (the Belgian National Railway Company) and verify our results with domain 

experts to understand Controller preferences regarding the use of automation in safety-

critical environments. 

Keywords: Data envelopment analysis (DEA), machine learning, autonomous 

sociotechnical systems, revealed stakeholder preferences. 
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3.1 Introduction 

Infrastructure systems are complex sociotechnical systems (STSs) that rely on the 

successful collaboration among human decision makers and autonomous systems to deliver 

critical services (O’Sullivan and Sheffrin 2007). Given today’s highly competitive 

economy, the management and operation of STSs occasionally face conflicting 

performance pressures of safety, economic efficiency, and quality of work-life. At the same 

time they encounter uncontrollable environmental phenomena, technological advances, 

varying operator skills, and societal demands (Oster 1999). 

In STSs, safety critical decision-making activities are allocated to specifically trained 

people denoted as Controllers. While Controllers make daily operational decisions 

regarding service delivery, STSs are typically managed by large organizations. Long term 

production technology changing decisions (e.g., increasing automation) are usually made 

by higher level managers. However, Controllers and managers are subjective individuals 

therefore might have conflicting or misaligned preferences (Keeney and Raiffa 1993) with 

those of the organization or with each other. Consequently, individual value maximizing 

tradeoffs (e.g., cost minimization vs. safety maximization vs. fatigue minimization) of 

these internal stakeholders could unintentionally lead to the underutilization of capital 

investments and negate re-organization efforts. A highly relevant example of the described 

phenomenon is the use of automated decision-making systems to assist in safety-critical 

human decision making. The increase in automation is a sociotechnical change that is 

rapidly spreading to the rest of the World’s workforce (Frey and Osborne 2017; Acemoglu 

and Restrepo 2017). Modern STSs, such as real-time railroad infrastructure management 

systems, are currently in the process of cultivating this change as they increasingly rely on 

collaborative autonomous systems to handle some of the Controller workload. Therefore, 

as part of this research, we use these types of STSs as test-beds to investigate and learn 

about the human-autonomous system collaboration in the management of safety critical 

tasks. 

The primary use of automation in the control of STSs is to decrease system risk levels 

by handling some of the Controller task workload, which is one of the leading sources of 
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STS failures (Rasmussen 1997). It is argued that a “safe operation envelope” delineates the 

accident free operational boundaries of a STSs by three “frontiers”: (i) the Controller 

workload, ii) the economic sustainability, and (iii) the designed safety limit of the artifact 

or system. Rasmussen’s “safe operation envelope” proposes that allocating a safety-critical 

decision maker with more workload than s/he could handle considerably increases the 

failure risk of STSs. Therefore, the measurement of the Controller workload is imperative. 

However, workload measurement in STSs is a challenging task due its complex nature 

(Leveson 2011). Recently an approach was proposed to quantify the relative Controller 

task workload based on operational data (Topcu, Triantis, and Roets 2019) by using an 

empirical productive efficiency measure (Farrell 1957; Charnes, Cooper, and Rhodes 

1978) on the Debreu-Farrell (Debreu 1951; Koopmans 1951) frontier. In this paper, we 

leverage this quantification approach to investigate how the workload is shared between 

collaborating humans and autonomous Decision-Making Units (DMUs) in modern STSs. 

We specifically pursue two research questions. The first is “How does the workload 

distribution between collaborating human and autonomous decision-making systems vary 

given dynamic operational demands? We address this question by considering Controllers 

and the automated systems they collaborate with as parallel transformation process 

networks. We collect rich and high fidelity operational dataset from Traffic Control Centers 

(TCCs) of the Belgian national railroad company (INFRABEL). We then employ a Data 

Envelopment Analysis (DEA) approach to compute how much workload is handled by the 

people and the autonomous systems, represented by the efficiency scores (Topcu, Triantis, 

and Roets 2019). The second question is: “What are the revealed Controller preferences 

regarding the workload delegated to automation, given observed contextual infrastructure 

network characteristics?” We address this question by establishing the interface between 

DEA and Machine Learning algorithms (ML) through a novel two stage approach that uses 

the workload measurement in the first stage. In the second stage of our approach, we relate 

the task workload to the contextual variables that influence Controller preferences 

regarding collaboration. Our analytical approach is driven by the unique transformation 

process we investigate, and which can be summarized with the following. 
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Each INFRABEL Traffic Controller (TC) manages a workstation that controls a 

physical portion of the railroad infrastructure and each workstation has a built-in automated 

decision aid system (ADAS)9. The TC can activate the ADAS to perform infrastructure 

control decisions for a time-period, a train, or a certain node within the controlled railroad 

network. Given this operational flexibility, INFRABEL instructs TCs to utilize the ADAS 

to the extent that they feel comfortable with. Since there is no mandatory operation 

instruction for the TCs, the context, conditions, and magnitude of the workload they choose 

to allocate to the ADAS vary drastically depending on contextual operational conditions at 

the time (e.g., Controller fatigue, traffic density, train delays, etc.). To elaborate, the 

contextual conditions are observed by the TC who then decides based on his/her 

preferences, which sections of the network needs to be handled manually and which can 

be delegated to the ADAS. Moreover, each individual TC’s ADAS utilization preferences 

could be different from the preferences of the managers that made the investment decision 

to install it. Consequently, individual controller decisions can lead to the underutilization 

of the ADAS and potentially negate the organizational efforts to increase automation. 

We believe the combination of factors described above renders this paper an innovative 

application of DEA based on the following criteria:  

The application domain: as for the first time in the DEA literature we study 

collaborating humans and autonomous decision making systems that are making safety 

critical infrastructure control decisions. To achieve this, we are opening the DEA black-

box of our previous study (Topcu, Triantis, and Roets 2019) where we did not differentiate 

between the tasks handled by the TC and the ADAS. Our high fidelity and complex 

application domain is in line with previous efforts to spread the use of DEA (Paradi & 

Sherman, 2014; Triantis, 2015). 

Innovation and the thoroughness of the methodology: The unique transformation 

process we explore renders this study innovative with respect to many aspects. The first is 

our treatment of the contextual (Z) variables. Instead of adopting the traditional approach 

                                                 

9 Also known as “Automatic Route Setting” (Pachl 2002). It sets the train’s route when a train approaches a 

signal. 
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of treating the Z variables as efficiency influencing or peer selection determining factors 

(Banker and Morey 1986; Ruggiero 1996; Daraio and Simar 2005; Simar and Wilson 2007; 

Triantis, Sarayia, and Seaver 2010; Johnson and Kuosmanen 2012), we consider them as 

the driver of the distribution of workload between TCs and ADASs. This highlights the 

second innovative aspect of this paper. Since we quantify the workload with Farrell 

efficiency scores, we can leverage ML techniques to establish a relationship between the 

contextual conditions that shape the Controller preferences regarding the collaboration 

with automation. Our approach for utilizing ML is unique, as the studies in our research 

domain have so far only considered ML as a tool to handle large datasets as discussed in 

Section 2. Our methodology demonstrates the power of DEA-ML integration to provide 

highly personalized, flexible, and useful managerial information. 

The uniqueness and completeness of the used data: The highly granular data is tailor-

made for this study and it differs considerably from the previous modeling of railway 

control centers (Roets, Verschelde, and Christiaens 2018) and the workstations (Topcu, 

Triantis, and Roets 2019). Compared to our previous study (Topcu, Triantis, and Roets 

2019), the data source is increased to seven fully-operational INFRABEL TCCs instead of 

a single pilot. Consequently, the dataset is large for a DEA study and consists of 21,930 

observations from a purposefully anonymized month in the year 2018. The number of 

variables in the data have expanded considerably, as it now includes measurements for the 

Controller age, phone calls, trains delays, and the amount of time that spent using the 

recently installed forecast tool. 

The validation of the proposed methodology and obtained results: We verify our 

approach by investigating the traffic control process at INFRABEL, on-site within their 

TCCs. We provide a brief comparison of our approach with traditional regression based 2-

stage DEA models (Ray 1988) and check the validity of our ML based interpretation of the 

contextual variables based on the feedback from domain experts. 

Contribution to modeling approaches: We propose a novel two-stage approach that 

consists of DEA in the first stage and ML in the second stage. We experimented with ML 

algorithms to explain the influence of contextual variables given the complex 

transformation process we study. We use permutation importance techniques (i.e., feature 



58 

 

relevance) to rigorously compute the ML interpretation of the contextual variables and 

compare them to linear regression approaches that are commonly utilized in other 2-stage 

DEA models (Hoff 2007; Banker and Natarajan 2008; McDonald 2009; Simar and Wilson 

2007). Our results indicate that traditional linear regression-based approaches could 

potentially misinterpret the influence of contextual variables by a large margin in complex 

production processes found in STSs. Therefore, we also demonstrate the potential benefits 

of integrating ML techniques with DEA, as its prediction accuracy far exceeds the 

regression based methods in this context. This capability allows us to establish an 

interdisciplinary bridge between the systems science and performance measurement 

literatures. 

Policy insights: Infrastructure management systems will become increasingly 

autonomous. However, the safety critical decisions are expected to be overseen by humans 

given the severe consequences of their failures (National Transportation Safety Board 

2016; Salmon, Walker, and Stanton 2016). From a system safety perspective, our study 

provides insights from an operational STS regarding the human-autonomous system 

collaboration in safety critical environments. From a system design perspective, the high 

fidelity insights obtained from this study could be used to inform the design of high value 

STSs (Topcu and Mesmer 2018). From a managerial perspective, increasing digitization 

and recent developments in measurement technology enables enterprises to collect highly 

disaggregate, precise, and large datasets that capture the actions of lower level decision 

makers. Such granular data allows one to learn about the revealed preferences of lower 

level decision makers without the need for self-reporting tools such as surveys. From a data 

analytics perspective, our use of ML techniques (Breiman 2001a; 2017; Chen and Guestrin 

2016a; Vapnik and Lerner 1963; Vapnik, Golowich, and Smola 1997; Nørgård et al. 2000) 

demonstrates how reliable and useful information (e.g., revealed employee preferences) 

could be extracted from the operational data to make well informed decisions. Finally, we 

respond to the calls from the macro ergonomics community to provide holistic systems 

driven approaches to address the interdisciplinary nature of STSs (Leveson 2011; Kleiner 

et al. 2015). 
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The rest of the paper is organized as follows. Section 2 provides a concise literature 

review. Section 3 describes the transformation process and the employed methodology 

along with the description of the data. Section 4 presents the results while Section 5 

concludes. 

3.2 Literature Review 

Controllers make safety-critical and service-oriented decisions for STSs that ensure the 

delivery of system level services. TCs at INFRABEL, like many other STS Controllers, 

handle their workload by collaborating with an automated system. By definition, safety 

critical decisions are context dependent and usually unique. Thus in STSs, this role is 

allocated to a group of humans (Wilson 2000). This couples the performance of the system 

with the performance of the Controllers that are subject to work environment related issues. 

Human performance is influenced by social factors such as fatigue (Ferguson et al. 2008; 

Roets and Christiaens 2017), mental stress (Beehr 2014), situational awareness (Salmon et 

al. 2009), prospective memory (Grundgeiger, Sanderson, and Dismukes 2015), among 

many others. In short, the TC workload emerges from the interaction of the social network 

and the technology (Kroes et al. 2006) and it is consequently of an interdisciplinary nature 

(Leveson 2011). 

In this research, we use DEA (Charnes, Cooper, and Rhodes 1978) that is rooted in 

microeconomic production theory (Koopmans 1951; Debreu 1951; Farrell 1957) to 

understand the TC workload. We consider the work handled by the TCs as an abstract 

transformation process that converts a set of resources (inputs) into a set of 

outputs/services/outcomes under uncontrollable work environmental factors that are 

described in detail elsewhere (Topcu, Triantis, and Roets 2019). Thus, we start our 

literature review with performance measurement approaches that consider contextual 

heterogeneity. 

3.2.1 DEA Methods that Deal with Environmental Heterogeneity 

The idea of considering differences in the performance environments was initially 

proposed through a single categorical variable that restricts the reference set of the 

evaluated DMU (Banker and Morey 1986). In the following years, researchers proposed 
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three main approaches among others to consider efficiency performance measurement 

under environmental heterogeneity. The first is the 2-stage model (Simar and Wilson 2007; 

2011). The 2-stage approaches compute the efficiency on the first stage without 

consideration of the Z variables, and then investigate the influence of contextual variables 

through linear regression methods. This second stage is predominantly based on truncated 

regressions (Simar and Wilson 2007, 2011), but also applies Ordinary Least Squares (OLS) 

and Tobit regressions (McDonald 2009; Banker, Natarajan, and Zhang 2019). The second 

is the multivariate method (Seaver and Triantis 1992; Triantis, Sarayia, and Seaver 2010). 

In the multivariate approach, the comparability assumption is rigorously tested through 

robust statistics (Hubert, Rousseeuw, and Branden 2005). The DMUs in the production 

possibility set are then grouped into relatively homogenous subgroups through clustering 

methods (Herrera-Restrepo et al. 2016). The efficiency scores are analyzed both within 

these clusters and with respect to the meta-frontier that disregards the differences in 

performance environments (O’Donnell, Rao, and Battese 2008). The third and final 

approach is the semiparametric method (also known as the one stage method) (Johnson and 

Kuosmanen 2011; 2012). The primary advantage of the one stage method is the 

computation of efficiency scores in conjunction with the influence of the Z variables. 

While this paper also deals with contextual variables, it is fundamentally different from 

the literature discussed above. First, driven by the specific transformation process, this 

paper is concerned with understanding the influence of contextual variables on the 

workload distribution decisions of a TC among the ADAS and him/herself. We represent 

the collaborating TC and the ADAS as a mutually exclusive parallel process represented 

by two nodes. Second, this paper differs in terms of the analytical method used in the 

second stage. The traditional two-stage approaches a usually rely on some variation of a 

linear regression approach in the second stage to explain the efficiency scores that were 

calculated in the first stage. While this approach is widely adopted by relatively simpler 

transformation processes such as banking and management, we question the applicability 

of this approach to STSs given their complex, nonlinear, and automated operational 

characteristics. Similar points have been raised by previous research on transportation 

systems (Karlaftis and Vlahogianni 2011) and safety-critical infrastructures (Paltrinieri, 

Comfort, and Reniers 2019). In contrast to linear regression-based approaches, the ML 
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approaches explored in this study are able to handle complex, non-linear relationships 

between the efficiency scores and Z variables. Similar to DEA, our approach lets “the data 

speak for itself”, and does not assume a priori a linear relationship between efficiency 

scores and Z variables. 

3.2.2 DEA and Machine Learning 

Machine learning (ML) is a term used generally for automated statistical predictive 

modeling. A review of fundamentals (Alpaydin 2009) and an extensive literature review is 

provided elsewhere (Kotsiantis, Zaharakis, and Pintelas 2007; Tan 2018). ML has three 

types of learning: supervised, unsupervised, and reinforced. Supervised ML establishes a 

predictive statistical relationship between predictor variables and target variables10. 

Examples include traditional statistical regression algorithms and perception-based 

algorithms (e.g. artificial neural networks). Unsupervised learning does not seek a target 

variable to predict, instead, it is used for segmentation/sub-setting purposes. Widely used 

clustering techniques such as k-means (Hartigan and Wong 1979) belong in this group. 

The final type of ML is reinforcement learning. This is similar to artificial intelligence, as 

the algorithm is designed to capture the best possible knowledge by accumulating 

experiences and learning from it by trial and error. While ML already made a significant 

impact in a wide array of application areas, the literature on the intersection of ML and 

DEA is relatively scarce. 

One of the first studies that experimented with ML in DEA investigated the use of 

clustering techniques to identify reference sets in which the DMU homogeneity assumption 

holds (Seaver and Triantis 1992; Triantis, Sarayia, and Seaver 2010). This method was 

recently implemented and verified on a fully operational infrastructure management system 

(Topcu, Triantis, and Roets 2019). A considerable group of publications explored the 

complementary and contrasting roles of the neural network algorithms and the DEA 

regarding the assessment of productive performance (Athanassopoulos and Curram 1996; 

Costa and Markellos 1997; Santin, Delgado, and Valino 2004). Future performance of 

DMUs were investigated from an ex-ante perspective through a predictive approach by 

                                                 

10 Denoted as independent and dependent variables respectively in the statistics jargon. 
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using a decision tree learning model (Sohn and Moon 2004). The use of ML classification 

and prediction techniques to identify valuable sources of organizational information was 

demonstrated for a DEA based decision support tool (Samoilenko and Osei-Bryson 2013). 

The predictive ability of neural networks was utilized to forecast the future performance of 

DMUs for improved personnel selection (Azadeh et al. 2011). 

We observe that a significant portion of ML-DEA papers are focused on computational 

speed issues when dealing with large datasets. Two big data extensions of regular DEA 

approaches were introduced, where both proposed to divide the data to identify 

observations on the frontier iteratively (Khezrimotlagh et al. 2019; Zhu, Wu, and Song 

2018). Similarly, a subset of the data was used to train ML algorithms to predict the 

efficient observations on larger datasets (Zhu et al. 2018). While we find the approach 

intriguing, we are concerned that the results might be biased given the selection of the 

training subset. In a similar line of inquiry, the potential benefits of incorporating ML 

methods to understand environmental efficiency was discussed by Song et al. (2018). 

Given this concise review, we believe that there is an untapped potential regarding the 

use of ML in efficiency measurement and it could be leveraged to improve both theory and 

practice. A primary goal of this paper is to explain the influence of contextual variables on 

the employee preferences in complex transformation processes using supervised ML 

techniques. In complex DMUs, the correlation between the variables are low and the 

operational conditions are highly dynamic. Thus, we utilize the predictive power of 

supervised ML algorithms and use contextual Z variables as predictors of the DEA 

efficiency scores that represent how much workload is handled by the ADAS and the TC. 

Our approach is translational, as we conduct this research on a fully operational STSs 

where humans and autonomous decision-making units collaborate towards a common goal. 

We experiment with four well established machine learning algorithms: (i) the random 

forest (Breiman 2001b), (ii) Xgboost (Friedman, Hastie, and Tibshirani 2000; Friedman 

2001; Chen and Guestrin 2016), (iii) the support vector machine (Boser, Guyon, and 

Vapnik 1992; Guyon, Boser, and Vapnik 1993; Cortes and Vapnik 1995; Vapnik, 

Golowich, and Smola 1997), and (iv) artificial neural networks (Jain, Mao, and Mohiuddin 

1996). We leave the discussion of the respective methodologies associated with these 
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algorithms, why we considered these algorithms appropriate, and our proposed technique 

for calculating the relative influence of predictor variables in §3.3. 

3.2.3 Revealed Stakeholder Preferences 

Large STS organizations such as INFRABEL are composed of a vast number of 

decision-makers with subjective and potentially conflicting preferences (Franssen 2005). 

Since STSs are rational organizations (Scott 2015), organizational preferences are 

relatively easy to identify. For INFRABEL, operating the infrastructure system safely and 

on schedule is an easily identified preference. This is reflected in the company’s strategic 

objectives “safety first” and “trains on time”. On the other hand, TCs are shift workers who 

are subject to work environment issues such as fatigue (Dawson and McCulloch 2005) and 

traffic complexity. Thus, we expect TC preferences to be dynamic and context dependent. 

From a managerial perspective, one could capture the TC preferences through surveys or 

interviews. However, the “stated preferences” acquired from self-reporting methods could 

significantly differ from actual daily behavior. In this paper, we specifically focus on TC 

preferences that are associated with collaborating with the ADAS. Instead of administering 

surveys, we analyze a large operational dataset from INFRABEL in pursuit of learning 

about “revealed preferences” (Samuelson 1948; Chambers and Echenique 2016) that 

describe how TCs actually behave given uncontrollable contextual factors represented by 

the Z variables. 

3.3 Methodology 

3.3.1 The Data 

The highly granular data were custom made for this study and are from seven fully-

operational INFRABEL TCCs for an entire month in the year 2018. It includes 21,930 

observations that represent one operational hour for both the ADAS and the TC’s that make 

infrastructure management decisions. The data used in this paper differ considerably from 

the initial modeling of railway control centers (Roets, Verschelde, and Christiaens 2018) 

and our previous study at the workstation level (Topcu, Triantis, and Roets 2019). We 

added the train delay, responded phone calls, and the age of the controllers specifically for 
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the purpose of this research. Table 3-1 provides variable definitions and descriptive 

statistics. 

Table 3-1 The Sociotechnical Data and its Descriptive Statistics 

Variable Name Description Mean Range  

Controller Skill 
Days 

We measure skill levels with the number days the TC was 
assigned for the designated role. 

518.00 [29;759] 

Signal Passes Number of total signal passes of trains within the control area 44.49 [0;193] 

Manual Movement 
Decisions 

Time spent (in seconds) for manually opening signals by TCs 111.04 [0;1580] 

Auto Movement 
Decisions 

Time spent (in seconds) for manually opening signals by the 
ADAS. The time needed for each signal is considered the same as 
when opening a signal manually. 

277.17 [0;1870] 

Adaptation 
Decisions 

Time spent (in seconds) for decisions that change the state of the 
railroad such as merging or splitting trains, re-routing of trains, or 
special procedures at single-track lines. Performed manually by 
TCs. 

186.57 [0;1354] 

Anticipation Measure (in seconds) of TC time spent using the forecast tool that 
anticipates the future state of the network. 

4.96 [0;840] 

Responded Phone 
Calls 

Number of phone calls addressed by TCs. TCs routinely receive 
phone calls from other INFRABEL personnel about decisions that 
require further information. 

1.43 [0;27] 

Age Age of the Controller 47.03 [23;63] 

Traffic Complexity Measure of traffic complexity of control area. Estimated by using 
the number of control signal passes and performed adaptation 
decisions 

926.06 [0;72000] 

 

Traffic Density Measure of traffic density in control area. Calculated by dividing 
the number of train movements with the number of large traffic 
control signals controlled by that Controller. 

832.34 [0;10605] 

Fatigue Level This variable represents the mental fatigue of TCs. It is calculated 
by INFRABEL’s predictive tool that is conceptually based on the 
fatigue Risk Index (Roets and Christiaens 2017; Folkard, 
Robertson, and Spencer 2007). 

0.85 [0.64;1.55
] 

Delay Average train delays within the control area. Measured from the 
scheduled time in seconds. Large delays are due to freight trains. 
Trains running before schedule (negative delays) can also perturb 
traffic flows, and therefore are considered through their absolute 
value. 

562.17 [0;25,936] 

 

3.3.2 The Analytical Approach 

Going back to our first research question, this paper investigates how the total workload 

is distributed between the TCs and the ADAS, over time. We model the traffic control 

process of the TCs for two parallel perspectives, the workload the TC chooses to handle 

manually and the workload delegated to ADAS by the TC. Our analytical approach is 

composed of two steps. We present the two steps in Figure 3-1. In the first step, represented 

with the blue box, we frame two parallel and mutually exclusive DEA models that represent 

the ADAS and the TC. Notice that the blue rectangle frame in Figure 3-1 is exactly the 
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same with the frame of the workstation boundary in our previous work. However, the 

realism of the model is increased with additional variables (Topcu, et al. 2019). The 

temporal measurement unit of the DMU is selected as one hour because: (i) it is narrow 

enough to capture the dynamic changes in the state of the infrastructure and (ii) it is large 

enough to capture the entire collaborative control process. The horizontal arrows on the 

left side represent the resources used by each process (X variables). The only irrevocable 

resource used by the manual process is one hour of TC expertise. For the ADAS model, 

the only input variable is the total signal passes of trains within the control area. Arrows 

on the right side of black boxes represent the outputs (Y variables) generated by each 

process. There are four main tasks for the TCs: a) making “movement decisions”, which is 

identical with those performed by the ADAS; b) making track “adaptation decisions”, 

which can only be performed manually; c) “forecasting/anticipating” the future state of the 

network through a recently installed projection tool; and d) “responding to phone calls” 

from other personnel to provide information. The ADAS can only perform movement 

decisions in its current version. 

 

Figure 3-1 Two-stage Methodology and Sociotechnical Variables 

While there are various models in the DEA literature to measure performance in the 

presence of contextual variables (§2.1), we purposefully disregard them in the first stage 

of our model. This paper explores additional uses for the contextual variables in DEA to 
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obtain information the managers can use to make rational decisions (e.g., tendencies of 

their employees (TCs) to work with the ADAS). Therefore, guided by the characteristics 

of the collaborative transformation process, instead of investigating the influence of 

contextual variables on efficiency scores we consider them from a TC preference revealing 

point of view. We employ an output-oriented Variable Returns to Scale model (Banker, 

Charnes, and Cooper 1984) to compute the efficiency scores based on the assumption that 

experienced TCs should be able to handle more workload compared to inexperienced TCs. 

We select the type and orientation of our ADAS model based on a similar assumption. The 

ADAS should perform increasingly more movement decisions given that one provides 

increased traffic volume to it. Thus, for both the TC and the ADAS we formulate the linear 

optimization formulation as: 

Max θ                 (1) 

Subject to ∑ 𝑥𝑖𝑗 ∗ 𝜆𝑗 ≤ xij0

𝑛
𝑗=1  ∀𝑖 = 1 𝑡𝑜 𝑚                                                 (2) 

∑ 𝑦𝑟𝑗 ∗ 𝜆𝑗 ≥ θ ∗ 𝑦𝑟𝑗0

𝑛
𝑗=1  , ∀𝑟 = 1 𝑡𝑜 𝑠                                                               (3) 

 ∑ 𝜆𝑗 = 1𝑛
𝑗=1                             (4) 

   𝜆𝑗 ≥ 0 , θ ≥ 0                  (5) 

 

In equations 1-5; 𝑛 represents the number of DMUs, 𝑥𝑖𝑗 represents the amount of 

resource 𝑖 consumed by the 𝑗𝑡ℎ DMU, 𝜆𝑗 is the weight assigned to a peer j, θ is the 

efficiency score, 𝑦𝑟𝑗is the 𝑟𝑡ℎ output of 𝑗𝑡ℎ DMU, and 𝑦𝑟𝑗0
 is the 𝑟𝑡ℎ output of the DMU 

under investigation. 

Recalling our second research question, we are interested in capturing TC revealed 

preferences regarding the use of automation based on the state of their performance 

environment represented by Z variables (shown as vertical arrows in the bottom half of  

Figure 3-1). Since each TC performs traffic management decisions on their dedicated 

portion of the network and have a dedicated ADAS at their disposal, the extent that each 

TC chooses to utilize the ADAS depends strictly on their preferences. While we realize the 

possibility of investigating TC and ADAS workloads concurrently, which could require 

multi-output type regression (Borchani et al. 2015), we consider this paper as a naïve first 

step and treat TC and ADAS workloads as mutually exclusive. We proceed to describe the 

experimented learning algorithms and their validation. 
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3.3.3 Selection and Validation of ML Models to Extract Revealed Preferences 

In the second stage of our analytical approach, we investigate the TC preferences 

regarding the workload distribution between the ADAS (𝜃𝐴𝐷𝐴𝑆) and the TC (𝜃𝑇𝐶). 

Following the ML terminology for supervised learning, we treat the DEA contextual Z 

variables as predictor variables and formulate two mutually exclusive predictive models 

that consider the efficiency scores of the TC (𝜃𝑇𝐶) and the ADAS (𝜃𝐴𝐷𝐴𝑆) as target 

variables. The methodology of the second stage could be summarized with the following 

steps: (i) implementation of the baseline ML algorithms, (ii) tuning of the ML algorithm 

and its validation, (iii) identification of the importance of features (variables) for each 

specific algorithm. An overview of ML model calibration and how it fits with the proposed 

DEA approach is provided in Figure 3-2. Figure 3-2 depicts how we treat the contextual 

variables in predicting the efficiency scores calculated in Figure 3-1, using the algorithms 

described in this subsection. 

 

Figure 3-2 An Overview of Machine Learning Algorithm Calibration 

Before covering the details of the implemented algorithms, we start with our algorithm 

validation approach. In general, ML algorithms divide the data into two sub-sets, i.e., the 

training set and the test set. The algorithm is then allowed to learn from the training set and 

its parameters are optimized before exploring its prediction accuracy on the test set. For all 
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implemented algorithms in this paper, we randomly split 80% of the data for the training 

set and the rest of the data for the test set. We first employ a random search strategy for the 

hyperparameter11 tuning since this approach has been proved to be more effective than the 

traditional grid search (Bergstra and Bengio 2012). Second, we apply a K-fold cross-

validation (Kohavi 1995) to obtain an unbiased evaluation of the model performance and 

to prevent overfitting issues. The process can be summarized with the following. We divide 

the training set into 10-folds, meaning that 90% of the data are treated as the actual training 

set and the remaining 10% as the validation set. The machine learning model is then 

iteratively trained and validated on these ten different folds. Lastly, for all implemented 

algorithms, we test the bias and accuracy of the test set based on well-known statistical 

considerations shown in Equation 6, i.e., the mean absolute error (MAE) and the root mean 

squared of error (RMSE). In Equation 6, 𝑦𝑖̂ is the predicted value, 𝑦𝑖 is the actual value and 

n is the number of observations. The values of these two factors indicate the prediction 

accuracy of the implemented model within the training and test datasets. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦𝑖̂|𝑛

1

𝑛
 ; 𝑅𝑀𝑆𝐸 =  √∑

(𝑦𝑖−𝑦𝑖̂)2

𝑛
𝑛
1       (6) 

The next step is the extraction of “feature importance” once the ML models are 

optimized and validated. Feature importance in the ML language represents the impact of 

predictor variables on the target variables which, correspond to the Z variables and the 

efficiency scores in our case. While there are various methods to compute the feature 

importance such as the variance and Gini importance (Breiman 2001b), most approaches 

are prone to bias (Strobl et al. 2007). We use the permutation importance concept because 

it normalizes the biased measure through a permutation test that iteratively replaces a 

predictor variable with a random value, repeats the analysis, and returns significance P-

values for each predictor variable (Altmann et al. 2010). Thus, we select the permutation 

importance test because it is relatively less susceptible to bias compared to other 

alternatives. Permutation test captures the importance of a predictor variable by calculating 

                                                 

11 Hyperparameter is a parameter whose value is set before the learning process begins. In other words, by 

setting up a grid of hyperparameter values and selecting random combinations to train, we can minimize the 

estimation error rates.  
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the overall goodness of fit (𝑅2) following Equation 7 and then calculating the difference 

in the fit between the baseline value and the randomized value. Hence, the computed 

relative permutation importance for each predictor variable is always positive, does not 

sum up to one, and finally, indicates the relative predictive strengths of each variable. We 

next cover the implemented algorithms. 

𝑅2 = 1 −
∑(𝑦−𝑦̂)2

∑(𝑦−𝑦̅)2         (7) 

The first is the Random Forest (RF) and in this paragraph we describe why we 

considered it as a promising algorithm to experiment with. The RF algorithm belongs to 

the family of ensemble methods, which rely on the aggregation of individual decision trees 

(Breiman 2001b). We define the individual decision trees used in this paper, following a 

classification and regression tree model of form 𝑓(𝑥; Θ𝑘). The details of the decision trees 

are described elsewhere (Breiman 2017). The RF algorithm is composed of a collection of 

random trees, where each unpruned tree is assigned a subset of features and a sub-dataset. 

Within this random forest, predictions of all individual trees are aggregated through 

majority voting to determine the collective result of the forest. Thus, instead of being 

influenced by faulty prediction of a single decision tree, RF demonstrates good stability on 

high-dimensional datasets, avoids overfitting issues, and yields a high accuracy rate (Ali et 

al. 2012). These characteristics also provide the reasons why we consider this algorithm 

appropriate for this paper. The RF is defined with L collection of decision tree predictors 

{𝑓(𝑥; Θ𝑘), k = 1, … , L}, where Θ𝑘 are independent random vectors, and x represents the 

predictor variables (that correspond to Z variables in our case). Each tree is randomly 

generated by selecting a set of features (𝑚) from the set of Z variables in our DEA 

notation, 𝑚 ∈ 𝑍 and a random sample of size n from the training dataset 𝑛 ∈ 𝑁, where N 

represents the total number of DMUs in the training set. The RF prediction is then obtained 

by averaging K decision trees as shown in Equation 8. We stop the optimization and select 

the ideal number of decision trees when the expected variance converges. 

𝑓 =
1

𝐾
∑ 𝑓(𝑥; Θ𝑘)𝐾

𝑘=1          (8) 

The second algorithm is the extreme gradient boosting (Xgboost) (Chen and Guestrin 

2016b) that is also from the family of ensemble methods. Since its publication, Xgboost 
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had a strong impact on the ML community due to its computational speed when dealing 

with large datasets (Babajide Mustapha and Saeed 2016; Sheridan et al. 2016). Xgboost 

builds on the core idea of the gradient boosting machine algorithm (GBM) (Friedman, 

Hastie, and Tibshirani 2000; Friedman 2001), but it solves the inefficiencies of GBM by: 

(i) adding a regularization term to prevent overfitting, (ii) a parallel processing feature to 

minimize computational time, and (iii) allowing to customize algorithm parameters for 

increased flexibility. These features render the XGBoost algorithm an appropriate choice 

for the complex STS investigated in this paper. The objective of the Xgboost algorithm is 

to calculate the prediction scores and it is provided in Equation 9. In Equation 9, the first 

term on the right-hand side represents the loss function (𝑙) that measures the difference 

between the predicted value 𝑦𝑖̂ and the target value 𝑦𝑖. The second term is composed of the 

regularization term (Ω) and the prediction of a single decision tree (𝑓𝑘). The role of the 

regularization term is to penalize the complexity of the model to avoid overfitting and make 

the prediction stable. 

𝑂𝑏𝑗(𝜙) = ∑ 𝑙(𝑦𝑖̂, 𝑦𝑖)𝑖 + ∑ Ω𝑘 (𝑓𝑘)      (9) 

The regularization term (Ω) in Equation 9 is defined with Equation 10. It is controlled 

by the characteristics of the decision trees that are: the constant (𝛾), the number of leaves 

(T), the score on each leaf (𝜔), and the degree of regularization (𝜆). In addition to these 

parameters, we also use the hyperparameters of shrinkage and column subsampling, which 

we optimize through the random search to prevent overfitting issues. Shrinkage scales 

added new weights after each step of the tree boosting, to make the model learn slower and 

better. Column subsampling can accelerate the training process by only considering 

random subsets of descriptors when building a given tree (Friedman 2002). 

 Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2        (10) 

The third algorithm we implement is the support vector machine (SVM). While SVM 

was initially proposed to handle nonlinear generalization problems (Vapnik and Lerner 

1963) it was later developed into a supervised learning model for classification and 

regression with high-dimensional data (Boser, Guyon, and Vapnik 1992; Guyon, Boser, 

and Vapnik 1993; Cortes and Vapnik 1995; Vapnik, Golowich, and Smola 1997). In SVM, 

vectors of predictor variables are transformed into hyperplanes that exhibit linearity and 



71 

 

regression is applied within this hyperspace. While the hyperplanes exhibiting linearity 

assumption of the SVM is contrary to the nonlinear data set we are concerned with, we still 

choose to include the algorithm in our study for exploration and comparison purposes. The 

activation function (𝑓) in SVM is defined with Equation 11. In Equation 11, 𝜙(𝑥) is a 

nonlinear function that is mapped into a high dimensional space, 𝑤 is the weight vector, 

and b is the hyperplane. However, the details are described elsewhere (Cortes and Vapnik 

1995). One of the well identified issues with SVM is the necessity of selecting a kernel 

function beforehand (e.g., radial basis function (RBF), polynomial, linear etc.) and the 

sensitivity of SVM results to the kernel. The selection of the kernel complicates getting the 

optimal model configuration in certain instances (Mountrakis, Im, and Ogole 2011). 

𝑓(𝑤, 𝑏) = 𝑤 ∙ 𝜙(𝑥) + 𝑏         (11) 

The fourth algorithm is artificial neural network (ANN). ANN was initially introduced 

to explain information processing mathematically that is derived from human biological 

systems (McCulloch and Pitts 1943; Rosenblatt 1958). Over the years, a variety of ANNs 

have been formulated for various problems (Jain and Mao 1996). In this paper, we use one 

of the most utilized ANN algorithms, the multilayer perceptron (MLP) due to its ability to 

forecast and classify with precision (Nørgård et al. 2000). The basic unit of the MLP 

algorithm is an artificial neuron (also denoted as nodes). Artificial neurons, like a biological 

neuron, interconnects to nodes in other layers and transfers the information 

unidirectionally. MLP algorithms consist of at least three layers of nodes. An illustration 

of the model for the variables in this paper is depicted in Figure 3-3. 
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Figure 3-3 Layers of the MLP Algorithm  

In the standard MLP model (Hornik, Stinchcombe, and White 1989), the input of 

neuron 𝑗 in layer 𝑙 + 1 is represented with Equation 12. In Equation 12, 𝑤𝑖𝑗
𝑙  represents the 

weight of the connecting neuron 𝑖 in layer 𝑙 to neuron 𝑗 in layer 𝑙 + 1, and 𝑤𝑏𝑗
𝑙  is the bias 

of neuron 𝑗 in layer 𝑙, and 𝑓 is an activation function that represents the nonlinear mapping 

between the input vector and the output vector. Based on this standard model, we employ 

the “back-propagation” technique (Gardner and Dorling 1998) that minimizes the entire 

neural networks’ output error. For each training iteration, the algorithm makes a prediction, 

measures the error for that step, and then goes through each layer in reverse to measure the 

contribution from each node. We experiment with the ANN based on its ability to detect 

complex nonlinear relationship between predictor and target variables (Tu 1996). 

𝑥𝑗
𝑙+1 = 𝑓(∑ 𝑤𝑖𝑗

𝑙
𝑖 𝑥𝑖

𝑙 + 𝑤𝑏𝑗
𝑙 )        (12) 

Finally, we implement a simple multi-linear regression (MLR) model using the 

contextual variables and the efficiency scores. Our purpose is twofold: (i) to demonstrate 

the inability of linear models to understand the inherently complex nature of STSs and (ii) 

to provide the audience with a measure that we can use to compare to the ML results that 

is commonly utilized with the 2-stage DEA approaches. The MLR model is defined with 

Equation 13. In Equation 13, n represents the data point, 𝑌𝑛 represents the efficiency scores 

obtained from stage 1, 𝑥𝑛𝑖 are the contextual variables, 𝛽𝑖 are the coefficients for each 𝑥𝑖 

and 𝜀𝑛are the random error with expectation 0 and variance σ².  
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𝑌𝑛 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑛𝑖 + 𝜀𝑛
5
𝑖=1        (13) 

3.4 Results and Discussion 

3.4.1 Comparison of Efficiency Scores - The Workload Distribution 

There are 21,930 observations in our dataset that correspond to one hour of traffic 

control activities. We calculate the two mutually exclusive productive efficiency scores 

that represent task workloads for the TC and the ADAS, following the procedure described 

in §3.2. Strictly speaking, the Farrell efficiency scores should be interpreted as the relative 

distance to the boundary of attainable workload, and therefore varies between 0 and 1 (see 

also § 3.2). This rescaling allows for a direct and sensible comparison between the 

respective workloads of the manual and automatic processes. The distribution of the TC 

workload is observed to be slightly skewed to the right; it has a mean of 0.19 and a standard 

deviation of 0.16. Low average workload scores are attributed to the highly disaggregate 

measurement window employed in this study and unavoidable periods where the TC 

permanently monitors the automated process and remains standby to intervene manually. 

The average workload for the ADAS is 0.37 that is almost twice the average of TC 

workload. The median workload for the ADAS is almost identical with its mean indicating 

a symmetrical distribution with a standard deviation of 0.18. The correlation between two 

workload measurements is equal to -0.06. We consider this as an interesting result. Our 

initial expectation was to find a negative correlation between workload distributions based 

on our empirical observations of the workplace environment. This result indicates that the 

workload variation is more intricate than what we intuitively predicted. Our expectation 

was that, at any point in time, increases in the manual TC workload would be linked to 

decreases in the ADAS workload and vice-versa. However, this was not the case. As the 

distribution of workload might be influenced by time-of-the-day effects, we provide the 

boxplots for both TC and ADAS workload over time for a single anonymized workstation in 

Figure 3-4. 
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Figure 3-4 Workload Distribution over Time for an Anonymized Workstation 

The red box-plots in Figure 3-4 indicate low manual TC workloads around idle traffic 

hours (1-3AM) and how a steep climb starts after 5 AM, the morning rush hour. We observe 

two peaks around 8AM and 5 PM that correspond to the rush hour traffic and on average, 

the TC workload stays relatively high until 6 PM. On the other hand, the ADAS workload 

represented with turquoise boxes, exhibit high variation during the idle hours (1-3AM) then 

stays relatively flat until the PM rush hour traffic. Interestingly, the ADAS workload peaks 

around 7 PM, after the rush hour traffic during which the manual workload stays relatively 

low, parallel to our intuitive expectations. We discuss some potential sources of this trend 

in the next subsection. Notice that data for multiple TCs operating the same workstation 

were used to populate Figure 3-4, thus it could be masking certain individual TC attitudes 

due to aggregation effects. However, our granular analytical approach provides a plethora 

of information that allows to focus on the tendencies of individuals, workstations, shifts, 

or TCCs for a desired period of time. Providing a rigorous, useful, and flexible tool for 

managers. 
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From a practical and implementation point of view, Figure 3-4 demonstrates the power 

of our “parallel DEA model” in terms of quantifying not only the Controller manual 

workload but also the Controller use of automation, while visualizing the corresponding 

temporal and spatial variations. This provides valuable operational insights for the STS 

management, and enables them to identify and implement opportunities for improvement. 

For example, the temporal fluctuations for the workstation in Figure 3-4 can be compared 

with the other workstations in the control center, and as such allow for a more optimal work 

reallocation for the infrastructure network over these workstations. By spreading the 

(manual and automated) workload more evenly over the entire TCC, Controllers will 

experience a more balanced work environment, which could lead to improved employee 

satisfaction and well-being. Our approach also reveals the workstations and corresponding 

infrastructure where automation is underused (depending on the time of day). This spatial 

and temporal pinpointing of problem areas can support management in setting up 

improvement strategies (e.g., increase staff training where necessary, or investigate and 

eliminate shortcomings in the automation system). 

3.4.2 Performance of ML Algorithms in Explaining Revealed Controller 

Preferences 

The second research question this paper investigates is how to capture and explain 

revealed stakeholder preferences regarding the use of automation given the contextual state 

of the infrastructure network they control. In other words, we are interested in 

understanding to what extent contextual variables, that are uncontrollable for the TC yet 

describe the conditions in which performance takes place, influence the daily operational 

decisions in terms of the delegation of work between the ADAS and the manual TC. We 

start our discussion with the validation of ML models. We implement all discussed ML 

algorithms in Python using the “Sklearn” package (Pedregosa et al. 2011). 

For the RF algorithm, the number of trees and the number of features used in each node 

are the leading parameters. There is a positive correlation between the number of trees and 

the predictive performance of the model. However, this comes with a computational cost. 

Thus, we optimize the number of trees for model calibration. In Figure 3-5, we provide the 

learning curve plot of the RF model that demonstrates the relationship between the 
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expected variance vs. the number of trees in the forest. Figure 3-5 demonstrates that the 

expected variance saturates around 0.65 when the number of trees exceeds 40. Thus, we 

consider this number of trees sufficient and terminate the algorithm. Our calibration efforts 

through random search yields the optimum hyperparameters that shape the manual TC 

interventions and ADAS model respectively as: the number of trees [100 (TC), 900 

(ADAS)], the max depth [70 (TC), 110 (ADAS)], the max features to two for both, the 

minimum samples of leaf [3 (TC), 2 (ADAS)], and the minimum samples of a split [2 (TC), 

3 (ADAS)]. The difference in the numbers of trees between the manual TC interventions 

and the ADAS shows that ADAS needs more trees to reach convergence, which indicates 

the consideration of non-linearities. In other words, we attribute the large number of trees 

and the depth to the nonlinear and complex nature of the data, especially in the case of the 

ADAS usage (Oshiro, Perez, and Baranauskas 2012). 

 

Figure 3-5 Expected Variance vs. Number of Trees in the Random Forest Algorithm 

For the Xgboost algorithm, a similar process as RF is implemented for tuning the 

parameters for both DEA models respectively. The following results of the training model 

were obtained: the number of trees [600 (TC), 3000 (ADAS)], the max depth [4 (TC), 5 

(ADAS)], the shrinkage [0.3 (TC), 0.1 (ADAS)], the gamma [0.05 (TC), 0 (ADAS)], and 

the subsample [0.8 (TC), 0.9 (ADAS)]. We observe that the ADAS requires a larger 

number of decision trees with an increased maximum depth than the manual TC 

intervention model, indicating that the ADAS data are more complex than the manual TC 

dataset. This resonates with our on-site observations, as the ADAS utilization trends of 
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TCs vary considerably. The gamma or (the min split loss) represents the minimum positive 

loss reduction required to make a split on a node. We observe that gamma takes lower 

values for the ADAS model, indicating a more conservative behavior from the algorithm 

compared to the manual TC intervention model. The latter two parameters of shrinkage 

and subsample prevent overfitting with smaller values. 

Next, we implement the MLP algorithm using the sequential model in the “Keras” 

package of Python (Chollet 2015). We specify two hidden layers with 125 and 25 nodes 

and use a linear activation function for the output layer of both TC and ADAS MLP models. 

While we recognize that additional layers could be specified to extend the problem into a 

deep learning problem, the heuristics indicate that two hidden layers are appropriate to 

examine complex phenomena (Lippmann 1987) including STSs. We consider this level of 

elaboration sufficient given computational speed issues. We provide the MAE and RMSE 

for the manual workload over MLP time steps (epochs) in Figure 3-6. Figure 3-6 

demonstrates that the MAE and the MSE decreases with each iteration on the training set. 

The slope for both error measures for the test set demonstrates acceptable fluctuations, thus 

we terminate the algorithm after 40 epochs for MAE equal to 0.070 and MSE 0.0095. 

 

Figure 3-6 Mean Absolute and Mean Square Error for MLP 

Finally, the SVM algorithm parameters were optimized following a similar 

methodology. The leading algorithm parameters are: the constant C, kernel function, and 

gamma. The constant C controls the smoothness of the activation function that penalizes 

for the error term. Smaller values of the constant C indicates that the optimizer seeks larger-

margins to separate the hyperplane, sometimes at the expense of misclassifying data. The 

kernel function is used to transform the hyperspace and it can be a polynomial, a radial 
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basis function (RBF), or have a linear form. Whereas, the gamma represents the bias. 

Optimum algorithm parameters for the manual TC interventions and ADAS are computed 

respectively as: the constant C [10 (TC), 1 (ADAS)], the kernel function is set as RBF for 

both, and the gamma [0.1 (TC), 0.4 (ADAS)]. A smaller constant C of the ADAS model 

compared to the manual TC intervention model indicates higher statistical noise. Since our 

measurement tool is highly reliable, we attribute the noise to the complexity represented 

by the dataset as supported by the domain experts at INFRABEL. 

In Table 3-2, we present the prediction error indices within the test set for the four ML 

algorithms as well as for the MLR. Recall that the data used in this paper are obtained from 

a highly complex STS and the relationships among the variables are highly nonlinear. We 

observe that compared to the ML algorithms, the multi-linear regression has the highest 

MAE and RMSE for both the TC and the ADAS models. This is expected and it clearly 

demonstrates the issues associated with approaching a complex problem with an a priori 

assumption of linear behavior. Notice that, the mean of efficiency score of TC and ADAS 

are 0.19 and 0.37, thus a difference of 0.01 in the MAE indicates a significant gap in model 

performance. SVM performs relatively worse than other ML algorithms and we attribute 

this to the sensitivity of the SVM to the selection of the kernel and hyper parameters. We 

experimented with the RBF kernel based on the assumption that its non-linear structure 

would allow for better representation of the characteristics of the STS under study. 

However, the RBF kernel is documented to be prone to overfitting issues, which could lead 

to the low performance documented in Table 3-2. The ensemble methods, RF and Xgboost, 

have the lowest MAE and RMSE and highest R2 scores. This indicates low variation in 

both error measures demonstrating for both cases, robust and stabilized performance. The 

RF is clearly the best performer for both the manual TC intervention and the ADAS models 

with considerably less MAE and RMSE and higher R2 scores. We attribute this to the 

structure of the RF algorithm that randomly generates a large number of trees to eliminate 

the bias of individual trees. In terms of the ANN (MLP) algorithm, we observe that its 

performance is only slightly worse than the ensemble methods. However, we take notice 

that the standard deviation in MAE is considerably higher than the other algorithms, 

indicating the instability of the ANN model. When looking at the R2 scores, we clearly 

observe that all four ML algorithms exhibit high variability in predicting the efficiency 
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scores. Nevertheless, the MLR exhibits a much lower predictive power. Especially for the 

ADAS dataset, the R2 scores for MLR is nearly zero in contrast to RF, which is 0.579. The 

considerable difference between the two R2 scores is clear evidence that while not perfect, 

ML algorithms are more appropriate at explaining the non-linear relationships between 

dependent (efficiency scores) and independent (Z variables) variables. This ability could 

be leveraged with future research. 

To summarize, we conclude that the ensemble methods such as the RF and the Xgboost 

perform remarkably well and this could be an indicator of their value for the efficiency 

measurement of highly complex STSs. More importantly, the results of the ML algorithms 

clearly outperform traditional linear regression algorithms, indicating the inadequacy of 

linear models to understand complexity. Lastly, not all contextual factors that could 

influence the workload allocation were included in this study due to framing, identification, 

and measurement issues12. We would expect the incorporation of additional contextual 

variables would reduce prediction errors. We next discuss the relative influence of the 

contextual variables on TC preferences. 

Table 3-2 Prediction Accuracy of Implemented Algorithms 

Error  
RF Xgboost SVM ANN (MLP) MLR 

TC ADS TC ADS TC ADS TC ADS TC ADS 

MAE 
0.067 

±0.003 

0.100 

±0.004 

0.069 

±0.001 

0.091 

±0.003 

0.078 

±0.003 

0.120 

±0.002 

0.070 

±0.007 

0.116 

±0.008 

0.081 

±0.004 

0.130 

±0.007 

RMSE 
0.094 

±0.006 

0.137 

±0.006 

0.096 

±0.005 

0.125 

±0.006 

0.105 

±0.006 

0.166 

±0.004 

0.099 

±0.006 

0.152 

±0.009 

0.113 

±0.006 

0.183 

±0.009 

𝑹𝟐 
0.668 

±0.023 

0.579 

±0.029 

0.663 

±0.040 

0.569 

±0.046 

0.590 

±0.038 

0.240 

±0.031 

0.622 

±0.052 

0.371 

±0.056 
0.509 0.08 

 

As discussed in §3.3, we use the permutation importance approach for all algorithms. 

To recall, this approach relies on the difference in the R2 for each individual contextual 

variable when compared to a permutation that iteratively reshuffles the values of the 

                                                 

12 For an elaborate discussion and a demonstration of how the microeconomic production theory could be 

used to understand these factors please refer to Topcu, et al. (2019). 



80 

 

variable. The relative importance of predictor (contextual) variables in determining the 

manual TC and ADAS workloads is provided in Figure 3-7. Figure 3-7 indicates that dense 

traffic is the primary driver of the manual TC workload, followed by the traffic complexity. 

We observe that age, fatigue level (two “social” variables), as well as train delays have 

relatively minor influence on the manual workload and their respective rankings are quite 

similar. We attribute this to the parsimonious nature of our workload measurement model 

since it does not incorporate considerations related to manual TC errors and the quality of 

work. 

In the case of the ADAS workload, we interestingly observe that the traffic complexity 

is the leading factor by explaining roughly 50% of the efficiency variation. It is followed 

by traffic density and train delays. Compared to the manual workload, we observe that 

delays have a significant influence. This could be explained based on on-site observations 

of the daily operations of the infrastructure. Since the ADAS can be activated per train, 

many TCs utilize the ADAS for handling routinely running sections while they manually 

focus on the trains and nodes with conflicts. Therefore, the delays in the system create a 

backlog through the infrastructure and require an increased amount of adaptations 

decisions. Since the adaptation decisions can only be made manually, trains that are 

running in no-conflict zones are handled by the ADAS. We observe that the social variables 

age and fatigue levels do not have a significant impact, however, both have a stronger 

influence on the ADAS workload compared to the manual workload. We attribute this to 

the state-of-the-art training procedures and the discipline of the TCs at INFRABEL. As 

such, these factors do not alter the daily operation of the TCs, regardless of age and mental 

fatigue. In other words, daily operations are influenced heavily by external factors rather 

than uncontrollable individual characteristic differences among TCs. 
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Figure 3-7 Permutation Importance of the Contextual Variables on Efficiency Scores 

While the permutation importance approach captures the relative influences of 

contextual variables, one of its limitations is that it does not inform us about the direction 

of the influence. In order to demonstrate how ML techniques can be utilized to extract 

complex, intertwined, and non-linear relationships that cannot be properly assessed with 

simple regression-based methods we provide Table 3-3. Table 3-3 shows the results of the 

MLR regression along with the permutation importance scores for the mediocre (ANN) 

and the best performing ML algorithm (RF) for both the manual TC and ADAS workloads. 

Table 3-3 Comparison of the Influence of Contextual Variables – MLR vs. ML 

Contextual  

Variable 

MLR ANN (MLP) RF 

 TC 

β0 = 0.1752 ±0.0006 

ADAS 

β0= 0.4596 ±0.009 TC ADS TC ADS 

Z1 Age  

Coefficient -0.0002 0.0005 

0.001 0.003 0.118 0.229 Std error  8.12e-05 0.000 

P-Val
13

 0.001 0.000 

Z2 Traffic  

Complexity  

Coefficient 6.923e-07 -2.962e-05 

0.006 0.031 0.360 1.092 Std error  5.06e-07 8.1e-07 

P-Val 0.171 0.000 

Z3 Traffic  

Density  

Coefficient 0.0001 -1.748e-06 

0.021 0.010 0.896 0.429 Std error  8.03e-07 1.29e-06 

P-Val 0.000 0.174 

Z4 Fatigue  

Level  

Coefficient -0.08 -0.1079 

0.001 0.002 0.143 0.187 Std error  0.005 0.008 

P-Val 0.000 0.000 

Coefficient -3.995e-07 -9.336e-06 

                                                 

13 Permutation importance test that was applied to the machine learning algorithms do not yield a p-value 

thus it is not included in the table. 
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Z5 Train  

Delays  

Std error  7.02e-07 1.12e-06 0.001 0.005 0.130 0.333 

P-Val 0.569 0.000 

Random  - - - 0.000 0.000 0.058 0.097 

SUM  - - - 0.031 0.051 1.704 2.367 

 

We first interpret Table 3-3 from the 2-stage perspective as we wish to understand if 

our high fidelity data obtained from a fully operational STS violates fundamental 

assumptions of the MLR, which are: (i) the presence of a linear relationship between the 

independent variable and independent variables, (ii) multivariate normality, (iii) no multi-

collinearity, and (iv) homoscedasticity. If all four assumptions are satisfied, then one could 

argue that regression based approaches could be utilized to explain the influence of the 

contextual variables on the efficiency score for complex systems that are similar to ours. 

To test assumption 1, we check the P-values for all coefficients. A low P-value (<0.05) 

indicates that a predictor is an essential addition to the model. Table 3-3 indicates that, for 

the manual TC interventions model, the Traffic Complexity and Train Delays are 

insignificant whereas for the ADAS model the Traffic Density is labeled as insignificant 

in terms of the explaining the efficiency scores. However, results of the ML algorithms 

indicate exactly the opposite as these are the considerable influencers of workload 

allocation. 

To test the second assumption, we check for the Omnibus test that captures the 

skewness and kurtosis of the residuals, representing whether the residuals represent a 

normal distribution. The Omnibus test yields considerably large values of 7,301.59 and 

2,640.12 for the manual TC intervention and the ADAS models respectively. Thus, we 

conclude that the second assumption is violated. Next, we compute the condition number 

to test for the third assumption. If multi-collinearity is observed, one could expect high 

fluctuations to small changes in the data, commonly below 30. Both models show a high 

condition number of 1.94e+04, confirming that there is multi-collinearity. 

Finally, we provide the scatterplot of residuals versus predicted values in Figure 3-8 

for both the manual TC intervention and the ADAS models. Figure 3-8 clearly 

demonstrates that the data are heteroscedastic, as the scatterplot of residuals versus 

predicted values have a clear pattern of distribution, indicating the violation of rule four. 
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In conclusion, the results demonstrate that nearly every fundamental assumption of the 

MLR does not hold. Hence, we argue that one should take special care when applying 

linear regression methods to explain the influence of Z variables on the performance 

of complex sociotechnical systems. Even though we recognize that one could satisfy 

certain fundamental assumptions by transforming the data, this would hinder the ability to 

interpret the influence of contextual variables on the distribution of STS tasks represented 

by the efficiency scores, which is one of the primary goals of this paper. 

 

Figure 3-8 Distribution of MLR Residuals 

3.5 Conclusions 

Autonomous systems are becoming a larger part of our daily lives, including 

management of infrastructure systems that provide critical services for millions of people. 

As documented in this research paper, highly intertwined sociotechnical relationships that 

govern STS performance require an elaborate understanding to make better-informed 

organizational decisions. While increasing levels of automation appear as a dominant cost 

reduction strategy from an organizational perspective, potential STS improvement 

strategies need to consider the extent to which functions can be automated. 

The results of this interdisciplinary operational research study and its implications for 

each associated discipline could be summarized with the following. From a managerial 

point of view, this study provides a rigorous understanding of the factors that determine 

the use of automation by TCs. Since the developed models are capable of considering 

operational complexity and are compatible with an on-site Business Intelligence tool 

developed at INFRABEL, it allows the managers to closely monitor the workload 
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distribution and the TC preferences as desired from multiple perspectives (per TC, per 

TCC, or for a specific time period). Thus, it provides an understanding of the operational 

trends of the STS with a specific focus on the task delegation between manual and 

autonomous decision-making without the need for self-reporting methods such as surveys. 

This data could potentially be used to inform future organizational change plans (such as 

reallocating the responsibility of segments of the infrastructure over the different 

workstations in order to balance the workload) or to identify context specific skill 

improvement areas for individual TCs. 

From a performance measurement point of view, our approach, for the first time, 

utilizes the contextual/environmental Z variables to understand how the STS task 

distributions are handled. More importantly, our study hints at the weakness of 2-stage 

approaches to understand the influence of contextual variables for complex DMUs. As 

such, we observe that regression methods could classify the influence of a contextual 

variable on the efficiency scores (such as the traffic density for the ADAS workload in 

Table 3-3) much differently than the ML techniques. Given the complexity associated with 

both the social and technological processes of STSs and the inherent non-linearities 

associated with the different factors that describe their efficiency performance, we expect 

that ML techniques will be more useful above and beyond the computational speed issues 

that are currently studied in the field. This perspective allows us to further establish the 

interdisciplinary bridge between system science and performance measurement literatures. 

Previous linkages between these two research domains have been explored by considering 

System Dynamics techniques (Vaneman and Triantis 2007) and Complex Adaptive 

systems (Herrera-Restrepo and Triantis 2019). 

From a sociotechnical systems point of view, our approach takes the first step towards 

relating the economic boundary that is driven by high level organizational decisions to the 

Controller workload boundary that determines daily operations. Given that future systems 

will rely heavily on automation supervised by specifically trained individuals, our approach 

concurrently helps to identify areas of improvement for the ADAS that could be used as 

future system design requirements. For example, the simple bar plot provided in Figure 

3-7, indicates that dense traffic renders the use of automation undesirable for manual TC 
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interventions. Thus, ADAS improvement efforts could focus on improving performance 

under dense traffic. Finally, the identification of how decision-makers collaborate with 

automated decision-making technologies and how they distribute their workload (manual 

vs. automation) demonstrates under which conditions the STS operates as an 

engineered/automated system (that does not require human supervision to make decisions) 

versus when it operates as a social system (that relies heavily on human supervision and 

on the collaboration with the social networks). This information could be used to formulate 

user models to inform the design of future automated systems (Topcu and Mesmer 2018). 

We realize that our research approach requires that we address multiple issues in the 

future. For example, continued research is required to establish the conceptual connections 

between ML techniques and efficiency measurement especially the physical interpretation 

of the various ML algorithmic parameters in the context of the STS production processes. 

Further, we need to consider the concurrent modeling for both the manual and automated 

workloads. This will require further investigation as to how these two processes are 

interdependent. Additionally, we believe that the understanding of the sociotechnical 

characteristics that influence TC preferences regarding the use of automation would allow 

the organization to identify future ADAS improvement areas and provide a benchmark for 

future organizational change decisions such as TCC mergers. In general, however, we will 

need to continue to investigate the decision-making and policy implications of our analysis. 

In general, our research provides a demonstration of regression-based models’ inability to 

deal with complexity. On the other hand, ML approaches are intricate and transform the 

variables in multiple ways to establish relative influences. Thus, while it is not possible to 

deduct simple explanatory relationships between contextual variables and efficiency scores 

through permutation importance, we believe this mirrors the interdependent characteristics 

of the STS under study. This conclusion needs to be further established. Finally, we 

anticipate that the dataset contains outliers. Since this paper is concerned with 

understanding how much workload can be handled by the system safely, we purposefully 

include all observations in our analysis rather than discarding those that are different. Given 

that our observations are recorded from a highly reliable measurement tool and represent 

real instantiations of STS performance during which no accidents occurred, we consider it 

necessary to include all observations to be able to capture the nature of the STS. 
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Nevertheless, outlier analysis (Seaver and Triantis 1992) in conjunction with the approach 

provided in this paper will be pursued in the future. It should be noted that this additional 

analysis is not trivial (Herrera-Restrepo, et al. 2016). 

We provided a parsimonious quantification of human and autonomous system 

workloads using micro-economic production theory and a unique real-world dataset. Given 

that increasing efficiency performance is a natural endeavor in the study of systems, we 

anticipate that more researchers from the systems engineering community will become 

exposed to its potential. We used several machine learning techniques to demonstrate how 

certain stakeholder preferences could be captured without the need for self-reporting 

methods. One could increase the prediction accuracy of ML algorithms by increasing the 

size of the data and including additional contextual variables. While ML is a quite powerful 

tool, we believe it should be considered as a complementary approach to traditional 

interview-based methods. Ultimately, machine prediction like other forms of prediction is 

limited to the variables included in the analysis. Given the highly interdependent nature of 

STSs, open-ended interviews could reveal a lot more information than automated 

algorithms. Nevertheless, this paper presents one of the first demonstrations of the 

combined analytic power that Data Envelopment Analysis and Machine Learning could 

offer, and demonstrates the need for approaching complex and non-linear phenomena with 

appropriate techniques. 
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Abstract 

The efficiency measurement literature investigates the performance of comparable 

decision-making units (DMUs). In this literature, the term homogeneity is used to represent 

similarities in both the employed production technology and the uncontrollable contextual 

factors that influence the DMU’s operational characteristics. While there are numerous 

analytical techniques that are concerned with heterogeneous production possibility sets, 

these fundamentally differ in terms of their representations of the transformation process, 

assumptions, limitations, mathematical structure, and consequently, their practical 

usefulness. This paper provides an outline of methods that measure efficiency under 

contextual heterogeneity and presents an application of two alternative approaches by 

focusing on their complementary insights. These methods include a robust multi-variate 

and an 2-stage approach. Depending on whether the separability assumption holds, the 2-

stage approach could either follow a Simar and Wilson (2007) strategy or could compute 

a conditional efficiency measure (Badin, Simar, and Daraio 2012). Considering that many 

application studies can be constrained by data availability, we explore the sensitivity of the 

investigated approaches to sample size. We ensure the validity of the obtained insights by 

conducting our study using on data from Belgian National railway organization’s fully 

operational traffic control centers, and discuss the results with domain experts. We 

conclude with a taxonomy of complementary and contrasting roles. Our study indicates 

that each approach could provide a unique perspective in terms of explaining the 

transformation processes. However, the insights need to be interpreted with caution, 

especially considering the fundamental assumptions that enable each method. 

 

Keywords: Data Envelopment Analysis (DEA), multivariate method, two-stage method, 

contextual variables, environmental factors, conditional efficiency, sociotechnical systems. 
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4.1 Introduction 

Data Envelopment Analysis (DEA) (Farrell 1957; Charnes, Cooper, and Rhodes 1978) 

investigates the productive efficiency of decision-making units (DMUs) from a relative 

perspective meaning that the performance of a unit is computed with respect to the 

performance of its peers. Since the approach is of relative nature, the framing of the 

production possibility set (PPS, also represented in this paper as Ψ) has a predominant 

influence on the outcome of individual efficiency scores. A fundamental assumption of the 

Farrell measure (Farrell 1957) of the Pareto-Koopmans frontier (Koopmans 1951; Charnes 

et al. 1985) is the comparability or the homogeneity assumption. The homogeneity 

assumption argues that the investigated DMUs that constitute the PPS have to be 

comparable in terms of purpose, employed production technologies, and the uncontrollable 

contextual and environmental factors that delineate their performance environments. The 

issue with the homogeneity assumption is that, unlike the axioms of production (Färe and 

Grosskopf 2012, 11–16), it is not explicitly defined as a formal mathematical construct in 

the literature thus adherence to this assumption is tested by heuristics. Consequently, many 

efficiency studies either disregard this fundamental assumption or only consider it using a 

qualitative rule of thumb perspective. 

The primary concern of this paper is that, when considered in detail, many real-world 

transformation processes experience high variations in terms of the contextual factors that 

influence their operation. Meaning that the scope, magnitude, and the distribution of 

contextual factors could vary considerably among the DMUs. We define such PPSs as 

heterogeneous and argue that if such instances are not treated appropriately (by taking the 

contextual (Z) variables into account), the insights of the DEA approach might lose its 

validity. There are numerous analytical methods that are concerned with performance 

measurement in heterogeneous PPSs and there is an ongoing debate in the literature 

regarding their utility, limitations, mathematical rigor, and validity (Simar and Wilson 

2011; Dai and Kuosmanen 2014; Daraio, Simar, and Wilson 2018). Additionally, practical 

usefulness of these approaches are subject to sample size and data availability issues 

(Dyson et al. 2001). Given these considerations, this paper provides an outline based on 

the literature of the strengths and limitations of efficiency measurement methods that are 
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concerned with heterogeneous PPSs. We then identify two leading methods based on their 

applicability to a wide-variety of efficiency measurement scenarios and discuss the 

implementation of these methods. More specifically we consider the multivariate 

clustering approach (Triantis, Seaver, and Sarayia 2010) and a two stage method that could 

either follow the separability assumption (Simar and Wilson 2007) or provide a conditional 

efficiency measure (Cazals, Florens, and Simar 2002; Daraio and Simar 2005). We provide 

an in-depth discussion of why we consider these methods appropriate in §2 and document 

how their interpretation of the efficiency performance of a complex sociotechnical 

infrastructure management system will vary with respect to the size of available data. 

To ensure the insights of this paper are verified and to demonstrate how certain 

transformation processes could be subject to high levels of contextual variation, we conduct 

this research with INFRABEL, the Belgian National Railroad company. INFRABEL 

manages its infrastructure from Traffic Control Centers (TCCs). TCCs are sociotechnical 

systems (STSs) that operate through a collaboration of human decision-makers known as 

Controllers with autonomous systems. Since the TCCs make safety-critical operational 

decisions14 to sustain railroad transportation services 24/7, their operational context is 

subject to highly dynamic uncontrollable factors (e.g., traffic, mental fatigue, delays in 

schedule, etc.). In other words, STSs such as TCCs demonstrate heterogeneity of their PPSs  

and consequently the variation in the contextual (Z) variables needs to be accounted for. 

This academia-industry collaboration allows us to have access to a unique dataset that 

provides disaggregate measurements of Controller actions on an hourly level. The data that 

enables this study differs from previous research (Topcu, Triantis, and Roets 2019) in terms 

of its: (i) temporal and spatial range, as it spans one month of observations from nine 

different TCCs, (ii) sample size, as the data includes over 40k observations, and its (iii) 

addition of new variables including the train delays, phone calls, and anticipation tool usage 

(described in detail in §3.1). 

                                                 

14 In the safety science literature, safety critical decisions are those that if taken incorrectly will lead to severe 

and many times, disastrous outcomes. 
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There are two main contributions of this paper. The first is documenting the differences 

of the two approaches when considering the Z variables. We achieve this through a 

comprehensive exploration of their complementary insights within a fully operational STS. 

We consider this an important research task because there is a lack of consensus regarding 

the usefulness and validity of the results obtained from these methods. This paper aims to 

fill this gap through a comprehensive empirical study that obtains verification from domain 

experts. Moreover, since the application area is a fully operational infrastructure 

management system, this paper also serves to  spread the use of efficiency measurement 

for complex systems, which from an application perspective remains a long-desired goal 

for our research community (Paradi & Sherman, 2014; Triantis, 2015). Considering that 

increasingly complex and automated management systems will dominate the future of our 

society (Acemoglu and Restrepo 2017; Frey and Osborne 2017), the management of 

autonomous infrastructures is an important research area to explore for the efficiency 

measurement community. 

The second contribution of this paper is to demonstrate the sensitivity of results and 

insights as they pertain to the sample size. We investigate this issue because application 

studies are often constrained by the size and dimension of the available data. Therefore, we 

present our comparison on two datasets. The first is the universe that spans across nine 

different TCCs. The second dataset is a subset of the universe that only includes 

observations from a single TCC. Both datasets are for the duration of a random weekday, 

and are composed of observations that represent one hour of traffic control activities. To 

ensure high fidelity, we adopt the following validation strategy. First, we obtain the data 

from a single high precision measurement source thus effectively eliminating potential 

measurement inconsistencies and errors (Krantz et al. 1971). Second, we establish 

construct validity, as it is represented by the validity of our measurement instrument 

(Broniatowski and Tucker 2017), by basing our DEA model formulation on a recently 

published article (Topcu, Triantis, and Roets 2019). Third, we verify the results of both 

approaches on-site, on a fully-operational STS, using large datasets, without the need for 

simulated test conditions, data generating processes, or other restrictive statistical 

assumptions. Finally, we seek validation directly from INFRABEL domain experts based 

on their knowledge of the process and interpretation of the operational events. We then 
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present a structured taxonomy that includes the assumptions, treatment of contextual 

variables, computation time, robustness, sensitivity to sample size, limitations, and 

managerial information of both approaches. By doing so, our research provides a 

benchmark for current modeling approaches based on realistic evidence and focusing on 

their practical usefulness and their ability to interpret the operational realities of complex 

production process. 

This study is structured in the following manner. Section 4.2 provides a brief literature 

review. Section 4.3 describes the data, compares the methodologies, and discusses model 

formulations. Section 4.4 presents the results including the validation with domain experts, 

and Section 4.5 concludes. 

4.2 Literature Review 

DEA’s microeconomic roots and its empirical perspective (Koopmans 1951; Farrell 

1957) allows to investigate a wide array of processes, however, its application areas have 

historically focused on agriculture, banking, supply chain management, transportation, and 

public policy (Paradi and Sherman 2014; Emrouznejad and Yang 2018). In order to spread 

the use of DEA to complex production processes (e.g., management of autonomous 

systems), one needs to consider the dynamic changes in its environment (Triantis 2015). 

Although not explicitly defined in the efficiency measurement literature, the homogeneity 

assumption has a strong relationship with the nature of the artificial artifacts it describes 

(e.g., DMUs), and the homogeneity assumption constitutes a foundational object of study 

in the systems science literature. According to Simon (1996), man-made entities, e.g., 

DMUs and PPS in DEA, can be defined by three determinants: (i) the purpose, (ii) the 

internal characteristics, and (iii) the environment in which the entity or artifact performs. 

In DEA, the purpose of a DMU corresponds to the objective of the production technology 

and is represented with the inputs and outputs required/generated to fulfill the mission. The 

internal characteristic differences and environmental influences are considered alike, as 

contextual factors. However, historically, many DEA studies overlooked the fact that 

homogeneity with respect to purpose or mission does not necessarily translate into 

homogeneity in relation to contextual influences. 
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In the following sub-sections, we will briefly cover methods proposed in the DEA 

literature to deal with contextual heterogeneity. We discuss each method based on their 

fundamental approach to heterogeneity, other similar methods in the literature, the structure 

of the algorithms, application areas, and their limitations. 

4.2.1 The Robust Multivariate Method 

The first approach we investigate is the robust multivariate method (TSS) (Triantis, 

Seaver and Sarayia 2010). The fundamental motivation of TSS is to ensure that the 

homogeneity assumption holds. To achieve this, TSS accounts for the heterogeneity of the 

PPS through robust multivariate tests (Hubert, Rousseeuw, and Branden 2005) and inspects 

if the differences among the contextual variables are drastic enough to violate the 

homogeneity assumption. The fundamental understanding of the TSS is that if the PPS is 

heterogeneous then the insights from the DEA approach are nullified. For such PPSs, TSS 

proposes to subset the observations into clusters in which the homogeneity assumption 

holds. In other words, TSS simply relies on preserving the seminal idea of Farrell that 

compared homogenous production units (Farrell 1957). Interestingly, a similar approach 

to TSS was advocated by Farrell, as he referred to the factors that determine homogeneity, 

the contextual Z variables, as quasi factors and suggested that re-arrangement of the PPS 

is the most obvious solution (Farrell 1957, page 259): 

“The simplest and the most obvious solution to this problem (referring to differences in quasi-

factors) is analogous to that of economies of scale, that is, to divide the observations into 

homogenous in the quasi-factor.” 

The earlier research supported this idea. It was argued that, to be able to properly assess 

the notion of efficiency, one has to quantify or at least consider the environmental 

differences within the PPS because the range of managerial decisions are determined by 

the production environment (Hall and Winsten 1959). Banker and Morey proposed 

arranging the peer selection criteria by considering the differences among DMUs (Banker 

and Morey 1986). Similarly, others proposed to exclude the DMUs that operate in more 

favorable environments from peer selection (Ruggiero 1996). From this perspective, the 

TSS provides two significant improvements: (i) it extends the motivation of these 

approaches to a multivariate case and (ii) it employs robust outlier identification techniques 

to rigorously identify the differences in the production environments. TSS relies on robust 
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principal component analysis (ROBPCA) (Hubert, Rousseeuw, and Branden 2005), to 

identify statistically influential observations within the Z variables. Practically, this step 

exaggerates the differences among the observations by reducing the dimension of the data 

to principal components that describe the bulk of the information. The robust principal 

components of the data are then parsed by following a nearest neighbors algorithm that 

captures the outlying observations by grouping them with similar observations (Wong and 

Lane 1983). The nearest neighbor clusters are then grouped into larger homogenous 

subgroups through k-means algorithm (Hartigan and Wong 1979), and the best 

combination of clusters is identified by minimizing the jackknife error (Miller 1974). The 

use of ROBPCA for the identification of influential observations allows one to classify 

statistically different contextual influences. This creates managerial value, by identifying 

the contextual operational differences. This provides considerable flexibility to the TSS 

approach, since by using the relatively homogenous clusters, any DEA algorithm could be 

utilized to evaluate the PPS from a meta vs. in-cluster perspective (O’Donnell, Rao, and 

Battese 2008). Other studies pursue similar goals using classification algorithms without 

focusing on the robustness considerations that are rigorously addressed in TSS (Dai and 

Kuosmanen 2014). 

The application areas of the TSS approach include non-profit service organizations 

(Seaver and Triantis 1992; Athanassopoulos and Triantis 1998) and banking (Herrera-

Restrepo, et al. 2016). A recent implementation study on infrastructure management 

systems (Topcu, Triantis, and Roets 2019) demonstrated an in-depth walkthrough of a TSS 

model formulation by considering a wide array contextual factors. These factors were 

documented domain experts provided face-validation. Thus, a field-proven practical 

strength of the TSS is its ability to quantify the aggregate impact of the contextual factors, 

that is represented by the technology gap (O’Donnell, Rao, and Battese 2008) or the 

difference between in-cluster and meta efficiency scores. Topcu, Triantis, and Roets (2019) 

used this approach to quantify the impact of sociotechnical work environment factors on 

the overall system risk levels and emphasize that disregarding contextual factors could lead 

up to 50% underestimation of the efficiency scores (Topcu, Triantis, and Roets 2019). 

Nevertheless, a leading limitation of the method is its inability to compute the individual 
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contribution of each contextual factor. We next describe the methods that are concerned 

with explaining the influence of individual contextual variables. 

4.2.2 Alternative 2-Stage Approaches, the Separability Assumption and 

Conditional Measures 

The second approach we investigate are the two-stage approaches (TSAs). TSAs are 

named after the structure of their algorithm. In the first stage of TSA efficiency scores are 

computed, and in the second stage, some form of a prediction or regression technique is 

used to explain the influence of contextual variables on the Pareto-Koopmans frontier. TSA 

assumes that, unbiased and efficient estimation of the contextual variables require a joint 

estimation of the frontier with the influence of contextual variables, thus the first stage 

efficiency score calculation needs to take this into consideration (Wang and Schmidt 2002). 

Numerous publications have experimented with this idea (Ray 1988; Lovell, Walters, and 

Wood 1994; Stanton 2002; Turner, Windle, and Dresner 2004; Chilingerian and Sherman 

2004). A considerable amount of second stage regression based approaches have 

experimented by using tobit and ordinary least squares regression (Hoff 2007; Banker and 

Natarajan 2008; McDonald 2009). These approaches were criticized to be inconsistent in 

terms of the statistical meaning of their second stage regression results (Simar and Wilson 

2007; 2011). In their seminal 2007 publication, Simar and Wilson (SW) argued that for a 

second stage regression to be statistically consistent and meaningful, the PPS should satisfy 

a restrictive hypothesis known as the separability condition. SW is a popular TSA method, 

with over 2,275 citations on Google Scholar (Barros, Nektarios, and Assaf 2010; Blank 

and Valdmanis 2010; Latruffe, Davidova, and Balcombe 2008). Therefore, we explore SW 

in our study and proceed to discuss the separability condition. 

In simple terms, the separability condition or assumption, argues that the position and 

the shape of the frontier, that represents the production technology, is independent from 

the contextual factors. This suggests that the contextual variables can push the DMUs 

further away from the frontier or influence the distribution of efficiency scores among 

peers; however, they cannot change the maximum attainable limit of production or the 

position of the frontier. Thus, to meaningfully use the SW approach, one has to test the 

data that describes the PPS for compliance with the separability condition (Daraio, Simar, 
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and Wilson 2010; 2018). Otherwise, one cannot obtain meaningful statistical inferences in 

the second stage regression. In fact, a test of the separability condition (Daraio, Simar, and 

Wilson 2010, page 23) concluded that the empirical example in the original SW study gave 

“results that are meaningless”. A recent study proposes a test of the separability condition 

that relies on the central limit theorem (Daraio, Simar, and Wilson 2018).  

For the  PPSs that violate the separability condition, Simar and Wilson suggests (2011; 

2015) that the “safest” way handle the contextual variables is to estimate the conditional 

efficiency measure (Badin, Simar, and Daraio 2012). In their follow-up publication they 

re-iterate this claim and argue that if the test of the separability condition fails, even the 

first stage DEA results could be misleading (Daraio, Simar, and Wilson 2018). Based on 

this suggestion, we explore conditional efficiency measures as a complementary TSA 

method. Conditional Efficiency Measures (CEMs), leverage the idea of formulating the 

position of the frontier from a probabilistic perspective using joint probability distribution 

functions assuming that the input-output variables are jointly distributed with the 

contextual variables (Cazals, Florens, and Simar 2002). CEMs usually relax the convexity 

assumption by assuming a free disposable hull (Deprins et.al 1984, 2006) and focuses on 

understanding the influence of outliers on the frontier by using approaches such as the 

order-m (Daraio and Simar 2005) or order-α (Aragon et.al 2005). However, the conditional 

measures are subject to issues that originate from the selection of the bandwidth that 

determines the admissible set of peers. Data based approaches have been proposed to 

address this problem (Daraio, Simar, and Wilson 2010). Badin et.al. (2012; 2014) propose 

an extension of the order-m model with a second stage regression, that allows to 

differentiate between the impact of contextual factors on the frontier and the individual 

observations. Conditional order-m approaches have been with extended with kernel 

regression frameworks to investigate contextual influences in a wide array of application 

areas (Verschelde and Rogge 2012; Dewitte et al. 2020). 

4.2.3 Single Stage Estimation Approaches  

In this subsection we will briefly cover the methods that pursue the single stage 

estimation of the influence of contextual variables, that are led by the semi-nonparametric 

approach (JK) (Johnson and Kuosmanen 2011). Similar to SW, JK was also motivated by 
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Banker and Natarajan’s (2008) two stage approach. JK argued that two-stage regression 

methods suffer from the finite sample bias of DEA that carries over from the first stage. 

Consequently, the coefficients of the second stage regression are biased, especially when 

the input variables are correlated with the contextual variables. To resolve this issue, JK 

introduced a convex nonparametric and non-linear programming formulation (Gstach 

1998; Groeneboom, Jongbloed, and Wellner 2001). This transformation is mathematically 

valid as it was previously shown that DEA could be formulated as a constrained convex 

nonparametric least squares regression (Kuosmanen 2008; Kuosmanen and Johnson 2009). 

Consequently, the frontier is computed in a single-stage nonparametric way and the 

influence of contextual variables are decomposed as inefficiency terms similar to the 

parametric stochastic frontier approaches. It is important to note here that, identical to the 

SW’s interpretation of the contextual factors, JK assumes that the contextual variables are 

mechanisms that reduce a DMU’s efficiency, and they do not alter the position of the 

frontier (Johnson and Kuosmanen 2011, 221). This is a strong point of departure from 

TSS’s interpretation of the contextual variables, since from the TSS perspective, these 

factors shape the PPS and therefore have a direct implication on the position of the frontier. 

Certain properties of JK render it more flexible compared to SW. First, JK can handle 

both categorical and ordinal contextual variables. Additionally, it is not bounded by any 

sign or correlation restrictions and remains consistent even when the noise term is 

unbounded. Besides, JK is normally distributed and it asymptotically converges. Thus 

similar to SW, it allows the use of statistical testing for asymptotic inference. Although the 

empirical usefulness of JK is documented when the approach is adopted by the Finnish 

electricity regulation authority(Kuosmanen and Kortelainen 2012), the verification in the 

paper is based on simulated data that relies on a pre-specified functional form to generate 

the DMUs. Case studies that investigate influence of contextual variables on agriculture 

production have been published, documenting the JKs‘ interpretation of these variables 

(Vidoli and Ferrara 2015). However, a strict limitation of this approach is that it is 

univariate output, meaning that it only allows for a single output variable. Given that many 

complex processes such as INFRABEL TCCs produce multiple outputs, JK’s univariate 

output structure renders its use infeasible in complex system problems without an extension 
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to a multi-output case. Therefore, we skip the implementation of this approach for the scope 

of this study. 

4.3 Methodology 

In this section we will present our dataset, discuss its characteristics and our proposed 

strategy for dealing with data limitation issues. We then provide an overview of discussed 

analytical approaches. 

4.3.1 The Data  

This study is enabled by a custom generated INFRABEL dataset that is obtained from 

nine different TCCS for a random weekday from May, 2019. The data is rich and highly 

granular as all observations are recorded by the same business intelligence tool that 

captures all Controller operational decisions. The universe dataset contains 1,478 

observations that correspond to one hour of traffic control activities that we treat as the 

time frame of our DMUs. We consider one hour of Controller activities as an appropriate 

time-frame to capture sudden variations in the contextual conditions that could originate 

from the state of railroad. INFABEL traffic is highly dynamic and varies considerably with 

contextual factors that originate from the demands of the community (e.g., rush hours), the 

physiological state of the Controller (e.g., mental fatigue), and the resulting variations in 

the complexity of the decisions that need to be made. We provide variable definitions in 

Table 4-1. 

Table 4-1 The Data and Variable Definitions 

Variable 

Name 
Description 

Controller 
Skill Days 

Number days the Controller was assigned for the designated role. 

Movement 
Decisions 

Time spent (in seconds) for opening signals by Controllers. 

Adaptation 
Decisions 

Time spent (in seconds) for decisions that change the state of the railroad such as merging or splitting 
trains, re-routing of trains, or special procedures at single-track lines. Performed manually by 
Controllers. 

Anticipation 
Usage 

Measure (in seconds) of Controller time spent using the forecast tool that anticipates the future state 
of the network. 

Responded 
Phone Calls 

Number of phone calls addressed by Controllers. Controllers routinely receive phone calls from other 
INFRABEL personnel about decisions that require further information. 

Traffic 
Complexity 

Measure of traffic complexity of control area. Estimated by using the number of control signal passes 
and the performed adaptation decisions. 
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Traffic 
Density 

Measure of traffic density in the control area. Calculated by dividing the number of train movements 
with the number of large traffic control signals controlled by that Controller. 

Fatigue 
Level 

Mental fatigue of Controllers. It is calculated by INFRABEL’s predictive tool that is conceptually 
based on the fatigue Risk Index (Roets and Christiaens 2017; Folkard, Robertson, and Spencer 
2007). 

Delay Average train delays within the control area. Measured from the scheduled time in seconds. Large 
delays are due to freight trains. Trains running before schedule (negative delays) can also perturb 
traffic flows, and therefore are considered through their absolute value. 

 

One of the motivations of this paper is to document how the respective insights of the 

two approaches vary with respect to data availability. After all, many DEA application 

papers lack access to organizations and consequently to rich datasets that holistically 

represent the transformation process. Similarly, unlike the simulated experiments, 

collecting data from complex processes to implement a DEA approach is an exhaustive 

task that is subject to many pitfalls such as measurement errors, organizational access 

issues, and other resource limitations. Besides, it may not be possible to measure or capture 

all the important sources of information that are necessary to properly abstract a 

transformation process from a DEA perspective. To replicate this highly likely scenario 

and to be able to compare the performance of each method in the presence of data 

limitations, we purposefully subset our dataset, and create an artificially restricted dataset 

that only includes observations from as single TCC. Notice that we preserve the depth of 

analysis by keeping the same number of variables for the limited data set. Similarly, we 

preserve the same time horizon for both datasets to avoid issues that could originate from 

auto correlation over time. While we recognize that a adopting a longer time horizon would 

have provided interesting insights, we purposefully chose not to do so to avoid additional 

variation issues that could originate from the day of the week, autocorrelation among days, 

among others. 

Our justification for creating this artificially limited subset is that, many large-scale 

application studies require installation of a measurement device, which is usually done for 

a pilot DMU. Hence, it is quite likely that an analyst might have access to data, however, 

it could be from a single pilot or experimental source. We restricted our dataset to 

demonstrate this scenario. Another important aspect that we purposefully leave out of the 

scope for this study is the dimension limitations. To elaborate, not all the input, output, and 

contextual variables that are considered necessary to holistically model the production 
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process may not be available to the analyst. While we realize that many DEA applications 

could be limited from this perspective, we consider it as a complicated problem that needs 

to be investigated in depth and we leave it for future work. To summarize, the artificially 

restricted subset in this study includes 173 DMUs from a single TCC and it is large enough 

to satisfy the minimum number of DMUs required by the heuristics of model formulation 

(Dyson et al. 2001; Peyrache, Rose, and Sicilia 2019). In Table 4-2, we document the 

descriptive statistics of the artificially restricted and the universe. Table 4-2 indicates how 

data limitations could alter the interpretation of the transformative process, most clearly 

demonstrated by the increase in the variable ranges. 

Table 4-2 Descriptive Statistics of the Datasets 

 Subset (n = 173) Universe (n = 1,478) 

Variable Name Mean Range  Std. Dev Mean Range  Std. Dev 

Controller Skill Days 2,107.55 [204; 2,989] 922.66 1,881.2 [204.0 ; 2,997.0] 875.82 

Movement Decisions 52.34 [0 ; 117] 34.51 47.51 [0 ; 175] 32.3 

Adaptation Decisions 237.16 [0 ; 823] 160.28 219.7 [0 ; 1,416.0] 181.34 

Anticipation Usage 2.66 [0 ; 70] 9.18 6.09 [0 ; 230] 18.43 

Responded Phone Calls 1.49 [0 ; 12] 2.27 1.49 [0 ; 16] 2.24 

Traffic Complexity 1,891.37 [0 ; 27,000] 3,454.42 1,029.9 [0 ; 27,000] 1,547.1 

Traffic Density 351.16 [0 ; 882.88] 248.08 355.49 [0 ; 1,356.16] 267.84 

Fatigue Level 1.25 [1.02 ; 1.79] 0.15 1.24 [1.02 ; 2.35] 0.17 

Delay 368.13 [0 ; 3,447.5] 469.35 475.75 [0 ; 22,083] 975.0 

 

To discuss the characteristics of our datasets, we provide Table 4-3 and Table 4-4 that 

describe the Pearson correlations among variables. We observe low correlation among the 

contextual variables in both datasets, with a maximum correlation of -0.491 between traffic 

density and complexity. This indicates that our selection of the factors were appropriate in 

terms of capturing orthogonal influences that are hard to describe by the other variables. 

We also observe that increasing the sample size reduces the correlation among variables. 

Increasing the sample size leads to sign changes among certain correlations, such as 

between z1-y3 (traffic complexity and anticipation usage) and x1-y2 (controller skill days 

adaptation decisions). This demonstrates the importance of the sample size in terms of 

explaining the behavior of complex production processes. By selecting both datasets from 

a single day, we prevent additional unobserved behaviors from being introduced into our 
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dataset, e.g. autocorrelation between consecutive days, weekends, scheduled maintenance 

activities, holidays etc. 

Table 4-3 Pearson Correlation Matrix for the Subset 

Variable Name x1 y1 y2 y3 y4 z1 z2 z3 z4 

x1 Controller Skill Days 1.000         

y1 Movement Decisions -0.139 1.000        

y2 Adaptation Decisions 0.256 0.398 1.000       

y3 Anticipation Usage -0.145 0.003 0.167 1.000      

y4 Responded Phone Calls 0.250 0.275 0.628 0.089 1.000     

z1 Traffic Complexity 0.034 -0.504 0.024 0.210 -0.131 1.000    

z2 Traffic Density -0.347 0.898 0.195 -0.027 0.107 -0.491 1.000   

z3 Fatigue Level -0.136 -0.379 -0.283 -0.088 -0.283 0.330 -0.247 1.000  

z4 Delay 0.093 -0.389 -0.162 -0.048 -0.035 0.172 -0.388 0.206 1.000 

 

Table 4-4 Pearson Correlation Matrix for the Universe 

Variable Name x1 y1 y2 y3 y4 z1 z2 z3 z4 

x1 Controller Skill Days 1.000         

y1 Movement Decisions -0.022 1.000        

y2 Adaptation Decisions -0.007 0.327 1.000       

y3 Anticipation Usage -0.153 0.295 0.140 1.000      

y4 Responded Phone Calls 0.072 0.103 0.321 0.036 1.000     

z1 Traffic Complexity -8.60e-05 -0.291 0.280 -0.004 0.041 1.000    

z2 Traffic Density -0.079 0.898 0.236 0.278 0.046 -0.284 1.000   

z3 Fatigue Level -0.097 -0.168 -0.093 -0.064 -0.044 0.123 -0.145 1.000  

z4 Delay -0.029 -0.183 0.004 -0.064 0.108 0.099 -0.189 0.0865 1.000 

 

4.3.2 Model Formulation 

We use the microeconomic production theory to map the variables in our dataset to 

DEA variables and provide the blackbox diagram of the model in Figure 4-1. In the 

introduction, we mentioned that we aim to preserve construct validity by extending our 

previously verified model formulation (Topcu, Triantis, and Roets 2019). We expand our 

previous output oriented variable returns to scale model (Banker et.al 1984) with additional 

sources of information that have recently become available, which are: anticipation usage, 

responded phone calls, and delays. The fundamental assumption of this representation of 

traffic control activities is that, given a Controller with X level of experience can handle Y 



107 

 

amount of tasks under Z circumstances, then a more experienced controller should be able 

to handle larger amount of tasks in a given time. To elaborate, the only resource that is 

consumed by the traffic control process is the experience level of the Controller since that 

employee cannot be utilized for any other activities for the duration of that time. The output 

variables represent the routine traffic control tasks, as defined in Table 4-1. Finally, the 

contextual variables represent the “quasi factors” that describe the environment in which 

the transformative process takes place. These variables are uncontrollable by the DMU, are 

not produced nor consumed by the transformative process, yet have a strong influence on 

the process. A detailed discussion of the omitted variables, why these variables were 

considered appropriate, and how the mapping to the DEA variables is articulated is 

provided elsewhere (Topcu, Triantis, and Roets 2019). We proceed with the methodology 

of each investigated algorithm.  

 

Figure 4-1 Controller DEA Black-box with Contextual Variables 

4.3.3 The Robust Multivariate Method (TSS) 

The theoretical motivation of the TSS approach is to preserve the homogeneity (or 

comparability) assumption via clustering, it is applicable as long as the contextual variables 

are continuous, and it achieves this by integrating three distinct data-analytics algorithms. 

We provide a flowchart of the TSS approach in Figure 4-2 and proceed to explain the 

details of the algorithm. Once the dataset is assembled, the first step of the TSS is the test 

of the PPS for homogeneity. This is conducted through the ROBPCA analysis (Hubert, 

Rousseeuw, and Branden 2005). ROBPCA reduces the dimensions of the dataset into 

principal components that describe most of the information contained within the data. The 

observations are then classified based on their relative position with respect to the axes of 

principal component hyperplanes, measured by two distances: score (parallel to the 

hyperplane) and orthogonal (vertical to the hyperplane) distances. Based on the relative 

distance of the observation with respect to these axes, ROBPCA categorizes observations 
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into four categories: regular observations that constitute the bulk of the observations, and 

the orthogonal, good, and bad leverage points, which are outliers compared to the rest of 

the data. Within these three leverage categories, the most extreme cases are represented by 

bad outliers, which the TSS approach considers as observations that strictly violate the 

homogeneity or the comparability assumption. However, rather than considering these 

observations as outliers and discarding from the dataset, we purposefully include them in 

our analysis because (i) our measurement tool is highly reliable therefore it is certain that 

these events actually occurred and (ii) these events could introduce safety risks for the 

operation of the STS therefore require consideration. 

 

Figure 4-2 Flowchart for the TSS Algorithm 

The second step of the TSS algorithm is to use the robust principal component scores 

to formulate relatively homogenous clusters, which is achieved through the two stage 

clustering that integrates the nearest neighbor clustering (Wong and Lane 1983) with k-

means (Hartigan and Wong 1979). This is an iterative process where each resulting 

candidate clusters are evaluated for their jackknife error rates (Miller 1974) until a 

candidate provides less than 10% error. In the case that more than two candidate clusters 

provide less than 10%, the candidate with minimum error rate is preferred. At the end of 

this process the relatively homogenous clusters are obtained, which are then evaluated from 
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both an in-cluster perspective and with respect to the Meta Frontier that disregards the 

influence of contextual factors. Any nonparametric efficiency measurement algorithm can 

be utilized for this step, as long as the same algorithm is used to compute the position of 

the in-cluster and Meta Frontier. Consequently, the aggregate impact of contextual factors 

are quantified through the technology gap (Battese, Rao, and O’Donnell 2004). 

4.3.4 The 2-Stage Approaches  

Based on our literature review, TSA approach to handle heterogeneous PPSs is 

visualized in Figure 4-3. The first step is to approach the problem from a SW perspective 

and check for the separability condition. This is important because if the separability 

condition does not hold, it means that the boundary of maximum attainable performance is 

dependent on the contextual conditions Z and the second stage regression should be based 

on the conditional frontier (Daraio, Simar, and Wilson 2018) instead of the SW algorithm 

(Simar and Wilson 2007). One way of testing the separability condition (Daraio, Simar, 

and Wilson 2018) is through the comparison of frontiers for the conditional (e.g. order-m) 

(Cazals, Florens, and Simar 2002) and unconditional cases. This is based on the assumption 

that, if a PPS Ψ satisfies the separability condition, then all of its conditional interpretations 

PPSs Ψ𝑐 should display similar characteristics. Therefore, the sample mean of 

unconditional efficiency scores 𝜇𝑛  ̂ computed by disregarding the contextual variables (𝑍𝑖) 

and only using the input (𝑋𝑖) and output variables (𝑌𝑖) is shown in Equation 1 and it should 

be close to the mean of conditional efficiency scores  𝜇𝑐,𝑛  ̂ computed through Cazals et.al. 

2002 as shown in Equation 2. If the PPS violates the separability condition, the difference 

between the two means represented by Equation 3 would be considerably larger than zero. 

𝜇𝑛  ̂ = 𝐸[∑ 𝜃𝑛
𝑖=1 (𝑋𝑖, 𝑌𝑖| 𝑆𝑛)]        (1) 

𝜇𝑐,𝑛  ̂ = 𝐸[∑ 𝜃𝑛
𝑖=1 (𝑋𝑖, 𝑌𝑖|𝑍𝑖, 𝑆𝑛)]        (2) 

𝜀 =  𝜇𝑛  ̂ − 𝜇𝑐,𝑛  ̂         (3)  

Once the separability condition is tested using Equations 1-3, one could proceed to the 

next stages following one of the two recommended paths visualized in Figure 4-3. If the 

separability condition indeed holds and the value of 𝜀 described in Equation 3 is sufficiently 

small than one could proceed with the traditional SW algorithm (Simar and Wilson 2007). 
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If the separability condition does not hold, then the recommended route is to compute a 

conditional efficiency measure, that could follow the order-m approach (Cazals, Florens, 

and Simar 2002; Daraio and Simar 2005; Badin, Simar, and Daraio 2012). 

 

Figure 4-3 the 2-Stage Approach (SW on Left, Cazals on right) 

4.4 Results & Discussion 

4.4.1 Complementary Roles  

In this subsection, we will cover the complementary roles of the efficiency 

measurement methods under contextual heterogeneity. As previously discussed, we will 

explore the sensitivity of insights to sample size by presenting our analysis using two 

datasets, a universe that is composed of observations from 9 TCCs and a subset that only 

contains information from a single TCC. We will discuss the complementary roles in the 

following order. First, following a TSS strategy, we will investigate the fraction of 

influential observations in both PPSs through ROBPCA,. In terms of exploring the 

complementary roles for this study, we use ROPBCA as a proxy test for the homogeneity 

assumption. If we observe a substantial fraction of influential observations, we consider 

that as an indicator of heterogeneity. Following TSS approach, we then use the results of 

the ROPBCA analysis to formulate relatively homogenous clusters in which DMUs could 

be evaluated by considering the aggregate impact of contextual influences. We then 

proceed to the TSA, and provide a test of the separability condition following the rule of 
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thumb test (Daraio, Simar, and Wilson 2018). We discuss the results based on feedback 

from domain experts and explain the contribution of contextual factors by using a two-

stage method. 

4.4.1.1 TSS - Test of the Homogeneity Assumption through ROBPCA 

We use the contextual variables for both the subset and the universe PPSs and conduct 

the ROBPCA analysis (Hubert, Rousseeuw, and Branden 2005). For the subset we observe 

that a single principal component yields the minimum standard deviation with 596.1, where 

for the universe, two principal components yield minimum standard deviation of 927.38. 

In the case of the universe, the first PC explains 88% of the variability and it is significantly 

influenced by the traffic complexity and density, followed by delays. This indicates that 

the relative variance of the fatigue level is low, which could be attributed to INFRABEL’s 

operational practice of considering fatigue levels in staff scheduling. We observe by 

looking at the variable loadings that traffic complexity and traffic density are the leading 

factors in terms of determining the shape of the principal component axes. We present the 

details in Table 4-5. 

Table 4-5 Loadings of Principal Component Axes 

 
Subset 

n = 173, Single TCC 

Universe 

n = 1,478, All 9 TCCs 

Principal Components PC1 PC1 PC2 

Standard deviation      596.8 680.347 247.040 

Proportion of Variance    1 %88.3 %11.7 

Variable Loadings 

z1 Traffic Complexity 0.988 -0.990 -0.113 

z2 Traffic Density -0.143 0.116 -0.992 

z3 Fatigue Level 8.95e-06 
-1.097e-0

5 
5.77e-05 

z4 Delay 0.048 -0.073 -0.036 

 

We present the plot of the outlier identification in Figure 4-4. In Figure 4-4, the left 

side represents the subset and the right side represents the universe PPSs. The vertical lines 

represent the cutoff distances, where the score cutoff values are [2.24; 2.71] and the 

orthogonal cutoff values are computed as [644.19; 488.10] for the subset and the universe 
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PPS respectively. The subset has 13 bad leverage points that represent extreme outliers in 

the dataset where as the universe has 39, interestingly the subset includes almost twice the 

fraction of bad leverage points. We attribute this to the fact that our subset is the busiest 

Traffic Control Center (TCC) that controls the densest area in the entire network. Similarly, 

the fraction of good leverage points that represent the second largest group of influential 

observations, represented with green in Figure 4-4, are almost threefold in the subset. 

Consequently, the universe is composed of 76% regular observations whereas the subset 

only includes 69%. From this perspective, it is safe to argue that the subset PPS is more 

heterogeneous than the universe. However, both PPSs demonstrate heterogeneous 

characteristics. From a TSS perspective, this requires further classification. We will 

investigate how this observed heterogeneity relates to the separability condition in the 

following subsections. 

 

Figure 4-4 Test of the Homogeneity Assumption through ROBPCA 

4.4.1.2 Formulation of Relatively Homogenous Clusters  

The TSS approach uses the ROBPCA (score and orthogonal) scores that represent the 

distance of observations from the principal axes, to inform the formulation of relatively 

homogeneous clusters. The clustering in TCC is performed in two stages. First, a k-nn 

nearest neighbor clustering is performed with usually two or three nearest neighbors. In the 

second stage, the resulting nearest neighbor clusters are used to inform the search for the 

ideal number of k-means clusters that would represent the dataset. We compare the 
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jackknife error rates for the k-means clusters and pick the number of k-means clusters that 

has the minimum jackknife error, which we assume to provide an accurate statistical 

representation of the data. 

For the case of the subset, four clusters appear to be the ideal number as increasing the 

number of clusters from 3 to 4 reduces the within cluster sum of squares by 40%, yet an 

additional increase from 4 to 5 returns a much lower decrease of only 20%. Similarly, the 

universe set is accurately explained by four clusters. Figure 4-5 presents cluster 

distributions, visualizing the scatter of homogenous performance groups around the 

principal component axes.  

 

Figure 4-5 K-Means Clusters Around the Principal Component Axes 

We provide Table 4-6 to elaborate on the cluster characteristics. As indicated by Figure 

4-5, the first cluster for both sets are scarcely populated, indicating that these observations 
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are located farthest away from the rest as measured by ROBPCA. For case of the subset, 

we observe that extreme observations experience significantly higher traffic complexity, 

delays, and fatigue levels. Similarly, the first cluster in the universe exhibits considerably 

higher delays; in fact, it’s only populated by a single observation. By isolating these 

observations from others, TSS ensures that these cases are evaluated by considering their 

unique characteristics. For instance, the most densely populated cluster in each dataset has 

the lowest average traffic complexity. Given that these regular observations constitute 

almost 90% percent of the universe, the uniqueness of extreme observations would have 

been overlooked if the problem was approached from a meta frontier perspective. In other 

words, each cluster in this multivariate perspective represents an independent frontier, each 

providing a different mechanism for the same production technology to be efficient. 

Identification and classification of these subsets produce managerial utility by 

documenting how frequently these circumstances occur and how they differ from the usual 

operation. We continue our comprehensive analysis with the TSA.  

Table 4-6 Relatively Homogenous Cluster Characteristics – Mean Values 

 
Subset 

n = 173, Single TCC 

Universe 

n = 1,478, All 9 TCCs 

 
𝐂𝐋𝟏 

n = 5 

𝐂𝐋𝟐 

n = 11 

CL3 

n = 131 

CL4 

n = 26 

𝐂𝐋𝟏 

n = 1 

𝐂𝐋𝟐 

n = 21 

CL3 

n = 148 

CL4 

n =1,308 

Z1 Traffic 

Complexity 
10,700 6,914 1,025.56 2,434.62 1,409.09 1,668.62 1,735.80 939.58 

Z2 Traffic 

Density 
6.73 1.67 426.12 153.72 90.90 151.46 187.27 378.00 

Z3 Fatigue 

Level 
1.48 1.36 1.21 1.31 1.24 1.32 1.29 1.23 

Z4 Delay 2,045.29 862.27 219.83 583.76 22,083.52 5,290.88 1,581.31 256.83 

 

4.4.1.3 Test of the Separability Condition 

As the first step of the TSA approach, we check for the separability condition using 

Equations 1-3. We prioritize this step before proceeding into details because we would like 

to document the potential issues once could face when this test is ignored. Moreover, the 

test informs the following steps in terms of interpreting the DMUs. For the test, we use the 
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rule of thumb and compare the unconditional efficiency scores. We utilize the 

“Benchmarking” (Bogetoft and Otto 2010) and “rDEA” (Besstremyannaya 2011) packages 

and present the results in Table 7. 

Table 4-7 Conditional vs. Unconditional Efficiency Scores 

 
Subset 

n = 173, Single TCC 

Universe 

n = 1,478, All 9 TCCs 

Mean Meta Frontier Efficiency Scores 

(Banker et.al 1984) 
0.592 0.398 

Mean Bias-Corrected Efficiency Scores  

(Simar and Wilson 2007) 
0.547 0.373 

Mean Order-m Conditional Efficiency 

Scores (Cazals et.al. 2002) 
0.713 0.634 

 

For the separability condition to hold, the unconditional efficiency measures given in 

the first row have to be equal or similar to the conditional efficiency scores provided in the 

third row. Clearly, the difference is larger than zero. More interestingly, the difference 

between the two values increase with sample size. Therefore, we reject the separability 

condition. However, we proceed with our analysis as if there are no issues with the 

separability condition, so that we can demonstrate the potential consequences of doing so. 

4.4.1.4 SW – Influence of Contextual Variables through 2nd Stage Regression 

Similar to other two stage approaches, SW relies on a second stage bootstrap based 

regression to compute the influence of contextual variables on the efficiency scores. From 

this perspective, in our case the regression results represent the influence of the contextual 

variables on Controller task workload. Although we rejected the separability condition, we 

compute the regression results following SW and present the results in Table 4-8. We start 

our comparison with the intercept, and observe that its variation is so high, that it changes 

sign within the confidence interval. Given the separability condition was rejected, we 

expect this behavior and hope that it precisely documents potential issues one could 

experience if the validity of fundamental assumptions are ignored. A comparison of the 

subset to the universe reveals that similar sign flips occurs for the influence of fatigue 

levels. Especially in the case of fatigue levels, we observe the variation to be considerable. 
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The standard deviation of errors decrease with increasing sample size, indicating that 

accuracy of the SW increases with new information. 

Table 4-8 Influence of Environmental Variables – Simar Wilson 2007 

 
Subset 

n = 173, Single TCC, α = 0.05 

Universe 

n = 1,478, All 9 TCCs, α = 0.05 

 𝜷̂̂ 

Confidence 

Interval 

Low 2.5% 

Confidence 

Interval 

High 97.5% 

𝜷̂̂ 

Confidence 

Interval  

Low 2.5% 

Confidence 

Interval 

High 97.5% 

Constant 25.636 -2.943 51.575 10.986 -19.177 37.238 

Z1 Traffic Complexity -0.120 -0.300 -0.053 -0.083 -0.153 -0.044 

Z2 Traffic Density -16.104 -39.042 -7.516 -8.046 -14.497 -4.395 

Z3 Fatigue Level 42.269 -6.481 90.165 17.255 -14.176 43.552 

Z4 Delay -0.071 -0.253 -0.009 0.018 -0.003 0.040 

𝝈̂ (std dev. of errors) 67.828 38.471 115.365 72.216 52.736 98.817 

 

For the case of the subset, traffic complexity, density, and delays are interpreted as 

negative influences where the influence of fatigue appears positive yet ambiguous due the 

confidence interval. A similar tendency is observed in the universe. In order to check 

whether these insights contradict reality or not, we analyze the results with INFRABEL 

experts. Our discussion reveals that Controllers consider complexity and density as the 

leading factors that increase their workload, whereas the influence of fatigue is considered 

negligible. This is exactly the opposite of SW results. We would like to emphasize that, the 

SW approach works fine within the axiomatic boundaries that are defined with the 

separability condition. However, the separability condition simply does not hold for this 

specific application. For the DEA community, this highlights the importance of 

establishing some form of a verification mechanism. If we didn’t have access to the 

organization and were interpreting these results without validating or testing the 

separability condition, we would intuitively conclude that fatigue levels considerably 

increase the workload. However, as indicated by this simple face-validation activity, the 

mitigating influence of contextual factors may not necessarily have intuitive or expected 

consequences, due to the complexity of the process. We proceed to discuss the efficiency 

scores. 
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4.4.2 Interpretation of the Efficiency Scores from Contrasting Perspectives 

For both datasets, we compute the efficiency scores following the TSS and TSA 

approaches and present the results in Table 4-9. The first column in Table 4-10 represent 

the efficiency scores computed through the traditional BCC algorithm (Banker et.al. 1984), 

which represent meta efficiency scores and serve as the baseline for our comparison. To 

recall, SW uses these scores in the first stage to relate to the contextual variables, and 

computes bias corrected efficiency scores (Simar and Wilson 2007), which we present in 

the second column. The third column represents the in-cluster efficiency scores computed 

through TSS (Triantis et.al. 2010). Finally, the fourth column represent order-m efficiency 

scores, computed for the meta frontier (Cazals et.al. 2002).  

Table 4-9 Distribution of Efficiency Scores 

 
Subset 

n = 173, Single TCC 

Universe 

n = 1,478, All 9 TCCs 

Efficiency 

Distributions 

BCC 

Meta 

Eff 

SW 
TSS 

In-Cluster 
Order-m 

BCC 

Meta Eff 
SW 

TSS 

In-Cluster 
Order-m 

Mean  0.592 0.547 0.655 0.713 0.398 0.371 0.419 0.634 

Median  0.592 0.562 0.662 0.738 0.362 0.346 0.376 0.574 

Standard 

Deviation 
0.284 0.258 0.270 0.410 0.238 0.215 0.248 0.494 

Number of 

Efficient 

DMUs 

17 0 30 40 >1 31 0 51 289>1 

 

For both datasets, SW scores are lower than Meta efficiency scores while TSS and 

order-m scores are higher. It is expected for TSS results to be higher than the Meta 

efficiency scores, especially given that certain clusters are relatively small in size due the 

unique contextual conditions they face, and consequently, these observations experience 

the greatest increase in their technology gap. We observe that increasing difficulty of 

operational conditions lead the SW algorithm to penalize these observations and reduce 

their efficiency score while TSS rewards them with higher efficiency scores. This contrast 

is also observed in the number of fully efficient observations, as TSS approach allows each 

specific cluster to have its own efficient units. We observe that, as expected, the average 
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bias correction represented by the gap between SW and Meta efficiency scores, decreases 

with increasing sample size. On average, TSS scores are 10% higher than meta efficiency 

scores for the subset, and this difference is observed to decrease with increasing sample 

size. Combining this information with the cluster characteristics, we could be argue that 

the technology gap between efficiency scores in TSS increase when the sample size is 

small. An important distinction we would like to make at this point is that, since order-m 

scores are not bounded between 0-1, their mean could be misleading. 

In order to further investigate, how these different perspectives would interpret the 

daily operation of a DMU, we provide Figure 4-6. Figure 4-6 visualizes the hourly 

assessment of an anonymized control zone that is operated by three rotating Controllers 

through the day. We specifically choose a workstation that experiences three distinct 

operational modes as identified by the clustering analysis, so that we can focus on the 

extreme cases. In Figure 4-6, color codes are like the following. Blue represents Meta 

efficiency scores, red SW, yellow TSS, and purple for conditional efficiency scores. 

 

Figure 4-6 Comparison of Algorithms on an Anonymized DMU 

We notice that conditional efficiency scores demonstrate different characteristics 

compared to other three algorithms. Recall that order-m computes efficiency scores based 
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on the behavior of the frontier by adding and subtracting DMUs to the reference PPS. When 

a DMU has a high efficiency score, indicated by the agreement of other three algorithms 

such as in the case of the 12PM in Figure 4-6, we observe that the conditional efficiency 

measure consistently overshoots. Interestingly, it also undershoots, such as in the case of 

6PM observation that has a conditional efficiency score of zero. We attribute this peculiar 

behavior to the high fraction of outliers in the data as previously indicated by the ROBPCA. 

Consequently, this begs us to question the common suggestion in the literature that 

proposes to pursue a conditional efficiency measure when the separability condition is not 

satisfied. Our observations indicate the exact opposite of this suggestion. Clearly, 

conditional efficiency measures could mislead for heterogeneous datasets such as this one 

where the separability condition does not hold. This also demonstrates the importance of 

field testing algorithms in addition to the artificially populated statistical lab tests.  

For the cases where the conditional efficiency scores far exceeded the values of one, 

for example 5AM and 10 AM, we observe that TSS scores are consistently indicating 

higher scores, which are created by the differences in the contextual factors of their 

respective clusters. These observations are usually located in different clusters from the 

rest of the observations. From this perspective, it appears as TSS exhibits a similar reaction 

to extreme observations; however, the response is more robust or controlled. When the 

observations are not in a different cluster, such as in the case of 8 PM, TSS scores are closer 

to the Meta scores. Focusing on the interpretation of other algorithms, we observe that SW 

and Meta scores are considerably similar. While the difference between SW and Meta 

efficiency scores vary from 0 to 30% of the meta scores, median SW score is 4.5% less 

than the Meta score. Driven by the structure of their distinct algorithms, TSS and SW differ 

in terms of reflecting contextual influences on the computed efficiency scores. We observe 

that, TSS compensates observations that perform in extreme operational conditions by 

restricting their set of peers through clustering, which in return yields higher scores; while 

SW reduces the efficiency scores of these observations as part of its sample bias-correction 

efforts. 
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4.4.3 A Taxonomy of Synthesis  

We explored the complementary and contrasting roles of performance measurement 

approaches that are concerned with contextual variables. Our comprehensive discussion 

focused on their fundamental understanding, mathematical structure, application areas, 

limitations, and practical utility. We provide a synthesis of our discussion in Table 4-10 as 

a structured taxonomy.  

Table 4-10 Comparison of TSS and TSA  

 The Multivariate Method (TSS) The 2-Stage Approaches (TSA) 

Assumptions 

Regarding 

Heterogeneity 

& Contextual 

Variables 

 Contextual (Z) variables influence the PPS 

both in terms of the position of the frontier 

and the efficiency scores. 

 Aims to preserve homogeneity through 

robust multivariate statistics. 

 SW assumes Contextual (Z) variables do not 

influence the position of the frontier but influence 

the efficiency scores. 

 SW assumes that the production technology is 

separable. 

 Order-m does not require separability and 

assumes the contextual variables influence the 

frontier and the individual scores. 

Computation 

Time  

 Short computation time, no Monte Carlo 

Iterator. 

 SW has relatively long computation times due to 

the Monte Carlo iterator, especially when n is 

large.  

 With a tendency to larger and larger datasets (or 

even “big data”), this issue becomes more 

prominent and can even impede real-world 

implementation.   

 Order-m has similar properties. 

Robustness & 

Bias Effect 

 PPS is parsed into relatively homogenous 

clusters through robust statistics.  

 Since the computation of the in-cluster, 

efficiency scores do not include DMUs 

that operate in favorable conditions; the 

bias of extreme observations on the 

frontier are implicitly reduced compared 

to the Meta frontier perspective.  

 SW Bootstrapping eliminates sample bias through 

Monte-Carlo iterations. 

 If the fraction of influential observations is high, 

order-m might overshoot efficiency estimations, 

especially with for high efficiency observations.  

Flexibility & 

SW 

Availability 

 Facilitates all DEA models including non-

discretionary variables, returns to scale 

assumptions, non-convexity etc. 

 Its modularity allows for integration with 

other complementary techniques, such as 

classification or prediction algorithms.   

 Does not have published unified software, 

however the steps are available in different 

formats. ROBPCA is available in R, 

whereas 2stage Clustering is available in 

SAS. 

 SW has a published R module (Besstremyannaya 

2011). 

 The FEAR package (Wilson) provide the 

necessary modules for SW, however the 

combination of these modules in the full algorithm 

is left to the developer.  

 There are also published conditional order-m 

models, however multivariate contextual case is 

unpublished.  

Sample size 

effect 

 Sample size influences the number and 

characteristics of the clusters. 

 Sample size have no significant effect on 

the validity of results.  

 Increasing the sample size reduces the standard 

deviation for SW. 

 For heterogeneous datasets such as this one 

investigated here, we observe that introduction of 

additional variability could increase standard 

deviation for order-m. 
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Managerial 

Information 

 Allows to identify statistically different 

performance groups that could represent 

contextual differences faced during 

operation.  

 The first step (robust clustering) provides 

useful information regarding the 

characteristics and frequency of extreme 

operational cases.  

 Is easier to explain to non-experts.  

 

 SW statistically explains the individual influence 

of contextual variables and allows for statistical 

inference tests. 

 Also provides confidence intervals for the 

influences. 

 Order-m methods could be extended with kernel 

regression techniques to explain individual 

contribution.  

Limitations 

 Does not explain the influence of 

individual contextual variables. 

 Does not allow for statistical tests. 

 Since clusters are formed based on 

robustness, they are formed based on a 

combination of factors, which may not 

have a direct practical correspondence.  

 Handles continuous variables and can 

handle binary variables to a certain extent. 

 

 SW’s separability condition imposes strong 

restrictions in terms of application areas and it is 

rarely checked in the literature. 

 

 

4.5 Discussion, Conclusions, and Future Work 

We investigated the complementary and contrasting roles of performance measurement 

methods that are concerned with contextual influences. We were motivated by the fact that 

many transformation processes experience high variations in terms of the contextual factors 

that influence their operations. These influences need to be considered to make effective 

managerial decisions. In order to document how these contextual factors could shape a 

complex production process; we adopted an empirical approach and investigated 

INFRABEL’s operational infrastructure control system. The investigated system is of 

significant complexity and, experiences drastic social and technical contextual variations 

during operation. We were able to study a rich dataset that allowed analyses  on an hourly 

resolution. This allowed us to explore the utility of the two approaches without the need to 

rely on restrictive assumptions, unverifiable case studies, or manufactured lab tests. We 

believe the complexity of the investigated transformation process constitutes an excellent 

case where one can explore how the collective insights of some of the existing methods 

could help to inform better decisions. For this purpose, we explored a multivariate strategy 

and a two-stage strategy, and documented their sensitivity to sample size. 

We conducted our analysis in conjunction with INFRABEL domain experts for face 

validation and organized our results in a structured taxonomy. The fundamental focus of 
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the multivariate strategy, was to derive relatively homogenous clusters in which the units 

are comparable. This served as a useful tool for exploring the influential DMUs in the 

dataset. Identification and classification of clusters produce managerial utility by 

documenting how frequently these circumstances occur and how they differ from the usual 

operation. Additionally, use of ROBPCA, or a similar robust influential observation 

technique, could help managers to identify and classify the aggregate impact of contextual 

influences on their operations, irrespective of the characteristics of the production 

technology. Similarly, component loadings in ROBPCA could serve as a surrogate for 

understanding the relative influence of contextual factors. This could potentially serve as 

an alternative to the second stage regression in the two-stage approaches. 

Going back to the separability condition, while the need for imposing such strong 

restrictions is explained based on the statistical properties of the SW algorithm, we 

observed that it does not hold in the case of INFRABEL TCCs. This could have been 

intuitively expected, since no transformation process can be considered in void, decoupled 

from its environment. Regardless, we proceeded with the second stage regression to 

document how the contextual influences would be interpreted by the SW approach, if the 

separability test was ignored. We observed the regression results to be misleading and 

contradicted the opinions of INFRABEL experts. Our observations support many others in 

our research community (Olesen and Petersen 2009; Bădin, Daraio, and Simar 2010; 

Daraio, Simar, and Wilson 2018; Banker, Natarajan, and Zhang 2019). Moreover, since we 

observed that the separability condition does not hold, we explored the suggestion of Simar 

and Wilson and employed a conditional efficiency measure. Our analysis documented that, 

the order-m measure demonstrates an interesting overshoot-undershoot behavior, 

especially in the presence of outliers. Multivariate robust clustering results were observed 

to be reacting to these extreme observations in a similar way; however, the reactions were 

more robust, since the evaluation is bounded by the restriction of the peer set through 

clustering. 

To conclude, we observe that for the case of TSA, statistical concerns are prioritized 

over empirical validity of the developed methods as verification activities have been 

delegated to simulated lab experiments instead of on-site implementation studies (Simar 
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and Wilson 2015). By definition, theory and application cannot be considered as two 

mutually exclusive entities (Weick 1995) as any self-proclaimed theory that fails to explain 

a natural phenomenon or establish the connection with reality is not rigorous (Eisenhardt 

and Graebner 2007; Corley and Gioia 2011). In other words, a mathematical algorithm that 

is statistically proven to yield consistent results cannot be considered as a “theoretical 

approach” unless it explains a certain phenomenon. Consequently, we believe that one 

cannot argue about the validity of a method without providing the supporting empirical 

evidence that could be obtained from the stakeholders who own and operate the 

investigated transformation process. 

 

References 

Acemoglu, Daron, and Pascual Restrepo. 2017. “Robots and Jobs: Evidence from US Labor Markets.” NBER 

Working Paper No. W23285. https://ssrn.com/abstract=2941263. 

Aragon, Y., A. Daouia, and C. Thomas-Agnan. 2005. “Nonparametric Frontier Estimation: A Conditional 

Quantile-Based Approach.” Econometric Theory 21 (2): 358–89. 

https://doi.org/10.1017/S0266466605050206. 

Athanassopoulos, Antreas, and Konstantions Triantis. 1998. “Assessing Aggregate Cost Efficiency and the 

Related Policy Implications for Greek Local Municipalities - ProQuest.” INFOR: Information 

Systems and Operational Research 36 (3): 66–83. https://search-proquest-

com.ezproxy.lib.vt.edu/docview/228468653/abstract/8DA4FDD9D20D4363PQ/1?accountid=148

26. 

Bădin, Luiza, Cinzia Daraio, and Léopold Simar. 2010. “Optimal Bandwidth Selection for Conditional 

Efficiency Measures: A Data-Driven Approach.” European Journal of Operational Research 201 

(2): 633–40. https://doi.org/10.1016/j.ejor.2009.03.038. 

———. 2014. “Explaining Inefficiency in Nonparametric Production Models: The State of the Art.” Annals 

of Operations Research 214 (1): 5–30. https://doi.org/10.1007/s10479-012-1173-7. 

Badin, Luiza, Leopold Simar, and Cinzia Daraio. 2012. “How to Measure the Impact of Environmental 

Factors in a Nonparametric Production Model.” European Journal of Operational Research 223 (3): 

818–33. 

Banker, Rajiv D., Abraham Charnes, and William Wager Cooper. 1984. “Some Models for Estimating 

Technical and Scale Inefficiencies in Data Envelopment Analysis.” Management Science 30 (9): 

1078–1092. 

Banker, Rajiv D., and Richard C. Morey. 1986. “The Use of Categorical Variables in Data Envelopment 

Analysis.” Management Science 32 (12): 1613–1627. 

Banker, Rajiv D., and Ram Natarajan. 2008. “Evaluating Contextual Variables Affecting Productivity Using 

Data Envelopment Analysis.” Operations Research 56 (1): 48–58. 

http://www.jstor.org.ezproxy.lib.vt.edu/stable/25147166. 

Banker, Rajiv, Ram Natarajan, and Daqun Zhang. 2019. “Two-Stage Estimation of the Impact of Contextual 

Variables in Stochastic Frontier Production Function Models Using Data Envelopment Analysis: 

Second Stage OLS versus Bootstrap Approaches.” European Journal of Operational Research, 



124 

 

Advances in Data Envelopment Analysis, 278 (2): 368–84. 

https://doi.org/10.1016/j.ejor.2018.10.050. 

Barros, Carlos Pestana, Milton Nektarios, and A. Assaf. 2010. “Efficiency in the Greek Insurance Industry.” 

European Journal of Operational Research 205 (2): 431–36. 

https://doi.org/10.1016/j.ejor.2010.01.011. 

Battese, George E., D. S. Prasada Rao, and Christopher J. O’Donnell. 2004. “A Metafrontier Production 

Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under 

Different Technologies.” Journal of Productivity Analysis 21 (1): 91–103. 

https://doi.org/10.1023/B:PROD.0000012454.06094.29. 

Besstremyannaya, Galina. 2011. “Managerial Performance and Cost Efficiency of Japanese Local Public 

Hospitals: A Latent Class Stochastic Frontier Model.” Health Economics 20 (S1): 19–34. 

Blank, Jos L. T., and Vivian G. Valdmanis. 2010. “Environmental Factors and Productivity on Dutch 

Hospitals: A Semi-Parametric Approach.” Health Care Management Science 13 (1): 27–34. 

https://doi.org/10.1007/s10729-009-9104-0. 

Bogetoft, Peter, and Lars Otto. 2010. Benchmarking with DEA, SFA, and R. International Series in 

Operations Research & Management Science. Springer. 

Broniatowski, David A., and Conrad Tucker. 2017. “Assessing Causal Claims about Complex Engineered 

Systems with Quantitative Data: Internal, External, and Construct Validity.” Systems Engineering 

20 (6): 483–96. https://doi.org/10.1002/sys.21414. 

Cazals, Catherine, Jean-Pierre Florens, and Leopold Simar. 2002a. “Nonparametric Frontier Estimation: A 

Robust Approach.” Journal of Econometrics, 06 (1): 1–25. https://doi.org/10.1016/S0304-

4076(01)00080-X. 

Charnes, Abraham, William W. Cooper, Boaz Golany, Larry Seiford, and J. Stutz. 1985. “Foundations of 

Data Envelopment Analysis for Pareto-Koopmans Efficient Empirical Production Functions.” 

Journal of Econometrics 30 (1–2): 91–107. 

Charnes, Abraham, William W. Cooper, and Edwardo Rhodes. 1978. “Measuring the Efficiency of Decision 

Making Units.” European Journal of Operational Research 2 (6): 429–444. 

http://www.sciencedirect.com/science/article/pii/0377221778901388. 

Chilingerian, Jon A., and H. David Sherman. 2004. “Health Care Applications.” In Handbook on Data 

Envelopment Analysis, 481–537. Springer. 

Corley, Kevin G., and Dennis A. Gioia. 2011. “Building Theory about Theory Building: What Constitutes a 

Theoretical Contribution?” Academy of Management Review 36 (1): 12–32. 

http://amr.aom.org/content/36/1/12.1.short. 

Dai, Xiaofeng, and Timo Kuosmanen. 2014. “Best-Practice Benchmarking Using Clustering Methods: 

Application to Energy Regulation.” Omega 42 (1): 179–88. 

https://doi.org/10.1016/j.omega.2013.05.007. 

Daraio, Cinzia, and Léopold Simar. 2005. “Introducing Environmental Variables in Nonparametric Frontier 

Models: A Probabilistic Approach.” Journal of Productivity Analysis 24 (1): 93–121. 

https://doi.org/10.1007/s11123-005-3042-8. 

Daraio, Cinzia, Léopold Simar, and Paul W. Wilson. 2010. “Testing Whether Two-Stage Estimation Is 

Meaningful in Non-Parametric Models of Production.” ISBA Discussion Paper. 

———. 2018. “Central Limit Theorems for Conditional Efficiency Measures and Tests of the ‘Separability’ 

Condition in Non-Parametric, Two-Stage Models of Production.” The Econometrics Journal 21 (2): 

170–91. https://doi.org/10.1111/ectj.12103. 

Deprins, Dominique, Léopold Simar, and Henry Tulkens. 2006. “Measuring Labor-Efficiency in Post 

Offices.” In Public Goods, Environmental Externalities and Fiscal Competition, edited by Parkash 

Chander, Jacques Drèze, C. Knox Lovell, and Jack Mintz, 285–309. Boston, MA: Springer US. 

https://doi.org/10.1007/978-0-387-25534-7_16. 



125 

 

Dewitte, Ruben, Michel Dumont, Bruno Merlevede, Glenn Rayp, and Marijn Verschelde. 2020. “Firm-

Heterogeneous Biased Technological Change: A Nonparametric Approach under Endogeneity.” 

European Journal of Operational Research 283 (3): 1172–82. 

https://doi.org/10.1016/j.ejor.2019.11.063. 

Dyson, R. G., R. Allen, A. S. Camanho, V. V. Podinovski, C. S. Sarrico, and E. A. Shale. 2001. “Pitfalls and 

Protocols in DEA.” European Journal of Operational Research 132 (2): 245–59. 

https://doi.org/10.1016/S0377-2217(00)00149-1. 

Eisenhardt, Kathleen M., and Melissa E. Graebner. 2007. “Theory Building from Cases: Opportunities and 

Challenges.” Academy of Management Journal 50 (1): 25–32. 

http://amj.aom.org/content/50/1/25.short. 

Emrouznejad, Ali, and Guo-liang Yang. 2018. “A Survey and Analysis of the First 40 Years of Scholarly 

Literature in DEA: 1978–2016.” Socio-Economic Planning Sciences, Recent developments on the 

use of DEA in the public sector, 61 (March): 4–8. https://doi.org/10.1016/j.seps.2017.01.008. 

Färe, Rolf, and Shawna Grosskopf. 2012. Intertemporal Production Frontiers: With Dynamic DEA. Springer 

Science & Business Media. 

Farrell, M. J. 1957. “The Measurement of Productive Efficiency.” Journal of the Royal Statistical Society. 

Series A (General) 120 (3): 253–90. https://doi.org/10.2307/2343100. 

Folkard, Simon, Karen A. Robertson, and Mick B. Spencer. 2007. “A Fatigue/Risk Index to Assess Work 

Schedules.” Somnologie-Schlafforschung Und Schlafmedizin 11 (3): 177–185. 

Frey, Carl Benedikt, and Michael A. Osborne. 2017. “The Future of Employment: How Susceptible Are Jobs 

to Computerisation?” Technological Forecasting and Social Change 114: 254–280. 

Groeneboom, Piet, Geurt Jongbloed, and Jon A. Wellner. 2001. “A Canonical Process for Estimation of 

Convex Functions: The ‘Invelope’ of Integrated Brownian Motion +t4.” The Annals of Statistics 29 

(6): 1620–52. http://www.jstor.org/stable/2699946. 

Gstach, Dieter. 1998. “Another Approach to Data Envelopment Analysis in Noisy Environments: DEA+.” 

Journal of Productivity Analysis 9 (2): 161–76. https://doi.org/10.1023/A:1018312801700. 

Hall, Margaret, and Christopher Winsten. 1959. “The Ambiguous Notion of Efficiency.” The Economic 

Journal 69 (273): 71–86. 

Hartigan, J. A., and M. A. Wong. 1979. “Algorithm AS 136: A K-Means Clustering Algorithm.” Journal of 

the Royal Statistical Society. Series C (Applied Statistics) 28 (1): 100–108. 

https://doi.org/10.2307/2346830. 

Herrera-Restrepo, Oscar, Konstantinos Triantis, William L. Seaver, Joseph C. Paradi, and Haiyan Zhu. 2016. 

“Bank Branch Operational Performance: A Robust Multivariate and Clustering Approach.” Expert 

Systems with Applications 50: 107–119. 

http://www.sciencedirect.com/science/article/pii/S0957417415008271. 

Hoff, Ayoe. 2007. “Second Stage DEA: Comparison of Approaches for Modelling the DEA Score.” 

European Journal of Operational Research 181 (1): 425–35. 

https://doi.org/10.1016/j.ejor.2006.05.019. 

Hubert, Mia, Peter J. Rousseeuw, and Karlien Vanden Branden. 2005. “ROBPCA: A New Approach to 

Robust Principal Component Analysis.” Technometrics 47 (1): 64–79. 

https://doi.org/10.1198/004017004000000563. 

Johnson, Andrew L., and Timo Kuosmanen. 2011. “One-Stage Estimation of the Effects of Operational 

Conditions and Practices on Productive Performance: Asymptotically Normal and Efficient, Root-

N Consistent StoNEZD Method.” Journal of Productivity Analysis 36 (2): 219–30. 

http://login.ezproxy.lib.vt.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=e

oh&AN=1263102&site=eds-live&scope=site. 

Koopmans, Tjalling C. 1951. An Analysis of Production as an Efficient Combination of Activities. Cowles 

Commission for Research in Economics. New York: John Wiley & Sons. 



126 

 

Krantz, David, Duncan Luce, Patrick Suppes, and Amos Tversky. 1971. “Foundations of Measurement, Vol. 

I: Additive and Polynomial Representations.” 

Kuosmanen, Timo. 2008. “Representation Theorem for Convex Nonparametric Least Squares.” The 

Econometrics Journal 11 (2): 308–325. 

Kuosmanen, Timo, and Andrew L. Johnson. 2009. “Data Envelopment Analysis as Nonparametric Least-

Squares Regression.” Operations Research 58 (1): 149–60. https://doi.org/10.1287/opre.1090.0722. 

Kuosmanen, Timo, and Mika Kortelainen. 2012. “Stochastic Non-Smooth Envelopment of Data: Semi-

Parametric Frontier Estimation Subject to Shape Constraints.” Journal of Productivity Analysis 38 

(1): 11–28. https://doi.org/10.1007/s11123-010-0201-3. 

Latruffe, Laure, Sophia Davidova, and Kelvin Balcombe. 2008. “Application of a Double Bootstrap to 

Investigation of Determinants of Technical Efficiency of Farms in Central Europe.” Journal of 

Productivity Analysis 29 (2): 183–91. https://doi.org/10.1007/s11123-007-0074-2. 

Lovell, CA Knox, Lawrence C. Walters, and Lisa L. Wood. 1994. “Stratified Models of Education Production 

Using Modified DEA and Regression Analysis.” In Data Envelopment Analysis: Theory, 

Methodology, and Applications, 329–351. Springer. 

McDonald, John. 2009. “Using Least Squares and Tobit in Second Stage DEA Efficiency Analyses.” 

European Journal of Operational Research 197 (2): 792–98. 

https://doi.org/10.1016/j.ejor.2008.07.039. 

Miller, Rupert G. 1974. “The Jackknife--A Review.” Biometrika 61 (1): 1. https://doi.org/10.2307/2334280. 

O’Donnell, Christopher J., D. S. Prasada Rao, and George E. Battese. 2008. “Metafrontier Frameworks for 

the Study of Firm-Level Efficiencies and Technology Ratios.” Empirical Economics 34 (2): 231–

55. https://doi.org/10.1007/s00181-007-0119-4. 

Olesen, O. B., and N. C. Petersen. 2009. “Target and Technical Efficiency in DEA: Controlling for 

Environmental Characteristics.” Journal of Productivity Analysis 32 (1): 27–40. 

https://doi.org/10.1007/s11123-009-0133-y. 

Paradi, Joseph C., and H. David Sherman. 2014. “Seeking Greater Practitioner and Managerial Use of DEA 

for Benchmarking.” Data Envelopment Analysis Journal 1 (1): 29–55. 

https://www.researchgate.net/profile/Joseph_Paradi/publication/281010454_Seeking_Greater_Pra

ctitioner_and_Managerial_Use_of_DEA_for_Benchmarking/links/567eb75d08ae051f9ae655de.pd

f. 

Peyrache, Antonio, Christiern Rose, and Gabriela Sicilia. 2019. “Variable Selection in Data Envelopment 

Analysis.” European Journal of Operational Research. 

Ray, Subhash C. 1988. “Data Envelopment Analysis, Nondiscretionary Inputs and Efficiency: An Alternative 

Interpretation.” Socio-Economic Planning Sciences 22 (4): 167–76. https://doi.org/10.1016/0038-

0121(88)90003-1. 

Roets, Bart, and Johan Christiaens. 2017. “Shift Work, Fatigue and Human Error: An Empirical Analysis of 

Railway Traffic Control.” Journal of Transportation Safety & Security 0 (ja): 1–18. 

https://doi.org/10.1080/19439962.2017.1376022. 

Ruggiero, John. 1996. “On the Measurement of Technical Efficiency in the Public Sector.” European Journal 

of Operational Research 90 (3): 553–65. https://doi.org/10.1016/0377-2217(94)00346-7. 

Seaver, Bill L., and Konstantinos P. Triantis. 1992. “A Fuzzy Clustering Approach Used in Evaluating 

Technical Efficiency Measures in Manufacturing.” Journal of Productivity Analysis 3 (4): 337–363. 

http://www.springerlink.com/index/x05527653768225m.pdf. 

Simar, Léopold, and Paul W. Wilson. 2007. “Estimation and Inference in Two-Stage, Semi-Parametric 

Models of Production Processes.” Journal of Econometrics 136 (1): 31–64. 

https://doi.org/10.1016/j.jeconom.2005.07.009. 

———. 2011. “Two-Stage DEA: Caveat Emptor.” Journal of Productivity Analysis 36 (2): 205. 

https://doi.org/10.1007/s11123-011-0230-6. 



127 

 

———. 2015. “Statistical Approaches for Non-Parametric Frontier Models: A Guided Tour.” International 

Statistical Review 83 (1): 77–110. 

Stanton, Kenneth R. 2002. “Trends in Relationship Lending and Factors Affecting Relationship Lending 

Efficiency.” Journal of Banking & Finance 26 (1): 127–152. 

Topcu, Taylan G., Konstantinos Triantis, and Bart Roets. 2019. “Estimation of the Workload Boundary in 

Socio-Technical Infrastructure Management Systems: The Case of Belgian Railroads.” European 

Journal of Operational Research 278 (1): 314–29. https://doi.org/10.1016/j.ejor.2019.04.009. 

Triantis, K. 2015. “Engineering Design and Efficiency Measurement: Issues and Future Research 

Opportunities.” Data Envelopment Analysis Journal 1 (2): 81–112. 

http://econpapers.repec.org/RePEc:now:jnldea:103.00000008. 

Triantis, Konstantinos, Devang Sarayia, and Bill Seaver. 2010. “Using Multivariate Methods to Incorporate 

Environmental Variables for Local and Global Efficiency Performance Analysis.” INFOR: 

Information Systems and Operational Research 48 (1): 39–52. 

https://doi.org/10.3138/infor.48.1.039. 

Turner, Hugh, Robert Windle, and Martin Dresner. 2004. “North American Containerport Productivity: 

1984–1997.” Transportation Research Part E: Logistics and Transportation Review 40 (4): 339–

356. 

Verschelde, Marijn, and Nicky Rogge. 2012. “An Environment-Adjusted Evaluation of Citizen Satisfaction 

with Local Police Effectiveness: Evidence from a Conditional Data Envelopment Analysis 

Approach.” European Journal of Operational Research 223 (1): 214–25. 

https://doi.org/10.1016/j.ejor.2012.05.044. 

Vidoli, Francesco, and Giancarlo Ferrara. 2015. “Analyzing Italian Citrus Sector by Semi-Nonparametric 

Frontier Efficiency Models.” Empirical Economics 49 (2): 641–58. https://doi.org/10.1007/s00181-

014-0879-6. 

Weick, Karl E. 1995. “What Theory Is Not, Theorizing Is.” Administrative Science Quarterly, 385–390. 

http://www.jstor.org/stable/2393789. 

Wong, M. Anthony, and Tom Lane. 1983. “A Kth Nearest Neighbour Clustering Procedure.” Journal of the 

Royal Statistical Society. Series B (Methodological) 45 (3): 362–68. 

http://www.jstor.org/stable/2345405. 

 

 



128 

 

Chapter 5. Conclusions 

The reliance on autonomous technologies will only continue to increase. While 

increased autonomy has the potential for significantly improving our lives, many 

autonomous systems will rely on people for supervision, at least for a foreseeable future. 

The complicated nature of the human mind and its susceptibility to a wide-range of 

contextual influences require us to further investigate how these social and technical 

elements can be integrated as a cohesive whole. Therefore, this dissertation focused on the 

interdependencies between human decision-makers and their autonomous counterparts that 

operate within sociotechnical enterprises. 

When I started my doctoral studies, I was convinced that one needs to investigate 

operational systems to (i) learn about their complex behavior and (ii) be able verify the 

obtained results. I believed that this would allow one to eliminate the need for crude 

simplifications and help to understand how extreme cases come to occurrence. Thus, this 

dissertation provided an empirical mixed-methods approach that brought together theory 

with practice to further our understanding of sociotechnical systems. More specifically, 

this dissertation focused on three aspects of STSs, safe management, collaboration, and 

efficiency measurement. While the results of this dissertation are far from being 

conclusive, they are useful because they are verified by the operations of a real-world STS. 

5.1 Chapter 2 - Safe Management 

Chapter 2 was primarily motivated by some of the recent airline tragedies that resulted 

in hundreds of fatalities (Salmon, Walker, and Stanton 2016; Tjahjono 2018; Johnston and 

Harris 2019; The Aircraft Accident Investigation Bureau of Ethiopia 2019). Like many 

others, these accidents were caused by a combination of engineered system failures and the 

inability of human controllers to prevent catastrophic consequences. I considered these 

accidents an indicator of how increased autonomy could introduce unanticipated failure 

modes that could be unique and difficult to prevent. Rasmussen previously theorized that 

these hard to interpret failure modes could be considered in three distinct modes 

(Rasmussen 1997; Cook and Rasmussen 2005), one of which is the workload boundary 

that represent the amount of work allocated on safety-critical decision-makers. The first 

essay quantified this workload boundary that remained a qualitative construct for over two 
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decades, through a microeconomic approach that assumed it could be estimated through a 

Pareto-Koopmans Frontier (Koopmans 1951; Farrell 1957).  

I identified these contextual influences through an interdisciplinary literature review 

and formulated a multivariate clustering approach (Triantis, Sarayia, and Seaver 2010) to 

quantify the workload boundary on a pilot INFRABEL traffic control center. The employed 

analytical technique allowed me to quantify the aggregate impact of contextual factors, 

which was observed to be significant with sometimes up to 60% of the observable 

workload. The approach was verified by domain experts and was implemented on-site. To 

the best of my knowledge, this is the first quantification of Rasmussen’s workload 

boundary and it provides a novel, holistic, and systems oriented mechanism for 

practitioners to manage their STSs safely. 

5.2 Chapter 3 - Collaboration 

Chapter 3 was primarily concerned with how teams of humans and their autonomous 

partners share work, given their subjective preferences and contextual operational 

conditions. I extended the workload measurement approach that was proposed in the 

second chapter, to understand how the amount of work carried out by each agent varied. 

Since the dataset included a high fraction of influential observations, I utilized the 

prediction power of machine learning algorithms, and proposed a novel integration with 

efficiency measurement techniques. Machine learning techniques were previously never 

used to explain contextual influences within an efficiency measurement framework. The 

demonstrated approach reveals the preferences of human decision-makers, without 

interfering with their daily operational behavior. 

The results of this study supported the literature in terms of documenting that to a great 

extent, autonomous systems are preferred to handle low complexity and density tasks. I 

observed intensifying operational conditions increase the reliance on collaboration, which 

was indicated by the rise in the workloads of both human and autonomous agents. I 

observed great variability in how people chose to collaborate with their autonomous 

counterparts, which led me to believe that (i) the problem is much more complex and (ii) 

there could be psychological and behavioral root causes, which one may not be able to 

capture with the kind of abstraction techniques that were used in this dissertation.  
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5.3 Chapter 3 – Efficiency Measurement 

The third essay explored the complementary and contrasting roles of analytical 

efficiency measurement approaches that deal with the influence of contextual factors and 

their sensitivity to sample size. More specifically, I implemented the popular two-stage 

approach of Simar and Wilson and compared its relative insights with respect to the 

multivariate clustering approach. I observed that, strong restrictive assumptions, such as 

the separability condition, could be restrictive and may not apply to complex STSs. Results 

of this essay raised caution to the vast number of studies that disregarded these 

considerations and supported previous concerns (Olesen and Petersen 2009; Bădin, Daraio, 

and Simar 2010; Daraio, Simar, and Wilson 2018; Banker, Natarajan, and Zhang 2019). I 

organized the results in a structured taxonomy based on their fundamental assumptions, 

limitations, mathematical structure, sensitivity to sample size, and their practical 

usefulness. 

5.4 Future Work 

This dissertation left more questions unanswered than the ones it addressed. Below I 

discuss some of the directions this research could take in the future: 

About Rasmussen’s Safe Operation Envelope for STSs: While the quantification of 

Rasmussen’s workload boundary through a Pareto-Koopmans frontier made sense in this 

specific application, which is encouraging, it remains to be seen if it is generalizable to 

other application areas. It would be interesting to see if it could be extended to a similar 

system, e.g. air traffic control, and still make sense for practitioners and domain experts. If 

it does indeed make sense in a different context, perhaps it could serve as a rigorous 

management approach for STSs in general. 

Regardless of generalizability, this naïve quantification allowed me to document the 

underload-overload cycles that occur throughout the day and helped to measure how 

drastically these cycles could differ. Underload cycles lead to distraction and loss of 

attention, which in return contributes to STS accidents, yet this dissertation solely focused 

on the overload. This raises question on some of the other assumptions made in this 

dissertation. For example, I assumed that a pure technical efficiency on the workload 
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boundary, represented by an efficiency score of one (which means overload), indicates a 

system level risk. This assumption needs further verification. Perhaps, one could focus on 

the occurrences of near-miss events (Dillon et al. 2016) and their relationship to workload 

to test this assumption. More importantly, one would expect the relationship of the 

workload boundary with the other two boundaries to play an important role on the 

manifestation of near-miss events. Another assumption was that all observed decisions 

were of equal value. Differentiating between good and bad decisions, would necessitate an 

in-depth investigation, therefore could benefit from a different research strategy. Which 

brings us to the second future research direction. 

Human – Autonomous System Collaboration: While I explored collaboration in STSs 

given contextual influences, the scope of available data didn’t allow to explore the specific 

interactions that lead a decision-maker to delegate authority or retain authority from their 

autonomous counterparts. This led me to formulate a mutually exclusive measurement 

model, while clearly these two agents (human and autonomous) are working dependently. 

Unfortunately, none of our datasets included social and behavioral considerations such as 

beliefs, trust, previous experiences, educational level, attitude towards automation etc. 

What are the factors that lead a person to trust an autonomous system? Is trust a process? 

Do people use autonomous systems because they need them? How can we design 

trustworthy autonomous systems? These research questions could be addressed in the 

future. 

Moreover, this dissertation did not focus on cognitive and/or behavioral patterns that 

are inherent to a specific team of people who work in the same location. Similarly, there 

could be hourly, daily, or organizational tendencies. One particular simplification I made 

(by using a DEA model) was to falsely assume that the investigated decision-makers do 

not interact with one another and influence their decisions. Obviously, this is not true, 

controllers frequently interact, and further research could highlight important knowledge 

gaps. This brings us to the next future research direction. 

Organizational Impact of Increased Autonomy: This dissertation was solely focused on 

the relationship between a human decision maker and its autonomous counterpart, and the 

relationship with the rest of the organization was purposefully left out of scope. One 
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particular simplification I had to make was to disregard how the collaborating human-

autonomous system team was managed by a higher-level supervisor. Conflict resolution 

and coordination within a sociotechnical enterprise would be an interesting venue to 

explore.  

Additionally, this dissertation did not investigate the impact of automation on the 

performance of an enterprise or an organization. Are increasing levels of automation are 

really helping organizations to reach their long-term goals? Does increasing levels of 

automation help to minimize unintended consequences and improve overall performance? 

If not, why and how it can be enhanced? These questions bring me to the another research 

direction this dissertation could possibly take. 

Systems Engineering Sociotechnical Organizations: This dissertation investigated 

sociotechnical systems without opening up the black-box of automation. Without delving 

into the details of how autonomous systems make their decisions, I firmly believe it might 

not be possible to understand the complex nature of STSs. If we precisely knew which 

sources of information a human decision-maker seeks given a situation, would it allow us 

to improve the design of the engineered elements? From this perspective, understanding 

the contextual influences on human decisions is useful yet insufficient. There is a need to 

capture the sensory interactions, e.g. eye tracking, that take place through the interface 

between the human and the autonomous unit. Would re-designing the interface based on 

interactions and their contextual variance improve performance? If so by how much?  

Assuming that increasing system autonomy will lead to increased centralization (less 

people, more activities to oversee & control), there will be a need to design the architecture 

of sociotechnical systems where people are reconsidered as subsystems. This could 

potentially allow to strategically design and utilize the strengths of both social and technical 

spheres. One could potentially explore, system architecture techniques that allow to 

investigate the tradeoffs between people and autonomous systems. Is there an automation 

sweet-spot? How can one re-arrange existing relationships within an organization, or 

incorporate these relationships into the design of an engineered artifact to enhance 

performance? 
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Appendix A. DEA Fundamentals  

 

A transformation process or (shortly process) can be defined as the value generating 

conversion of limited resources, into a set of outputs that are desirable by the stakeholders. 

Efficiency Measurement is a microeconomic field of study that investigates the production 

performance of similar processes or peers, based on their ability to efficiently convert 

resources to pursue their objectives. Investigated units are denoted as Decision-Making 

Units (DMUs), based on the assumption that they are capable of pursuing their objectives 

by making independent decisions. In common notation, DMUs are usually represented with 

a black-box as shown in Figure A-1. The frame of the Black-box represents both a physical 

boundary (e.g. similar branches, peers, etc.) and a temporal boundary in the form of a 

measurement horizon (e.g., a day, a month, an hour, etc.) 

 

Figure A-1 Generic DEA Black-Box 

Similar to the use of the term efficiency in engineering and science fields such as 

thermodynamics; efficiency (θ) of a process could be considered as the ratio of outputs to 

inputs. Like in thermodynamics, this ratio measure is bounded between zero and one; 

where zero represents pure inefficiency and one represents full technical efficiency (which 

is not possible to obtain in thermodynamics). Assuming a simple transformation process 

that consumes a single resource to produce a single output, efficiency could be expressed 

with the following: 

0 ≤ Efficiency = θ =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
≤ 1       (1) 

Extension of Equation 1 to a multivariate case could be demonstrated with the 

following illustrative example that is inspired from Cooper et. al. (2011). Assume that we 

are evaluating a generic company called TTECH. TTECH has nine branches that consume 

two inputs (Engineers and Designers) to generate a single output (Patents). For simplicity, 

assume that all patents, engineers, and designers are of equal value. For a fixed time 

horizon, lets say a year, we denote branches of TTECH with letters and assume that Table 
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A-1 represents their production data, scaled down to its isoquants (unitized to one unit of 

patent).   

Table A-1 Two Inputs - Single Output Case 

TTECH A B C  D  E F G H I 

Engineers 4 3 7 4 2 5 6 6 7 

Designers 3 6 1 2 4 2 4 3 3 

Patents 1 1 1 1 1 1 1 1 1 

  

If we plot the production behavior of TTECH on the axes of Engineers per Patent and 

Designers per Patent; we would obtain the Production Possibility Set of TTECH that is 

depicted in Figure A-2. 

 

Figure A-2 Production Possibility Set and the Frontier 

In Figure A-2, DMUs E, D, and C more convert their resources into desired outputs 

compared to their peers. In other words, these units are Pareto-Koopmans Efficient units 

(Koopmans 1951). A DMU is Pareto-Koopmans Efficient (shortly efficient) if and only if 

it is not possible to improve any input or output without worsening any other input or 

output. These units are extremely useful to identify because the line connecting these units 

(the red line in Figure A-2) represents a limit of attainable efficiency or the Pareto-

Koopmans frontier (shortly frontier). This frontier can be used as a measure of efficiency 

for other DMUs in the set, based on their relative distance with respect to it. More 

specifically, Efficiency of DMU A could be empirically interpreted by drawing a straight 

line to the origin, and comparing the length of this distance measure to the distance of the 

frontier to the origin (Farrell 1957). I visualize this idea with the turquoise line in Figure 

Figure A-3.   
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Figure A-3 Radial Efficiency Measure 

In Figure A-3, A` represent the point where the radial turquoise distance vector 

intersects the frontier. Efficiency of DMU A could be estimated by the ratio of the 

following two distance measures:  

Efficiency of DMU A =
|OA`|

|OA|
        (2) 

The fundamental assumption here is the following, if DMU A was producing more 

resources by preserving the same resource consumption, or if it had consumed less 

resources and produced the same amount, it could have been located anywhere between 

DMUs E and D, which we roughly represent with A`. This also means that, DMUs D and 

E are best practices for DMU A to learn from. In efficiency measurement, an inefficient 

points is evaluated based on its peers, which are defined as the observations that are similar 

to the evaluated unit yet operate on the frontier. In this case, D and E are peers of A. This 

also implies that, A` could have obtained by a weighted average of DMU E and DMU D. 

Therefore, A` is considered a feasible target.  

Now that we have established the basics, the notion of efficiency is formally expressed 

with the following. Given a set of resources 𝐱 = (𝐱𝟏, … . , 𝒙𝒎) ℜ+
𝑚 that are consumed to 

produce a set of resources 𝒚 = (𝐲𝟏, … . , 𝒚𝒔) ℜ+
𝑠 , the production technology 𝑻 that maps 

the inputs to the outputs can be defined as 𝑇(𝑦) = {𝑥: 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦}, 𝑦 ℜ+
𝑠 . 

Similarly, a production set Ψ (TTECH in previous example), that includes 𝒏 number of 

DMUs, can be defined as: 

Ψ =  {(𝑥, 𝑦) ∣ 𝑥 ℜ+
𝑚, 𝒚 ℜ+

𝑠 , (𝑥, 𝑦) 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒}     (3) 

Recall that efficient observations are the ones that convert their resources into outputs 

most efficiently. The formal notation allows to define two virtual weight vectors, 𝑣𝑖 and 
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u𝑟. These represent the fraction of resource consumption of the evaluated DMU, compared 

to the efficient observations. We will use these virtual variables to obtain information from 

the input-output data. More specifically, we will extract how the how Pareto-Koopmans 

efficient observations used their resources, through the seminal CCR model (Charnes, 

Cooper, and Rhodes 1978): 

To evaluate the efficiency of a DMUo in our data set (o ranges between 1,2…,n) we 

need 𝑛 number of optimization problems, to solve for the values for 𝑣𝑖, (i=1,….,m) and 

u𝑟 (𝑟 = 1, … . , 𝑠): 

Max𝒗,𝒖  θ∗ =
u1y1𝑜+u2y2𝑜+⋯+usy𝑠𝑜

𝑣1x1𝑜+𝑣2x2𝑜+⋯+𝑣𝑚x𝑚𝑜
        (4) 

Subject to  
u1y1𝑗+⋯+usy𝑠𝑗

𝑣1x1𝑗+⋯+𝑣𝑚j
≤ 1, 𝑤ℎ𝑒𝑟𝑒 (𝑗 = 1, … , 𝑛)        (5) 

∀𝑣𝑖  ≥ 0, 𝑎𝑛𝑑 ∀𝑢𝑠  ≥ 0                 (6) 

 

Given that X and Y are fixed by data, the objective of Equation 4 is to obtain the values 

for 𝑣𝑖 and u𝑟 that maximize the efficiency score θ. The constraint Equation 5 represent that 

the ratio of input and output weights should not exceed 1. However, this fractional form is 

hard to solve, therefore it is linearized so that it can be solved through a linear optimization 

program. Below, I provide the linearized version of Equation 4-6 (for mathematical proof 

Charnes, Cooper, and Rhodes 1978): 

 

Maxμ,𝒗  θ∗ = μ1y1𝑜 + ⋯ + μsy𝑠𝑜        (7) 

Subject to  𝑣1x1𝑜 + ⋯ + 𝑣𝑚𝑥𝑚𝑜 = 1                              (8) 

μ1y1𝑗 + ⋯ + μsy𝑠𝑗 ≤ 𝑣1x1𝑗 + ⋯ + 𝑣𝑚𝑥𝑚𝑗   𝑤ℎ𝑒𝑟𝑒 (𝑗 = 1, … , 𝑛)    (9) 

 ∀𝑣𝑖  ≥ 0, 𝑎𝑛𝑑 ∀μ𝑠  ≥ 0                                 (10) 

 

Notice that constraint 6 needs to be imposed n times (for each DMU). Now, we can  

revisit TTECH data that was provided in Table A1, and solve Equations (7-10) for DMU 

A. Using TTECH data yields the following: 

For DMU A   Maxμ,𝒗  θA = 𝑢       (11) 

Subject to   4 ∗ 𝑣1 + 3 ∗ 𝑣2 = 1                                             (12)  

𝑢 ≤ 4 ∗ 𝑣1 + 3 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐴  

𝑢 ≤ 3 ∗ 𝑣1 + 6 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐵      (13) 

𝑢 ≤ 7 ∗ 𝑣1 + 1 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐶 

𝑢 ≤ 4 ∗ 𝑣1 + 2 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐷 
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𝑢 ≤ 2 ∗ 𝑣1 + 4 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐸 

𝑢 ≤ 5 ∗ 𝑣1 + 2 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐹 

𝑢 ≤ 6 ∗ 𝑣1 + 4 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐺 

𝑢 ≤ 6 ∗ 𝑣1 + 3 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐻 

𝑢 ≤ 7 ∗ 𝑣1 + 3 ∗ 𝑣2 𝑓𝑜𝑟 𝐷𝑀𝑈 𝐼 

 ∀𝑣𝑖  ≥ 0, 𝑎𝑛𝑑 ∀μ𝑠  ≥ 0                              (14) 

 

Solving the set of linear equations, we observe that the efficiency score for DMU A 

(θA) is equal to 0.857. Our calculations also validate that DMU A’s peers are DMUs D and 

E, as previously indicated by Figure A-2. The relative weights for creating the hypothetical 

DMU A* are computed as 0.714 and 0.285. The efficiency scores for TTECH companies, 

computed through the basic CCR model provided in Table A-2.  

Table A-2 TTECH Efficiency Scores 

TTECH A B C  D  E F G H I 

Engineers 4 3 7 4 2 5 6 6 7 

Designers 3 6 1 2 4 2 4 3 3 

Patents 1 1 1 1 1 1 1 1 1 

CCR Efficiency Scores 0.857 0.667 1.00 1.00 1.00 0.909 0.6 0.667 0.625 

 

In the introduction section, I argued that efficiency measurement is an axiomatic 

method. Below I provide a brief summary of the axioms of economic production using the 

generic form described in Equation 3. A detailed discussion is provided elsewhere 

(Shephard 1970; Färe and Grosskopf 1996).  

 

Axiom 1: No Free Lunch: 

(𝑥, 𝑦) ∉  Ψ if x = 0, y ≥ 0, y ≠ 0       (15) 

Put simply, Axiom 1 argues that, for all members of Ψ, any input vector could produce 

zero outputs. Inactivity is always possible.  

 

Axiom 2: Free Disposability:  

∀(𝑥, 𝑦) ∈  Ψ, if x′ ≥ x and  y′ ≤ y then (𝑥′, 𝑦′)  ∈  Ψ      (16) 

Axiom 2 simply states that it is always possible to waste resources without obtaining 

additional outputs. 
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Axiom 3: Bounded: 

∀𝑥 ∈  ℜ+
𝑚           (17) 

Positive reel numbers bound the set of resources.  

 

Axiom 4: Closedness: 

Ψ is closed  

Axiom 5: Convexity: 

if (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈  Ψ  

then ∀𝛼 ∈ [0,1], (𝑥, 𝑦) = 𝛼(𝑥1, 𝑦1) + (1 − 𝛼)(𝑥2, 𝑦2) ∈  Ψ    (18) 

This axiom simply states that, weighted average of input output pairs are also members 

of the production possibility set. This axiom simply enables the approach visualized 

depicted in Figure A-2.  
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Appendix B. Variables Included in the Model 

The definitions of variables that are included in the measurement framework are as 

follows: 

Input (X) Variables: 

Controller Skill Level: We measure skill levels with the number days INFRABEL 

assigns the Controller to the designated role. We use this variable as an input variable for 

both Controllers based on the understanding that the primary resource for the 

transformation process in this study is one hour of that Controller’s time. 

Output (Y) Variables: 

Manual Move Decisions: Represents the number of times the TC manually activates a 

railroad signal to let a train pass. It is composed of various subtypes, however all movement 

decisions are fundamentally made to move trains through the infrastructure and do not aim 

to prevent accidents. The unit of measurement is its quantity. 

Auto Move Decisions: Represents traffic control decisions that are the same with the 

type described previously however, the automated traffic control decision-aide tool makes 

these decisions. The TC can switch the level of automation any time for any desired period 

during the duration of the shift and the allowed automation range is between 0-100%. The 

decision-aid tool is capable of handling traffic decisions in non-complex traffic (such as in 

rural areas). However, Controllers do not use the tool under dense and complex traffic. Its 

unit of measurement is its quantity. 

Adapt Decisions: Represents the number of railroad track-adaptation decisions. These 

types of decisions require manual intervention by the Controller to change the status of the 

railroad switches, in other words it modifies the state of the railroad usually to ensure the 

trains will remain on schedule. Examples include merging or splitting trains, re-routing of 

trains, or special procedures at single-track lines. Controllers do not make these decisions 

to prevent an incident. However, both types of Controllers perform these types of decisions. 

The unit of measurement is the weighted amount of actions. We calculate the weights based 

on the number of seconds that the Controllers operate their systems. 

Safety Decisions: This variable represents the total number of safety interventions 

made by SCs. Examples of safety decisions are the protection of track maintenance sites 

through safety locks in the signaling system, or launching safety procedures at level 
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crossings. Similar to the Adapt Decisions, the unit of measurement is the weighted amount 

of actions. 

Monitored Traffic: This variable represents the trains travelling through the SCs 

dedicated control area and we measure it by the number of signal passes by the trains within 

the network. Different from other output variables, we treat this variable as an 

uncontrollable variable as the SCs have zero control over the train passes under nominal 

conditions. 

Socio-technical Performance Environment (Z) Variables: 

Traffic Density: This variable represents the density of the railroad traffic and we 

calculate it by dividing the number of train movements with the number of large traffic 

control signals controlled by that Controller. It differs from traffic complexity, as a highly 

dense traffic might not be too complex if the trains run in parallel or do not pass delays to 

each other. Uncertainty associated with this variable is not considered. 

Traffic Complexity: We calculate this variable by dividing the number of adaptation 

decisions with the movements through the area and we consider it as an indicator of the 

dedicated railroad network portion’s traffic complexity. The assumption behind this 

variable is that as the traffic becomes more complex, the Controllers require more 

adaptation decisions to prevent conflicts. Uncertainty associated with this variable is not 

considered.  

Safety Complexity: This variable is an attempt to represent the complexity of safety 

decisions performed by the Safety Controllers. As argued earlier, not all safety decisions 

are equal and some involve more effort to perform. Besides there are cognitive capability 

related effects of switching between certain decision tasks (Rubinstein et al., 2001). 

Therefore, we include this variable while recognizing it is a naïve proxy of complexity. We 

calculate this variable by dividing the total number of safety decisions made during one-

hour measurement period with the total number of possible safety decisions. Uncertainty 

associated with this variable is not considered. 

Fatigue Level: This variable represents the mental fatigue of personnel. We know this 

to be an important factor associated with human caused errors, as discussed in Section 2. 

Fatigue risk level used in this paper is calculated by INFRABEL’s predictive tool that is 

conceptually based on the  fatigue Risk Index (Folkard et al., 2007) and is validated for the 
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railway traffic environment at INFRABEL. Fundamentally, the predictive tool is built on 

the statistical relationship between the human induced error and work shift trends of 

Controllers in the TCCs, and its fundamentals are described elsewhere (Roets & 

Christiaens, 2017). We calculate the fatigue level for the entire duration of the shift for 

each Controller and is a maximum likelihood estimator of how much more likely an 

average Controller is expected to make mistakes under physical distress, compared to a 

standard staff schedule, which receives an estimated fatigue risk level of 1. This variable 

is unit-less and we observe the range of the variable to be 0.5 and 1.5. There is some built 

in uncertainty associated with this variable that we associate with the predictive nature of 

the model. Human fatigue is a complex phenomenon, and the fatigue measure in this study 

is only a proxy. 

 


