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Abstract 

This thesis details the development and implementation of an attitude and orbit determining 

Kalman filter algorithm for a satellite in a Molniya orbit. To apply the Kalman Filter for orbit 

determination, the equations of motion of the two body problem were propagated using Cowell’s 

formulation. Four types of perturbing forces were added to the propagated model in order to 

increase the accuracy of the orbit prediction. These four perturbing forces are Earth oblateness, 

atmospheric drag, lunar gravitational forces and solar radiation pressure. Two cases were 

studied, the first being the implementation of site track measurements when the satellite was over 

the ground station. It is shown that large errors, upwards of ninety meters, grow as time from last 

measurement input increases. The next case studied was continuous measurement inputs from a 

GPS receiver on board the satellite throughout the orbit. This algorithm greatly decreased the 

errors seen in the orbit determining algorithm due to the accuracy of the sensor as well as the 

continuous measurement inputs throughout the orbit. It is shown that the accuracy of the orbit 

determining Kalman filter also depends on the length of time between each measurement update. 

The errors decrease as the time between measurement updates decreases. Next the Kalman filter 

is applied to determine the satellite attitude. The rotational equations of motion are propagated 

using Cowell’s Formulation and numerical integration. To increase the fidelity of the model four 

disturbing torques are included in the rotational equations of motion model: gravity gradient 

torque, solar pressure torque, magnetic torque, and aerodynamic torque. Four cases were tested 

corresponding to four different on board attitude determining sensors: magnetometer, Earth 

sensor, sun sensor, and star tracker. A controlled altitude path was chosen to test the accuracy of 

each of these cases and it was shown that the algorithm using star tracker measurements was 

three hundred times more accurate than that of the magnetometer algorithm.  
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Chapter 1 

 

Introduction 

This thesis demonstrates how Kalman Filters can be used to determine a satellites orbit and 

attitude. Up to date and accurate knowledge of a satellite’s position and orientation is necessary 

for a satellite to perform the mission it was designed for and communicate with the satellite 

ground station. On-board attitude and orbit determination typically requires a multitude of 

sensors and is computationally expensive. This chapter will explain the motivation behind this 

thesis as well as the fictitious satellite and orbit used in this Kalman Filter model.  

 

1.1  Background and Motivation 

The goal of this thesis is to accurately compute the orbit and attitude of a satellite with as little 

computational effort as possible. Although on-board processing capabilities have greatly 

increased in the past couple of decades, it is still a priority to minimize the amount of 

computational effort required by the on-board processors while maintaining a desired level of 

accuracy. Kalman Filters allow for accurate prediction of a given state (attitude, position, 

velocity etc) without requiring expansive past data to be stored and computed, which allows for 

efficient on-board computation. The on-board computation, along with the sensors that measure 

the satellite orbit and attitude, make up the attitude determination system of the satellite. Satellite 

attitude determining systems vary in size but typically consist of four to five on-board sensors as 

well as the necessary processing equipment. The goal of this thesis is to develop an attitude 

determining system which utilizes a smaller number of sensors and is computationally 

inexpensive so that it can be implemented on a small payload. If a small payload is able to 

autonomously determine the host satellite orbit and attitude it would reduce the number of 

interfaces needed between the host and payload, reducing the complexity that comes with 

integrating payloads to host satellites. The first step in developing a minimized attitude 

determination system is to define the physical characteristics of the satellite. This is done in the 

following section. 
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1.2  The Satellite 

To accurately estimate the orbit and attitude of a satellite, the physical aspects of the satellite 

must first be define. The fictitious satellite used in this thesis has a cylindrical shape with two 

solar arrays on either side of the cylinder. Figure 1.1 shows the dimensions of the satellite and 

defines the orientation of the satellite in the body frame.  

 

 

Figure 1.1: Dimensions and orientation of satellite used in this thesis 

 The satellites dimensions are needed to calculate the moment of inertia matrix, which will 

be essential in determining how environmental torque affects the satellite attitude. The principal 

moment of inertia matrix can be calculated using the parallel axis theorem: 

                          

where      is the vector originating at the satellite’s center of mass and pointing to the origin of a 

chosen reference frame,   .    is the moment of inertia matrix for the given object and    is that 

objects moment of inertia matrix with respect to the reference frame,   . In this case, the origin of 

the reference frame is choosen to be the center of the cylinder. The position of each solar array 

and connecting rod is defined with respect to the origin of the cylinder. Once the moment of 

inertia matrices for each rod and array are calculated with respect to the cylinders origin, they 

can be added together: 

                                                             

2 m 

    

1 m 

.5 m 

4 m 

    

  

    
cm 

2 m 
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The principal axes theorem can be used again to translate the total moment of inertia matrix from 

the center of the cylinder to the satellite’s center of mass. 

                                

Once the total moment of inertia matrix has been formed, eigenvalue decomposition can be used 

to find the principal moments and axes of inertia. For this satellite, the principal moment of 

inertia matrix is 

            

   
  

    
 

     

   
        

        
       

  

This matrix will be used to determine how the satellite rotates with respect to the center of mass 

under environmental and controlled torques. A satellite is stable about the major and minor axes 

and unstable about the semi-major axis. From the principal moment of inertia matrix,    
 

    
    

, therefore this satellite is unstable about the     axis.  

 Notice that the orientation of the satellite’s solar arrays varies over the period of the orbit 

since they will always be oriented with the normal of the array pointing towards the sun. This 

necessity means the principal moment of inertia matrix for the satellite varies depending on the 

satellite position in the orbit. Therefore, the effects of the disturbing torques on the satellite, 

which depend on the moment of inertia matrix, depend on the position of the satellite in its orbit. 

In order to determine the attitude of the satellite the position of the satellite is needed. This will 

be further discussed in Chapter 4. 

 Not only are the dimensions of the satellite needed to estimate the orbit and attitude of the 

satellite, other characteristics are required, such as center of solar pressure, center of drag etc. 

Table 1.1 defines these characteristics for the satellite used in this thesis. 

Mass m 800 kg  

Average cross-sectional area A 8 m
2
  

Coefficient of drag CD 2.2  

Coefficient of Reflectivity CR  0.6  

    

          

Center of mass 0 0 0 

Center of aerodynamic pressure, Cpa 0 0 -0.5 m 

Center of solar pressure, Csp 0 0 -0.8 m 
 

Table 1.1: Characteristics of Satellite 
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1.3  The Orbit 

For this thesis, the chosen orbit is the Molniya orbit, seen in Figure 1.2. The Molniya orbit is a 

highly elliptical orbit with an inclination of 63.4 degrees and period of one half of a sidereal day. 

In this orbit the satellite’s distance to Earth varies drastically over one period. As seen in Figure 

1.3, at perigee the altitude of the satellite is roughly 5000 km and at apogee the altitude of the 

satellite is over 40,000 km. As will be explained in Chapter 2, a satellite at apogee in the 

Molniya orbit is traveling much slower than when it is at perigee. This allows for nearly 

persistent collection by a satellite’s sensors while at apogee, making this orbit essential for 

communication satellites. 

 

Figure 1.2: View of Molniya Orbit used in this thesis 

In this thesis, the Molniya orbit was chosen because of the large variation in altitude. Both 

perturbing orbital forces and disturbing environmental torques acting on the satellite vary with 

altitude. As shown in Figure 1.3, the forces and torques strongest at the satellite’s apogee are 

different than those forces and torques affecting the satellites motion when it is at perigee. At 

lower altitudes a satellite experiences a considerable more amount of drag due to the Earth’s 

atmosphere. Also at low Earth orbit, a satellite is more affected by the Earth’s oblateness, which 

is the increase in mass around the equatorial region. At higher altitudes, upwards of 10,000 

kilometers, perturbing forces such as solar radiation pressure and gravitational attraction from 

the Moon affect the satellite’s orbit. Since the forces influencing the orbit and attitude of the 

Molniya Orbit 

Side View Top View 
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satellite vary over just one period, the attitude determination system must take in to consideration 

more perturbing forces and torques than a satellite in an orbit where the attitude does not vary 

greatly. 

 

Figure 1.3: Altitude of Satellite in Molniya Orbit 

The ground track of the Molniya orbit is seen in Figure 1.4. When the satellite is at 

apogee, above 30 degrees latitude, the satellite is traveling much slower than when it is at 

perigee, below -30 degrees latitude. In this thesis, the fictitious satellite ground station is in 

Sydney, Australia. Since the Earth rotates 180 degrees during each satellite orbit, the satellite 

only passes by this ground station every other orbit. Therefore a full day must go by before the 

satellite can pass over the ground station and collect orbit determining information. As discussed 

in Chapter 3, this makes orbit determining algorithms using site track measurements less 

accurate than algorithms with on-board sensors due to the limited time in which the satellite is 

getting measurement updates. Also, since the ground station in this thesis is located at the 

perigee of the satellite orbit, the number of measurements gathered and provided to the on-board 

Kalman filter is even more limited since the ground station is only in view for roughly an hour. 

In this thesis a Kalman filter is used to determine the orbit and attitude of the satellite in a 

Molniya orbit. The algorithm requires an accurate model to predict the satellite orbit and attitude 

and then updates the predictions with input measurements from on board sensors or ground 

station communication. In Chapter 2, the general theory behind Kalman filters is explained. In 

3rd Body and Solar 

Radiation Pressure 

Effects 

Oblateness and 

Atmospheric Drag 

Effects 
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Chapter 3, the Kalman filter is applied to determine the satellite orbit by first propagating the two 

body equations of motion and then adding in perturbing forces due to the Earth’s oblateness,   

Figure 1.4: Molniya Orbit Ground Track  

atmospheric drag, gravitational effect of the Moon and solar radiation pressure. Then two cases 

are studied, the first being the input measurements coming from the ground station using the 

pointing of the ground antenna tracking the satellite to provide the satellite with its range, 

azimuth and elevation. For this case the measurement input only occurs for a brief time once a 

day. The second case uses an on-board GPS receiver to update the filter with position 

measurements throughout the orbit.  

Then in Chapter 4, the Kalman filter method is applied to determine the satellite attitude, 

taking in to consideration the disturbing torques a satellite experiences over the period of its 

orbit. Similar to the orbit determination, the satellites attitude is determined by propagating the 

rotational equations of motion and adding in the following disturbance torques: gravity gradient, 

aerodynamic drag, solar radiation pressure and magnetic torque. The attitude determining 

algorithm is then updated using measurements from one of four possible on-board sensors each 

with different error magnitudes. The sensors are: magnetometer, Earth sensor, a Sun sensor and 

star tracker. 

 

  

Apogee 

Perigee 

“in view” of ground station 
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Chapter 2 

 

Fundamentals of Kalman Filters  

 

The Kalman Filter, developed by Rudolf E. Kalman is a linear quadratic estimator that uses a 

series of measurements, which contain a level of noise and inaccuracies, over time to estimate a 

systems current state.  The Kalman Filter has numerous applications and in this thesis the 

Kalman Filter will be used to estimate a satellite orbit and attitude using various types of 

measurement inputs. There are two main stages in the Kalman Filter algorithm, a “predict” stage 

and then a “correct” stage. In the prediction stage, the algorithm uses models, such as the 

equations of motion for an orbiting satellite, to predict the system’s state over time along with 

the state’s uncertainties. The “correct” phase occurs when a measurement is received. The 

algorithm updates the estimated state with the measurement data with a certain level of weighted 

average. The algorithm then begins the predict phase all over again.  This recursive algorithm 

Time Update 

(“Predict”) 

Measurement Update 

(“Correct”) 

Figure 2.1: The two main steps in a Kalman Filter 
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allows for real time state calculation without requiring past data and measurements to be stored. 

Since only the current state and data from the next measurement are required, necessary data 

storage is minimal.  

 The Kalman filter uses measurements and the system’s dynamic model to estimate the 

systems state over time. The dynamic model is a linear, time-varying, finite-dimensional state-

space system defined as 

                 

                

where       is the state vector,      is the state matrix and   is the process noise.      is the 

observation matrix,      is the output vector and   is the observation noise.  

 For this thesis, the Kalman filter is used to determine the orbit and attitude of the satellite. In 

the case of orbit determination, the state vector is made up of the satellite position and velocity 

relative to an inertial Earth centered reference frame and is:                         
 
. For 

attitude determination, the state vector is made up of angles and rates of the satellite body frame 

with respect to its orbital frame:                            
 
. These two cases will be explained 

further in Chapter 3 and 4. The next few sections explain three types of Kalman filters and their 

different elements. 

  

2.1 Kalman Filter 

The basic Kalman filter can be applied to systems with linear equations of motion. The Kalman 

Filter uses the state transition matrix, , to propagate the state and its errors exactly since the 

equations of motion are linear. The inputs of the filter are the initial state,    , initial state error, 

   , the covariance of the process noise,  , the covariance of the observation noise,  , and the 

measurements,  . The covariance of the process noise allows for measurement noise and enables 

the tuning of the filter. The process and observation noise is assumed to be zero mean Gaussian 

white noise. 

 The state transition matrix,  , is determined using a Taylor series to determine the state 

vector at a certain time t.  

                     
  

  
   

Substituting in the dynamic model equation gives 
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Therefore, 

           

 where the state transition matrix is 

            
 

  
   

 The covariance matrix, P, of the predicted state vector is calculated from the previous 

covariance matrix, the state transition matrix and the covariance of the process noise 

           
    

 The algorithm computes the observation matrix,     , once, at the beginning of the 

algorithm. For the orbit determining Kalman filter, the observation matrix is 

  
  

  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   

   
   

   
   

   

   

   

   

   

   
   
   

   
   

   
   

   
   
   

   
   

   
   

  
   

   

   

   

   

   

   
   
   

   
   

   
   

   

   

   

   

   

   
   

   

   

   

   

   
   

   

   

   

   

   

   
   

   

   

   

   

   

  
   

   

   

   

   

   

   
   

   

   

   

   

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The Kalman Filter can be “tuned” by adjusting the covariance of the process noise,  , and 

the covariance of the observation noise,  . In this thesis,   and   are taken to be diagonal and 

constant although this does not have to be the case. To tune the Kalman filter, an initial guess for 

each of the noise matrices is selected and the algorithm is run. Then the matrices can be changed 

in order to improve the results. For the case of orbit determination, the initial guess for the noise 

matrices are 
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 where   is the expected errors of each state. 

Once the initial inputs are defined iterative process begins by propagating the state and error 

covariance over time. Once a measurement occurs, the predicted state and errors are corrected. 

The basic Kalman filter is summarized below. 

 

 

Kalman Filter 

 

Input {             } 

Output {         } 

             
      

    
     State Transition matrix 

       
  

      
     Observation Matrix 

Prediction 

                 Predicted State 

            
        Predicted Error Covariance 

Update 

               
                

    
  

      Kalman Gain 

                                State Estimate 

                            Error Covariance Estimate 
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 A Kalman filter is optimal when the model used to determine the state matches the real 

system exactly and the variance of the noise is known exactly. In this thesis, neither the model 

nor the covariance is known exactly since the state model for an orbiting satellite can only be 

estimated. Also, in this thesis, the equations of motion are not linear and need to be linearized 

before applying the Kalman filter. This is done in the following section. 

 

2.2  Kalman Filter for Linearized System 

In a Kalman Filter the equations of motion that define the problem are used to develop the state 

matrix,     ,. In this thesis, the equations of motion need to be linearized in order to apply the 

Kalman filter. To do this, the partial derivatives of the equations of motion and perturbations are 

taken with respect to each element of the state vector. For orbit determination using only the two 

body equations of motion, the state matrix is 
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As will be shown in later chapters, much of the Kalman filter development is in determining this 

state matrix since each perturbing force and torque affects the final state matrix. The state 

transition matrix is calculated once, at the beginning of the algorithm and includes all the 

perturbing forces needed to best estimate the state. This algorithm is summarized below. 

 

 

  

 Kalman Filter – Linearized System 

 

Input {             } 

Output {         } 

   
     

    

 found one time 

             

  
  

       
  

      
 

Prediction 

        predicted with Cowell’s Method   Predicted State 

                  Predicted State Update 

            
        Predicted Error Covariance 

Update 

                

               
                

            Kalman Gain 

                                        State Update Estimate 

                       State Estimate 

                            Error Covariance Estimate 
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2.3  Extended Kalman Filter 

The Kalman filter used in this thesis is the Extended Kalman Filter (EKF). The difference 

between the basic Kalman filter and the Extended Kalman filter is that the state transition matrix 

is calculated at every time step rather than at just the beginning of the algorithm. This is required 

since the perturbing forces that make up the state matrix change with respect to the satellite 

position in the orbit and therefore with time. So at every time step, the satellite position must be 

used to recalculate the state matrix and state transition matrix. This is computationally expensive 

but decreases the errors in the orbit determining algorithm. The summary of the EKF is seen 

below. 

 

 Extended Kalman Filter 

 

Input {             } 

Output {         } 

       
  

      
 

Prediction 

        predicted with Cowell’s Method   Predicted State 

   
      
     

  

               

               Predicted State Update 

            
        Predicted Error Covariance 

Update 

                

               
                

            Kalman Gain 

                        State Update Estimate 

                       State Estimate 

                            Error Covariance Estimate 
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Figure 2.2 shows how, at each time step, the state and errors are propagated from         to         

and then the state and errors are updated when a measurement is observed, resulting in         .  

 

 

Figure 2.2: Extend Kalman Filter Representation 

 

 Chapter 3 will explain how the Kalman filter is applied in order to determine the position of 

the satellite in its orbit. The derivation of the state matrix is the lengthiest step in the process; 

requiring the development for individual state matrices for each perturbing force and then 

summing them in order to get the final state matrix. Then two cases are analyzed, the first 

provides the filter with a group of measurements once a day in the form of the satellite’s range, 

azimuth and elevation from a ground station. The second case predicts the orbit using position 

and velocity measurements from an onboard GPS sensor throughout the duration of the orbit. 

 Similarly, Chapter 4 will estimate the satellite attitude by applying the Kalman filter 

algorithm. Once again, the development of the state matrix will require the most work seeing as 

how each disturbing torque influences the matrix. Then four cases are studied pertaining to the 

four types of on-board attitude sensors.  

 

 

  

        

 

        

         

 

        

 

        

 

        

 

        

 

        

 

        

 

        

 

        

 
     

 

     

 

     

 

     

 

        

 

Predict 

Correct 
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Chapter 3 

 

Orbit Determination 

In order for a satellite to perform the mission it was designed for, it must accurately determine its 

location in space. Knowledge of the satellite location, called orbit determination, is used by 

ground stations to command the satellite, maintain the orbit from degradation or to maneuver the 

satellite to a desired location. The position of a satellite is used for station keeping maneuvers, 

mission planning and even collision avoidance. Although space is a vast place, the accurate 

knowledge of the location of each satellite is essential to prevent intergalactic space collisions. 

Having an accurate on-board orbit determining system allows a satellite and its ground station to 

accurately plan missions and the necessary maneuvers that mission drives.  

 In this chapter, the fundamentals of orbit determination will be explain as well as the 

derivation of the orbit determining Kalman filter used in this thesis. To increase the level of 

accuracy of the Kalman filter, multiple orbit perturbing forces are added to the algorithm, 

making the Kalman filter derivation a lengthy but necessary process. First off, the fundamentals 

of orbit determination will be explained. Then, the Kalman filter will be developed in order to 

accurately determine the satellite orbit using two cases, site track measurements and GPS sensor 

measurements. 

 

3.1  Defining a Satellite Orbit 

To define an orbit, an inertial reference frame must be developed such that, at any location, the 

satellite’s position and velocity can be described. An inertial reference frame is a set of three 

mutually perpendicular vectors whose origin remains fixed with respect to space. Therefore the 

inertial reference frame is one that is not accelerating. However, there is no truly inertial location 

in space since all points in space are accelerating. Therefore, for any given problem, a reference 
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frame that is as close to inertial as possible must be selected. In the case of a satellite orbiting the 

Earth, an Earth centered reference frame is inertial enough since the motion of the Earth 

throughout space need not be considered. The reference frames that will be used in this thesis are 

explained below. 

3.1.1  Reference Frames 

First, the Earth Centered Inertial reference frame, or ECI frame, is a reference frame with its 

origin at the center of the Earth. As shown in Figure 3.1, the I-axis points in the direction of 

Earth’s vernal equinox, the K-axis points towards the North Pole and the J-axis completes the 

triad and lies within the equatorial plane. The satellite’s position can then be defined as the 

vector,   , in this ECI frame.  

 

Figure 3.1: Earth Centered Reference Frame 

The ECI frame remains relatively fixed over time, therefore the Earth rotates about the K 

axis of the ECI frame. Another reference frame needs to be defined that remains fixed with the 

Earth and therefore rotates along with the Earth. This reference frame is appropriately called the 

Earth Centered Earth Fixed reference frame, or ECEF. This frame is similar to the ECI frame 

however the          points towards the location of the prime meridian, or 0 degrees longitude.  

Later on in this chapter, another reference frame will be needed to determine the satellite’s 

position. This reference frame determines the satellite’s position as it relates to a point on the 

surface of the Earth, such as a ground station. The reference frame is called the Topocentric 
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Horizon Coordinate System. It is commonly called SEZ since the vectors that make up the 

coordinate system point due south and due east from the ground station as well as directly out, or 

zenith, from the ground station. Figure 3.2 shows how the SEZ frame relates to the ECEF and 

ECI frame. 

 

Figure 3.2: ECI, ECEF and SEZ Reference Frames 

A satellite’s position can be described in the SEZ frame by three parameters: range, 

azimuth, and elevation. The range of a satellite,     , is the distance from the satellite to the 

ground station. The azimuth of the satellite,  , is the angle measured from the north, clockwise 

to the location beneath the satellite. The elevation of the satellite,   , is the angle to the satellite 

measured from the horizon. These three parameters can be determined from a ground antenna 

pointing toward the satellite and will be used as the site track measurements in one of the 

Kalman filter cases. In order to determine the satellite location in the ECI frame, using 

parameters defined in the SEZ frame, coordinate transformations must occur. A coordinate 

transformation takes in to account the rotations required to transform the ECI frame in to the 

SEZ frame. Then, any vector in the SEZ frame can be transformed back in to the ECI frame and 

used to define the satellite in the ECI frame. This process is called the transformation of 

reference frames and is explained in the next section. 
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3.1.2  Transformation between Reference Frames 

In order to define a satellites position in the ECI frame using measurements in the SEZ frame, 

the measurements must be transformed into the ECI frame. In order to transform vector 

components from one reference frame to another, the vector is multiplied by a rotation matrix. 

For example, if a vector               
 needed to be transformed from an a,b,c frame to a u,v,w 

frame it would need to be multiplied by a rotation matrix    . 

       

      

      

      

  

  

   

  

           

The rotation matrices used to transform the vectors come in one of three forms depending on 

which of the three axes the rotation is about.  

       
   
          
         

           
         
   

          
           

          
         
   

  

Then the final rotation matrix can be developed my multiplying each of the individual rotation 

matrices needed to complete the rotation. For example, the final rotation matrix for a rotation 

about the third, first, then second axes is 

               

To transform a vector in the SEZ frame to the ECI frame, it must first be rotated counter 

clockwise about the E-axis in order to align the Z-axis with the K-axis. This is done by using a 2-

rotation by the negative of        .  

            

                       

   
                        

   

                 

   
                  

  

Another rotation is required to rotate the S-axis, which is now the           axis, to the I-axis. This 

is done by rotating counterclockwise about the K-axis by the angle,  , which requires the    

rotation matrix.  

        
                
               

   

  

So the final rotation comes out to 
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The last step in transforming position vector in the SEZ frame to the ECEF frame is just the 

translation of the origin from a point on the surface of the Earth to the center of the Earth. This is 

done using basic addition 

                       

This transformation will be used when measurements of range, azimuth and elevation of a 

satellite from the ground station are inputted in to the Kalman filter that is estimating the position 

of the satellite in terms of the ECI frame. 

3.1.3  Orbital Elements  

Another important way to describe a satellite orbit is using orbital elements. In this thesis, the 

effects of the perturbing forces that influence a satellite orbit will be described in orbital 

elements; therefore a brief overview of these elements is given here.  

 

Figure 3.3: Depiction of Orbital Elements 
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The orbital elements describe the location of the satellite at any given time. Figure 3.3 

depicts the orbit of the satellite as an ellipse that is inclined with respect to the Earth’s equator. 

The first of the orbital elements is the semimajor axis of this ellipse, a. The eccentricity of this 

ellipse is the second of the orbital elements, e. The third orbital element is the inclination of the 

ellipse with respect to the Earth’s equatorial plane and is denoted, i. The right ascension of the 

ascending nodes, Ω, is the angle from the I-axis to the ascending node,    , which is the vector 

pointing from the center of the Earth to the point where the orbit crosses the equatorial plane 

going from south to north. The argument of perigee, ω, is the angle between the ascending node, 

   , and the location of the orbit’s perigee, or closest approach, denoted,   . Last, the true anomaly, 

ν, is the angle between the satellite’s current position in the orbit with respect to   . These orbital 

elements are all that are needed to find the position and velocity of the satellite in the ECI frame. 

Next, the laws that govern the motion of a satellite orbiting Earth are explained. 

 

3.2  Laws Governing a Satellite Orbit 

Kepler’s and Newton’s Laws, which were first developed to describe the motion of planets about 

the sun, are essential to determine a satellite orbit. These laws can be applied to any two body 

problem, where one body orbits another due to gravitational forces, such as a satellite about the 

Earth.  

3.2.1  Kepler’s Laws 

Kepler’s laws are as follows: 

1. The orbit of each planet is an ellipse with the Sun at one focus. 

2. The line joining the planet to the Sun sweeps out equal areas in equal times. 

3. The square of the period of a planet is proportional to the cube of its mean distance to 

the Sun 

 

 

Figure 3.4: Illustration of Kepler’s 2
nd

 law 

A1 A2 

a 
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 Figure 3.4 illustrates Kepler’s second law, showing that a satellite will trace out equal areas 

of an ellipse in equal times. In order to trace out equal areas in equal times, the satellite travels 

much faster when close to the Earth, at perigee, then when it is at apogee, furthest from the 

Earth. Later, it will be shown that this increased speed causes increased errors in the orbit 

determining Kalman filter.  

3.2.2  Newton’s Laws 

Newton’s second law and his law of gravitation are also essential to predicting a satellite orbit. 

Newton’s second law states that the sum of all forces acting on a body, F, is equal to the mass of 

that body, m, times the body’s acceleration, a. Therefore, 

        

Newton’s law of gravitation applies his second law to the gravitational forces between two 

bodies. Therefore the gravitational force of the Earth, acting on a satellite is 

    
           

  
   

 where G is the gravitational constant. With this equation, the acceleration of a satellite can 

be determined from just the satellite’s position relative to the body in which it orbits. 

3.2.3  Assumptions of the Two Body Problem 

There are four key assumptions of the two body problem and they are 

1. The mass of the satellite is negligible when compared to the mass of the attracting body, 

in this case, the Earth 

2. The coordinate system used to define the motion is inertial 

3. The bodies of the satellite and Earth are spherically symmetric 

4. No other forces act on the system except for the gravitational forces of the attracting 

body 

For this thesis, assumption 1 holds; the satellite’s mass is negligible when compared to the mass 

of the Earth. Also, assumption 2 holds loosely; the ECI frame is determined to be inertial enough 

for this two-body problem. The motion of the Earth through space is neglected. However, in this 

thesis, both Assumption 3 and 4 do not hold, resulting in perturbation forces and disturbing 

torques on the satellite. Assumption 3 does not hold, since neither the Earth nor the satellite is a 

perfect sphere. The Earth has more mass about the equatorial region than at the poles; therefore 

the gravitational force on the satellite varies between the equatorial plane and poles. Also, the 

satellite is not a sphere, but rather a cylindrical shape with extending solar panels. This non-

spherical shape means the force from Earth’s gravity varies from point to point along the satellite 
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body. Assumption 4 does not hold since there are additional external forces such as drag from 

the Earth’s atmosphere acting on the satellite. These variations to the two-body problem will be 

discussed further throughout this thesis. 

 

3.3  Predicting the Satellite Orbit using the Two Body Problem 

In this thesis, the satellite orbit is propagated using the laws explained above and a numerical 

integration method called Cowell’s Formulation, explained below. 

3.3.1  Cowell’s Formulation 

From Newton, the acceleration of a satellite in the two body problem can be described by the 

following equation 

     
   

  
 

 where          . However the two-body problem neglects the real-world perturbation 

effects such as atmospheric drag and the Earth’s oblateness. These perturbations, which will be 

discussed in detail in the following sections, create an additional acceleration that acts on the 

satellite. This acceleration can be added to the two-body acceleration and numerically integrated 

to find a more accurate satellite orbit. 

     
   

  
               

Cowell’s Formulation numerically integrates the second order differential equations of motion.  

To use this method a state vector is developed such as the one below for orbit determination. 

  

 
 
 
 
 
 
  

  

  
  

  

   
 
 
 
 
 

 

 
 
 
 
 
 
  
  
  
  

  
   

 
 
 
 
 

  

Then the derivative of the state vector is 
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Cowell’s method uses numerical integration to integrate the derivative of the state vector to 

determine the state vector over time. In this thesis, Matlab’s numerical integration function 

ode45 is used to numerically integrate    over time using a fixed time step. 

 

3.4  Perturbations of the Satellite Orbit  

This section is devoted to finding the acceleration of the satellite due perturbing forces, 

            . Four perturbing forces will be added to the two-body problem, explained in previous 

sections, in order to increase the accuracy of the satellite orbit determination algorithm. These 

four perturbing forces are: Earth’s oblateness, Earth’s atmospheric drag, the Moon’s 

gravitational force, and the pressure due to solar radiation. The first two perturbing forces, 

Earth’s oblateness and atmospheric drag, affect the orbit of a satellite while it is relatively close 

to the Earth (~1000 km altitude). Their affects diminish with increased altitude. While the 

oblateness and atmospheric drag diminish with altitude, the effects of Moon’s gravity and the 

pressure from solar radiation increase with altitude. Since this particular satellite is in a highly 

elliptical orbit it experiences both the perturbing forces that are strongest at low altitudes as well 

as the perturbing forces that are stronger at higher altitudes. Therefore the accelerations due to all 

four of these perturbing forces are added to the general two-body acceleration. 

                                                   

 

3.4.1 Earth’s Oblateness 

As was explained in Section 3.2.3 one of the assumptions of the two body problem is that the 

satellite and the Earth are symmetrically spherical. The fact that the satellite is not spherically 

symmetric will cause aerodynamic disturbing torques that will be discussed in Chapter 4. The 

fact that the Earth is not spherically symmetric is addressed here. The oblateness of the Earth 

refers to the increase in mass around the Earth’s equatorial region. This increased mass around 

the equator creates its own gravitational force on the satellite.  
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 The perturbing acceleration due to the Earth’s oblateness is derived from the aspherical 

potential function  

 

  
 

 
      

  

 
 
 

               
                                 

 

   

 

   
  

where    is the radius of the Earth,       
and      are the latitude and longitude of the sub-

satellite point on the Earth, and      is the associated Legendre functions.  

The acceleration due to the Earth’s oblateness is then found by taking the gradient of the 

aspherical potential function in spherical coordinates with respect to      , using the chain rule. 

   
  

  

  

   
 

  

  

  

   
 

  

    

    

   
 

This then gives the final acceleration in the ECI frame as 
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 Figure 3.5: Zonal Harmonic used in this Thesis 

For the second order zonal harmonics, as shown in Figure 3.5, l=2 and m=0. The zonal 

gravitational coefficient becomes                         and the sectorial harmonic 

becomes            . For this case, the associated Legendre functions are 

               
   

 

 
             

     

               
              

           
  

The partial derivatives become 

  

  
  

 

 

   
     

  
             

     

  

    
  

   
     

  
          

           
  

  

  
   

Therefore the final acceleration due to perturbations from Earth’s oblateness for second order 

zonal harmonics is 
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This process can be repeated for sectorial and tesseral harmonics until the level of accuracy of 

the acceleration due to Earth’s oblateness is reached. In this thesis, only the perturbation from 

second order zonal harmonics is considered since it is almost 1000 times larger than 

perturbations from the third order harmonics.  

 The Earth’s oblateness affects a satellite orbit since the gravitational pull of the bulge 

creates secular variations in the argument of perigee and right accession of the ascending node. 

Since the bulge around the equator pulls the satellite toward the equatorial plane, the satellite will 

reach the line of nodes,    , more quickly than it would for a spherically symmetric Earth. This 

creates a “spinning top” like precession in the satellites orbit. Periodic variations in all orbital 

elements are also caused by the harmonics of the Earth’s shape.  

3.4.2 Atmospheric Drag 

The next most influential perturbing force for low earth orbiting satellites is the effect of 

atmospheric drag. The molecules that make up the Earth’s atmosphere create friction on the 

satellite, making drag a non conservative perturbation, reducing the total energy of the system. 

The acceleration of the satellite due to atmospheric drag is 

         
 

 

   

 
     

       
        

 

where    is the dimensionless coefficient of drag that quantifies the susceptibility of the satellite 

to drag. The coefficient of drag depends on the shape of the satellite and in this thesis the satellite 

coefficient of drag is           is the cross-sectional area of the satellite defined to be the area 

which is normal to the satellite velocity vector. In this thesis, the cross-sectional area of the 

satellite is taken to be      and its mass, m, is 800 kg. The atmospheric density,  , is the density 

of Earth’s atmosphere at the current altitude of the satellite and is the most difficult aspect of the 

acceleration to determine. Not only does the atmospheric density vary with altitude, the density 

is affected by temperature, winds, tides and even the location of the ground station. There are 

two types of atmospheric models used to determine the density. They are static or time varying 

models. A static model considers  

 Latitudinal variations: variations in the density of the atmosphere due to altitude. 

Since the Earth is oblate, when a satellite passes over the equatorial region 

relative altitude is less and therefore the atmospheric density is larger.  
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 Longitudinal variations: variations in the density due to local altitude, such as 

mountain ranges, cause significant variations in the atmospheric models due to 

local wind, temperature etc. 

A time-varying atmospheric model has additional complexities to consider including diurnal 

variations in which the atmosphere lags in the direction of the Sun, where it is warmest. Other 

affects such as the sun spot cycle and even the 27-day solar rotation cycle create changes in the 

Earth’s atmosphere. It is extremely difficult to model all of these effects.  

In this thesis, the atmospheric density is determined using the following equations 

     
  

  
 

    

         
  

 

 

 where                 

   and           . 

 The velocity vector used in the calculation of the acceleration due to drag is taken relative to 

the Earth’s rotating atmosphere. The rotation of the atmosphere is approximated as the rotation 

of the Earth. This is an assumption since the rotation of the atmosphere depends on the altitude; 

when closer to Earth’s surface the atmosphere’s rate is close to that of Earth’s, however as 

altitude increases the rate of the atmosphere decreases. The velocity vector is found using the 

transport theorem.  The relative velocity vector is  

 

       
   

  
          

 
 
 
 
 
 
   
  

     

   

  
     

   
   

 
 
 
 
 

  

       
       

  

  

Therefore the acceleration due to atmospheric drag becomes: 

 

         
 

 

   

 
   

     
    

    
     

  

 

   
    

    
  

       
       

  

  

 As explained earlier, atmospheric drag is a non conservative perturbing force which causes 

the satellite to lose energy. This in turn causes a decrease in the orbits semimajor axis and 

eccentricity. Therefore, over time, the orbit becomes more circular and the altitude of the satellite 
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decreases. Therefore, station keeping maneuvers are required to maintain any satellite orbit 

including the highly elliptical orbit of the satellite in this thesis. 

3.4.3 Perturbation due to Moon  

The Earth’s oblateness and atmospheric drag play a crucial role in perturbing orbits at low 

altitudes (~ 1000 km), however as the altitude of a satellite increases the Moon’s gravitational 

pull becomes a more influential perturbation force. Since a satellite in a Molniya orbit reaches 

altitudes upwards of 35,000 km, third-body perturbation effects due to the Moon are essential to 

accurate orbit estimation. As seen in Figure 3.6, the Moon creates a gravitational force on the 

satellite in the direction of the Moon, which pulls the satellites orbit toward the lunar plane, 

changing the inclination of the orbit.  

The acceleration of the satellite due to the Moon’s gravitational pull is 

 

              
 

  
   

 

   
        

 where    and        are shown in Figure 3.7 and defined as 

 

                 

      
      

      
   

   
      

      

  

 

Figure 3.6: Orientation of Third Body  
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Figure 3.7: Diagram of Third Body  

 

The acceleration due to the Moon can be written in the ECI frame as 

               
 

               
               

 

         
       

       

 
 
 
 
 

 

           
          

   
       

      
   

   
 

         
      

   
   

      

 

 
 

      
 

   
   
   

 

 
 
 
 
 

The Sun’s gravitational force on the satellite is not added as a perturbing force in this thesis since 

its affect on the satellite orbit is about half that of the Moon’s, which is already a small effect. 

The overall affect of the Moon’s gravitational force on the satellite is similar to the oblateness of 

the Earth, causing perturbation in the line of nodes and argument of perigee; however the 

variations are about the lunar plane rather than the equatorial plane. 

3.4.4 Perturbation due to Solar Radiation Pressure 

The final perturbing force considered in this thesis is the pressure created on the satellite due to 

the Sun’s radiation. Similarly to the Earth’s atmospheric drag, solar radiation particles create 

friction on the satellite, and therefore solar radiation pressure is a non-conservative perturbing 

force. This force decreases the overall energy of the satellite, reducing the semi major axis of the 

orbit. There are also annual variations in the argument of perigee and eccentricity due to the 

relative location of the Earth with respect to the Sun over one year.  
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 The acceleration of the satellite due to solar radiation pressure is 

          
       

 

      

        
 

Where     is the solar pressure per unit area and is found using Einstein’s law,      in the 

form     
 

 
  and the solar-radiation constant,        
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Reflectivity of the satellite,   , is typically between 0 and 2, and is 0.6 for the satellite in this 

thesis. The exposed surface area of the satellite to the sun,   , is taken to be 14 m
2
 since both 

the solar arrays will be facing the sun at all time and the surface area of the central body will 

vary from 3 to 8 m
2
.         is the vector from the satellite to the sun, therefore 

                  

         
      

   
   

      

  

Substituting in this vector gives the acceleration of the satellite due to solar radiation pressure in 

the ECI frame as 

          
       

 

 

           
          

   
       

      
  

 

         
      

   
   

      

  

 Notice, knowledge of the location of the Sun is required to determine the acceleration of the 

satellite at any given point. In this thesis, the Sun’s position is taken as stationary over the time 

period in which the orbit is determined. Each time the algorithm is run, the Sun’s location must 

be inputted and the perturbing acceleration recalculated. 

3.4.5 Summary of Perturbation Forces 

To summarize, the acceleration due to each of the perturbing forces explained above can be 

added to the two-body acceleration and numerically integrated to find the satellite’s position and 

velocity. The numerical integration is done using MatLab’s ode45 which integrates the time 

derivative of the state vector. A plot of the perturbed and unperturbed orbit is seen in Figure 3.8. 
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The inputs needed to calculate the perturbation acceleration are the position of the satellite, the 

latitude and longitude of the sub-satellite point and the position of the Sun and the Moon relative 

to the center of the Earth. The position of the Sun and Moon relative to the Earth is taken as 

constant for the period of the satellite and therefore can be inputted once at the beginning of the 

algorithm. The sub-satellite point changes over time and therefore will need to be recalculated 

with each time step. At each time step,  

     
    

                            
       

  
 
                     

  

  
       

 

 where   is the Greenwich sidereal time. Therefore the final initial inputs needed to compute 

the perturbation acceleration are: the satellite’s initial position, velocity and characteristics, the 

Earth to Sun vector, the Earth to Moon vector and the initial Greenwich sidereal time.  

 

Figure 3.8: Unperturbed and perturbed orbit using all four perturbation accelerations 
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3.5  Development of State Matrix with Perturbing Forces 

The state matrix, F, is made up of the equations of motion that define the problem, therefore it 

must be calculated for each of the perturbing forces in order to apply the Kalman filter to orbit 

determination. Much of the Kalman filter development is in determining this state matrix since 

each perturbing force and torque affects the final state matrix. The state transition matrix also 

needs to be linearized in order to apply the Kalman filter. To do this, the partial derivatives of the 

equations of motion and perturbations are taken with respect to each element of the state vector. 

For an orbit in which no disturbing forces are considered, the F matrix is only dependent on the 

2-body equations: 
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Once again, the four types of disturbing forces considered are non-spherical, drag, 3-body and 

solar radiation. These disturbing forces need to be added to the F matrix so that they become 

incorporated into the state transition matrix,  . Luckily the F matrices, for each disturbing 

forces, can be combined in the following way: 

                                          

Therefore, the state matrices for each of the perturbing forces need to be developed. This is done 

by taking the partial derivatives of the perturbing acceleration with respect to the state vector. In 

the following sections, the state matrices for each of the perturbing accelerations are determined. 

 

3.5.1 Earth’s Oblateness 

In Section 3.4.1, the acceleration on the satellite due to a non spherical Earth was determined to 

be 

   

 
 

 

  
 

 

   
     

  
             

      
  

     
    

 

  
   

     

  
          

           
  

 
 

 

   

   

 
 

 

  
 

 

   
     

  
             

      
  

     
    

 

  
   

     

  
          

           
  

 
 

 

   

     
 

 

   
     

  
             

        
   

    
 

  
 
   

     

  
          

           
  

 

The state matrix for this perturbing force is then 
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Appendix A shows how each of these partial derivatives are found. Below is just the first of the 

partial derivatives of the acceleration with respect to position 

   

   
  

 

 

   
     

  
             

     
  

     
    

 

  
   

     

  
          

           
 

   

 

    
   

     

  
             

    

 
      

     
    

 

    
               

           
 

 
     

     
    

  
 

  
    

               
           

  
 

 

Although the derivation is lengthy, once programmed, the state matrix for Earth’s oblateness just 

depends on the current position of the satellite.  

3.5.2 Earth’s Atmospheric Drag 

In Section 3.4.2, the acceleration due to atmospheric drag was defined as  

         
 

 

   

 
   

     
    

    
     

  

 

   
    

    
  

       
       

  

  

The state matrix is then 
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The state matrix for atmospheric drag perturbations changes with time and depends on the 

current position and velocity of the satellite. 

 

3.5.3  Moon’s Gravitational Force 

The acceleration of the satellite due to the Moon’s gravitational force is 
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The state matrix is then 
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Once again, the position of the Moon is assumed to be constant over the period of the satellite 

orbit, so the state matrix for the lunar perturbations only depends on the current position of the 

satellite. 

 

3.5.4  Solar Radiation Pressure 

Finally, the acceleration of the satellite due to solar radiation pressure is 

 

        
       

 

 

           
          

   
       

      
  

 

         
      

   
   

      

  



37 
 

Therefore the state matrix becomes, 
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After the initial values pertaining to the satellites reflectivity, surface area, etc. are inputted along 

with the position of the Sun, the state matrix for solar pressure only depends on the current 

location of the satellite. 

Now that each of the state matrices for the perturbing forces has been defined, they can be 

summed to get the final state matrix to be used in the Kalman filter. 
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3.6  Kalman Filter Implementation for Site Track Orbit Determination  

The first of the two cases studied in this thesis, determines the satellite orbit using input 

measurements from a ground stations site track. When the satellite passes in view of the ground 

station antenna, the antenna’s orientation and signal collection determines the satellite range, 

elevation and azimuth and relays this information to the satellite every time step. For the orbit 

and ground station used in this thesis, the measurements are received once every two orbits, or 

once a day.  

 

Figure 3.8: Visualization of Orbit and Occurrence of Measurements from Ground Station 

 

The range of the satellite,  , is determined using the following equation  

  
   

 
 

 where c is the speed of light and    is the total time required to transmit the signal to the 

satellite and then receive a signal from the satellite. Range accuracy using this type of calculation 

has errors of about 3 meters. The range rate,   , is determined from the frequency shift of the 

signal, or Doppler shift.  

    
   

 
 

 where   is the wavelength of the signal and    is the change in frequency of the signal from 

the initial frequency sent by the antenna and the frequency that the satellite receives. The 
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azimuth and elevation of the satellite are determined using the gimbal angles from the antenna 

when collecting the satellite signal. 

 

Figure 3.8: Visualization of ground station collecting and sending range data to satellite 

 The state matrix found in the previous section applies to all orbit determining cases in this 

thesis. The difference between the two cases, site track and GPS sensor, lies in the form and 

occurrence of the measurements inputted into the Kalman filter. For the site track case, the 

measurements are in the form of range,  , azimuth,  ,  and elevation,   , where 

        
    

    
  

        
  

  
  

        
  

   
    

    
 
  

 In the case of orbit determination using site track observations, the H matrix is complex 

since the measurements are in the SEZ reference frame and need to be transformed in to the ECI 

frame. This is done using the chain rule 

  
            

   
  

    

       

   
    

      

  
      

          

  
          

      

 

  
    

      
  

      

      
  

      

      
    

    

       

  
       

       

  
       

      
  

From the definitions of range,  , azimuth,  ,  and elevation,    the partial derivatives of each 

with respect to the position portion of the state vector in the SEZ frame are 
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In Section 3.1.2 the rotation matrix needed to transform the SEZ to an earth centered frame was 

defined as 

      

      
  

                                     

              

                                    

  

 where    and   are the latitude and longitude of the ground station.  

Finally, since                       , and              

          

      

 

 
 
 
 
 
      

      

       

       
 
 
 
 

     

 The observation matrix is then 

  
            

   
  

    

      
  

      

      
   

 Now that both the state matrix and observation matrix have been determined, the orbit can 

be estimated by running the Kalman filter algorithm over multiple orbits and imputing 

measurements when the satellite is over the ground station. Only one ground station was used 

throughout this thesis, therefore the measurements are sent to the satellite once a day when the 

satellite is over that station. A sample set of site track measurement data is seen in Table 3.1. The 
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measurement errors of the site track are assumed to be 0.1 degrees for azimuth and elevation and 

3 meters for range.  

 

Measurement 

 

 

Range,  , (km) 

 

Azimuth,  , (degrees) 

 

Elevation,   , (degrees) 

1 1338 240.8 17.9 

2 1816 160.3 45.2 

3 2824 128.4 50.7 

4 3531 116.2 51.0 

5 4329 107.1 52.4 

Table 3.1: Sample set of site track data 

Figure 3.10 shows the actual and predicted orbit obtained using the orbit determining Kalman 

filter with site track measurements.  

  

Figure 3.10: Predicted and actual orbit determined using site track 
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Figure 3.11: Close up of Predicted and Actual Orbit Determined using Site Track 

  

 Figure 3.11 shows sample sections of the orbit with the predicted, actual and measurement 

data plotted. It shows how the Kalman filter takes in to account the measurement as well as the 

past position in order to best predict the current location of the satellite.  

 Figure 3.12 plots the difference in actual and predicted orbits. The plot is over two periods. 

The error increases as time from last measurement update increases. The algorithm was iterated 

over multiple orbits and days; however the errors did not seem to decrease much as shown in 

Figure 3.13.  

Although, the site track method has quite a bit of errors, if they are within the 

requirements for the satellite, this method is computationally less expensive and requires no on-

board sensors unlike the next case, in which an on-board GPS receiver is used to input 

measurements of position and velocity in to the Kalman filter at each time step throughout the 

orbit. This case has much smaller errors but forces the algorithm to update itself with 

measurements multiple times a second, which is computationally expensive. 
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Figure 3.12: Error of Orbit Determined using Site Track over one Orbit 

 

Figure 3.13: Error of Orbit Determined using Site Track over multiple orbits 
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3.7  Orbit Determining Kalman Filter Implementation with GPS  

The same method used in Section 3.6 can easily be applied to the case using measurements from 

an onboard GPS sensor. The only differences are the observation matrix, H, and the frequency in 

which the algorithm corrects the predict phase with measurements. 

 For the case of GPS sensor date in the form of ECI position and velocity, the observation 

matrix is simply 

  
            

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   

   
   

   
   

   

   

   

   

   

   
   
   

   
   

   
   

   
   
   

   
   

   
   

  
   

   

   

   

   

   

   
   
   

   
   

   
   

   

   

   

   

   

   
   

   

   

   

   

   
   

   

   

   

   

   

   
   

   

   

   

   

   

  
   

   

   

   

   

   

   
   

   

   

   

   

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
      
     
      

     
     
      

     
     
      

      
     
       

 
 
 
 
 

   

 The state matrix, F, is the same as it was in the site track case, since it is independent of 

what type of measurement is used. Now the Kalman filter is run inputting measurements over the 

entire orbit rather than just a brief time during ground site overpass which results in a much more 

accurate prediction of the satellite orbit. The simulated GPS measurements were created using 

the rand function in MatLab which produces normally distributed pseudorandom numbers, using 

a chosen error and rate. The error for the sensor used in this thesis is 0.5 meters. 

 Figure 3.14 shows the actual orbit and the predicated orbit and Figure 3.15 shows the 

element break down of the position vector. Figure 3.16 and 3.17 then show a close up of the 

actual and predicted position. 

 Figure 3.18 shows the errors seen between the actual and predicted orbit over one orbit with 

measurements inputted every second. Figure 3.19 shows the errors over one orbit with 

measurements inputted every two minutes. The plot begins and ends at the orbits perigee, where 

the satellite is traveling much faster than at apogee. Therefore, the distance traveled between 

each time step and measurement update is greater than when it is at apogee. Interestingly, the 

errors increase when the satellite is a perigee due to this greater distance between measurement 

updates. This increased error at perigee is not seen when the time step is one second. Therefore, 

the accuracy of the orbit determining Kalman filter depends on both the accuracy of the 

measurements as well as the time between updates. 
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Figure 3.14: Error of Orbit Determined using GPS sensor 

 

Figure 3.15: Orbit Determined using GPS sensor 
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Figure 3.16: Zoomed In Orbit Determined using GPS sensor 

 

Figure 3.17: Zoomed in orbit determined using GPS sensor 
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Figure 3.18: Errors in orbit determined using GPS sensor with measurement updates every second 

 

Figure 3.18: Errors in orbit determined using GPS sensor with measurement updates every two minutes 
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Figure 3.20: Mean errors in orbit verse time between measurement updates 

 

  Figure 3.20 shows how the decrease in time between measurement updates decreases the 

errors of the orbit determining Kalman filter. This shows the importance of both an accurate 

measurement as well as a small time between measurement update. The decrease in time 

between measurement updates increases the number of iterations per second the filter must 

compute, increase the computational effort. Therefore when designing an orbit determining 

algorithm, a trade study can be performed to find the largest time interval that meets the desired 

accuracy requirements. 

 In summary, the orbit determining Kalman filter designed in this thesis is clearly more 

accurate when run with GPS measurements updated throughout the orbit than using site-track 

measurements. However, if the GPS receiver somehow failed, the orbit can be determined using 

a ground station site track. This allows for orbit determination redundancy for the satellite. Now 

that the orbit has been determined, the satellite attitude will be determined using a similar 

method. The rotational equations of motion will be defined and the attitude will be estimated, 

taking in to consideration environmental forces on the satellite. Then the Kalman filter will be 

defined and implemented using a multiple of attitude determining sensors.  
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Chapter 4 

 

Attitude Determination 

Similarly to orbit determination, satellite attitude determination is an essential part of a satellite 

mission. Determining and controlling the attitude of a satellite allows for successful pointing of 

the satellite antennas, sensors and solar arrays. In order for a satellite to successfully perform the 

mission it was designed for, it must be able to accurately estimate and control its attitude. Also 

similar to the orbit of a satellite, the attitude of a satellite is affected by the environment in which 

it is in such as by atmospheric drag or solar radiation pressure. These environmental forces create 

disturbing torques on the satellite that need to be estimated in order to accurately determine the 

attitude of the satellite. 

 

4.1   Representing Attitude 

The attitude of a satellite is defined as the orientation of the satellite’s body frame with respect to 

a constant reference frame. The next section defines the reference frames used in determining the 

attitude of the spacecraft in this thesis. 

4.1.1  Reference Frames 

In order to define a satellites orientation, an orbital reference frame, consisting of a triad of 

orthonormal vectors, must be defined. The orbital frame is constant under orbital variations with, 

   , pointing in the direction of the satellite’s position vector, described in Section 3.1.1. The 

attitude of a satellite is the orientation of the satellite’s body frame with respect to this orbital 

frame, shown in Figure 4.1. 
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Figure 4.1: Orbital and Body Frame Representations 

 

The angles between the body frame and the orbital frame are called Euler angles and define the 

orientation of the body frame with respect to the orbital frame. 

4.1.2  Euler Angles 

A satellite’s orientation can be described by three angles, called Euler angles. Each Euler angle 

represents a rotation of the body frame about an axis of the orbital frame. These Euler angles are 

commonly referred to as roll, pitch and yaw. For a satellite, roll is the rotation of the satellite 

about    , the satellite’s position vector. Yaw is defined as the rotation of the satellite about    . 

Last, pitch is defined as the rotation about    , the satellite’s velocity vector. The roll Euler 

angle,   , is the angle with which the body frame rotates about    . In other words, the roll angle 

is the angle between the body frame and orbital frame along the     and      axes. Similarly, the 

yaw Euler angle,   , is the angle with which the body frame rotates about    . Last, the pitch 

Euler angle,   , is defined as the rotation about     . These angles are summarized in Figure 4.2. 
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Figure 4.2: Euler Angles 

Similar to the rotation matrix created to transform the SEZ frame to the ECI frame, rotation 

matrices are developed to represent a rotation about each of the three possible orbital axes. 

Below are the corresponding rotation matrices for roll pitch and yaw. 

                   
   
            

           

  

                 
           

   
            

  

                  
            
           

   

  

Combining these three rotations gives the rotation matrix. 

                       

     

                                                              

                                                               

                          

  

This will be the rotation matrix used to transform any vectors in the orbital frame to the body 

frame. The same process can be used to determine the rotation matrix needed to transform any 

vector in the body frame to the orbital frame. Next, the rotational equations of motion must be 

formed in order to propagate the satellites attitude over the orbit.  
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4.2  Rotational Equations of Motion 

The equations of motion for the satellite rotating about the orbital frame is derived using the 

satellites angular momentum and moment of inertia, defined as 

     

 where    

  

  

  

   

   
   
   

  and is the time derivative of the Euler angles. 

From Euler’s Laws the time derivative of the satellite angular momentum is then  
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 and   is the torque acting on the satellite. 

By rearranging the equation 

                 

 where     for the principal moments of inertia found in Section 1.2 is 

    

 
 
 
 
 
 

  
   

  
  

  

   
  

  
 
 
 
 

 

Therefore the final rotational equations of motion are 
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As done in Chapter 3, the Cowell’s Formulation will be applied to the rotational equations of 

motion to propagate the satellite attitude over time using numerical integration. The state vector 

is defined as 

  

 
 
 
 
 
 
  

  

  
  

  

   
 
 
 
 
 

 

 
 
 
 
 
 
 
  

  

  

   
   
    

 
 
 
 
 
 

 

 
 
 
 
 
 
  

  

  
  

  

   
 
 
 
 
 

 

The time derivative of the state vector is then  

   

 
 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 
 

 

 
 
 
 
 
 
  

  

  

   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

  

  

  

     
  

     
  
  

     
  

     
  
  

     
  

     
  
   

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

  

  

  

     
  

     
       

  
     

  
     

       

  
     

  
     

       

   
 
 
 
 
 
 
 
 
 

 

 

 Also seen in the previous chapter, perturbing forces, or in this case disturbing torques, are 

added to the angular acceleration in order to best estimate the attitude of the satellite. The 

disturbing acceleration is defined as 

 
   
   
   

 

    

 

 
 
 
 
 
 
  
  
  
  
  
   

 
 
 
 
 

    

 

 Similarly to Chapter 2, the disturbing torques can be summed to find the total disturbance on 

the satellite attitude. In this thesis, four disturbing environmental torques are considered as well 

as a control torque, which will counteract the disturbing torques and orient the satellite to the 

desired position. The torques are summed together below. 
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4.3 Disturbing Torques 

The four disturbing torques studied in this thesis are: gravity gradient torque, solar radiation 

pressure torque, magnetic torque and aerodynamic drag torque. These are the four most 

prominent environmental torques experienced by a satellite in a Molniya orbit. Figure 4.3 shows 

generally how the magnitudes of the four disturbing torques vary with altitude. Since the 

Molniya orbit’s altitude is similar to a LEO orbit while at perigee and a GEO orbit while at 

apogee, all four torques must be considered. The magnitudes shown in Figure 4.3 also vary 

depending on the satellite shape and weight.  

  

Figure 4.3: Disturbance Torque Effects vs. Altitude  

In the following sections, the angular acceleration due to each of the disturbing torques will be 

derived. Then, in order to implement the Kalman filter, the state matrix, F, made up of the 

accelerations partial derivatives, must be determined.  

  

4.3.1  Solar Radiation Pressure Torque 

Particles and energy from the sun bombard the satellite throughout the orbit creating pressure 

and torque on the satellite. The torque is created when the location of the satellite’s center of 

mass is not the location of the satellite’s center of solar pressure, as it is in this thesis. The 

variations in the satellite attitude due to solar radiation pressure torque are periodic and depend 

on the reflectivity of the satellite as well as the direction of the sun.  
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The solar radiation torque can be calculated using the following equation 

    
  
 

                        

 where    is the solar constant (1358 W/m
2
), c is the speed of light, and A is the surface area 

of the satellite that is towards the Sun. The reflectance factor, q, the center of solar pressure,    , 

and the center of mass, cm, are all characteristics of the satellite and must be taken in to account 

during its design. See Table 1.1 for these quantities. Last the incidence angle of the sun is     , 

which determines the direction of the disturbing torque 

 

Figure 4.4: Sunlight on Satellite 

Similarly to the solar radiation pressure perturbing force calculated in Chapter 3, the vector from 

the sun to the satellite must be inputted in to the Kalman filter in order to determine the 

disturbing torque created by the pressure. The vector from the sun to the satellite is 
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Figure 4.5: Incident angles of Sunlight with respect to Body Frame 

Then the incident angle of the sun with respect to the body frame can be defined by the angles   

and   shown in Figure 4.5 as 

        
       

       
                    

Then the disturbance torque due to solar radiation, represented in the body frame is 

   
   

  
  
  

  
  
 

      

                  
                  
                  

  
  
 

      

           

           

           

  

The center of pressure and center of mass components are equal except for along the     axis. 

Assuming the satellite is always oriented such that the normal vector of the solar arrays is always 

pointing toward the Sun; the solar radiation pressure torque creates a motion only about the     

axis, or pitch angle.  

 

4.2.2  Gravity Gradient Torque 

One of the assumptions of the two body problem was that the Earth and satellite were spherically 

symmetric. Chapter 3 discussed the effects due to Earth not being spherically symmetric, now 

the fact that the satellite is not spherically symmetric will be addressed. As previously explained, 

Newton’s law of gravitational force states that the force due to gravity on a satellite is 

proportional to the distance the satellite is to the central body. Since the satellite in this thesis is 

not spherically symmetric, the portion of the satellite closest to Earth will experience a larger 

gravitational force than the portion furthest from Earth. The difference between the gravity 

experienced by the closest and furthest part of the satellite is called the gravity gradient.  
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Figure 4.7: Gravity Gradient Torque 

The gravity gradient creates a torque given as 
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4.2.3  Magnetic Field Torque 

Magnetic field torque is caused by the interactions between the Earth’s magnetic field and the 

residual magnetic dipole of the satellite. The torque depends on the Earth’s magnetic field and 

therefore it varies depending on the satellite’s position in its orbit. The distubing torque due to 

Earth’s magnetic field is 

               

 where D is the satellite’s residual dipole and B is the strength and direction of the Earth’s 

magnetic field at the radius of the satellite. Therefore, to calculate the torque acting on the 

satellite a model of the Earth’s magnetic field, or a magnetometer, is required on board the 

satellite. Using an on-board model of the Earth’s magnetic field is computational expensive but 

does not require a magnetometer sensor on board. A magnetometer will be explained in the 

following section.  

 

4.2.4  Aerodynamic Torque  

Aerodynamic torque is caused by particles in the Earth’s atmosphere bombarding the satellite. If 

the satellite’s center of mass and center of drag are not co-located, the particles hitting the 

satellite create a torque. Since the torque is caused by the Earth’s atmosphere, as the satellite’s 

altitude increases, the aerodynamic torque decreases. The torque on the satellite is 

     
 

 
               

 where    is the coefficient of drag for the satellite, A is the cross-sectional area and v is the 

velocity.     is the center of aerodynamic pressure,   is the atmospheric density and cm is the 

satellites center of mass. The atmospheric density model explained in Chapter 3 can be used 

again here to determine the atmospheric density at the current location of the satellite. Similarly 

to the other disturbing torques, knowledge of the location of the satellite is necessary to 

determine the torque acting on the satellite.  

 To summarize, the four disturbing torques considered, in this thesis, are gravity gradient, 

solar radiation pressure, magnetic and drag. These torques add together to form the disturbance 

torque seen in the equation for total torque 

                                                     

The next step is to define the control torque needed to maneuver the satellite in the desired 

motion. Once the control torque is determined the final equations of motions will be numerically 

integrated and used as the “prediction” phase of the Kalman filter implementation. 
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4.4  Attitude Control  

In order to perform a desired mission, a satellite must not only accurately determine its attitude 

but control its attitude. The satellite in this thesis uses both control moment gyros and thrusters to 

control the attitude. Control momentum gyros (CMG) are a commonly used in satellite attitude 

control systems since they have low power requirements. CMGs are made up of a spinning rotor 

and motorized gimbals that use the conservation of angular momentum to change the satellite 

attitude. The spinning rotor is tilted by the gimbals to create a gyroscopic torque that changes the 

satellite attitude. Another form of attitude control is thrusters. Thrusters are attached along all 

three axis of the satellite and positioned at the satellite’s center of mass. Fuel consumption and 

hardware degradation are the limiting factors of thrusters. In this thesis, it is assumed that the 

satellite’s CMGs and thrusters are able to change the attitude of the satellite in the desired control 

motion seen in Figure 4.11.  

 

 

Figure 4.11: Desired motion of satellite 

 

As derived in the previous section, the rotational equations of motion applied in this thesis are  
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 where the torque applied to the system is a sum of the disturbing torques as well as the 

control torque seen below 

                                                     

This section will focus on developing the control torque needed to maneuver the satellite in a 

spiral type motion seen in Figure 4.11. This motion will test the accuracy of the Kalman Filter 

algorithm since the Euler angles change rather quickly.  

The desired motion is  

 

  

  

  

   

                       

                       
             

  

 where the angles are in degrees. The needed acceleration to perform this maneuver is 

 
   
   
   

   

               

               

         

  

The time derivative of the state vector becomes  

 

   

 
 
 
 
 
 

  

  

  

               

               

          
 
 
 
 
 

 

 
 
 
 
 
 

  

  

  

               

               

          
 
 
 
 
 

 

 The satellites attitude is seen in Figure 4.12. This is the motion that will be used in the 

Kalman filter. 
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Figure 4.12: Satellite Maneuver 

 Now that the rotational equations of motion have been defined they can be used to find the 

state transition matrix for the prediction phase of the Kalman filter. Next the sensors used to 

input measurements in to the correction phase of the filter will be explained. 

 

4.5  On-Board Attitude Sensors  

In order to conduct the desired mission, the satellite must accurately determine and control the 

attitude. A satellite’s attitude can be determined by a variety of on-board sensors. Each type of 

sensor has its advantages and disadvantages. The four cases of attitude determination in the 

thesis correspond to four sensors on board the satellite and are: magnetometer, Earth sensor, Sun 

sensor and star trackers. How each sensor works and their typical errors are explained in the 

following sections.  

4.5.1  Magnetometer 

A magnetometer determines the attitude of the satellite by measuring the magnetic field in the 

satellite’s body frame and comparing the measured field to that of the predicated field in the 

satellite’s orbital frame. The predicted magnetic field of the Earth in the satellite’s orbital frame 
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is derived from a chosen model. Therefore, the Euler angles can be determined from the rotation 

matrix needed to transform the magnetic field in the satellites orbital frame to the measured field 

in the satellite’s body frame. 

                  

Therefore 

                 
   

Then  

                
    

                
   

  

     
  

              
   

  

     
  

 An advantage to magnetometer attitude sensors is that they are lightweight and have low 

power consumptions. A disadvantage to magnetometer sensors is the rather large inaccuracies, 

about 1 degree, when compared to the other attitude sensors available. These errors arise from 

the errors of the Earth’s magnetic field model. The magnetometer has the highest errors of the 

attitude sensors used in this thesis.  

4.5.2  Earth Sensor 

An Earth sensor uses the location of the Earth to determine the attitude of the satellite. Typically, 

infrared cameras are continuously determining the location of the Earth relative to the satellite’s 

body frame. Then the location of the Earth relative to the satellite’s body frame is compared to 

that of the orbital frame to determine the Euler angles. The math is similar to the magnetometer 

derivation above, except for rather than a magnetic field vector, it the vector from the Earth to 

the satellite’s body and orbital frame. Earth sensors are more accurate than magnetometers as 

well as being low cost and reliable. The Earth sensor used in this thesis has typical errors of 0.2 

degrees.  

4.5.3  Sun Sensor 

Similar to the Earth sensor, a Sun sensor determines the orientation of the satellite by comparing 

the Sun’s position vector measured in the satellite’s body reference frame to the Sun’s position 

vector known in the orbital reference frame. The sun sensor uses on-board photocells to 

determine the incident angle of the Sun. The Sun sensor used in this thesis has errors of 0.15 

degrees.    
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4.5.4  Star Sensor 

Star sensors determine the attitude of the satellite by capturing images of stars seen in the 

satellite’s body frame and comparing them to a catalog of star constellations. A star sensor is 

highly accurate but requires more power and is the heaviest of the four sensors used in this 

thesis. Therefore, the engineers designing the attitude control system for the satellite must weigh 

the cost and benefits of each of these four sensors in order to design the satellite to best meet the 

mission requirements. 

 To summarize, four attitude determining cases will be studied corresponding to the four 

attitude sensors explained above. A summary of the errors and update rates of the four sensors 

are shown in Table 4.1. The update rate is important since not only are small errors required to 

best determine attitude, but also short durations between measurement inputs in to the Kalman 

Filter. Therefore, a very accurate sensor that only inputs measurements ever minute may be less 

effective at determining attitude than a less accurate sensor that updates once a second. 

 Error Update rate 

Magnetometers 1° 0.1 sec 

Earth Sensor 0.2° 0.1 sec 

Sun Sensor 0.15° 0.25 sec 

Star Sensor 5.6x10
-4

 ° 0.25 sec 
 

Table 4.1: Errors and update times for Attitude Sensors 

 

4.6  Kalman Filter Implementation for Attitude Determination   

Now that the acceleration of the Euler angles and the measurement devices used to determine the 

attitude of the satellite have been explained, the Kalman filter can be implemented. First, the 

observation matrix must be formed. Since the attitude sensors measure the position and velocity 

of the Euler angles, the observation matrix is just the identity matrix.   
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 The state matrix, F, is developed by linearizing the state vector by taking the partial 

derivatives of each element with respect to the position and velocity components. For the 

undisturbed rotational equations of motion  

   

 
 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 
 

 

 
 
 
 
 
 
  

  

  

   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

  

  

  

     
  

    

     
  

    

     
  

     
 
 
 
 
 
 
 
 
 

 

the state matrix is 
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For the perturbed rotational equations of motion  

   

 
 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 
 

 

 
 
 
 
 
 
  

  

  

   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

  

  

  

     
  

     
  
  

     
  

     
  
  

     
  

     
  
   

 
 
 
 
 
 
 
 
 

 

the state matrix, F, is then 

 

 
 
 
 
 
 
 
 
 
 

   
   
   

      
     
      

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

   
 

  

   
   

     
  

   
 

  

   
   

     
  

   
 

  

   
   

  
     

  
   

 

  

   
   

 

  

   
   

     
  

   
 

  

   
   

   
     

  
   

 

  

   
   

     
  

   
 

  

   
   

 

  

   
    

 
 
 
 
 
 
 
 
 

 

 

Just as in the orbit determining Kalman filter each of the perturbation forces have individual state 

matrices that can be added to one another.  

                                           

Where the state matrix corresponding to each torque is 

  

 
 
 
 
 
 
 
 
 
 

   
   
   

      
     
      

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

 

  

   
   

   
 

  

   
   

 

  

   
   

 

  

   
   

  
 

  

   
   

 

  

   
   

 

  

   
   

   
 

  

   
   

 

  

   
   

 

  

   
    

 
 
 
 
 
 
 
 
 

 

 



66 
 

In Section 4.4, the time derivative of the state vector was formed in order to perform the desired 

maneuver. The time derivative of the state vector is  

   

 
 
 
 
 
 

  

  

  

               

               

          
 
 
 
 
 

 

 
 
 
 
 
 

  

  

  

               

               

          
 
 
 
 
 

 

Therefore the state matrix is  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   
   

   

   

   

   

   

  
   

   

   

   

   

   

   
   

   

   

   

   

   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

   
    
   

    
   

    
   

  
    
   

    
   

    
   

   
    
   

    
   

    
    

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

   
   
   

   
   
   

                
                 
            

   
   
    

 
 
 
 
 

 

 

Now that the observation matrix and state matrix have been defined, the Kalman filter can be 

implemented and run using the different types of attitude determining sensors to best estimate the 

attitude of the satellite. 
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4.7  Results of Attitude Determination Algorithm 

Now that the Klaman filter algorthim has been developed, it can be run using different types of 

attitude determing sensors. Figure 4.12 shows the controlled attitude manuerver used to test the 

algorithm. This manueaver changes the pitch and yaw angles quite rapidly, which could lead to 

inaccurate attitude estimations if the algorithm is not robust enough. The next four sections 

correspond to the cases run for the four attitude sensors. First, the magnetometer sensor, which is 

the most inaccurate. 

 

4.7.1  Magnetometer 

The magnetometer sensor used in this thesis has the errors and sample rate listed in Table 4.1. 

The actual and estimated Euler angles and measurements are plotted in Figure 4.13. Zooming in, 

Figure 4.14, shows how the estimated attitude uses the measurements to update the predicted 

attitude but with fairly large errors. The errors are seen in Figure 4.14. The standard deviation of 

the errors for the attitude determined using a magnetometer sensor is 0.2 degrees. The normal 

distribution of the errors seen using a magnetometer is plotted in Figure 4.15. 

 

Figure 4.13: Satellite Attitude Determine Using Magnetometer 
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Figure 4.14: Satellite Attitude Determine Using Magnetometer 

 

Figure 4.15: Errors in Satellite Attitude Determine Using Magnetometer 
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Figure 4.16: Probability Distribution of Errors in Satellite Attitude Determine Using Magnetometer 

 

4.7.2  Earth Sensor 

The Earth sensor used in this thesis has the errors and sample rate listed in Table 4.1. The actual 

and estimated Euler angles and measurements are plotted in Figure 4.17. Zooming in, Figure 

4.18, shows how the estimated attitude is corrected with the inputted measurements to predict the 

attitude. The attitude is estimated more accurately than with the magnetometer measurement 

inputs. The errors in attitude for the three axes are seen in Figure 4.19. Notice that the errors are 

larger when the angular rate of change is higher. This confirms the findings found in Chapter 3, 

an increase in distance covered between measurement updates increases the errors determined by 

the filter. The error distribution is plotted in Figure 4.20.The first standard deviation of the errors 

for the attitude determined using an Earth sensor is 0.05 degrees.  
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Figure 4.17: Satellite Attitude Determine Using Earth Sensor 

 

Figure 4.18: Satellite Attitude Determine Using Earth Sensor 
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Figure 4.19: Errors in Satellite Attitude Determine Using Earth Sensor 

 

Figure 4.20: Probability Distribution of Errors in Satellite Attitude Determine Using Earth Sensor 
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4.7.3  Sun Sensor 

Below are the results of the attitude determining Kalman Filter algorithm using the sun sensor 

attiude measurments every quarter of a second. From Figure 4.22, it is seen that the filter is 

esitmating the attitude quite accuratly. The attitude errors from the algorithm are seen in Figure 

4.23. The fisrt satandard deviation of the errors computed using the sun sensor is 0.06 

degrees.The errors are similar to the Earth sensor, even though the sun sensor has higher 

accuracy, since the sun sensor inputs measurements half as often as the earth sensor. Therefore it 

is shown that both accuracy and time interval between measuemenrts are important in computing 

the attiude of the satellite using the Kalman filter developed in this thesis. The error distribution 

for the attitude determined by the sun sensor is seen in Figure 4.24. 

 

 
 

 
Figure 4.20: Satellite Attitude Determine Using Sun Sensor 
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Figure 4.21: Satellite Attitude Determine Using Sun Sensor 

 

 
Figure 4.23: Errors in Satellite Attitude Determine Using Sun Sensor 
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Figure 4.24: Distribution of errors in satellite attitude determined using sun sensor 

 

4.7.4  Star Sensor 

Last but not least, the attitude of the satellite is determined using star tracker measurements every 

quarter second. Star tracker measurements are far more accurate than the other three sensors used 

in this thesis. Therefore, even with the time step being a quarter second rather than a tenth of a 

second, the errors in attitude are far smaller with star tracker measurements than with the other 

three sensors. The standard deviation of the errors in attitude determined by the Kalman filter 

using star tracker measurements is 0.0006 degrees. The error distribution is plotted in Figure 

4.28. A plot all four error distribution is seen in Figure 2.29. 
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Figure 4.25: Satellite Attitude Determine Using Star Tracker 

 

Figure 4.26: Satellite Attitude Determine Using Star Tracker 
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Figure 4.27: Errors in Satellite Attitude Determine Using Star Tracker 

 

Figure 4.28: Distribution of errors in satellite attitude determined using star tracker 
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4.7.4  Summary 

To summarize, both the accuracy of sensors as well as time between measurement updates 

influences the total accuracy of the attitude determining Kalman filter developed in this thesis. It 

is shown that star tracker sensor determines the satellite attitude with 300 times the accuracy then 

the magnetometer. However with accuracy comes greater weight and power consumptions. 

When designing the attitude control system of a satellite, the engineers will need to perform a 

trade study on attitude accuracy requirements with weight and power availability to determine 

the best sensors for the satellite. 

 

 

Figure 4.28: Summary of distribution of errors in satellite attitude determined  
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Chapter 5 

 

Conclusion 

This thesis details the development and implementation of an attitude and orbit 

determining Kalman filter algorithm for a satellite in a Molniya orbit. For the Kalman filter to 

determine the orbit of the satellite, the equations of motion were propagated using the Cowell’s 

formulation. Four types of perturbing forces were added to the two body problem in order to 

increase the accuracy of the orbit prediction. These four perturbing forces are: the Earth’s 

oblateness, atmospheric drag, lunar gravitational forces and solar radiation pressure. All four 

perturbing forces were added to the model since the satellite is in a Molniya orbit and therefore 

both the perturbing forces that occur at low altitudes and high altitudes must be considered. Next, 

measurements of the satellite’s position are added to the Kalman filter in order to correct the 

predicted orbit. Two cases were studied, the first being the implementation of site track 

measurements, inputted when the satellite was over the ground station. It is shown that with each 

ground site pass, the errors in the predicted orbit decrease. However, large errors, upwards of 

ninety meters grow as time from last measurement input increases. The next case studied was 

continuous measurement inputs from a GPS receiver on board the satellite throughout the orbit. 

This algorithm greatly decreased the errors seen in the orbit determining algorithm. This is due to 

the accuracy of the position measured by the GPS sensor and the constant measurement update 

throughout the orbit. In summary, the orbit determining algorithm using GPS measurements 

throughout the orbit is much more accurate than a site track orbit determining implementation. 

Next the Kalman filter is applied to determine the satellite attitude. The rotational 

equations of motion are propagated using the Cowell’s Formulation and numerical integration. 

To increase the fidelity of the model four disturbing torques are included in the rotational 
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equations of motion. These four disturbing torques are gravity gradient torque, solar pressure 

torque, magnetic torque, and aerodynamic torque. The measurement input stage of the Kalman 

filter used on-board attitude determining sensors. Four cases were studied, one for each of the 

on-board sensors: Magnetometer, Earth sensor, Sun sensor, and star tracker. A controlled attitude 

path was chosen to test the accuracy of each of these cases and it was shown that the algorithm 

using star tracker measurements was 300 times more accurate than that of the magnetometer 

algorithm.  

Therefore, if attempting to design a light weight payload with a computationally 

inexpensive orbit and attitude determining system, trade studies can be evaluated to determine 

what type of sensors to use on-board the payload. If only a GPS sensor is used, for both the 

attitude and orbit determining system, models of the location of the Sun and Moon, and Earth’s 

magnetic field will be needed on board if calculating the perturbing forces and disturbing 

torques. However, it is possible that the attitude and orbit can be determined without a GPS 

sensor by using the site track method along with an on-board Sun sensor and magnetometer. 

Trade studies between cases such as the ones described above can be performed in order to 

determine the best orbit and attitude determining system to use. If a payload can accurately 

determine the satellite orbit and attitude without interfacing with the host satellite, the number of 

interfaces between the host and payload is greatly reduced. By reducing the number of interfaces, 

the integration of the payload on to the host satellite is greatly simplified, reducing development 

time and cost.  

  

5.1  Future Work 

Like in any model, assumptions were made to simplify the model and reduce computation time. 

For future work, these assumptions could be changed or removed, adding to the complexity and 

accuracy of the model. For example, the atmospheric model chosen in this thesis was time-

invariant, therefore did not take in to account the Sun’s diurnal and sun spot cycle. The 

atmospheric model only took in to account the altitude of the satellite. Since both the 

atmospheric drag perturbation force and aerodynamic disturbing torque calculations used this 

model, the accuracy of both could be improved by introducing a more accurate model. Also, the 

solar radiation pressure that created a disturbing torque on the satellite, as well as perturbing 

force on the orbit, was found assuming the Sun was stationary over the orbit and duration of the 

algorithm. Therefore, to make this algorithm self sufficient for the life of the satellite, the sun’s 

incident angle measured by the Sun sensor could be inputted alongside the measurements into 

the orbit determining algorithm. Similarly, the lunar gravitational effects on the orbit of the 

satellite were determined assuming the Moon’s position relative to Earth remained constant over 

the time of the satellite orbit.  
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Another idea for future work would be to study how the Kalman filter accuracy would 

change when using dynamic weights in the error covariance matrices, R and Q, rather than the 

static ones used in this thesis. By adding dynamic weights or more accurate perturbation 

accelerations, the complexity and accuracy of the model increases. Therefore, an engineer 

developing a satellite attitude and orbit determining system will need to determine what level of 

accuracy and therefore complexity is required for the specific satellite. 
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APPENDIX  

Development of State Matrix for Earth’s Oblateness 

Below are the individual partial derivatives that make up the State Matrix pertaining to Earth’s 

oblateness. 
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